Flexible Multi-Microphone Acquisition and Processing of Spatial Sound Using Parametric Sound Field Representations

This thesis deals with the efficient and flexible acquisition and processing of spatial sound using multiple microphones. In spatial sound acquisition and processing, we use multiple microphones to capture the sound of multiple sources being simultaneously active at a rever- berant recording side and process the sound depending on the application at the application side. Typical applications include source extraction, immersive spatial sound reproduction, or speech enhancement. A flexible sound acquisition and processing means that we can capture the sound with almost arbitrary microphone configurations without constraining the application at the ap- plication side. This means that we can realize and adjust the different applications indepen- dently of the microphone configuration used at the recording side. For example in spatial sound reproduction, where we aim at reproducing the sound such that the listener perceives the same impression as if he ...

Thiergart, Oliver — Friedrich-Alexander-Universitat Erlangen-Nurnberg


Spherical Microphone Array Processing for Acoustic Parameter Estimation and Signal Enhancement

In many distant speech acquisition scenarios, such as hands-free telephony or teleconferencing, the desired speech signal is corrupted by noise and reverberation. This degrades both the speech quality and intelligibility, making communication difficult or even impossible. Speech enhancement techniques seek to mitigate these effects and extract the desired speech signal. This objective is commonly achieved through the use of microphone arrays, which take advantage of the spatial properties of the sound field in order to reduce noise and reverberation. Spherical microphone arrays, where the microphones are arranged in a spherical configuration, usually mounted on a rigid baffle, are able to analyze the sound field in three dimensions; the captured sound field can then be efficiently described in the spherical harmonic domain (SHD). In this thesis, a number of novel spherical array processing algorithms are proposed, based in the SHD. In ...

Jarrett, Daniel P. — Imperial College London


Robust Direction-of-Arrival estimation and spatial filtering in noisy and reverberant environments

The advent of multi-microphone setups on a plethora of commercial devices in recent years has generated a newfound interest in the development of robust microphone array signal processing methods. These methods are generally used to either estimate parameters associated with acoustic scene or to extract signal(s) of interest. In most practical scenarios, the sources are located in the far-field of a microphone array where the main spatial information of interest is the direction-of-arrival (DOA) of the plane waves originating from the source positions. The focus of this thesis is to incorporate robustness against either lack of or imperfect/erroneous information regarding the DOAs of the sound sources within a microphone array signal processing framework. The DOAs of sound sources is by itself important information, however, it is most often used as a parameter for a subsequent processing method. One of the ...

Chakrabarty, Soumitro — Friedrich-Alexander Universität Erlangen-Nürnberg


Synthetic reproduction of head-related transfer functions by using microphone arrays

Spatial hearing for human listeners is based on the interaural as well as on the monaural analysis of the signals arriving at both ears, enabling the listeners to assign certain spatial components to these signals. This spatial aspect gets lost when the signals are reproduced via headphones without considering the acoustical influence of the head and torso, i.e. head-related transfer function (HRTFs). A common procedure to take into account spatial aspects in a binaural reproduction is to use so-called artificial heads. Artificial heads are replicas of a human head and torso with average anthropometric geometries and built-in microphones in the ears. Although, the signals recorded with artificial heads contain relevant spatial aspects, binaural recordings using artificial heads often suffer from front-back confusions and the perception of the sound source being inside the head (internalization). These shortcomings can be attributed to ...

Rasumow, Eugen — University of Oldenburg


Mixed structural models for 3D audio in virtual environments

In the world of Information and communications technology (ICT), strategies for innovation and development are increasingly focusing on applications that require spatial representation and real-time interaction with and within 3D-media environments. One of the major challenges that such applications have to address is user-centricity, reflecting e.g. on developing complexity-hiding services so that people can personalize their own delivery of services. In these terms, multimodal interfaces represent a key factor for enabling an inclusive use of new technologies by everyone. In order to achieve this, multimodal realistic models that describe our environment are needed, and in particular models that accurately describe the acoustics of the environment and communication through the auditory modality are required. Examples of currently active research directions and application areas include 3DTV and future internet, 3D visual-sound scene coding, transmission and reconstruction and teleconferencing systems, to name but ...

Geronazzo, Michele — University of Padova


Fundamental Frequency and Direction-of-Arrival Estimation for Multichannel Speech Enhancement

Audio systems receive the speech signals of interest usually in the presence of noise. The noise has profound impacts on the quality and intelligibility of the speech signals, and it is therefore clear that the noisy signals must be cleaned up before being played back, stored, or analyzed. We can estimate the speech signal of interest from the noisy signals using a priori knowledge about it. A human speech signal is broadband and consists of both voiced and unvoiced parts. The voiced part is quasi-periodic with a time-varying fundamental frequency (or pitch as it is commonly referred to). We consider the periodic signals basically as the sum of harmonics. Therefore, we can pass the noisy signals through bandpass filters centered at the frequencies of the harmonics to enhance the signal. In addition, although the frequencies of the harmonics are the ...

Karimian-Azari, Sam — Aalborg Univeristy


Acoustic echo reduction for multiple loudspeakers and microphones: Complexity reduction and convergence enhancement

Modern devices such as mobile phones, tablets or smart speakers are commonly equipped with several loudspeakers and microphones. If, for instance, one employs such a device for hands-free communication applications, the signals that are reproduced by the loudspeakers are propagated through the room and are inevitably acquired by the microphones. If no processing is applied, the participants in the far-end room receive delayed reverberated replicas of their own voice, which strongly degrades both speech intelligibility and user comfort. In order to prevent that so-called acoustic echoes are transmitted back to the far-end room, acoustic echo cancelers are commonly employed. The latter make use of adaptive filtering techniques to identify the propagation paths between loudspeakers and microphones. The estimated propagation paths are then employed to compute acoustic echo estimates, which are finally subtracted from the signals acquired by the microphones. In ...

Luis Valero, Maria — International Audio Laboratories Erlangen


Solving inverse problems in room acoustics using physical models, sparse regularization and numerical optimization

Reverberation consists of a complex acoustic phenomenon that occurs inside rooms. Many audio signal processing methods, addressing source localization, signal enhancement and other tasks, often assume absence of reverberation. Consequently, reverberant environments are considered challenging as state-ofthe-art methods can perform poorly. The acoustics of a room can be described using a variety of mathematical models, among which, physical models are the most complete and accurate. The use of physical models in audio signal processing methods is often non-trivial since it can lead to ill-posed inverse problems. These inverse problems require proper regularization to achieve meaningful results and involve the solution of computationally intensive large-scale optimization problems. Recently, however, sparse regularization has been applied successfully to inverse problems arising in different scientific areas. The increased computational power of modern computers and the development of new efficient optimization algorithms makes it possible ...

Antonello, Niccolò — KU Leuven


Audio Signal Processing for Binaural Reproduction with Improved Spatial Perception

Binaural technology aims to reproduce three-dimensional auditory scenes with a high level of realism by providing the auditory display with spatial hearing information. This technology has various applications in virtual acoustics, architectural acoustics, telecommunication and auditory science. One key element in binaural technology is the actual binaural signals, produced by filtering a sound-field with free-field head related transfer functions (HRTFs). With the increased popularity of spherical microphone arrays for sound-field recording, methods have been developed for rendering binaural signals from these recordings. The use of spherical arrays naturally leads to processing methods that are formulated in the spherical harmonics (SH) domain. For accurate SH representation, high-order functions, of both the sound-field and the HRTF, are required. However, a limited number of microphones, on one hand, and challenges in acquiring high resolution individual HRTFs, on the other hand, impose limitations on ...

Ben-Hur, Zamir — Ben-Gurion University of the Negev


Distributed Signal Processing Algorithms for Multi-Task Wireless Acoustic Sensor Networks

Recent technological advances in analogue and digital electronics as well as in hardware miniaturization have taken wireless sensing devices to another level by introducing low-power communication protocols, improved digital signal processing capabilities and compact sensors. When these devices perform a certain pre-defined signal processing task such as the estimation or detection of phenomena of interest, a cooperative scheme through wireless connections can significantly enhance the overall performance, especially in adverse conditions. The resulting network consisting of such connected devices (or nodes) is referred to as a wireless sensor network (WSN). In acoustical applications (e.g., speech enhancement) a variant of WSNs, called wireless acoustic sensor networks (WASNs) can be employed in which the sensing unit at each node consists of a single microphone or a microphone array. The nodes of such a WASN can then cooperate to perform a multi-channel acoustic ...

Hassani, Amin — KU Leuven


Acoustic sensor network geometry calibration and applications

In the modern world, we are increasingly surrounded by computation devices with communication links and one or more microphones. Such devices are, for example, smartphones, tablets, laptops or hearing aids. These devices can work together as nodes in an acoustic sensor network (ASN). Such networks are a growing platform that opens the possibility for many practical applications. ASN based speech enhancement, source localization, and event detection can be applied for teleconferencing, camera control, automation, or assisted living. For this kind of applications, the awareness of auditory objects and their spatial positioning are key properties. In order to provide these two kinds of information, novel methods have been developed in this thesis. Information on the type of auditory objects is provided by a novel real-time sound classification method. Information on the position of human speakers is provided by a novel localization ...

Plinge, Axel — TU Dortmund University


Sparse Array Signal Processing

This dissertation details three approaches for direction-of-arrival (DOA) estimation or beamforming in array signal processing from the perspective of sparsity. In the first part of this dissertation, we consider sparse array beamformer design based on the alternating direction method of multipliers (ADMM); in the second part of this dissertation, the problem of joint DOA estimation and distorted sensor detection is investigated; and off-grid DOA estimation is studied in the last part of this dissertation. In the first part of this thesis, we devise a sparse array design algorithm for adaptive beamforming. Our strategy is based on finding a sparse beamformer weight to maximize the output signal-to-interference-plus-noise ratio (SINR). The proposed method utilizes ADMM, and admits closed-form solutions at each ADMM iteration. The algorithm convergence properties are analyzed by showing the monotonicity and boundedness of the augmented Lagrangian function. In addition, ...

Huang, Huiping — Darmstadt University of Technology


Speech derereverberation in noisy environments using time-frequency domain signal models

Reverberation is the sum of reflected sound waves and is present in any conventional room. Speech communication devices such as mobile phones in hands-free mode, tablets, smart TVs, teleconferencing systems, hearing aids, voice-controlled systems, etc. use one or more microphones to pick up the desired speech signals. When the microphones are not in the proximity of the desired source, strong reverberation and noise can degrade the signal quality at the microphones and can impair the intelligibility and the performance of automatic speech recognizers. Therefore, it is a highly demanded task to process the microphone signals such that reverberation and noise are reduced. The process of reducing or removing reverberation from recorded signals is called dereverberation. As dereverberation is usually a completely blind problem, where the only available information are the microphone signals, and as the acoustic scenario can be non-stationary, ...

Braun, Sebastian — Friedrich-Alexander Universität Erlangen-Nürnberg


Efficient parametric modeling, identification and equalization of room acoustics

Room acoustic signal enhancement (RASE) applications, such as digital equalization, acoustic echo and feedback cancellation, which are commonly found in communication devices and audio equipment, aim at processing the acoustic signals with the final goal of improving the perceived sound quality in rooms. In order to do so, signal processing algorithms require the acoustic response of the room to be represented by means of parametric models and to be identified from the input and output signals of the room acoustic system. In particular, a good model should be both accurate, thus capturing those features of room acoustics that are physically and perceptually most relevant, and efficient, so that it can be implemented as a digital filter and used in practical signal processing tasks. This thesis addresses the fundamental question in room acoustic signal processing concerning the appropriateness of different parametric ...

Vairetti, Giacomo — KU Leuven


Array Signal Processing Algorithms for Beamforming and Direction Finding

Array processing is an area of study devoted to processing the signals received from an antenna array and extracting information of interest. It has played an important role in widespread applications like radar, sonar, and wireless communications. Numerous adaptive array processing algorithms have been reported in the literature in the last several decades. These algorithms, in a general view, exhibit a trade-off between performance and required computational complexity. In this thesis, we focus on the development of array processing algorithms in the application of beamforming and direction of arrival (DOA) estimation. In the beamformer design, we employ the constrained minimum variance (CMV) and the constrained constant modulus (CCM) criteria to propose full-rank and reduced-rank adaptive algorithms. Specifically, for the full-rank algorithms, we present two low-complexity adaptive step size mechanisms with the CCM criterion for the step size adaptation of the ...

Lei Wang — University of York

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.