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Preface 
 
 
 
This work is part of a research carried out in the framework of the EU-IST Project 
MEGA (IST-1999-20410, www.megaproject.org). MEGA (Multisensory Expressive 
Gesture Applications) is centered on the modeling and communication of expressive and 
emotional content in non-verbal interaction by multi-sensory interfaces in shared 
interactive mixed reality environments. In particular, the project focuses on music 
performance and full-body movements as first class conveyors of expressive and 
emotional content. Main research issues are the analysis of expressive gesture (i.e. 
analysis of the expressive content conveyed through full-body movement and musical 
gestures), the synthesis of expressive gesture (i.e. the communication of expressive 
content through computer generated expressive gestures, e.g., through music 
performances, movement of virtual as well as real, robotic characters, expressive 
utilization of visual media), the strategies for mapping information coming from multi-
modal analysis onto real-time generation of multimedia content.  
The work has been carried out at the InfoMus Lab (Laboratorio di Informatica Musicale) 
at DIST - University of Genova.  
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discussions, and the other members of the InfoMus staff (Roberto Chiarvetto, Roberto 
Dillon, Alberto Massari, and Cesare Mastroianni). 
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The joint collaboration in MEGA has been of paramount importance for the development 
of this research. In particular, Marie Djerf, Ingrid Lagerlöf, and Erik Lindström of the 
staff of Prof. Alf Gabrielsson at the Department of Psychology of the University of 
Uppsala, Sweden; Prof. Marc Leman at IPEM – Ghent University, Belgium, the IPEM 
crew, and in particular Johannes Taelman, Koen Tanghe, and Guy Van Belle; Prof. 
Giovanni De Poli at DEI – CSC – University of Padova, Italy, together with Sergio 
Canazza, Carlo Drioli, Antonio Rodà, Patrick Zanon, and the colleagues who only 
recently joined the project; Anders Friberg and Sofia Dahl from KTH, Stockholm, 
Sweden, Ivar Kjellmo from Ocatga/Telenor, Norway, all the visiting researchers who 
worked at the InfoMus Lab in the framework of the EU TMR MOSART network (i.e., 
some of the ones listed above plus Matija Marolt, Joanne Mc.Elligott, Declan Murphy, 
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Introduction 
 
 
 
While technology continuously evolves toward faster and smaller devices and broadband 
communication systems become available to larger groups of people, the need of novel 
human-machine interaction paradigms strongly emerges and researchers are faced with 
the challenge to provide users with effective, intuitive, powerful ways to communicate 
with the more and more technological environment they live in. In what now could seem 
a futuristic house (but we could live in one of them in a few years, and maybe someone 
already does) hidden computing devices placed all around and diffused into everyday 
objects will manage and support many aspects of people’s lives.  
Some research groups in the U.S. and in Japan have faced such a challenge for novel 
interaction paradigms by trying to introduce a further level of processing in computer 
systems, a level of processing dealing with emotional, affective information. This attempt 
produced two novel research branches in Human-Computer Interaction: Affective 
Computing in the U.S. (see for example Picard, 1997) and KANSEI Information 
Processing in Japan (see for example Hashimoto, 1997). The EU-IST MEGA project 
(Multisensory Expressive Gesture Applications) tries to distinguish itself from its 
counterparts in U.S. and Japan, by following a European route in investigating the same 
topics. Such route is grounded on the traditional and solid bases of European humanistic 
culture: theories from psychology, philosophy, performing arts, and humanities are the 
sources research is inspired to. 
The MEGA project (and this dissertation) strongly focuses on the development of 
interactive multimedia systems for performing arts as a main concrete output. The choice 
of performing arts as application domain is due at least to two aspects: (i) performing arts 
widely use non-verbal and expressive communication mechanisms to convey emotional, 
affective information to the audience and therefore represent an ideal test-bed for 
computational models and algorithms dealing with this kind of information; (ii) 
technology can bring important concrete contributions to this field by providing tools 
enabling novel ways of conceiving artworks and maybe allowing the development of 
completely new art forms. 
If from the one hand the focus on performing arts seems to be justified by the arguments 
above, on the other hand it constitutes a further challenge for this research. In facts, art 
and technology are two words that at a first glance seem to be in opposition each other, 
the former related to the sphere of aesthetics and humanities, the latter to the field of 
science and engineering. At the beginning of this dissertation it is therefore worth to ask 
myself (as a colleague and friend wrote) if it does make sense for technology to deal with 
art and vice versa. A first comment to this difficult question can be found here above, 
i.e., I believe that art can take advantage from technology in term of tools allowing artists 
to create scenarios that are not possible otherwise. Notice that these novel scenarios are 
not limited to employment of virtual or mixed reality techniques, as one can initially 
think. Of course, mixed reality techniques are of primary importance, but they are mainly 
related to the visualization aspects, i.e., they can display worlds in which real and virtual 
objects and subjects interact and overlap. Technology however can interact with art at a 
deeper level than visualization, i.e., at the level of the language art employs to convey 
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content and to provide the audience with an aesthetical experience. Interaction at this 
level requires technology to be able to deal with the artistic content, i.e., what the artist 
wants to communicate and with the communication mechanisms enabling the experience 
of the audience. In this perspective, research on expressive gesture as a main conveyor of 
information related to the emotional sphere allows a redefinition of the relationship 
between art and technology: from a condition in which art uses technology for 
accomplishing specific tasks that only technology can afford (or that computers can do 
better than humans) to a novel condition in which technology and art share the same 
expressive language and in which technology allows the artist to directly intervene on the 
artistic content and in the expressive communication process. 
I do not know if such a deep integration will ever be possible. The current state-of-the-art 
is very far from such a condition and this new generation of interactive systems for 
performing arts is still far to be developed. Nor I forget the possible risks related to this 
research for example in term of partially expropriating the artist of its artistic creation or 
in term of repercussions in other application domains (that can be either positive, e.g., 
improved interaction with computers, more effective techniques for therapy and 
rehabilitation, or negative, e.g., intrusion in the emotional life of individuals, control of 
individuals’ behavior through expressive communication). The studies carried out in the 
last ten years, the currently ongoing projects, and this dissertation should therefore 
considered as pioneer researches toward that “third phase of information processing” 
(Hashimoto, 1997) that by using the current advances in signal processing (first phase) 
and logic (second phase) might lead to a novel generation of computer systems able to 
deal with affective, emotional information. Of course, as usual it is mainly responsibility 
of researchers and engineers working in this area to maximize the benefits and minimize 
the risks of this technology. 
In this framework, this dissertation focuses on the development of paradigms and 
techniques for the design and implementation of multimedia and multimodal interactive 
systems mainly in the application field of performing arts. The dissertation is divided into 
two main parts. In the first one, after a short review of the state-of-the-art in research 
fields related to this research, the focus moves on the definition of environments in which 
novel forms of technology-integrated artistic performance could take place: these are 
distributed active mixed reality environments in which information at different layers of 
abstraction is conveyed mainly non-verbally through expressive gestures. Expressive 
gesture is therefore defined and a possible internal structure of a virtual observer able to 
process it (and inhabiting the introduced environments) is described in a multimodal 
perspective. The definition of the structure of the discussed environments, of the virtual 
and mixed subjects inhabiting them and the techniques for expressive gesture processing 
constitute a source for requirements, a paradigm for design and development, and the 
basic bricks for implementing the interactive systems this work addresses. The second 
part of the dissertation introduces a concrete example of implementation of a virtual 
observer, i.e., a virtual subject observing human full-body movement, extracting 
expressive cues from it, and attempting to classify expressive gestures according to their 
emotional content.    
The developed algorithms have been implemented as software modules for the EyesWeb 
open platform (see Appendix A) and constitute the core of the EyesWeb Expressive 
Gesture Processing Library (see Appendix B). 



 
 
 
 
 
 
 
 
 
 
 
 

PART 1 
 

EXPRESSIVE ENVIRONMENTS AND 
EXPRESSIVE GESTURES



1. Technologies for expressive environments 
 
 
 
Recent developments in Human-Computer Interaction (HCI) and multimedia are leading 
toward the design and implementation of systems that from the one hand are widely 
increasing usability and user-friendliness of computers in application fields where 
computers are traditionally used (e.g., computer aided design, office automation), and on 
the other hand are introducing computer systems in areas where computers only had a 
marginal role or were regarded with suspicion (e.g., in humanistic studies). 
Two trends in technology evolution of interest for this dissertation can be observed:   
(i) Computers are more and more able to process high-level information coming from 

their users: they can detect and interpret user’s actions and adapt their behaviour to 
user’s needs. In this scenario a particular role is played by the ongoing research 
focusing on the analysis and synthesis of information related to the expressive 
emotional sphere. The possibility to collect, interpret, generate expressive 
emotional information opens novel frontiers to information processing and arises 
ethical concerns about possible dangers of such technologies with respect to 
intrusion in individuals’ life. 

(ii)  Computers are more and more coupled with the environment in which they operate. 
Microchips are integrated in objects of our everyday life. Broadband networks 
allow a fast exchange of information. We are moving toward a scenario in which 
instead to have a “personal” computer to (usually) work with as it still happens in 
most of cases nowadays, highly miniaturized networked computers will be 
everywhere around us and will support us in most aspects of our everyday life. 
Similarly to what observed in (i), this perspective also opens novel and interesting 
possibilities, but it also arises an important debate about dangers related to any 
possible misuse of the possibilities technology provides. 

 
In the design and development of multimedia systems for artistic applications the two 
tendencies sketched above are of paramount importance since they allow enriching 
artistic languages with elements that only technology can provide (e.g., the possibility to 
automatically analyse and generate expressive content, the possibility to create 
performance environments in which computing is embedded in the environment itself). 
This Chapter will shortly review the basic concepts underlying the research fields that are 
mostly responsible of these evolutions in technology and that are of interest for the 
specific aims of this work.  
Firstly, technologies for integrating computers in the environment will be introduced 
with particular reference to Mixed Reality, i.e., a corpus of research studies aiming at 
merging real (physical) world and virtual (computer generated) worlds in a single 
computer mediated environment. Researches on “ubiquitous” and “disappearing” 
computing and on “wearable” computing will also be shortly discussed as examples of 
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contributions to the development of a scenario in which computing is more and more 
distributed and embedded (e.g., in everyday clothes)1. 
Attention will then move on research on Affective Computing and KANSEI Information 
Processing that in the United States and in Japan respectively are trying to develop 
models and algorithms for analysis and synthesis of expressive emotional content. A 
short review of research works dealing with expressive content processing in the fields of 
interest (music, human movement, performing arts) will conclude the Chapter. 
 
 

1.1. Mixed Reality 
 
A main issue in the design of interactive multimedia systems for artistic performances is 
the combination or superimposition of computer generated sounds and visual media to 
the real environment in which a performance is taking place. In a broader scenario in 
which a performance can be distributed over the network the relationships between the 
involved real and virtual worlds assume a further particular importance. 
The concept of Mixed Reality (MR) as a collection of technologies for creating mixed 
environments in between Virtual Environments (VEs) and the real world was firstly 
introduced in (Milgram and Kishino, 1994).  
Mixed Reality is there defined as a “subclass of VR related technologies that involve the 
merging of real and virtual worlds”. Depending on the relative weight of the two 
components (virtual environments and the real environment) in the merging process a 
continuum of possible scenarios is envisaged (what Milgram and Kishino refer as 
Reality-Virtuality continuum). 
Such a continuum (see Figure 1.1) is bounded on the one side by the real environment 
and on the other side by virtual environments. It also includes as relevant intermediate 
cases Augmented Reality (AR) and Augmented Virtuality (AV). 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.1: the Reality-Virtuality Continuum (Milgram et al., 1994) 
 
The term Augmented Reality is operationally defined as referring to “any case in which 
an otherwise real environment is “augmented” by means of virtual (computer graphic) 
objects”. Following the same logic, Augmented Virtuality is defined in term of 
                                                 
1  It should be noticed that “ubiquitous computing” and “wearable computing” in fact start from two 
different points of view with respect to the role of computers in future society as it will be shortly discussed 
later in this Chapter.  

Real 
Environment 

Virtual 
Environment 

Augmented 
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Augmented 
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“completely graphic display environments, either completely immersive, partially 
immersive or otherwise, to which video “reality” is added” (Milgram and Kishino, 1994). 
Ideally, the mid-point in the continuum corresponds to a situation in which reality and 
virtuality are so tightly mixed that it is fairly impossible to distinguish what is real from 
what is virtual. 
If from the one hand, the work by Milgram and Kishino is very focused on visual aspects 
(a taxonomy of mixed reality visual displays is described in their papers), on the other 
hand both the dimensions of their taxonomy and some general issues about how to 
distinguish between real and virtual objects can be considered from a broader point of 
view, in the context of MR environments in which multisensory stimuli have a main role. 
Milgram and Kishino themselves list some augmented reality scenarios in which other 
modalities are involved:  
- Auditory AR: environments in which sounds from the real world and synthetic 

spatialized (virtual) sounds are mixed together. 
- Haptic AR: environments in which information related to touch and pressure is 

superimposed on existing haptic sensations: for example, virtual objects can be 
“touched” by employing special kinds of glove devices. 

- Vestibular AR: environments in which information about acceleration of the 
participant's body in a virtual environment is superimposed to existing ambient 
gravitational forces (as, for example, in commercial and military flight simulators).  

 
A main issue when mixing real and virtual environments is how to distinguish what is 
real from what is virtual. If, at a first glance, this can be thought to be quite a trivial 
problem, in fact it involves some subtle aspects that are worth to be shortly discussed. 
Commonly, some definitions like the following ones can be assumed for real 
environments, virtual environments, and virtual reality: 
- Real (or Physical) Environments: environments subjected to the usual physical laws. 
- Virtual Environments (VEs): computer synthesized environments that can simulate a 

real environment (existing or not). VEs can also go beyond the constraints of physical 
reality, by simulating worlds in which the usual physical laws do not hold anymore. 

- Virtual Reality (VR): a situation in which a participant/observer is fully immersed in a 
completely computer synthesized world. Such immersion is traditionally obtained by 
using head-mounted displays (HMD) or CAVE systems (Cruz-Neira et al., 1992). 

 
While such definitions are usually clear and precise enough when dealing with 
completely real or completely virtual environments (such as in the case of VR), problems 
may arise in MR situations, i.e., when reality and virtuality are mixed to a certain extent. 
The problem can be introduced by asking ourselves questions like: should images 
coming from a videocamera and then displayed on some display be considered real or 
virtual? Are computational representations of data coming from the real world real or 
virtual? Should a real object be displayed in a realistic way?   
Consider, for example, an image of an environment taken by a videocamera, sent through 
a broadband network connection and displayed on a screen in some place at a distance of 
thousands of kilometres from the original location. Consider also an image of your hand 
taken by a videocamera and projected into a virtual environment where you can grab 
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synthesized objects. Which one is or should be considered “real”? Is one image more 
“real” than the other one?     
Another example: it is straightforward to define “real” the (unprocessed) images coming 
from a videocamera (consider for example a videoconference situation: it is 
straightforward to define “real” the environment on the other side). But if the silhouettes 
of the participants are extracted and pasted in a virtual world (where maybe participants’ 
actions trigger particular behaviours), the “reality” of the images is much less evident or, 
in any case, it seems to be a “different reality” with respect to the first situation. In any 
case, the real world on the other side of the network connection and the real subjects 
involved in the videoconference, are always the same world and the same subjects. In 
other words, mixing real and virtual worlds can affect our perception of reality. 
Milgram and Kishino (1994) try to face such problem by proposing an objective 
distinction between reality and virtuality based on three aspects: 
(i) A first distinction between real and virtual objects by means of the following 

operational definitions:   
a. “Real objects are any objects that have an actual objective existence” like, for 

example, the computer I‘m using to write this document.  
b. “Virtual objects are objects that exist in essence or effect, but not formally or 

actually”, that is, they can also be existing objects, but they do not exist here 
and now. 

 Therefore, a real object can either be observed directly or it can be sampled and 
resynthesized through some display device. A virtual object, instead, cannot be 
directly observed since it does not exist, but it must be simulated (usually via 
computer graphic). To this aim, a description or a model of the object is usually 
needed. 

(ii)  A second distinction “concerns the issue of image quality as an aspect of reflecting 
reality”. On the one hand, as stated above, virtual objects cannot be directly 
observed nor sampled: they can only be synthesized. On the other hand, technology 
nowadays allows synthesizing extremely realistic images. Anyway, even if an 
object looks real, this does not mean that the object actually is real.  

(iii)  A third distinction is made between real and virtual images. A real image is 
defined as “any image which has some luminosity at the location at which it 
appears to be located”. Virtual images are conversely defined as images not having 
luminosity where they appear. Virtual images include holograms, mirror images, 
and stereoscopic displays (for which both the left and right images are real images, 
but not the fused image). Virtual images in MR environments are transparent, i.e., 
they do not occlude the objects located behind them. 

 
In the following, while from the one hand I will try to keep the simplest distinction 
between real (physical) and virtual environments as far as it is possible, on the other hand 
when distinguishing between real and virtual objects and subjects (see Chapter 2) I will 
have to refer several times to the criteria mentioned above, with particular reference to 
the first one. 
It should be noticed that criteria (ii) and (iii) as stated by Milgram and Kishino refer only 
to visual aspects. Anyway, they can be reformulated in a multimodal perspective for 
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example for distinguishing real sounds, reproductions of real sounds (with a given sound 
quality) and virtual (computer generated) sounds. 
 

1.1.1. Taxonomy for Mixed Reality visual displays 
 
Along with their definition of MR and complementary with respect to the Reality-
Virtuality continuum, Milgram and Kishino (1994) developed a taxonomy for MR visual 
displays based on three main dimensions. As for the criteria above, such taxonomy firstly 
developed for visual displays, can also be reformulated and generalized to classify whole 
MR environments including other sensory modalities beside vision.  
In this section, the taxonomy for visual displays as originally conceived by Milgram and 
Kishino is introduced, since even in its formulation limited to the visual channel, it 
anyway outlines aspects that are of particular importance for designing MR applications.     
The taxonomy by Milgram and Kishino develops along three axes labelled as “Extent of 
world knowledge”, “Reproduction Fidelity”, and “Extent of Presence”. 
Extent of world knowledge refers to the amount of knowledge the computer system has 
about the world that has to be displayed. It ranges from the lack of any model 
(unmodelled world), such as for example in the case of direct view of a real object or of 
images acquired by a videocamera and directly reproduced, to a fully modelled world 
like in Virtual Reality where a completely virtual world can be synthesized only if a full 
knowledge of its objects, their locations, the point of view etc. is available to the 
computer system (see Figure 1.2). Interesting intermediate conditions are referred as 
“Where or What” and as “Where and What”. In the first case, nearer to the unmodelled 
world side, the computer system has some information about what are the objects in the 
scene or about their location. In the second case, nearer to the fully modelled world, the 
computer system exactly knows both the essence and the location of the objects. 
 
 
 
 
 
 

 
 
 
 

 Figure 1.2: the Extent of World Knowledge dimension (Milgram et al., 1994) 
 
 
Reproduction Fidelity refers to realism in Mixed Reality displays with respect to image 
quality. In particular, here the term Reproduction Fidelity “refers to the quality with 
which the synthesising display is able to reproduce the actual or intended images of the 
objects being displayed”. Classification with respect to Reproduction Fidelity can be 
applied to both virtual and real objects and it is tightly related with the progression of  
(video) reproduction technology. The Reproduction Fidelity axis, in fact, can be 

World 
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considered as a unidirectional axis showing the progression of computer graphics, 
modelling and rendering techniques (see Figure 1.3). 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 1.3: the Reproduction Fidelity dimension (Milgram et al., 1994) 
 
Extent of Presence is related to “the extent to which the observer is intended to feel 
“present” within the displayed scene”. While Reproduction Fidelity is more concerned 
with technological progress (and from a certain point of view can be considered as 
technology driven), this axis addresses issues more related to the paradigm of 
interaction/immersion (and can therefore considered as user driven). It is not perfectly 
orthogonal with respect to Reproduction Fidelity, but it can be distinguished from it. Like 
Reproduction Fidelity, Extent of Presence can also be considered unidirectional, ranging 
from a situation in which the user sees a virtual world through a monitor based display 
(something like a window on the virtual world) to “real-time imaging” (Naimark, 1991) 
in which ideally no differences should be noticed between the virtual/mixed world and 
the unmediated reality. Intermediate conditions are considered as well, mostly 
corresponding to the taxonomy proposed by Naimark (see Figure 1.4).   
 
 
 
 

 
 

 
 
 
 

 
 

Figure 1.4: the Extent of Presence dimension (Milgram et al., 1994) 
 
Research on issues related to the Extent of Presence dimension saw a particular grow in 
the interest of the scientific community in the last few years, in which projects started 
particularly devoted to the investigation of the mechanisms that are at the basis of 
presence and experience in multimedia scenarios. 
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1.1.2. Alternative approaches: Mixed Reality Boundaries 
 
Benford et al. (1996, 1998) first introduced the concept of Mixed Reality Boundaries as a 
way to join physical and synthetic spaces. 
While Milgram and Kishino’s approach to MR is largely based on the idea of overlaying 
the virtual (synthetic) world and the real (physical) one to different extents, in the Mixed 
Reality Boundaries approach real and virtual worlds are kept separated by explicit (even 
if transparent) boundaries. In other words, while in Milgram and Kishino’s approach the 
real and virtual worlds are overlapped, here they are “adjacent but distinct parts of a 
combined space”. The two approaches can be complementary each other: while one can 
contribute in merging two specific (physical and synthetic) worlds, the other can be best 
suited for building larger MR structures.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.5: a simple Mixed Reality Boundaries scenario (Benford et al., 1998) 

 
In its simplest instance, a Mixed Reality Boundary scenario can be described as follows 
(see Figure 1.5): through network connections avatars and virtual objects are projected 
into the physical space, whose images captured by videocameras are in turn displayed in 
the synthetic space by means of a dynamic texture mapping process. In such a way, the 
inhabitants of the physical space see the synthetic space as an extension of the physical 
space and vice versa. Usually an audio link is also provided to allow inhabitants of the 
two spaces to communicate across the boundary.   

In more complex situations, the Mixed Reality Boundary approach allows to join 
together many physical and synthetic spaces in an integrated whole: in the scenario of 
interactive multimedia systems for artistic performances, this property is particularly 
useful when designing a system for performances distributed over the network, where 
several local performances taking place in several different locations (physical spaces) 
are joined to create a global (and virtual) distributed performance. 
Benford further developed his theory of Mixed Reality Boundaries by introducing a set 
of properties that can be used to characterize them. Properties are grouped in three 
general categories of permeability, situation, and dynamics. Two meta-properties of 
symmetry and representation are also included.  

Projection onto  
a wall or other 
surface 

Texture 
mapping of live 
video image 

Live video 

Graphics and updates 

Network 

Physical space Synthetic space 



Chapter 1 – Technologies for expressive environments  

 
- 9 - 

 

Permeability is related to how a boundary affects the sensory information passing 
through it. It includes the following components: Visibility (which visual information can 
pass through the boundary in term both of resolution, i.e., amount of information, and 
field of view, i.e., the volume of space that is made visible), Audibility (which auditory 
information is allowed to pass through the boundary), and Solidity (the ability to traverse 
the boundary, e.g., metaphorically extending a limb or stepping through the boundary). 
Different combinations of the permeability properties generate different kinds of 
boundaries, ranging from analogies to common physical boundaries (like windows, 
curtains, walls, mirrors, lines on the ground) to completely new boundaries without a 
physical counterpart.    
Situation “concerns the spatial relationships between the mixed reality boundary, the 
physical and virtual spaces that it connects and the participants and objects that these 
contain”. It can also be divided into sub-categories: Location (how the boundary is 
placed in the connected spaces), Alignment (orientation of the boundary with respect to 
participants and objects), Mobility (whether the boundary is static or it can be moved), 
Segmentation (whether the boundary is made up of one or more segments), and Spatial 
consistency (how the spatial coordinate systems in the connected spaces are related). 
Dynamics describes the temporal properties of a boundary: its Lifetime (when and how 
long a boundary is in existence), and its Configurability (how dynamically the boundary 
properties can be changed) 
Symmetry is a meta-property concerning how much the properties of a boundary are 
similar on both its sides. 
Representation is a meta-property referring to how visible are the properties of a 
boundary to participants and which means of representation are used. 
 

1.1.3. Alternative approaches: tangible bits 
 
While both the approaches by Milgram and Kishino and by Benford are focused on 
combining in several extents and with different methods (overlapped vs. adjacent worlds) 
real and virtual worlds, mainly through the visual and auditory modalities, the tangible 
bits approach puts strongly in evidence the physicality of the interaction in the real world 
as a mean to access to the virtual world (Hishii and Ullmer, 1997). 
The mixing of real and virtual worlds is considered under a different perspective: rather 
than building an installation in which to combine real and virtual worlds and invite 
participants to have experience of such a combination, Hishii and Ullmer argue that 
nowadays everyone in his/her everyday life lives “between two realms: our physical 
environment and cyberspace.” Nevertheless, while we commonly interact with the 
physical environment through haptic interaction with physical objects (like touching) and 
we are particularly skilled in this kind of interaction, the interaction with the cyberspace 
still takes place through the traditional user interfaces (like mouse, keyboard, and screen). 
The objective therefore becomes the design of novel user interfaces allowing to access to 
the cyberspace through the modalities of interaction in which we are more skilled, 
namely haptic interaction. As atoms are the basic components of the physical world, bits 
are the basic components of the virtual world (cyberspace): in this perspective, Hishii and 
Ullmer try to make bits tangible. 
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The key concepts of their approach are the following: 
- Interactive Surfaces: each surface in the architectural space (e.g., tables, walls, 

windows, doors) is transformed in an active surface allowing accessing to the 
cyberspace. 

- Coupling of bits and atoms: “Seamless coupling of everyday graspable objects (e.g., 
cards, books, models) with the digital information that pertains to them” 

- Ambient media: sound, light, airflow, water are used as background interfaces. 
 
In other words, “foreground bits” are made tangible by associating them to objects (and 
surfaces) in the real space that can be grabbed and touched; “background bits” are instead 
associated to peripheral ambient media (e.g., ambient sound, light). 
Some system prototypes have been developed to demonstrate the tangible bits approach, 
see for example the metaDESK and transBOARD systems allowing users to manipulate 
“foreground bits” through the use of physical objects and the ambientROOM system as 
an example of use of ambient media for background information (Hishii and Ullmer, 
1997). 
 
 

1.2. Computers and environment: “ubiquitous” and “wearable” computing 
 
Mixed Reality techniques like the ones described in the previous section allow merging 
physical and virtual worlds on several extents, thus obtaining environments where ideally 
(as a final aim) no distinction should be noticed among real and virtual objects. Such 
integration of reality and virtuality (i) needs the presence in the real environment of 
sensors (e.g., videocameras, microphones) to grab reality, (ii) leads toward a scenario 
where such sensors as well as processing devices are more and more integrated in objects 
of everyday life so that instead of having dedicated Mixed Reality installations, our 
whole life will take place in a Mixed Reality world (as Hishii and Ullmer already outline 
in their paper). 
The technological and ethical concerns arisen by such a scenario have been approached 
from two different points of view by the research fields usually addressed as “ubiquitous 
computing” and “wearable computing”2.  
Ubiquitous computing can be thought to find its origin in the famous paper by Mark 
Weiser “The Computers for the 21st Century”, where the author tries “to conceive a new 
way of thinking about computers in the world, one that takes into account the natural 
human environment and allows the computers themselves to vanish into the background” 
(Weiser, 1991). 
Ubiquitous computing can be roughly considered as opposite to traditional Virtual 
Reality. In fact, while Virtual Reality creates computer-generated worlds and puts people 
inside them, ubiquitous computing puts computers in the real environment where people 
live. Anyway, in my opinion it is not opposed to Mixed Reality scenarios like the ones 

                                                 
2 Notice that ubiquitous computing and wearable computing are discussed with reference to the work of 
researchers that originated the research fields. In fact, the interest is here more on the concepts and points 
of view underlying the two approaches rather than on specific (and more recent) implementations.  
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described by Hishii and Ullmer, rather it is useful and sometimes needed to be able to 
create such scenarios. 
Nowadays computers need the constant attention of the user. This is frustrating for many 
people and often requires the work of specialized technicians. Other and older 
technologies are instead used in our everyday life without the need to pay attention to 
them or to consciously think about how to use them: see for example electric motors that 
are embedded in lot of devices commonly used by everyone. Ubiquitous computing can 
be roughly summarized as an attempt to bring computers and information technology at 
the same degree of disappearance3 by providing the environment with hundreds of 
wireless (or wired) computer devices of all scales, ranging from little machines similar to 
Post-It notes, to computers of the size of a sheet of paper, to large displays similar to 
blackboards. Furthermore, in the ubiquitous computing approach computers have also to 
know where they are and the surroundings, so that they can adapt their tasks to the 
location in which they actually are.   
The first prototypes of ubiquitous computing scenarios were developed at Xerox PARC, 
starting from the end of the Eighties. They mainly consisted of “tabs”, “pads”, and 
“boards”. Tabs are the smallest prototypes: they are inch-scale computers similar to 
actual pocket calculators. For example, they can be used as active badges, allowing to 
track people or objects they are attached to. In this way, it is possible to envisage a world 
where “doors open only to the right badge wearer, rooms greet people by name, 
telephone calls can be automatically forwarded to wherever the recipient may be, 
receptionists actually know where people are, computer terminals retrieve the preferences 
of whoever is sitting at them, and appointment diaries write themselves” (Weiser, 1991). 
Of course, such a scenario (and in particular the possibility that such an amount of 
information could be managed by a centralized public or private institution) raises very 
relevant problems with respect to safeguard privacy of individuals. Weiser himself in his 
paper proposes some solutions ranging from the adoption of cryptographic techniques 
and digital pseudonyms to the possibility to build computer systems applying the same 
conventions as in the real world (e.g., usually information is not collected nor used 
against someone unless a crime is committed).  
Pads are computers whose size is comparable to the size of a sheet of paper. They do not 
have any identity or importance, but are spread over the environment and can be grabbed 
and used by everyone. In fact, their use is similar to the use of the sheets of paper: they 
can be spread over a desk and a different task can be associated to each of them. 
Boards have large displays and can be used in several environments (office, home) as 
video screens, blackboards, or bulletin boards. Interactions between tabs, pads, boards 
are also considered and possible scenarios for they joint use are envisaged. A sample day 
of a woman living in such a 21st century scenario as described by Weiser is a good 
example of how ubiquitous computers can change our everyday life. 
While from the one hand, it can be thought to aim at the same objectives (i.e., seamless 
integrating computers in everyday life and enabling people to use them without the need 
of conscious attention), on the other hand “wearable computing” tries to reach its 
objectives by starting from a quite different point of view with respect to ubiquitous 
computing.  

                                                 
3 In fact, research in this area is often addressed also as “disappearing computing”. 
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In fact, instead of equipping the environment with a huge number of computers of all 
sizes, wearable computing proposes the development of “smart clothing”, i.e., a 
“combination of multimedia computing, personal imaging (through the use of one or 
more wearable video cameras) and wireless communication” (Mann, 1996), embedded in 
everyday clothes and worn by users. Smart clothes embed a personal wearable 
multimedia computing system along with sensors (e.g., videocameras, microphones, 
biosensors, radar) and displays (e.g., head mounted displays). They are connected to the 
Internet via radio connections. They provide a broad collection of functionalities ranging 
from calendar (time, date), to voice communication (by replacing mobile phones), 
messaging, personal sound system, sound and video capture, mathematical computation, 
measurements.   
Several application prototypes have been developed along the last twenty years and 
experiments have been carried out on possible concrete applications. For example, 
experiments in personal imaging concerned the use of the system as an extension of the 
visual memory, i.e., the system helps the user in remembering past situations or people 
by recalling images recorded in situations similar to the actual one (Mann, 1996). A 
straightforward application of this technique consists in recalling the names of people 
that the user has known.  
Other experiments on personal imaging addressed the use of special “filters” generating 
delays, sample and hold, freeze frame effects. These demonstrated to be of particular 
interest since they make possible to observe aspects that are invisible to the naked eye.  
A computer-assisted way-finding system has been developed able to give suggestions to 
the wearer about the right path to go back to a location that was already visited or to the 
exit (for example in a big shopping complex). The goal is achieved by taking and 
recording snapshots at the branch points (and if needed along the corridors); when the 
same path is encountered again it is recognized and, if needed, it is possible to browse 
back the images to come back at the starting location. A partial environment map may 
also be captured.  
Other applications described in the same paper focused on the possibility of sharing 
and/or exchanging visual points of view inside a networked online community, and the 
possibility to get physiological measure from the smart clothes (e.g., blood pressure, 
heart rate, skin conductivity).  
With respect to the privacy concerns regarding possible misuses of the information 
provided by computers systems like the ones described in the ubiquitous computing 
scenario, Mann arguments that in the case of wearable computing, since the computer 
system is strictly “personal” (i.e., it is directly worn by its user), the user is fully free to 
decide whether to share or not the information he/she collected. It may still happen that 
since the huge number of worn cameras, somebody’s image is captured and spread 
around: Mann’s conclusion is that with wearable computing “at least we’d know we had 
privacy when we were alone”.   
Ubiquitous and wearable computing open novel scenarios in which computers do not 
need anymore our conscious attention to accomplish their tasks. This is obtained by 
spreading them all around the environment and embedding them in everyday objects like 
our clothes. A further step toward a new generation of computer systems consists in 
giving them the ability to grab and process high-level information that seems to be 
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peculiar of human-human communication like the one related to our emotional state. 
Research in this direction is shortly discussed in the following Section.   
 
 

1.3. The quest for expressiveness 
 
During the last decade, lot of research effort has been spent to connect two worlds that 
seemed to be very distant or even antithetic: machines and emotions. Mainly in the 
framework of human-computer interaction an increasing interest grew up in finding ways 
to allow machines communicating expressive, emotional content. Such interest has been 
justified with the objective of an enhanced interaction between humans and machines 
exploiting communication channels that are typical of human-human communication and 
that can therefore be easier and less frustrating for users, and in particular for non 
technically skilled users. 
Starting from the findings from psychology and neurosciences, research has been aimed 
at developing computational models and algorithms for analysis and synthesis of 
emotional content.  
While from the one hand research on emotional communication found its way into more 
traditional fields of computer science like Artificial Intelligence, on the other hand novel 
fields developed explicitly focusing on such issues.  
Examples are researches on Affective Computing in the United States and KANSEI 
Information Processing in Japan. Affective Computing and KANSEI Information 
Processing are shortly described with reference to the work of the two researchers that in 
a certain way started the two fields: Rosalind Picard and her group at MIT Media Lab for 
Affective Computing, and Shuji Hashimoto and his group at Waseda University, Tokyo, 
for KANSEI Information Processing. It has to be noticed that many other works derived 
from these initial studies can be found in the literature; however, here I limit myself to an 
overall description of the research fields since I am more concerned in describing the 
basic concepts and in outlining the differences in the approach rather than in writing a 
survey that would go in too many details of a research spread over lot of different 
disciplines and application scenarios. More details will be given about the applications 
that are nearer to the objectives of this thesis: analysis and synthesis of expressive 
content in performing arts, with a particular reference to music and human full-body 
movement. 
 

1.3.1.  Affective Computing: the American way to artificial emotions 
 
The Affective Computing approach is mainly illustrated in the homonymous book 
(Picard, 1997).  
In her book Picard defines Affective Computing as “computing that relates to, arises 
from, or deliberately influences emotions”. Affective Computing addresses the design 
and implementation of machines that are able (i) to recognize emotions, (ii) to express 
emotions, and (iii) to have emotions. These are “human-centred” machines that observe 
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their users and sensitively interact with them by expressing emotions depending on what 
they observed and on the current “emotional state” of the machine.  
Computers that are able to recognize emotions are conceived as systems collecting a 
variety of input signals ranging from face expressions to voice, movement features (e.g., 
hand gestures, gait, posture), physiologic measures (e.g., respiration, electrocardiogram, 
blood pressure, temperature). They perform feature extraction and classification on these 
inputs (e.g., video analysis of movement, audio analysis of speech) and try to classify the 
emotion the user is communicating through a reasoning process taking into account 
information about “context, situations, personal goals, social display rules”, and other 
emotion related data. Learning techniques can be employed to adapt recognition to a 
specific user (e.g., a personal computer can learn the habits of its master to improve its 
performances in the recognition task). If the computer has an emotional state, this can 
influence the recognition process. 
Computer that are able to express emotions (either depending on instructions given by 
humans or as a result of an internal mechanism for generating emotions) are systems that 
modulate audio (e.g., synthetic voice, sound, music) and visual signals (e.g., face, 
posture, gait of animated creatures, colours) in a way suitable for the emotion that has to 
be communicated. The expressed emotion can be intentional (i.e., deliberated as a result 
of a reasoning process) or spontaneous (i.e., “reactively” triggered). It can directly 
express the “affective state” of the machine that can in turn be influenced by the 
expression of the emotion.  Expression partially depends on social display rules. 
If computers can have emotions is perhaps one of the most controversial issues in 
Affective Computing. In her book, Picard proposes to consider five components of an 
emotional system: a computer can be said to “have emotions” if all five components are 
present in it. The five components are the following: 
(i) Emergent emotions and emotional behaviour, i.e., the machine is able to express an 

emotion through its behaviour even if it does not have any emotion. By observing 
the machine’s behaviour, humans naturally tend to attribute an emotional state to 
the machine. 

(ii)  Fast primary emotions, i.e., mechanisms to generate a kind of hard-wired, reactive 
responses (especially to potentially harmful events). Fast primary emotions are 
what Damasio calls primary emotions (Damasio, 1994). Studies about the 
mechanisms triggering such emotions can be found in neurosciences: see for 
example (LeDoux, 1996) for a detailed description of the mechanism of fear. They 
are associated with the inner regions of the brain. 

(iii)  Cognitively generated emotions, i.e., emotions that are generated as a result of 
explicit reasoning. Cognitively generated emotions are slower than fast primary 
emotions and are usually consequence of deliberate thoughts. They are located in 
the brain cortex. Several cognitive models of emotion have been developed. One of 
the most famous is the model by Ortony, Clore, and Collins, usually referred as 
OCC model (Ortony, Clore, and Collins, 1988) that has been also employed in a 
number of concrete applications. Originally, the OCC model was not developed for 
building machines that could have emotions; rather it was conceived as a way for 
reasoning about emotions. The model develops a collection of rules associating 
emotions to cognitive evaluations about consequences of events, actions of agents, 
and aspects of objects. 
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(iv) Emotional experience, i.e., the system is cognitively aware of its emotional state. 
Emotional experience consists of cognitive awareness, physiologic awareness and 
subjective feelings. If it is possible to have such an emotional experience in a 
machine and, if yes, how it can be implemented is still an open and quite tricky 
issue. It relates to consciousness and requires the machine to have sensors able to 
measure its own “emotional state”. 

(v) Body-mind interactions, i.e., the emotional state can influence other processes 
simulating similar human physical and cognitive functions like memory, 
perception, decision making, learning, goals, motivations, interest, planning, etc. 

 
Research on Affective Computing has been applied in a number of application scenarios, 
ranging from entertainment, to edutainment, to detection of emotional responses (e.g., 
frustration) in particular relevant tasks (e.g., learning, driving), to the design and 
implementation of devices for analysis and synthesis of emotions. Detailed descriptions 
of ongoing and past research projects can be found in the website of the Affective 
Computing group at MIT media lab (http://affect.media.mit.edu/). 
With respect to the three issues mentioned above (i.e., machines recognizing, expressing, 
and having emotions), the work presented in this dissertation mainly address the first two 
aspects. That is, I’m more concerned with the design and implementation of algorithms 
for recognizing and communicating expressive content, rather than with machines that 
“have” a their own emotional state. In fact, if the goal is to open novel perspective to 
artistic performances by introducing new tools allowing an extension of the artistic 
languages by acting on the communicated expressive content through technology, what is 
mainly needed is (i) the possibility to classify and encode in digital format the 
communicated expressive content in order to process it, and (ii) the ability to produce 
suitable output to induce emotional reactions in spectators. In other words, in my view 
humans only have emotions. Machines do not need to have them, but they can give more 
and better support to human activities if they are able to process information not only 
related to the rational aspects of human behaviour, but also to the emotional ones4.      
 

1.3.2.  The eastern approach: KANSEI Information Processing 
 
In the same period the Affective Computing research started in the United States, another 
approach to understanding expressive content communication was developed in Japan: 
KANSEI Information Processing.  
KANSEI Information Processing has been proposed as the third target of information 
processing (Hashimoto, 1997). In his paper Hashimoto identifies physical signals 
capturing data from the real world (e.g., sound, light, force) as the first target of 
information processing. Signal processing is the technology field that is mainly 
responsible of processing such kind of information. “The second phase is the semantic 
information processing to deal with knowledge and rule”, that is the field of logic and 

                                                 
4 As usual, when information is processed related to private aspects of the life of individuals (and emotions 
are one of the most personal and private aspects of one’s life) ethical issues are concerned. These will be 
discussed later in this thesis. 
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symbolic knowledge. Artificial Intelligence is the discipline that mainly covers such 
aspects. The third target is KANSEI that refers to feelings, intuition, and sympathy and 
according to Hashimoto we are just entering in an historical period in which technology 
will start to deal with KANSEI, an issue that in the past was often left as a research field 
for only humanistic or humanistic related disciplines. 
The exact meaning of the Japanese word KANSEI is something controversial for western 
people: it does not have a univocal correspondent in western languages and culture, but is 
rather associated to a collection of words related to the emotional sphere (e.g., emotion, 
sensibility, sensuality, sense, feeling). In his paper Hashimoto gives some examples of 
common uses of the word in Japanese language such as for example “Her KANSEI is 
excellent”, “He is a man of rich KANSEI”, “He has no KANSEI”, “Her KANSEI seems 
well suited to me”, etc.  
It should be noticed that KANSEI refers to a dynamic process rather than to emotional 
labels or categories to be applied to expressive contents.  
KANSEI Information Processing can be regarded as a coding and decoding process (see 
for example Camurri, Hashimoto, Suzuki, and Trocca, 1999). In other words, KANSEI 
Information Processing supposes an underlying model in which expressive content is 
conceived as a kind of high-level information that, in the framework of a human-human 
communication process, “modulates” the physical signals carrying some usually 
symbolic message. That is, when a (human) sender sends a message to a (human) 
receiver he/she encodes in the message some expressive emotional information. Such 
information together with the symbolic content is embedded in the physical signal 
carrying the message. When the receiver receives the signal he/she decodes it and 
extracts both the symbolic message and the additional expressive information the sender 
encoded into it. Notice that it is not required that the sender deliberately add the 
expressive information to the message: such additional expressive information can be 
included unconsciously and can refer to aspects such as personality traits or personal 
dispositions toward objects, actions, and other people.   
By making a comparison with the Affective Computing approach, it can be noticed that 
all the three aspects of recognizing, expressing, and having emotions are included in the 
KANSEI process: in fact, (i) the sender expresses his/her emotions by encoding them in 
the physical signals carrying a message, (ii) the receiver recognizes the emotions 
expressed by the sender while decoding the message carried by the physical signals, and 
(iii) sender and receiver have an emotional state that can both influence the 
encoding/decoding process and be itself the high-level additional expressive information 
encoded in a message. KANSEI Information Processing seems therefore to adopt an 
holistic approach, broader with respect to the Affective Computing perspective (i) 
because it includes in the same model of encoding/decoding process all the three aspect 
Affective Computing separately deals with5, and (ii) because while Affective Computing 
is more concerned with emotions, KANSEI rather refers to a wide collection of emotion 
related aspects (e.g., moods, feelings, personality traits etc.).  

                                                 
5 This difference may reflect a cultural difference between western and eastern approaches to problem 
solving: while western people usually tend to divide a problem in sub-problems following a top-down 
approach and sometime losing the global perspective, eastern people often continue to keep an overall view 
of the problem even when they are focusing on a specific aspect of it.    
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In the framework of a joint collaboration between Waseda University in Tokyo and the 
DIST-InfoMus Lab at the University of Genova, a KANSEI Information Processing 
research project started also in Europe. In an attempt to translate KANSEI in western 
words, the term has been used to globally indicate a number of possible research targets 
ranging from using expressive emotional content to enhance human – computer and 
human – robot interaction, to understanding the communication of basic emotions to 
exploring the engagement of spectators exposed to musical stimuli6 (see for example 
Camurri ed., 1997; Camurri et al., 2002). In his master thesis Riccardo Trocca defined a 
model of a KANSEI evaluation system consisting of the following components (Trocca, 
2001):  
(i) A KANSEI function mapping features of the physical signals to a space (e.g., an 

emotional space). This function models the interaction between the physical world 
and the emotional space, emulating the effects that certain physical features would 
have on the evoked emotional response. 

(ii)  An Interpretation Function of a point in the emotional space. For example, a 
function expressing the distance of a point from a set of labelled emotions in that 
space (e.g. in the well-known circumplex model, valence/arousal).  

 
Such a KANSEI evaluation system has to face two main issues:  
(i) The definition (or adoption) of an emotional space and the labelling of relevant 

points, e.g. in terms of basic emotions. Such problem has been widely faced by 
psychologists (e.g., see the survey in Cowie et al. 2001).  

(ii)  The modelling of the interpretation function. This can be based on different 
approaches, for example neural networks or clustering algorithms. Neural networks 
are often used to find non-linear relations between physical measures and the 
KANSEI space. An example can be found in (Suzuki and Hashimoto, 1997), 
focusing on sound perception, where a neural network is trained to place its output 
in a sort of KANSEI space.  

 
The work presented in this dissertation has been largely influenced by the KANSEI 
approach since the direct participation of the author to the KANSEI research project in 
Genova. If from the one hand I largely agree with the encoding/decoding model 
delineated by the KANSEI Information Processing research, on the other hand, however, 
I preferred to avoid the use of the word KANSEI in this thesis because of its somewhat 
undefined and sometimes misused meaning.  
 

1.3.3. Expressiveness in music and human movement 
 
Analysis and synthesis of expressive emotional information assume a particular 
relevance in the context of performing arts (e.g., music, dance) whose languages are 
often and particularly based on and suited for conveying such information. Here I shortly 

                                                 
6 I have to notice that in this attempt of “importing” KANSEI, sometimes the word has also been misused, 
since it has been employed as a “shortcut” to collect in just one word a huge collection of different aspects 
(emotion, personality, expressiveness, engagement, etc.)   
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discuss some main research works in this field that is the main field of interest of this 
dissertation.  
Expression in music depends both on the structure of the composition and on the 
performance of the players (i.e., both composer and players contribute to expressiveness 
of a musical excerpt). 
Eric Clarke showed the importance of the compositional structure in expression. For 
example in (Clarke, 1988) is stated that “expressive changes that accompany changes in 
performance tempo are based on structural properties of the music”.  
Studies on expressiveness in music performance have been carried out at the University 
of Padova (DEI – CSC group). Through an analysis-by-synthesis methodology a model 
has been derived able to synthesize an expressive performance starting from a neutral one 
(i.e., a performance without any expressive connotation or intention). From perceptual 
tests, a “Perceptual Parametric Space” has been obtained mapping expressive intentions 
(e.g., hard, heavy, dark, bright, light, soft) on a 2D space whose axes are related to 
kinetics (tempo and articulation) and energy (loudness). Given a point in the space, it is 
possible to calculate two sets of coefficients that applied to the neutral scores generate a 
performance conveying the desired expressive intention (De Poli et al., 1998; Canazza et 
al. 1999, 2000). The model works on scores provided as MIDI files. 
In a recent work a classifier based on Bayesian Networks has been built classifying the 
conveyed expressive intention (soft, light, heavy, hard) on the basis of a set of measured 
parameters, including pitch, note number, key velocity, legato, inter-onset intervals, 
derived from incoming MIDI data (Cirotteau et al., 2003). 
A rule-based system for generating expressive performances has been developed along 
many years at the Swedish Royal Institute of Technology (KTH) in Stockholm 
(Sundberg et al., 1991; Friberg, 1995). Rules describe how musicians deviate from the 
nominal score depending on their expressive intentions. They affect several aspects of 
the performance such as duration of tones, loudness, pitch, vibrato, crescendos and 
decrescendos, tempo, articulation. Each rule is also characterized by the magnitude of its 
effect specifying how much that rule influences the performance: for example rules can 
be applied in an exaggerated way. 
Rules have been grouped in three different types: 
- Differentiation Rules concerning the differences between scale tones (A, B, C, etc) 

and between note durations (quarter notes, eighth notes, etc.). Differentiation rules are 
related to listeners’ ability to identify pitch and duration categories.    

- Grouping Rules related to the ability to group together tones at several layers, ranging 
from tones forming melodic Gestalts, to tones belonging to the same musical phrase. 
The rules mark the boundaries between different groups by inserting micro-pauses 
and/or by lengthening the tones at the boundary. 

- Ensemble Rules responsible of the synchronization of the various voices in the score 
by lengthening and shortening individual tones according to an overall strategy.  

 
Rules have been implemented in the program Director Musices (Friberg et al., 2000) and 
performances have been synthesized to convey to listeners six different emotions (fear, 
anger, happiness, sadness, tenderness, and solemnity). The rules to be applied and their 
parameters have been selected on the basis of previous research on emotional aspects in 
music performance carried out by Alf Gabrielsson and Patrik Juslin at the Department of 
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Psychology of the University of Uppsala (e.g., see Gabrielsson, 1995; Gabrielsson and 
Juslin, 1996). Spectators’ ratings on the synthesized performances showed that spectators 
were able to correctly classify the intended emotions in most cases. 
Both the approaches by DEI – CSC and KTH are mainly based on an analysis-by-
synthesis methodology. Attempts were also made to learn expression from examples. For 
example, Roberto Bresin at KTH developed neural networks able to learn KTH rules 
(Bresin, 1998): the input nodes of the network corresponded to the parameters present in 
the condition of the corresponding rule, the output nodes corresponded to the parameters 
that can be affected by the application of the rule. 
Other relevant works are those by the research groups of Serra in Barcelona and Widmer 
in Vienna. The former developed a case-based system to learn expressive modifications 
of saxophone sounds (Arcos et al., 1998), the latter applies a collection of Artificial 
Intelligence techniques to study expressive music performance (see for example Dixon et 
al., 2002). 
In the field of human full-body movement the state of the art is much less advanced than 
in music. Lot of researches are going on in analysis of human movement for 
understanding the physical mechanisms underlying it, for detecting and recognizing 
specific human activities (for example in video-surveillance), for analysing in details 
particular actions (for example gait). Very few of them are actually devoted to study 
expressiveness and how it is conveyed through movement. Moreover, researches on 
expressiveness in movement are often carried out by psychologists, with very few 
references to technical issues. A similar situation can be found on the synthesis side 
where lot of resources are spent to build characters more and more realistic and natural in 
their movements, but very few of them can be said to be expressive. Furthermore, both 
analysis and synthesis usually refer to specific actions (e.g., walking, grabbing objects) or 
to specific body parts (e.g., arms, hands), while full-body movement is often neglected. 
A relevant exception is the work by Badler and colleagues at University of Pennsylvania. 
They developed EMOTE (Expressive MOTion Engine), “a 3D character animation 
system that allows specification of Effort and Shape parameters to modify independently 
defined arm and torso movements”(Chi et al., 2000). The concepts of Effort and Shape 
are inspired to the work of the researcher and choreographer Rudolf Laban (Laban, 1947, 
1963) who developed the Theory of Effort qualitatively describing human movement in 
term of four main dimensions: space, time, weight, and flow. The work by Laban will be 
further discussed later in this dissertation since it constitutes one of the main starting 
points for approaching movement analysis. Laban’s theories were further developed 
along the years by other researchers: such corpus of studies constitutes what is called 
“Laban Movement Analysis” (LMA) (see for example, Bartenieff and Davis, 1972). 
EMOTE is characterized by four main features: 
- Effort and Shape parameters are independent from the geometrical definition of a 

movement, i.e., a gesture is specified in terms of key time and pose information and 
Effort and Shape parameters are applied to generate deviations with respect to the key 
pose information. 

- Effort and Shape parameters can vary along distinct scales, e.g., each parameter can 
vary along a scale ranging from – 1 to + 1. 

- Different Effort and Shape parameters may be specified and applied to the movement 
of different parts of the body (e.g., arm, torso). 
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-  Effort and Shape parameters can be phrased across several movements (e.g., a series 
of coordinated movements). 

 
While EMOTE mainly concerns synthesis of expressive body movements, a similar 
approach has recently been applied also to movement analysis. For example, in (Zhao, 
2001) four neural networks have been trained to classify movement along the four 
dimensions of Laban’s Theory of Effort. 
Some works considering both music and movement can be found in a specific field: the 
analysis of the movements of a performer during the music performance. For example 
Eric Clarke and Jane Davidson analysed the movements of a pianist (in particular of his 
head) during a performance (see for example Clarke and Davidson, 1998), Sofia Dahl 
studied movements of a marimba player (see for example Dahl and Friberg, 2003), 
Marcelo Wanderley and colleagues worked on the movements of a clarinettist (see for 
example Wanderley, 2001).  
 
 
Did the quest for expressiveness find its gold?  
In my opinion, from the one hand, some positive aspects can be highlighted like, for 
example, the following ones: 
- Research started to deal with the problem and some attempts have been done to 

formalize it in more precise and quantitative terms. For example, computational 
models of the emotional mechanisms have been developed and emotion related 
features have been measured. 

- Some experiments demonstrated that it is possible to correctly analyse and synthesize 
expressive emotional content. In the field of performing arts this holds especially for 
music. 

- Some application prototypes have been developed and used in concrete scenarios (see 
for example the system prototypes from MIT Affective Computing group). 

 
On the other hand the way to expressive computers is still long and difficult: 
- Research often starts from naïve hypothesis and sometimes the goals are quite 

ambiguous and unclear (for example, it is still not fully clear what is intended with 
“expressive emotional information”). A good formalization of the field (if ever 
possible) is still far to be reached. 

- The experiments only considered very specific contexts: e.g., experiments in music 
are often carried out on excerpts from the classical repertoire (e.g., pieces by Mozart, 
Chopin, Schubert); experiments in movement often concerns very specific movements 
(e.g., arm and hand gestures). Their results are very far to be generalized to music and 
full-body movement in general. 

- Application prototypes are still quite ineffective. That is, emotional machines often 
raise interest and curiosity (and sometimes diffidence) in people interacting with them, 
but in my opinion they are still not able to generate that “suspension of disbelief” that 
Bates (1994) considered of primary importance to make them believable. 



2. Multilayered Integrated Expressive Environments 
 
 
 
A main objective of this work is to give a scientific and technological contribution to the 
development of novel forms of artistic performances, where the performing action takes 
place in a number of physical as well as virtual connected spaces. Spectators usually 
become participants, since they are enabled to directly generate and modify content 
through their interaction. A performance can be organized on several levels of 
abstraction, with multiple narrative lines interleaving and interactively developing across 
the connected spaces. The paradigm here developed for artistic performances can further 
be applied to other application contexts such as, for example, museum applications. 
In this chapter, a Multilayered Integrated Expressive Environment (MIEE) is envisaged 
in which communication mainly takes place by non-verbally conveying expressive, 
emotional content. Expressive gestures are addressed as first-class conveyors of such 
expressive information. 
From a scientific point of view, attention is focused (i) on paradigms and metaphors for 
modeling such environments and (ii) on understanding the process of communication of 
expressive content, by individuating which features in an expressive gesture are 
responsible of such communication, and how the dynamics of these features correlates 
with a specific expressive content.  
From a technical point of view, issues are faced on the design and development of such 
multilayered integrated expressive environments, in term of their hardware and software 
components, and with reference to possible exploitation of the technologies discussed in 
the previous Chapter in order to implement them.  
A first step is represented by the definition of a model of such an integrated environment. 
The model has to take into account two main aspects1: 

(i) The structure of the integrated environment, i.e., its basic components, how 
they are connected in the environment, and the properties of both the basic 
bricks and the whole environment.  

(ii)  The communication process, i.e., how information flows in the integrated 
environment with respect to both the interaction between environment and 
users, and between the basic bricks composing the environment. 

 
In this perspective, this Chapter will discuss the structure of a Multilayered Integrated 
Expressive Environment and its global properties. Extended Multimodal Environments 
(EMEs) will be introduced as basic bricks and will be discussed in details, mainly with 
reference to what they contain: real and virtual objects and real and virtual subjects. 
EMEs will be then connected together into a network of spaces enabling geographically 
distributed performances.  The concept of Active EMEs will be finally used to introduce 
MIEEs, a hierarchical structure of metaspaces each one conceived as a virtual subject 
collaborating in achieving the overall narrative or aesthetic goal of the performance.    

                                                 
1 A third aspect, related to the dynamic along time of the envisaged environments, should also be 
considered. It will not directly faced in this dissertation. However, it is currently subject of ongoing 
research at the DIST-InfoMus Lab.  
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The following Chapter will deal with the second aspect: the communication processes 
taking place in a MIEE. A particular emphasis will be given to expressive gesture, 
considered as a main vehicle of information in a MIEE and as a first-class conveyor of 
high-level expressive, emotional content. 
 
 

2.1. The basic bricks: Extended Multimodal Environments  
 
The interactive environments discussed in this dissertation get inspiration from the 
Multimodal Environments (MEs) described in (Camurri and Ferrentino, 1999). MEs are 
conceived as “a population of physical and software agents capable of changing their 
reactions and their social interaction over time”: the “living agents” are intended to 
observe the users and extract features related, for example, to motion and gesture. The 
extracted features are then mapped onto real-time generation of music, sound, visual 
media. Agents can be software agents, ranging from invisible observers to “believable 
characters” (Bates, 1994), as well as physical agents, namely robots moving on-stage like 
the Theatrical Museal Machine (Camurri and Ferrentino, 1999).  
They are multimodal since multiple sensorial modalities (e.g., visual, auditory, haptic) 
are involved both with respect to perception by spectators/participants (that is, 
spectators/participants are exposed to stimuli activating several modalities), and with 
respect to analysis of inputs from spectators/participants (i.e., spectators/participants’ 
behaviour is analysed under a multimodal perspective). 
Here, the concept of ME is specified in more details from the one hand, and further 
extended on the other hand (i) by explicitly including humans (usually, performers and 
spectators/participants) in the model and (ii) by explicitly envisaging contexts in which 
the performance is spread over a number of distributed physical and virtual spaces 
together constituting a shared performing environment. 
Extended Multimodal Environments (EMEs), conceived as Mixed Reality spaces 
containing real, virtual, and mixed objects and real, virtual, and mixed subjects, represent 
the basic bricks of a multilayered integrated expressive environment.  
An EME can be classified in term of the Reality – Virtuality continuum (Milgram and 
Kishino, 1994), that is, it can be a completely real (physical) environment (as in 
traditional theatre performances), a completely virtual environment, or something in 
between: an augmented reality space, an augmented virtuality space or, ideally, a space 
where the user cannot distinguish what is real from what is virtual. Notice that actually 
the traditional distinction between physical and virtual space is here taken into account, 
i.e., a physical (or real) space is a space in which the usual physical laws hold, while a 
virtual space (environment) is one that can go beyond the constraints of physical reality, 
by simulating worlds in which the usual physical laws do not hold anymore. 
Mixed Reality techniques like those described in the previous Chapter can be used in the 
design and implementation of an EME. Several approaches are possible: for example, 
from the point of view of Hishii and Ullmer (1997) a Mixed Reality situation already 
takes place when technology builds in some way a cyber-infrastructure around a single 
physical space. Moreover, when connecting more single Mixed Reality spaces through 
the network to obtain a whole integrated environment, such cyber-infrastructure is further 
individuated in the connection itself. Mixed Reality technologies, like methods to make 
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bits “tangible”, can therefore be employed both for any single EME and for building a 
whole integrated environment. 
Here, however, a broader perspective is addressed, including the point of view by Hishii 
and Ullmer, but also envisaging situations in which completely virtual spaces are 
explicitly involved.  Fully virtual spaces can be obtained by using virtual reality 
techniques. An EME can be an augmented reality or an augmented virtuality space; 
augmentation can be achieved by means of well-established augmented reality/virtuality 
techniques. Notice that here augmentation is intended in a multisensory perspective, that 
is not only concerning the visual channel, but also the auditory and possibly the haptic 
ones. Notice also that while from the one hand augmentation is an important aspect of 
EMEs and completely virtual EMEs can be considered and implemented, on the other 
hand, most of EMEs are real physical spaces and physicality in interaction is a main issue 
in the design and implementation of an EME. In my view, completely virtual 
environments should be used only if their use can be strongly justified: for example, 
because it is unpractical or dangerous to do something in a real environment, or because 
the designer wants to experiment a situation in which one or more physical laws do not 
hold anymore.  
An EME can contain several kinds of entities: real objects, virtual objects, mixed objects, 
real subjects, virtual subjects, and mixed subjects. 
 

2.1.1. Real, virtual, and mixed objects 
 
An EME usually contains a number of real objects. Following the distinctions proposed 
by Milgram and Kishino (1994) and previously described (see Chapter 1), real objects 
are defined as “any objects that have an actual objective existence”. Thus, real objects are 
objects that effectively exist in the EME: for example, any peace of scenery can be 
considered as a real object, physical icons (Hishii and Ullmer, 1997) are real objects as 
well. Any subject actually present in a given EME can directly observe real objects and 
(if usable) can use them.  
Conversely, virtual objects are “objects that exist in essence or effect, but not formally or 
actually”.  This definition could be further extended since it is possible to consider virtual 
objects that do not correspond to any existing real object (i.e., do not exist in essence or 
effect), but are results of the creative imagination of the designer of a performance. 
Virtual objects can be dynamically created, destroyed, used and moulded (that is, their 
properties can be dynamically changed over time) by subjects. Usually, they cannot be 
directly observed, but effects of their use can be perceived. As an example, let us 
consider a scenario described in (Camurri and Ferrentino, 1999): a single agent observes 
and interprets movements and gestures by a user (e.g., a dancer). Depending on the 
identified “style of movement”, a kind of “dynamic hyper-instrument” is generated and 
played. For example, nervous and rhythmic gestures evoking a percussionist produce a 
continuous transformation toward a set of virtual drums located where motion is 
detected. If movement evolves toward smother gestures, a continuous change takes place 
also in the music output: for example, virtual drums are transformed in a virtual string 
quartet. In the framework of the model proposed in this work, the dynamic hyper-
instrument can be considered as a virtual object: it can be created in a given location, 
used (i.e., played), destroyed, and its properties can be dynamically changed over time. 
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Lot of such virtual dynamic hyper-instruments can be created in a given space. Each of 
them cannot be directly observed (since they are virtual), but the effects of their use (i.e., 
the sound produced while playing them) can be perceived.  
Virtual objects are thus able to implement traditional metaphors like “hyper-instruments” 
(Machover, 1989), but also to go partially beyond “hyper-instruments”, by enabling the 
dynamic behaviour previously described. Moreover, virtual objects can be employed in 
more complex scenarios: for example, they can implement Schaeffer’s music objects 
(Schaeffer, 1977). Schaeffer’s Morphology is an attempt to describe and study “concrete 
music”: roughly speaking, in concrete music, music objects extend the traditional 
musical instruments with sounds coming from real life, produced by concrete objects. 
Virtual objects can implement Schaeffer’s music objects, since they can generate sounds 
whose features can be changed/moulded according to Schaeffer’s perceptual cues (e.g., 
“grain”, “texture”, “allure”...)2.  
The same mechanisms here described for audio can be employed also for objects whose 
use is perceived in visual form. Referring again to the example above, it is possible to 
create an object such that when the agent detects nervous and rhythmic gestures it 
produces a continuous transformation toward an image in which some features (e.g., 
colours associated to energy, sharp edges) are emphasized. 
In the Milgram and Kishino’s perspective, real and virtual objects can be considered as 
two extremes of a reality-virtuality continuum. Mixed conditions (mixed objects) are 
possible in between, i.e., real objects having a kind of virtual augmentation or virtual 
objects having a kind of physical counterpart. Moreover, objects can move along the 
continuum during their lifetime: thus as a consequence of an interaction moulding its 
properties, a real object can for example acquire and develop a virtual augmentation.      
The introduction of real, virtual, and mixed subjects will definitely allow overcoming the 
hyper-instrument paradigm, by introducing novel interaction metaphors. By the way, 
notice that a “virtual subject” has already been introduced in the described example: “an 
agent” observes the movements of the user. Real, virtual, and mixed subjects are 
discussed in details in the following subsection. 
 

2.1.2. Real, virtual, and mixed subjects 
 
With the word “subject” is intended everything able (i) to perceive what is happening in 
the environment surrounding it and (ii) to act accordingly. In other words, subject is here 
used as synonymous of agent. An agent is in fact defined as “anything that can be viewed 
as perceiving its environment through sensors and acting upon the environment through 
effectors” (Russell and Norvig, 1995). Nevertheless, “subject” is here used since the term 
“agent” has been often abused in the literature in the last years.   
By making for subjects a distinction similar to the one made for objects, real subjects are 
defined as subjects that have an actual objective existence. Humans and robots3 are the 
                                                 
2 From a certain point of view, this operation would be against the original objective of Schaeffer who 
aimed at extending traditional musical instruments by including sounds coming from real life. Here we 
would synthesize sounds having the morphological properties described by Schaeffer but that would not 
necessarily come from or belong to the daily experience.       
3 In fact, animals would also be real subjects on the basis of the definitions above, but it is much less 
common to find animals participating in artistic performances! 
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two kinds of subjects having an “objective existence” that are usually found in EMEs. 
Notice that while humans are always considered as real subjects, robots are considered as 
real subjects only if they are able to perceive and act, i.e., they have a certain degree of 
expressive autonomy. The concept of expressive autonomy, defined as “the amount of 
degrees of freedom that a director, a choreographer, a composer (or in general the author 
of an application including expressive content communication), leaves to the agent in 
order to take decisions about the appropriate expressive content in a given moment and 
about the way to convey it” (Camurri, Coletta, Ricchetti, and Volpe, 2000), will be 
further discussed later in this dissertation; at the moment, just consider an example: a 
small robot in a performance is used to carry a videocamera (for example, the 
videocamera can get images of the performers that can be deformed and projected on 
large screens). The robot moves strictly according to commands coming from the 
director. In this case, the robot does not perceive anything and its actions are just the 
results of the commands given by the director: it does not have any expressive autonomy 
and, in fact, it is a real object, i.e., it only is used by the director (who can be considered 
as a real subject). Consider instead a situation where the robot decides toward which 
performer the videocamera has to be pointed in a given time instant, basing its decision 
on the expressive gestures each performer did in the last few seconds. In this case, the 
robot is able to make decisions according to its perceptions, it has a certain degree of 
expressive autonomy, and thus it can be considered as a real subject. 
Virtual subjects, instead, do not have an objective existence; they can be dynamically 
created and destroyed and, since they are subjects they are able to perceive and act. From 
the point of view of perception, virtual subjects are able to observe the environment 
through (real in EMEs) sensors (e.g., videocameras, microphones) and to process 
information in order to get an internal representation (state) of the environment. From the 
point of view of action, they use (real in EMEs) actuators to generate outputs (e.g., 
music, sound, visual media) in the environment. Similarly to what happen for virtual 
objects, virtual subject cannot be directly observed, but the effects of their actions can be 
perceived. 
Again, real and virtual subjects can be considered as the extremes of a reality-virtuality 
continuum. Mixed subjects are envisaged in the intermediate conditions. For example, 
robots can be considered mixed subjects from many points of view since they have a 
physical existence, but virtual augmentations of their capabilities are also possible. As for 
objects, subjects can dynamically move along the continuum during their lifetime. 
Moreover, it is also possible for objects to become subjects, i.e., one of the possibilities 
in dynamically changing the properties of an object is represented by allowing the object 
to “acquire life”, that is to acquire the ability of perceiving and acting. This possibility is 
also related to expressive autonomy. For example, consider again the robot controlled by 
the director discussed above. At a certain point, e.g., as a consequence of some event, the 
robot could “conquer its freedom” and starting to make autonomous decision: i.e., it was 
a real object and it becomes a real (or mixed) subject. Conversely, a subject could also 
“lose its freedom” and become an object.   
Subjects (mainly virtual and mixed subjects) can be classified with respect to their 
properties: two main criteria distinguish virtual and mixed subjects with respect to (i) the 
output channel that they mainly use in their actions and (ii) the predominant aspect of 
their behaviour, i.e., if they mainly observe, act or do both things. With respect to the 
second criterion, an important role is again played by expressive autonomy. In fact, if 
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from the one hand subjects must have a certain degree of expressive autonomy 
(otherwise they would be objects), on the other hand the amount of expressive autonomy 
strongly influences what a subject can do. 
For example, with respect to the first criterion, (virtual and mixed) subjects can be 
distinguished in: 
- Audio subjects, i.e., subjects that mainly use auditory output (sound and music) for 

their actions (or in the opposite perspective, subject the effects of whose actions are 
mainly perceived through the auditory channel).  

- Visual subjects, i.e., subjects that mainly use visual output (images, lights) for their 
actions (or in the opposite perspective, subject the effects of whose actions are mainly 
perceived through the visual channel). 

- Multimodal subjects, i.e., subjects that use both audio and visual output for their 
actions (or in the opposite perspective, subject the effects of whose actions are 
perceived through both the auditory and the visual channel). 

 
Notice that the classification has been restricted only to audio and visual outputs since 
these are the outputs we are mainly concerned with. Anyway, it can be further extend if 
other modalities become available. If for example a subject would be able to interact 
through haptic effectors (e.g., devices with force feedbacks et similia), this modality can 
be added to the previous ones.  
With respect to the second criterion, a distinction can be made between: 
- Observers, i.e., subjects whose main role is observing a particular aspect of the 

environment. They extract features, interpret them, and provide other subjects with 
information (structured on more levels) about what they are observing. The 
communication process between subjects and a possible framework for analysis of 
features will be discussed late in the next Chapter. A particular subset of observers 
groups those associated to humans, that is, observers that are responsible to track and 
analyse the actions a human is performing. Another subset is constituted by the 
observers that are again associated to a human, but are responsible to observe the 
environment from the point of view of the human they are associated with: in a sense 
they are customized observers. Both virtual and mixed subjects and robots can play 
the role of observers. 

- Actors, i.e., subjects whose main role is acting (i.e., producing music, sound, visual 
media) mainly depending on input received from other subjects (mainly observers). 
Avatars are an important kind of actors. An avatar is usually conceived as a 
representation of a human in a virtual reality environment (see for example Bahorsky, 
1998). An avatar therefore acts accordingly to what the human it represents is doing: 
its main role is representing the human through its actions. An avatar can for example 
receive information from the observer that is observing the human the avatar is 
associated with. Both virtual and mixed subjects and robots can play the role of 
actors and avatars. 

- Characters, i.e., subjects that both perceive and act. Characters often are not 
associated to a given human, but they can interact with humans. Characters therefore 
have a higher degree of expressive autonomy with respect to observers and actors. 
Lot of research has been carried out on characters to improve their behaviour and 
they believability, in a huge variety of application fields (e.g., virtual tutors, virtual 
assistants, characters in game environments, characters for sign language, characters 
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for TV applications…). Design of virtual characters is not a main objective of this 
work: here I just point out two issues that are particularly relevant in artistic contexts:  
(i) Anthropomorphism is not a strict requirement: it is possible (and sometime 

preferable) to have cartoon-like characters or abstract shapes that are not 
anthropomorphic at all. 

(ii)  Despite most research on virtual characters is actually focusing on verbal 
communication4, here communication mainly takes place through non-verbal 
channels. Characters, therefore, have to demonstrate their believability through 
the audio and visual output they produce.  

 
By combining classifications according to the two criteria, two relevant cases emerges: 
- Audio clones, that is, avatars that mainly act through audio output. 
- Visual clones, that is, avatars that mainly act through visual output. 
 
Clones replicate the actions of a human by translating them in auditory (audio clones) or 
visual (visual clones) form. The level of abstraction at which humans’ actions are 
translated can considerably vary: for example, in a very simple scenario, some 
movements (or motion in a given location) can be recognized and associated with 
generation of audio or visual output. In more complex cases, high-level information 
about expressive gesture can be involved in the translation process. 
Notice that a clone will need an observer to gather information about the human and an 
actor (an avatar) to generate audio and/or visual output. If the clone is created in the same 
Mixed Reality space in which the human actually is (i.e., in the same geographical 
location) the two aspects can be merged and the clone is in fact a character, If instead 
generation of output takes place in another Mixed Reality space (i.e., in another 
location), an observer will be needed in the space where the human actually is, and an 
actor/avatar will be needed in the space where the output has to be generated. 
This last observation raises a problem that will be further discussed in the following (see 
Chapter 4), i.e., mapping strategies. How is the gathered information translated into 
actions? Mapping strategies will be discussed in details when analysing the internal 
structure of a virtual or mixed subject and the communication processes taking place in 
the discussed environments. 
 
Once described real, virtual, and mixed subjects, two issues need to be discussed: 
(i) How are real and virtual subjects involved in the design of a performance? A 

performance usually has some goals, that can be identified in its narrative structure 
and in the aesthetic concept its designer wants to communicate. How do subjects 
contribute to these goals? This problem is also related to the social behaviour of the 
subjects, that is how they relate and interact each other. Here two paradigms of 
interaction are addressed: collaborative and competitive. 

(ii)  How do real and virtual subjects communicate? This problem is strictly related to the 
previous one, since interaction is not possible without communication. The 
communication channels will be explored in the following Chapter. In particular, we 
envisage a model in which non-verbal communication takes place through expressive 
gestures. 

                                                 
4 And related fields, such as for example automatic and believable generation of co-verbal gestures. 
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2.1.3. Interaction paradigms between subjects 
 
Let’s thus start considering the first issue: how do real and virtual subjects socially 
interact in an EME?  
Here only two approaches are discussed, but further and more complex paradigms can be 
introduced and employed. The two approaches taken into account are quite traditional, 
nevertheless (i) they are easy to understand and implement and (ii) they can be usefully 
employed to build prototypes of EMEs. The two considered models are the following: 
(i) Collaborative models, i.e., subjects cooperate in the fulfilment of the goals of the 

performance. Collaborative models have been used in a lot of application contexts, 
e.g., in AI and in HCI in the field of conversational agents (see for example, Guinn 
and Biermann, 1993; Pérez-Quinones and Sibert, 1996) 

(ii)  Competitive models, i.e., subjects compete in obtaining resources and in achieving a 
goal by getting the best performance or scoring. Competitive models are mostly 
used in games (and videogames) 

 
Both these models have been extensively studied in several disciplines ranging from 
computer science (e.g., in machine learning in the field of evolutionary and genetic 
algorithms) to economics and social sciences. Here I avoid going into details that are 
beyond the scope of this work and I just put into evidence the aspects that are relevant for 
the context in which the models will be employed. 
In the literature the term “collaborative” is often used with reference to Collaborative 
Virtual Environments (CVEs), intended as systems that “use VR technology to visualise 
a space inhabited by multiple users, usually geographically remote in the real world” 
(Benford et al., 1997), and provide a framework for enhancing cooperation among users 
finalized to a given group work (Benford et al., 1996, 1997). Taking inspiration from 
Benford’s definition, in the context of this work “collaborative” means that subjects (e.g., 
performers and spectators/participants but also virtual and mixed characters) cooperate in 
the common group “work” consisting in generating the performance. In other words, 
while from the one hand the performance may remain orchestrated and supervised by its 
designer (composer, choreographer, director) as in more traditional contexts, on the other 
hand it can evolve and be moulded on the basis of joint and coordinated actions of real 
(performers and/or spectators), mixed and virtual subjects that can directly collaborate in 
generating and transforming the content. The common goal driving the participants’ 
actions (that is implicitly implied by the term “collaborative”) in the case of an artistic 
performance can be identified, for example, in a communicative objective of the 
performance as a whole, that is, in the acquired consciousness and understanding of the 
message the designer wants to communicate through the shared experience. Supervision 
by the artist/director and evolution depending on subjects’ actions can be mixed at 
several extents: this issue is related again to the concept of autonomy (and expressive 
autonomy). The word “collaborative” is therefore used mainly with reference to its social 
meaning (i.e., bringing together people cooperating in the fulfilment of an artistic goal) 
rather than in its technological implications: that is, I put less emphasis on some 
requirements of CVEs, like the definition of  “a consistent and common spatial frame of 
reference”, or the existence of “a well established co-ordinate system in which the 
relative positions and orientations of different objects can be measured” (Benford, 1997). 
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Such approach is motivated by the fact that this work is focused on investigating new 
technology-based paradigms for artistic applications, rather than in reproducing with VR 
(more or less) real scenarios. Paradoxically, in such a context lot of interest may be 
raised by a VE in which physical laws are partially or completely violated, but in this 
situation, concepts like “well established co-ordinate system”, “relative position”, and 
“relative orientation” can lose much of their meaning. 
The term “competitive” is also intended with a less specific meaning with respect to the 
specialized literature (e.g., in the field of genetic algorithms). Here “competitive” refers 
to the traditional game paradigm where players compete in achieving a goal by trying to 
obtain the best performance (for example in term of the best score). Competition can 
imply “fighting” for obtaining a limited resource, for surviving (as in most games) or, in 
general, for defending our own interests against the others’ ones. A performance can thus 
be designed in a game-like perspective where subjects “fight” each against the others to 
get the best score and to win the game. The game paradigm can considerably raise the 
interest and the engagement of participants as videogames largely demonstrate. The use 
of well-acknowledged conventions, as in drama and games, has been demonstrated to be 
effective in introducing novel forms of interaction to the general public, even to novices 
in technology (Rinman, 2002). 
The two paradigms can also be joined: for example, it is possible to have competitive 
environments where subjects grouped in teams collaborate in trying to win the game. In 
artistic scenarios this situation can often happen: for example, two actors “fighting” 
during a scene, in fact are contributing with their action to the overall development of the 
narration, i.e., with the “fighting”, competitive action they collaborate to the artistic goal 
of the performance. The two paradigms could therefore need a redefinition in order to be 
employed in performing arts.    
 
 

2.2. Connecting together more Extended Multimodal Environments 
 
Up to now the discussion focused on a single EME and on what it contains (real, virtual, 
and mixed objects and real, virtual, and mixed subjects). An EME exists in a given 
geographical location. However, the interest is on a performance environment that is not 
limited to a specific physical and geographical location, but can be spread on several 
different locations. This is nowadays allowed by broadband communication 
technologies. Evolution in technology will also remove the need to have dedicated 
installations (and dedicated places) for performance, thus enabling distribution in non-
traditional environments (e.g., at home). Connecting together more EMEs raises some 
issues about how subjects inhabiting a given environment are represented in the other 
ones and how subjects in a given environment can use objects belonging to another one. 
Such situation can be handled by using the observer and avatar subjects described above. 
Let’s for example consider two EMEs connected through a network (see Figure 2.1). In 
the Figure human-like shapes5 represent subjects (solid lines for real objects and dashed 
lines for virtual objects), and cubes represent objects (again, solid lines for real subjects 

                                                 
5 Notice, however, that usually anthropomorphism is not needed for virtual subjects. Here they are 
represented as human figures only because the Figure is thus easier to understand.  
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and dashed lines for virtual subjects). Two observers are associated to a real subject (a 
human) in EME 1. The first one observes the human trying to analyse his/her actions and 
behaviour (e.g., what he/she is doing with a real or virtual object), similarly to the 
observer previously discussed in the example from (Camurri and Ferrentino, 1999).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 2.1: connecting two Extended Multimodal Environments. 
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Notice that information the observer can extract from the human ranges over multiple 
layers of abstraction: from simple detection of motion in given regions or of given body 
parts, to information about gestures the human is performing, to possible emotion the 
human is trying to express, to his/her engagement with respect to the performance that is 
taking place. Examples will be discussed later in this dissertation when, as a case study, 
analysis of expressive gesture in human full-body movement will be discussed.   
The second observer observes what is actually happening in the Extended Multimodal 
Environment: for example, it observers what the other subjects (real, virtual, or mixed) 
are doing with real, virtual, and mixed objects. Again information over several levels of 
abstraction and complexity can be extracted. Notice that the second observer can be 
“customized” in order to observe the environment according to the preferences of the 
human subject it is associated with. For example, if the human subject has a particular 
sensitivity toward light changes or toward a given musical genre, the observer can be 
programmed to attribute a particular relevance to light changes and to that musical genre. 
The mechanisms for obtaining such a customisation will be discussed later, when the 
internal architecture of virtual subjects will be described in more details. 
Information collect by the two observers is sent over the network to an avatar inhabiting 
EME 2. The avatar can thus act in EME 2 depending on what the human it represents is 
doing and observing in EME 1. Furthermore, the avatar can also observe what is 
happening in EME 2. Avatar’s actions can therefore depend on (i) the actions of the 
human as observed by observer 1 in EME 1, (ii) what is happening in EME 1, filtered by 
observer 2 according to the human’s preferences, (iii) what is happening in EME 2, 
observed and filtered by the avatar according to the human’s preferences. Avatar’s 
actions can consist in generation of audio and visual content or in suitable use (and 
creation/destruction, if needed) of virtual objects. The avatar could also use real or mixed 
objects if they can be used without the need of physically interact with them (e.g., objects 
that can be automatically controlled).   
Conversely, information gathered by the avatar in EME 2 can be sent back to EME 1, 
where it can be presented to the human in several ways with increasing complexities, 
ranging from displays showing what is happening in EME 2 to the visual and audio 
feedback generated by an actor in EME 1 on the basis of data coming from EME 2. 
The mechanisms here described can be replicated in order to connect together more 
EMEs: a network of EMEs can thus be obtained enabling distributed performances (see 
Figure 2.2 in the following page). Of course, complexity increases: for example, a human 
physically inhabiting a given EME can have avatars in each connected EME, all 
receiving information from the two observers associated to the human. Conversely, the 
human can receive feedbacks from each of his/her avatars populating the network of 
EMEs. 
With reference to Figure 2.2, notice that a connection of each EME with any other EME 
is not required (i.e., the graph representing the network of EMEs may not be fully 
connected). However, a kind of transitive property holds on the basis of which each EME 
can indirectly influence what happens in any EME for which a path can be found in the 
graph connecting the two EMEs. Consider for example EME 5, EME 6, and EME 7 in 
Figure 2.2: they are not fully connected: for example, EME 5 is not directly connected 
with EME 7. What happens in EME 6 can depend on what is happening in EME 5 (they 
are connected, so there could be in EME 6 an avatar of a human living in EME 5 and 
acting on the basis of what it receives from EME 5). What happens in EME 7 can depend 
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on what is happening in EME 6 (again they are connected, and a human in EME 6 can 
have a avatar in EME 7 acting on the basis of what is happening in EME 6). Since what 
is happening in EME 7 can depend on what is happening in EME 6, but what is 
happening in EME 6 can depend on what is happening in EME 5, in fact EME 5 can 
indirectly influence what is happening in EME 7 even if a direct connection between 
EME 5 and EME 7 does not exist. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2: a network of Extended Multimodal Environments 
 
Notice also that in a network of EMEs the links can dynamically change over time 
depending on the evolving performance. In particular, the links can be characterized by 
properties evolving over time (i.e., links can be parameterised) and can also be added or 
removed according to the needs of the performance. Moreover, in the Figure links just 
represent network connections among EMEs, but at a higher level a semantic can be 
associated with them, e.g., related to the (non-linear) narrative structure of the 
performance. Such aspects are not directly faced in this dissertation, but are subjects of 
ongoing research at the DIST-InfoMus Lab. 
While techniques of augmentation such whose described by Milgram and Kishino or 
whose related to the tangible bits approach can be used internally to each EME 
composing the network, Mixed Reality Boundaries (Benford et al., 1998) can instead be 
a good (but not the only) choice for connection between EMEs. 
Even if the complexity of an extended network of EMEs is more a theoretical condition 
than a practical one (in practice, usually, only few EMEs will be connected together), 
anyway such a complexity can make it difficult to design, organize, and coordinate a 
performance: the cross-influences can make it impossible to develop a narration across 
the EMEs and the juxtaposition of too many effects can generate situations that are both 
not understandable by the spectators/participants and not manageable by the 
director/designer. A further layer of coordination and supervising is therefore needed in 
multilayered integrated expressive environments. 
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2.3.   Active Extended Multimodal Environments 
 
An Extended Multimodal Environment can be itself equipped with sensors and effectors. 
Environmental sensors can be used to get an overall picture of what is happening and 
environmental audio and visual outputs can be generated. An EME can therefore be 
thought to be an active space, that is, it can be itself part of the performance since its 
environmental properties can be moulded depending on the evolution of the performance.  
A simple example is given by a space in which elements (e.g., lights, scenery) are 
dynamically changed in real-time by performers’ actions. Consider for example a 
situation in which a concert is taking place into an EME. The EME can observe the 
performers and produce visual outputs (e.g., abstract shapes) depending on the played 
music. The same music could also be acquired through microphones, processed, and 
reproduced on the basis of what and how the performers play and how they move. More 
complex situations can also be conceived. 
Active EMEs usually need to have a state, i.e., a corpus of information about what is 
actually happening and what happened in the environment.  
Depending on their degree of activity, Active EMEs can be classified along a continuum, 
ranging from completely passive environments to highly dynamic active environments 
(see Figure 2.3).  
 
 
 
 
 
 
 
 
 

 
Figure 2.3: active environments can be represented along a continuum 

 
In completely passive environments users (performers/spectators/participants) cannot 
influence the environment in any way. The environment constantly remains the same, or 
if it changes, changes are predefined. For example, this is what happens in traditional 
theatre scenarios, where any change in lights, scenery and so on is decided before the 
performance and extensively tested during rehearsals. 
On the other side of the continuum, highly dynamic active environments are equipped 
with environmental sensors and actuators and implement complex strategies to analyse 
data from sensors and map them onto generation of multimedia output. Several degrees 
of complexity are possible for example, with respect to (i) how much memory of the past 
is kept and used in the mapping process and (ii) how much the mapping strategies can 
dynamically evolve over time.  
A relevant case in between completely passive environments and highly dynamic active 
environments are “reactive environments” in which a collection of fixed rules is used in 
the mapping process.  
More details will be discussed in Chapter 4 dealing with mapping strategies. 
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2.4.   Structure of Multilayered Integrated Expressive Environments 
 
Let’s shortly reconsider the properties of an active Extended Multimodal Environment6: 
(i) it has sensors (i.e., it “perceives” what is happening inside itself through a number of 
environmental sensors), (ii) it has “effectors” (i.e., it is able to generate suitable 
multimedia content depending on what it perceived), (iii) it usually has a state (i.e., it has 
an internal representation of what is happening).  These are the same properties that 
define an agent: in fact, the definition by Russel and Norvig (1995) says that an agent is 
“anything that can be viewed as perceiving its environment through sensors and acting 
upon the environment through effectors”. An active EME can therefore be considered an 
agent whose itself is the environment and, according to the previous definitions, it can be 
regarded as a subject. Is it a real, virtual, or mixed subject? The problem is quite tricky.  
A “real subject” is one having an “objective existence”: an EME that physically exists in 
a given geographical location should therefore be considered as a real subject. A 
completely virtual environment instead should be considered as a virtual subject because 
it does not have an “objective existence”. Anyway, as I will proceed in the discussion, 
the problem of understanding what in fact is real and what is virtual will become more 
complex, but, on a certain extent, less relevant too. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.4: two active EMEs connected through the network can be represented as two subjects in a 
metaspace, one layer above the two EMEs. 

                                                 
6 In this discussion I consider only active EMEs (i.e., from reactive environments to highly dynamic active 
environments). Completely passive environments cannot be considered like subjects since they do not 
perceive nor act. At most, they could be considered as objects: something about this possibility will be said 
later in this section. 
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Let’s now consider two active EMEs connected through a network (a situation like the 
one described in Figure 2.1). As previously observed, each EME can be thought to be a 
subject communicating each other through the network connection. It is thus possible to 
define a kind of metaspace, one layer above the two EMEs, in which the two EMEs can 
be represented as communicating subjects (see Figure 2.4 in the previous page). In a 
similar ways, when more active EMEs are connected together like in the network in 
Figure 2.2, they can be modelled as a collection of subjects interacting in a metaspace 
one level above the network of EMEs (see Figure 2.5).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.5: a network of EMEs can be represented as a group of subjects in a metaspace, one layer above 
the EMEs in the network. 
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As previously discussed, an EME can be directly or indirectly influenced by another 
EME in the network: similarly each subject/EME can have more or less knowledge about 
the other subjects/EMEs in the metaspace and their interaction can be more or less strong 
and tight.  
According to this metaphor, the development of a narrative structure along the network 
of EMEs and the achievement of the performance’s narrative and aesthetic goals can be 
though as the outcome of the interaction (either collaborative or competitive or both) of 
the subjects/EMEs in the metaspace representing the network. The EMEs can intervene 
and directly influence what is happening inside them with the aim of enriching the 
experience of the spectators/participants by controlling the complexity of the interaction, 
thus helping spectators/participants in understanding the performance contents and 
enhancing fruition. 
If from the one hand each EME can be though having its own storyboard and its own 
“artistic goals” and real, virtual, and mixed subjects are “actors” collaborating or 
competing for achieving the “artistic goals” of the EME, on the other hand the metaspace 
at layer 1 will have its own storyboard and its own “artistic goals”, but in this case each 
EME is an actor in the layer 1 storyboard and EMEs interact by collaborating or 
competing (or both) for the achievement of the “artistic goals” at layer 1. 
Suppose now that two networks of EMEs generate two metaspaces in which the EMEs in 
the two networks are actors collaborating and/or competing in the context of the 
storyboard of each metaspace. The metaspace can observe what the subjects/EMEs are 
doing inside it and can intervene and influence their choices: in other words, the 
metaspace can be considered as an active environment, and therefore as a subject 
“perceiving” what the subjects/EMEs are doing inside it and acting accordingly7.  
The two metaspaces can then be grouped as subjects in another metaspace a layer above. 
The two metaspaces will be “actors” in the storyboard of the new upper level metaspace 
and will contribute by collaborating and/or competing to the goals of the new metaspace.  
This paradigm constitutes the basic structure of Multilayered Integrated Expressive 
Environments (MIEE). It can be replicated recursively by creating more levels of 
abstraction, in which each active space or metaspace is considered as a subject in a 
metaspace one layer above. Each active space and metaspace has his own storyboard and 
subjects and as a subject itself is part of the storyboard of the metaspace one layer above 
it (see Figure 2.6 in the following page).  
Each group of active spaces belonging to the same metaspace at the upper layer can be 
considered as part of the same network, i.e., they can be represented in a connected 
graph. For example, one of the possible “translations” in term of graphs of the MIEE in 
Figure 2.6 is represented in Figure 2.7. Notice that the edges inside each graph are not 
univocally determined by the tree structure. Consider for example the three EMEs in the 
bottom left corner of Figure 2.6: from the tree structure it is only possible to argue that 
they are connected, but it is impossible to know how they are connected (e.g., if they are 
fully connected or not). The representation of MIEEs in term of graphs and trees can help 
                                                 
7 Notice that at this point the metaspace will be usually considered as a virtual environment and a virtual 
subject, since it usually will not have an objective existence. Its “perceptions” and “actions” with respect to 
subjects/EMEs will not be physical (like for example generation of audio/visual content in EMEs). Rather, 
metaspaces will act as software agents interacting with other software agents (the subjects/EMEs). 
Anyway, sometimes it is possible to find a physical counterpart of metaspaces as it will be described in an 
example later in this Chapter.  
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in the design and implementation phase, since traditional and well-know algorithms for 
traversing graphs and trees can be applied to MIEEs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.6: structure of a Multilayered Integrated Expressive Environment (MIEE)  
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.7: representation on term of graphs of the MIEE in Figure 2.6.  
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each level should be considered as dynamic links, i.e., they could be created and 
destroyed, and their properties modified depending on the evolution of the performance. 
MIEEs are thus multilayered since they represent a performance with respect to narrative 
structures situated at several layers of abstraction. 
They are integrated since a number of particular aspects of the interactive performance, 
such as analysis of spectators/participants’ behaviour, real-time generation of multimedia 
output, individuation and application of suitable mappings between analysed behaviour 
and generated output, management of the whole performance at multiple layers are all 
grouped and considered under the same conceptual framework. 
They are expressive since most of the interaction and communication processes taking 
place inside them (both at the level of “physical” EMEs and at the level of “virtual” 
metaspaces) are aimed at conveying expressive, emotional content. A discussion about 
what is considered to be “expressive content” and about the mechanisms through which 
such expressive content is conveyed in MIEEs will be presented in the next Chapter, 
dealing with expressive gestures.  
A final note has to be highlighted about completely passive environments. In discussing 
EMEs the hypothesis was made that only active environments have to be considered. 
Such hypothesis is needed because passive environments cannot be considered as 
subjects since they do not “perceive” nor “act”, and therefore the metaphor of 
environments that like subjects interact in a higher-level metaspace cannot be applied to 
completely passive environments. This can be a limitation since there are many 
environments that are completely passive: for example, an important subclass of 
completely passive environments is the one of traditional theatre spaces where any 
modification of the environment is decided before the performance and tested during 
rehearsals. Sometimes, however, it is possible to import completely passive 
environments in the model by considering them as a special kind of objects. In fact, if it 
is possible to externally control some aspects of the environment (e.g., lights), a subject 
could use these mechanisms to intervene on the environment. The environment does not 
“perceive”, nor has an internal state, but subjects can use it as an object, by intervening 
on it through the mechanisms the passive environment provides them. 
 
 

2.5.   Multilayered Integrated Expressive Environments: an example 
 
After discussing the structure of MIEEs in term of their components and the paradigm 
they implement, a concrete example of possible use of MIEEs is presented to conclude 
the description.  
Up to now, MIEEs have been discussed with respect to a scenario in which they are used 
to build distributed artistic performances where the narration is structured on multiple 
layers. The example considers another application scenario: a museum exhibit in which 
visitors pass through several rooms and installations again following a kind of narrative 
structure, the narrative structure of the exhibit, and where a goal is enhancing fruition. 
Let’s start by considering an installation in a room of the museum. Several degrees of 
complexity are possible, ranging from simply display movies and reproducing audio 
excerpts to interactive situations where visitors are observed, clones can be generated, 
audio and visual content produced in real-time depending on visitors’ behaviour. The 
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installation can therefore be regarded as an EME, in which visitors (real subjects) are 
actively involved in discovering what the exhibit wants to communicate them. Real, 
virtual, and mixed objects and other real (e.g., robots), virtual (e.g., video and audio 
clones), and mixed subjects can be involved in the installation. Museum installations that 
singularly considered can be regarded as EMEs have been developed in several 
occasions: see for example the installations at “Città dei Bambini” (literally Childrens’ 
City, a permanent science-museum exhibit for children in Genova, Italy) described in 
(Camurri and Coglio, 1998) and (Camurri and Ferrentino, 1999) and more recently the 
installations at “Città della Scienza”, a permanent science-exhibit in Napoli, Italy. 
A room in the museum can contain a certain number of installations connected together 
trough a local area network. If each installation is considered as an active EME, the room 
as a whole can therefore be considered as a metaspace in which subjects representing the 
installations contained in the room collaborate in the context of a higher-level 
communication objective (or a higher-level narrative structure), namely what visitors are 
supposed to learn by visiting that room. 
Two aspects are worth to be noticed at this point. Firstly, the installations contained in 
the room should be active EMEs, i.e., they should be able to observe what visitors are 
doing, to keep and update an internal state, and to act accordingly by dynamically 
modifying parts of the installation. This means that a certain level of complexity is 
required in the installation and that the designer has to be careful in finding a good trade 
off between complexity and understandability when designing and implementing the 
installation. Simpler and sometimes passive installations can be included as objects, if 
they provide control mechanisms as discussed at the end of the previous section.   
Secondly, this is an example in which the metaspace has a physical correspondence in 
the museum room. The museum room can be abstracted as an active space inhabited by 
subjects (the installations) interacting and collaborating toward a common goal: 
enhancing the fruition of the exhibit. 
Let’s consider now a further layer of abstraction: for example rooms in the museum can 
be grouped with respect to thematic areas (i.e., rooms whose installations concern similar 
issues can be grouped in the same thematic area). A thematic area can thus be considered 
as another metaspace, collocated at layer 2, inhabited by the rooms that, as subjects, 
collaborate in the development and in the management of the visit through a narrative 
path across the thematic area. The museum as a whole can be regarded as a metaspace at 
layer 3 where all the thematic areas, considered as subjects, interact and collaborate in 
managing flows of visitors inside the museum. The whole structure is shown in Figure 
2.8 in the following page. More levels can be added if needed: for example, if the 
museum is spread over several buildings, each building can constitute another metaspace 
at an intermediate layer in between the thematic areas and the whole museum. 
Notice that in concrete applications how EMEs and metaspaces have to be grouped in 
higher layer metaspaces may be quite easy to decide given the application scenario. For 
example, in the case of the museum here discussed grouping is performed on the basis of 
location (e.g., all the installations in the same room are grouped in a metaspace) and on 
the basis of the theme of the exhibit (e.g., all the rooms belonging to the same thematic 
area are grouped in a metaspace). Similar criteria can be used also in the case of artistic 
performances, where grouping can be depend for example on the geographical location 
(e.g., EMEs situated in the same region or country can be grouped together) or on the 
content (e.g., grouping of EMEs similar in term of storyboard or role of participants). 
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Figure 2.8: a museum modelled as a MIEE.



3.  Communicating through expressive gestures 
 
 
 
Charter 2 dealt with the structure of Multilayered Integrated Expressive Environments 
(MIEEs). In this Chapter attention moves on the communicative processes taking place 
into a MIEE. To this aim, a question already proposed in Chapter 2 is worth to be asked 
again: how do real, mixed, and virtual subjects communicate? The main interest in this 
dissertation is in investigating communication through non-verbal channels with a 
particular focus on music and full-body movement as first-class conveyors of expressive 
and emotional content. A special kind of MIEEs is therefore envisaged, where 
information is mainly conveyed through expressive gestures in music and movement1. 
The concept of gesture and, in particular, of expressive gesture therefore plays a key role 
in understanding the communication mechanisms in non-verbal MIEEs, since it provides 
a common conceptual framework in which it is possible to analyse the communication 
process under a multimodal perspective. 
This Chapter starts by defining and discussing the concept of expressive gesture and 
collocating it in the framework of the existing literature about gesture. To make the 
discussion more concrete, two experiments carried out at the DIST – InfoMus Lab on 
particular aspects of expressive gesture will be shortly introduced. One of them will be 
the main subject of the second part of this dissertation.  
Attention then moves on expressive gesture as main vehicle of information in non-verbal 
MIEEs. Three main tasks can be individuated in the communication process: 
(i) Analysis of the incoming expressive gestures in order to decode their expressive 

content; 
(ii)  Mapping of the decoded expressive content, i.e., making decisions about which 

expressive content (if any) should be conveyed as a response to the incoming 
inputs and which expressive gestures are mostly suited to this task; 

(iii)  Synthesis of the expressive gestures deliberated in (ii). 
 
A possible multilayered and modular architecture for virtual and mixed subjects 
communicating through expressive gestures is thus described, including modules for 
analysis, synthesis, and mapping of expressive gestures.  
In particular, this Chapter discusses in details a possible structure for the analysis and 
synthesis components. A multilayered approach allowing multimodal analysis and 
synthesis of expressive gestures is presented. Moreover, some relevant features of the 
described architecture are discussed with particular reference to the availability of 
mechanisms for dynamic customisation of the architecture components in order to adapt 
in real-time the behaviour of a mixed or virtual subject (e.g., for adapting the behaviour 
of an observer or of an avatar to the real human subject it is associated with).  
The following Chapter will deal with the mapping aspects. 
                                                 
1 Notice that if from the one hand I now focus on non-verbal communication mechanisms, on the other 
hand, this does not prevent to have MIEEs in which the verbal aspects play an important role. MIEEs 
constitute a general paradigm for structuring integrated expressive environments where all kinds of 
communication are allowed. Here the focus is on non-verbal communication since I believe that it plays the 
most important role in the performing arts scenario. 
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3.1.  Expressive gesture 
 
The concept of expressive gesture is a key issue in this research (see for example 
Camurri, De Poli, Leman, and Volpe, 2001). Most of the work discussed in this 
dissertation refers to it. Nevertheless, both the concept of expressive gesture and its role 
in the communication process are still quite far to be fully understood.  
This Section deals with expressive gestures under two complementary perspectives: 
(i) From a conceptual point of view: after a short review of some existing definitions 

of gesture, a definition of expressive gesture is introduced and discussed in its 
different aspects and with respect to the role of expressive gesture in the 
communication process between real, mixed, and virtual subjects in MIEEs. 

(ii)  From an empirical point of view: some ongoing experiments aiming at better 
understanding non-verbal mechanisms of expressive and emotional communication 
based on expressive gesture are described. They will be further discussed later in 
this dissertation. In particular, one of them will constitute the reference work with 
respect to which the research on analysis of human full-body movement will be 
described in the second part of this thesis. 

  

3.1.1. Gesture in human-human and human-machine communication 
 
Many definitions of gesture exist in the literature. Generally, they are not in conflict with 
each other, since each of them focuses on different specific aspects of gesture. 
For example, Kendon (1980) says that “for an action to be treated as a gesture it must 
have features which make it stand out as such”. Two issues are relevant in this definition: 
(i) gesture has features characterizing it and (ii) gesture has “to stand out as such”, i.e., it 
has to emerge, to be evident, to have a kind of unity in its components.     
A main stream in literature concerns natural gesture, as a support to verbal 
communication. For Cassel and colleagues (1990) “a natural gesture means the types of 
gestures spontaneously generated by a person telling a story, speaking in public, or 
holding a conversation”. McNeill (1992) speaks about “movements of the arms and 
hands which are closely synchronized with the flow of speech”. He also develops a well-
known taxonomy dividing the natural gestures that can be generated during a discourse 
in four different categories: iconic, metaphoric, deictic, and beats. The four categories 
can be shortly described as follows: 
(i) Iconic gestures are the air pictures representing some aspect of the object being 

discussed. For example, they can refer to the shape or the spatial extent of an 
object. 

(ii)  Metaphoric gestures represent abstract concepts or abstract features of an object. 
These gestures are especially diverse, most likely because metaphors widely vary 
from one language or culture to another. 

(iii)  Deictic gestures are pointing motions, i.e., they identify the location of people, 
places and things. 

(iv) Beats are little waves of the hand that underscore the value of speech, give accent 
to words, and help in speaker turn-taking.   
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It has to be noticed that the categories in the above taxonomy are not intended to be 
mutually exclusive, i.e., it is possible to have gestures belonging to more than one 
category at the same time. For example, metaphoric gestures are also iconic gestures. 
Therefore each category should rather be considered as a continuum (i.e., a gesture can 
have more or less iconicity, metaphoricity etc.). 
Further taxonomies and classifications of gesture can be found in the literature. A 
summary and a comparison can be found for example in (Zhao, 2001). 
Most of the qualitative gesture models (based on psychological, linguistic and cognitive 
studies) refer to gesture occurring with speech and supporting verbal communication 
(Kendon, McNeil, Rimé and Schiaratura, Krauss and Hadar: a short survey can be found 
in the above mentioned Zhao, 2001). McNeill further claims that gestures occur only 
during speech.  
While not neglecting the importance of speech in human-human communication and the 
role of gestures in supporting speech, the attention is here rather focused on gestures 
occurring in non-verbal communication where the whole communication process is 
based on the informative content gestures carry. To this aim a broader definition of 
gesture is needed with respect to the ones mentioned above, a definition taking into 
account gestures that are not directly associated with speech and conversation.  
In this broader perspective, Kurtenbach and Hulteen (1990) define gesture as “a 
movement of the body that contains information”. The fact that gestures have to contain 
information is important for distinguishing gestures from other movements. For example, 
Kurtenbach and Hulteen do not consider the act of pressing a button (or a key) as a 
gesture, since motion does not have any meaning or information associated with it.  
The definition by Hummels, Smets, and Overbeeke (1998) goes in the same direction: “a 
gesture is a movement of one’s body that conveys meaning to oneself or to a partner in 
communication”. (Wachsmuth, 1999) says: “for the purpose of this paper it is sufficient 
to understand “gesture” as body movements which convey information that is in some 
way meaningful to a recipient”. A survey and a discussion of existing definition of 
gesture can be found in (Cadoz and Wanderley, 2000). 
As I will discuss in the following section, the fact that gesture is intended to convey 
information is a key aspect for defining expressive gesture: in fact, expressive gesture 
will be distinguished from other kinds of gesture depending on the kind of information it 
convey, i.e., expressive content.   
 

3.1.2. Gesture in artistic contexts: expressive gesture and expressive content 
 
In artistic contexts and in particular in the field of performing arts, gestures are often not 
intended to denote things or to support speech as in the traditional framework of natural 
gesture, but the information they contain and convey is related to the affective/emotional 
domain. In some specific domains, gestures and their content are strictly codified and 
stylised as for example in ballet, but in most cases the emotional information does not 
depend on a defined code, but rather it is associated to dynamically time varying features.    
In most of the definition cited above gestures explicitly or implicitly are intended to carry 
and convey some kind of information. Such a property can be fruitfully used to 
distinguish and define expressive gestures. In such a perspective, gestures can be 



Chapter 3 –  Communicating through expressive gestures 
 

 
- 44 - 

 

therefore considered “expressive” depending on the kind of information they convey: 
expressive gestures carry what Cowie et al. (2001) call “implicit messages”, and what 
Hashimoto (1997) calls KANSEI (see also Chapter 1).  
That is, they are responsible of the communication of a kind of information (addressed as 
expressive content) that is different and independent, even if often superimposed, to a 
possible denotative meaning, and that concerns aspects related to feelings, moods, affect, 
emotional intentions2.  
Let’s consider an example: the same action (i.e., the same body movement) can be 
performed in several ways, by stressing different qualities of movement: it is possible to 
recognize a person from the way he/she walks, but it is also possible to get information 
about the emotional state of a person by looking at his/her gait, e.g., if he/she is angry, 
sad, happy. In the case of gait analysis, we can therefore distinguish among several 
objectives and layers of analysis: a first one aiming at describing the physical features of 
the movement, for example in order to classify it (quite a lot of research work can be 
found in the computer vision literature about gait analysis, see for example Liu et al., 
2002); a second one aiming at extracting the expressive content gait coveys, e.g., in terms 
of information about the emotional state the walker communicate through his/her way of 
walking. From this point of view, walking can be considered as an expressive gesture: 
even if no denotative meaning is associated with it, it however communicates 
information about the emotional state of the walker, i.e., it conveys a specific expressive 
content. In fact, in this perspective the walking action fully satisfies the conditions stated 
in the definition of gesture by Kurtenbach and Hulteen (1990): walking is “a movement 
of the body that contains information”.  
Moreover, the example of gait outlines another relevant issue, that is more layers of 
processing are needed to extract and analyse the information contained in and conveyed 
by a gesture. This consideration will lead in the following to the definition of a multi-
layered conceptual framework for analysis and synthesis of expressive gesture. 
In the case of the walking action, the expressive gesture (usually) does not have any 
denotative meaning. This is the most common situation when considering an artistic 
scenario. It is also possible, however, to consider expressive gestures having a precise 
semantics, not only in the affective/emotional domain, but also because they are intended 
to denote things in the outer world. For example, even an iconic, a metaphoric, or a 
deictic gesture can convey an expressive content through the way in which it is 
performed. In that case, the expressive content is conveyed in parallel or superimposed to 
the symbolic meaning. In some cases, the expressive content could also partially or 
totally modify the intended meaning of a gesture. In fact, the mechanism can be 
considered in some extent similar to inflections in speech, where a particular inflection 
(often used to communicate an expressive content) can give a particular meaning to the 
discourse, sometimes partially or totally different from the original meaning of the words 
that have been pronounced.    
                                                 
2 Indeed, it should be noted that in the common meaning of the word “gesture” as reported by dictionaries 
(some dictionary definitions are for example reviewed in the cited paper by Cadoz and Wanderley), gesture 
is often defined with reference to expression of feeling and emotion. While from the one hand the scientific 
definition of gesture as carrier of information gives a broader meaning to the word, on the other hand the 
definition of expressive gesture (although derived from the definition of gesture) come back closer to its 
common meaning.   
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With respect to the main stream in literature of natural gestures and co-verbal gestures, it 
can be said that if on the one hand, expressive gestures partially include natural gestures, 
that is, natural gestures can also be expressive gestures, on the other hand a more general 
concept of expressive gesture is here faced, including not only natural gestures but also 
musical, human movement, visual (e.g., computer animated) gestures.  
Moreover, the concept of expressive gesture here discussed is also somewhat broader 
than the general concept of gesture as defined by Kurtenbach and Hulteen, since it also 
considers cases in which, with the aid of technology, communication of expressive 
content takes place even without an explicit movement of the body, or, at least, the 
movement of the body is only indirectly involved in the communication process. For 
example, this can be the case in MIEEs, where expressive content can be conveyed 
through a continuum of possible ways ranging from realistic to abstract images, sounds 
and effects: cinematography, cartoons, computer animated characters and avatars, 
expressive control of lights in a theatre context (maybe in relation with an actor’s 
physical gestures), expressive musical performances, expressive use of sound. Consider, 
for example, a MIEE in which a theatre performance is taking place: the director, 
choreographer, composer can ask actors, dancers, musicians, to communicate content 
through a number of expressive gestures (e.g., dance and/or music phrases, postures, 
sentences). At the same time, technology allows the director to extend the language he 
can employ. For example, he can map motion or music features onto particular 
configurations of lights, in movements of virtual characters, in automatically generated 
computer music and live electronics. In this way, he can create “extended” expressive 
gestures that, while still having the purpose of communicating expressive content, are 
only partially related to explicit body movements: in a way, such “extended expressive 
gestures” are the result of a juxtaposition of several dance, music, visual gestures, but 
they are not just the sum of them, since they also include the artistic point of view of the 
director who created them, and are perceived as multimodal stimuli by human subjects 
(e.g., spectators).  
MIEEs are thus a natural test-bed in which non-verbal communication by means of 
extended expressive gestures can be studied in all its aspects of analysis, synthesis, and 
mapping. 
The research on expressive gesture here discussed is finalized to two main objectives:  
(i) Understanding the mechanisms underlying communication of expressive content 

through extended expressive gestures (e.g., which features are important, how they 
can be measured, how features are related to expressive content)  

(ii)  Developing novel interactive multimedia scenarios (e.g., MIEEs) in which 
automatic systems enable novel interaction paradigms and allow a deeper 
engagement of the user, by explicitly observing and processing the expressive 
gestures the user performs.  

 
In this perspective, MIEEs constitute both environments in which experimenting 
paradigms of expressive gesture communication and a conceptual platform for designing 
and developing novel multimedia interactive systems. 
Besides giving a definition of expressive gesture, it is needed to empirically study it in 
order to understand how expressive content is conveyed: a couple of experiments 
investigating specific aspects of expressive gesture are now introduced.  
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3.1.3. Experiments on expressive gesture 
 
A first step in the investigation of expressive gesture consists in setting up experiments 
aiming at individuating the main mechanisms supporting the communication process. 
Since (i) artistic performances strongly use in their languages such non-verbal 
communication mechanisms to convey expressive content, and (ii) there is a particular 
interest in developing expressive gesture applications for artistic scenarios, this research 
focused on performing arts, namely on dance and music performances, as a test-bed 
where computational models of expressive gesture and algorithms for expressive gesture 
processing can be developed, studied, and tested.  
As an attempt to shed light in the communication process of expressive content through 
expressive gestures in artistic scenarios, the attention has been focused to the following 
two particular aspects: 
(i) Expressive gesture as a way to convey a particular emotion to the audience; 
(ii)  Expressive gesture as a way to emotionally engage the audience. 
 
Each of them has been subject of experiments carried out at the DIST - InfoMus Lab in 
collaboration with its partners in national and European projects (mainly the EU-IST 
Project MEGA - www.megaproject.org - in the context of which lot of the work 
described in this dissertation is collocated).  
The ability of expressive gestures to convey emotions has been studied in an experiment 
carried out in collaboration with the Department of Psychology of the University of 
Uppsala (Sweden). The experiment considered an archive of dance performances and had 
the purpose of (i) individuating which motion cues are mostly involved in conveying the 
dancer’s expressive intentions (in term of basic emotions) to the audience during a dance 
performance and (ii) testing the developed models and algorithms by comparing their 
performances with spectators’ ratings of the same dance fragments. This experiment will 
be discussed in details in the second part of this dissertation.    
The second aspect was investigated trough an experiment aiming at understanding the 
mechanisms that are responsible of the audience’s engagement in a music performance. 
Spectators exposed to a performance by a professional pianist have been asked to rate 
with continuous measures their emotional engagement. A statistical analysis has been 
performed on the spectators’ ratings and on a collection of audio and motion cues 
automatically extracted from the audio and video recordings of the piano performance. 
Some preliminary results of this second (still ongoing) experiment will be discussed in 
the conclusions and are reported in (Camurri, Mazzarino, Timmers, Volpe, 2003, and 
Timmers, Camurri, Volpe, 2003). 
If from a scientific point of view these experiments are a starting point for understanding 
expressive communication, from a technical point of view they constitute the scientific 
basis on which the design of interactive multimedia systems can be ground.  
For example, in the case of MIEEs the experiments give hints on the way in which the 
input and output components of a virtual or mixed subject should be built. Consider for 
example a virtual subject having a role of observer: it is responsible of obtaining 
information about what the user it observes is doing. As already mentioned such 
information is located and processed along several layers. If the aim is to analyse user’s 
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expressive gestures and to decode the expressive content associated with them, the 
experiments can help in individuating which features the observer should be able to 
extract from the user’s behaviour and how it should process them3.  
 
 

3.2. Virtual and mixed subjects communicating through expressive gestures 
 
Since in a non-verbal MIEE communication mainly takes place through expressive 
gestures, virtual and mixed subjects have to be endowed with techniques for expressive 
gesture analysis, mapping, and synthesis. An important objective is the definition of a 
general architecture that can be considered as a common basis on which virtual and 
mixed subjects with different tasks and skills can be built. Such a general architecture (i) 
has to be modular so that different kinds of virtual and mixed subjects can be obtained by 
replacing components, (ii) must allow multimodal processing of expressive gesture (i.e., 
virtual and mixed subjects must be able to deal with gestures affecting several channels 
of perception), (iii) must allow customisation and adaptation of virtual and mixed 
subjects to real subjects and the environment (e.g., it has to be possible to adapt an 
observer or an avatar to the human it is associated with). 
 

3.2.1. The “Emotional Agent” architecture 
 
The architecture presented in this Section finds its basis in the “Emotional Agent” 
architecture developed over the years at the DIST - InfoMus Lab and described in 
(Camurri and Coglio, 1998). The architecture as originally conceived by its authors is 
sketched in Figure 3.1. 
Five active components can be individuated in it: input, output, rational, emotional, and 
reactive component. The white and thick arrows represent flows of information in the 
architecture (e.g., the white arrows connecting the input, rational and reactive 
components to the emotional component represent emotional stimuli the emotional 
component receives from the other ones). From a software engineering point of view, 
such arrows are implemented as buffers on which one component acts as producer and 
the other as consumer. The black and thin arrows represent parameters affecting the way 
in which components work (e.g., the two arrows connecting the rational and emotional 
components are the channels through which rational processing can influence the 
emotional state of the agent and vice versa). They are implemented as data containers 
upon which one component has read and write access and the other read only access.   
The two dashed arrows represent the information flow from and to the outer world. 
The architecture Emotion Agent can be collocated in the literature as an attempt to give 
both a common structure and some software engineering guidelines to the design and 

                                                 
3 Of course such experiments are just a starting point: they only consider limited and specific aspects of 
expressive gesture. It will be therefore very difficult to build an observer able to properly do its tasks in the 
infinity of situations that can happen in the real world. In my opinion, they should therefore be considered 
as a first step of a very very long way (someone could say luckily…)     
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implementation of agents for Multiomodal Environments (MEs). The attention is thus 
focused on design issues rather than on modelling of biologic mechanisms. In this sense, 
it differs from other works (see for example Sloman, 1998) where the aim is to model 
and understand human or animal behaviour. 
 
 

 
 

Figure 3.1: the architecture”Emotional Agent” (Camurri and Coglio, 1998)  
 

The architecture Emotional Agent has been used in concrete application scenarios (for 
example in the permanent exhibit for children “La Città dei Bambini” in Genova as 
described in Camurri and Coglio, 1998) and its rational and emotional components have 
been further worked out.  
For example, in (Camurri and Ferrentino, 1999) a model of artificial emotions is 
described that can be employed within the emotional component4.  
In (Camurri and Volpe, 1999, and Volpe, 1999) a possible structure for the rational 
component is envisaged: a traditional AI production system for automatic reasoning has 
been endowed with the capability to deal with expressive information. In that 
implementation of the rational component expressive information could affect several 
aspects of the rational processing: 
(i) The evolution over time of the agent’s knowledge about the outer word built on the 

basis of the inputs it receives. 
(ii)  The decision making process concerning the selection of the most suitable actions 

to be accomplished to reach the agent’s goals. 
(iii)  The decision making process concerning the selection of the agent’s goals. 

                                                 
4 This is just an example; more traditional models like the Ortony, Clore, and Collins (OCC) model 
(Ortony, Clore, and Collins, 1988) may also be employed 



Chapter 3 –  Communicating through expressive gestures 
 

 
- 49 - 

 

The rational component was also able to influence the emotional state of the agent. In 
particular, the outcome of the agent’s actions and success or failure in fulfilling its goals 
represented positive and negative stimuli for the emotional component. 
 

3.2.2. Internal structure of a virtual and mixed subject 
 
The “Emotional Agent” architecture arises some issues that are worth to be shortly 
discussed. In the Affective Computing approach (see Chapter 1) three main aspects are 
considered: (i) machines recognizing emotions (ii) machines expressing emotions, and 
(iii) machines having emotions. As already explained in Chapter 1 the objectives of the 
work presented in this dissertation are related to aspects (i) and (ii) since the interest is on 
extending the artistic languages by acting on the communicated expressive content 
through technology. To this aim, technology has to provide (i) the possibility to classify 
and encode in digital format the communicated expressive content in order to process it, 
and (ii) the ability to produce suitable output to induce emotional reactions in spectators. 
That is, it is not needed that machines have emotions, humans have them and technology 
can help the artist in conveying to his/her audience the expressive content he/she wants to 
convey: the point is how technology can help in communicating emotions and not how 
machines can feel emotions5.  
However, the adoption of this perspective requires rethinking the Emotional Agent 
architecture. In fact, the scenario is now the following: a virtual or mixed subject (that 
could be implemented using the Emotional Agent architecture) observes the expressive 
gestures through which other subjects try to communicate with it; it processes such 
gestures, and in turn generates expressive gestures to convey expressive content to the 
other subjects. Such expressive content can produce several different responses in the 
receivers, ranging from shifts of attention, to increased engagement, to eliciting of 
specific emotions. The main tasks can therefore be identified as follows: 
(i) Analysis of the incoming expressive gestures in order to decode the expressive 

content they convey; 
(ii)  Mapping of the decoded expressive content onto suitable outputs, that is making 

decisions about if it is needed to answer to the incoming inputs, what expressive 
content should be expressed, and how it should be expressed;  

(iii)  Synthesis of expressive gestures to convey the expressive content decided in (ii) 
  
In this way the virtual or mixed subject does not have an emotional state, rather it has an 
expressive content to communicate. That is, the virtual subject does not have an 
emotional state representing the emotional stimuli it received and a given personality, but 
it decides which expressive content is most suitable in the current conditions. If from the 
one hand, such expressive content may depend on incoming emotional information (e.g., 
the virtual subject could recognize an emotion in the expressive gestures of other 

                                                 
5 In other words, the aim is not to create machines able to replace humans also with respect to emotional 
aspects, rather the focus is on how machines can help humans in express themselves: in this perspective 
this research is “human-driven”, i.e., humans are the source of requirements for designing machines 
capable to support them rather than to replace them.   
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subjects) and on the personality traits the virtual or mixed subject wants to show, on the 
other hand the virtual or mixed subject explicitly makes decisions about the expressive 
content and how to communicate it, i.e., it is more concerned with rational processing 
rather than with “emotional processing”. In other words, the mapping task in (ii) can be 
assigned to the rational component of the Emotional Agent architecture without the need 
of explicitly including an emotional component. An explicit emotional component would 
be needed for virtual subjects having (“feeling”) emotions: in this case, the emotional 
component would contain an emotional state corresponding to the felt or perceived 
emotion, while the rational component would be responsible of the “consciously” 
deliberated emotions. The actual output would consist in some kind of juxtaposition of 
the two aspects. But since what has been said above this possibility tends to be excluded. 
Moreover, if the emotional component were kept, the only way the rational component 
would have to decide the expression of a given expressive content would consist in 
influencing the emotional component. But in this way the rational component would not 
have any guarantee to succeed in the task, since success would depend on the internal 
mechanisms of the emotional component. Of course, this is exactly what happens in 
humans, i.e., it is often difficult to simulate an emotion (cognitively deliberated) when 
another emotional state is actually present, but it has to be remembered that here the aim 
is not to model as precisely as possible human behaviour, rather the focus is on designing 
and implementing subjects able to analyse and convey suitable expressive content6.   
These observations lead to a revision of the way in which virtual and mixed subjects are 
structured. In particular, their architecture reflects the tasks they are responsible of (i.e., 
expressive gesture analysis, mapping, and synthesis). A first step consists therefore in 
roughly identifying the input component of the Emotional Agent architecture with the 
analysis process, the output component with the synthesis process and the three 
intermediate components with mapping. Figure 3.2 in the following page shows this 
correspondence with some details for the mapping component. The Expressive Gesture 
Analysis and Synthesis components will be discussed in the next Section, the mapping 
component in the next Chapter. 
The white and tick arrows again represent flows of information, while the black and thin 
arrows represent influences that a component exerts on another one.  
It should be noticed however that the architecture in Figure 3.2 should be considered 
more as a conceptual framework rather than as a software engineering design (as the 
Emotional Agent architecture partially was), although some guidelines for its software 
implementation could be given. For example, in a possible implementation an approach 
similar to the one employed in the Emotional Agent architecture can be considered: thus 
white arrows can be again buffers on which one component acts as producer and the 
other one as consumer, while black arrows can be implemented as data containers upon 
which one component has read and write access and the other read only access.  
The second step consists in going inside each component and in analysing how 
information flows and is processed. It should be noticed that if from the one hand the 
first step could be considered as a simplification (maybe excessive but needed from a 
certain point of view) of the original Emotional Agent architecture, on the other hand the 

                                                 
6 Of course, this does not mean that I am not at all interested in modeling human emotional mechanisms; 
this also is an interesting problem, but it is another research issue that is not the subject of this dissertation.  
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second step leads to a more detailed (but still general enough) analysis of the problem. 
The Emotional Agent architecture does not make any commitment about the internal 
structure of its components, even if some possible scenarios are envisaged. Here instead 
a possible internal structure (especially for the input and output components) is discussed 
that, while being general enough to build a wide variety of different and customisable 
virtual and mixed subjects, is at the same time detailed enough to allow to organize 
analysis and synthesis of expressive gesture in a unified conceptual framework under a 
multimodal perspective.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2: internal structure of a virtual or mixed subject 
 
 

3.3. Analysis and synthesis of expressive gesture in virtual and mixed subjects 
 
While going on with the task of describing in more details the information flow and 
processing of each component in a virtual or mixed subject, this Section considers the 
input and output components and illustrates a unified conceptual framework underlying 
both aspects. The next Chapter will focus instead on the mapping component and will 
describe a collection of possible mapping strategies a virtual or mixed subject could 
apply depending also on its expressive autonomy. 
The unified conceptual framework here discussed has been developed in collaboration 
with partners in the EU-IST project MEGA. In particular, it has been conceived and 
discussed with Prof. Marc Leman at IPEM – Ghent University (Belgium) and with 
researchers at IPEM (Camurri, De Poli, Leman, 2001; Camurri, De Poli, Leman, Volpe, 
2001).  
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Figure 3.3: the multilayered framework for analysis of expressive gesture  

Layer 1 – Physical signals 
Analysis of video and audio signals: techniques for background subtraction, motion 
detection, motion tracking (e.g., techniques for colour tracking, optical flow based 
feature tracking), techniques for audio pre-processing and filtering, signal conditioning. 

Data from several kinds of sensors, e.g., images from videocameras, positions from 
localization systems, data from accelerometers, sampled audio, MIDI messages. 

- Images pre-processed to detect movement, trajectory of points (e.g., trajectories of body 
parts, trajectories of dancers in the space). 
- MIDI and audio pre-processed to detect spectrum and temporal low-level features. 

Layer 2 – Low-level features 
Computer vision techniques on the incoming images, statistical measures, signal 
processing techniques on audio signals. 

Motion and audio descriptors: e.g., amount of energy - loudness, amount of 
contraction/expansion - spectral width and melodic contour, low fluency - roughness etc. 
  

Layer 3 – Mid-level features and maps 
- Techniques for gesture segmentation: for example, motion segmentation (e.g., in pause 
and motion phases), segmentation of musical excerpts in musical phrases.  
- Representation of music and dance gestures for example as trajectories in semantic 
spaces (e.g., Laban’s Effort space, energy-articulation space)  

Segmented gestures and related parameters (e.g., absolute and relative durations), 
trajectories representing gestures in semantic spaces. 

Layer 4 – Concepts and structures 
Modelling techniques (for example, classification in terms of basic emotions, prediction 
of spectators’ engagement): e.g., multiple regression, neural networks, support vector 
machines, decision trees, Bayesian networks, etc. 

High-level expressive information, e.g., recognized emotions expressed by other 
subjects, predicted engagement of other subjects.   

Expressive Gesture Analysis (EGA) Component 
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Since, as discussed above, analysis and synthesis of expressive gesture is as a process 
involving several layers of abstraction, a multi-layered architecture is envisaged in which 
analysis is carried out by progressively extracting higher-level information from lower-
level signals and vice versa for synthesis. 
Such a multilayered approach enables to split up the problem of expressive gesture 
analysis, synthesis and mapping into different sub-problems. Given the nature of 
expressive gesture as a gestalt-like entity, a straightforward approach is to split up the 
gestalt-like entity in terms of features and parameters, events and gestures, gestural 
spaces, and concepts. This allows a bottom-up and a top-down definition of the notion of 
expressive gesture that can be employed the one for analysis and the other for synthesis. 
Moreover, the multilayer approach also integrates, by means of “cross-modal mix” 
modules, features emerging from different physical input channels (e.g., audio, visual, 
sensors such as accelerometers or haptic devices). These integrations are conceived to be 
possible at different levels too.   
Let’s describe the multilayered architecture by considering the analysis side. According 
to this framework, analysis is accomplished by four subsequent layers of processing 
dealing with different kinds of inputs/outputs, ranging from low-level physical signals to 
high-level expressive information. 
The Expressive Gesture Analysis (Input) component of a virtual or mixed subject is thus 
composed by four sub-components hierarchically ordered on the basis of the level of 
abstraction of the kind of information they process (see Figure 3.3 in the previous page). 
In the figure, the multilayered structure is represented in its four layers, each one with its 
inputs and its outputs. Inside the boxes representing each layer a short list is included of 
possible techniques that may be applied at that level. 
As stated above, such a multilayered structure should be considered under a multimodal 
perspective, i.e., it aims at integrating analysis of audio, video, sensor signals.  
Layer 1 (Physical Signals) receives as input information captured by the sensors of a 
computer system. Physical signals may have different formats strongly dependent on the 
kind of sensors that are used. For example, they may consist of sampled signals from 
tactile, infrared sensors, signals from haptic devices, frames in video, sampled audio 
signals, MIDI messages. In this context the word “sensors” is often related to both the 
physical sensors employed and to the algorithm used to extract a given set of low-level 
data. It is therefore possible to speak of “virtual sensors” or “emulated sensors”. For 
example, in the case of analysis of movement through videocameras, a CCD camera can 
be an example of physical sensor, while the optical flow, the motion templates, or the 
positions of certain points in the frame sequence are examples of data extracted from 
“virtual sensors” implemented by the cited algorithms. Layer 1 applies pre-processing, 
filtering, signal conditioning, and audio and video analysis techniques to the incoming 
rough data to obtain cleaner data and further signals derived from the rough input. For 
example, in the case of video analysis of human movement two types of output are 
generated: pre-processed images and trajectories of body parts.  
Layer 2 (Low-level features) gets as input the pre-processed signals coming from Layer 1 
and applies algorithms to extract a collection of low-level descriptors. The employed 
techniques range from computer vision algorithms, to signal processing, to statistical 
techniques (that can be applied on the extracted data). The extracted low-level descriptors 
are features that psychologists, musicologists, researchers on music perception, 
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researchers on human movement, and artists deemed important for conveying expressive 
content. In the case of analysis of expressive gesture in human movement, examples are 
the amount of contraction/expansion, of stability, of rotational movements. Important 
cues are those related to the Effort dimensions described in Rudolf Laban’s Theory of 
Effort (Laban, 1947, 1963): these features will be extensively described in the second 
part of this dissertation. In the case of music such feature are related to tempo, loudness, 
pitch, articulation, spectral shape, periodicity, dynamics, roughness, tonal tension and so 
on: a similar conceptual framework and a taxonomy of audio features worked out in the 
context of audio mining can be found in (Leman et al., 2003, and Leman et al., 2001). 
Notice that analogies can be found among features in movement and in music, e.g., 
amount of motion – loudness, contraction/expansion – melodic contour or spectral width, 
bounded, hesitant movement – roughness.  
Layer 3 (Mid-level features and maps): in (Camurri, De Poli, Leman, Volpe, 2001) this 
layer is described in these terms: “In this layer, the purpose is to represent expression in 
gestures by modelling the low-level features in such a way that they give an account of 
expressiveness in terms of events, shapes, patterns or as trajectories in spaces or maps.” 
The layer receives data from Layers 1 and 2 and has two main tasks: segmenting 
expressive gestures and representing them in a suitable way. Such a representation would 
be the same (or at least similar) for gestures in different channels, e.g., for expressive 
gestures in music and dance. Data from several different physical and virtual sensors are 
therefore likely to be integrated in order to perform such a step. Each gesture is 
characterized by the measures of the different cues extracted in the previous step (e.g., 
speed, impulsiveness, directness, etc. for movement, loudness, roughness, tempo, etc. for 
music). Segmentation is a relevant problem at this level: the definition of expressive 
gesture does not help in finding precise boundaries. For example, in the second part of 
this thesis, a motion phase in dance will be considered as an expressive gesture (and 
segmentation will be done on the basis of the detected amount of motion). In facts, this is 
quite an arbitrary hypothesis: sub-phases of a motion phase (e.g., the phase of motion 
preparation) could also be considered as expressive gestures as well as sequences of 
motion and pause phases. Several possibilities are open for the common representation 
Layer 3 generates as its output. For example, an expressive gesture can be represented as 
a point or a trajectory in a semantic space7. Clustering algorithms could then be applied 
in order to group similar gestures and to distinguish different ones. Another possible 
output is a symbolic description of the observed gestures along with measurements of 
several quantities describing them. 
Layer 4 (Concepts and structures) collects inputs mainly from Layers 2 and 3 and is 
responsible to extract high-level expressive content form expressive gestures. It can be 
organized as a conceptual network mapping the extracted features and gestures into 
(verbal) conceptual structures. For example, in the two experiments previously sketched 
in this Chapter the focus was on the four basic emotions (anger, fear, grief, and joy) in 
                                                 
7 Whether the representation has to be a point or a trajectory depends on how the low-level features are 
processed in Layers 2 and 3. For example, if a vector containing the averages of the low-level features is 
calculated along the time duration of a gesture or a gesture is considered as a single event, it could be 
represented as a point in a multidimensional space. If instead more values for each feature are available 
(e.g., local values, or averages along gesture sub-phases) or if a gesture is considered as a sequence of 
events (as it is likely to be) a trajectory is a more appropriate representation. 
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the first one, and on spectator engagement (from a certain point of view something near 
to arousal in the valence-arousal model) in the second one. Other outputs are possible: 
for example, a structure could be envisaged describing the Laban’s conceptual 
framework of gesture Effort, i.e., Laban’s types of Effort such as “pushing”, “gliding”, 
etc. (see Laban, 1947, 1963, and later in Chapter 5). Several different machine learning 
techniques can be used for building such structure, ranging from statistical techniques 
like multiple regression and generalized linear techniques, to fuzzy logics or probabilistic 
reasoning systems such as Bayesian networks, to various kinds of neural networks (e.g., 
classical back-propagation networks, Kohonen networks), support vector machines, 
decision trees. 
The conceptual architecture sketched above is conceived for analysis, i.e., the Expressive 
Gesture Analysis component of a virtual or mixed subject can be implemented following 
these guidelines. Anyway, a similar structure can be employed also for synthesis. Let’s 
consider for example Layer 4: it may consist of a network in which expressive content is 
classified in term of the four basic emotions anger, fear, grief, and joy depending on 
current measures of low and mid-level cues. If instead of considering the framework 
from a bottom-up perspective a top-down approach is taken, an emotion the virtual 
subject intends to convey can be translated by a similar network structure in values of 
low and mid level cues to be applied to generated audio and/or visual signals. In this way 
the Expressive Gesture Synthesis component of a virtual or mixed subject can be 
obtained by using a similar multilayered architecture.  
 

3.3.1. Customising analysis and synthesis 
 
A virtual or mixed subject can evolve over time. It can change the spatial and time 
perspective under which it observes its environment (e.g., it can observe the whole scene 
or only particular aspects of it). It often needs to be adapted to a real subject it is 
associated with. Consider for example a virtual subject in an EME playing the role of 
avatar of a real subject inhabiting another EME. The avatar could be customised in order 
to reproduce the attitudes of the real subject associated with it. If for example the real 
subject pays a particular attention to light changes, the avatar could be customised in 
order to have a similar attitude. It is therefore needed to provide mechanisms for adapting 
the behaviour of the analysis and synthesis Layers, while preserving at the same time the 
modularity of the conceptual framework. This can be obtained by including some 
intermediate modules in between the Layers of the analysis and synthesis framework (see 
Figure 3.4 in the following page). 
Suppose for example to have a module at Layer 3 able to extract the “scenic presence” of 
a dancer. The “scenic presence” would be a mid-level feature that could be used by Layer 
4 for classifying the dancer’s current expressive intention. 
Modules in Layer 1 and 2 provide Layer 3 with the information needed to perform this 
task. On the basis of this information Layer 3 calculates an index of scenic presence.  
Suppose now that such an analysis is done by an observer associated to a human real 
subject (e.g., a spectator) paying particular attention to light. In this case, lighting on 
stage can strongly affect (in a non-linear way) the scenic presence index. For example, if 
the dancer were standing in a lighted area in front of the stage, his/her scenic presence 
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would sensibly grow. There is therefore the need to emphasize in a non-linear way this 
parameter. This can be done by means of an intermediate (between Layer 3 and Layer 4) 
mathematical module which takes as inputs the calculated index of scenic presence, the 
outputs from the physical layer (stage coordinates, lighting position and intensity), and 
the outputs of the low-level features layer (e.g., amount of detected motion to understand 
whether the dancer is or is not moving), and generates as output a modified (enhanced) 
index of scenic presence. 
 

 
Figure 3.4: role of the intermediate modules in the expressive gesture analysis process 

 
It should be noted that the mid/high-level feature “index of scenic presence” already 
implicitly depends on the actual values of the low-level features from Layers 1 and 2: the 
mechanism implemented by the intermediate module allows to adapt and tune the index 
according to the desired focus of attention and the attitudes of a modelled human subject. 
Intermediate modules add flexibility to the analysis and synthesis architecture, since they 
allow the definition of “archetypical” models of features (e.g., algorithms to calculate 
them in “standard” conditions), while keeping separate (i) their evolution over time given 
specific contexts, and (ii) different biasing due to “personality”, attitudes and focus of 
interest. Moreover, intermediate modules allow dynamic evolution of a virtual subject: 
while the layers extract features by using “archetypical” algorithms, the use of one 
(dynamic) or more intermediate modules can induce dynamic biases on the calculated 
features depending on the evolution of the performance.   
Several possibilities are available for implementing intermediate modules, such as for 
example (i) non-linear algebraic functions, (ii) look-up tables, (iii) threshold switches, 
(iv) rule-based systems, (v) decision-making and data fusion modules. 
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4. Mapping of expressive gestures 
 
 
 
As mentioned in Chapter 3, three main tasks can be individuated in expressive gesture 
processing: (i) analysis of expressive gesture, i.e., decoding the expressive content that 
expressive gestures contain and convey, (ii) mapping of expressive gestures, i.e., 
deciding which expressive content (if any) to convey given the incoming inputs and 
which expressive gesture to use to convey it, and (iii) synthesis of expressive gestures, 
i.e., generating suitable expressive gestures depending on the decisions made by the 
mapping function. A virtual or mixed subject in a non-verbal MIEE should be able to 
accomplish all these three tasks. 
Chapter 3 presented a possible internal architecture for a virtual or mixed subject and 
discussed analysis and synthesis of expressive gesture by describing a conceptual 
framework that both (i) allows to consider and organize the analysis and synthesis 
processes under a multimodal perspective, and (ii) provides some guidelines for 
implementing the Expressive Gesture Analysis and Synthesis components of a virtual or 
mixed subject. Mechanisms for adapting virtual or mixed subjects with respect to the 
attitudes of a real subject were also described. 
This Chapter concludes the conceptual discussion on expressive gesture by dealing with 
the mapping problem. The components related to mapping of the architecture for virtual 
or mixed subject presented in the previous Chapter will be analysed in details. Possible 
techniques for making decisions about which expressive content to convey and how to 
convey it will be shortly described. In particular, a software module developed for such a 
task will be presented. The Chapter will finish with a discussion on expressive autonomy: 
in fact, mapping is strictly dependent on expressive autonomy since the actual degree of 
expressive autonomy a virtual or mixed subject has strongly affects its capabilities to 
make decision about expressive content, i.e., mapping. 
 
 

4.1.  A multilayered model for mapping 
 
Mapping of expressive gestures involves two main aspects: 
(i) Making decisions about if, when, and how to answer to incoming inputs. This 

problem is strictly related with the paradigm of interaction that is employed. For 
example, in (Rowe, 2001, 1993) interactive systems for music are distinguished 
with respect to interaction paradigms in two subclasses: instrument paradigm 
systems “that treat the machine contribution as an extension or augmentation of the 
human performance”, and player paradigm systems considering the machine as an 
interlocutor. More in general, a distinction can be made between systems (and 
situations) in which a continuous mapping of inputs onto outputs is needed and 
systems (and situations) in which a sort of dialog takes place. These two conditions 
can be again considered as extreme boundaries of a continuum of possible 
intermediate situations and virtual and mixed subjects can be though to be 
continuously and dynamically evolving over time along this continuum.    
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(ii)  Making decisions about which channel to use for the response. That is, once the 
virtual or mixed subject decided to try to convey a given expressive content, the 
most suitable ways (i.e., expressive gestures) have to be chosen in order to do it. 
This obviously depends on the subject’s capabilities (of course, a subject endowed 
with only audio outputs can only generate sound and music outputs). If many 
possible output channels are available, the subject has to decide which one or 
which ones are most suitable given the actual context.  

 
Mapping can take place on several layers: for example it is possible to associate a 
decoded emotional intention  (e.g., one of the four basic emotions anger, fear, grief, and 
joy) to the generation of expressive gestures conveying the same or another emotional 
intention (e.g., it might be possible to create a kind of empathic agent showing its 
understanding of one’s emotional state by displaying the same emotional state or, 
conversely, a subject answering to an emotional intention by displaying the opposite 
one1): in this case mapping would take place at Layer 4 in the conceptual framework 
depicted in Section 3.3. It is also possible to directly associate values of cues extracted by 
modules at Layer 2 with values of similar cues involved in synthesis: for example a 
movement performed with high energy can be associated to a musical excerpt played 
loudly. In this case mapping takes place at Layer 2. While moving bottom-up along the 
Layers, it is likely that interaction mechanisms move along the continuum from 
continuous mapping to dialogical mapping. 
The general architecture for virtual and mixed subjects presented in Chapter 3 considers 
three main layers (components) for mapping. They are shown in Figure 4.1. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.1: structure of the mapping component of a virtual or mixed subject  

                                                 
1 Indeed, the last one would be quite a sadistic subject since it would be happy when you are sad! 
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All of them can receive inputs from the four layers of the Expressive Gesture Analysis 
component and can influence the four layers of the Expressive Gesture Synthesis 
component. The three layers correspond to three different kind of mapping strategies 
ordered with respect to increasing complexity. They include: 
(i) Expressive direct mapping, such as for example in the case of algebraic functions 

associating, without any dynamics, features of the incoming expressive gestures to 
features of generated expressive gestures (e.g., mapping of movement cues onto 
parameters of algorithms for sound synthesis or post-processing and visual media). 

(ii)  Expressive high-level indirect mapping, including reasoning and decision-making 
processes. For example, consider a software module able to make decisions based 
on the incoming decoded expressive content: it could select an algebraic function 
as the ones in (i) within a collection of possible algebraic functions, thus allowing 
direct mapping to be adapted to the current context, i.e., implementing an adaptive 
and dynamic direct mapping. 

(iii)  Expressive mapping monitoring, i.e., algorithms trying to measure the effectiveness 
of the lower mapping layers with respect to the overall goals of the subject and of 
the performance. They can modify and adapt the processing of the lower mapping 
layers (e.g., by modifying decision parameters or changing possible collection of 
algebraic functions) as a result of their evaluations.  

 
As usual, the white and thick arrows represent flows of data between the components, 
while the black and thin arrows represent influences that a component exerts on another 
one. Implementation guidelines as the ones discussed in Chapter 3 are still valid. 
The three typologies of expressive mapping will now be discussed in more details. 
Notice that the term “expressive” is explicitly mentioned while speaking about mapping: 
this should help in avoiding misunderstandings with respect to other possible uses of the 
terms “mapping” and “mapping strategies” that can be found in the literature. In 
particular, with “expressive mapping” and “expressive mapping strategies” here I do not 
intend the association of features of analysed gestures to emotional categories2, nor I 
mean the association of the physical movement of a performer with the generated sound 
of an (hyper) instrument3.  
 

4.1.1. Expressive direct mapping 
 
With expressive direct mapping I intend an association without any dynamics of 
expressive features of analysed expressive gestures with parameters of synthesised 
expressive gestures. For example, the actual position of a dancer on the stage can be 
mapped onto the reproduction of a given sound. Expressive direct mapping is often 
associated with the lower levels of the conceptual framework for analysis and synthesis 
discussed in the previous Chapter: for example parameters calculated in Layer 2 (e.g., 

                                                 
2 This would be a “vertical” mapping between layers of the analysis framework. Here I am instead 
concerned with a “horizontal” mapping between layers in analysis and layers in synthesis.   
3 This kind of mapping could be indeed included in the concept of “horizontal” mapping I am dealing with: 
it is just a possible particular aspect in a broader scenario.  
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amount of motion – loudness) can be used to control particular features in the real-time 
generation of audio and visual content. Moreover, direct expressive mapping is also more 
likely to be employed in continuous mappings rather than in dialogic ones.   
Expressive direct mapping allows obtaining simple reactive behaviours in virtual or 
mixed subjects, and therefore it can be associated with the reactive component of the 
Emotional Agent architecture (see Chapter 3 and Camurri and Coglio, 1998).  
Several possible implementations are available for expressive direct mapping such as for 
example the following: 
(i) Collections of pre-defined condition-action rules, i.e., set of rules associating given 

configurations of parameters coming from the analysis side with given 
configurations of synthesis parameters. For example, sounds or visual outputs can 
be associated with regions in the space, the use of a given post-processing with a 
given expressive cue, the automatic recognition of a given expressive gesture with 
the automatic generation of another expressive gesture. 

(ii)  Collections of algebraic functions, calculating values of synthesis parameters 
depending on values of analysed expressive cues. Let’s call u a vector of 
expressive cues: u will contain numerical values calculated by the analysis 
component (e.g., the occupation rate of a region in the environment, the calculated 
fluency of a movement, the roughness of a musical excerpt). Let’s also call s a 
vector of synthesis parameters (for example the parameters of a physical model for 
sound generation, the parameters controlling the movement of a computer 
generated character). If s ∈ S and u ∈ U, an expressive direct mapping strategy can 
be though as a function m: S → U, s = m (u) algebraically connecting analysis 
parameters with synthesis parameters. It should be noticed that while the 
complexity of the algebraic function can be freely increased according to any 
possible need, it anyway remains a static function, i.e., the mapping it induces does 
not change anymore once the function is defined and put at work.  

 

4.1.2. Expressive high-level indirect mapping 
 
Expressive high-level indirect mapping strategies can be associated with explicit use of 
reasoning techniques, and can therefore be related to the rational component of the 
Emotional Agent architecture. They are characterized by: 
(i) A state evolving over time (that is, they are dynamic processes): such a state can be 

updated for example by applying some kind of reasoning technique to the available 
information. 

(ii)  Decisional processes, i.e., the system could make decisions based on the incoming 
information from analysis and the acquired knowledge. Such decisions can concern 
the kind of expressive content to produce and how to convey it, and can be related 
for example to the narrative structure of a performance.      

 
Production systems and decision-making algorithms can be employed to implement this 
kind of mapping strategies. Let’s consider again the vector u of expressive parameters 
returned by the analysis algorithms and the vector s of synthesis parameters, s ∈ S e u ∈ 
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U. Let’s consider also a collection of K possible expressive direct mapping algebraic 
functions: mk: S → U, s = mk (u) with k = 1...K. 
Each function mk directly maps a given configuration of analysis parameters onto a given 
configuration of synthesis parameters, as previously described while talking about 
expressive direct mapping. 
The K direct mapping functions can be considered as possible alternatives among which 
a higher level module can choose depending on the available and incoming information. 
A decision-making algorithm can thus be employed to select the direct mapping function 
mk* that results to be the most suitable in the given situation (for example, in a given 
moment of a performance): it is therefore possible to have a collection of expressive 
direct mapping strategies among which a choice is made by a higher level mapping 
strategy (the decision-making algorithm). 
A particular but relevant case is represented by linear direct mapping functions. These 
function can be written as s = mk (u) = Mk u, where Mk is an m×n matrix (being s: m×1 
and u: n×1). In this case the decision-making algorithm has to choose among K matrices 
M1 ... MK, representing the K linear direct mappings.   
Mechanisms can be included providing smooth transitions between direct mappings, i.e., 
when the decision-making algorithm decides to change the underlying direct mapping, 
the smoothness and the time duration along which the change has to take place can be 
decided as well (in a sense, smoothness and time duration could be mapping parameters 
as well). 
This paradigm can be further iterated, leading to hierarchies of mapping functions: 
suppose for example that H sets of direct mapping functions are available. Each set 
contains respectively K1 ... KH  functions. A first decision can then be made about which 
of the H sets should be considered. A second decision will concern which of the Kh*  
functions in the selected set has to be employed with the incoming analysis data. 
Notice that a similar approach can be applied even if the direct mapping is implemented 
through condition-action rules and sets of condition-action rules. A decision-making 
algorithm can be employed to decide which of K rules that can be applied in a given 
situation (i.e., whose conditions are matched) should be employed. In the literature of 
classical production systems this problem is usually addressed as the “conflict 
resolution” problem (see for example Russell and Norvig, 1995) and it is usually solved 
by employing simple algorithms (e.g., selection of the rule having the highest priority, 
selection of the most specific rule). If many sets of rules are available at the same time a 
two-step procedure as the one described for multiple set of algebraic functions can be 
considered.  
 

4.1.3. Expressive mapping monitoring 
 
A further layer of processing can be envisaged influencing both direct and indirect 
mapping. Such layer concerns the evaluation of the effectiveness of the currently 
employed mapping strategies whether they are direct or indirect. Effectiveness can be 
considered under several aspects: for artistic performances it can be related to the 
audience’s engagement; in a museum scenario it could be associated to visitors’ fruition 
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of the museum exhibit. Such a measure could be the result of a direct evaluation by 
spectators, in case it is not possible to calculate it automatically4.    
Once a measure of effectiveness is available, it can be used to make decisions aiming at 
improving the overall performances of the virtual or mixed subject by modifying and 
adapting its behaviour in order to maximize effectiveness.  
Decisions made at the expressive mapping monitoring layer can influence both 
expressive direct and indirect mappings. Expressive direct mapping is affected through 
mechanisms similar to the ones described above, i.e., collections of functions or rules can 
be replaced by more suitable sets. But expressive mapping monitoring can operate also 
on indirect mapping. Suppose for example that many decision-making algorithms are 
available in the indirect mapping component. Many possibilities for interpreting and 
decoding information coming from analysis could also be available. Measures of 
effectiveness could thus be used to select among the available decision-making 
algorithms which one is most suitable given the measured effectiveness and the current 
situation (e.g., the part of the performance which is actually taking place). It could also 
be possible to dynamically adapt the way in which mapping processes the incoming 
inputs or sends information to the synthesis component.  
 

4.1.4. The expressive mapping input and output subcomponents 
 
Before talking about a possible implementation of indirect mapping, let’s conclude the 
description of the structure of the expressive mapping component by shortly describing 
the mapping input and output subcomponents.  
The main role of the input component is to encode the information coming from analysis 
in a way that can be processed by the mapping components. For example, if direct 
mapping is implemented as a set of condition-action rules, the input component has to 
encode the information coming for analysis according to the syntax of the condition part 
of the rules. Another task the mapping input component is responsible for is dispatching 
information coming from the four layers of the analysis framework to the appropriate 
subcomponents of the mapping component. For example, it is more likely that the output 
of an emotion classifier at Layer 4 will be sent to the indirect mapping sub-component, 
rather than to the direct mapping one. 
Conversely, the main task of the output sub-component is to translate the output of the 
mapping components as required by the algorithms implemented in the synthesis Layers. 
For example the action part of a condition-action rule could needs to be translated in a 
vector of control parameters for the synthesis algorithms. The output subcomponent also 
has to dispatch information to the four layers of the synthesis framework. For example, it 
can send to the physical layer the name of a MIDI score that has to be played, and to the 
conceptual layer the emotional intention according to which expressive deviations on 
performance parameters have to be calculated.       

                                                 
4 In fact the expressive mapping monitoring layer should be though as a conceptual layer. At the moment 
no commitment is done about the possibility to partially or fully implement it. Anyway, it should be 
noticed that experiments like the ones sketched in Chapter 3 and further discussed in the following are 
investigating the possibility to measure spectator’s engagement. 
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4.2.  The Affective Decision Maker (ADM) 
 
Direct mapping can be implemented by means of standard mathematical functions or 
classical production systems. Here attention focuses on a pilot implementation of an 
expressive indirect mapping component employing decision-making algorithms to make 
decisions among a collection of possible expressive gestures to be generated as output by 
a virtual or mixed subject. 
The Affective Decision Maker (ADM) is a deterministic multiattribute decision maker 
that can be influenced in its processing by the expressive information the analysis layers 
extract from expressive gestures5. The ADM operates on a set of alternatives among 
which a choice has to be done. Each alternative is characterized by the values of a set of 
attributes. Each attribute represents a criterion with respect to which the decision is 
made. The table made by the values of the attributes for each alternative is called 
decision table and is the main internal data structure of the ADM.  
Consider, for example, that you have to buy a new PC: the overall cost, the CPU clock 
frequency, the amount of RAM etc. are relevant aspects (attributes) that you have to 
consider in order to make your choice. The final choice will be made among several PCs 
(alternatives), each one characterized by a particular given value for each attribute. 
In the case of the ADM both the attributes and the decision-making mechanisms are (or 
can be) related to expressive content. 
The ADM selects among alternatives taking into account two kinds of information: (i) 
information about the environment in which it operates (Environmental Information) and 
(ii) information about the expressive content coming from the analysis layers (Expressive 
Information).     
Consider, for example, a museum application. A virtual subject observes visitors’ 
behaviour and tries to catch their attention for improving fruition and possibly making 
more interesting their visit. In this context, the positions of visitors inside a room or the 
number of visitors can be considered as Environmental Information; the detected posture 
of a visitor, some properties of his/her movement communicating an expressive content 
(e.g., interest) can be considered as Expressive Information. In some other contexts the 
distinction is not so clear. In the case of a dance performance in a theatre, for example, 
the position of a dancer on the stage could be considered Environmental Information, but 
the same position carries also an expressive content (e.g., in relationship with the 
scenery) so that it could be considered Expressive Information as well. In fact, what 
should be considered Expressive and what should be considered Environmental 
Information strongly depends on the specific application: the decision is usually up to the 
designer of the application.   
The ADM returns as output the alternative it selected on the basis of the incoming 
Expressive and Environmental Information, of the current decision making algorithm and 
of the algorithms that have been used to update its internal data structures.  
Figure 4.2 shows the internal structure of the ADM. It is divided up into two main 
components: an information-processing module and a decision-making module. The 

                                                 
5 The Affective Decision Maker described in this section is inspired to previous studies investigating the 
rational component of the Emotional Agent architecture. In particular, a component similar to the ADM 
has been there used for selecting among several possible goals of the agent (Camurri and Volpe, 1999). 



Chapter 4 –  Mapping of expressive gestures 
 

 
- 64 - 

 

information-processing module manages the internal data structures: a decision table and 
an array of decision parameters. The decision maker contains the decision-making 
algorithms and is responsible to make the decision. 

 
Figure 4.2: the internal structure of the ADM 

 
During the initialisation phase, an initial decision table is loaded in the internal decision 
table data structure. Such data structure is a matrix containing a row for each alternative 
and a column for each attribute. The values of the attributes in the decision table are 
normalized to 1. An array of decision parameters is also maintained: it contains a weight 
for each attribute and a parameter α used when the Hurwicz and Hurwicz Modified 
decision-making algorithms are selected (see below the description of the five decision-
making algorithms the ADM implements at the moment). The weights are in the range 
[0, 1] and their sum must be 1. The parameter α is also in the range [0, 1]. In the 
initialisation phase α is set to 0.5 and the weights are set to 1/(Number of Attributes).  
At run-time, the decision table and the decision parameters are updated according to the 
input information. Then, (if needed) the currently selected decision-making algorithm 
chooses an alternative according to the actual decision table and decision parameters. The 
last decision can be taken into account to avoid choosing it again. 
Both the update and decision-making algorithms can be dynamically changed at run-
time, for example depending on the expressive mapping monitoring component. 
 

4.2.1. ADM’s decision-making algorithm  
 
Before looking in more details at the mechanisms the ADM uses to deal with expressive 
content, the five decision-making algorithms the ADM currently implements are here 
shortly reviewed. Four of them are classical multiattribute decision-making algorithms; 
the fifth is a modification of the classical Hurwicz algorithm6.  

                                                 
6 See (Camurri and Volpe, 1999) and (Volpe, 1999) for a more detailed description. 
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Let consider xij to be the value of the jth attribute for the ith alternative. Let be m the 
number of alternatives and n the number of attributes. The decision table will be a matrix 
having the following structure: 
 

x11 x12 … x1j … x1n 
x21 x22 … x2j … x2n 
… … … … … … 
xi1 xi2 … xij … xin 
… … … … … … 
xm1 xm2 … xmj … xmn 

 
 
Let be w a vector of weights. w contains a weight for each attribute, therefore its 
dimension is n. The weights must sum to 1 (that is, ∑

j
jw = 1) 

Note that the algorithms can select not just one alternative: it can happen that some 
alternatives result equivalent for a given algorithm. The algorithms, therefore, return a set 
of alternatives. A choice has to be made among equivalent alternatives in this set. In the 
current implementation, just the first alternative in the set (according to the order in 
which the alternatives are stored in the decision table) is returned as output by the ADM. 
The five decision-making algorithms are the following: 
  
(i) MAXIMAX. The set *A  of the indexes of the selected equivalent alternatives is: 

} ) max( max arg: {*
ji

ijxiiA == .  

The algorithm calculates the maximum value for each row (that is, each alternative 
has a “score” equal to the value of the attribute having the maximum value with 
respect to the other attributes). Then the alternative with the maximum score is 
selected. If two or more alternatives have the same maximum score they are all part 
of the set of selected equivalent alternatives. 

(ii)  MAXIMIN. The set *A  of the indexes of the selected equivalent alternatives is: 
} ) min( max arg: {*

ji
ijxiiA ==  

The algorithm calculates the minimum value for each row (that is, each alternative 
has a “score” equal to the value of the attribute having the minimum value with 
respect to the other attributes). Then the alternative with the maximum score is 
selected. If two or more alternatives have the same maximum score they are all part 
of the set of selected equivalent alternatives.   

(iii)  HURWICZ. The set *A  of the indexes of the selected equivalent alternatives is: 
]} max)1(   min[ max arg: {*

jji
ijij xxiiA αα −+==  

The algorithm calculates the maximum and minimum values for each row. A 
“score” consisting in a trade-off between the value of the attribute having the 
maximum value with respect to the other attributes and the value of the attribute 
having the minimum value represents each alternative. The trade-off is obtained 
through the parameterα . Then the alternative with the maximum score is selected. 
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If two or more alternatives have the same maximum score they are all part of the 
set of selected equivalent alternatives.   

(iv) HURWICZ MODIFIED. The set *A  of the indexes of the selected equivalent 
alternatives is: 

}] min)1(   max[maxarg: {*
jj

ijij
i

zziiA αα −+== , where ijz = jw ijx . 

The algorithm is very similar to the previous classical Hurwicz algorithm. The only 
difference is that the weights of the attributes are also taken into account. So, in this 
case the trade-off is made not just on the values of the attributes, but also on the 
weighted values of the attributes (and the weights can depend on the expressive 
content). 

(v) SAW (Simple Additive Weighting). The set *A  of the indexes of the selected 
equivalent alternatives is: 









== ∑ ij
j

j
i

xwiiA maxarg:*  

In this case, the “score” given to each alternative is a weighted sum of the values of 
the attributes, where the weights are the weights associated to each attribute. Then 
the alternative with the maximum score is selected. If two or more alternatives 
have the same maximum score they are all part of the set of selected equivalent 
alternatives.   

 
It should be noticed that depending on the values contained inside the decision table and 
the weights assigned to each attribute, different decision-making algorithms can obtain 
different choices. Notice also that: 
- Peaks in the values of an attribute can lead the MAXIMAX algorithm to choose the 

alternative with a high value for an attribute, even if the values for the other 
attributes are quite low.  

- MAXIMIN often selects an alternative having values around the mean values. 
- MAXIMAX, MAXIMIN and classical Hurwicz algorithms do not use any 

information about the weight assigned to the attributes. When one of these 
algorithms is selected the weights and the way in which the weights are updated do 
not influence the decision-making process. 

- The MAXIMAX strategy could be seen as an “optimistic” strategy: it takes the best 
among the best values, while the MAXIMIN strategy could be considered as a 
“pessimistic” or “prudent” strategy since it takes the best among the worst values. 
In this perspective, if the Hurwicz or Modified Hurwicz algorithms are used, the 
parameter α can be seen as a measure of the trade-off between the optimistic and 
pessimistic point of view.    

 

4.2.2. Affective Decision Maker: some issues 
 
After describing the structure of the ADM and the algorithms it employs, some further 
relevant issues need to be discussed and clarified: which are the mechanisms through 
which expressive content influence decision making? How can the ADM be adapted to 
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dynamically changing environments (this is an important aspect for a virtual or mixed 
subject that should be able to adapt its behaviour)? How should the ADM decide that it is 
time to make another decision since the previous one is not suitable anymore? How can a 
suitable set of attributes be selected? This section tries to answer to some of these 
questions. 
    
1. Why affective? As it was described up to this point, the ADM could seem to be a 
common deterministic, multiattribute decision maker: in fact, it can be used in such a 
way, if needed. Anyway, the ADM was designed principally to support decision making 
in contexts where expressive/emotional information has a particular importance and 
directly affects the decision making process. In the ADM architecture, expressive content 
can influence the decision making process in three different stages: 
(i) When the decision table is updated: the algorithm updating the values in the 

decision table takes into account the Expressive Information input. In this way, the 
values of the attributes can directly reflect the expressive/emotional content. Note 
that the attributes themselves can be defined as related to expressiveness: e.g., the 
expressive importance of an action can be an attribute in the decision process 
leading to the selection of an action (while other attributes can be related to the 
actual utility of an action). 

(ii)  When the decision parameters are updated: the algorithm updating the decision 
parameters also takes into account the Expressive Information input. In this way, 
attributes can be differently weighted according to expressive content. For 
example, if an attribute represents a measure of how much a certain action is 
supposed to catch the attention of a user, the weight of this attribute should be 
increased when the information in input shows a low degree of attention from the 
user. 

(iii)  Directly in the decision-making phase: for example, the Hurwicz and Hurwicz 
Modified decision-making algorithms contain the parameter α that can be updated 
accordingly to the Expressive Information input. In particular, as already discussed, 
the parameter α can be seen as a measure of the trade-off between “optimistic” and 
“pessimistic” decision-making strategies.    

 
2.  Dynamic update of algorithms and decisional contexts. The update and decision-
making algorithms can be dynamically changed at run-time. This feature provides a 
further mechanism for expressive content to influence the decision making process and, 
at the same time, allows the ADM to adapt its behaviour to changing decision making 
contexts. In fact, changing the update algorithm means changing the way in which the 
expressive (and environmental) information influences the updating of the decision table 
and decision parameters (according to the first mechanism described above). Changing 
the current decision making algorithm means (i) changing the way in which the internal 
data structure are considered in order to make a decision (ii) changing the way in which 
expressive information influences the decisional process (e.g., if the current Hurwicz 
Modified Algorithm is replaced by the MAXIMAX Algorithm two of the three 
“affective” mechanisms described above, attribute weighting and α, are not working 
anymore). Basically, the need of changing the update and decision-making algorithms 
emerges from the need of adapting the behaviour of the ADM to dynamically changing 
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decisional contexts. For example, in a (quite long) dance performance several update 
algorithms could be used in the different phases of the performance in order to modify 
and adapt the mapping between Expressive Information and Decision Table/Decision 
Parameters so that the mapping can be better suited to the content (and in particular 
expressive content) of each phase of the performance. The decision about when to 
change the current algorithms and which ones should be used is up to other mapping 
modules (e.g., a mapping monitoring component) or to a human supervisor. The 
information used by the mapping monitoring component or by the human supervisor in 
order to make such a decision also has an important role: for example, if a measure of 
effectiveness could be defined measuring how much the previous decisions were good, 
the algorithms could be replaced when such a measure goes under a given threshold.  
The same expressive information could be used in more subtle ways too: changing the 
update algorithms on the basis of some expressive information means that expressive 
information is used to state how expressiveness itself should influence the decision 
making process. For example, suppose that an analysis module were able to detect 
happiness: depending on this information the current algorithms could be replaced by 
some new more “optimistic” ones, that is, not only it is possible to change some values in 
the tables, or some weights, or the α parameter depending on the recognized degree of 
happiness, as described in the previous section, but it is also possible to decide to 
completely change even the algorithms that are employed to calculate such values. 
 
3. Temporal scope of decisions. In the previous sections, when describing the behaviour 
of the ADM at run-time, it was said that the ADM makes a new decision “if needed”. 
How is it decided if a new decision is needed? In the current implementation the ADM 
just exports a command and makes a new decision each time such a command is given. 
Sending this command is up to another component, e.g., a mapping monitoring 
component (that could be implemented by another ADM) or a human supervisor. 
 
4. Selecting a suitable set of attributes. Multiattribute decision makers are commonly 
used in order to make financial decisions (e.g., in economy). In such contexts, it is 
usually well known how to characterize an alternative, i.e., the sets of attributes are quite 
well defined for any given problem and methods are available to obtain the values for 
each attribute. For example, consider you have to buy a new car and you can select 
among several models. Each model will represent an alternative and each model 
(alternative) will be characterized by the values of a set of features (attributes). It’s quite 
well known what are the relevant features for a car (e.g., average fuel consumption, 
maximum speed, price etc.) and it’s quite easy to obtain such data. Thus, once filled the 
decision table, the decision maker is able to make its choice. But, when we move on 
contexts where expressiveness has an important role, it could be difficult to find a set of 
attributes characterizing an alternative and then measure their values. Suppose, for 
example, you have to select an audio or video fragment among a collection of available 
fragments. You should be able (i) to characterize each fragment with some numerical 
values related to expressiveness (ii) to assign such values in order to fill the decision 
table. In practice, you have to answer a question similar to this one: “Given the inputs I 
have (for example, measured features of the movement of a dancer, a recognized basic 
emotion in a music performance...), why should I select this video fragment instead of 
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another one?” Often this is not an easy task. Some good attributes could measure how 
much an alternative is suitable with respect to some measured features (for example, how 
much playing a given audio or video fragment is suitable with respect to the rate of 
occupation by a dancer of a certain region on the stage): in this case, the (affective) 
decision maker would select the alternative (e.g., the audio or video fragment) that seems 
to be the most suitable given the inputs.  
 

4.3.  Expressive autonomy7 
 
As already sketched in Chapter 2, expressive autonomy plays a role of paramount 
importance in designing interactive systems for artistic applications. It is related to the 
role of technology in the performance and to the relationship between automatic 
decisions and decisions made by the director/creator of the artistic performance.  
In the framework of MIEEs in which virtual and mixed subjects interact with real 
subjects the problem of the expressive autonomy can be introduced by proposing a 
question: to which extent can a virtual or mixed subject make autonomous decisions? 
That is, does the virtual or mixed subject have to follow the instructions given by the 
director, the choreographer, the composer, (in general the creator of a performance or of 
an installation) or is it allowed some degree of freedom in its behaviour? 
This question was firstly asked in (Camurri, Coletta, Ricchetti, Volpe, 2000) where 
expressive autonomy was defined by taking as example a dialog between a dancer and a 
robot. The issue was raised by the design and implementation of a robot-dancer 
interaction (in the context of the performance “L’Ala dei Sensi”, held in Fearrara, Italy, 
in November 1999) in which the robot was an interpreter (that is, conveying some 
expressive content) of a predefined “score of movements”.  
In fact, many hours in rehearsals were spent to obtain the desired behaviour and once 
obtained, the robot was not allowed anymore to deviate too much from the expected 
behaviour. A similar situation can be found in most music and theatre performances. The 
performer is often asked to convey the expressive content that the director, the composer, 
the choreographer intends (or intended) to communicate.  
In general, a virtual or mixed subject in a MIEE can have different degrees of expressive 
autonomy. According to the definition given in the cited paper, the expressive autonomy 
of a virtual or mixed subject in a MIIEE is defined as the amount of degrees of freedom 
that a director, a choreographer, a composer (or in general the designer of a MIEE or the 
author of an application involving communication of expressive content) leaves to the 
subject in order to make decisions about the most suitable expressive content to convey 
in a given moment and about the way to convey it (i.e., which expressive gestures have 
to be generated to convey it).  
It should be noticed that expressive autonomy is therefore somewhat different with 
respect to autonomy as intended in Artificial Intelligence and Robotics (see for example 
Russell and Norvig, 1995): in fact, expressive autonomy does not concern the amount of 

                                                 
7 The concept of expressive autonomy has been introduced and discussed in (Camurri, Coletta, Ricchetti, 
and Volpe, 2000) from which this Section partially derives. 
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built-in knowledge the subject (agent) contains nor its capabilities to make decisions on 
its own on the basis of the feedback coming from its physical sensors. 
It is immediately evident from the definition that expressive autonomy is strictly related 
to mapping, being mapping the process devoted to choosing the expressive content that 
has to be conveyed and the expressive gestures suited to convey it. In fact, a virtual or 
mixed subject having no expressive autonomy would not need any mapping component: 
mapping strategies would be selected in advance by the author of the performance and 
the only task of the subject would be to execute what the author already decided. 
Let’s consider again the example of the robot interacting with a dancer: if during a 
performance the robotic subject is asked to perform in an expressive way a sequence of 
movements that the director predisposed and that has been repeatedly tuned during a 
number of rehearsals, then the robot is only minimally expressively autonomous or it is 
not expressively autonomous at all. In this case, it is just needed to pre-program the robot 
with the sequence of movements that have to be performed and with the way in which 
they have to be performed (and that was decided and tested by the director): no 
components for expressive direct or indirect mapping are needed, except for possible 
recovering from unexpected situations. 
Of course, this is not always the case: if, as it happens for performers, some degrees of 
freedom are still present and the subject (e.g., the robot) is flexible, versatile and rational 
enough to intervene when necessary to add nuances to its behaviour coherently with the 
performance, then it could be said that the subject is expressively semiautonomous. That 
is, it plays the role the author or the director assigned to it, but it can still make decisions 
for example about the way of conveying expressive content. For example, an 
expressively semiautonomous robotic subject could choose which expressive gestures 
(e.g., which style of movement) are most suitable to generate in order to appear happy, in 
a part of a performance during which the director wants the robot to appear happy. A 
semiautonomous subject has therefore to be provided with mapping components, 
although they would be allowed to directly control only certain aspects of the subject’s 
behaviour, while other aspects would be pre-programmed as in the previous case. 
It is also possible (and this is the most interesting situation) to design MIEEs in which 
automatic subjects have a high degree of expressive autonomy: it is for example the case 
of the installation at the permanent science exhibit for children “La Città dei Bambini”, 
developed in Genova, Italy, in 1997 (see Camurri and Coglio 1998; Camurri and 
Ferrentino, 1999) where a robot played the role of guide for visitors or was a visitor 
itself. More recently (opening in November 2001), at the permanent science exhibit “La 
Città della Scienza” in Napoli, Italy, a virtual character was developed inhabiting five 
different computer stations. A human supervisor (e.g., a mime) controls one of the 
stations and directs movements and expressions of the virtual character by means of 
sensor systems (e.g., a data glove). The supervisor also gives his/her voice to the virtual 
character. The remaining stations (four or all the five stations if the supervisor is not 
present) are automatically managed, that is the virtual character is endowed with suitable 
mapping strategies enabling him to autonomously interact with visitors. For making 
decisions about its behaviour, the virtual character uses both inputs coming from the 
museum environment and captured by microphones and videocameras and information 
about possible narrative structures in its dialog with visitors. 
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In such a case, although the subject could have to follow a narrative thread, however it 
can choose what expressive content to convey in order to increase the interest of its 
audience: the author of the application builds a narrative structure, and the subject is 
assigned with the task to instantiate/interpret it in a suitable way given its current 
audience and context. The actual degree of expressive autonomy, however, can depend 
on the structure and dynamics of the narration and can vary over the time during the visit. 
For example, some schema could be provided (e.g., derived from sociological studies) 
within which and on the basis of which narration takes place. The subject can therefore 
be allowed of a high degree of expressive autonomy within such schemas8. 
Complete expressive autonomy implies that at a given moment the subject is completely 
free to choose the expressive content it wants to convey as well as the way to convey it. 
Complete expressive autonomy therefore implies the existence of a full mapping 
component implementing all the mechanisms previously described. 
With respect to expressive autonomy subjects can be placed along a continuum, having at 
one of its extreme points the completely controlled subject, on the other the completely 
expressive autonomous subject, and in between all the degrees of semi-autonomy. The 
continuum is represented in Figure 4.3. 
 
 
 
 
 
 
 
 
 

Figure 4.3: the expressive autonomy continuum 
 
Notice that the expressive autonomy continuum is very similar to the continuum sketched 
for Active EMEs in Chapter 2. In fact, in the framework of MIEEs, EMEs are regarded 
as subjects at a higher-level metaspace: therefore they have a given degree of expressive 
autonomy. Thus a subject representing a completely passive EME in the higher-level 
metaspace will not have any expressive autonomy, while a subject representing a highly 
dynamic active environment will have a high degree of expressive autonomy. 
Notice also that the continuum should be intended in a dynamic way, i.e., a subject can 
dynamically change its current degree of expressive autonomy. For example a robot can 
be completely controlled in a certain part of a performance and then “come to life” in 
another part by acquiring a high degree of expressive autonomy. Of course, this implies 
that the robot should be endowed with the needed expressive mapping components and 
that it should be possible to dynamically enable and disable mapping components during 
the performance. 

                                                 
8 Notice that schemas can help in matching the needs of the author with the needs and the capabilities of 
technology: in fact, if from the one hand they constrain the expressive autonomy of the created subjects, on 
the other hand they also constrain the expressive autonomy of the author who should organize the 
performance or the installation around them, once selected.  

Completely 
controlled 
subjects 

Completely 
expressive 
autonomous 
subjects 

Semiautonomous 
subjects 



Chapter 4 –  Mapping of expressive gestures 
 

 
- 72 - 

 

The required degree of expressive autonomy (i.e., the position of a subject in the 
expressive autonomy continuum) is crucial also from the point of view of 
implementation. In fact, a high degree of expressive autonomy requires the subject to 
have more sophisticated capabilities in order to make its expressive choices. Thus, while 
the design and the implementation of a subject with a limited degree of expressive 
autonomy may result quite simple (e.g., only expressive direct mapping might be 
needed), a high expressively autonomous subject might need to be equipped with 
different kinds of expressive mapping components (both direct and indirect mappings 
and mapping monitoring). 
As a final remark, I have to notice that the framework depicted so far is mostly a 
conceptual framework. A big challenge is now to implement it fully or partially, i.e., to 
design and implement tools being high-level and flexible enough to allow authors to 
build artistic performances (or other applications, like museum applications) based on 
MIEEs inhabited by expressive subjects with different degrees of expressive autonomy, 
without they have to worry about the technological issues and the underlying complexity. 
The EyesWeb open software platform developed over the years at the DIST – InfoMus 
Lab (see Appendix A for a more detailed description) is a first step in this direction, but 
more high-level capabilities (e.g., the definition of a high-level language describing 
MIEEs and their content) would be needed and should be developed. 
 



 
 
 
 
 
 
 
 
 
 
 
 

PART 2 
 

ANLYSIS OF EXPRESSIVE GESTURE  
IN HUMAN FULL-BODY MOVEMENT



5.  Expressive gesture in human full-body movement 
 
 
 
After introducing MIEEs, their components, and expressive gesture as a main non-verbal 
communication channel, the focus now moves on a specific aspect: analysis of 
expressive gesture in human full-body movement. That is, human full-body movement is 
investigated as an example of conveyor of expressive content in interaction within a 
MIEE. A collection of techniques for analysis of expressive gesture in human full-body 
movement at different layers is discussed in the framework of an experiment carried out 
at the DIST InfoMus Lab in collaboration with the Department of Psychology of the 
University of Uppsala (Sweden) in the context of the EU-IST MEGA project. 
From a scientific point of view the experiment tries to give some first answers to 
questions like the following ones: which are the features in expressive gesture that are 
mainly responsible of conveying expressive content? How can they be measured? How is 
the temporal dynamics of such features related to the communication of different 
expressive contents? Is it possible to build a classifier able to automatically classify 
expressive gestures on the basis of the expressive content they convey? Are the outputs 
of the automatic classifier consistent with spectators’ perception of expressive gestures?  
From a technical point of view the experiment is intended to shed light on possible 
design and implementation of a virtual or mixed subject capable to observe expressive 
gestures in full-body movement of people interacting with it and to decode the conveyed 
expressive content associated with them. This objective implies the implementation of 
the conceptual framework illustrated in Chapter 3 (adapted to this specific application) 
by developing and applying the techniques operating at each level on data coming from 
sensors and further processed by the subject. 
In this perspective this Chapter is devoted to present the theoretical framework with 
respect to which motion analysis is carried out, with particular reference to the sources 
driving the investigation: mainly, theories by psychologists (e.g., Wallbott, Argyle, 
Boone and Cunningham) and choreographers and researchers on human movement (e.g., 
Laban). Possible different perspectives and approaches to human full-body motion 
analysis are discussed. The experiment in its initial hypotheses and its methodology is 
also described. 
The following two Chapters will go deeper in the discussion and will deal with two 
different topics: the employed techniques for extracting expressive cues from motion at 
different layers in Chapter 6, the classification problem and an attempt to deal with it in 
Chapter 7. 
 
 

5.1. Background and sources 
 
The analysis of expressive gesture in human-full body movement described in this 
dissertation is inspired to several sources ranging from approaches grown in the 
traditional fields of science (e.g., psychology) and engineering (e.g., biomechanics) to 
approaches derived from theories from art and humanities (e.g., choreography, music 
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composition). In a sense, this work can be considered as an attempt to bridge the gap 
between these two fields toward the common goal of understanding expressive gestures 
and exploiting their communicative power under a scientific perspective (i.e., a deeper 
understanding of non-verbal communication channels), an engineering perspective (i.e., 
building enhanced and effective interactive systems for several different application 
domains), and an artistic perspective (i.e., exploiting the means technology provides in 
order to enrich language and to pioneer novel art forms). 
Main sources on which the approach here adopted finds its foundations come from:  
(i) Research and theories on KANSEI and emotion arousal/appraisal (e.g., the 

Hashimoto’s theory on KANSEI Information Processing sketched in Chapter 1); 
(ii)  Biomechanics, techniques for motion capture and computer vision; 
(iii)  Research and theories from art and humanities on communication of 

expressiveness in dance (e.g., Rudolf Laban’s Theory of Effort, Laban 1947) and 
music (e.g., Pierre Schaeffer’s Sound Morphology, Shaeffer 1977); 

(iv) Research and theories from psychology on non-verbal communication of 
expressiveness (Wallbot 1980, Argyle 1980, Boone and Cunningham, 1998); 

 
Since KANSEI Information Processing has already been described in Chapter 1 and 
biomechanics and techniques for motion capture and computer vision mainly deal with 
technical aspects of motion detection and processing described in Chapter 6, here the 
focus will be on the two last sources: art and humanities and psychology. 
 

5.1.1. Theories from art and humanities 
 
A classical approach frequently employed in machine learning consists in creating an 
explicit description of a studied phenomenon in term of a collection of parameters. The 
values of such parameters forming a vector of parameters for every available sample in 
the training set are then used to perform analysis (i.e., recognition, classification, 
regression). For example, starting from a human movement signal, this approach builds a 
description in terms of expressive cues (such as fluentness, directness, energy, etc.), 
shapes, and phrasing. While from the one hand this approach is commonly used in 
machine learning, on the other hand it finds some basis also in theories from art and 
humanities. As an analogy, in music this would be equivalent to recreate a “score” 
starting from a sound signal, or, better, to build a representation of the signal in terms of 
a vocabulary similar to Pierre Schaeffer’s Morphology (Schaeffer, 1977).  
As already sketched in Chapter 2, Schaeffer’s Morphology is an attempt to describe and 
study “concrete music” where music objects extend the traditional musical instruments 
with sounds coming from the real life, produced by concrete objects. In this direction, 
Schaeffer’s Morphology is an approach supporting musicological analysis of such music. 
Morphological qualities based on perceptual features enable segmentation of continuous 
streams of a (concrete) sound signal: segmentation and identification of music objects are 
based on perceptual cues such as “grain”, “texture”, “allure” etc. Analogies can be 
investigated with analysis in human movement where similar problems can be envisaged 
(e.g., segmentation of a continuous stream of movement data, identification of motion 
primitives, extraction of a collection of perceptual cues). From such a comparative 
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analysis it may be possible to individuate a collection of features having a similar role in 
both music and movement domains1.  
Some research works showing analogies between music (e.g., level envelopes of tones) 
and movement (e.g., force patterns in walking) can be found in the literature (Sundberg, 
Friberg, Frydén, 1994; Friberg and Sundberg, 1999; Friberg, Sundberg, Frydén, 2000).  
Rudolf Laban’s Theory of Effort (Laban and Lawrence 1947, Laban 1963) provides a 
similar “cues language” in the domain of human movement (e.g., in dance). The Theory 
of Effort is one of the main inputs for the analysis carried out in this work and it is 
therefore worth to be described in some more details. 
In the Theory of Effort, Laban points out the dynamic nature of movement and the 
relationship among movement, space and time. Laban’s approach is an attempt to 
describe, in a formalized way, the main features of human movement without focusing 
on a particular kind of movement or dance expression. In fact, it should be noticed that 
while being a choreographer, Laban did not focused only on dance, but rather he 
envisaged in his theory the whole complexity of human movement including dance 
expression but also extended to everyday movements like the ones performed by workers 
in their usual activities.    
The basic concept of Laban’s theory is Effort considered as a property of movement.  
From an engineering point of view it can be considered as a vector of parameters 
identifying the qualities of a movement performance. It has to be noticed that Theory of 
Effort describes the quality of movement. That is, it is not concerned with, for example, 
degrees of rotation of a certain joint or the moment that has to be applied, rather it 
considers movement as a communication media and tries to extract parameters related to 
its expressive power.  
The effort vector can be regarded as having four components generating a four-
dimensional  “effort space” whose axes are Space, Time, Weight, and Flow2. During a 
movement performance such effort vector describing the motion qualities moves in the 
effort space. Laban investigates the possible paths followed by the vector and the 
expressive intentions that may be associated with them3.  
Each effort component is measured on a bipolar scale, the extreme values of which 
represent opposite qualities along each axis. 
Space refers to the actual direction of a motion stroke and to the path followed by 
subsequent strokes (a sequence of directions). If the movement follows these directions 
smoothly the space component in the effort space is considered to be “flexible”, while if 
it follows them along a straight trajectory it will be marked as “direct”. 
Time is also considered with respect to two different aspects: an action can be “sudden” 
or “sustained”, which allows the binary description of the time component of the effort 

                                                 
1 Of course, it is often not straightforward to find a direct connection between features in music and 
features in movement. Anyway, concepts that are similar in the two fields can be worked out in order to 
individuate a collection of features having similar roles in the two domains.   
2 In his original theory Laban considered a three-dimensional space defined by the Space, Time, and 
Weight components. The fourth component, Flow, was intended as a kind of modifier with respect to the 
three basic components.   
3 Notice that expressive content is more likely to be encoded in the trajectory of the effort vector in the 
effort space, rather than in its absolute position. That is, expressive gestures are characterized by the effort 
dynamics (i.e., variations) along time, rather than by the values of the effort components at a given time.    



Chapter 5 –  Expressive Gesture in human full-body movement 
 

 
- 77 - 

 

space. Moreover, in a sequence of movements, each of them has a given duration in time: 
the ratio of the durations of subsequent movements gives the time-rhythm, as in a music 
score and performance. 
Weight is a measure of how much strength and weight is exerted in a movement. For 
example, in pushing away a heavy object it is necessary to use a strong weight, while in 
handling a delicate and light object, the weight component has to be light. 
Flow is a measure of how bound or free a movement, or a sequence of movements, 
appears. Laban describes it in these terms: “In an action capable of being stopped and 
held without difficulty at any moment during the movement, the flow is bound. In an 
action in which it is difficult to stop the movement suddenly, the flow is free or fluent” 
(Laban, 1963, p. 56). 
The two extremes of each bipolar scale along each axis can be interpreted as “indulging” 
with respect to a given dimension (e.g., light and flexible movements indulge in weight 
and space) or “fighting” against it (e.g., quick and bound movements fight against time 
and flow). A graphical notation is also provided for describing movements with different 
effort qualities. Figure 5.1 summarizes in a table the eight extreme qualities along each 
effort axis and shows the graphical notation Laban developed to describe effort.  
 

Axes Indulging  
Effort 

Fighting  
Effort 

Space Flexible Direct  

Time Sustained Quick 

Weight Light Strong 

Flow Free Bound 

Light 

Strong 

Free Bound 

Flexible 

Direct 

Sustained Quick 

Figure 5.1: efforts table and graphical notation 
 
Laban’s basic theory considers mainly the first three components of effort (Space, Time, 
and Weight) to develop a description of human movement. By considering the three-
dimensional space built on these three axes and the opposite qualities for each effort 
component, it is possible to identify eight combinations of the Space, Time, and Weight 
components (addressed as basic efforts), corresponding to states that the movement can 
assume in its development. These eight combinations can be considered as the vertexes 
of a cube in the effort space whose axes are Space, Time, and Weight. Such a cube is 
represented in Figure 5.2. The eight basic efforts and their qualities are summarized in 
Table 5.1. 
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Figure 5.2: the effort cube (Laban, 1947). A basic effort is associated to each vertex. The letter on each 
edge indicates the effort component that changes when moving from one vertex to an adjacent one (S = 
Space, T = Time, W = Weight). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 5.1: the eight basic effort and their qualities as described in (Laban, 1963) 

 
 
In a recent study (Zhao, 2001), four neural networks have been trained to recognize the 
two extreme qualities for each effort component. The training set consisted of a 
collection of arm movements whose features have been extracted by using both motion 
capture systems and videocamera based systems. 

Basic Effort Space Time Weight 

Pressing Direct Sustained  Strong 

Flicking Flexible Sudden Light 

Punching Direct Sudden Strong 

Floating Flexible Sustained Light 

Wringing Flexible Sustained Strong 

Dabbing Direct Sudden Light 

Slashing Flexible Sudden Strong 

Gliding Direct Sustained Light 

Dabbing 

Floating 

Flicking 

Gliding 

Pressing 
Wringing 

Slashing 
Punching S 

S 

S 

S 

T T 

T 

T 

W 

W W 

W 
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5.1.2. Research in psychology 
 
Research on human movement as a mean for human-human communication has been 
widely developed in psychology. Several researchers (see for example Argyle, 1980) 
stressed the importance of full-body gestures (body postures and movements) in non-
verbal human-human communication.  
A main research field concerns visual perception of human movement and its qualities. 
For example, in his well-known investigation on point light displays Johansson (1973) 
showed that human observers are able to still get a vivid impression of human movement 
even if only points of light placed on body joints are displayed. Beside the importance of 
the result (i.e., lot of information about the moving person can be subtracted away yet 
maintaining a vivid impression of the performed movement), this also allows to produce 
and manipulate motion stimuli (as trajectories of body joints) in a relatively easy way.   
Following the path opened by Johansson, other researchers devoted their work to visual 
perception of movement focusing on specific qualities (e.g., genre and identity of the 
moving person) or on specific actions (e.g., walking). Developmental studies have also 
been carried out. A short review of the research work on visual perception of human 
movement can be found for example in (Pollick, 2003). 
A field of particular interest for the work described in this dissertation concerns the 
relationships between movement and expressiveness with respect to two main aspects: (i) 
which are the movement features that are mainly responsible to convey expressive 
content (what I call “expressive cues”) and (ii) how these expressive cues relate to a 
particular expressive content, or, in other words, how an expressive message is encoded 
in the dynamics of these cues. In the tradition of the work by Johansson, it has been 
shown that it is possible for human observers to perceive emotions in dance from point 
light displays (Walk and Homan, 1984; Dittrich et al., 1996). Pollick (2001) analysed 
recognition of emotion in everyday movements (e.g., drinking, knocking) and found 
significant correlations between motion kinematics (in particular speed) and the 
activation axis in the two-dimensional space having as axes activation and valence as 
described by Russell (1980) with respect to his circumplex structure of affect. Wallbott 
(1980) in his paper dealing with measurement of human expression after reviewing a 
collection of works concerning movement features related with expressiveness and 
techniques to extract them (either manually or automatically), classified these features by 
considering six different aspects: spatial aspects, temporal aspects, spatio-temporal 
aspects, aspects related to “force” of a movement, “gestalt” aspects, categorical 
approaches. Boone and Cunningham (1998) starting from previous studies by De Meijer 
(1989, 1991) identified six expressive cues involved in the recognition of the four basic 
emotions anger, fear, grief, and happiness, and further tested the ability of children in 
recognizing emotions in expressive body movement through these cues. Such six cues 
are “frequency of upward arm movement, the duration of time arms were kept close to 
the body, the amount of muscle tension, the duration of time an individual leaned 
forward, the number of directional changes in face and torso, and the number of tempo 
changes an individual made in a given action sequence” (Boone and Cunningham, 1998). 
It has to be noticed that in their paper Boone and Cunningham distinguish between 
propositional and nonpropositional aspects of movement (Buck, 1984, cited in Boone 
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and Cunningham, 1998). This distinction can be related to what already said about 
gestures that can be expressive both if they have a specific denotative meaning and if 
they do not have it.  In fact, propositional movements are intended as established signs 
transmitting a given meaning (e.g., a raised hand to indicate stop). Specific movements 
corresponding to emotion stereotypes can also be considered as propositional (e.g., a 
clenched fist to show anger or raised arms to demonstrate joy). Non-propositional 
movements are instead embodied in the direct and natural emotional expression of body 
movement based on fundamental elements such as tempo and force that can be combined 
in a wide range of movement possibilities. Therefore, non-propositional movements do 
not rely on specific movements, but build on the quality of movements i.e., how 
movements are carried through, for instance whether it is with lightness or heaviness 
(Camurri, Lagerlöf, Volpe, 2003). Non-propositional movements are thus expressive 
gestures that do not have a denotative meaning, i.e., that kind of expressive gesture that 
more often is encountered in performing arts. 
 
 

5.2. Perspectives of analysis 
 
Human full-body movement can be analysed under different views and perspectives. 
Several aspects contributing in encoding expressive content in expressive gestures have 
to be taken into account by a virtual or mixed subject observing the motion of a 
user/participant interacting with it. Moreover, the way in which each of these aspects is 
dealt with strongly influences the design and implementation of virtual and mixed 
subjects. Some of these aspects (partially following the classification of movement cues 
described in Wallbott, 1980) are shortly discussed in this Section. 
  

5.2.1. Space views  
 
A first aspect concerns the space under analysis, i.e., which extent is considered and 
which level of detail is assumed in analysis with respect to the spatial component. In his 
book “Modern Educational Dance” Laban (1963) introduces two relevant concepts: the 
Kinesphere, referred also as Personal Space, and the General Space, the whole space 
surrounding the Kinesphere In particular Laban says: “Whenever the body moves or 
stands, it is surrounded by space. Around the body is the sphere of movement, or 
Kinesphere, the circumference of which can be reached by normally extended limbs 
without changing one’s stance, that is, the place of support. The imaginary inner wall of 
this sphere can be touched by hands and feet, and all points of it can be reached. Outside 
this immediate sphere lies the wider or “general” space which man can enter only by 
moving away from their original stance. He has to step outside the borders of his 
immediate sphere and create a new one from the new stance, or, in other words, he 
transfers what might be called his “personal” sphere to another place in the general space. 
Thus, in actual fact, he never goes outside his personal sphere of movement, but carries it 
around with him like a shell” (Laban, 1963, p. 85). 
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A first distinction can thus be done between analysis in the Personal Space and analysis 
in the General Space. This distinction does not only determine the spatial extent on 
which analysis has to be carried out (e.g., in case of dance performances, the space 
occupied by the body of a dancer for the Personal Space, and the whole stage for the 
General Space), but it also affects the kind of techniques employed for analysis. In fact, 
even if analogies can be found among features in the Personal Space and in the General 
Space, different techniques can be needed to extract them. The next Chapter will 
illustrate algorithms for analysis in the Personal Space, while Chapter 8 will discuss a 
reference model for analysis in the General Space. 
Further subdivisions can be done depending on the envisaged level of detail in both the 
Personal and the General Spaces. For example, it is possible to consider the motion of 
only one person (e.g., a dancer) within the General Space or the motion of a group of 
persons in order to analyse the behaviour of the group as a whole. In the Personal Space 
it is possible to consider global features, such as for example the global amount of 
detected motion or the contraction/expansion of the whole body (examples will be 
discussed in Chapter 6) or local features like those describing the motion of a given joint 
or of a given part of the body (e.g., head, hands, feet). 
In a perspective from wide to narrow these different spatial points of view can be 
summarized as follows:  
(i) Global properties in the General Space, i.e., behaviour of a group considered as a 

whole in the General Space; 
(ii)  Local properties in the General Space, i.e., behaviour of single individuals, 

separately analysed, in the General Space; 
(iii)  Global properties in the Personal Space, i.e., behaviour of the body considered as a 

whole in the Personal Space; 
(iv) Local properties in the Personal Space, i.e., behaviour of given parts of the body, 

separately analysed, in the Personal Space 
 
It should be noticed that this subdivision should not be considered as a rigid and static 
one, but rather as a continuum of possibilities through which the focus of attention of a 
virtual or mixed observer moves, depending on the current needs. Many analyses at each 
of the four levels of detail can be carried out in parallel and their results integrated 
toward a global interpretation of the detected movement. 
 

5.2.2. Time views  
 
Time also plays a very important role in analysis, mainly with respect to the time interval 
on which analyses are carried out. The time interval can vary from a few milliseconds 
(e.g., one frame from a videocamera) to several minutes (a whole performance) and it 
depends on the evolution of the performance and its narrative structure (e.g., in a dance 
performance) as well as on considerations about how movement is perceived by humans 
with respect to time.  The adopted mapping strategies (whether continuous or dialogical, 
see Chapter 4) can also strongly influence the duration of time that is considered for 
analysis, continuous mapping often requiring quite short time windows on which fast 
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computations have to be performed, while dialogical mapping needs to segment 
expressive gestures and analyse them in their whole duration.  
The problem has been dealt with also (and maybe mainly) in the framework of analysis 
of music. For example, in a taxonomy of descriptors of musical audio worked out by 
Marc Leman and colleagues in the context of audio mining (Leman et al., 2001, 2003) a 
distinction is made among non-contextual “low level descriptors obtained from a frame-
based analysis of the acoustical wave” (e.g., onsets, offsets, roughness), mid-level 
descriptors “derived from musical context dependencies within time-scales of about 3 
seconds” (e.g., beat, short rhythmic patterns, short interval sequences, tonal tension) and 
allowing through segmentation an event-based representation of musical objects, and 
high-level descriptors that “typically involve learning and categorization beyond the 
representation of the now”, referring to time intervals longer than 3 seconds, and related 
to the cognitive and emotional/affective domains. High-level features are related to long-
term memory processes, while low and mid-level features are mainly dealt with by the 
short-term memory.   
A similar approach can be envisaged also for the time aspect of motion descriptors. That 
is, it is possible to distinguish between descriptors calculated on different time scales: 
(i) Low-level descriptors, calculated on a time interval of a few milliseconds (e.g., one 

or a few frames coming from a videocamera). For example the current amount of 
contraction/expansion can be calculated on just one frame (see the description of 
the Contraction Index in Chapter 6), i.e., on 40 ms with the common sample rate of 
25 fps. 

(ii)  Mid-level descriptors, calculated on a movement stroke (in the following also 
referred as “motion phase”), on time durations of a few seconds. Examples of such 
descriptors are the overall direction of the movement in the stroke (e.g., upward or 
downward) or its directness (i.e., how much the movement followed direct paths). 
At this level it is possible to obtain a first segmentation of movement in strokes that 
can be employed for developing an event-based representation of movement. In 
fact, strokes or motion phases can be characterized by a beginning, an end, and a 
collection of features including both mid-level features calculated on the stroke and 
statistical summaries (e.g., average, standard deviation), performed on the stroke, 
of low-level features (e.g., average body contraction/expansion during the stroke). 

(iii)  High-level descriptors related to the conveyed expressive content (but also to 
cognitive aspects) and referring to sequences of movement strokes or motion (and 
pause) phases. Time intervals in the case of dance performances range from a 
motion phrase (some seconds), to a microdance (a short dance fragment with a 
duration up to a few minutes, see in the following), to a whole dance performance 
(several minutes)4.        

   
With respect to the general framework illustrated in Chapter 3, low-level descriptors can 
be collocated at layers 1 and 2, mid-level descriptor at layer 3, and high-level descriptors 
at layer 4. 

                                                 
4 It should be noted that it seems that even one or few motion strokes can already convey expressive 
content. See for example the work by Pollick (2001) in which human observers were able to distinguish 
emotions in very short everyday movements (e.g., drinking or knocking). 
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It should be noted that the time aspect is on a large extent complementary with respect to 
the space aspect described above, i.e., it is possible to have low-level, mid-level, and 
high-level descriptors for the movement of a limb in the Personal Space (consider for 
example the amount of research in analysis of arm movements), for the movement of the 
full-body in the Personal Space (the main subject of the experiment discussed in the 
following), and for the movement of individuals and groups in the General Space as for 
example in studies about the global behaviour of visitors of a museum exhibit.   
  

5.2.3. Spatio-temporal views: “polyphony” 
 
Another important aspect concerns how movements are interleaved and orchestrated in 
space and time. Parallelism and orchestration can be viewed both with respect to space, 
i.e., orchestration of gestures of different body parts of the same or different dancers 
(e.g., a coordination of different features and gestures in arms and legs such as elasticity 
and high-energy in legs and low-energy and inertial direct movement in arms can reflect 
happiness), and with respect to time, i.e., subsequent movement strokes connected with 
fluency versus “broken” and hesitating motion, aspects similar to articulation in music. 
“Polyphony” is also related to what Laban (1963) calls “effort rhythms”, i.e., sequences 
of basic efforts preceded by a preparation phase and followed by a termination phase. 
Such sequences stress in different ways the four effort components of Space, Time, 
Weight, and Flow depending on which components change and which remain constant 
during the sequence. By stressing one component (e.g., directness in space) with respect 
to another different expressive contents can be conveyed. 
 

5.2.4. Motion with respect to its target 
  
In everyday life motion is often a goal-directed action, i.e., movement is intended to 
reach a given target in the space. Something similar can happen also in dance, the artistic 
expression of movement: one or more dancers can tend to reach a target on the stage. As 
a consequence, spectators perceive a sort of arousal, “the need for” a target rising from 
the observed movements. A target can be made explicit through the design of the scenery 
and through specific dialogue mechanisms between humans on stage: for example, a 
dancer following another one or escaping from another one.  
The reach of a target and the physical effort (fatigue) it costs is an important element in 
analysis, even if often difficult to measure. 
The way in which a target position is approached can also be relevant for analysis. A 
collection of features can be extracted describing how the target is approached in space 
and time (e.g., in a direct and sudden way or with flexible and sustained movements). 
Beside the importance of this kind of analysis in non-verbal communication through 
expressive gestures, the way in which a target is reached plays also a relevant role in 
other application domains, such as for example in therapy and rehabilitation where 
measures like the directness of the trajectory followed to reach the target can be used as 
evidence for diagnosis of particular pathologies and for therapy monitoring.  
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5.2.5. Postures 
 
Not only motion strokes are important for decoding the expressive content conveyed 
through movement, but also pauses (or pause phases) in between strokes can have a 
relevant role. During a pause it is likely that a particular posture is assumed. Argyle 
(1980) discusses the importance of postural attitudes in non-verbal communication: 
postures are used to express interpersonal attitudes, emotions, and personality traits. 
Moreover, a given gesture assumes a different expressive “strength” according to the 
postural conditions in which it is made (e.g., the posture assumed before and after the 
gesture or the posture of the whole body when only a part of it, for example a limb, is 
performing the gesture). In interpersonal communication, postural attitudes define the 
basic style of communication: for example relaxing, indifferent, curious. 
Analysis of postures during pauses in the movement can therefore be needed to fully 
understand the expressive content associated with expressive gestures in human full-body 
movement. 
 
 

5.3. Approaches to analysis of expressive gesture in movement 
 
After introducing the main aspects that have to be taken into account when analysing 
expressive gesture in human movement, here two approaches are presented that can be 
followed in performing the analysis. The first one is a bottom-up approach that in the 
framework of the conceptual architecture described in Chapter 3 starts from processing 
of physical signals for extracting movement features and tries to decode the expressive 
content by using the motion descriptors that are obtained at the subsequent layers. The 
second one, following the tradition starting from research on point light displays by 
Johansson (1973), proceeds by progressively subtracting information from a rich 
stimulus in order to find the cues that are mainly involved in expressive content 
communication. 
Until now the discussion concerned expressive gesture in human movement from a 
general point of view even if lot of times movement in dance has been considered as a 
useful example. Even the work by Laban addressed not only dance, but also more general 
aspects like movements of workers in their everyday activities and, in fact, the research 
on expressive gesture described in this dissertation mainly concerns the development of 
interactive multimedia systems enabling novel interaction paradigms and allowing a 
deeper engagement of the user in a number of different application scenarios.  
However, a particular focus is put on performing arts and on artistic performances 
because of the strongly use in their languages of non-verbal communication mechanisms 
to convey expressive content. Dance and music performances therefore constitute an 
ideal test-bed where computational models of expressive gesture and algorithms for 
expressive gesture processing can be developed, studied, and tested. The two approaches 
will be therefore described with reference to dance performance and they will be applied 
to a collection of dance performances.   
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5.3.1. Bottom-up approach: microdances 
 
The bottom-up approach tries to individuate and model expressive cues by studying a 
reference archive of microdances recorded for this purpose. With “microdance” it is 
meant a short video fragment containing enough information to be able to decode and 
classify expressive content.  
Microdances can be useful to individuate that features that are mainly responsible of 
conveying expressive content. In particular, analysis of microdances can provide 
experimental evidence with respect to the cues that choreographs and psychologists 
already identified: this is mainly obtained by an analysis of differences and invariants in 
the same choreography performed with different expressive intentions. For example, a 
comparison can be done between a choreography performed in a “neutral” way, i.e., 
didactically and without any expressive intention, and the same choreography performed 
with expressive intentions corresponding to the basic emotions fear, grief, anger, and joy. 
At a first stage, such a comparison can be done by hand or through annotations asked to 
choreographers and dance experts.  
Once a set of possible expressive cues is individuated algorithms can be developed for 
automatically extract them from the available microdances. Techniques can then be 
applied for expressive content classification.  
Microdances can also be used for testing the developed models and algorithms. Human 
observers evaluate each microdance. The outputs obtained by the developed algorithms 
and models are then compared with spectators’ rating of the same dance fragment, thus 
allowing evaluation of the performances of the algorithms. 
Notice that the same approach can be applied at different layer with respect to the 
conceptual framework described in Chapter 3: at layer 2 for a perceptual validation of the 
extracted low/mid level cues (e.g., spectators can be asked to evaluate the amount of 
perceived motion and the results compared with the outputs of the algorithm computing 
the amount of detected motion), at layer 3 for a perceptual validation of gesture 
segmentation (segmentation of dance gestures by spectators and by a segmentation 
algorithm can be compared), at layer 4 for expressive content classification (for example, 
classification of dance fragments with respect to the four basic emotions anger, fear, 
grief, and joy, performed by spectators and by classification techniques can be 
compared). 
 

5.3.2. The subtractive analysis approach 
 
The subtractive approach starts from the work by Johansson on point light displays. It 
aims at identifying those features that are mainly responsible of expressive content 
communication by progressively reduce information from the initial stimulus. With 
respect to the works on point light displays, this approach does not only intend to show 
that recognition is possible with reduced information but it also attempts to evaluate the 
contribute and the weight of the contribute that different kinds of information bring to 
expressive content decoding and understanding.  
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An aspect on which the subtractive approach can be employed is related to emotional 
arousal, i.e., the effective engagement of spectators exposed to artistic stimuli. 
In this case, for example, the inputs to the subtractive analysis are genuinely artistic live 
performances and their corresponding video recordings. A reference archive of artistic 
performances, chosen after a strict interaction with artists and performers, has to be built. 
Image processing techniques can then utilized to gradually subtract information from the 
video recordings. For example, parts of the dancer’s body could be progressively hidden, 
deforming filters could be applied (e.g., blur), the frame rate could be slowed down, etc.  
Each time information is reduced spectators are asked to rate the intensity of their 
engagement in a scale ranging from negative to positive values (a negative value 
meaning that the video fragment rises some feeling in the spectator but such a feeling is a 
negative one). The transitions between positive and negative rates and a rate of zero (i.e., 
no expressiveness has been found by the spectator in the analysed video sequence) would 
help to identify what are the movement features carrying expressive information.  
Of course, a deep interaction is needed between the image processing phase (i.e., the 
decisions on what information has to be subtracted) and the rating phase.  
In the following of this dissertation and in particular in the experiment that will be now 
described and that will provide the framework in which the developed algorithms will be 
discussed, the bottom-up approach will be mainly followed. Nevertheless, experiments 
using the subtractive approach are also currently carried out at the DIST - InfoMus Lab, 
even if they are not subject of this discussion. 
 
 

5.4. An experiment on analysis of expressive gesture in dance performance5 
 
As an example of analysis of expressive gesture in dance performance, an experiment is 
now discussed, carried out in collaboration with the Department of Psychology of the 
University of Uppsala (Sweden) in the framework of the EU-IST MEGA project.  
The aim of the experiment is twofold: (i) individuating which motion cues are mostly 
involved in conveying the dancer’s expressive intentions to the audience during a dance 
performance and (ii) testing the developed models and algorithms by comparing their 
performances with spectators’ ratings of the same dance fragments. 
In particular, in the case of this experiment expressive gesture has been analysed with 
respect to its ability to convey emotions to the audience. The study is in fact focused on 
the communication through dance gesture and recognition by spectators of the four basic 
emotions: anger, fear, grief, and joy. 
After outlining some research hypotheses a collection of motion descriptors (expressive 
cues) has been identified and algorithms developed to extract them. The algorithms have 
been applied on twenty microdances constituting the reference archive for the 
experiment. At the same time, spectators have been asked to indicate the expressive 
                                                 
5 The description of the experiment is partially taken from the following papers: 
Camurri A., Lagerlöf I., Volpe G., “Emotions and cue extraction from dance movements”, International 
Journal of Human Computer Studies, in press, 2003. 
Camurri A., Mazzarino B., Timmers R., Volpe G., “Multimodal analysis of expressive gesture in music 
and dance performances”, V International Gesture Workshop, Genova, 2003. 
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content (i.e., the basic emotions) they were able to identify in the dances. Finally, ratings 
from spectators have been compared with the results of the employed classification 
techniques. This Section describes the experiment, its hypotheses and methodology. The 
following two Chapters will deal respectively with algorithms for extraction of 
expressive cues and with the obtained results. 
 

5.4.1. Research hypotheses 
 
The research hypotheses are grounded on the role in dance expressive gesture of the 
Laban’s dimensions of Space, Time, Weight, and Flow. In particular, as a result of a joint 
discussion with the psychologists in Uppsala the following aspects emerged. 
- The Space dimension is considered in its aspects related to Laban’s Personal Space by 

measuring to what extent limbs are contracted or expanded in relation to the body 
centre, how much movements are direct or flexible (i.e., tend to follow straight 
trajectories or smooth ones), which direction results to be prevalent in motion (for 
example, Boone and Cunningham, 1998, showed that joy is characterized by a higher 
amount of upward movements); 

- The Time dimension is considered in terms of overall duration of the whole 
performance, of duration of motion strokes (i.e., pause and motion phases), and of 
tempo changes (that also contribute to the underlying structure of rhythm or flow in 
the movement). 

- The Weight dimension is considered with respect to the amount of tension and 
dynamics in movement: since the technical difficulties arising when measuring 
aspects like movement tension, weight has been mainly associated with the vertical 
component of acceleration.  

- The Flow dimension is considered in terms of analysis of shapes of speed and energy 
curves, frequency/rhythm of motion and pause phases, amount of acceleration and 
deceleration during motion phases.  

 
In the hypotheses discussed with the psychologists these expressive cues are associated 
in different combinations to each emotion category. For example, in (Lagerlöf and Djerf, 
2002), also reported in (Camurri, Lagerlöf, and Volpe, 2003), the table in the following 
page can be found. 
 

5.4.2. Description of the experiment 
 
An experienced choreographer was asked to design a choreography such that it excluded 
any propositional gesture or posture and it avoided stereotyped emotions. 
In Uppsala, five dancers performed this same dance with the four different emotional 
expressions: anger, fear, grief and joy. Each dancer performed all the four emotions. The 
dance performances were video-recorded by two digital videocameras (DV recording 
format) standing fixed in the same frontal view of the dance (a spectator view). One 
camera obtained recordings to be used as stimuli for spectators’ ratings. The second 
video camera was placed in the same position but with specific recording conditions and 
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hardware settings to simplify and optimise automated recognition of movement cues 
(e.g., manual shutter). Dancers’ clothes were similar (dark), contrasting with the white 
background, in an empty performance space without any scenery. Digitised fading 
eliminated facial information and the dancers appeared as dark and distant figures against 
a white background.  
The psychologists in Uppsala then proceeded in collecting spectators’ ratings: the dances 
were judged with respect to the perceived emotion by 32 observers, divided in two 
groups. In one group ratings were collected by “forced choice” (choose one emotion 
category and rate its intensity) for each performance; the other group was instead 
instructed to use a multiple choice schemata, i.e., to rate the intensity of each emotion for 
all the four emotions for each performance.  
At the same time, at the DIST - InfoMus Lab motion cues have been extracted from the 
video recordings and models for automatic classification of dance gestures in term of the 
conveyed basic emotion have been developed.  
In the next Chapter, the algorithms used for extracting motion cues will be presented. An 
extended discussion of the output of the computational and statistical models and a 
comparison with spectators’ ratings will be included in Chapter 7.  

 
Basic Emotion Expressive Cues 

Anger Short duration of time 
Frequent tempo changes, short stops between change 
Movements reaching out from body centre 
Dynamic and high tension in the movement 
Tension builds up and then “explodes” 

Fear Frequent tempo changes  
Long stops between changes 
Movements kept close to body centre 
Sustained high tension in movements 

Grief Long duration of time 
Few tempo changes, “smooth tempo” 
Continuously low tension in the movements 

Joy Frequent tempo changes 
Longer stops between changes 
Movements reaching out from body centre  
Dynamic tension in movements  
Changes between high and low tension 

 
Table 5.2: association between expressive cues and conveyed basic emotions according to the hypotheses 
of the experiment (Camurri, Lagerlöf, Volpe, 2003). 
 



6.  Automated extraction of expressive cues 1 
 
 
 
This Chapter illustrates the techniques that have been developed in order to extract 
expressive cues from human full-body movement. In particular, such techniques have 
been applied to the twenty dance performances included in the reference archive 
recorded for the experiment described in Chapter 5. Most of these expressive cues have 
then been employed to classify fragments (motion strokes) of the dance performances 
with respect to the four basic emotions anger, fear, grief, and joy (see Chapter 7). 
According to the sources and the research hypothesis outlined in Chapter 5, such 
expressive cues include: 
– Global measures in the Personal Space (i.e., cues describing the movement of the full 

body) such as global amount of detected motion, amount of contraction/expansion, 
orientation of the body (i.e., an elliptical approximation of the body silhouette has 
been used and the orientation of the axes has been considered as approximating the 
orientation of the body), overall motion direction; 

– Measures inspired to psychological researches such as Boone and Cunningham’s 
global amount of upward movement or measures involving the dynamic of the 
contraction/expansion of the body (e.g., the amount of time limbs are kept close to the 
body);  

– Cues inspired by the Rudolf Laban’s Theory of Effort such as directness (i.e., how 
much the trajectory of a movement is direct or flexible), impulsiveness, fluency, or 
coming from more recent studies based on Laban’s Theory (e.g., Zaho 2001). 

– Cues inspired by analogies with audio analysis, e.g., Inter Onset Intervals, frequency 
analysis; 

– Kinematical measures such as velocity, acceleration, average and peak velocity and 
acceleration. 

    
The expressive cues and the algorithms developed to extract them will be now presented 
with reference to the layered conceptual framework discussed in Chapter 3 and 
instantiated on the particular task of analysis of expressive gesture in human full-body 
movement (see Figure 6.1). 
The techniques here described together with modelling techniques such the one discussed 
in the next Chapter (decision trees) or other data mining and machine learning techniques 
(e.g., neural networks, support vector machines, multiple regression, fuzzy sets) are the 
basic bricks for building the Expressive Gesture Analysis (EGA) component of a virtual 
or mixed subject (observer) in a MIEE. 
All the algorithms have been implemented as a collection of software modules for the 
EyesWeb open architecture (see www.eyesweb.org, Appendix A, and Camurri, Coletta, 
Peri, Ricchetti, Ricci, Trocca, Volpe, 2000). In particular, they constitute the core of the 
EyesWeb Expressive Gesture Processing Library (see Appendix B, and Camurri, 
Mazzarino, Volpe, 2003). 

                                                 
1 The algorithms illustrated in this Chapter have been partially discussed in several papers, see for example 
(Camurri, Trocca, Volpe, 2002) and (Camurri, Lagerlöf, Volpe, 2003). 
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Figure 6.1: the conceptual framework described in Chapter 3, instantiated for analysis of expressive 
gesture in human full-body movement and, in particular, in dance performance (Camurri, Lagerlöf, Volpe, 
2003). 
 

Layer 1: Techniques for background subtraction, motion detection, motion tracking 
(e.g., Lucas – Kanade feature tracking). 

Data from several kinds of sensors, e.g., images from videocameras, positions from 
localization systems, data from accelerometers. 

Images pre-processed to detect movement, trajectory of points (e.g., trajectories of body 
parts, trajectories of dancers in the space) 

Layer 2: computer vision techniques on the incoming images, statistical measures, 
signal processing techniques. 

Motion descriptors and expressive cues: e.g., Quantity of Motion (QoM), Contraction 
Index (CI).  

Layer 3: techniques for motion segmentation (e.g., in pause and motion phases), 
representation of gestures (e.g., using semantic spaces like Laban’s Effort space), 
techniques for posture recognition.  
 

Pause and motion phases and related parameters (e.g., absolute and relative durations, 
fluency, impulsiveness), trajectories representing gestures in semantic spaces, postures. 

Layer 4: classification techniques (for example, in terms of basic emotions): e.g., 
multiple regression, neural networks, support vector machines, decision trees.  

       Recognized emotions (e.g., anger, fear, grief, joy) 
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6.1. Layer 1: processing of physical signals 
 
Layer 1 is responsible of processing the information coming from sensors in order to 
detect and obtain information about the motion that is actually occurring2. It receives as 
input images from one or more videocameras and, possibly, information from other 
sensors (e.g., accelerometers).  
A common set-up that is often employed due to the relative easiness in preparing it and 
in the management of the incoming information consists in acquiring images with just 
one videocamera (monocular vision) at 25 fps not interleaved. 
Set-ups with two or more videocameras can also be considered. They range from systems 
employing two videocameras (e.g., for stereoscopic vision) to systems using many of 
them. For example, well-known motion capture systems use a quite huge number of 
videocameras (e.g., 12 or 14) disposed along a circle positioned around the location 
where movements are going to be performed. In this case, techniques (sometimes quite 
computationally expensive and not real-time) are needed for integrating information 
coming from each videocamera. 
Sometimes it is also possible to use on-body markers and sensors (e.g., accelerometers), 
even if it should be noticed that the particular application field (artistic performances) 
often does not allow the use of on-body sensors since it would be too much constraining 
and disturbing for dancers. 
For the sake of easiness, here algorithms are illustrated with reference to the simplest set-
up, i.e., just one fixed videocamera acquiring not interleaved frames at the frame rate of 
25 fps. Furthermore, since the analyses here discussed refer to the Personal Space, the 
movement of just one dancer is considered. However, it has to be noticed that most of the 
described techniques can be extended for possible use in more complex set-ups (at least 2 
videocameras) and with more than one dancer. 
Layer 1 generates two kinds of output: processed images (e.g., the silhouette of the 
dancer, see Figure 6.2) and trajectories of body parts (both points on the body without 
any specific reference to anatomical parts, and points representing the movement of 
specific joints or parts like head, hands, feet).  
Layer 1 accomplishes its task by means of consolidated computer vision techniques 
usually employed for real-time analysis and recognition of human motion and activity: 
see for example the temporal templates technique for representation and recognition of 
human movement described in Bobick and J. Davis (2001). It should be noticed, 
however, that in contrast to Bobick and J. Davis research, here the aim is not at detecting 
or recognizing a specific kind of motion or activity. 
In the following some basic techniques (e.g., background subtraction, feature tracking) 
usually employed at this step are shortly illustrated without going in too many details that 
would be outside the scope of this dissertation. Detailed descriptions can be found in 
computer vision books and in papers from the computer vision community (like for 
example the cited Bobick and J. Davis, 2001). 

                                                 
2 In a way Layer 1 can be considered as a layer of virtual sensors, i.e., including both the employed 
physical sensors (e.g., videocameras) and the algorithms used to extract a given set of low-level data. 
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6.1.1. Silhouette extraction 
 
A first step that is often (even if not always3) needed and sometimes critical is the 
extraction of the silhouette of the dancer. Background subtraction techniques can be 
employed allowing separating the silhouette of the dancer from the background. The 
most general formula for background subtraction is: 
 
Silhouette[t] = Threshold(Frame[t] - Background_Image) 
 
being Frame[t] a frame acquired at instant t, Background_Image an image of the 
background without any foreground object (i.e., in this case no dancers), and Threshold  
a function that given the difference image extracts from it pixels belonging to a certain 
range of value. 
In the simplest case the background image is a static image, recorded once and never 
updated, that holds a picture of the background. Figure 6.2 shows a dancer’s silhouette 
extracted with EyesWeb by using this method (the output image is a monochromatic 
representation of the silhouette, a median filter has been used to eliminate noise).  
There are two major drawbacks in this simple implementation that can be extremely 
critical in artistic applications: light conditions (changes in lights produce a degradation 
of the performances), or, worse than that, details of the background can change. In such 
cases performances can degrade fast requiring at least a re-calibration of the threshold 
value or the acquisition of a new background image.  
 
 
(a) (b) 

  
 
 
Figure 6.2: silhouette extraction using EyesWeb: (a) the incoming video frame; (b) the dancer’s silhouette 
extracted with EyesWeb. 
 

                                                 
3 For example if a colour-tracking algorithm is employed, usually background subtraction is not needed.  
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Improvements can be obtained by acting on two different aspects: the background image 
and the threshold function. 
As for the background image, a main improvement consists in continuously updating it 
instead of using a static image. Several strategies can be adopted, considering and mixing 
the incoming frames in a new background image: for example, the background image can 
be updated with portions of the current frame that are recognised to belong to the 
background, or the output of an integrator operating on the grabbed frames can be used to 
generate a new background image from the incoming frames. Algorithms for adaptive 
background subtraction can be found in the computer vision literature. More complex 
approaches make also use of statistical models of the background   
The threshold function can be made more complex in order to improve performances. 
For example, it can consider the background image in order to apply different thresholds 
to different areas in the image. This lead to a threshold function defined as follows: 
 
Threshold(Frame[t] - Background_Image, Background_Image) 
 
This kind of function uses available knowledge about the background in order to detect 
the silhouette. For example, the threshold can be more restrictive in case of bright 
backgrounds and less restrictive in case of dark ones. Many different thresholds can in 
principle be applied to differently dark and light areas. Virtually, it would possible to 
have up to 256 different thresholds in b/w images coded with 8 bits per pixel, even if the 
background subtraction process would soon become unmanageable. 
Research on background subtraction is still a very active field in computer vision and the 
most recent developments can be found in computer vision journals and in the 
proceedings of the main computer vision conferences. 
 

6.1.2. Silhouette Motion Images (SMIs)  
  
A straightforward use of the dancer’s silhouette extracted through the previously 
described background subtraction techniques is represented by Silhouette Motion Images 
(Trocca, 2001; Camurri, Trocca, Volpe, 2002). A Silhouette Motion Image (SMI) is an 
image carrying information about variations of the silhouette shape and position in the 
last few frames. SMIs are generated by the following formula: 
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The SMI at frame t is generated by adding together the silhouettes extracted in the 
previous n frames and then subtracting the silhouette at frame t. The resulting image 
contains just the variations happened in the previous frames. If n is the number of frames 
on which the SMI is calculated and n = 1, then the SMI carries information about the 
instantaneous variations of the silhouette. Working with a higher n allows capturing more 
information about the shape of motion and results are smoother, because the effect is 
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similar to average filtering. Figure 6.3a shows an SMI with n = 4. In the figure the SMI is 
the grey area, while the darker contour shows the most recent silhouette. 
SMIs are inspired to motion-energy images (MEI) and motion-history images (MHI) 
(Bradsky and J. Davis, 2002, Bobick and J. Davis, 2001). They differ from MEIs in the 
fact that the silhouette in the last (more recent) frame is removed from the output image: 
in such a way only motion is considered while the current posture is skipped. Thus, SMIs 
can be considered as carrying information about the “amount of motion” occurred in the 
last n frames. Information about time is implicit in SMIs and is not explicitly recorded.  
An extension of SMIs can be considered, which also takes into account the internal 
motion in silhouettes (see Figure 6.3b). In such a way it is possible to distinguish 
between global movements of the whole body in the General Space and internal 
movements of body limbs inside the Personal Space.  
 
 

(a) (b) 

  
 
 
Figure 6.3: examples of Silhouette Motion Images (SMIs): (a) an SMI with time window (n) of 4 frames; 
(b) measure of internal motion using SMIs (the dark grey area inside the silhouette). 
 

6.1.3. Motion tracking 
 
Motion tracking is a very wide field in the computer vision literature. Here only the 
Lucas-Kanade tracking algorithm (Lucas and Kanade, 1981) is shortly described since it 
has been employed for the experiment discussed in this dissertation. It provides as output 
the trajectories of a redundant number of points randomly positioned on the moving 
body: no in formation about position of joints or body parts is available, rather the 
obtained trajectories can be processed in order to extract some global measures (e.g., 
speed calculated as average on all the trajectories). However, it should be noticed that 
other techniques such as for example skin colour tracking are available in EyesWeb for 
extracting positions and trajectories of specific body parts (e.g., hands and head). 
The Lucas-Kanade feature-tracking algorithm allows tracking the movements of a certain 
number of points in a sequence of images. It is often used to track the movement of a 
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mobile camera while recording a scene with fixed objects. Anyway, it can be used with 
interesting results also to track moving objects filmed by a fixed camera.  
The algorithm works as follows: 

1. Select points in the image n that seems to be easy to track, i.e., well defined edges 
(Shi and Tomasi, 1994) 

2. At image (frame) n+1, calculate the local optical flow in the neighbour of the selected 
points. 

3. For each point estimate the new position and the reliability of such prediction. If 
reliability is under a certain threshold the point is considered lost. 

4. Increment n and repeat step 2 and 3. 
 

Usually the user specifies how many points have to be tracked and the algorithm attempts 
to follow them. However, the procedure that finds features classified as “good to track” 
can find less than the specified amount of points and such points can be marked lost after 
a few frames. It is therefore necessary to call again the procedure that selects points that 
can be tracked reliably and, among the proposed points, selects a few of them in order to 
maintain almost constant the number of tracked features. This step is called substitution. 
This algorithm has been implemented in EyesWeb using the Open Computer Vision 
Library (OpenCV). However, at the moment of the implementation the OpenCV library 
did not provide a function that can directly perform feature substitution. This has been 
done by calling again the function that finds the “good to track” features and selecting in 
the resulting list those that are above a minimum distance from those already tracked. 
The main disadvantage of the Lucas-Kanade feature tracking is that the selected points 
can fall everywhere in the image, i.e., either on the background or on the body of the 
dancer. In order to guarantee that some of the selected points will fall on the dancer, it is 
necessary to track a high number of points. Furthermore it is impossible to know where, 
on the body of the dancer those points are, and those that are attached to the background 
are a major waste of resources. It is possible to discriminate between points on the 
background and on the body by observing their velocities (points on the background 
should be still, even if noise can make this statement false). Another problem is point 
substitution. If the substitution happens while the dancer is moving, the blur produced by 
motion may prevent new points to be attached to the body. 
These problems have been partially solved by combining motion tracking with a 
background subtraction module that extracts the dancer’s silhouette. The silhouette is 
used as a mask to extract from the original frame just the image of the dancer. The 
resulting image is then sent to the tracker. The silhouette can also be used to estimate if 
the dancer is moving or not, and the point set can be completely or partly re-initialised 
when the dancer is still or moving slowly. 
Figure 6.4 shows the output of the Lucas-Kanade feature tracker included in the 
EyesWeb Expressive Gesture Processing Library. In particular, Figure 6.4a shows the 
points that have been selected for tracking, while Figure 6.4b displays the trajectories of 
the tracked points (in a time window of 1 s).  
Information motion detection and tracking provides to the upper levels is therefore 
encoded in two different forms: positions and trajectories of points on the body (as the 
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output of the Lucas-Kanade feature tracker), and images directly resulting from the 
processing of the input frames (e.g., dancer’s silhouettes, SMIs). 
 
 

(a) (b) 

  
 
Figure 6.4: Lucas-Kanade feature tracking: (a) the points that have been selected for tracking; (b) the 
trajectories of the tracked points. 
 
 

6.2. Layer 2: motion descriptors and expressive cues 
 
Layer 2 is responsible of the extraction of a set of motion descriptors and expressive cues 
from the data coming from low-level motion detection and tracking. Its inputs are the 
processed images and the trajectories of points on body coming from Layer 1. Its output 
is a collection of motion cues describing movement and its qualities. To accomplish its 
task, Layer 2 employs computer vision, statistical, and signal processing techniques. The 
expressive cues that have been employed in the discussed experiment are now reviewed 
and algorithms for their extraction described. 
 

6.2.1. Quantity of Motion (QoM) 
 
Quantity of Motion (QoM) is computed as the area (i.e., number of pixels) of an SMI 
(e.g., the number of pixels in the grey area in Figure 6.3a). It can be considered as an 
overall measure of the amount of detected motion, involving velocity and force. QoM 
can be thought as a first and rough approximation of the physical momentum q = m·v, 
where m is the mass of the moving body and v stands for its velocity. The shape of the 
QoM graph is close to the shape of the graphs of velocity of a marker put on a limb. 
QoM has two main problems: (i) the measure depends on the distance from the camera; 
(ii) difficulties emerge when comparing measures from different dancers. Such problems 
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can be (at least partially) solved by scaling the SMI area by the area of the most recent 
silhouette. The following formula is thus obtained: 
  
Quantity_of_Motion = Area(SMI[t, n]) / Area(Silhouette[t])  
 
In this way, the measure becomes relative, i.e., independent from the camera’s distance 
(in a range depending on the resolution of the videocamera), and it is expressed in terms 
of fractions of the body area that moved. For example, it is possible to say that at instant t 
a movement corresponding to the 2.5% of the total area covered by the silhouette 
happened.  
 

6.2.2. Contraction Index 
 
The Contraction Index (CI) is a measure, ranging from 0 to 1, of how the dancer’s body 
uses the space surrounding it in terms of contraction/expansion of the body with respect 
to its centre of gravity. For example, Figure 6.5 shows two conditions characterized by 
different values of the Contraction Index: a high value (near to 1) in Figure 6.5a where 
the body fills almost completely the rectangle enclosing it (usually called “bounding 
rectangle”), a low value (near to 0) in Figure 6.5b where limbs (especially arms) are kept 
quite far from the centre of gravity.   
 
 

                (a) (b) 

 
 
Figure 6.5: two conditions characterized by different values of the Contraction Index: a high value (near to 
1) in (a) and a low value (near to 0) in (b). 
 
The algorithm computing the CI combines two different techniques: the individuation of 
an ellipse approximating the body silhouette and computations based on the bounding 
rectangle. The former is based on an analogy between image moments and mechanical 
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moments: in this perspective, the three central moments of second order build the 
components of the inertial tensor of the rotation of the silhouette around its centre of 
gravity: this allows to compute the axes (corresponding to the main inertial axes of the 
silhouette) of an ellipse (see Figure 6.6) that can be considered as an approximation of 
the silhouette: eccentricity of such an ellipse is related to contraction/expansion; 
orientation of the axes is related to the orientation of the body (Kilian, 2001). The second 
technique used to compute CI is related to the bounding rectangle, i.e., the minimum 
rectangle surrounding the dancer’s body (see Figure 6.5). The algorithm compares the 
area covered by this rectangle with the area currently covered by the silhouette. 
Intuitively (see Figure 6.5a and b), if the limbs are fully stretched and not lying along the 
body, this component of the CI will be low (near to 0), while, if the limbs are kept tightly 
nearby the body, it will be high (near to 1). While the dancer is moving the CI varies 
continuously. Even if it is used with data from only one camera, its information is still 
reliable, being almost independent from the distance of the dancer from the camera. A 
use of this cue consists of sampling its values at the end and the beginning of a 
movement stroke, in order to classify that movement as a contraction or expansion. 
 

 
 
Figure 6.6: computation of an ellipse approximating the dancer’s silhouette. The axes of the ellipse allow 
estimating the orientation of the body; its eccentricity is related to body contraction/expansion 
 
A further use of the Contraction Index consists in analysing its dynamics along time (for 
example by computing the amount of time CI remained above a given threshold, i.e., the 
body has been contracted, during a motion stroke). This kind of analysis is related to one 
of the expressive cues individuated by Boone and Cunningham (1998): the duration of 
time arms are kept close to the body, that could be generalized in order to take into 
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account not only the movement of the arms, but also the contraction/expansion of the 
whole body. 
 

6.2.3. Features extracted from motion trajectories 
 
Layer 1 provides Layer 2 with processed images (e.g., SMIs) and trajectories of points 
located on the dancer’s body (e.g., the output of the Lucas-Kanade feature tracker). QoM 
and CI are example of expressive cues extracted from processed images. Expressive cues 
can also be obtained from motion trajectories, like for example cues depending on the 
shape and the geometry of the analysed trajectory (e.g., direction, length, directness) and 
kinematical cues (e.g., velocity, acceleration). Here some of the geometrical cues will be 
introduced while in the following cues related to motion kinematics will be discussed. 
Two of the most straightforward cues that can be extracted from trajectories recorded 
during a motion stroke are motion length and motion direction.  
Motion length is computed by adding together the lengths of the segments composing the 
trajectory (i.e., all the segments joining two subsequent points of the sampled trajectory). 
It can give indirect indication about the complexity of a movement, its directness, and its 
dynamics (e.g., if it has been either fast or slow, or, using Laban’s terminology, quick or 
sustained). However, information motion length provides usually needs to be integrated 
with other cues in order to be able to draw some conclusions about these properties. For 
example motion length contributes to a more reliable measure of motion directness: the 
Directness Index (DI).  
The Directness Index for a motion trajectory is calculated as the ratio between the length 
of the straight trajectory connecting the first and the last point of the motion trajectory 
and the sum of the lengths of each segment constituting the motion trajectory (i.e., the 
motion length). Therefore, the more the Directness Index is near to one, the more direct 
is the motion trajectory (i.e., the motion trajectory is “near” to the straight one). Further 
aspects can be taken into account in order to improve the computation of the Directness 
Index, e.g., the deviations of the sampled points of the motion trajectory with respect to 
the straight one can be calculated and their average and standard deviation analysed. The 
Directness Index can contribute to the analysis in the Laban’s dimension of Space, i.e., 
its values can be used for a first rough estimate of how much a motion stroke is direct or 
flexible. 
Motion direction is calculated by measuring the angle of the vector joining the first and 
last sampled points of the motion trajectory in the last n frames. The selected value of n 
determines how much motion direction refers to an instantaneous or short-term direction 
(low values of n) or to a sort of average direction during a motion stroke (high values of 
n or direction calculated on a whole motion stroke). Motion direction is related to another 
expressive cue that Boone and Cunningham (1998) found to be relevant for expressive 
content decoding: the frequency of upward arm movement. In this case too the original 
cue by Boone and Cunningham can be generalised to consider not only arm, but also full-
body upward movements. For example, the duration of time in a motion stroke in which 
upward movement has been detected can be computed and considered as a tendency of 
the motion stroke to be upward directed. 
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As an example, Figure 6.7 shows a sampled trajectory (red line) and the computed 
motion direction (the green segment, whose length is proportional to the overall 
displacement). 
 

   
 

Figure 6.7: a motion trajectory and the computed motion direction 
   
In the case that many motion trajectories are available at the same time (e.g., the Lucas-
Kanade feature tracker can provide a redundant number of points distributed over the 
whole body), averages can be computed on them in order to obtain cues reflecting the 
global properties (i.e., motion length, direction, directness) of the analysed stroke. 
 

6.2.4. Kinematical measures 
 
Trajectories can also be analysed with respect to kinematical aspects. In particular, 
velocity and acceleration can be extracted by using well-known techniques for 
approximated numerical derivative. For example, the software modules included in the 
EyesWeb Expressive Gesture Processing Library allow calculating velocity and 
acceleration by using either the asymmetric backward numeric derivative or the 
symmetric numeric derivative whose formulas (for velocity) are reported here below. 
Notice that in the formulas x and y stand for the x and y coordinates of the position of a 
sampled point in the motion trajectory, while i is the index related to time: so x(i) is the x 
coordinate of the currently sampled point while x(i-1) is the x coordinate of the last 
sampled point. Notice also that symmetric numerical derivative introduce a delay of one 
sample, i.e., 40 ms in case the usual sampling frequency of 25 fps is employed. 
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Asymmetric backward numeric derivative (for velocity):       
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Symmetric numeric derivative (for velocity):      







∆
−−=−

∆
−−=−

t

iyiy
iv

t

ixix
iv

y

x

2

)2()(
)1(

2

)2()(
)1(

 

 
A low-pass filter can be applied in order to reduce the noise introduced by the numerical 
derivative operation. 
As already explained for motion length, direction, and directness, if many motion 
trajectories are available at the same time (e.g., from the Lucas-Kanade tracker) further 
computations can be carried out to extract global motion features. In particular 
descriptive statistics (e.g., average, standard deviation, maximum) can be calculated: 
(i) Along time: for example, average and peak values calculated either on running 

windows or on all the samples in a given time interval (e.g., the average velocity of 
the hand of the dancer during a given motion stroke)  

(ii)  Among trajectories: for example, average velocity of groups of trajectories 
available at the same time (e.g., the average instantaneous velocity of all the 
tracked points located on the arm of a dancer).  

 
  

6.3. Layer 3: gesture segmentation and representation 
 
Layer 3 is responsible of segmenting motion in order to individuate motion strokes, i.e., 
motion and non-motion (pause) phases.  
It is also in charge of extracting further higher-level expressive cues that are the result of 
an analysis of the segmented movement and of the obtained sequence of motion and 
pause phases. Examples of such cues are the temporal duration of motion and pause 
phases compared with the total duration of the dance performance, impulsiveness, and 
fluency.  
Segmentation and cue extraction is performed from the input (i.e., the expressive cues) 
coming from Layer 2. In a certain extent, motion and pause phases can be associated 
with movement gestures4. The output of Layer 3 can thus be considered as a first 
representation of gestures in term of values of expressive cues associated with them.  
                                                 
4 As already discussed in Chapter 3, associating motion and pause phases with gestures is quite a rough 
approximation since gestures can be observed shorter than a single motion phase or covering some of them. 
Anyway, it can be taken as a starting point for a first analysis that hopefully will lead to understand more 
subtle aspects. 
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6.3.1. Motion segmentation 
 
A straightforward way to individuate movement strokes and therefore to segment 
movement in motion and pause phases is to apply a threshold on the detected energy or 
amount of movement. As a first approximation, the QoM measure has been therefore 
used to perform such segmentation.  
QoM is related to the overall amount of motion and its evolution in time can be seen as a 
sequence of bell-shaped curves (motion bells). In order to segment motion, a list of these 
motion bells has been extracted and their features (e.g., peak value and duration) 
computed. For this task an empirical threshold can be defined on the QoM:  for example, 
according to a threshold that has been used in several applications, the dancer is 
considered to be moving if the area of his/her motion image (i.e., the QoM) is greater 
than 2.5% of the total area of the silhouette. Figure 6.8 shows motion bells after 
automated segmentation: a motion bell characterizes each motion phase.  
 

 
 

Figure 6.8: motion segmentation 
 
The described segmentation technique based on only Quantity of Motion, even if 
sufficient in most cases in the experiment under exam, can be improved in several ways. 
From the one hand further cues can be taken into account to perform the segmentation 
task. For example, techniques based on analysis of the speed and acceleration profiles 
can be considered: (Bindiganavale, 2000) uses the zero-crossings of acceleration to 
detect changes in motion, (Zhao, 2001) uses a method based on zero-crossings of 
acceleration and curvature to segment the trajectories followed by the arm joints. 
On the other hand, more detailed segmentation can be obtained. For example, Laban says 
that “almost any work-operation or expressive gesture shows the following pattern: 
preparation – one or several main efforts – termination” (Laban, 1963, p. 75). A further 
goal of segmentation is therefore to individuate sub-phases within a motion phase. 
Finally, it should be remarked that segmentation algorithms based on extracted cues 
could obtain a segmentation that is different from the segmentation that a human 
observer could perform. In other words, detected segments could be different from 
perceived segments. Perceptual experiments would be needed in order to compare the 
motion phases obtained from algorithms with the motion phases perceived by humans. 
As a result of such experiments some kind of curve of perceived motion could be 
obtained replacing or modifying the curve of detected motion computed by the 
algorithms. This observation raises issues that are beyond the scope of this dissertation: it 
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is just worth to be noticed that while in more traditional application (e.g., video 
surveillance) and in application fields in which the focus is on measuring movement 
what is important is the detected motion, in applications like the ones envisaged in this 
work (i.e., expressive interaction in artistic contexts) it could be more relevant to 
consider the perceived motion. 
 

6.3.2. Fluency and impulsiveness 
 
Motion segmentation can be considered as a first step toward the analysis of the rhythmic 
aspects of dance. Analysis of the sequence of pause and motion phases and their relative 
time durations can lead to a first evaluation of dance tempo and its evolution in time, i.e., 
tempo changes, articulation (in analogy with music legato/staccato). Parameters from 
pause phases can also be extracted to individuate real still standing positions from active 
pauses involving low-motion (hesitating or oscillation movements). 
Furthermore, motion fluency and impulsiveness can be evaluated. They are related to 
Laban’s Flow and Time axes.  
Fluency can be estimated starting from an analysis of the temporal sequence of motion 
bells. A dance fragment performed with frequent stops and restarts (i.e., characterized by 
a high number of short pause and motion phases) will result less fluent than the same 
movement performed in a continuous, “harmonic” way (i.e., with a few long motion 
phases). The hesitating, bounded performance will be characterized by a higher 
percentage of accelerations and decelerations in the time unit (due to the frequent stops 
and restarts), a parameter that has been demonstrated of relevant importance in motion 
flow evaluation (see, for example, Zhao 2001, where a neural network is used to evaluate 
Laban’s Flow dimension).  
A first measure of impulsiveness can be obtained from the shape of a motion bell. In fact, 
since QoM is directly related to the amount of detected movement, a short motion bell 
having a high pick value will be the result of an impulsive movement (i.e., a movement 
in which speed rapidly moves from a value near or equal to zero, to a peak and back to 
zero). On the other hand, a sustained, continuous movement will show a motion bell 
characterized by a relatively long time period in which the QoM values have little 
fluctuations around the average value (i.e., speed is more or less constant during the 
movement). 
 

6.3.3. Gesture representation 
 
Several kinds of representation can be envisaged. One possibility consists in producing a 
symbolic description of the analysed sequence of movements. This representation can be 
useful because it can be understood by a human researcher in a relatively easy way and 
also used by an automatic system. In fact, motion and pause phases would be represented 
as motion objects (or gestures) in analogy with music objects: they would be 
characterized by a beginning, an end, a time duration, and a collection of values of 
motion cues either the values of motion cues continuously collected during the whole 
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phase, or single values either summarizing a continuous cue (e.g., averages) or related to 
cues that can be directly calculated on a whole phase (e.g., motion length). 
For example, depending on the Contraction Index a motion phase can be seen as a 
contraction phase (if the value of CI at the end of the phase is higher than the one at the 
beginning) or as an expansion phase. It is therefore possible to obtain a description like 
the following one: 
 
Contraction(Start_Frame, Stop_Frame, Initial_Value_CI, Final_Value_CI, other cues…) 
Expansion(Start_Frame, Stop_Frame, Initial_Value_CI, Final_Value_CI, other cues…) 
 
Another possibility is to build a representation in terms of points or trajectories in 
multidimensional semantic spaces, i.e., spaces whose axes are expressive cues having a 
relevant influence with respect to the conveyed expressive content. As discussed in 
Chapter 3, whether the representation has to be a point or a trajectory depends on how 
the low-level features are processed in Layers 2 and 3. For example, if a vector 
containing the averages of the Layer 2 expressive cues is calculated along the time 
duration of a motion phase (gesture) or a motion phase is considered as a single event, 
the gesture/motion phase could be represented as a point in the multidimensional space. 
If instead more values for each cues are available (e.g., local values, or averages along 
sub-phases) or if a gesture is considered as a sequence of events (as it is likely to be) a 
trajectory is a more appropriate representation. 
Figures 6.9a and b show an example of such kind of representation in a 2D space. 
 

(a) (b) 

 
       

Figure 6.9: representation of gestures as trajectories in a 2D space. 
 
The two dimensions are Quantity of Motion and fluency. In Figure 6.9a the dancer is not 
moving: the current position in the space (window in the right) is moving toward the 
bottom left parts of the 2D space (yellow stripe), a position characterized by low QoM 
and low fluency (i.e., the amount of pause phases is dominating the amount of motion 
phases). In figure 6.9b, a high-energy gesture is displayed. The red shadow around the 
dancer (the SMI) in the upper-left window of Figure 6.9b is proportional to the QoM and 
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the position in the space (the yellow stripe in the right window) is moving toward the 
top-right region in that window, characterized by high QoM and high fluency. 
It should be noticed that this is just an example. In fact, a semantic space would need 
experimental results in order to be established: its dimensions have to be proved to be 
meaningful and possibly uncorrelated. However, the two expressive cues here indicated 
(QoM and fluency) are good candidate dimensions for such an expressive space being 
the former related to energetic aspects of movement and the latter to temporal, 
rhythmical aspects, even if at the moment no evidence has still been provided to support 
this hypothesis. 
Once gestures are represented as trajectories in a semantic multidimensional space cues 
can be extracted from these trajectories. In particular, it is possible to extract the cues 
previously discussed with respect to motion trajectories also from trajectories of 
expressive gestures in semantic spaces. The values thus obtained can be used as input to 
algorithms (e.g., clustering techniques) for grouping similar trajectories, i.e., similar 
gestures, in order to interpret them. Notice that if motion gestures and music gestures 
could be represented in the same (or a similar) expressive space, algorithms could be 
used for grouping and analysing such gestures in a multimodal perspective. 
 

6.3.4. Posture recognition 
 
As already discussed in Chapter 5, not only motion is important in expressive content 
communication. Pauses also have a role of paramount importance. During a pause the 
body may assume a particular posture and body postures can be considered as expressive 
gestures having a relevant role in conveying expressive content to the audience (see for 
example Argyle, 1980).  
Algorithms for posture recognition have thus been implemented in the EyesWeb 
Expressive Gesture Processing Library, even if not directly employed in the discussed 
experiment.  
One of them, robust enough to be employed in real-time performances is based on Hu 
moments (Hu, 1962), a set of seven moments, which are translation, scale and rotation 
invariant, and have been widely used in computer vision for shape discrimination.  
The algorithm employs a nearest-neighbour technique.  For each considered (normalised) 
posture Hu moments are calculated and stored in a matrix. During each pause phase, Hu 
moments are calculated on the incoming (normalised) silhouette. Euclidean distances are 
computed between the Hu moments of the silhouette in the current frame and the Hu 
moments of each candidate posture accordingly to the following formula: 
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where u and v are the Hu moment vectors (having n = 7 elements), and p is the degree of 
the distance. p can be provided as parameter to the algorithm. When p = 1, the 1-distance 
is obtained:  



Chapter 6 –  Automated extraction of expressive cues 
 

 
- 106 - 

 
 

∑
=

−=
n

k

kk
vuvud

1

1
),(   

 
When p ≤ 0, the algorithm calculates the ∞-distance, i.e.,  
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The posture corresponding to the minimum distance is candidate for recognition. 
Mechanisms are provided to recognize a posture only if its duration in time is long 
enough to consider it effectively as a posture: each time a posture is recognized, the last 
N recognized postures (where N is provided as a parameter to the algorithm) are 
considered and compared against a threshold provided as parameter as well. The 
threshold represents a percentage of recognition during the last N recognitions: if the 
most frequently recognized posture among the last N postures has a percentage of 
recognition above this threshold, such a posture is recognized, otherwise no posture is 
recognized. For instance, if the threshold is set to 90% and N is set to 10, posture number 
3 will be recognized only if the array of the indexes of the last 10 recognized postures 
contains the index 3 at least nine times. In this way, postures cannot be recognized if 
their time duration is too short with respect to the value of N, the threshold, and the 
sampling frequency. For instance, if N = 10, the threshold is 100%, and the frame rate is 
25 Hz, a posture can be recognized only if its duration is longer than 10x(1/25) =  0.4 s. 
The algorithm returns also a confidence index in the range [0, 1] describing how much it 
is confident to have correctly recognized a given posture. The confidence index is 
determined by comparing the value of the calculated minimum distance with the distance 
immediately larger than the minimum one, similar values of the two distances meaning 
an ambiguous recognition. 
Figure 6.10 shows the five postures that have been used to test the algorithm. 
 
 

 
 
 

Figure 6.10: five normalised postures used to test the discussed posture recognition algorithm. 



7.  Classification of dance fragments 
 
 
 
The expressive cues described in Chapter 6 have been extracted from the 20 dance 
fragments recorded for the experiment sketched in Chapter 5. In this Chapter a model is 
introduced for such data attempting to classify them with respect to the four basic 
emotions (anger, fear, grief, and joy) corresponding to the dancers’ expressive intentions. 
Dance fragments have been segmented in motion and pause phases as described in 
Chapter 6. To this aim, an empirical threshold on the QoM has been defined for these 
dances, corresponding to the 2.5% of the average value of the QoM computed along each 
whole dance fragment. A vector of 18 expressive cues has then been extracted for each 
motion phase. According to the research hypotheses described in Chapter 5, such cues 
include: 
- Cues related to the time duration of motion and pause phases: duration of the current 

motion phase, duration of the last pause phase; 
- Cues related to the amount of movement (energy): average, standard deviation, and 

peak value of the Quantity of Motion along a motion phase; 
- Cues related to body contraction/expansion: average and standard deviation of the 

Contraction Index along a motion phase; 
- Cues related to the use of space: Directness Index, length and overall direction of 

motion trajectories along a motion phase; 
- Cues derived from the cited studies by Boone and Cunningham (1998): amount of 

upward movement, dynamics of the Contraction Index; 
- Kinematical cues: average, standard deviation, and peak value of speed along a 

motion phase; average, standard deviation, and peak value of the module of 
acceleration along a motion phase;  

 
For those cues depending on motion trajectories a Lucas-Kanade feature tracker has been 
employed. A redundant set of 40 points randomly distributed on the whole body has been 
tracked during each motion phase. Points have been reassigned before the beginning of 
the following motion phase so that a small and not significant amount of points is lost 
during tracking. Overall motion cues have been calculated by averaging the values 
obtained for each trajectory. 
An explorative analysis has been carried out on the extracted cues. A decision tree has 
been built for classifying motion phases depending on the vector of extracted cues with 
respect to the four basic emotions that dancers tried to covey. The results from the model 
have been compared with spectators’ ratings collected by the psychologists in Uppsala. 
 
 

7.1. Explorative analysis 
 
At a first stage the extracted variables have been subjected to an explorative analysis 
mainly consisting in calculating and analysing the descriptive statistics of each of them. 
When possible, the Analysis of Variance (ANOVA) has been performed with respect to 



Chapter 7 –  Classification of dance fragments 

 
- 108 - 

 
 

the four emotional categories. The box-plots have also been drawn and analysed. The 
results of such a preliminary analysis (part of which can be found in Mazzarino, 2002) 
are summarized in the following together with a discussion of some emerging aspects. 
 

7.1.1. Quantity of Motion 
 
Quantity of Motion (QoM) has been considered under three aspects: its average, standard 
deviation and peak value along a motion phase. Since QoM is related to the amount of 
detected motion, the three variables derived from it are related respectively to the average 
amount of motion during a motion phase, to the motion “dynamics”, i.e., how much the 
amount of detected motion remained constant or varied in a motion phase, and to the 
maximum amount of detected motion. 
The box-plot of the average of the QoM with respect to the four emotion categories is 
shown here below. 
 

 
 
Figure 7.1: box-plot of the average of the QoM along the motion phases. The four basic emotions are 
labelled as follows: 1 – Anger, 2 – Fear, 3 – Grief, 4 – Joy. 
 
 
The Analysis of Variance has been performed on the average of the QoM along motion 
phases (since according to the Central Limit Theorem the average of the QoM can be 
thought to tend to be normally distributed even if the QoM is not normally distributed). 
Results are displayed in Table 7.1 in the following page. 
 



Chapter 7 –  Classification of dance fragments 

 
- 109 - 

 
 

ANOVA Table     
Source SS df MS F Prob>F 
Groups 0.53331 3 0.17777 88.852 1.12E-02 
Error 66.024 330 0.020007   
Total 71.358 333    

 
Table 7.1: Analysis of Variance (ANOVA) for the averages of the QoM along motion phases 

 
With a p-value in the order of 10-2 the average value of the QoM along motion phases 
therefore appears to be statistically significant for analysis. 
The box-plots for the standard deviation and for the peak value of the QoM are shown in 
Figure 7.2 a and b respectively. 
 
 

(a) (b) 

  
 
 
Figure 7.2: box-plots of (a) the standard deviation and (b) the peak value of the QoM along the motion 
phases. The four basic emotions are labelled as follows: 1 – Anger, 2 – Fear, 3 – Grief, 4 – Joy. 
 
Significant differences can be noticed (even if not mathematically proved): for example 
grief results to have the lower standard deviation, i.e., the lower variation in the amount 
of detected motion, and the lowest peak value (that could mean a relative absence of 
impulsive strokes, i.e., a quite low-energy and sustained movement). The highest values 
are associated with anger and joy that seem to be the two emotions characterized by the 
highest dynamics along the energy dimension.   
An analysis of the average of the QoM along the whole dances (i.e., the average of the 
QoM for each performance) has been carried out in (Mazzarino, 2002). The results are 
shown in Figure 7.3 in the following page.  
By inspecting such results it is possible to observe that for example the performance of 
the first dancer satisfies the hypothesis according to which higher energy should be 
noticed in anger than in fear. In fact, the average of the QoM (along the whole 
performance) for the first dancer is highest in the anger performance (represented in blue) 
and lowest in the grief performance (in yellow). 
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Extending the observation to all the dancers it can be noticed that the lowest value of the 
QoM average is always associated with the performance conveying grief, but, at the same 
time, the highest value does not always correspond to the anger performance (this is not 
the case for dancers number two and four). 
 

  
Figure 7.3: the average of the QoM for each performance (Mazzarino, 2002) 

 
As a remark, from the one hand it has to be noticed that since the average along the 
whole performance is now discussed, this does not mean that the same pattern can be 
found in each motion phase: it is just a general tendency observed in the whole dance. 
On the other hand, the ANOVA on the average of the QoM along each motion phase 
discussed above seems to confirm that such a general tendency is significant also at the 
level of each motion phase.  
 

7.1.2. Contraction Index  
 
Contraction Index (CI) has been considered with respect to its average and standard 
deviation along a motion phase.  
Furthermore, the dynamics of the Contraction Index, intended as the duration in time in a 
motion phase the values of the CI have been above a given threshold has also been 
computed and measured as percentage with respect to the whole duration of the motion 
phase under exam. The threshold has been empirically selected in order to maximize the 
differences between the four basic emotions with respect to this expressive cue: this lead 
to select 0.7 as threshold for Contraction Index Dynamics. 
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CI is related to the contraction/expansion of the body with respect to its Centre of 
Gravity. The three variables derived from it are thus related to the average amount of 
contraction/expansion during a motion phase, and to how such contraction/expansion 
evolves during a motion phase, i.e., how much contraction/expansion remains constant or 
varies in a motion phase (the standard deviation of the CI), and how long the body 
remains contracted during a motion phase (the CI Dynamics). CI Dynamics can be 
considered as an extension of “the duration of time arms were kept close to the body” by 
Boone and Cunningham (1998). 
The box-plot of the average of the CI with respect to the four emotion categories is 
shown here below. 
  

 
 
Figure 7.4: box-plot of the average of the CI along the motion phases. The four basic emotions are labelled 
as follows: 1 – Anger, 2 – Fear, 3 – Grief, 4 – Joy. 
 
The Analysis of Variance has been performed on the average of the CI along motion 
phases. The results displayed in Table 7.2 in the following page show a p-value of 
0.0527, i.e. a confidence of 94.73%. This is at the limit of statistical significance (usually 
a confidence of 95% is required).  
In fact, the box-plot seems to indicate that the average of the CI mainly distinguishes 
among fear and grief (characterized by higher levels of contraction) and angry and joy 
(characterized by higher levels of expansion): it should be noticed that this result is 
however consistent with the research hypotheses stated in Chapter 5.    
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ANOVA Table     
Source SS Df MS F Prob>F 
Groups 0.0623 3 0.2077 2.59 0.0527 
Error 2.64394 330 0.00801   
Total 2.70624 333    

 
Table 7.2: Analysis of Variance (ANOVA) for the averages of the CI along motion phases 

 
The box-plots for the standard deviation of the CI and for the CI Dynamics are shown in 
Figure 7.5 a and b respectively. 
 

(a) (b) 

  
 
 
Figure 7.5: box-plots (a) of the standard deviation of the CI and (b) of the CI Dynamics along the motion 
phases. The four basic emotions are labelled as follows: 1 – Anger, 2 – Fear, 3 – Grief, 4 – Joy. 
 
The standard deviation of the CI does not seem very significant: its values are very 
similar for all the four basic emotions. Contraction Index Dynamics looks more 
interesting: its values are higher for fear (i.e., the body remains contracted along more 
time) and lower for joy (whose motion is characterized by more expansions). 
As for Quantity of Motion, the mean value of the Contraction Index has also been 
calculated along the whole performance. The analysis of the results (see Figure 7.6 in the 
following page) seems to confirm the psychologists’ hypothesis according to which fear 
is characterized by a movement toward to the centre of the personal space (i.e., a 
contraction). Moreover, as psychologists expected, joyful performances have a low value 
of contraction index meaning that joyful movements are generally open and “expanding”. 
In conclusion, Contraction Index seems to be less significant than Quantity of Motion. 
This could be due to the fact that the choreography was predefined, and therefore 
contractions and expansions were pre-built in it: the differences that can be noticed 
would therefore be due to different ways to stress the predefined contractions/expansions 
depending to the expressive intention. Such differences, anyway, seem to be relevant 
enough to keep the Contraction Index and its derived cues in the analysis. 
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Figure 7.6: the average of the CI for each performance (Mazzarino, 2002) 

 

7.1.3. Kinematical measures 
 
Velocity and acceleration (in their x and y components) have been computed for the 
trajectories of 40 points returned by the Lucas-Kanade feature tracker during each motion 
phase. At the beginning of each motion phase the 40 points have been reassigned in order 
to avoid loosing too many points during tracking. The symmetric numeric derivative has 
been used for calculating velocity and acceleration. A low-pass filter has been applied to 
the result of the numerical derivative in order to reduce the noise introduced by this 
operation. An overall descriptor has been obtained by averaging the values on the 40 
trajectories. The modules of such overall velocity (i.e., speed) and acceleration have then 
been computed. The average, standard deviation, and peak values along a motion phase 
of such measures have finally been considered as possible expressive kinematical cues. 
The box-plot of the average of the speed along each motion phase is displayed in Figure 
7.7 in the following page. 
The Analysis of Variance has been performed on the average of the speed along motion 
phases whose results are displayed in Table 7.3. With a p-value of 0.0042 this cue 
appears to be statistically significant for the analysis1. 
The box-plots for the standard deviation and for the peak value of the speed are shown in 
Figure 7.8 a and b respectively. 

                                                 
1 In fact, this should not be surprising since Quantity of Motion, which is in many aspects related to speed, 
already resulted significant. It should be noticed however that the p-value for speed results higher that the 
p-value for Quantity of Motion. 
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Figure 7.7: box-plot of the average of the speed along the motion phases. The four basic emotions are 
labelled as follows: 1 – Anger, 2 – Fear, 3 – Grief, 4 – Joy. Speed is measured in [pixels/s]. 
 
  

ANOVA Table     
Source SS df MS F Prob>F 
Groups 5579.6 3 1859.95 4.48 0.0042 
Error 137039 330 415.27   
Total 142618.7 333    

 
Table 7.3: Analysis of Variance (ANOVA) for the averages of the speed along motion phases 

 
 

(a) (b) 

  
 
 
Figure 7.8: box-plots of (a) the standard deviation and (b) the peak value of the speed along the motion 
phases. The four basic emotions are labelled as follows: 1 – Anger, 2 – Fear, 3 – Grief, 4 – Joy. Speed is 
measured in [pixels/s]. 
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Significant differences can be noticed (even if not mathematically proved): for example 
grief results to have the lowest standard deviation, i.e., the lowest variation in speed, and 
the lowest peak value. The highest values are associated to anger that, according to the 
initial hypotheses, should be characterized by the most impulsive movements. 
These observations should be also confirmed by an analysis of acceleration. 
The box-plot of the average of the module of the acceleration along each motion phase is 
displayed in Figure 7.9. 

 
 
Figure 7.9: box-plot of the average of the module of the acceleration along the motion phases. The four 
basic emotions are labelled as follows: 1 – Anger, 2 – Fear, 3 – Grief, 4 – Joy. Acceleration is measured in 
[pixels/s2]. 
 
The Analysis of Variance has been performed on the average of the module of the 
acceleration along motion phases, whose results are displayed in Table 7.4.  
 
 

ANOVA Table     
Source SS Df MS F Prob>F 
Groups 1.40891·106 3 469637.7 9.27 6.6607·10-6 
Error 1.67159·106 330 50654.1   
Total 1.81248·106 333    

 
 
Table 7.4: Analysis of Variance (ANOVA) for the averages of t of the module of the acceleration along 
motion phases 
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With a p-value of 6.6607·10-6, this cue results statistically significant for the analysis. 
The box-plots for the standard deviation and for the peak value of the module of the 
acceleration are shown in Figure 7.10 a and b respectively. 
 

(a) (b) 

  
 
 
Figure 7.10: box-plots of (a) the standard deviation and (b) the peak value of the module of the 
acceleration along the motion phases. The four basic emotions are labelled as follows: 1 – Anger, 2 – Fear, 
3 – Grief, 4 – Joy. Acceleration is measured in [pixels/s2]. 
 
Significant differences can be noticed also in these box-plots, confirming for example 
that grief performances have the lowest values of acceleration (both in average and as 
peak value). Grief seems therefore to be characterized by small changes in velocity and 
therefore by movements sustained in Laban’s Time. Conversely, anger seems to be 
confirmed as the basic emotion having the highest dynamics (i.e., impulsiveness). 
 

7.1.4. Space-related expressive cues 
 
Space has been taken into account by extracting four expressive cues related to it: length 
of motion trajectories, direction of motion trajectories, Directness Index, and amount of 
upward movement. These cues have been computed for each motion phase (e.g., the 
length of the trajectory followed by a point during the whole motion phase has been 
calculated) on the trajectories of the same 40 points whose velocity and acceleration have 
been considered above. An overall value for each cue has been obtained by averaging on 
the 40 trajectories. 
Motion length has been normalised with respect to the duration of the motion phase in 
which it has been calculated. Motion direction has been obtained as the angle of the 
vector representing the overall motion direction (measured in radians in [-π,π]). Upward 
movement has been computed as the fraction of time in the motion phase motion 
direction was in [0, π] (and therefore upward movement is in the range [0, 1], being 1 the 
condition in which motion direction was in [0, π] along the whole motion phase).  
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The box-plots of the four space-related cues are displayed in Figure 7.11a, b, c, and d 
respectively. 
 

(a) (b) 

  
(c)  (d) 

  
 
Figure 7.11: box-plots of (a) the normalised length of the overall motion trajectory along a motion phase 
(measured in [pixel/number of frames]),  (b) the overall motion direction along a motion phase (measured 
in radians in the range [-π,π]), (c) the overall Directness Index along a motion phase, (d) the overall 
amount of upward movement in a motion phase. The four basic emotions are labelled as follows: 1 – 
Anger, 2 – Fear, 3 – Grief, 4 – Joy. 
 
These cues do not seem to be very significant for the analysis. The box-plots show quite 
similar values of them with respect to the four basic emotions. A possible problem with 
these cues is related to the duration of the motion phases. If a motion phase has a quite 
long duration, many motion strokes with different direction and directness can be part of 
it: if from the one hand the single values of direction and directness can be meaningful 
for each stroke, on the other hand their average on the whole motion phase can lose its 
significance since the strokes have too different values. A deeper analysis would 
therefore be needed on these cues taking into account different time views as it has been 
illustrated in Chapter 5. It should be noticed however that, as predicted by Boone and 
Cunningham (1998) upward movement shows a slightly higher value for joy. Even if 
probably not relevant, these cues have been kept in the analysis since they represent an 
important aspect of motion analysis. 
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7.1.5. Time-related expressive cues 
  
Two time durations have been considered in this analysis: the duration of the analysed 
motion phase and the duration of the immediately previous pause phase. The considered 
time durations are relative, i.e., divided by the duration of the whole performance. The 
box-plots for these cues are displayed in Figure 7.12 a and b respectively. 
   

(a) (b) 

  
 
 
Figure 7.12: box-plots of (a) the relative duration of motion phases and (b) the relative duration of pause 
phases. The four basic emotions are labelled as follows: 1 – Anger, 2 – Fear, 3 – Grief, 4 – Joy. 
 
The box-plots do not show very big differences even if grief seems to have shorter 
motion phases and longer pause phases.  
 
 

 
Figure 7.13 the overall duration of the dance performances for the 5 dancers (Mazzarino, 2002) 
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More interesting information can be obtained from the overall duration of the dances (see 
Figure 7.13 from Mazzarino, 2002). Psychologists argued that it should be longer for the 
grief performance and shorter for the anger one. This hypothesis seems to be confirmed 
by the data at least for grief, while for anger some discrepancies are indeed observed. It is 
however difficult to use the overall duration of dances for classifying single motion 
phases. 
Another aspect concerns the number of motion phases, the sequence of pause and motion 
phases and the sequence of the values of the other cues (e.g., QoM and CI) along the 
motion phases of a dance performance. These aspects are for example related to fluency.   
As an example of some results in this direction (Camurri, Lagerlöf, and Volpe, 2003), 
Figure 7.14 and 7.15 show the average values computed for each motion phase of 
Quantity of Motion and Contraction Index respectively, vs. the index of the motion 
phases (i.e., as they appear along time).  

 
Figure 7.14: average values of the QoM computed for each motion phase (Camurri, Lagerlöf, and Volpe, 
2003). The four graphs refer to four performances by the same dancer, each one expressing a different 
basic emotion:  anger – solid line; fear – dashed line; joy – dash-dot line; grief – dotted line. The X axis is 
the index of the motion phase in which the movement has been segmented (therefore, X is not the time 
axis). 
 
In each figure the four graphs refer to four performances by the same dancer in which the 
dancer tried to express the four basic emotions. In the figures line types are associated to 
emotions as follows: anger – solid line; fear – dashed line; joy – dash-dot line; grief – 
dotted line.  
It can be noticed, for example, that curves representing the average Quantity of Motion 
for anger (solid line) and fear (dashed line) have a similar trend: i.e., they starts with low 
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values and slowly increase at the beginning, then they continuously increase with 
increasing steepness. Fear, however, have much more motion phases than anger 
indicating a less fluent motion.  
Contraction Index for joy (dash-dot line) has quite low values with respect to the other 
emotions, while fear (dashed line) has quite high values, meaning that the body is often 
contracted (i.e., limbs are often close to the centre of gravity).  
Grief (dotted line) always has a high number of motion phases and a high variance of the 
average values of Quantity of Motion, meaning frequent transitions between motion and 
pause phases and very low fluency. Joy (dash-dot line), instead, has few long motion 
phases indicating a very fluent motion. 
It can be also noticed that, while from the one hand each of the four dancers has a 
particular trend allowing distinguishing between them, on the other hand what it has been 
observed above holds for all the four dancers, i.e., they expressed the four emotions by 
acting on the expressive cues in the same way. 

 
Figure 7.15: average values of the CI computed for each motion phase (Camurri, Lagerlöf, and Volpe, 
2003). The four graphs refer to four performances by the same dancer, each one expressing a different 
basic emotion:  anger – solid line; fear – dashed line; joy – dash-dot line; grief – dotted line. The X axis is 
the index of the motion phase in which the movement has been segmented (therefore, X is not the time 
axis). 
 
In conclusion, the explorative analysis seems to confirm that at least some of the 
extracted cues are statistically relevant for the analysis and satisfy the research 
hypotheses outlined in Chapter 5. Other cues appear to be relevant even if no statistical 
evidence can be produced about them. Other seems less important for classification 
purposes. The next section reports an attempt to build a model for performing such an 
automatic classification. 
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7.2. Classification of motion phases using decision trees 
 
Segmentation applied to the 20 dances recorded for the described experiment produced 
334 motion phases, each one characterized by the 18 variables previously discussed. In 
order to avoid problems with the range of the variables, they have been standardised.  
Decision tree models have been built in order to classify such motion phases in term of 
the four basic emotions anger, fear, grief, and joy. Five training sets (85% of the 
available data) and five test sets (15% of the available data) have been extracted from the 
data set. The samples for the test sets were uniformly distributed along the four classes 
and the five dancers. Five decision trees have been built on the five training sets and 
evaluated on the five test sets. The Gini’s index of heterogeneity has been used for 
building the decision trees. Decision trees have been selected for this study since they 
produce rules that can be used to try to give an interpretation of the results. However, 
comparison with other classification techniques (e.g., Neural Networks, Support Vector 
Machines) would be useful and remain as task for possible future work. 
The results obtained on the five decision trees are summarized in Tables 7.5 and 7.6 in 
the following pages (confusion matrices for the training sets and for the test sets 
respectively).  
Two models (model 3 and model 5) fit quite well the data set (the rates of correct 
classification on the training set for these two models averaged on the four classes are 
respectively 78.5% and 61.6%). Models 1, 2, and 4 have difficulties in classifying fear 
(rates of correct classification on the training set for these three models averaged on the 
four classes are respectively 41.9%, 38.7%, and 36%). Models 2 and 4 have problems 
also with joy (i.e., they distinguish only between anger and grief). 
A similar situation can be observed in the evaluation carried out on the test set: only 
models 3 and 5 are able to classify the four emotions. Model 1 cannot classify fear; 
models 2 and 4 cannot classify fear and joy. 
The rates of correct classification on the test set for the five models averaged on the four 
classes are respectively: 40%, 36%, 36%, 26%, and 40%. Thus the average rate of correct 
classification on the five models is 35.6%. Except for model 4 they are all above chance 
level (25%). Model 5 can be considered as the best model since it has a rate of correct 
classification of 40% and is able to classify all the four emotions. 
These rates of correct classification that at a first glance seem to be quite low (40% the 
best model) have however to be considered in relationship with the rates of correct 
classification from spectators who have been asked to classify the same dances. In fact, 
spectators’ ratings collected by psychologists in Uppsala show a rate of correct 
classification (averaged on the 20 dances) of 56%. 
The rate of correct recognition for automatic classification (35.6%) is thus in between 
chance level (25%) and the rate of correct recognition for human observers (56%).  
Furthermore, if the rate of correct classification for human observers is considered as 
reference2, and percentages are recalculated taking it as 100% (i.e., relative instead of 
absolute rates are computed), the average rate of correct automatic classification with 

                                                 
2 At the current state of the art of technology in these fields, it is reasonable to consider that machines are 
still not able to overcome humans in tasks like classification of emotions.    
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respect to spectators is 63.6%, and the best model (i.e., model 5) obtain a rate of correct 
classification of 71.4%. 
 
 

Model 1               
Class Total %Correct %Error Anger Fear Grief Joy 
Anger 64 68.75 31.25 44 0 6 14 
Fear 60 0 100 30 0 16 14 
Grief 86 48,8372 51,1628 17 0 42 27 
Joy 74 50 50 18 0 19 37 
          
Model 2               
Class Total %Correct %Error Anger Fear Grief Joy 
Anger 64 84.375 15.625 54 0 10 0 
Fear 60 0 100 45 0 15 0 
Grief 86 70,9302 29,0698 25 0 61 0 
Joy 74 0 100 51 0 23 0 
          
Model 3               
Class Total %Correct %Error Anger Fear Grief Joy 
Anger 64 79,6875 20,3125 51 4 6 3 
Fear 60 71,6667 28,3333 6 43 7 4 
Grief 86 81,3954 18,6047 4 0 70 12 
Joy 74 81,0811 18,9189 6 5 3 60 
          
Model 4               
Class Total %Correct %Error Anger Fear Grief Joy 
Anger 64 68.75 31.25 44 0 20 0 
Fear 60 0 100 37 0 23 0 
Grief 86 76,7442 23,2558 20 0 66 0 
Joy 74 0 100 45 0 29 0 
          
Model 5               
Class Total %Correct %Error Anger Fear Grief Joy 
Anger 64 71.875 28.125 46 10 2 6 
Fear 60 61,6667 38,3333 15 37 1 7 
Grief 86 47,6744 52,3256 10 19 41 16 
Joy 74 64,8649 35,1351 13 8 5 48 

 
Table 7.5: confusion matrices for the training set for the five decision trees 

 
By observing the confusion matrix of the best model (both for the test set and for the 
training set) it can be noticed that fear is often classified as anger. This particularly holds 
for the test set, where fear is the basic emotion receiving the lowest rate of correct 
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classification since 6 of the 13 motion phases extracted from fear performances are 
classified as anger.     
 
 

Model 1               
Class Total %Correct %Error Anger Fear Grief Joy 
Anger 12 50 50 6 0 2 4 
Fear 13 0 100 6 0 3 4 
Grief 12 66,6667 33,3333 3 0 8 1 
Joy 13 46,1538 53,8462 5 0 2 6 
          
Model 2               
Class Total %Correct %Error Anger Fear Grief Joy 
Anger 12 91,6667 83.333 11 0 1 0 
Fear 13 0 100 7 0 6 0 
Grief 12 58,3333 41,6667 5 0 7 0 
Joy 13 0 100 9 0 4 0 
          
Model 3               
Class Total %Correct %Error Anger Fear Grief Joy 
Anger 12 41,6667 58,3333 5 2 2 3 
Fear 13 15,3846 84,6154 8 2 1 2 
Grief 12 41,6667 58,3333 3 3 5 1 
Joy 13 46,1538 53,8462 4 1 2 6 
          
Model 4               
Class Total %Correct %Error Anger Fear Grief Joy 
Anger 12 75 25 9 0 3 0 
Fear 13 0 100 5 0 8 0 
Grief 12 33,3333 66,6667 8 0 4 0 
Joy 13 0 100 7 0 6 0 
          
Model 5               
Class Total %Correct %Error Anger Fear Grief Joy 
Anger 12 41,6667 58,3333 5 3 0 4 
Fear 13 30,7692 69,2308 6 4 2 1 
Grief 12 41,6667 58,3333 2 0 5 5 
Joy 13 46,1538 53,8462 4 0 3 6 

 
Table 7.6: confusion matrices for the test set for the five decision trees 

 
Something similar can be observed also in spectators’ ratings (Camurri, Lagerlöf, Volpe, 
2003). A more detailed comparison between automatic classification and spectators’ 
ratings for each performance (i.e., for each dancer and each basic emotion) can be found 
in Table 7.7 in the following page. 
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Automatic Classification       
  Anger Fear Grief Joy Total 
Dancer 1 50 13.2 70 6.6 29.94 
Dancer 2 73.2 10 40 20 39.96 
Dancer 3 30 6.6 60 33.4 30 
Dancer 4 67 0 33.2 30 36 
Dancer 5 70 13.2 50 46.6 41.94 
Total 60 9.153846 48.3 27.67692 35.568 
        
Spectators' ratings          
  Anger Fear Grief Joy Total 

Dancer 1 40 33 40 67 45 

Dancer 2 93 40 56 81 67.5 

Dancer 3 53 75 47 75 62.5 

Dancer 4 73 67 31 76 61.75 

Dancer 5 44 60 25 53 45.5 
Total 60.6 55 39.8 70.4 56.45 

 
Table 7.7: comparison between automatic classification and spectators’ ratings. 
The table of spectators’ rating is taken from (Camurri, Lagerlöf, Volpe, 2003). 

 
 
The numbers appearing in the table of automatic classification are the average rates of 
correct classification computed for each performance on the five decision trees. 
While anger is generally well classified both by spectators and by the automatic system 
(60% for automatic recognition vs. 60.6% for spectators), as already noticed quite bad 
results are obtained for fear (below chance level for automatic classification).  
The biggest overall difference between spectators and automatic classification can be 
observed for joy (70.4% for spectators vs. 27.7%, just above chance level, for automatic 
classification).  
In the case of grief instead automatic classification performs better than human observers 
(48.3% for automatic classification vs. 39.8% for spectators): in the tables this happens in 
five cases and mainly for grief. 
In seven cases the rate of correct classification for the automatic system is below chance 
level (and this always happens for fear).  
In one case automatic classification did not succeed in finding the correct emotion (Fear 
– Dancer 4), but spectators obtained 67% of correct classification.  
In one case spectators’ ratings are below chance level (Grief – Dancer 5), but automatic 
classification could obtain a rate of correct classification up to 50%. 
Dancer 1 obtained the lowest rates of correct classification both from spectators and from 
the models. Dancer 5 obtains similar rates from both. Dancer 2 is the best classified by 
spectators and also obtains a quite high rate (with respect to the other dancers) in 
automatic classification. 
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7.3. Discussion 
 
From the results of automatic classification sketched in the previous section some issues 
emerge that are worth to be shortly discussed. 
The reduced rate of correct classification for human observers (56%) could be partially 
due to facial expressions that have been removed for spectators’ ratings. Moreover, it is 
possible that some dancer did not perform at his/her best (this aspect in reflected in the 
variance of the rates of correct classification obtained for each performance). Some 
concerns also arise with respect to the methodology and to the aims of the experiment. 
For example, is it possible to ask a dancer to dance trying to express fear? Fear is usually 
displayed without the intention of doing it (and more often it is dissimulated in order to 
avoid to give the impression of feeling fear). Further, how much is dance (or music) able 
(or is it intended) to communicate a specific emotion? While listening to music or 
watching a dance performance it is not obvious that a specific emotion is triggered and 
perceived by spectators. Therefore, if from the one hand, the experiment here described 
can be a good starting point for research on expressive gesture, on the other hand other 
kinds of experiments would probably be needed for investigating less specific aspects 
(e.g., engagement, arousal) that are likely to be a more common component of the 
emotional experience. 
The gap among automatic classification and spectators’ ratings could be due to the lack 
of cues related to the temporal aspects of movement (i.e., rhythm). Such aspects have 
been only marginally considered in this experiment: in fact, among the 18 variables used 
for classification only the duration of the motion phase and of the previous pause phase 
can be considered as (weakly) related to rhythmical aspects. Indexes of fluency and 
impulsiveness as those sketched in Chapter 6 should also be introduced. Analogies with 
music could be envisaged, e.g., cues related to articulation: depending on if and how 
much motion phases overlap each others something similar to music legato and staccato 
could be taken into account. Enhanced segmentation techniques can be applied in order 
to shed light on the internal and rhythmical structure of a motion phase (i.e., in analogy 
with music, its attack, sustain, and decay sub-phases). 
By considering only single motion phases in the automatic classification, lot of 
contextual information has been removed (i.e., no information about previous motion 
phases is available to the automatic classification algorithm). Information about postures 
in the previous pause phases has also been removed. Such reduction of information about 
the context (related to the time perspective illustrated in Chapter 5) may also be 
responsible of the gap between spectators and automatic classification.    
In fact, in comparing spectators’ ratings and automatic classification, it should be noticed 
that spectators observed the whole dance before giving their judgment, while automatic 
classification is performed on single motion phases. That is, spectators received more 
information (i.e., overall duration of the dance, information related to the sequence of 
motion and pause phases, information related to body postures) with respect to the 
automatic system. Thus, if from the one hand, such a comparison can be useful for 
evaluating the performance of automatic classification and for indicating possible 
directions for future work (e.g., by trying to understand the differences among the dances 



Chapter 7 –  Classification of dance fragments 

 
- 126 - 

 
 

that received a high rate of correct classification and those that did not), on the other hand 
it could be misleading and it has to be considered with prudence. 
With respect to the conceptual framework discussed in Chapter 3 the automatic classifier 
can be collocated at Layer 4. It is an example of the kind of techniques that can be 
employed at this level. As already stated, comparison with other possible techniques 
could be useful and should constitute a research direction for future work. The decision 
trees mainly take into account cues located at Layer 2 (and some of them at Layer 3). The 
classifier works on a vector of such cues. Alternatively, it could be useful to work on a 
Layer 3 representation of expressive gesture (e.g., in term of energy and rhythm or of the 
dimensions of Laban’s Theory of Effort), for example trying to classify trajectories in 
expressive spaces. While in music examples of such expressive spaces are available (see 
for example Canazza et al. 2000), in movement further research is needed in order to 
ground possible spaces on solid scientific bases. 
In conclusion, this experiment can be considered as a first step and a starting point 
toward understanding the mechanisms of expressive gesture communication in dance. A 
collection of cues having some influence in such a communication process has been 
individuated, measured, and studied. A first attempt of automatic classification of motion 
phases has also been carried out and some results obtained (e.g., an average rate of 
correct classification not particularly high, but however well above chance level). Some 
directions for future research also emerged. 
A final remark (that will be reconsidered in the conclusion of this dissertation) concerns 
possible exploitations in concrete applications of the obtained results. It should be 
remembered that if the scientific focus was on the communicative mechanisms of 
expressive gesture, from a technical/applicative perspective the goal was to develop 
techniques enabling the development of novel interaction paradigms for interactive 
multimedia (especially for artistic performances). From the applicative point of view, 
what has been presented here can be considered as a first concrete implementation of the 
conceptual framework described in Chapter 3, although limited to the aspects of analysis 
of expressive gesture in human full-body movement. These techniques can thus be 
employed in developing the Expressive Gesture Analysis component of a virtual or 
mixed subject inhabiting a Multilayered Integrated Expressive Environment. Such a 
subject would be able to observe movement, measure expressive cues, extract expressive 
gestures, and possibly classify them according to the conveyed expressive content. If 
from the one hand, the way toward a subject fully having such skills is still very long and 
I do not know if it will be ever possible to obtain such a subject3, on the other hand from 
this first attempt it is already possible to get some information (e.g., the values of the 
measured expressive cues) on the expressive gesture the dancer is performing and such 
information can already be used in design and implementation of interaction 
mechanisms. In particular, in the field of performing arts the information that the 
described algorithms already make available can provide artists and designers of 
interactive systems with a collection of conceptual as well as technical tools enabling 
them to work in a scenario that technology only makes possible. 

                                                 
3 Indeed I also don’t know if I really would like to obtain such a fully skilled subject able to automatically 
classify people according to their emotional state… 



8.  Analysis in the General Space 1 
 
 
 
As already described in Chapter 5, the concepts of “Kinesphere”, referred also as 
“Personal Space”, and of “General Space”, the whole space surrounding the Kinesphere, 
come from theories of the researcher and choreographer Rudolf Laban. Personal Space 
and General Space constitute two different space perspectives along which expressive 
gesture in human movement can be analysed.  
The models and techniques discussed in the previous Chapters mainly dealt with 
movement in the Personal Space, i.e., they considered overall descriptors of the body 
movements of one dancer. The analysis of movement in the General Space instead 
consists in analysing the movement of one or more dancers (i.e., of his/her/their 
Kinesphere) in the surrounding space. This Chapter introduces some main research issues 
for analysis in the General Space and discusses a model for it. The model has been 
implemented as a collection of software modules for the EyesWeb Expressive Gesture 
Processing Library. 
 
 

8.1. Research issues 
 
Analysis of movement in the General Space is here addressed with respect to four main 
research issues. They can be shortly summarised as follows: 
(i) Use of the space. The objective is to study how a dancer2 uses the space 

surrounding him/her and the relationships between use of space and communicated 
expressive content. The focus is on individuating trajectories in the space and 
classifying them. Typical and repetitive patterns can also be extracted and further 
analysed. A set of parameters can be calculated such as the classified shape of a 
trajectory, the level of utilization of regions on the stage (e.g., occupation rates), 
the periodicity of repetitive patterns. Notice that at this stage of the analysis the 
space is considered as “neutral” i.e., without scenery or particular lighting (or, at 
least, scenery and lighting are excluded from the analysis). 

(ii)  Relationship with elements such as lights and scenery. The expressive content 
conveyed by the movement of a dancer in the space can widely change depending 
on elements giving a particular meaning to regions in the space. For instance, if the 
dancer moves continuously near a wall, the expressive content he/she conveys is 
very different with respect to a situation in which the dancer stands or moves 
directly in front of the audience. Mechanisms to associate an expressive potential to 

                                                 
1 This Chapter is partially taken from Camurri A., Mazzarino B., Trocca R., Volpe G. “Real-Time Analysis 
of Expressive Cues in Human Movement”, in Proc. Cast01 - Conference on artistic, cultural and scientific 
aspects of experimental media spaces, pp. 63-68, Bonn, September 2001. 
2 Notice that if from the one hand the reference model is here defined with reference to a dance 
performance, on the other hand it could be applied to the more general case of an object moving in a given 
space. As already mentioned, dance has been chosen as a test-bed in this work since it is the artistic 
expression of movement, therefore emphasizing the role of expressive gesture. 
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regions in the space can thus be developed and trajectories in such expressive maps 
can be studied. The parameters extracted in conditions of “neutral space” as 
described in (i) can thus be reconsidered in relationship with the expressive regions 
of the space (e.g., trajectories repetitively passing through a region with a high 
expressive potential can assume a particular relevance). 

(iii)  Relationship between the movements of two or more dancers. In the more general 
situation in which two or more dancers are involved in a performance, their 
movements in the General Space can be compared. The analysis on more dancers 
can be carried out both with respect to a “neutral” space and with respect to a space 
having expressive potentials. The relationships between the movements of each 
single dancer and the movement of the group can be also investigated.    

(iv) Relationship between parameters related to the General Space and parameters 
related to the Kinesphere. The techniques developed for analysis in the General 
Space are quite general: they can be applied to the analysis of movement in the 
Kinesphere as well. For example, analysis of trajectories, levels of utilization of 
particular regions, detection of repetitive patterns can be applied also to the motion 
trajectories of limbs inside the Kinesphere. Conversely, some parameters that are 
calculated mainly with respect to the Kinesphere can be reconsidered from the 
point of view of the General Space (e.g., “equilibrium” with respect to the 
expressive potentials, ratio between rotational movements and straight movements, 
use of straight and direct trajectories with respect to smooth trajectories). 

 
 

8.2. Reference model 
 
The main contribution to analysis in the General Space discussed in this dissertation is 
the development of a reference model that can be used as a basis for such analysis. The 
model improves an older model coming from previous studies carried out at the DIST – 
InfoMus Lab in collaboration with Waseda University, Tokyo (Camurri, Hashimoto, 
Suzuki, and Trocca, 1998). Extraction and analysis of parameters from this model is still 
an ongoing work.  
In the model, the General Space (considered as a rectangle) is divided into active cells 
forming a grid (see Figure 8.1). Each time the position of a tracked dancer is detected3, 
the corresponding cell is individuated and its indexes h and k are returned. Discrete 
potential functions can then be defined on the General Space. A discrete potential 
function can be represented by a matrix Φ = [φij]. The items in the matrix directly 
correspond to the cells in the grid: φij is the value that the potential function assumes in 
correspondence with the cell having (i, j) has indexes. Three main kinds of potential 
functions are envisaged: 

                                                 
3 Here I do not face the problem of tracking the position of the dancer in the General Space. Depending on 
the conditions of the stage (e.g., lighting, number of dancers on stage etc.), the solution could be difficult to 
find and implement. Several techniques can be employed, ranging from computer vision techniques to 
special purpose hardware localization systems. 
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(i) Potential functions not depending on the current position of the tracked dancer. 
(ii)  Potential functions depending on the current position of the tracked dancer.  
(iii)  Potential functions depending on the definition of regions inside the General Space. 
 
Suitable mapping strategies (see Chapter 4) can be developed in order to associate some 
behaviour to a particular cell or set of cells (e.g., a direct mapping could generate some 
kind of output when a particular cell is activated by the dancer passing on it). 
 

Figure 8.1: the General Space considered as a grid of active cells 
 

8.2.1. Potential functions not depending on the current position of the dancer 
 
φij  is constant with respect to the cell currently activated by the dancer. Consider, for 
example, lights and fixed scenery: potential functions can be associated to each element 
of fixed scenery and to the lights that are used in a particular scene. The potential 
function associated to each element can be represented by a matrix Φp. The overall effect 
can be determined by summing the matrixes Φp in an overall matrix Φ = Φ1 + Φ2 +  ... + 
ΦP, being P the number of scenery and light elements taken into account. The trajectory 
of the dancer with respect to such potential function can be studied in order to identify 
relationships between movement and scenery and suitable mapping strategies can be 
developed in order to associate outputs to movements performed in relevant places. 
Nevertheless, the current cell (h, k) in which the position of the dancer is mapped has no 
influence on the elements φij of the matrix representing the potential function: the values 
of such elements φij are in fact calculated only on the basis of the positions of the 
considered fixed scenery and lights. Note that this does not mean that φij has to be 
constant along time: consider, for example, lights that are turned on and off during the 
performance. Their contribution to the overall potential function can be added only when 
they are on. In this case, the values φij change over time, nevertheless the potential 
function is still independent from the current position of the dancer. 
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8.2.2. Potential functions depending on the current position of the dancer 
 
φij = φij (h, k) where (h, k) is the cell currently occupied by the dancer. In this way it is 
possible to define potential functions moving in the space together with the movement of 
the tracked dancer. Consider, for example, the following potential function: 
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The potential function depends on the current cell position (h, k) of the dancer and 
changes every time he/she moves. For example, Figure 8.2 shows the potential function 
(*) calculated when the dancer occupies respectively the cells (10,10), (40,40) and 
(60,60) (i.e., the dancer is moving along a diagonal) in a space having 100×100 cells. 
 

      
   

 
 
Figure 8.2: the potential function (*) calculated for a dancer moving along a diagonal, i.e., cells (10,10), 
(40,40) and (60,60) in a space having 100x100 cells  
 
In a more general perspective, it is possible to create potential functions forming a “bell” 
around the dancer and moving with him: further the “bell” can be modified (e.g., made 
wider) corresponding to the analysed movement inside the Kinesphere (e.g., a wide 
“bell” associated to expansive movements of the Kinesphere). Mobile scenery can also 
be associated to this kind of potential functions. 
Another example: suppose that each cell is characterised by an activity level, i.e. a sort of 
measure of how much the cell has been occupied by the dancer. The activity levels of the 
cells are stored in an m×n matrix A = [aij] where i and j are the indexes associated to a 
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cell. The matrix A defines a potential function in the General Space. Consider a neutral 
environment. An increment function I(aij) and a decrement function D(aij) are defined. 
Since, at a first stage, the space is considered as neutral, i.e., no particular meaning is 
associated to regions in the space, the same increment and decrement functions are 
applied to all the cells in the grid. Each time the position of the tracked dancer is 
detected, the corresponding cell is individuated and its activity level is incremented 
according to the increment function. The activity value of the remaining cells is 
decremented according to the decrement function. This example can be implemented 
using a potential function depending on the current position of the tracked dancer defined 
as: 
 







=
≠

=
),(),( if        )(

),(),( if       )(
),(

khjiaI

khjiaD
kha

ij

ij

ij
 

 

8.2.3 Potential functions depending on the definition of regions 
 
Regions can be defined on the grid. An hit function H(⋅) and a miss function M(⋅) can be 
associated to each region. The hit function is applied to calculate the potential function 
for a cell inside a region, each time the cell currently occupied by the dancer is inside that 
region. Otherwise, the miss function is used. φij = φij (R(i,j)) where R(i,j) is the region to 
which the cell (i, j) belongs. In particular if N regions R1, R2, ... , RN are defined with the 
correspondent H1, H2, ... , HN  hit functions and M1, M2, ... , MN  miss functions, 
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Note that, since the hit and miss functions are here defined as functions of the previous 
value of the potential function in the cell (i, j), some kind of memory is involved in this 
approach.  
The previous example concerning the activity level of a cell in a neutral environment can 
be also implemented by using a potential function depending on the definition of regions 
in the General Space: in particular, in that case each cell defines a region (i.e., m×n 
regions are defined) and the same hit function H(⋅) = I(aij) and miss function M(⋅) = 
D(aij) are associated to all the regions (cells). Suppose now to consider a stage 
environment with presence of scenery and lights. The “neutral” values of the activity 
level of each cell previously calculated are no more valid: there will be some regions in 
the General Space in which the presence of movement is more meaningful than in others. 
A certain number of “meaningful” regions (i.e., regions on which a particular focus is 
placed) can be defined and suitable hit and miss functions can be associated to them. A 
variation related to the meaning of a specified region is added to the “neutral” evaluation 
of the activity level, thus obtaining a new activity level taking into account elements of a 
particular stage environment. 
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8.3. The EyesWeb Space Analysis Library 
 
The model previously described has been implemented as a collection of software 
modules for the EyesWeb open software platform (see Camurri, Coletta, Peri, Ricchetti, 
Ricci, Trocca, Volpe, 2000, and Appendix A), included in the EyesWeb Space Analysis 
Library. The EyesWeb Space Analysis Library is part of the EyesWeb Expressive 
Gesture Processing Library (see Camurri, Mazzarino, Volpe, 2003, and Appendix B).  
The General Space model consists of four EyesWeb blocks: the first one allows 
subdivision of an image in cells and returns as output the indexes of the cell currently 
occupied by a given tracked point (e.g., a dancer moving on stage), the other three allow 
the definition of (i) potential functions independent from the position of a tracked object, 
(ii) potential functions depending on the current position of a tracked object, (iii) 
potential functions depending on the definition of regions in the space. 
 

 
  

Figure 8.3: occupation rates of cells in the General Space 
 
Motion features can also be extracted from analysis in the General Space. For example, 
Figure 8.3 shows the occupation rates calculated on a rectangular space divided into 25 
cells. After sampling the trajectory followed by a tracked point, the occupation rate is 
calculated for a given cell as the ratio between the number of samples the tracked point 
was inside that cell and the total number of available samples. In the Figure the intensity 
(saturation) of the colour for each cell is directly proportional to the occupation rate of 
the cell. The trajectory of the tracked point is also displayed. 
 



9. Conclusions 
 
 
 
This dissertation introduced Multilayered Integrated Expressive Environments (MIEEs) 
as environments in which novel forms of artistic performances can be developed, where 
the performing action takes place in a number of physical as well as virtual connected 
spaces, inhabited by real, virtual, and mixed subjects. MIEEs have been discussed with 
respect to their structure and the communication processes taking places among the 
subjects inhabiting them. A particular focus has been put on expressive gesture as a main 
carrier of information in MIEEs in which, as it often happens in artistic performances, 
communication mostly exploits non-verbal mechanisms. An architecture for virtual and 
mixed subjects inhabiting MIEEs has been presented, and a conceptual framework for 
multimodal analysis and synthesis of expressive gesture by such subjects has been 
discussed. 
Attention then moved on analysis of expressive gesture in human full-body movement 
considered as an example of processing a virtual or mixed subject has to carry out in 
order to accomplish its task inside a MIEE. An experiment has been present analysing 
expressive gesture in dance performance with respect to the emotions it is able to convey. 
After reviewing the sources on which research has been grounded, a collection of 
techniques for real-time extraction of expressive cues from video-captured human full-
body movements has been presented. A prototype of decision tree classifier of expressive 
gestures in term of the four basic emotions anger, fear, grief, and joy has been developed 
and its outputs have been described. 
In conclusion, before shortly discussing obtained results, future works, and possible 
ethical concerns of this research, two concrete sample applications are presented in this 
Chapter, related to two different application scenarios: artistic performances and therapy 
and rehabilitation. These are just examples of the wide possibilities of exploitation of the 
developed models and techniques in a broad set of application fields, such as for example 
interactive edutainment, interactive entertainment, applications for culture, museums, and 
exhibits, tools for performing arts, for the industry of digital music instruments, for music 
theatre, for therapy and rehabilitation. 
 
  

9.1. Two sample applications 
 
Two examples of concrete applications exploiting the developed models and techniques 
are now briefly introduced, the first one in the field of performing arts, the second in 
therapy and rehabilitation. The two applications have been developed at the DIST – 
InfoMus Lab in the framework of two EU projects: the cited EU IST project MEGA and 
the EU-IST project CARE HERE (Creating Aesthetically Resonant Environments for the 
Handicapped, Elderly, and Rehabilitation). 
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9.1.1. The concert “Allegoria dell’opinione verbale” 
 
This piece was conceived by the composer Roberto Doati during a workshop at the DIST 
- InfoMus Lab in June 2000 and performed (first performance) in September 2001 at the 
opening concert of the season of Teatro La Fenice, Venice, Italy. The concert has been 
performed again in March 2002 at Auditorium “E. Montale”, Teatro dell’Opera Carlo 
Felice, Genova, Italy. During the concert an actress (Francesca Faiella) is on stage, seats 
on a stool placed in the front of the stage near the left side. The actress is turned towards 
the left backstage (the audience therefore sees her profile). A large screen projects her 
face in frontal view. A videocamera is placed (hidden) in the left part of the backstage, 
and it is used both to get images of the face of the actress to be projected on the large 
screen and to acquire her lips and face movements.  
 

 
 

Figure 9.1: the EyesWeb patch for the concert “Allegoria dell’opinione verbale” 
 
The actress plays the text in front of the camera. The EyesWeb open platform and the 
EyesWeb Expressive Gesture Processing Library are employed to process the 
movements of actress’ lips and face, in order to extract expressive cues (similar to the 
ones described in Chapter 6) used to record and process in real-time her voice and diffuse 
spatialised electroacoustic music on four loudspeakers placed at the four corners of the 
auditorium in a standard electroacoustic music set-up. The signals reproduced by the 
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loudspeakers are only derived by the actress’ voice: former recordings of her voice, real-
time recordings, and post-processing in real-time. The audience can observe the 
movements of the actress’ face in the large screen, while listening to the piece and thus 
perceiving the overlapping and interaction of her movements with sound changes coming 
from the loudspeakers. Figure 9.1 in the previous page shows the EyesWeb patch 
employed in the concert. 
During the performance held in Genova in March 2002, an experiment was carried out 
(in collaboration with the Department of Psychology of the University of Uppsala, 
Sweden) in order to measure and evaluate the reactions of the audience to a concert 
exploiting interactive technologies. The event was structured as follows: 
1) Performance of the piece. 
2) Soon after the performance, distribution to the audience of a questionnaire prepared 

by the psychologists in Uppsala (no explanation at the entrance, only at this point). 
No introductory words apart from the kind request to fill the questionnaire. 

3) Discussion, presentation, explanation by the composer, the actress, and prof. Antonio 
Camurri of both the aesthetic/artistic and technological issues, including a short live 
demonstration of how the system works by showing it on the big screen. 

4) A second performance of the piece. 
5) The audience answers to a second questionnaire. 
6) End of the event. 
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Figure 9.2: mean and 95% confidence interval for the audience’s perceived first impression of the 
performance (first bar, from left), strength of experience (second bar), and to what extent the impression 
(third bar) and strength (fourth bar) have been changed by the second performance after discussion with the 
staff. 
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The audience included 60 people, with a wide variety concerning age, sex and culture. 
Figures 9.2 shows the responses of the audience respectively after the first and the 
second performance and with respect to two aspects: the overall impression (positive or 
negative) and the strength of the experience. 
After the first performance the audience immediate impressions were positive (Mean 6.0, 
on a scale ranging from very negative 0 to very positive 10, see first bar from the left in 
Figure 9.2). The second bar in Figure 9.2 shows the perceived strength (mean 5.9) 
indicating a common strong experience of the performance among people in the 
audience. After the second performance (and discussion with the staff) the impressions 
were significantly more positive (mean 5.8) with respect to the audience’s first 
impressions (on a scale ranging from more negative 0 to more positive 10, third bar in 
Figure 9.2). The strength of the experience was also affected (mean 5.4, last bar) but not 
significantly above scale-level 5, which for the two rightmost bars defines no change 
with respect to the former performance.  
 

9.1.2. Therapy and rehabilitation of Parkinson’s patients 
 
The research outputs described in this dissertation have also been used in the framework 
of the EU-IST project CARE HERE to analyse the body movements of different kinds of 
patients (Parkinson’s patients, severely handicapped children, people with disabilities in 
the learning processes) and to map the analysed parameters onto automatic real-time 
generation of visual outputs, attempting to create aesthetic resonance.  
The underlying idea of aesthetic resonance is to give patients a visual and acoustic 
feedback depending on a qualitative analysis of their (full-body) movement, in order to 
evoke ludic aspects (and consequently introduce emotional-motivational elements) 
without the need neither of the rigid standardisation required for typical motion analysis, 
nor of invasive techniques: subjects can freely move without on body sensors/markers.  
A pilot experiment carried out in order to test the developed techniques on patients with 
Parkinson’s disease (PD) is described in (Camurri, Mazzarino, Volpe, Morasso, Priano, 
Re, 2003). The experiment consisted in analysing movement of two PD patients, 
extracting a collection of motion parameters related to motion energy and fluency, and 
producing in real-time audio and visual feedback.  
For example, Figure 9.3 shows the output of a therapeutic session where patients are 
engaged in “interactive painting” with their own body. The patient sees himself on a 
large screen painting in real-time through his/her motion in the space. Previous work in 
the performing arts field exists where engagement of the audience is obtained in a similar 
way: see for example the PAGe - Painting by Aerial Gesture system (Tarabella, 2001). 
With PAGe the user can interact through an interaction paradigm like the MS Paint 
software, using his hands while standing in front of a large video screen: the user can 
select a colour or an action with one hand, then he can paint with that colour with the 
other hand. This therapeutic exercise is slightly different: the interaction is based on 
some of the movement cues described in Chapter 6. For example, the colour may depend 
on fluency; Quantity of Motion may be associated to the intensity of the colour trace; 
pauses in movement (using the segmentation techniques previously described) allow 
restarting the process and re-assigning/adapting the mappings strategies. In this way, by a 
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careful choice of colours, e.g., by creating “pleasant” colour associations/mappings with 
fluent and non-hesitating movements, it is possible to create a sort of visual feedback 
encouraging improvement of movement in patients. During this exercise the subject 
looks at the picture painted on the screen and continuously changes it while moving. On 
another display the researcher analyses the parameters and if needed corrects them in 
order to tune the exercise on the patient’s needs. 
   

 
Figure 9.3: example of therapeutic session using a painting exercise. Colour and intensity of the colour 
trace depend on automatically extracted movement features.  
 
 

9.2. Research results and perspectives 
 
The work presented in this dissertation can be considered as belonging to a collection of 
first attempts of understanding the mechanisms underlying non-verbal communication 
through expressive gesture. Research in such direction is becoming more and more 
important as demonstrated by the continuous growing of the Affective Computing and 
KANSEI Information Processing fields in the U.S. and in Japan and by EU-funded 
projects like the MEGA project.  
This work contributes in the development of applications for interactive multimedia 
scenarios in which such non-verbal mechanisms are the main communication channels. 
In this perspective, a particular focus has been on performing arts, even if others 
application domains are also envisaged (e.g., therapy and rehabilitation).  
Relevant outputs can be considered the contributions in: 
- The definition of a structure for inhabited multilayered environments able to provide 

a paradigm for the development of distributed interactive performances and giving a 
framework in which expressive gesture can be studied as the main carrier of non-
verbal information among the inhabiting real, virtual, and mixed subject. 

- A better (even if not exhaustive) definition of expressive gesture taking into account 
some of the existing literature on gesture modelling and processing and 
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encompassing different aspects of expressive gesture i.e., its role in communication, 
its aesthetical valence (as a main component of artistic performances), its relation 
with physicality (e.g., expressive gestures of dancers and music performers with 
respect to computer animated expressive gestures). 

- The definition of an architecture for virtual and mixed subjects inhabiting 
Multilayered Integrated Expressive Environments, that starting from previous works 
on emotional agents for Multimodal Environments and grounding on the research 
carried out with partners in the MEGA project provides a way to include in the same 
framework analysis, synthesis, and mapping of expressive gesture in a multimodal 
perspective. 

- The development of an instance of the analysis side of such architecture in the 
context of dance performance and as a result of an experiment aiming at 
understanding emotion communication through expressive gesture. 

- The development of algorithms for measuring global expressive cues from human 
full-body movement, the analysis of such cues, and their use for a first attempt of 
automatic classification of dance fragments in term of conveyed basic emotions.  

 
Of course, this work cannot be considered exhaustive and conclusive since many 
research issues still need to be discussed and wide perspectives are open for possible 
future work. As an example, I just try to list some of them: 
- The dissertation focused on the structure of MIEEs and on the communication 

processes taking place inside them through expressive gesture. Another very relevant 
aspect has been only marginally faced: the dynamics of MIEEs along time. MIEEs 
are not static constructions, but they continuously evolve along time depending on 
the storyboard of the performance for which they are employed. A definition of 
storyboard would therefore be needed and the mechanisms through which the 
structure of MIEEs evolves would need a deeper investigation. 

- The implementation of a MIEE will employ some kind of hardware and software 
platform. The discussed structure of a MIEE, its dynamics, the interactions taking 
place in it would therefore produce requirements for the employed platform. These 
requirements would need to be stated and analysed.  

- The definition of expressive gesture should be further worked out. A comparison 
(and maybe a distinction) with respect to music gesture and dance gesture would be 
useful. A unified taxonomy of expressive cues characterising expressing gesture in 
movement (e.g., dance), music, and visual media should be developed, grounded on 
analogies between similar aspects in the different modalities. 

- Other (and maybe more significant) aspects of expressive gesture need to be 
investigated. As discussed in Chapter 7, emotions might be too specific (i.e., 
watching a dance performance and listening to music do not always trigger specific 
emotions). In this perspective other experiments have been carried out and are still 
ongoing aiming at studying expressive gesture as responsible of emotional 
engagement in the audience. An example is the experiment sketched in Chapter 3 on 
the engagement of spectators exposed to musical stimuli. In this experiment 
recordings of piano performances (a piece by Skriabin and a piece by Liszt played by 
professional concert pianist Massimiliano Damerini) in different situations (i.e., in a 
studio situation without audience and in a performance-like situation with the 
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audience, both as a the first piece of the concert or after a virtuosistic piece) have 
been collected. Recordings consist of audio (four microphones, two near the piano 
and two in ambience) and video (four videocameras: from the front, from the top, 
from the left, and from the right with respect to the pianist, see Figure 9.4). 
Furthermore, MIDI data from the piano (a Yamaha Grand Coda Disklavier, rented 
for the experiment) have been collected. Spectators have been asked to evaluate their 
emotional engagement while listening to the performances by using techniques for 
continuous measurements (Schubert, 2001). Such continuous measures from 
spectators have been compared with extracted motion and audio cues in order to find 
possible correlations. Preliminary results can be found in (Camurri, Mazzarino, 
Timmers, Volpe, 2003, and Timmers, Camurri, Volpe, 2003). 

- Some aspects in dance performance have only been marginally considered. In 
particular, aspects related to rhythm should be further investigated. Expressive cues 
like impulsiveness and fluency should be further worked out. Moreover, perceptual 
experiments would be needed to empirically validate the extracted expressive cues. 

- Multimodal integration should be deeper investigated, i.e., analysis on particular 
aspects (e.g., expressive gesture in dance and in music) should be better related to the 
unifying conceptual framework described in Chapter 3. Work on synthesis and 
mapping strategies is still needed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.4: recordings of a piano performance for analysing spectators’ engagement. 
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As the above incomplete list of possible extensions shows, lot of work is still needed for 
really understanding the power of expressive gesture in human-computer interaction and 
for developing systems able to fully exploit it. 
Expressive gestures can open a path toward novel forms of artistic performances, in 
which technology is not just something added to a traditional scenario, but rather 
becomes a component of the artistic language. They are also a challenge for designer of 
interactive systems: as in software engineering methods for designing and implementing 
good software are developed and studied, the designer of interactive systems would need 
methods to develop and adapt his/her work with respect to the application scenarios and 
the requirements of the designer of a performance or of an installation. Moreover, 
analysis of some aspects of expressive gesture can lead to results that might be useful for 
other research domains. For example, the analysis of engagement in spectators exposed 
to musical stimuli, or the analysis of the behaviour of visitors in a museum exhibit can 
lead to the development of models of spectators/visitors and, in more general terms to 
models of users’ behaviour, taking into account information related to the affective, 
emotional sphere. 
Of course, the broad possibilities of industrial exploitation of such techniques also raise 
ethical concerns. As an example, let’s consider the risk related to the availability of 
techniques able to emotionally classify users according to their behaviour and to convey 
them suitable emotional messages. Such techniques could allow third parties to control in 
some way user’s behaviour (e.g., as it is already happening on a certain extent in 
advertising, companies could use such information to control the behaviour of their 
customers). Moreover, the emotional, affective sphere is related to the most private 
aspects of individuals’ life and techniques able to deal with it must be carefully 
considered with respect to privacy safeguard. Of course, as it often happens when dealing 
with technology, models and algorithms are not ethically good or bad intrinsically. 
Rather, it is how they are used that determines whether they are ethically acceptable or 
not. This technology has the power to bring big advantages to humans (consider for 
example the benefits of an enhanced human-computer interaction in term of diminished 
stress for people working with computers, the potentialities in therapy and rehabilitation 
e.g., for autistic children, the possibility to improve the learning process by employing a 
learning-by-playing paradigm). It has some potential risks too. It is also our 
responsibility, as scientists and technologists, to fully exploit any possible benefit and to 
be on guard against any possible misuse. 
 



Appendix A. The EyesWeb open platform 
 
 
 
The EyesWeb open hardware and software platform (Camurri, Coletta, Peri, Ricchetti, 
Ricci, Trocca, Volpe, 2000; www.eyesweb.org) has been adopted for the implementation 
of the gesture processing algorithms discussed in this dissertation and for the 
development of the applications employing them (as for example the concert “Allegoria 
dell’opinione verbale” and the therapeutic exercises illustrated in Chapter 9).  
EyesWeb is an open hardware and software platform conceived for the design and 
development of real-time music and multimedia applications. It supports the user in 
experimenting computational models of non-verbal expressive communication and in 
mapping gestures from different modalities (e.g., human full-body movement, music) 
onto multimedia output (e.g., sound, music, visual media). It allows fast development and 
experiment cycles of interactive performance set-ups by including a visual programming 
language allowing mapping, at different levels, of movement and audio into integrated 
music, visual, and mobile scenery.  
EyesWeb is the basic platform of the MEGA EU IST project and has also been adopted 
in the EU IST CARE HERE project on therapy and rehabilitation. EyesWeb is fully 
available at its website (www.eyesweb.org). Public newsgroups also exist and are daily 
managed to support the growing EyesWeb community (more than 700 users at the 
moment), including universities, research institutes, and industries. 
The EyesWeb open platform consists of a number of integrated hardware and software 
modules that can be easily interconnected and extended. The EyesWeb software consists 
of a development environment and a set of libraries of reusable software components that 
can be assembled by the user in a visual language to build patches as in common 
computer music languages.  
EyesWeb includes a software Wizard enabling users to extend the system with new 
modules, data-types, and libraries.  
The software runs on Win32 and is based on the Microsoft COM/DCOM standard; it 
supports Steinberg VST and ASIO; it supports OSC (Open Sound Control). 
Two kinds of modules are currently available: “passive modules” (i.e. filters) and “active 
modules”, i.e., modules with an internal dynamics, which receive inputs as any other 
module but may send outputs asynchronously with respect to their inputs. For example, 
the Affective Decision Maker module discussed in Chapter 4 has been implemented as 
an active module.  
EyesWeb libraries include:  
- Input: support for frame grabbers (from webcams to professional videocameras), 

wireless on-body sensors (e.g. accelerometers), audio and MIDI input, serial, tcp/ip; 
- Math and filters (e.g. pre-processing, modules for signal conditioning, etc.);  
- Imaging (processing and conversions of images);  
- Sound and MIDI libraries;  
- Communication (e.g. MIDI, OSC, tcp/ip, serial, DCOM, etc.);  
- Output: visual, audio, MIDI, serial, tcp/ip, etc. 
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In the particular framework of this dissertation, EyesWeb has been selected since (i) it 
allows to interactively map motion parameters onto sounds and visual media in a 
multimedia scenario, (ii) it allows integration of novel analysis techniques as new 
libraries or extensions to existing libraries, (iii) it allows fast design, development, and 
testing of multimedia interactive applications, (iv) it can display in real time the analysed 
expressive cues, (v) it supports different types of sensors (including wireless), one or 
more videocameras, and can be programmed to perform specific analysis of movement in 
real-time. To this last task, the EyesWeb Expressive Gesture Processing and Motion 
Analysis Libraries (see Appendix B) have been developed and employed, including 
software modules for extraction and pre-processing of physical signals (e.g., video from 
videocameras), and extraction and processing of motion parameters.  
Figure A.1 shows three examples of EyesWeb patches in which visual output is obtained 
as a result of a direct mapping of expressive cues extracted from movement. 
 
 

  
  

 
 
 
Figure A.1: three examples of EyesWeb patches mapping expressive cues extracted from human full-body 
movement into real-rime generation of visual content. 
 



Appendix B. The EyesWeb Expressive Gesture 
Processing Library 
 
 
 
The EyesWeb Expressive Gesture Processing Library is a main concrete output of the 
research discussed in this dissertation. It includes a collection of EyesWeb blocks 
(software modules) and patches (interconnections of blocks) contained into three main 
sub-libraries: 
 
- The EyesWeb Motion Analysis Library: a collection of modules for real-time motion 

tracking and extraction of expressive cues from human full-body movement. 
- The EyesWeb Space Analysis Library: a collection of modules for analysis of 

occupation of 2D (real as well as virtual) spaces. 
- The EyesWeb Trajectory Analysis Library: a collection of modules for extraction of 

features from trajectories in 2D (real as well as virtual) spaces. 
 
The EyesWeb Motion Analysis Library applies computer vision techniques to extract 
expressive cues from human full-body movement. A first layer consists in individuating 
and tracking motion in the incoming images. Background subtraction is used to segment 
the body silhouette. Algorithms based on searching for body centroids and on optical 
flow based techniques (e.g., the Lucas and Kanade tracking algorithm, Lucas & Kanade, 
1981) are available. Starting from silhouettes and tracking information a collection of 
expressive cues is extracted (see Chapter 6). They include Quantity of Motion, 
Contraction Index, Stability Index (i.e., equilibrium), orientation of body parts, 
kinematics (speed, acceleration and their average and peak values obtained by using the 
outputs of the tracking algorithms as inputs to the Trajectory Analysis sub-library), 
overall motion direction, measures related to the temporal dynamics of movement (e.g., 
segmentation of movement in pause and motion phases, duration of pause and motion 
phases, inter-onset intervals as the time interval between the beginning of two subsequent 
motion phases). A set of modules for posture recognition is also available. 
 
The EyesWeb Space Analysis Library is based on the discussed General Space model 
considering a collection of discrete potentials defined on a 2D space (see Chapter 8). 
Objects and subjects in the space can be modelled by time-varying potentials (e.g., a 
dancer on a stage can be modelled as a bell-shaped potential moving around the space). 
Interactions between potentials can be used to model interactions between (real, virtual, 
or mixed) objects and subjects in the space. Regions in the space can also be defined. The 
metaphor can be applied both to real spaces (e.g., scenery and actors on a stage) and to 
virtual, semantic, expressive spaces (e.g., a space of parameters where gestures are 
represented as trajectories). The library includes blocks allowing the definition of 
interacting discrete potentials on 2D spaces, the definition of regions, the extraction of 
cues (such as, for example, the occupation rates of regions in the space). 
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The EyesWeb Trajectory Analysis Library contains a collection of blocks for extraction 
of features from 2D trajectories. Such features include geometric measures (e.g., 
trajectory length, Directness Index) and kinematical measures (velocity, acceleration, 
curvature). Statistic measures along time (e.g., average, peak values calculated both on 
running windows or on all the samples between two subsequent commands) and statistic 
measures among trajectories (e.g., average velocity of N trajectories) are also available. 
Trajectories can be real trajectories coming from the tracking algorithms of the EyesWeb 
Motion Analysis Library or virtual trajectories (e.g., trajectories representing gestures in 
semantic, expressive spaces). The extracted features can be used as inputs to clustering 
algorithms.   
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