Dynamic Scheme Selection in Image Coding

This thesis deals with the coding of images with multiple coding schemes and their dynamic selection. In our society of information highways, electronic communication is taking everyday a bigger place in our lives. The number of transmitted images is also increasing everyday. Therefore, research on image compression is still an active area. However, the current trend is to add several functionalities to the compression scheme such as progressiveness for more comfortable browsing of web-sites or databases. Classical image coding schemes have a rigid structure. They usually process an image as a whole and treat the pixels as a simple signal with no particular characteristics. Second generation schemes use the concept of objects in an image, and introduce a model of the human visual system in the design of the coding scheme. Dynamic coding schemes, as their name tells us, make ...

Fleury, Pascal — Swiss Federal Institute of Technology


A Unified Framework for Communications through MIMO Channels

MULTIPLE-INPUT MULTIPLE-OUTPUT (MIMO) CHANNELS constitute a unified way of modeling a wide range of different physical communication channels, which can then be handled with a compact and elegant vector-matrix notation. The two paradigmatic examples are wireless multi-antenna channels and wireline Digital Subscriber Line (DSL) channels. Research in antenna arrays (also known as smart antennas) dates back to the 1960s. However, the use of multiples antennas at both the transmitter and the receiver, which can be naturally modeled as a MIMO channel, has been recently shown to offer a significant potential increase in capacity. DSL has gained popularity as a broadband access technology capable of reliably delivering high data rates over telephone subscriber lines. A DSL system can be modeled as a communication through a MIMO channel by considering all the copper twisted pairs within a binder as a whole rather ...

Palomar, Daniel Perez — Technical University of Catalonia (UPC)


Synthetic test patterns and compression artefact distortion metrics for image codecs

This thesis presents a framework of test methodology to assess spatial domain compression artefacts produced by image and intra-frame coded video codecs. Few researchers have studied this broad range of artefacts. A taxonomy of image and video compression artefacts is proposed. This is based on the point of origin of the artefact in the image communication model. This thesis presents objective evaluation of distortions known as artefacts due to image and intra-frame coded video compression made using synthetic test patterns. The American National Standard Institute document ANSI T1 801 qualitatively defines blockiness, blur and ringing artefacts. These definitions have been augmented with quantitative definitions in conjunction with test patterns proposed. A test and measurement environment is proposed in which the codec under test is exercised using a portfolio of test patterns. The test patterns are designed to highlight the artefact ...

Punchihewa, Amal — Massey University, New Zealand


Interference Alignment in MIMO Networks: Feasibility and Transceiver Design

Wireless communications have gone through an exponential growth in the last several years and it is forecast that this growth will be sustained for the coming decades. This ever-increasing demand for radio resources is now facing one of its main limitations: inter-user interference, arising from the fact of multiple users accessing the propagation medium simultaneously which limits the total amount of data that can be reliably communicated through the wireless links. Traditionally, interference has been dealt with by allocating disjoint channel resources to distinct users. However, the advent of a novel interference coordination technique known as interference alignment (IA) brought to the forefront the promise of a much larger spectral efficiency. This dissertation revolves around the idea of linear interference alignment for a network consisting of several mutually interfering transmitter-receiver pairs, which is com-monly known as interference channel. In particular, ...

Fernandez, Oscar Gonzalez — University of Cantabria


MIMO Radars with Sparse Sensing

Multi-input and multi-output (MIMO) radars achieve high resolution of arrival direction by transmitting orthogonal waveforms, performing matched filtering at the receiver end and then jointly processing the measurements of all receive antennas. This dissertation studies the use of compressive sensing (CS) and matrix completion (MC) techniques as means of reducing the amount of data that need to be collected by a MIMO radar system, without sacrificing the system’s good resolution properties. MIMO radars with sparse sensing are useful in networked radar scenarios, in which the joint processing of the measurements is done at a fusion center, which might be connected to the receive antennas via a wireless link. In such scenarios, reduced amount of data translates into bandwidth and power saving in the receiver-fusion center link. First, we consider previously defined CS-based MIMO radar schemes, and propose optimal transmit antenna ...

Sun, Shunqiao — Rutgers, The State University of New Jersey


Best Signal Selection with Automatic Delay Compensation in VoIP Environment

In the last decades, air traffic spread more and more in the world, connecting more and more places. At the same time, the need to manage all the flights correctly and securely increased. Air traffic authorities imposed and updated several standards for the air traffic management (ATM) system, keeping in pace with the growing traffic flow. To achieve this, special voice communication systems (VCS) were developed. They ensure the communication between the pilots and the operators from the ground control centers. When a communication is initiated between the aircraft’s pilot and the ground air traffic control operator, various systems are used. The pilot speaks through the aircraft’s radio station and the signal is received by several ground radio stations. Then, the signal from each ground radio station arrives on different paths to the control center. Here one of the received ...

Marinescu, Radu-Sebastian — University Politehnica of Bucharest


Cooperative and Cognitive Communication Techniques for Wireless Networks

During the past years wireless communications have been exhibiting an increased growth rendering them the most common way for communication. The continuously increasing demand for wireless services resulted in limited availability of the wireless spectrum. To this end, Cognitive Radio (CR) techniques have been proposed in literature during the past years. The concept of CR approach is to utilize advanced radio and signal-processing technology along with novel spectrum allocation policies to enable new unlicensed wireless users to operate in the existing occupied spectrum areas without degrading the performance of the existing licensed ones. Moreover, the broadcast and fading nature of the wireless channel results in severe degradation on the performance of wireless transmissions. A solution to the problem is the use of multiple-antenna systems so as to achieve spatial diversity. However, in many cases, the communication devices' nature permit the ...

Tsinos, Christos — University of Patras


Ultra Wideband Communications: from Analog to Digital

The aim of this thesis is to investigate key issues encountered in the design of transmission schemes and receiving techniques for Ultra Wideband (UWB) communication systems. Based on different data rate applications, this work is divided into two parts, where energy efficient and robust physical layer solutions are proposed, respectively. Due to a huge bandwidth of UWB signals, a considerable amount of multipath arrivals with various path gains is resolvable at the receiver. For low data rate impulse radio UWB systems, suboptimal non-coherent detection is a simple way to effectively capture the multipath energy. Feasible techniques that increase the power efficiency and the interference robustness of non-coherent detection need to be investigated. For high data rate direct sequence UWB systems, a large number of multipath arrivals results in severe inter-/intra-symbol interference. Additionally, the system performance may also be deteriorated by ...

Song, Nuan — Ilmenau University of Technology


Compressive Sensing Based Candidate Detector and its Applications to Spectrum Sensing and Through-the-Wall Radar Imaging

Signal acquisition is a main topic in signal processing. The well-known Shannon-Nyquist theorem lies at the heart of any conventional analog to digital converters stating that any signal has to be sampled with a constant frequency which must be at least twice the highest frequency present in the signal in order to perfectly recover the signal. However, the Shannon-Nyquist theorem provides a worst-case rate bound for any bandlimited data. In this context, Compressive Sensing (CS) is a new framework in which data acquisition and data processing are merged. CS allows to compress the data while is sampled by exploiting the sparsity present in many common signals. In so doing, it provides an efficient way to reduce the number of measurements needed for perfect recovery of the signal. CS has exploded in recent years with thousands of technical publications and applications ...

Lagunas, Eva — Universitat Politecnica de Catalunya


On-board Processing for an Infrared Observatory

During the past two decades, image compression has developed from a mostly academic Rate-Distortion (R-D) field, into a highly commercial business. Various lossless and lossy image coding techniques have been developed. This thesis represents an interdisciplinary work between the field of astronomy and digital image processing and brings new aspects into both of the fields. In fact, image compression had its beginning in an American space program for efficient data storage. The goal of this research work is to recognize and develop new methods for space observatories and software tools to incorporate compression in space astronomy standards. While the astronomers benefit from new objective processing and analysis methods and improved efficiency and quality, for technicians a new field of application and research is opened. For validation of the processing results, the case of InfraRed (IR) astronomy has been specifically analyzed. ...

Belbachir, Ahmed Nabil — Vienna University of Technology


Interweave/Underlay Cognitive Radio Techniques and Applications in Satellite Communication Systems

The demand for precious radio spectrum is continuously increasing while the available radio frequency resource has become scarce due to spectrum segmentation and the dedicated frequency allocation of standardized wireless systems. This scarcity has led to the concept of cognitive radio communication which comprises a variety of techniques capable of allowing the coexistence of licensed and unlicensed systems over the same spectrum. In this context, this thesis focuses on interweave and underlay cognitive radio paradigms which are widely considered as important enablers for realising cognitive radio technology. In the interweave paradigm, an unlicensed user explores the spectral holes by means of some spectrum awareness methods and utilizes the available spectral availabilities opportunistically while in the underlay paradigm, an unlicensed user is allowed to coexist with the licensed user only if sufficient protection to the licensed user can be guaranteed. Starting ...

Sharma, Shree Krishna — SnT, University of Luxembourg


Multi-user Receiver Structures for Direct Sequence Code Division Multiple Access

This thesis reports on an investigation of various system architectures and receiver structures for cellular communications systems which discriminate users by direct sequence code division multiple access (DSCDMA). Attention is focussed on the downlink of such a spread spectrum system and the influence of a number of design parameters is considered. The objective of the thesis is to investigate signal processing techniques which may be employed either at the receiver, or throughout the system to improve the overall capacity. The principles of spread spectrum communication are first outlined, including a discussion of the relative merits of spreading sequence sets, and a description of various signal processing techniques which are to be applied to the multi-user environment. The measure of system performance is introduced, and the conventional DS-CDMA system is analysed theoretically and through simulation to provide a reference performance level. ...

Band, Ian W. — University Of Edinburgh


Video Quality Estimation for Mobile Video Streaming

For the provisioning of video streaming services it is essential to provide a required level of customer satisfaction, given by the perceived video stream quality. It is therefore important to choose the compression parameters as well as the network settings so that they maximize the end-user quality. Due to video compression improvements of the newest video coding standard H.264/AVC, video streaming for low bit and frame rates is possible while preserving its perceptual quality. This is especially suitable for video applications in 3G wireless networks. Mobile video streaming is characterized by low resolutions and low bitrates. The commonly used resolutions are Quarter Common Intermediate Format (QCIF,176x144 pixels) for cell phones, Common Intermediate Format (CIF, 352x288 pixels) and Standard Interchange Format (SIF or QVGA, 320x240 pixels) for data-cards and palmtops (PDA). The mandatory codec for Universal Mobile Telecommunications System (UMTS) streaming ...

Ries, Michal — Vienna University of Technology


Physical and MAC layer techniques for next generation satellite communications

In this thesis, we consider four different scenarios of interest in modern satellite communications. For each scenario, we will propose the use of advanced solutions aimed at increasing the spectral efficiency of the communication links. First, we will investigate the optimization of the current standard for digital video broadcasting. We will increase the symbol rate of the signal and determine the optimal signal bandwidth. We will apply the time packing technique and propose a specifically design constellation. We will then compare some receiver architectures with different performance and complexity. The second scenario still addresses broadcast transmissions, but in a network composed of two satellites. We will compare three alternative transceiver strategies, namely, signals completely overlapped in frequency, frequency division multiplexing, and the Alamouti space-time block code, and, for each technique, we will derive theoretical results on the achievable rates. We ...

Ugolini, Alessandro — University of Parma


Advanced GPR data processing algorithms for detection of anti-personnel landmines

Ground Penetrating Radar (GPR) is seen as one of several promising technologies aimed to help mine detection. GPR is sensitive to any inhomogeneity in the ground. Therefore any APM regardless of the metal content can be detected. On the other hand, all the inhomogeneities, which do not represent mines, show up as a clutter in GPR images. Moreover, it is known that reflectivity of APM is often weaker than that of stones, pieces of shrapnel and barbed wire, etc. Altogether these factors cause GPR to produce unacceptably high false alarm rate whilst it reaches the 99.6% detection rate which is prescribed by an UN resolution as a standard for humanitarian demining. The main goal of the work presented in the thesis is reduction of the false alarm rate while keeping the 99.6% detection rate intact. To reach this goal a ...

Kovalenko, Vsevolod — Delft University of Technology

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.