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Introduction

While technology continuously evolves toward fasted smaller devices and broadband
communication systems become available to largempy of people, the need of novel
human-machine interaction paradigms strongly enseegel researchers are faced with
the challenge to provide users with effective, itinta, powerful ways to communicate
with the more and more technological environmeaythive in. In what now could seem
a futuristic house (but we could live in one ofrthen a few years, and maybe someone
already does) hidden computing devices placedraliral and diffused into everyday
objects will manage and support many aspects gflpedives.

Some research groups in the U.S. and in Japan faaed such a challenge for novel
interaction paradigms by trying to introduce a Hiert level of processing in computer
systems, a level of processing dealing with emaliceiffective information. This attempt
produced two novel research branches in Human-Ctampimteraction: Affective
Computing in the U.S. (see for example Picard, )198@d KANSEI Information
Processing in Japan (see for example Hashimoto7)19%he EU-IST MEGA project
(Multisensory Expressive Gesture Applications) gri distinguish itself from its
counterparts in U.S. and Japan, by following a paam route in investigating the same
topics. Such route is grounded on the traditiomal solid bases of European humanistic
culture: theories from psychology, philosophy, perfing arts, and humanities are the
sources research is inspired to.

The MEGA project (and this dissertation) strongbcuses on the development of
interactive multimedia systems for performing assa main concrete output. The choice
of performing arts as application domain is dukeast to two aspects: (i) performing arts
widely use non-verbal and expressive communicatechanisms to convey emotional,
affective information to the audience and therefoepresent an ideal test-bed for
computational models and algorithms dealing withs thind of information; (ii)
technology can bring important concrete contribngido this field by providing tools
enabling novel ways of conceiving artworks and neagtiowing the development of
completely new art forms.

If from the one hand the focus on performing aesnss to be justified by the arguments
above, on the other hand it constitutes a furthetlenge for this research. In facts, art
and technology are two words that at a first glaseem to be in opposition each other,
the former related to the sphere of aestheticshamdanities, the latter to the field of
science and engineering. At the beginning of tiesettation it is therefore worth to ask
myself (as a colleague and friend wrote) if it doeske sense for technology to deal with
art and vice versa. A first comment to this difficquestion can be found here above,
i.e., | believe that art can take advantage frochrielogy in term of tools allowing artists
to create scenarios that are not possible otherhsgce that these novel scenarios are
not limited to employment of virtual or mixed raglitechniques, as one can initially
think. Of course, mixed reality techniques are fnary importance, but they are mainly
related to the visualization aspects, i.e., theydiaplay worlds in which real and virtual
objects and subjects interact and overlap. Teclgydhmwever can interact with art at a
deeper level than visualization, i.e., at the leviethe language art employs to convey
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content and to provide the audience with an aastietxperience. Interaction at this
level requires technology to be able to deal wihté @rtistic content, i.e., what the artist
wants to communicate and with the communicationhraeisms enabling the experience
of the audience. In this perspective, researchxpressive gesture as a main conveyor of
information related to the emotional sphere allcavsedefinition of the relationship
between art and technology: from a condition in clhiart uses technology for
accomplishing specific tasks that only technology afford (or that computers can do
better than humans) to a novel condition in whiebhtology and art share the same
expressive language and in which technology allihesartist to directly intervene on the
artistic content and in the expressive communiogbimcess.

| do not know if such a deep integration will eber possible. The current state-of-the-art
is very far from such a condition and this new gahen of interactive systems for
performing arts is still far to be developed. Ndpoiget the possible risks related to this
research for example in term of partially exprofomig the artist of its artistic creation or
in term of repercussions in other application deregthat can be either positive, e.g.,
improved interaction with computers, more effectitechniques for therapy and
rehabilitation, or negative, e.g., intrusion in #gmotional life of individuals, control of
individuals’ behavior through expressive communagt The studies carried out in the
last ten years, the currently ongoing projects, #md dissertation should therefore
considered as pioneer researches toward that “gtiebe of information processing”
(Hashimoto, 1997) that by using the current advangesignal processing (first phase)
and logic (second phase) might lead to a novel gépe of computer systems able to
deal with affective, emotional information. Of cear as usual it is mainly responsibility
of researchers and engineers working in this aremaximize the benefits and minimize
the risks of this technology.

In this framework, this dissertation focuses on tlevelopment of paradigms and
techniques for the design and implementation oftimeldia and multimodal interactive
systems mainly in the application field of perfongiarts. The dissertation is divided into
two main parts. In the first one, after a shorti@evof the state-of-the-art in research
fields related to this research, the focus movetherdefinition of environments in which
novel forms of technology-integrated artistic pemiance could take place: these are
distributed active mixed reality environments iniegvhinformation at different layers of
abstraction is conveyed mainly non-verbally througgtpressive gestures. Expressive
gesture is therefore defined and a possible intetnacture of a virtual observer able to
process it (and inhabiting the introduced environtseis described in a multimodal
perspective. The definition of the structure of thecussed environments, of the virtual
and mixed subjects inhabiting them and the teclesdar expressive gesture processing
constitute a source for requirements, a paradigmdésign and development, and the
basic bricks for implementing the interactive systethis work addresses. The second
part of the dissertation introduces a concrete @karof implementation of a virtual
observer, i.e., a virtual subject observing humaii-biody movement, extracting
expressive cues from it, and attempting to classxygressive gestures according to their
emotional content.

The developed algorithms have been implementedfagae modules for the EyesWeb
open platform (see Appendix A) and constitute tbeecof the EyesWeb Expressive
Gesture Processing Library (see Appendix B).

- Vil -



PART 1

EXPRESSIVE ENVIRONMENTS AND
EXPRESSIVE GESTURES



1. Technologies for expressive environments

Recent developments in Human-Computer Interactt@l and multimedia are leading
toward the design and implementation of systems filman the one hand are widely
increasing usability and user-friendliness of cotemi in application fields where
computers are traditionally used (e.g., computeedidesign, office automation), and on
the other hand are introducing computer systemareéas where computers only had a
marginal role or were regarded with suspicion (enghumanistic studies).

Two trends in technology evolution of interest fiois dissertation can be observed:

() Computers are more and more able to process hugh-lgformation coming from
their users: they can detect and interpret usetisrass and adapt their behaviour to
user’'s needs. In this scenario a particular rolplagyed by the ongoing research
focusing on the analysis and synthesis of inforomatielated to the expressive
emotional sphere. The possibility to collect, iptet, generate expressive
emotional information opens novel frontiers to mh@tion processing and arises
ethical concerns about possible dangers of suchntdagies with respect to
intrusion in individuals’ life.

(i) Computers are more and more coupled with the emwiemt in which they operate.
Microchips are integrated in objects of our evegydiée. Broadband networks
allow a fast exchange of information. We are moviogyard a scenario in which
instead to have a “personal’ computer to (usuallgjk with as it still happens in
most of cases nowadays, highly miniaturized netedricomputers will be
everywhere around us and will support us in mopeets of our everyday life.
Similarly to what observed in (i), this perspectalso opens novel and interesting
possibilities, but it also arises an important debabout dangers related to any
possible misuse of the possibilities technologytes.

In the design and development of multimedia systéansrtistic applications the two
tendencies sketched above are of paramount impertamce they allow enriching
artistic languages with elements that only techgwlcan provide (e.g., the possibility to
automatically analyse and generate expressive mpnthe possibility to create
performance environments in which computing is esaled in the environment itself).
This Chapter will shortly review the basic concetslerlying the research fields that are
mostly responsible of these evolutions in technplagd that are of interest for the
specific aims of this work.

Firstly, technologies for integrating computerstive environment will be introduced
with particular reference to Mixed Reality, i.e.carpus of research studies aiming at
merging real (physical) world and virtual (computgenerated) worlds in a single
computer mediated environment. Researches on “iibiugi and “disappearing”
computing and on “wearable” computing will also $feortly discussed as examples of
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contributions to the development of a scenario lmctwv computing is more and more
distributed and embedded (e.g., in everyday clythes

Attention will then move on research on Affectiveriputing and KANSEI Information
Processing that in the United States and in Japapectively are trying to develop
models and algorithms for analysis and synthesiexpiressive emotional content. A
short review of research works dealing with expressontent processing in the fields of
interest (music, human movement, performing ari)oenclude the Chapter.

1.1. Mixed Reality

A main issue in the design of interactive multineedystems for artistic performances is
the combination or superimposition of computer gatesl sounds and visual media to
the real environment in which a performance isrnghiplace. In a broader scenario in
which a performance can be distributed over thevord the relationships between the
involved real and virtual worlds assume a furthetipular importance.

The concept of Mixed Reality (MR) as a collectidntechnologies for creating mixed
environments in between Virtual Environments (VEsd the real world was firstly
introduced in (Milgram and Kishino, 1994).

Mixed Reality is there defined as a “subclass of iéRited technologies that involve the
merging of real and virtual worlds”. Depending dme trelative weight of the two
components (virtual environments and the real enwirent) in the merging process a
continuum of possible scenarios is envisaged (Widgram and Kishino refer as
Reality-Virtuality continuum).

Such a continuum (see Figure 1.1) is bounded orotigeside by the real environment
and on the other side by virtual environments.Idb ancludes as relevant intermediate
cases Augmented Reality (AR) and Augmented VirtygAV).

| Mixed Reality |
< >
Real Augmented Augmented Virtual
Environment Reality Virtuality Environment

Figure 1.1 the Reality-Virtuality Continuum (Milgram et all994)

The term Augmented Reality is operationally defimeadreferring to “any case in which
an otherwise real environment is “augmented” by mseaf virtual (computer graphic)
objects”. Following the same logic, Augmented Vality is defined in term of

1 It should be noticed that “ubiquitous computingrid “wearable computing” in fact start from two

different points of view with respect to the rolflecomputers in future society as it will be shoudligcussed
later in this Chapter.

-3-
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“completely graphic display environments, eithermpbetely immersive, partially
immersive or otherwise, to which video “reality’added” (Milgram and Kishino, 1994).
Ideally, the mid-point in the continuum correspondsa situation in which reality and
virtuality are so tightly mixed that it is fairlynipossible to distinguish what is real from
what is virtual.

If from the one hand, the work by Milgram and Kishiis very focused on visual aspects

(a taxonomy of mixed reality visual displays is ctésed in their papers), on the other

hand both the dimensions of their taxonomy and sgeweral issues about how to

distinguish between real and virtual objects carcdmesidered from a broader point of
view, in the context of MR environments in which ltraensory stimuli have a main role.

Milgram and Kishino themselves list some augmemeadity scenarios in which other

modalities are involved:

- Auditory AR environments in which sounds from the real waoaldd synthetic
spatialized (virtual) sounds are mixed together.

- Haptic AR environments in which information related to tbuand pressure is
superimposed on existing haptic sensations: fom@ka virtual objects can be
“touched” by employing special kinds of glove deasc

- Vestibular AR environments in which information about acceleratof the
participant's body in a virtual environment is sup@osed to existing ambient
gravitational forces (as, for example, in commérarad military flight simulators).

A main issue when mixing real and virtual enviromtseis how to distinguish what is

real from what is virtual. If, at a first glancdyig can be thought to be quite a trivial

problem, in fact it involves some subtle aspecis #ne worth to be shortly discussed.

Commonly, some definitions like the following onesn be assumed for real

environments, virtual environments, and virtualitga

- Real (or Physical) Environmentsnvironments subjected to the usual physical.laws

- Virtual Environments (VEsromputer synthesized environments that can stemala
real environment (existing or not). VEs can alsdoggond the constraints of physical
reality, by simulating worlds in which the usualpltal laws do not hold anymore.

- Virtual Reality (VR)a situation in which a participant/observer iyfimmersed in a
completely computer synthesized world. Such imnoerss traditionally obtained by
using head-mounted displays (HMD) or CAVE syste@£-Neira et al., 1992).

While such definitions are usually clear and precenough when dealing with
completely real or completely virtual environme(gsch as in the case of VR), problems
may arise in MR situations, i.e., when reality aituality are mixed to a certain extent.
The problem can be introduced by asking ourselwesstipns like: should images
coming from a videocamera and then displayed onesdisplay be considered real or
virtual? Are computational representations of dadening from the real world real or
virtual? Should a real object be displayed in diseaway?

Consider, for example, an image of an environmakert by a videocamera, sent through
a broadband network connection and displayed ames in some place at a distance of
thousands of kilometres from the original locati@onsider also an image of your hand
taken by a videocamera and projected into a virtimaiironment where you can grab
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synthesized objects. Which one is or should beidered “real”? Is one image more

“real” than the other one?

Another example: it is straightforward to defined!l” the (unprocessed) images coming

from a videocamera (consider for example a videfmrence situation: it is

straightforward to define “real” the environment thve other side). But if the silhouettes
of the participants are extracted and pasted imtaa¥ world (where maybe participants’

actions trigger particular behaviours), the “rgdlf the images is much less evident or,
in any case, it seems to be a “different realitythwespect to the first situation. In any
case, the real world on the other side of the nétveonnection and the real subjects
involved in the videoconference, are always theesarorld and the same subjects. In
other words, mixing real and virtual worlds careaffour perception of reality.

Milgram and Kishino (1994) try to face such probldmg proposing an objective

distinction between reality and virtuality basedtbree aspects:

(i) A first distinction betweerreal and virtual objectsoy means of the following
operational definitions:

a. “"Real objects are any objects that have an actojaicbve existence” like, for
example, the computer I'm using to write this doewmt

b. “Virtual objects are objects that exist in esseaceffect, but not formally or
actually”, that is, they can also be existing otgebut they do not exist here
and now.

Therefore, a real object can either be observesttlly or it can be sampled and

resynthesized through some display device. A Jiraigect, instead, cannot be

directly observed since it does not exist, but ismbe simulated (usually via

computer graphic). To this aim, a description anadel of the object is usually

needed.

(i) A second distinction “concerns the issuamége qualityas an aspect of reflecting
reality”. On the one hand, as stated above, virtlgects cannot be directly
observed nor sampled: they can only be synthes@edhe other hand, technology
nowadays allows synthesizing extremely realistiages. Anyway, even if an
objectlooksreal, this does not mean that the object actusligal.

(i) A third distinction is made betweereal and virtual imagesA real image is
defined as “any image which has some luminositythat location at which it
appears to be located”. Virtual images are con\yedfined as images not having
luminosity where they appear. Virtual images inelutblograms, mirror images,
and stereoscopic displays (for which both thedefl right images are real images,
but not the fused image). Virtual images in MR eowments are transparent, i.e.,
they do not occlude the objects located behind them

In the following, while from the one hand | willytto keep the simplest distinction

between real (physical) and virtual environmentfaass it is possible, on the other hand
when distinguishing between real and virtual olgexntd subjects (see Chapter 2) | will
have to refer several times to the criteria memttbabove, with particular reference to
the first one.

It should be noticed that criteria (i) and (iig atated by Milgram and Kishino refer only
to visual aspects. Anyway, they can be reformulated multimodal perspective for
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example for distinguishing real sounds, reprodudiof real sounds (with a given sound
quality) and virtual (computer generated) sounds.

1.1.1. Taxonomy for Mixed Reality visual displays

Along with their definition of MR and complementaxyith respect to the Reality-
Virtuality continuum, Milgram and Kishino (1994) widoped a taxonomy for MR visual
displays based on three main dimensions. As foctiteria above, such taxonomy firstly
developed for visual displays, can also be refoated and generalized to classify whole
MR environments including other sensory modalibieside vision.

In this section, the taxonomy for visual displagsoaiginally conceived by Milgram and
Kishino is introduced, since even in its formulatibmited to the visual channel, it
anyway outlines aspects that are of particular mgoee for designing MR applications.
The taxonomy by Milgram and Kishino develops altimge axes labelled as “Extent of
world knowledge”, “Reproduction Fidelity”, and “Eetit of Presence”.

Extent of world knowledgesfers to the amount of knowledge the computetesyshas
about the world that has to be displayed. It ranfyesn the lack of any model
(unmodelled world), such as for example in the cdsdirect view of a real object or of
images acquired by a videocamera and directly dejmed, to a fully modelled world
like in Virtual Reality where a completely virtuadorld can be synthesized only if a full
knowledge of its objects, their locations, the poafi view etc. is available to the
computer system (see Figure 1.2). Interesting nméeliate conditions are referred as
“Where or What” and as “Where and What”. In thetficase, nearer to the unmodelled
world side, the computer system has some informatlmut what are the objects in the
scene or about their location. In the second aasarer to the fully modelled world, the
computer system exactly knows both the essencéharidcation of the objects.

World Partially Modelled

<< >
World Where Or What Where And What World
Unmodelled Completely
Modelled

Figure 1.2 the Extent of World Knowledge dimension (Milgratal., 1994)

Reproduction Fidelityrefers to realism in Mixed Reality displays wigspect to image
quality. In particular, here the term Reproductieielity “refers to the quality with
which the synthesising display is able to reprodineeactual or intended images of the
objects being displayed”. Classification with resp® Reproduction Fidelity can be
applied to both virtual and real objects and itightly related with the progression of
(video) reproduction technology. The Reproductioidekty axis, in fact, can be
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considered as a unidirectional axis showing thegmession of computer graphics,
modelling and rendering techniques (see Figure 1.3)

Conventional Color Video Stereoscopic 3D HDTV
Monoscopic Video
Video
>
Simple Visible Shading, Ray tracing, Real-time,
Wireframes Surface Texture, Radiosity Hi-fidelity,
Imaging Transparency 3D Animation

Figure 1.3 the Reproduction Fidelity dimension (Milgram &t 4994)

Extent of Presences related to “the extent to which the observemnignded to feel
“present” within the displayed scene”. While Reprotion Fidelity is more concerned
with technological progress (and from a certainnpaf view can be considered as
technology driven), this axis addresses issues mefated to the paradigm of
interaction/immersion (and can therefore considexediser driven). It is not perfectly
orthogonal with respect to Reproduction Fidelityt ib can be distinguished from it. Like
Reproduction Fidelity, Extent of Presence can aklsa@onsidered unidirectional, ranging
from a situation in which the user sees a virtuatldvthrough a monitor based display
(something like a window on the virtual world) teeal-time imaging” (Naimark, 1991)
in which ideally no differences should be noticetvween the virtual/mixed world and
the unmediated reality. Intermediate conditions aansidered as well, mostly
corresponding to the taxonomy proposed by Naimsek Eigure 1.4).

Monitor Large HMD
Based Screen

>
Monoscopic Multiscopic Panoramic Surrogate  Real-time
Imaging Imaging Imaging Travel Imaging

Figure 1.4 the Extent of Presence dimension (Milgram etl#i94)

Research on issues related to the Extent of Pressinension saw a particular grow in
the interest of the scientific community in thetlésw~ years, in which projects started
particularly devoted to the investigation of the am&nisms that are at the basis of
presence and experience in multimedia scenarios.
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1.1.2. Alternative approaches: Mixed Reality Boundaries

Benford et al. (1996, 1998) first introduced the@ept of Mixed Reality Boundaries as a
way to join physical and synthetic spaces.

While Milgram and Kishino’s approach to MR is lalgbased on the idea of overlaying

the virtual (synthetic) world and the real (phy$iamne to different extents, in the Mixed

Reality Boundaries approach real and virtual wodds kept separated by explicit (even
if transparent) boundaries. In other words, whildvilgram and Kishino’s approach the

real and virtual worlds are overlapped, here they “adjacent but distinct parts of a
combined space”. The two approaches can be comptamyesach other: while one can
contribute in merging two specific (physical anchtkyetic) worlds, the other can be best
suited for building larger MR structures.

Live video
Projection onto Texture
a wall or other Network mapping of live
surface video image
Graphics and updatgs

Physical space Synthetic space

Figure 1.5 a simple Mixed Reality Boundaries scenario (Bedifet al., 1998)

In its simplest instance, a Mixed Reality Boundacgnario can be described as follows
(see Figure 1.5): through network connections asaad virtual objects are projected
into the physical space, whose images capturedd®epeameras are in turn displayed in
the synthetic space by means of a dynamic textagpmg process. In such a way, the
inhabitants of the physical space see the syntkpace as an extension of the physical
space and vice versa. Usually an audio link is plewided to allow inhabitants of the
two spaces to communicate across the boundary.

In more complex situations, the Mixed Reality Boand approach allows to join
together many physical and synthetic spaces imtagiated whole: in the scenario of
interactive multimedia systems for artistic perfarmes, this property is particularly
useful when designing a system for performancesililised over the network, where
several local performances taking place in sewdiffdrent locations (physical spaces)
are joined to create a global (and virtual) disttéal performance.

Benford further developed his theory of Mixed RgaBoundaries by introducing a set
of properties that can be used to characterize .tHenoperties are grouped in three
general categories of permeability, situation, alythamics. Two meta-properties of
symmetry and representation are also included.
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Permeability is related to how a boundary affects the sensofgrmation passing
through it. It includes the following componentssigility (which visual information can
pass through the boundary in term both of resatyti@., amount of information, and
field of view, i.e., the volume of space that isdeavisible), Audibility (which auditory
information is allowed to pass through the bounfjaagd Solidity (the ability to traverse
the boundary, e.g., metaphorically extending a lonistepping through the boundary).
Different combinations of the permeability propesti generate different kinds of
boundaries, ranging from analogies to common phydimundaries (like windows,
curtains, walls, mirrors, lines on the ground) tmnpletely new boundaries without a
physical counterpart.

Situation “concerns the spatial relationships between theechireality boundary, the
physical and virtual spaces that it connects amdpiduticipants and objects that these
contain”. It can also be divided into sub-categarieocation (how the boundary is
placed in the connected spaces), Alignment (oriemtaf the boundary with respect to
participants and objects), Mobility (whether theubdary is static or it can be moved),
Segmentation (whether the boundary is made up efaormore segments), and Spatial
consistency (how the spatial coordinate systentisarconnected spaces are related).
Dynamicsdescribes the temporal properties of a bound#syLifetime (when and how
long a boundary is in existence), and its Configilit (how dynamically the boundary
properties can be changed)

Symmetryis a meta-property concerning how much the progemf a boundary are
similar on both its sides.

Representationis a meta-property referring to how visible are tproperties of a
boundary to participants and which means of reptatien are used.

1.1.3. Alternative approaches: tangible bits

While both the approaches by Milgram and Kishinal &ty Benford are focused on
combining in several extents and with different imoels (overlapped vs. adjacent worlds)
real and virtual worlds, mainly through the visaald auditory modalities, the tangible
bits approach puts strongly in evidence the phlisyoaf the interaction in the real world
as a mean to access to the virtual world (Hishdi diimer, 1997).

The mixing of real and virtual worlds is considergtier a different perspective: rather
than building an installation in which to combineak and virtual worlds and invite
participants to have experience of such a comlmnatHishii and Ullmer argue that
nowadays everyone in his/her everyday life livestWeen two realms: our physical
environment and cyberspace.” Nevertheless, while ceexmonly interact with the
physical environment through haptic interactionhwihysical objects (like touching) and
we are particularly skilled in this kind of intetemn, the interaction with the cyberspace
still takes place through the traditional userrifatees (like mouse, keyboard, and screen).
The objective therefore becomes the design of naset interfaces allowing to access to
the cyberspace through the modalities of interaciio which we are more skilled,
namely haptic interaction. As atoms are the basmponents of the physical world, bits
are the basic components of the virtual world (cgpace): in this perspective, Hishii and
Ulimer try to make bits tangible.
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The key concepts of their approach are the follgwin

- Interactive Surfaceseach surface in the architectural space (e.@plesa walls,
windows, doors) is transformed in an active surfatlewing accessing to the
cyberspace.
Coupling of bits and atom$Seamless coupling of everyday graspable objerts,
cards, books, models) with the digital informattbat pertains to them”

- Ambient mediasound, light, airflow, water are used as backgdinterfaces.

In other words, “foreground bits” are made tangibjeassociating them to objects (and
surfaces) in the real space that can be grabbetbanbed; “background bits” are instead
associated to peripheral ambient media (e.g., athbaund, light).

Some system prototypes have been developed to dérainthe tangible bits approach,
see for example the metaDESK and transBOARD systdlowing users to manipulate
“foreground bits” through the use of physical oltgeand the ambientROOM system as
an example of use of ambient media for backgrouridrmation (Hishii and Ullmer,
1997).

1.2. Computers and environment: “ubiquitous” and “wearable” computing

Mixed Reality techniques like the ones describeth& previous section allow merging
physical and virtual worlds on several extentsstbbtaining environments where ideally
(as a final aim) no distinction should be noticedoag real and virtual objects. Such
integration of reality and virtuality (i) needs tipeesence in the real environment of
sensors (e.g., videocameras, microphones) to galiy; (ii) leads toward a scenario
where such sensors as well as processing devieesae and more integrated in objects
of everyday life so that instead of having dedidakdixed Reality installations, our
whole life will take place in a Mixed Reality worl(ds Hishii and Ullmer already outline
in their paper).

The technological and ethical concerns arisen lay suscenario have been approached
from two different points of view by the researafids usually addressed as “ubiquitous
computing” and “wearable computirfg”

Ubiquitous computing can be thought to find itsgoriin the famous paper by Mark
Weiser “The Computers for the 2Century”, where the author tries “to conceive ane
way of thinking about computers in the world, ohatttakes into account the natural
human environment and allows the computers therasetyvanish into the background”
(Weiser, 1991).

Ubiquitous computing can be roughly considered pposite to traditional Virtual
Reality. In fact, while Virtual Reality creates cputer-generated worlds and puts people
inside them, ubiquitous computing puts computerh@real environment where people
live. Anyway, in my opinion it is not opposed to d Reality scenarios like the ones

2 Notice that ubiquitous computing and wearable aating are discussed with reference to the work of
researchers that originated the research fieldfadt the interest is here more on the concepdspaints
of view underlying the two approaches rather thasmecific (and more recent) implementations.
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described by Hishii and Ulimer, rather it is usefmd sometimes needed to be able to
create such scenarios.

Nowadays computers need the constant attentiomeadiger. This is frustrating for many
people and often requires the work of specializedhnicians. Other and older
technologies are instead used in our everydaylitbout the need to pay attention to
them or to consciously think about how to use theee for example electric motors that
are embedded in lot of devices commonly used byyewe. Ubiquitous computing can
be roughly summarized as an attempt to bring coempund information technology at
the same degree of disappeardnbg providing the environment with hundreds of
wireless (or wired) computer devices of all scataaging from little machines similar to
Post-It notes, to computers of the size of a sbégiaper, to large displays similar to
blackboards. Furthermore, in the ubiquitous conmguéipproach computers have also to
know where they are and the surroundings, so they tan adapt their tasks to the
location in which they actually are.

The first prototypes of ubiquitous computing scerswere developed at Xerox PARC,
starting from the end of the Eighties. They maiobnsisted of “tabs”, “pads”, and
“boards”. Tabs are the smallest prototypes: they iach-scale computers similar to
actual pocket calculators. For example, they camdssl as active badges, allowing to
track people or objects they are attached to.igwtlay, it is possible to envisage a world
where “doors open only to the right badge wearegms greet people by name,
telephone calls can be automatically forwarded teenever the recipient may be,
receptionists actually know where people are, cdergerminals retrieve the preferences
of whoever is sitting at them, and appointmentidgwrite themselves” (Weiser, 1991).
Of course, such a scenario (and in particular tbssipility that such an amount of
information could be managed by a centralized jpubdi private institution) raises very
relevant problems with respect to safeguard privaandividuals. Weiser himself in his
paper proposes some solutions ranging from thetexhopf cryptographic techniques
and digital pseudonyms to the possibility to bualemputer systems applying the same
conventions as in the real world (e.g., usuallyoinfation is not collected nor used
against someone unless a crime is committed).

Pads are computers whose size is comparable wzb®f a sheet of paper. They do not
have any identity or importance, but are spread theeenvironment and can be grabbed
and used by everyone. In fact, their use is simdahe use of the sheets of paper: they
can be spread over a desk and a different taskeassociated to each of them.

Boards have large displays and can be used inaesevironments (office, home) as
video screens, blackboards, or bulletin boarder&ations between tabs, pads, boards
are also considered and possible scenarios forjtingyuse are envisaged. A sample day
of a woman living in such a Zicentury scenario as described by Weiser is a good
example of how ubiquitous computers can changewenyday life.

While from the one hand, it can be thought to airthea same objectives (i.e., seamless
integrating computers in everyday life and enabpegple to use them without the need
of conscious attention), on the other hand “wea&at®mputing” tries to reach its
objectives by starting from a quite different pooft view with respect to ubiquitous
computing.

% In fact, research in this area is often addreasslas “disappearing computing”.
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In fact, instead of equipping the environment watthuge number of computers of all
sizes, wearable computing proposes the developroéntsmart clothing”, i.e., a
“combination of multimedia computing, personal inmag (through the use of one or
more wearable video cameras) and wireless commionégMann, 1996), embedded in
everyday clothes and worn by users. Smart clothebed a personal wearable
multimedia computing system along with sensors.(evfleocameras, microphones,
biosensors, radar) and displays (e.g., head moutispthys). They are connected to the
Internet via radio connections. They provide a troallection of functionalities ranging
from calendar (time, date), to voice communicatidny replacing mobile phones),
messaging, personal sound system, sound and vag#ore, mathematical computation,
measurements.

Several application prototypes have been devel@ledg the last twenty years and
experiments have been carried out on possible etnapplications. For example,
experiments in personal imaging concerned the tislgeosystem as an extension of the
visual memory, i.e., the system helps the useeimembering past situations or people
by recalling images recorded in situations simtlarthe actual one (Mann, 1996). A
straightforward application of this technique caetsiin recalling the names of people
that the user has known.

Other experiments on personal imaging addressedsbef special “filters” generating
delays, sample and hold, freeze frame effects. & ldesnonstrated to be of particular
interest since they make possible to observe aspieat are invisible to the naked eye.

A computer-assisted way-finding system has beeeldped able to give suggestions to
the wearer about the right path to go back to ation that was already visited or to the
exit (for example in a big shopping complex). Thealgis achieved by taking and
recording snapshots at the branch points (andetle& along the corridors); when the
same path is encountered again it is recognizedifinéeded, it is possible to browse
back the images to come back at the starting lmeca#\ partial environment map may
also be captured.

Other applications described in the same paperstation the possibility of sharing
and/or exchanging visual points of view inside amoeked online community, and the
possibility to get physiological measure from theast clothes (e.g., blood pressure,
heart rate, skin conductivity).

With respect to the privacy concerns regarding iptessmisuses of the information
provided by computers systems like the ones destrib the ubiquitous computing
scenario, Mann arguments that in the case of wkamputing, since the computer
system is strictly “personal” (i.e., it is directiyorn by its user), the user is fully free to
decide whether to share or not the informationteefollected. It may still happen that
since the huge number of worn cameras, somebodyége is captured and spread
around: Mann’s conclusion is that with wearable pating “at least we’d know we had
privacy when we were alone”.

Ubiquitous and wearable computing open novel seeman which computers do not
need anymore our conscious attention to accompiisir tasks. This is obtained by
spreading them all around the environment and etibgdhem in everyday objects like
our clothes. A further step toward a new generatbrtomputer systems consists in
giving them the ability to grab and process higreleinformation that seems to be
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peculiar of human-human communication like the oglated to our emotional state.
Research in this direction is shortly discussetthéfollowing Section.

1.3. The quest for expressiveness

During the last decade, lot of research effort beasn spent to connect two worlds that
seemed to be very distant or even antithetic: nm@shiand emotions. Mainly in the
framework of human-computer interaction an incregénterest grew up in finding ways
to allow machines communicating expressive, ematiocontent. Such interest has been
justified with the objective of an enhanced intéiat between humans and machines
exploiting communication channels that are typafahuman-human communication and
that can therefore be easier and less frustratmgu$ers, and in particular for non
technically skilled users.

Starting from the findings from psychology and remasiences, research has been aimed
at developing computational models and algorithros dnalysis and synthesis of
emotional content.

While from the one hand research on emotional conmication found its way into more
traditional fields of computer science like Artiit Intelligence, on the other hand novel
fields developed explicitly focusing on such issues

Examples are researches on Affective Computinghen Wnited States and KANSEI
Information Processing in Japan. Affective Compgitiand KANSEI Information
Processing are shortly described with referendbgavork of the two researchers that in
a certain way started the two fields: Rosalind Ri@nd her group at MIT Media Lab for
Affective Computing, and Shuji Hashimoto and hieugy at Waseda University, Tokyo,
for KANSEI Information Processing. It has to beioedl that many other works derived
from these initial studies can be found in theditere; however, here | limit myself to an
overall description of the research fields sincam more concerned in describing the
basic concepts and in outlining the differenceshm approach rather than in writing a
survey that would go in too many details of a redeaspread over lot of different
disciplines and application scenarios. More details be given about the applications
that are nearer to the objectives of this thesmlysis and synthesis of expressive
content in performing arts, with a particular refeze to music and human full-body
movement.

1.3.1. Affective Computing: the American way taificial emotions

The Affective Computing approach is mainly illusg@ in the homonymous book

(Picard, 1997).

In her book Picard defines Affective Computing asriputing that relates to, arises
from, or deliberately influences emotions”. Affeci Computing addresses the design
and implementation of machines that are able (ettbgnize emotions, (ii) to express
emotions, and (iii) to have emotions. These areridwrcentred” machines that observe

-13-



Chapter 1 — Technologies for expressive environment

their users and sensitively interact with them kgressing emotions depending on what

they observed and on the current “emotional statéfie machine.

Computers that are able to recognize emotions aneeived as systems collecting a

variety of input signals ranging from face expressito voice, movement features (e.g.,

hand gestures, gait, posture), physiologic meader.gs, respiration, electrocardiogram,

blood pressure, temperature). They perform feauteaction and classification on these
inputs (e.g., video analysis of movement, audidyasmaof speech) and try to classify the
emotion the user is communicating through a reagpmprocess taking into account
information about “context, situations, personahlgp social display rules”, and other

emotion related data. Learning techniques can bglay®d to adapt recognition to a

specific user (e.g., a personal computer can lgerhabits of its master to improve its

performances in the recognition task). If the cotapinas an emotional state, this can
influence the recognition process.

Computer that are able to express emotions (e¢tbpending on instructions given by

humans or as a result of an internal mechanisrgdoerating emotions) are systems that

modulate audio (e.g., synthetic voice, sound, nmjuaitd visual signals (e.g., face,
posture, gait of animated creatures, colours)wag suitable for the emotion that has to
be communicated. The expressed emotion can beionah(i.e., deliberated as a result
of a reasoning process) or spontaneous (i.e., tived¢’ triggered). It can directly
express the “affective state” of the machine tham en turn be influenced by the
expression of the emotion. Expression partiallyesels on social display rules.

If computers carhave emotions is perhaps one of the most controveisgles in

Affective Computing. In her book, Picard proposesconsider five components of an

emotional system: a computer can be said to “hawvatiens” if all five components are

present in it. The five components are the follayvin

() Emergent emotions and emotional behaviour, i.e.mlchine is able to express an
emotion through its behaviour even if it does naténany emotion. By observing
the machine’s behaviour, humans naturally tendttidbate an emotional state to
the machine.

(i) Fast primary emotions, i.e., mechanisms to gener&ied of hard-wired, reactive
responses (especially to potentially harmful everEast primary emotions are
what Damasio calls primary emotions (Damasio, 19%judies about the
mechanisms triggering such emotions can be founcdhemrosciences: see for
example (LeDoux, 1996) for a detailed descriptibthe mechanism of fear. They
are associated with the inner regions of the brain.

(i) Cognitively generated emotions, i.e., emotions & generated as a result of
explicit reasoning. Cognitively generated emoti@me slower than fast primary
emotions and are usually consequence of delibéhateghts. They are located in
the brain cortex. Several cognitive models of eorotiave been developed. One of
the most famous is the model by Ortony, Clore, @atlins, usually referred as
OCC model (Ortony, Clore, and Collins, 1988) thast lbeen also employed in a
number of concrete applications. Originally, the@@odel was not developed for
building machines that could have emotions; ratheras conceived as a way for
reasoning about emotions. The model develops @&atmh of rules associating
emotions to cognitive evaluations about consequentevents, actions of agents,
and aspects of objects.
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(iv) Emotional experience, i.e., the system is cogritieavare of its emotional state.
Emotional experience consists of cognitive awargnpklysiologic awareness and
subjective feelings. If it is possible to have swah emotional experience in a
machine and, if yes, how it can be implementedtiisan open and quite tricky
issue. It relates to consciousness and requirem#ohine to have sensors able to
measure its own “emotional state”.

(v) Body-mind interactions, i.e., the emotional stass dnfluence other processes
simulating similar human physical and cognitive dtons like memory,
perception, decision making, learning, goals, nadions, interest, planning, etc.

Research on Affective Computing has been appliednonmber of application scenarios,
ranging from entertainment, to edutainment, to cteie of emotional responses (e.g.,
frustration) in particular relevant tasks (e.g.arteng, driving), to the design and
implementation of devices for analysis and synghesiemotions. Detailed descriptions
of ongoing and past research projects can be fonnihe website of the Affective
Computing group at MIT media labt{p://affect.media.mit.edy/

With respect to the three issues mentioned aboee (hachines recognizing, expressing,
and having emaotions), the work presented in thgseattation mainly address the first two
aspects. That is, I'm more concerned with the deaigd implementation of algorithms
for recognizing and communicating expressive cdntether than with machines that
“have” a their own emotional state. In fact, if theal is to open novel perspective to
artistic performances by introducing new tools wllmy an extension of the artistic
languages by acting on the communicated expressivient through technology, what is
mainly needed is (i) the possibility to classifydaencode in digital format the
communicated expressive content in order to prottessd (ii) the ability to produce
suitable output to induce emotional reactions iacsgtors. In other words, in my view
humans only have emotions. Machines do not neédve them, but they can give more
and better support to human activities if they alpée to process information not only
related to the rational aspects of human behavinutralso to the emotional orfes

1.3.2. The eastern approach: KANSEI Information &essing

In the same period the Affective Computing reseatalted in the United States, another
approach to understanding expressive content comcation was developed in Japan:
KANSEI Information Processing.

KANSEI Information Processing has been proposethasthird target of information
processing (Hashimoto, 1997). In his paper Haslomidentifies physical signals
capturing data from the real world (e.g., soundhtli force) as the first target of
information processing. Signal processing is thehrielogy field that is mainly
responsible of processing such kind of informatitirhe second phase is the semantic
information processing to deal with knowledge aankk’y; that is the field of logic and

* As usual, when information is processed relategtivate aspects of the life of individuals (andotions
are one of the most personal and private aspeatgai$ life) ethical issues are concerned. Thedebwi
discussed later in this thesis.
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symbolic knowledge. Atrtificial Intelligence is thdiscipline that mainly covers such
aspects. The third target is KANSEI that referdetglings, intuition, and sympathy and
according to Hashimoto we are just entering in iatohcal period in which technology
will start to deal with KANSEI, an issue that irethast was often left as a research field
for only humanistic or humanistic related disciphn

The exact meaning of the Japanese word KANSEInsesiaing controversial for western
people: it does not have a univocal correspondeweistern languages and culture, but is
rather associated to a collection of words relatethe emotional sphere (e.g., emotion,
sensibility, sensuality, sense, feeling). In hipgraHashimoto gives some examples of
common uses of the word in Japanese language sufdr axample “Her KANSEI is
excellent”, “He is a man of rich KANSEI", “He ha® iKANSEI", “Her KANSEI seems
well suited to me”, etc.

It should be noticed that KANSEI refers to a dynamiocess rather than to emotional
labels or categories to be applied to expressinéetds.

KANSEI Information Processing can be regarded esding and decoding process (see
for example Camurri, Hashimoto, Suzuki, and Trod&99). In other words, KANSEI
Information Processing supposes an underlying modelhich expressive content is
conceived as a kind of high-level information thatthe framework of a human-human
communication process, “modulates” the physicalnalg carrying some usually
symbolic message. That is, when a (human) sendeissa message to a (human)
receiver he/she encodes in the message some axpressotional information. Such
information together with the symbolic content ismbedded in the physical signal
carrying the message. When the receiver receivessitinal he/she decodes it and
extracts both the symbolic message and the additexpressive information the sender
encoded into it. Notice that it is not required ttllhe sender deliberately add the
expressive information to the message: such additiexpressive information can be
included unconsciously and can refer to aspecth sgcpersonality traits or personal
dispositions toward objects, actions, and othep[geo

By making a comparison with the Affective Computigproach, it can be noticed that
all the three aspects of recognizing, expressing,faving emotions are included in the
KANSEI process: in fact, (i) the sendexpressesis/her emotions by encoding them in
the physical signals carrying a message, (i) theeiver recognizesthe emotions
expressed by the sender while decoding the messaiged by the physical signals, and
(i) sender and receivehave an emotional state that can both influence the
encoding/decoding process and be itself the higetadditional expressive information
encoded in a message. KANSEI Information Processe®ms therefore to adopt an
holistic approach, broader with respect to the étife Computing perspective (i)
because it includes in the same model of encodaegiling process all the three aspect
Affective Computing separately deals witand (ii) because while Affective Computing
is more concerned with emotions, KANSEI rather nete a wide collection of emotion
related aspects (e.g., moods, feelings, persorigditg etc.).

® This difference may reflect a cultural differerisetween western and eastern approaches to problem
solving: while western people usually tend to dévid problem in sub-problems following a top-down
approach and sometime losing the global perspeaastern people often continue to keep an oveisail

of the problem even when they are focusing on aipaspect of it.
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In the framework of a joint collaboration betweera$®#da University in Tokyo and the
DIST-InfoMus Lab at the University of Genova, a KARI Information Processing
research project started also in Europe. In armattdo translate KANSEI in western
words, the term has been used to globally indieatember of possible research targets
ranging from using expressive emotional contenembance human — computer and
human — robot interaction, to understanding the mamication of basic emotions to
exploring the engagement of spectators exposedusical stimulf (see for example
Camurri ed., 1997; Camurri et al., 2002). In hisstaathesis Riccardo Trocca defined a
model of a KANSEI evaluation system consistingha following components (Trocca,
2001):

() A KANSEI functionmapping features of the physical signals to a esgaq., an
emotional space). This function models the intéoacbetween the physical world
and the emotional space, emulating the effectsaaain physical features would
have on the evoked emotional response.

(i) An Interpretation Functionof a point in the emotional space. For example, a
function expressing the distance of a point frosetof labelled emotions in that
space (e.g. in the well-known circumplex modelewak/arousal).

Such a KANSEI evaluation system has to face twansasues:

(i) The definition (or adoption) of an emotional spacwl the labelling of relevant
points, e.g. in terms of basic emotions. Such gmbhas been widely faced by
psychologists (e.g., see the survey in Cowie €1G01).

(i)  The modelling of the interpretation function. Thian be based on different
approaches, for example neural networks or clugjaaigorithms. Neural networks
are often used to find non-linear relations betweéysical measures and the
KANSEI space. An example can be found in (Suzukd &tashimoto, 1997),
focusing on sound perception, where a neural nétvgotrained to place its output
in a sort of KANSEI space.

The work presented in this dissertation has beegelia influenced by the KANSEI
approach since the direct participation of the autb the KANSEI research project in
Genova. If from the one hand | largely agree witle tencoding/decoding model
delineated by the KANSEI Information Processingeesh, on the other hand, however,
| preferred to avoid the use of the word KANSET'thms thesis because of its somewhat
undefined and sometimes misused meaning.

1.3.3. Expressiveness in music and human movement

Analysis and synthesis of expressive emotional rmédion assume a particular
relevance in the context of performing arts (emgusic, dance) whose languages are
often and particularly based on and suited for egmg such information. Here | shortly

® | have to notice that in this attempt of “impogirK ANSEI, sometimes the word has also been misused
since it has been employed as a “shortcut” to cbllejust one word a huge collection of differaspects
(emotion, personality, expressiveness, engageragny,
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discuss some main research works in this field idhe main field of interest of this
dissertation.
Expression in music depends both on the structdiréh@®@ composition and on the
performance of the players (i.e., both composergagers contribute to expressiveness
of a musical excerpt).
Eric Clarke showed the importance of the compasdicstructure in expression. For
example in (Clarke, 1988) is stated that “expressivanges that accompany changes in
performance tempo are based on structural propetithe music”.
Studies on expressiveness in music performance lbese carried out at the University
of Padova (DEI — CSC group). Through an analysisyothesis methodology a model
has been derived able to synthesize an expressif@mance starting from a neutral one
(i.e., a performance without any expressive cortiwteor intention). From perceptual
tests, a “Perceptual Parametric Space” has beamneldt mapping expressive intentions
(e.q., hard, heavy, dark, bright, light, soft) or2@ space whose axes are related to
kinetics (tempo and articulation) and energy (lcas#). Given a point in the space, it is
possible to calculate two sets of coefficients #yablied to the neutral scores generate a
performance conveying the desired expressive iateriDe Poli et al., 1998; Canazza et
al. 1999, 2000). The model works on scores provaeMIDI files.
In a recent work a classifier based on Bayesianwbidis has been built classifying the
conveyed expressive intention (soft, light, hedwrd) on the basis of a set of measured
parameters, including pitch, note number, key vglpdegato, inter-onset intervals,
derived from incoming MIDI data (Cirotteau et &003).
A rule-based system for generating expressive pagoces has been developed along
many years at the Swedish Royal Institute of Teldgw (KTH) in Stockholm
(Sundberg et al., 1991; Friberg, 1995). Rules desdiow musicians deviate from the
nominal score depending on their expressive intasti They affect several aspects of
the performance such as duration of tones, loudnatsh, vibrato, crescendos and
decrescendos, tempo, articulation. Each rule & @igaracterized by the magnitude of its
effect specifying how much that rule influences gegformance: for example rules can
be applied in an exaggerated way.

Rules have been grouped in three different types:

- Differentiation Rules concerning the differenceswaen scale tones (A, B, C, etc)
and between note durations (quarter notes, eigttésnetc.). Differentiation rules are
related to listeners’ ability to identify pitch addration categories.

- Grouping Rules related to the ability to group tbge tones at several layers, ranging
from tones forming melodic Gestalts, to tones bgiog to the same musical phrase.
The rules mark the boundaries between differentugoby inserting micro-pauses
and/or by lengthening the tones at the boundary.

- Ensemble Rules responsible of the synchronizatfdheovarious voices in the score
by lengthening and shortening individual tones atiog to an overall strategy.

Rules have been implemented in the program Dirddigices (Friberg et al., 2000) and
performances have been synthesized to conveytemédiss six different emotions (fear,
anger, happiness, sadness, tenderness, and s@enihi rules to be applied and their
parameters have been selected on the basis obpseresearch on emotional aspects in
music performance carried out by Alf Gabrielssod Batrik Juslin at the Department of
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Psychology of the University of Uppsala (e.g., Sabrielsson, 1995; Gabrielsson and
Juslin, 1996). Spectators’ ratings on the syntlegsperformances showed that spectators
were able to correctly classify the intended emmstim most cases.

Both the approaches by DEI — CSC and KTH are malpdged on an analysis-by-

synthesis methodology. Attempts were also madeamlexpression from examples. For

example, Roberto Bresin at KTH developed neuralvoeds able to learn KTH rules

(Bresin, 1998): the input nodes of the network egponded to the parameters present in

the condition of the corresponding rule, the outpades corresponded to the parameters

that can be affected by the application of the.rule

Other relevant works are those by the researchpgrotiSerra in Barcelona and Widmer

in Vienna. The former developed a case-based sy&tdearn expressive modifications

of saxophone sounds (Arcos et al., 1998), therlatpplies a collection of Artificial

Intelligence techniques to study expressive musitopmance (see for example Dixon et

al., 2002).

In the field of human full-body movement the stateéhe art is much less advanced than

in music. Lot of researches are going on in analysi human movement for

understanding the physical mechanisms underlyindoit detecting and recognizing
specific human activities (for example in videoyaillance), for analysing in details
particular actions (for example gait). Very few tobm are actually devoted to study
expressiveness and how it is conveyed through memenMoreover, researches on
expressiveness in movement are often carried oupdyghologists, with very few
references to technical issues. A similar situatan be found on the synthesis side
where lot of resources are spent to build charactere and more realistic and natural in
their movements, but very few of them can be saibd expressive. Furthermore, both
analysis and synthesis usually refer to specifimas (e.g., walking, grabbing objects) or
to specific body parts (e.g., arms, hands), whilelfody movement is often neglected.

A relevant exception is the work by Badler and eafjues at University of Pennsylvania.

They developed EMOTE (Expressive MOTion Engine), 32 character animation

system that allows specification of Effort and Sha@arameters to modify independently

defined arm and torso movements”(Chi et al., 2000 concepts of Effort and Shape

are inspired to the work of the researcher andedgrapher Rudolf Laban (Laban, 1947,

1963) who developed the Theory of Effort qualitatlvdescribing human movement in

term of four main dimensions: space, time, weight] flow. The work by Laban will be

further discussed later in this dissertation siitceonstitutes one of the main starting
points for approaching movement analysis. Labah&oties were further developed
along the years by other researchers: such corpgtudies constitutes what is called

“Laban Movement Analysis” (LMA) (see for examplearBenieff and Davis, 1972).

EMOTE is characterized by four main features:

- Effort and Shape parameters are independent frangdometrical definition of a
movement, i.e., a gesture is specified in termkegftime and pose information and
Effort and Shape parameters are applied to gendeaiations with respect to the key
pose information.

- Effort and Shape parameters can vary along disticales, e.g., each parameter can
vary along a scale ranging from — 1 to + 1.

- Different Effort and Shape parameters may be sjgelcdnd applied to the movement
of different parts of the body (e.g., arm, torso).
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- Effort and Shape parameters can be phrased asgwsesal movements (e.g., a series
of coordinated movements).

While EMOTE mainly concerns synthesis of expresdmoely movements, a similar
approach has recently been applied also to movearalysis. For example, in (Zhao,
2001) four neural networks have been trained tsstia movement along the four
dimensions of Laban’s Theory of Effort.

Some works considering both music and movemenbeaiound in a specific field: the
analysis of the movements of a performer duringrthisic performance. For example
Eric Clarke and Jane Davidson analysed the movenwdrd pianist (in particular of his
head) during a performance (see for example Clarice Davidson, 1998), Sofia Dahl
studied movements of a marimba player (see for el@r®ahl and Friberg, 2003),
Marcelo Wanderley and colleagues worked on the mewis of a clarinettist (see for
example Wanderley, 2001).

Did the quest for expressiveness find its gold?

In my opinion, from the one hand, some positiveeatp can be highlighted like, for

example, the following ones:

- Research started to deal with the problem and satteenpts have been done to
formalize it in more precise and quantitative terrer example, computational
models of the emotional mechanisms have been de@l@and emotion related
features have been measured.

- Some experiments demonstrated that it is possibbertrectly analyse and synthesize
expressive emotional content. In the field of parfimg arts this holds especially for
music.

- Some application prototypes have been developedised in concrete scenarios (see
for example the system prototypes from MIT Affeet@omputing group).

On the other hand the way to expressive compusestillilong and difficult:

- Research often starts from naive hypothesis andetsmes the goals are quite
ambiguous and unclear (for example, it is still idly clear what is intended with
“expressive emotional information”). A good fornmdtion of the field (if ever
possible) is still far to be reached.

- The experiments only considered very specific cdstee.g., experiments in music
are often carried out on excerpts from the clatsegzertoire (e.g., pieces by Mozart,
Chopin, Schubert); experiments in movement oftarcems very specific movements
(e.g., arm and hand gestures). Their results asefaeto be generalized to music and
full-body movement in general.

- Application prototypes are still quite ineffectivEhat is, emotional machines often
raise interest and curiosity (and sometimes diffadg in people interacting with them,
but in my opinion they are still not able to generthat “suspension of disbelief’ that
Bates (1994) considered of primary importance t&artaem believable.
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A main objective of this work is to give a scieittiind technological contribution to the
development of novel forms of artistic performancgkere the performing action takes
place in a number of physical as well as virtuahreected spaces. Spectators usually
become participants, since they are enabled tattirgenerate and modify content
through their interaction. A performance can beaamged on several levels of
abstraction, with multiple narrative lines inter@& and interactively developing across
the connected spaces. The paradigm here developedtistic performances can further
be applied to other application contexts suchasexample, museum applications.
In this chapter, a Multilayered Integrated Expresdtnvironment (MIEE) is envisaged
in which communication mainly takes place by norbadly conveying expressive,
emotional content. Expressive gestures are addiessdirst-class conveyors of such
expressive information.
From a scientific point of view, attention is foeds(i) on paradigms and metaphors for
modeling such environments and (ii) on understaptie process of communication of
expressive content, by individuating which features an expressive gesture are
responsible of such communication, and how the hyrs of these features correlates
with a specific expressive content.
From a technical point of view, issues are facedhendesign and development of such
multilayered integrated expressive environmentserm of their hardware and software
components, and with reference to possible expioitaf the technologies discussed in
the previous Chapter in order to implement them.
A first step is represented by the definition shadel of such an integrated environment.
The model has to take into account two main aspects
0] The structure of the integrated environment, i.e., its basic ponents, how
they are connected in the environment, and theepties of both the basic
bricks and the whole environment.
(i) The communication process.e., how information flows in the integrated
environment with respect to both the interactiotwieen environment and
users, and between the basic bricks composingtieoament.

In this perspective, this Chapter will discuss #reicture of a Multilayered Integrated
Expressive Environment and its global propertiedefded Multimodal Environments

(EMEs) will be introduced as basic bricks and W discussed in details, mainly with
reference to what they contain: real and virtugkedis and real and virtual subjects.
EMEs will be then connected together into a netwafrkpaces enabling geographically
distributed performances. The concept of ActiveESMvill be finally used to introduce

MIEEs, a hierarchical structure of metaspaces @amehconceived as a virtual subject
collaborating in achieving the overall narrativeaesthetic goal of the performance.

1 A third aspect, related to the dynamic along tiofethe envisaged environments, should also be
considered. It will not directly faced in this désgation. However, it is currently subject of onupi
research at the DIST-InfoMus Lab.
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The following Chapter will deal with the second esip the communication processes
taking place in a MIEE. A particular emphasis vbi given to expressive gesture,
considered as a main vehicle of information in &Mland as a first-class conveyor of
high-level expressive, emotional content.

2.1. The basic bricks: Extended Multimodal Environnents

The interactive environments discussed in thisedliaon get inspiration from the
Multimodal Environments (MEs) described in (Camunnid Ferrentino, 1999). MEs are
conceived as “a population of physical and softwagents capable of changing their
reactions and their social interaction over tim#ie “living agents” are intended to
observe the users and extract features relatecex@mmple, to motion and gesture. The
extracted features are then mapped onto real-tiemergtion of music, sound, visual
media. Agents can be software agents, ranging froisible observers to “believable
characters” (Bates, 1994), as well as physical tsge@amely robots moving on-stage like
the Theatrical Museal Machine (Camurri and Ferrentl999).

They aremultimodal since multiple sensorial modalities (e.g., visualditory, haptic)
are involved both with respect to perception by cters/participants (that is,
spectators/participants are exposed to stimulivaiitig several modalities), and with
respect to analysis of inputs from spectators/ppgnts (i.e., spectators/participants’
behaviour is analysed under a multimodal perspextiv

Here, the concept of ME is specified in more dstdibm the one hand, and further
extended on the other hand (i) by explicitly inchgdhumans (usually, performers and
spectators/participants) in the model and (ii) kplieitly envisaging contexts in which
the performance is spread over a number of digatbyphysical and virtual spaces
together constituting a shared performing enviromme

Extended Multimodal Environments (EMEs), conceivad Mixed Reality spaces
containing real, virtual, and mixed objects and,reigtual, and mixed subjects, represent
the basic bricks of a multilayered integrated egprgee environment.

An EME can be classified in term of the Reality #t¥ality continuum (Milgram and
Kishino, 1994), that is, it can be a completelyl rgahysical) environment (as in
traditional theatre performances), a completelyuair environment, or something in
between: an augmented reality space, an augmeintadliy space or, ideally, a space
where the user cannot distinguish what is real framat is virtual. Notice that actually
the traditional distinction between physical andual space is here taken into account,
i.e., a physical (or real) space is a space in lwthe usual physical laws hold, while a
virtual space (environment) is one that can go hdyibe constraints of physical reality,
by simulating worlds in which the usual physicat$ado not hold anymore.

Mixed Reality techniques like those described i pnevious Chapter can be used in the
design and implementation of an EME. Several agpres are possible: for example,
from the point of view of Hishii and Ullmer (19938) Mixed Reality situation already
takes place when technology builds in some waylemrinfrastructure around a single
physical space. Moreover, when connecting moreleiMixed Reality spaces through
the network to obtain a whole integrated environthgumch cyber-infrastructure is further
individuated in the connection itself. Mixed Regliechnologies, like methods to make
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bits “tangible”, can therefore be employed both doy single EME and for building a
whole integrated environment.

Here, however, a broader perspective is addressddding the point of view by Hishii
and Ullmer, but also envisaging situations in whiobmpletely virtual spaces are
explicitly involved. Fully virtual spaces can bdtained by using virtual reality
technigues. An EME can be an augmented realitynoaw@gmented virtuality space;
augmentation can be achieved by means of welldestiald augmented reality/virtuality
techniques. Notice that here augmentation is irgénd a multisensory perspective, that
is not only concerning the visual channel, but dts® auditory and possibly the haptic
ones. Notice also that while from the one hand argation is an important aspect of
EMEs and completely virtual EMEs can be considexed implemented, on the other
hand, most of EMEs are real physical spaces ansigdlity in interaction is a main issue
in the design and implementation of an EME. In migw completely virtual
environments should be used only if their use carstoongly justified: for example,
because it is unpractical or dangerous to do santeth a real environment, or because
the designer wants to experiment a situation irctvltine or more physical laws do not
hold anymore.

An EME can contain several kinds of entities: m@gkcts, virtual objects, mixed objects,
real subjects, virtual subjects, and mixed subjects

2.1.1. Real, virtual, and mixed objects

An EME usually contains a number of real objectdldwing the distinctions proposed
by Milgram and Kishino (1994) and previously desed (see Chapter 1), real objects
are defined as “any objects that have an actuaktilsg existence”. Thus, real objects are
objects that effectively exist in the EME: for exalen any peace of scenery can be
considered as a real object, physical icons (Hashd Ullmer, 1997) are real objects as
well. Any subject actually present in a given EM&halirectly observe real objects and
(if usable) can use them.

Conversely, virtual objects are “objects that ekistssence or effect, but not formally or
actually”. This definition could be further extesgisince it is possible to consider virtual
objects that do not correspond to any existing obgct (i.e., do not exist in essence or
effect), but are results of the creative imagimatbthe designer of a performance.
Virtual objects can be dynamically created, desidpyused and moulded (that is, their
properties can be dynamically changed over time}uyjects. Usually, they cannot be
directly observed, but effects of their use canpeeceived. As an example, let us
consider a scenario described in (Camurri and Ren@ 1999): a single agent observes
and interprets movements and gestures by a usgr ée.dancer). Depending on the
identified “style of movement”, a kind of “dynamigper-instrument” is generated and
played. For example, nervous and rhythmic gesteve&ing a percussionist produce a
continuous transformation toward a set of virtualinds located where motion is
detected. If movement evolves toward smother gesta continuous change takes place
also in the music output: for example, virtual deuare transformed in a virtual string
guartet. In the framework of the model proposedhis work, the dynamic hyper-
instrument can be considered as a virtual objéatam be created in a given location,
used (i.e., played), destroyed, and its propedsssbe dynamically changed over time.
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Lot of such virtual dynamic hyper-instruments candoeated in a given space. Each of
them cannot be directly observed (since they ateal), but the effects of their use (i.e.,
the sound produced while playing them) can be pexde

Virtual objects are thus able to implement tradiibbmetaphors like “hyper-instruments”
(Machover, 1989), but also to go partially beyoihgper-instruments”, by enabling the
dynamic behaviour previously described. Moreovéatual objects can be employed in
more complex scenarios: for example, they can implg Schaeffer'snusic objects
(Schaeffer, 1977). Schaeffer's Morphology is aeratit to describe and study “concrete
music”: roughly speaking, in concrete music, muslgects extend the traditional
musical instruments with sounds coming from refad, Iproduced by concrete objects.
Virtual objects can implement Schaeffer's musiceols, since they can generate sounds
whose features can be changed/moulded accordiGghaeffer's perceptual cues (e.g.,
“grain”, “texture”, “allure”...Y.

The same mechanisms here described for audio campkyed also for objects whose
use is perceived in visual form. Referring agairihte example above, it is possible to
create an object such that when the agent detectoous and rhythmic gestures it
produces a continuous transformation toward an @magwhich some features (e.g.,
colours associated to energy, sharp edges) areasmph.

In the Milgram and Kishino’s perspective, real amdual objects can be considered as
two extremes of a reality-virtuality continuum. Mot conditions (mixed objects) are
possible in between, i.e., real objects havingrad laf virtual augmentation or virtual
objects having a kind of physical counterpart. Mwex, objects can move along the
continuum during their lifetime: thus as a consemgeof an interaction moulding its
properties, a real object can for example acquicedevelop a virtual augmentation.

The introduction of real, virtual, and mixed sultgewill definitely allow overcoming the
hyper-instrument paradigm, by introducing novelerattion metaphors. By the way,
notice that a “virtual subject” has already bednoiduced in the described example: “an
agent” observes the movements of the user. Reeljalji and mixed subjects are
discussed in details in the following subsection.

2.1.2. Real, virtual, and mixed subjects

With the word “subject” is intended everything alileto perceive what is happening in
the environment surrounding it and (ii) to act adaegly. In other words, subject is here
used as synonymous of agent. An agent is in fdotatbas “anything that can be viewed
as perceiving its environment through sensors atidgaupon the environment through
effectors” (Russell and Norvig, 1995). Neverthelésabject” is here used since the term
“agent” has been often abused in the literatutbénast years.

By making for subjects a distinction similar to thvee made for objects, real subjects are
defined as subjects that have an actual objectiigemce. Humans and robdere the

2 From a certain point of view, this operation wolle against the original objective of Schaeffer who
aimed at extending traditional musical instrumenysincluding sounds coming from real life. Here we
would synthesize sounds having the morphologicaperties described by Schaeffer but that would not
necessarily come from or belong to the daily exgreré.

% In fact, animals would also be real subjects an tiasis of the definitions above, but it is mucésle
common to find animals participating in artisticfoemances!
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two kinds of subjects having an “objective exis&hnthat are usually found in EMEs.
Notice that while humans are always considere@alssubjects, robots are considered as
real subjects only if they are able to perceive acij i.e., they have a certain degree of
expressive autonomy. The conceptespressive autonomgefined as “the amount of
degrees of freedom that a director, a choreographesmposer (or in general the author
of an application including expressive content camiovation), leaves to the agent in
order to take decisions about the appropriate espre content in a given moment and
about the way to convey it” (Camurri, Coletta, Rietti, and Volpe, 2000), will be
further discussed later in this dissertation; & mhoment, just consider an example: a
small robot in a performance is used to carry aectédmera (for example, the
videocamera can get images of the performers #watbe deformed and projected on
large screens). The robot moves strictly accordimgcommands coming from the
director. In this case, the robot does not percaiwghing and its actions are just the
results of the commands given by the directorogginot have any expressive autonomy
and, in fact, it is a realbject i.e., it only is used by the director (who cancoasidered
as a real subject). Consider instead a situatioarsvithe robot decides toward which
performer the videocamera has to be pointed invangiime instant, basing its decision
on the expressive gestures each performer didefast few seconds. In this case, the
robot is able to make decisions according to itcqions, it has a certain degree of
expressive autonomy, and thus it can be considesedreal subject.

Virtual subjects, instead, do not have an objecéxistence; they can be dynamically
created and destroyed and, since they are sulbjestsare able to perceive and act. From
the point of view of perception, virtual subject® able to observe the environment
through (real in EMEs) sensors (e.g., videocamenaigrophones) and to process
information in order to get an internal represeata(state) of the environment. From the
point of view of action, they use (real in EMEs)uators to generate outputs (e.g.,
music, sound, visual media) in the environment. i@y to what happen for virtual
objects, virtual subject cannot be directly obsdnmt the effects of their actions can be
perceived.

Again, real and virtual subjects can be considagthe extremes of a reality-virtuality
continuum. Mixed subjects are envisaged in thermmégliate conditions. For example,
robots can be considered mixed subjects from manmytp of view since they have a
physical existence, but virtual augmentations efrtbapabilities are also possible. As for
objects, subjects can dynamically move along thticoum during their lifetime.
Moreover, it is also possible for objects to becmubjects, i.e., one of the possibilities
in dynamically changing the properties of an objeaepresented by allowing the object
to “acquire life”, that is to acquire the ability perceiving and acting. This possibility is
also related to expressive autonomy. For examplesider again the robot controlled by
the director discussed above. At a certain poigt, as a consequence of some event, the
robot could “conquer its freedom” and starting tak& autonomous decision: i.e., it was
a real object and it becomes a real (or mixed)esbjConversely, a subject could also
“lose its freedom” and become an object.

Subjects (mainly virtual and mixed subjects) canclassified with respect to their
properties: two main criteria distinguish virtualdamixed subjects with respect to (i) the
output channel that they mainly use in their actiand (ii) the predominant aspect of
their behaviour, i.e., if they mainly observe, actdo both things. With respect to the
second criterion, an important role is again plapgdexpressive autonomy. In fact, if
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from the one hand subjects must have a certainedegf expressive autonomy
(otherwise they would be objects), on the otheidhtie amount of expressive autonomy
strongly influences what a subject can do.

For example, with respect to the first criteriomirtgal and mixed) subjects can be
distinguished in:

Audio subjectsi.e., subjects that mainly use auditory outpoutel and music) for
their actions (or in the opposite perspective, actbjhe effects of whose actions are
mainly perceived through the auditory channel).

Visual subjectsi.e., subjects that mainly use visual output @e® lights) for their
actions (or in the opposite perspective, subjexefifiects of whose actions are mainly
perceived through the visual channel).

Multimodal subjectsi.e., subjects that use both audio and visuapuwufor their
actions (or in the opposite perspective, subjeet d¢ffects of whose actions are
perceived through both the auditory and the vishahnel).

Notice that the classification has been restricdely to audio and visual outputs since
these are the outputs we are mainly concerned witljway, it can be further extend if
other modalities become available. If for examplsuéject would be able to interact
through haptic effectors (e.g., devices with foi@edbacks et similia), this modality can
be added to the previous ones.

With respect to the second criterion, a distincttan be made between:

Observers i.e., subjects whose main role is observing diquaar aspect of the
environment. They extract features, interpret thang provide other subjects with
information (structured on more levels) about whhey are observing. The
communication process between subjects and a pedsimework for analysis of
features will be discussed late in the next Cha@tgparticular subset of observers
groups those associated to humans, that is, olssehet are responsible to track and
analyse the actions a human is performing. Anotwrset is constituted by the
observers that are again associated to a humargreutesponsible to observe the
environment from the point of view of the humanytlaee associated with: in a sense
they arecustomized observerBoth virtual and mixed subjects and robots cay pl
the role of observers.

Actors i.e., subjects whose main role is acting (i.eodpcing music, sound, visual
media) mainly depending on input received from pthejects (mainly observers).
Avatars are an important kind of actors. An avatar is Uguaonceived as a
representation of a human in a virtual reality emvwment (see for example Bahorsky,
1998). An avatar therefore acts accordingly to vihathuman it represents is doing:
its main role is representing the human throughgtgons. An avatar can for example
receive information from the observer that is obisgy the human the avatar is
associated with. Both virtual and mixed subjectd aobots can play the role of
actors and avatars.

Characters i.e., subjects that both perceive and act. Clemrmcoften are not
associated to a given human, but they can inteveilsthumans. Characters therefore
have a higher degree of expressive autonomy wgpea to observers and actors.
Lot of research has been carried out on charatbemsprove their behaviour and
they believability, in a huge variety of applicatifields (e.g., virtual tutors, virtual
assistants, characters in game environments, ¢hesdor sign language, characters
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for TV applications...). Design of virtual charactessnot a main objective of this

work: here | just point out two issues that ardipalarly relevant in artistic contexts:

()  Anthropomorphism is not a strict requirement: itpigssible (and sometime
preferable) to have cartoon-like characters or rabstshapes that are not
anthropomorphic at all.

(i) Despite most research on virtual characters isadgtdocusing on verbal
communicatiofy here communication mainly takes place through-vernbal
channels. Characters, therefore, have to demoagtrair believability through
the audio and visual output they produce.

By combining classifications according to the twibetia, two relevant cases emerges:
- Audio clonesthat is, avatars that mainly act through audigpou
- Visual clonesthat is, avatars that mainly act through visudpat

Clonesreplicate the actions of a human by translatirgrihn auditory (audio clones) or

visual (visual clones) form. The level of abstrastiat which humans’ actions are

translated can considerably vary: for example, inveay simple scenario, some

movements (or motion in a given location) can beogmized and associated with

generation of audio or visual output. In more camptases, high-level information

about expressive gesture can be involved in thmesl@don process.

Notice that a clone will need an observer to gathfarmation about the human and an
actor (an avatar) to generate audio and/or visuigud. If the clone is created in the same
Mixed Reality space in which the human actually(iis., in the same geographical

location) the two aspects can be merged and theedkin fact a character, If instead
generation of output takes place @amother Mixed Reality space (i.e., in another
location), an observer will be needed in the spaltere the human actually is, and an
actor/avatar will be needed in the space wheretiygut has to be generated.

This last observation raises a problem that wilfuréher discussed in the following (see
Chapter 4), i.e., mapping strategies. How is ththegad information translated into

actions? Mapping strategies will be discussed itaidewhen analysing the internal

structure of a virtual or mixed subject and the oamication processes taking place in
the discussed environments.

Once described real, virtual, and mixed subjeats,issues need to be discussed:

() How are real and virtual subjects involved in thesign of a performance? A
performance usually has some goals, that can beifidd in its narrative structure
and in the aesthetic concept its designer wantsotomunicate. How do subjects
contribute to these goals? This problem is alsatedl to the social behaviour of the
subjects, that is how they relate and interact eatbler. Here two paradigms of
interaction are addressemtllaborative and competitive

(i) How do real and virtual subjects communicate? Pphidblem is strictly related to the
previous one, since interaction is not possiblehait communication. The
communication channels will be explored in thedaling Chapter. In particular, we
envisage a model in which non-verbal communicataies place through expressive
gestures.

* And related fields, such as for example autoratit believable generation of co-verbal gestures.
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2.1.3. Interaction paradigms between subjects

Let's thus start considering the first issue: how reéal and virtual subjects socially

interact in an EME?

Here only two approaches are discussed, but fuathérmore complex paradigms can be

introduced and employed. The two approaches takienaccount are quite traditional,

nevertheless (i) they are easy to understand aptbiment and (ii) they can be usefully

employed to build prototypes of EMEs. The two cdesed models are the following:

(i) Collaborative modelsi.e., subjects cooperate in the fulfilment of theals of the
performance. Collaborative models have been usedah of application contexts,
e.g., in Al and in HCI in the field of conversataragents (see for example, Guinn
and Biermann, 1993; Pérez-Quinones and Sibert,)1996

(i) Competitive modejs.e., subjects compete in obtaining resourcesmaghieving a
goal by getting the best performance or scoringn@atitive models are mostly
used in games (and videogames)

Both these models have been extensively studieseueral disciplines ranging from
computer science (e.g., in machine learning in ftekel of evolutionary and genetic
algorithms) to economics and social sciences. Hereoid going into details that are
beyond the scope of this work and | just put intmlence the aspects that are relevant for
the context in which the models will be employed.

In the literature the term “collaborative” is ofteised with reference to Collaborative
Virtual Environments (CVES), intended as systenas thse VR technology to visualise
a space inhabited by multiple users, usually ggagcally remote in the real world”
(Benford et al., 1997), and provide a frameworkdaohancing cooperation among users
finalized to a given group work (Benford et al., 989 1997). Taking inspiration from
Benford’s definition, in the context of this workdllaborative” means that subjects (e.g.,
performers and spectators/participants but algoaliand mixed characters) cooperate in
the common group “work” consisting in generating therformance. In other words,
while from the one hand the performance may reraghestrated and supervised by its
designer (composer, choreographer, director) asore traditional contexts, on the other
hand it can evolve and be moulded on the basisiof and coordinated actions of real
(performers and/or spectators), mixed and virtujects that can directly collaborate in
generating and transforming the content. The comigual driving the participants’
actions (that is implicitly implied by the term ‘itaborative”) in the case of an artistic
performance can be identified, for example, in ancwnicative objective of the
performance as a whole, that is, in the acquiretsciousness and understanding of the
message the designer wants to communicate thringgbhiared experience. Supervision
by the artist/director and evolution depending abjscts’ actions can be mixed at
several extents: this issue is related again toctmeept of autonomy (and expressive
autonomy). The word “collaborative” is thereforeedsnainly with reference to its social
meaning (i.e., bringing together people cooperatmthe fulfilment of an artistic goal)
rather than in its technological implications: thaf | put less emphasis on some
requirements of CVEs, like the definition of “ansistent and common spatial frame of
reference”, or the existence of “a well establisteedordinate system in which the
relative positions and orientations of differenjemlts can be measured” (Benford, 1997).
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Such approach is motivated by the fact that thiskwe focused on investigating new
technology-based paradigms for artistic applicajoather than in reproducing with VR
(more or less) real scenarios. Paradoxically, iohsa context lot of interest may be
raised by a VE in which physical laws are partialycompletely violated, but in this
situation, concepts like “well established co-oeden system”, “relative position”, and
“relative orientation” can lose much of their meami

The term “competitive” is also intended with a Iegp®cific meaning with respect to the
specialized literature (e.g., in the field of genetigorithms). Here “competitive” refers
to the traditional game paradigm where players aimm achieving a goal by trying to
obtain the best performance (for example in ternihef best score). Competition can
imply “fighting” for obtaining a limited resourcégr surviving (as in most games) or, in
general, for defending our own interests againsitihers’ ones. A performance can thus
be designed in a game-like perspective where sisbjéght” each against the others to
get the best score and to win the game. The gamagligen can considerably raise the
interest and the engagement of participants aogaiees largely demonstrate. The use
of well-acknowledged conventions, as in drama aadep, has been demonstrated to be
effective in introducing novel forms of interactitm the general public, even to novices
in technology (Rinman, 2002).

The two paradigms can also be joined: for examplis, possible to have competitive
environments where subjects grouped in teams aobdd in trying to win the game. In
artistic scenarios this situation can often hapden:example, two actors “fighting”
during a scene, in fact are contributing with tteation to the overall development of the
narration, i.e., with the “fighting”, competitivection they collaborate to the artistic goal
of the performance. The two paradigms could theeefieed a redefinition in order to be
employed in performing arts.

2.2.  Connecting together more Extended Multimodal Bvironments

Up to now the discussion focused on a single EMEE@nwhat it contains (real, virtual,
and mixed objects and real, virtual, and mixed actis). An EME exists in a given
geographical location. However, the interest isagrerformance environment that is not
limited to a specific physical and geographicalakien, but can be spread on several
different locations. This is nowadays allowed byodmtband communication
technologies. Evolution in technology will also r@ve the need to have dedicated
installations (and dedicated places) for perforneanicus enabling distribution in non-
traditional environments (e.g., at home). Conngctwgether more EMES raises some
issues about how subjects inhabiting a given enuient are represented in the other
ones and how subjects in a given environment carobgects belonging to another one.
Such situation can be handled by using the obsane@vatar subjects described above.
Let's for example consider two EMEs connected tghoa network (see Figure 2.1). In
the Figure human-like shape®present subjects (solid lines for real objeat @ashed
lines for virtual objects), and cubes represenectsj (again, solid lines for real subjects

®> Notice, however, that usually anthropomorphismniz needed for virtual subjects. Here they are
represented as human figures only because thegHgtius easier to understand.
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and dashed lines for virtual subjects). Two obssnage associated to a real subject (a
human) in EME 1. The first one observes the humang to analyse his/her actions and
behaviour (e.g., what he/she is doing with a realidual object), similarly to the
observer previously discussed in the example fréan{urri and Ferrentino, 1999).

EME 1

:,..--""'bther subjects & obje(,:t'é"'--..m

7

Real object

virtual object

e

NETWORK

EME 2
Avatar
Real object /’
4 4 \\
4 4 \
7’ \
4 7 \
................... ’ \
...................... ’ \
--.,A."/ \
" Other subjects & objects™... \

deed /ﬁ\ Virtual object

Figure 2.1 connecting two Extended Multimodal Environments.

-30 -



Chapter 2 — Multilayered integrated expressive remvnents

Notice that information the observer can extraotrfrthe human ranges over multiple
layers of abstraction: from simple detection of imotin given regions or of given body
parts, to information about gestures the humanerfopming, to possible emotion the
human is trying to express, to his/her engageméhtrespect to the performance that is
taking place. Examples will be discussed latetin tissertation when, as a case study,
analysis of expressive gesture in human full-body@ment will be discussed.

The second observer observes what is actually mappén the Extended Multimodal
Environment: for example, it observers what theeptbubjects (real, virtual, or mixed)
are doing with real, virtual, and mixed objects.afkginformation over several levels of
abstraction and complexity can be extracted. Notinz# the second observer can be
“customized” in order to observe the environmentoading to the preferences of the
human subject it is associated with. For exampléha human subject has a particular
sensitivity toward light changes or toward a giveasical genre, the observer can be
programmed to attribute a particular relevancegiat changes and to that musical genre.
The mechanisms for obtaining such a customisatidinbe& discussed later, when the
internal architecture of virtual subjects will besgribed in more details.

Information collect by the two observers is sengrathe network to an avatar inhabiting
EME 2. The avatar can thus act in EME 2 dependmgbat the human it represents is
doing and observing in EME 1. Furthermore, the avatan also observe what is
happening in EME 2. Avatar’'s actions can therefdepend on (i) the actions of the
human as observed by observer 1 in EME 1, (ii) vidhagppening in EME 1, filtered by
observer 2 according to the human’s preferencéy,what is happening in EME 2,
observed and filtered by the avatar according ® llaman’s preferences. Avatar’s
actions can consist in generation of audio andalisontent or in suitable use (and
creation/destruction, if needed) of virtual objedike avatar could also use real or mixed
objects if they can be used without the need obajly interact with them (e.g., objects
that can be automatically controlled).

Conversely, information gathered by the avatar MEE2 can be sent back to EME 1,
where it can be presented to the human in seveagt wvith increasing complexities,
ranging from displays showing what is happeningeME 2 to the visual and audio
feedback generated by an actor in EME 1 on theslmdiglata coming from EME 2.

The mechanisms here described can be replicatender to connect together more
EMEs: a network of EMEs can thus be obtained engldistributed performances (see
Figure 2.2 in the following page). Of course, coextly increases: for example, a human
physically inhabiting a given EME can have avatarseach connected EME, all
receiving information from the two observers asatad to the human. Conversely, the
human can receive feedbacks from each of his/hataes/ populating the network of
EMEs.

With reference to Figure 2.2, notice that a conpnacbf each EME with any other EME
is not required (i.e., the graph representing teavark of EMEs may not be fully
connected). However, a kind of transitive propéds on the basis of which each EME
can indirectly influence what happens in any EMEVidich a path can be found in the
graph connecting the two EMEs. Consider for exanfE 5, EME 6, and EME 7 in
Figure 2.2: they are not fully connected: for exéanEME 5 is not directly connected
with EME 7. What happens in EME 6 can depend ontuwghhappening in EME 5 (they
are connected, so there could be in EME 6 an awdtarhuman living in EME 5 and
acting on the basis of what it receives from EMEV8hat happens in EME 7 can depend
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on what is happening in EME 6 (again they are coteig and a human in EME 6 can
have a avatar in EME 7 acting on the basis of whagppening in EME 6). Since what
is happening in EME 7 can depend on what is hapgem EME 6, but what is
happening in EME 6 can depend on what is happemrigME 5, in fact EME 5 can
indirectly influence what is happening in EME 7 Bvé a direct connection between
EME 5 and EME 7 does not exist.

Figure 2.2 a network of Extended Multimodal Environments

Notice also that in a network of EMEs the links aynamically change over time
depending on the evolving performance. In partigutze links can be characterized by
properties evolving over time (i.e., links can l@@gmeterised) and can also be added or
removed according to the needs of the performavogeover, in the Figure links just
represent network connections among EMEs, but laiglaer level a semantic can be
associated with them, e.g., related to the (nosalip narrative structure of the
performance. Such aspects are not directly facetisndissertation, but are subjects of
ongoing research at the DIST-InfoMus Lab.

While techniques of augmentation such whose destrly Milgram and Kishino or
whose related to the tangible bits approach canused internally to each EME
composing the network, Mixed Reality BoundariesnBed et al., 1998) can instead be
a good (but not the only) choice for connectiomsstn EMESs.

Even if the complexity of an extended network of Ed/is more a theoretical condition
than a practical one (in practice, usually, onlyw flEMEs will be connected together),
anyway such a complexity can make it difficult tesayn, organize, and coordinate a
performance: the cross-influences can make it isiptesto develop a narration across
the EMEs and the juxtaposition of too many effe@s generate situations that are both
not understandable by the spectators/participamid aot manageable by the
director/designer. A further layer of coordinatiand supervising is therefore needed in
multilayered integrated expressive environments.
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2.3. Active Extended Multimodal Environments

An Extended Multimodal Environment can be itsel@iggped with sensors and effectors.
Environmental sensors can be used to get an oyacdlre of what is happening and
environmental audio and visual outputs can be geeér An EME can therefore be
thought to be armctive space, that is, it can be itself part of the panénce since its
environmental properties can be moulded dependiri® evolution of the performance.
A simple example is given by a space in which el@sde.g., lights, scenery) are
dynamically changed in real-time by performers’i@ts. Consider for example a
situation in which a concert is taking place into BME. The EME can observe the
performers and produce visual outputs (e.g., atistfaapes) depending on the played
music. The same music could also be acquired tlrougrophones, processed, and
reproduced on the basis of what and how the pedsmplay and how they move. More
complex situations can also be conceived.

Active EMEs usually need to havestate i.e., a corpus of information about what is
actually happening and what happened in the envieor.

Depending on their degree of activity, Active EMEas be classified along a continuum,
ranging from completely passive environments tchlyiglynamic active environments
(see Figure 2.3).

Active environments

< >
Completely Reactive Highly

passive environments dynamic active
environments environments

Figure 2.3 active environments can be represented alongnéncmm

In completely passive environments users (perfosfapectators/participants) cannot
influence the environment in any way. The environtrmonstantly remains the same, or
if it changes, changes are predefined. For exantipig,is what happens in traditional

theatre scenarios, where any change in lights,esgeand so on is decided before the
performance and extensively tested during rehesarsal

On the other side of the continuum, highly dynamitive environments are equipped
with environmental sensors and actuators and imgheroomplex strategies to analyse
data from sensors and map them onto generationutiinmedia output. Several degrees
of complexity are possible for example, with reggedi) how much memory of the past
is kept and used in the mapping process and (W much the mapping strategies can
dynamically evolve over time.

A relevant case in between completely passive enments and highly dynamic active
environments are “reactive environments” in whicbodlection of fixed rules is used in

the mapping process.

More details will be discussed in Chapter 4 dealuittp mapping strategies.
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2.4.  Structure of Multilayered Integrated Expressve Environments

Let's shortly reconsider the properties of an actixtended Multimodal Environmént

(i) it has sensors (i.e., it “perceives” what ippaning inside itself through a number of
environmental sensors), (i) it has “effectors”e(j. it is able to generate suitable
multimedia content depending on what it perceiv@d),it usually has a state (i.e., it has
an internal representation of what is happeninghese are the same properties that
define an agent: in fact, the definition by Russsdl Norvig (1995) says that an agent is
“anything that can be viewed as perceiving its mmment through sensors and acting
upon the environment through effectors”. An acBME can therefore be considered an
agent whose itself is the environment and, accgrtbrthe previous definitions, it can be
regarded as a subject. Is it a real, virtual, otedisubject? The problem is quite tricky.

A “real subject” is one having an “objective exigte”: an EME that physically exists in
a given geographical location should therefore basidered as a real subject. A
completely virtual environment instead should bestdered as a virtual subject because
it does not have an “objective existence”. Anyway,| will proceed in the discussion,
the problem of understanding what in fact is rea ahat is virtual will become more
complex, but, on a certain extent, less relevamt to

Metaspace

(I

EME 1 EME 2

EME 1 EME 2

NETWORK @

Figure 2.4 two active EMEs connected through the network banrepresented as two subjects in a
metaspace, one layer above the two EMESs.

® In this discussion | consider only active EMEs.(ifrom reactive environments to highly dynamitivac
environments). Completely passive environments ctibbe considered like subjects since they do not
perceive nor act. At most, they could be consideedbjects: something about this possibility wélsaid
later in this section.
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Let's now consider two active EMEs connected thloagnetwork (a situation like the
one described in Figure 2.1). As previously obsgéneach EME can be thought to be a
subject communicating each other through the ndtwonnection. It is thus possible to
define a kind ofmetaspaceone layer above the two EMESs, in which the twoES\Wan
be represented as communicating subjects (seeeFRydrin the previous page). In a
similar ways, when more active EMEs are connectegether like in the network in
Figure 2.2, they can be modelled as a collectiosutijects interacting in a metaspace
one level above the network of EMEs (see Figurg 2.5

i EME 1

| EME 2
Layer 1 /ﬁ\ /ﬁ\

i EME 5

 Layer 1 metaspace

Network of active EMEs

Layer O

Figure 2.5 a network of EMEs can be represented as a grbaplgjects in a metaspace, one layer above
the EMEs in the network.
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As previously discussed, an EME can be directlynalirectly influenced by another
EME in the network: similarly each subject/EME d¢wmve more or less knowledge about
the other subjects/EMEs in the metaspace andititenaction can be more or less strong
and tight.

According to this metaphor, the development of aatave structure along the network
of EMEs and the achievement of the performancersatige and aesthetic goals can be
though as the outcome of the interaction (eithélaborative or competitive or both) of
the subjects/EMEs in the metaspace representingdtveork. The EMEs can intervene
and directly influence what is happening insidentheith the aim of enriching the
experience of the spectators/participants by ctimgothe complexity of the interaction,
thus helping spectators/participants in understapdhe performance contents and
enhancing fruition.

If from the one hand each EME can be though haitm\@wn storyboard and its own
“artistic goals” and real, virtual, and mixed sultge are “actors” collaborating or
competing for achieving the “artistic goals” of tAME, on the other hand the metaspace
at layer 1 will have its own storyboard and its otartistic goals”, but in this case each
EME is an actor in the layer 1 storyboard and EMisract by collaborating or
competing (or both) for the achievement of thei&tit goals” at layer 1.

Suppose now that two networks of EMEs generatenetaspaces in which the EMESs in
the two networks are actors collaborating and/ommeting in the context of the
storyboard of each metaspace. The metaspace carvehshat the subjects/EMEs are
doing inside it and can intervene and influenceirtiehoices: in other words, the
metaspace can be considered as an active environieweth therefore as a subject
“perceiving” what the subjects/EMEs are doing iesidand acting accordingly

The two metaspaces can then be grouped as suinjeststher metaspace a layer above.
The two metaspaces will be “actors” in the storyldaaf the new upper level metaspace
and will contribute by collaborating and/or competio the goals of the new metaspace.
This paradigm constitutes the basic structure ofitiMyered Integrated Expressive
Environments (MIEE). It can be replicated recurkivey creating more levels of
abstraction, in which each active space or metaspaconsidered as a subject in a
metaspace one layer above. Each active space aadpaee has his own storyboard and
subjects and as a subject itself is part of theybtard of the metaspace one layer above
it (see Figure 2.6 in the following page).

Each group of active spaces belonging to the saptagpace at the upper layer can be
considered as part of the same network, i.e., ttegy be represented in a connected
graph. For example, one of the possible “trangtation term of graphs of the MIEE in
Figure 2.6 is represented in Figure 2.7. Notice tha edges inside each graph are not
univocally determined by the tree structure. Coaisidr example the three EMESs in the
bottom left corner of Figure 2.6: from the treeusture it is only possible to argue that
they are connected, but it is impossible to know llmey are connected (e.qg., if they are
fully connected or not). The representation of M$&E term of graphs and trees can help

" Notice that at this point the metaspace will beally considered as a virtual environment and tuair
subject, since it usually will not have an objeetaxistence. Its “perceptions” and “actions” wiéispect to
subjects/EMEs will not be physical (like for exammgleneration of audio/visual content in EMES). Rgth
metaspaces will act as software agents interactity other software agents (the subjects/EMES).
Anyway, sometimes it is possible to find a physimalinterpart of metaspaces as it will be describexh
example later in this Chapter.
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in the design and implementation phase, sincetioadi and well-know algorithms for
traversing graphs and trees can be applied to MIEEs

Metaspace layer 2

Metaspace layer 1 Metaspace layer 1 Metaspace layer 1
A N A W
EME EME EME EME EME EME EME

Figure 2.6 structure of a Multilayered Integrated Expresdtvevironment (MIEE)

Metaspace Layer 1

Metaspace Layer 1

Metaspace Layer 1

Figure 2.7: representation on term of graphs of the MIEEiguFe 2.6.

How spaces are grouped and connected depends onaspects, and decisions about
this are made during the design of the performaRceexample, EMEs belonging to the
same geographical region can be connected in time seetwork. A concrete example
will be given at the end of this chapter. Moreowes,previously noticed connections at
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each level should be considered as dynamic links, they could be created and
destroyed, and their properties modified dependimthe evolution of the performance.
MIEEs are thusnultilayeredsince they represent a performance with respetanative
structures situated at several layers of abstractio

They areintegratedsince a number of particular aspects of the iotem performance,
such as analysis of spectators/participants’ be@yreal-time generation of multimedia
output, individuation and application of suitabl@ppings between analysed behaviour
and generated output, management of the whole rpeaftce at multiple layers are all
grouped and considered under the same concepanadivork.

They areexpressivesince most of the interaction and communicatioocesses taking
place inside them (both at the level of “physicBMEs and at the level of “virtual”
metaspaces) are aimed at conveying expressivejarabtontent. A discussion about
what is considered to be “expressive content” dmaliathe mechanisms through which
such expressive content is conveyed in MIEEs wéllgresented in the next Chapter,
dealing withexpressive gestures

A final note has to be highlighted about complefghgsive environments. In discussing
EMEs the hypothesis was made that only active enments have to be considered.
Such hypothesis is needed because passive envintginsannot be considered as
subjects since they do not “perceive” nor “act’,datherefore the metaphor of
environments that like subjects interact in a higheel metaspace cannot be applied to
completely passive environments. This can be atdion since there are many
environments that are completely passive: for exempn important subclass of
completely passive environments is the one of ticathl theatre spaces where any
modification of the environment is decided befone performance and tested during
rehearsals. Sometimes, however, it is possible rmpoit completely passive
environments in the model by considering them apegial kind ofobjects In fact, if it

is possible to externally control some aspecthefanvironment (e.g., lights), a subject
could use these mechanisms to intervene on theosmvent. The environment does not
“perceive”, nor has an internal state, but subjeets use it as an object, by intervening
on it through the mechanisms the passive envirohprewides them.

2.5.  Multilayered Integrated Expressive Environmats: an example

After discussing the structure of MIEEs in termtloéir components and the paradigm
they implement, a concrete example of possibleafisdIEES is presented to conclude
the description.

Up to now, MIEEs have been discussed with resmeatdcenario in which they are used
to build distributed artistic performances where trarration is structured on multiple
layers. The example considers another applicattenagio: a museum exhibit in which
visitors pass through several rooms and instafiatagain following a kind of narrative
structure, the narrative structure of the exhdnit] where a goal is enhancing fruition.
Let's start by considering an installation in amoof the museum. Several degrees of
complexity are possible, ranging from simply digpl@ovies and reproducing audio
excerpts to interactive situations where visitors abserved, clones can be generated,
audio and visual content produced in real-time ddp® on visitors’ behaviour. The
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installation can therefore be regarded as an EMByhich visitors (real subjects) are
actively involved in discovering what the exhibiamis to communicate them. Real,
virtual, and mixed objects and other real (e.ghots), virtual (e.g., video and audio
clones), and mixed subjects can be involved innbktllation. Museum installations that
singularly considered can be regarded as EMEs lmeen developed in several
occasions: see for example the installations attdGlei Bambini” (literally Childrens’
City, a permanent science-museum exhibit for caiidin Genova, Italy) described in
(Camurri and Coglio, 1998) and (Camurri and Fement1999) and more recently the
installations at “Citta della Scienza”, a permargménce-exhibit in Napoli, Italy.

A room in the museum can contain a certain numbénstallations connected together
trough a local area network. If each installatiswonsidered as an active EME, the room
as a whole can therefore be considered as a metspwhich subjects representing the
installations contained in the room collaborate the context of a higher-level
communication objective (or a higher-level narratstructure), namely what visitors are
supposed to learn by visiting that room.

Two aspects are worth to be noticed at this pdimstly, the installations contained in
the room should be active EMEs, i.e., they showdble to observe what visitors are
doing, to keep and update an internal state, andctoaccordingly by dynamically
modifying parts of the installation. This meansttlhacertain level of complexity is
required in the installation and that the desidrees to be careful in finding a good trade
off between complexity and understandability whessigning and implementing the
installation. Simpler and sometimes passive iraialhs can be included as objects, if
they provide control mechanisms as discussed artef the previous section.
Secondly, this is an example in which the metaspesea physical correspondence in
the museum room. The museum room can be abstrastad active space inhabited by
subjects (the installations) interacting and callalting toward a common goal:
enhancing the fruition of the exhibit.

Let's consider now a further layer of abstractitor:example rooms in the museum can
be grouped with respect to thematic areas (i.emeowhose installations concern similar
issues can be grouped in the same thematic arghgmatic area can thus be considered
as another metaspace, collocated at layer 2, itdtaly the rooms that, as subjects,
collaborate in the development and in the managewfethe visit through a narrative
path across the thematic area. The museum as & wéolbe regarded as a metaspace at
layer 3 where all the thematic areas, consideresubgects, interact and collaborate in
managing flows of visitors inside the museum. THeM structure is shown in Figure
2.8 in the following page. More levels can be addedeeded: for example, if the
museum is spread over several buildings, eachibgilchn constitute another metaspace
at an intermediate layer in between the thema#dasaand the whole museum.

Notice that in concrete applications how EMEs argtaspaces have to be grouped in
higher layer metaspaces may be quite easy to dgorda the application scenario. For
example, in the case of the museum here discussegigg is performed on the basis of
location (e.g., all the installations in the sarnem are grouped in a metaspace) and on
the basis of the theme of the exhibit (e.g., &l thoms belonging to the same thematic
area are grouped in a metaspace). Similar criteniabe used also in the case of artistic
performances, where grouping can be depend for gheaon the geographical location
(e.qg., EMEs situated in the same region or coucdty be grouped together) or on the
content (e.g., grouping of EMESs similar in termstdryboard or role of participants).
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Figure 2.8 a museum modelled as a MIEE.
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3. Communicating through expressive gestures

Charter 2 dealt with the structure of Multilayeriedegrated Expressive Environments

(MIEES). In this Chapter attention moves on the oamicative processes taking place

into a MIEE. To this aim, a question already pragubs Chapter 2 is worth to be asked

again: how do real, mixed, and virtual subjects mmnmicate? The main interest in this

dissertation is in investigating communication tlgbh non-verbal channels with a

particular focus on music and full-body movementiest-class conveyors of expressive

and emotional content. A special kind of MIEEs Iserefore envisaged, where
information is mainly conveyed through expressiestgres in music and movement

The concept of gesture and, in particular, of esgike gesture therefore plays a key role

in understanding the communication mechanisms mwesbal MIEES, since it provides

a common conceptual framework in which it is poesto analyse the communication

process under a multimodal perspective.

This Chapter starts by defining and discussing dbiecept of expressive gesture and

collocating it in the framework of the existingeliature about gesture. To make the

discussion more concrete, two experiments carrigdab the DIST — InfoMus Lab on
particular aspects of expressive gesture will batshintroduced. One of them will be
the main subject of the second part of this diasert.

Attention then moves on expressive gesture as wdiitle of information in non-verbal

MIEEs. Three main tasks can be individuated incimunication process:

() Analysis of the incoming expressive gestures ireotd decode their expressive
content;

(i)  Mapping of the decoded expressive content, i.ekimgadecisions about which
expressive content (if any) should be conveyed assponse to the incoming
inputs and which expressive gestures are mostlgdto this task;

(i) Synthesis of the expressive gestures deliberat@g.in

A possible multilayered and modular architecture fartual and mixed subjects
communicating through expressive gestures is thascribed, including modules for
analysis, synthesis, and mapping of expressivelgest

In particular, this Chapter discusses in detailsoasible structure for the analysis and
synthesis components. A multilayered approach aigwmultimodal analysis and
synthesis of expressive gestures is presented.dveresome relevant features of the
described architecture are discussed with partictééerence to the availability of
mechanisms for dynamic customisation of the archite components in order to adapt
in real-time the behaviour of a mixed or virtuabgct (e.g., for adapting the behaviour
of an observer or of an avatar to the real humarfestiit is associated with).

The following Chapter will deal with the mappingoasts.

! Notice that if from the one hand | now focus om+werbal communication mechanisms, on the other
hand, this does not prevent to have MIEEs in whiah verbal aspects play an important role. MIEES
constitute a general paradigm for structuring irdésd expressive environments where all kinds of
communication are allowed. Here the focus is onvenbbal communication since | believe that it pléys
most important role in the performing arts scenario
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3.1. Expressive gesture

The concept ofexpressive gestures a key issue in this research (see for example
Camurri, De Poli, Leman, and Volpe, 2001). Mosttbé work discussed in this
dissertation refers to it. Nevertheless, both thiecept of expressive gesture and its role
in the communication process are still quite fabpedully understood.

This Section deals with expressive gestures undgcomplementary perspectives:

() From a conceptual point of view: after a short egwf some existing definitions
of gesture, a definition of expressive gesturenisoduced and discussed in its
different aspects and with respect to the role mpressive gesture in the
communication process between real, mixed, andaligubjects in MIEEs.

(i) From an empirical point of view: some ongoing expents aiming at better
understanding non-verbal mechanisms of expressi@deemotional communication
based on expressive gesture are described. Thepevilrther discussed later in
this dissertation. In particular, one of them witinstitute the reference work with
respect to which the research on analysis of hufulstbody movement will be
described in the second part of this thesis.

3.1.1. Gesture in human-human and human-machine communiicat

Many definitions of gesture exist in the literatu@enerally, they are not in conflict with

each other, since each of them focuses on diffeq@stific aspects of gesture.

For example, Kendon (1980) says that “for an actmibe treated as a gesture it must

have features which make it stand out as such”. iBawes are relevant in this definition:

(i) gesture has features characterizing it andy@égture has “to stand out as such”, i.e., it

has to emerge, to be evident, to have a kind df umits components.

A main stream in literature concerns natural gestuss a support to verbal

communication. For Cassel and colleag(lE3¥90) “a natural gesture means the types of

gestures spontaneously generated by a persongtellistory, speaking in public, or

holding a conversation”. McNeill (1992) speaks abtmovements of the arms and

hands which are closely synchronized with the fadvgpeech”. He also develops a well-
known taxonomy dividing the natural gestures thaat be generated during a discourse
in four different categories: iconic, metaphorigiafic, and beats. The four categories
can be shortly described as follows:

(i) lconic gestures are the air pictures representing sopecasf the object being
discussed. For example, they can refer to the sbapbe spatial extent of an
object.

(i)  Metaphoricgestures represent abstract concepts or abstatcrés of an object.
These gestures are especially diverse, most liketyause metaphors widely vary
from one language or culture to another.

(iif) Deictic gestures are pointing motions, i.e., they identiifg location of people,
places and things.

(iv) Beatsare little waves of the hand that underscore #ieevof speech, give accent
to words, and help in speaker turn-taking.
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It has to be noticed that the categories in thevaldaxonomy are not intended to be
mutually exclusive, i.e., it is possible to havestgees belonging to more than one
category at the same time. For example, metaplymstures are also iconic gestures.
Therefore each category should rather be considesea continuum (i.e., a gesture can
have more or less iconicity, metaphoricity etc.).

Further taxonomies and classifications of gestuae be found in the literature. A
summary and a comparison can be found for examgl&hao, 2001).

Most of the qualitative gesture models (based orhpdogical, linguistic and cognitive
studies) refer to gesture occurring with speech suygporting verbal communication
(Kendon, McNeil, Rimé and Schiaratura, Krauss aadat: a short survey can be found
in the above mentioned Zhao, 2001). McNeill furtletaims that gestures occur only
during speech.

While not neglecting the importance of speech iman-human communication and the
role of gestures in supporting speech, the attensohere rather focused on gestures
occurring in non-verbal communicationvhere the whole communication process is
based on the informative content gestures carrythl® aim a broader definition of
gesture is needed with respect to the ones mentiabeve, a definition taking into
account gestures that are not directly associaitdspeech and conversation.

In this broader perspective, Kurtenbach and Hultée®00) define gesture as “a
movement of the body that contains information”eThct that gestures have to contain
information is important for distinguishing gestsifeom other movements. For example,
Kurtenbach and Hulteen do not consider the actre$ging a button (or a key) as a
gesture, since motion does not have any meaningarmation associated with it.

The definition by Hummels, Smets, and Overbeek&g1goes in the same direction: “a
gesture is a movement of one’s body that conveyaning to oneself or to a partner in
communication”. (Wachsmuth, 1999) says: “for thepmse of this paper it is sufficient
to understand “gesture” as body movements whiclvepinformation that is in some
way meaningful to a recipient”. A survey and a dssion of existing definition of
gesture can be found in (Cadoz and Wanderley, 2000)

As | will discuss in the following section, the fathat gesture is intended to convey
information is a key aspect for defining expressjesture: in fact, expressive gesture
will be distinguished from other kinds of gestuepdnding on the kind of information it
convey, i.e., expressive content.

3.1.2. Gesture in artistic contexts: expressive gestur@axpressive content

In artistic contexts and in particular in the fi@tiperforming arts, gestures are often not
intended to denote things or to support speech #sei traditional framework of natural
gesture, but the information they contain and cgnseelated to the affective/emotional
domain. In some specific domains, gestures anda twitent are strictly codified and
stylised as for example in ballet, but in most sabee emotional information does not
depend on a defined code, but rather it is assatiatdynamically time varying features.
In most of the definition cited above gestures iexp} or implicitly are intended to carry
and convey some kind of information. Such a propean be fruitfully used to
distinguish and define expressive gestures. In sacperspective, gestures can be
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therefore considered “expressive” depending onkihd of information they convey:
expressive gestures carry what Cowie et al. (2@all)“implicit messages”, and what
Hashimoto (1997) calls KANSEI (see also Chapter 1).

That is, they are responsible of the communicatioa kind of information (addressed as
expressive contenthat is different and independent, even if ofseiperimposed, to a
possible denotative meaning, and that concerncspedated to feelings, moods, affect,
emotional intentiorfs

Let’'s consider an example: the same action (ilee, 4ame body movement) can be
performed in several ways, by stressing differardlities of movement: it is possible to
recognize a person from the way he/she walks,thatalso possible to get information
about the emotional state of a person by lookingigther gait, e.g., if he/she is angry,
sad, happy. In the case of gait analysis, we carefbre distinguish among several
objectives and layers of analysis: a first one agrat describing the physical features of
the movement, for example in order to classifyqui{e a lot of research work can be
found in the computer vision literature about gaialysis, see for example Liu et al.,
2002); a second one aiming at extracting the espresontent gait coveys, e.g., in terms
of information about the emotional state the wakk@mmunicate through his/her way of
walking. From this point of view, walking can benstdered as an expressive gesture:
even if no denotative meaning is associated with itithowever communicates
information about the emotional state of the walker, it conveys a specific expressive
content. In fact, in this perspective the walkingi@ fully satisfies the conditions stated
in the definition of gesture by Kurtenbach and Heit (1990): walking is “a movement
of the body that contains information”.

Moreover, the example of gait outlines anothervahe issue, that is more layers of
processing are needed to extract and analyse fitreniaition contained in and conveyed
by a gesture. This consideration will lead in tb#olwing to the definition of a multi-
layered conceptual framework for analysis and ssithof expressive gesture.

In the case of the walking action, the expressigstge (usually) does not have any
denotative meaning. This is the most common sitnatvhen considering an artistic
scenario. It is also possible, however, to conselgressive gestures having a precise
semantics, not only in the affective/emotional domhbut also because they are intended
to denote things in the outer world. For exampleenean iconic, a metaphoric, or a
deictic gesture can convey an expressive contemugh the way in which it is
performed. In that case, the expressive conterunseyed in parallel or superimposed to
the symbolic meaning. In some cases, the expreszméent could also partially or
totally modify the intended meaning of a gestune.fact, the mechanism can be
considered in some extent similar to inflectionspreech, where a particular inflection
(often used to communicate an expressive contamt)gove a particular meaning to the
discourse, sometimes partially or totally differé&mam the original meaning of the words
that have been pronounced.

2 Indeed, it should be noted that in the common rimggof the word “gesture” as reported by dictiorari
(some dictionary definitions are for example revéevin the cited paper by Cadoz and Wanderley)ugest
is often defined with reference to expression efifg and emotion. While from the one hand therdie
definition of gesture as carrier of information ggva broader meaning to the word, on the other Hand
definition of expressive gesture (although derifean the definition of gesture) come back closeitso
common meaning.
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With respect to the main stream in literature dlire gestures and co-verbal gestures, it
can be said that if on the one hand, expressivieigsspartially include natural gestures,
that is, natural gestures can also be expresssteirgs, on the other hand a more general
concept of expressive gesture is here faced, imgudot only natural gestures but also
musical, human movement, visual (e.g., computenated) gestures.

Moreover, the concept of expressive gesture heseudsed is also somewhat broader

than the general concept of gesture as definedusteKbach and Hulteen, since it also

considers cases in which, with the aid of technglogommunication of expressive
content takes place even without an explicit movanw the body, or, at least, the
movement of the body is only indirectly involved tine communication process. For
example, this can be the case in MIEEs, where sgpme content can be conveyed
through a continuum of possible ways ranging fraalistic to abstract images, sounds
and effects: cinematography, cartoons, computematedd characters and avatars,
expressive control of lights in a theatre contextaybe in relation with an actor’s
physical gestures), expressive musical performaregsessive use of sound. Consider,
for example, a MIEE in which a theatre performamseaking place: the director,
choreographer, composer can ask actors, dancesciams, to communicate content
through a number of expressive gestures (e.g.,edand/or music phrases, postures,
sentences). At the same time, technology allowdditextor to extend the language he
can employ. For example, he can map motion or misatures onto particular
configurations of lights, in movements of virtudlacacters, in automatically generated
computer music and live electronics. In this wag,dan create “extended” expressive
gestures that, while still having the purpose ahownicating expressive content, are
only partially related to explicit body movemenits:a way, such “extended expressive
gestures” are the result of a juxtaposition of sgvdance, music, visual gestures, but
they are not just the sum of them, since they @mislode the artistic point of view of the
director who created them, and are perceived asimadal stimuli by human subjects

(e.q., spectators).

MIEEs are thus a natural test-bed in which non-&ledommunication by means of

extended expressive gestures can be studied its @$pects of analysis, synthesis, and

mapping.

The research on expressive gesture here discusfiadlized to two main objectives:

()  Understanding the mechanisms underlying commumwicadf expressive content
through extended expressive gestures (e.g., whgtuifes are important, how they
can be measured, how features are related to exprEentent)

(i) Developing novel interactive multimedia scenariasg( MIEES) in which
automatic systems enable novel interaction parasligind allow a deeper
engagement of the user, by explicitly observing anodcessing the expressive
gestures the user performs.

In this perspective, MIEEs constitute both enviremts in which experimenting
paradigms of expressive gesture communication awheeptual platform for designing
and developing novel multimedia interactive systems

Besides giving a definition of expressive gestitrés needed to empirically study it in
order to understand how expressive content is gmtiea couple of experiments
investigating specific aspects of expressive gesave now introduced.
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3.1.3. Experiments on expressive gesture

A first step in the investigation of expressive tges consists in setting up experiments
aiming at individuating the main mechanisms suppgrthe communication process.
Since (i) artistic performances strongly use inirthenguages such non-verbal
communication mechanisms to convey expressive ngnéad (ii) there is a particular
interest in developing expressive gesture appbaatifor artistic scenarios, this research
focused on performing arts, namely on dance andicomerformances, as a test-bed
where computational models of expressive gestudeasgorithms for expressive gesture
processing can be developed, studied, and tested.

As an attempt to shed light in the communicatioocpss of expressive content through
expressive gestures in artistic scenarios, thetatte has been focused to the following
two particular aspects:

() Expressive gesture as a way to convey a partiemtation to the audience;

(i) Expressive gesture as a way to emotionally endagaudience.

Each of them has been subject of experiments daoué at the DIST - InfoMus Lab in
collaboration with its partners in national and @ean projects (mainly the EU-IST
Project MEGA - www.megaproject.org in the context of which lot of the work
described in this dissertation is collocated).

The ability of expressive gestures to convey enngtisas been studied in an experiment
carried out in collaboration with the Department Rfychology of the University of
Uppsala (Sweden). The experiment considered anvarohdance performances and had
the purpose of (i) individuating which motion cuee mostly involved in conveying the
dancer’s expressive intentions (in term of basiotons) to the audience during a dance
performance and (ii) testing the developed modats @gorithms by comparing their
performances with spectators’ ratings of the saared fragments. This experiment will
be discussed in details in the second part ofdisisertation.

The second aspect was investigated trough an expetriaiming at understanding the
mechanisms that are responsible of the audienogiagement in a music performance.
Spectators exposed to a performance by a profedguanist have been asked to rate
with continuous measures their emotional engagenferstatistical analysis has been
performed on the spectators’ ratings and on a cadle of audio and motion cues
automatically extracted from the audio and videwordings of the piano performance.
Some preliminary results of this second (still ang® experiment will be discussed in
the conclusions and are reported in (Camurri, Mazaga Timmers, Volpe, 2003, and
Timmers, Camurri, Volpe, 2003).

If from a scientific point of view these experimgmre a starting point for understanding
expressive communication, from a technical poinviefv they constitute the scientific
basis on which the design of interactive multimesjistems can be ground.

For example, in the case of MIEEs the experimeits Qints on the way in which the
input and output components of a virtual or mixadjsct should be built. Consider for
example a virtual subject having a role of observers responsible of obtaining
information about what the user it observes is gloiAs already mentioned such
information is located and processed along sevVayals. If the aim is to analyse user’s
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expressive gestures and to decode the expressiventoassociated with them, the
experiments can help in individuating which feasutbe observer should be able to
extract from the user’s behaviour and how it shquittess thefh

3.2. Virtual and mixed subjects communicating through eypressive gestures

Since in a non-verbal MIEE communication mainly éskplace through expressive
gestures, virtual and mixed subjects have to bewed with techniques for expressive
gesture analysis, mapping, and synthesis. An irapbrbbjective is the definition of a
general architecture that can be considered asmamoo basis on which virtual and
mixed subjects with different tasks and skills t&nbuilt. Such a general architecture (i)
has to be modular so that different kinds of virtarad mixed subjects can be obtained by
replacing components, (ii) must allow multimodabgessing of expressive gesture (i.e.,
virtual and mixed subjects must be able to deah \géstures affecting several channels
of perception), (iii) must allow customisation amdiaptation of virtual and mixed
subjects to real subjects and the environment, (&.dnas to be possible to adapt an
observer or an avatar to the human it is associaitix).

3.2.1. The “Emotional Agent” architecture

The architecture presented in this Section findsbisis in the “Emotional Agent”
architecture developed over the years at the DISmfeMus Lab and described in
(Camurri and Coglio, 1998). The architecture aginally conceived by its authors is
sketched in Figure 3.1.

Five active components can be individuated innipiuit, output, rational, emotional, and
reactive component. The white and thick arrows eggnt flows of information in the
architecture (e.g., the white arrows connecting thput, rational and reactive
components to the emotional component representti@mab stimuli the emotional
component receives from the other ones). From tavaoé engineering point of view,
such arrows are implemented as buffers on whichocomeponent acts as producer and
the other as consumer. The black and thin arroptesent parameters affecting the way
in which components work (e.g., the two arrows @mimg the rational and emotional
components are the channels through which ratigmatessing can influence the
emotional state of the agent and vice versa). Tdreyimplemented as data containers
upon which one component has read and write aecekthe other read only access.

The two dashed arrows represent the information ftom and to the outer world.

The architecture Emotion Agent can be collocatethénliterature as an attempt to give
both a common structure and some software engimge@uidelines to the design and

% Of course such experiments are just a startingtptiiey only consider limited and specific aspeafts
expressive gesture. It will be therefore very diift to build an observer able to properly do dtsks in the
infinity of situations that can happen in the realrld. In my opinion, they should therefore be ddased

as a first step of a very very long way (someonéddteay luckily...)
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implementation of agents for Multiomodal Environne(MES). The attention is thus
focused on design issues rather than on modelfifgoéogic mechanisms. In this sense,
it differs from other works (see for example Slom&f98) where the aim is to model
and understand human or animal behaviour.

A\ 4

Figure 3.1 the architecture”’Emotional Agent” (Camurri andglio, 1998)

The architecture Emotional Agent has been usedircrete application scenarios (for

example in the permanent exhibit for children “L#t& dei Bambini” in Genova as

described in Camurri and Coglio, 1998) and itsoratl and emotional components have

been further worked out.

For example, in (Camurri and Ferrentino, 1999) adehocof artificial emotions is

described that can be employed within the emotiooaiponerit

In (Camurri and Volpe, 1999, and Volpe, 1999) asgue structure for the rational

component is envisaged: a traditional Al productgstem for automatic reasoning has

been endowed with the capability to deal with egpree information. In that

implementation of the rational component expressnfermation could affect several

aspects of the rational processing:

() The evolution over time of the agent’s knowledgeudtihe outer word built on the
basis of the inputs it receives.

(i)  The decision making process concerning the setectidhe most suitable actions
to be accomplished to reach the agent’s goals.

(i) The decision making process concerning the selecfithe agent’s goals.

* This is just an example; more traditional modéke Ithe Ortony, Clore, and Collins (OCC) model
(Ortony, Clore, and Collins, 1988) may also be eyptl
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The rational component was also able to influefeedamotional state of the agent. In
particular, the outcome of the agent’s actions sunctess or failure in fulfilling its goals
represented positive and negative stimuli for tme@tonal component.

3.2.2. Internal structure of a virtual and mixed subject

The “Emotional Agent” architecture arises some essthat are worth to be shortly
discussed. In the Affective Computing approach Skepter 1) three main aspects are
considered: (i) machinagcognizingemotions (i) machinesxpressingemotions, and
(i) machineshavingemotions. As already explained in Chapter 1 theatives of the
work presented in this dissertation are relateasfgects (i) and (ii) since the interest is on
extending the artistic languages by acting on tbmmunicated expressive content
through technology. To this aim, technology hagrvide (i) the possibility to classify
and encode in digital format the communicated esgive content in order to process it,
and (ii) the ability to produce suitable outputriduce emotional reactions in spectators.
That is, it is not needed that machines have emstioumans have them and technology
can help the artist in conveying to his/her audgetihe expressive content he/she wants to
convey: the point is how technology can help in oamicating emotions and not how
machines can feel emotions
However, the adoption of this perspective requirethinking the Emotional Agent
architecture. In fact, the scenario is now theofsihg: a virtual or mixed subject (that
could be implemented using the Emotional Agent itgcture) observes the expressive
gestures through which other subjects try to comoate@ with it; it processes such
gestures, and in turn generates expressive gestui@mvey expressive content to the
other subjects. Such expressive content can prosexeral different responses in the
receivers, ranging from shifts of attention, toressed engagement, to eliciting of
specific emotions. The main tasks can thereforneléetified as follows:

() Analysis of the incoming expressive gestures inepittd decode the expressive
content they convey;

(i)  Mapping of the decoded expressive content ontalsigitoutputs, that is making
decisions about if it is needed to answer to tle®nmng inputs, what expressive
content should be expressed, and how it shoul&kpeessed;

(i) Synthesis of expressive gestures to convey theesgwe content decided in (ii)

In this way the virtual or mixed subject does natvd an emotional state, rather it has an
expressive content to communicate. That is, théualirsubject does not have an
emotional state representing the emotional stimhudiceived and a given personality, but
it decides which expressive content is most swtabkhe current conditions. If from the
one hand, such expressive content may depend oming emotional information (e.g.,
the virtual subject could recognize an emotion he expressive gestures of other

® In other words, the aim is not to create machatgs to replace humans also with respect to emaition

aspects, rather the focus is on how machines cipnhlignans in express themselves: in this perspectiv
this research is “human-driven”, i.e., humans dre $ource of requirements for designing machines
capable to support them rather than to replace.them
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subjects) and on the personality traits the virtwraiixed subject wants to show, on the
other hand the virtual or mixed subject explicithakes decisions about the expressive
content and how to communicate it, i.e., it is mooacerned with rational processing
rather than with “emotional processing”. In othewrds, the mapping task in (ii) can be
assigned to the rational component of the Emotiéwggnt architecture without the need
of explicitly including an emotional component. &rplicit emotional component would
be needed for virtual subjects having (“feelingfhations: in this case, the emotional
component would contain an emotional state cormdipg to the felt or perceived
emotion, while the rational component would be oesible of the “consciously”
deliberated emotions. The actual output would tnsi some kind of juxtaposition of
the two aspects. But since what has been said ah®/possibility tends to be excluded.
Moreover, if the emotional component were kept, dh/ way the rational component
would have to decide the expression of a given esgwe content would consist in
influencing the emotional component. But in thisywie rational component would not
have any guarantee to succeed in the task, sircmessiwould depend on the internal
mechanisms of the emotional component. Of coutss, is exactly what happens in
humans, i.e., it is often difficult to simulate amotion (cognitively deliberated) when
another emotional state is actually present, bloastto be remembered that here the aim
is not to model as precisely as possible humanvietna rather the focus is on designing
and implementing subjects able to analyse and goswiéable expressive contént

These observations lead to a revision of the wayhith virtual and mixed subjects are
structured. In particular, their architecture reffethe tasks they are responsible of (i.e.,
expressive gesture analysis, mapping, and synjhdsifirst step consists therefore in
roughly identifying the input component of the Ermaotl Agent architecture with the
analysis process, the output component with thethegis process and the three
intermediate components with mapping. Figure 3.2hm following page shows this
correspondence with some details for the mappimgpoment. The Expressive Gesture
Analysis and Synthesis components will be discussdatie next Section, the mapping
component in the next Chapter.

The white and tick arrows again represent flowstrmation, while the black and thin
arrows represent influences that a component egarésother one.

It should be noticed however that the architeciar&igure 3.2 should be considered
more as a conceptual framework rather than as twa@f engineering design (as the
Emotional Agent architecture partially was), altgbusome guidelines for its software
implementation could be given. For example, in asglde implementation an approach
similar to the one employed in the Emotional Agarthitecture can be considered: thus
white arrows can be again buffers on which one aompt acts as producer and the
other one as consumer, while black arrows can Ipdeimented as data containers upon
which one component has read and write accesshamuthier read only access.

The second step consists in going inside each coempoand in analysing how
information flows and is processed. It should bé&ced that if from the one hand the
first step could be considered as a simplificatjoraybe excessive but needed from a
certain point of view) of the original Emotional &gt architecture, on the other hand the

® Of course, this does not mean that | am not antdtested in modeling human emotional mechanisms;
this also is an interesting problem, but it is &leotresearch issue that is not the subject oflibiEertation.

-850 -



Chapter 3 — Communicating through expressive gestu

second step leads to a more detailed (but stileggrenough) analysis of the problem.
The Emotional Agent architecture does not make @mymitment about the internal
structure of its components, even if some possbénarios are envisaged. Here instead
a possible internal structure (especially for thygut and output components) is discussed
that, while being general enough to build a wideets of different and customisable
virtual and mixed subjects, is at the same timaibtket enough to allow to organize
analysis and synthesis of expressive gesture inifeedi conceptual framework under a
multimodal perspective.

4\ Mapping
—/ Monitoring

\4

i Mappin N Mappin
E)ég;ﬁ?: ve InpppUt g High Level Expressive > OL?tI;utg Expressive
Analysis N v Mapping L\ Gesture
< — Synthesis
7 > L
(Inpt) (Output)

A4

Direct Expressive
> Mapping >

ZN

Figure 3.2 internal structure of a virtual or mixed subject

3.3. Analysis and synthesis of expressive gesture in tal and mixed subjects

While going on with the task of describing in matetails the information flow and
processing of each component in a virtual or migedject, this Section considers the
input and output components and illustrates a eshiionceptual framework underlying
both aspects. The next Chapter will focus insteadhe mapping component and will
describe a collection of possible mapping strategievirtual or mixed subject could
apply depending also on its expressive autonomy.

The unified conceptual framework here discussedhbessn developed in collaboration
with partners in the EU-IST project MEGA. In padiar, it has been conceived and
discussed with Prof. Marc Leman at IPEM — Ghentvdrsity (Belgium) and with
researchers at IPEM (Camurri, De Poli, Leman, 2@dmurri, De Poli, Leman, Volpe,
2001).
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Expressive Gesture Analysis (EGA) Component

High-level expressive information, e.g., recognizethotions expressed by other
subjects, predicted engagement of other subjects.

Layer 4 — Concepts and structures

Modelling techniques (for example, classificationtérms of basic emotions, predictign
of spectators’ engagement): e.g., multiple regoessheural networks, support vector
machines, decision trees, Bayesian networks

U

Segmented gestures and related parameters (esplueb and relative durations),
trajectories representing gestures in semantices

U

Layer 3 — Mid-level features and maps
- Techniques for gesture segmentation: for exampt#ion segmentation (e.g., in pauge
and motion phases), segmentation of musical exce@rphusical phrases.
- Representation of music and dance gestures fampbe as trajectories in semantic
spaces (e.g., Laban’s Effort space, energy-artionlapace)

U

Motion and audio descriptors: e.g., amount of eyerg loudness, amount of
contraction/expansion - spectral width and meladictour, low fluency - roughness etc.

Layer 2 — Low-level features
Computer vision techniques on the incoming imagssfistical measures, signal
processing techniques on audio signals.

U

- Images pre-processed to detect movement, trajecf@oints (e.g., trajectories of body
parts, trajectories of dancers in the space).
- MIDI and audio pr-processed to detect spectrum and tempore-level features

Layer 1 — Physical signals
Analysis of video and audio signals: techniques Background subtraction, motioh
detection, motion tracking (e.g., techniques fotoap tracking, optical flow baseg
feature tracking), techniques for audio pre-proogsand filtering, signal conditioning.

U

Data from several kinds of sensors, e.g., images frideocameras, positions from
localization systems, data from accelerometerspatiudio, MIDI message

Figure 3.3 the multilayered framework for analysis of exsiee gesture
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Since, as discussed above, analysis and synthiesipressive gesture is as a process
involving several layers of abstraction, a mulyideed architecture is envisaged in which
analysis is carried out by progressively extractingher-level information from lower-
level signals and vice versa for synthesis.

Such a multilayered approach enables to split @p ptoblem of expressive gesture
analysis, synthesis and mapping into different pudibblems. Given the nature of
expressive gesture as a gestalt-like entity, agstifarward approach is to split up the
gestalt-like entity in terms of features and par@ms events and gestures, gestural
spaces, and concepts. This allows a bottom-up @op-down definition of the notion of
expressive gesture that can be employed the oren&dysis and the other for synthesis.
Moreover, the multilayer approach also integrateg,means of “cross-modal mix”
modules, features emerging from different physioput channels (e.g., audio, visual,
sensors such as accelerometers or haptic devidesge integrations are conceived to be
possible at different levels too.

Let's describe the multilayered architecture bysidering the analysis side. According
to this framework, analysis is accomplished by feubsequent layers of processing
dealing with different kinds of inputs/outputs, gamg from low-level physical signals to
high-level expressive information.

The Expressive Gesture Analysis (Input) componéat vrtual or mixed subject is thus
composed by four sub-components hierarchically redieon the basis of the level of
abstraction of the kind of information they procésse Figure 3.3 in the previous page).
In the figure, the multilayered structure is reprgsd in its four layers, each one with its
inputs and its outputs. Inside the boxes represgmach layer a short list is included of
possible techniques that may be applied at thal.lev

As stated above, such a multilayered structure ldhoel considered under a multimodal
perspective, i.e., it aims at integrating analg$iaudio, video, sensor signals.

Layer 1 (Physical Signalgeceives as input information captured by the sasneb a
computer system. Physical signals may have diftdf@mats strongly dependent on the
kind of sensors that are used. For example, they eoasist of sampled signals from
tactile, infrared sensors, signals from haptic deyj frames in video, sampled audio
signals, MIDI messages. In this context the woreh%ors” is often related to both the
physical sensors employed and to the algorithm trsexktract a given set of low-level
data. It is therefore possible to speak of “virtsahsors” or “emulated sensors”. For
example, in the case of analysis of movement thraiideocameras, a CCD camera can
be an example of physical sensor, while the opfical, the motion templates, or the
positions of certain points in the frame sequeneeexamples of data extracted from
“virtual sensors” implemented by the cited alganth Layer 1 applies pre-processing,
filtering, signal conditioning, and audio and vidanalysis techniques to the incoming
rough data to obtain cleaner data and further &gtkerived from the rough input. For
example, in the case of video analysis of humaneamant two types of output are
generated: pre-processed images and trajectorlesdgfparts.

Layer 2 (Low-level featuregjets as input the pre-processed signals coming feyer 1
and applies algorithms to extract a collection mfHevel descriptors. The employed
techniques range from computer vision algorithnassignal processing, to statistical
techniques (that can be applied on the extractt).dehe extracted low-level descriptors
are features that psychologists, musicologistseamhers on music perception,
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researchers on human movement, and artists deenpedtant for conveying expressive
content. In the case of analysis of expressiveugesh human movement, examples are
the amount of contraction/expansion, of stabiliy,rotational movements. Important
cues are those related to the Effort dimensionsribesl in Rudolf Laban’s Theory of
Effort (Laban, 1947, 1963): these features willdxaensively described in the second
part of this dissertation. In the case of musidsigature are related to tempo, loudness,
pitch, articulation, spectral shape, periodicitynamics, roughness, tonal tension and so
on: a similar conceptual framework and a taxonormgudlio features worked out in the
context of audio mining can be found in (Lemanlet2003, and Leman et al., 2001).
Notice that analogies can be found among featuresiavement and in music, e.g.,
amount of motion — loudness, contraction/expansiamelodic contour or spectral width,
bounded, hesitant movement — roughness.

Layer 3 (Mid-level features and maps (Camurri, De Poli, Leman, Volpe, 2001) this
layer is described in these terms: “In this layke purpose is to represent expression in
gestures by modelling the low-level features inhsaovay that they give an account of
expressiveness in terms of events, shapes, patiels trajectories in spaces or maps.”
The layer receives data from Layers 1 and 2 andtWasmain tasks: segmenting
expressive gestures and representing them inabivay. Such a representation would
be the same (or at least similar) for gesturesifierdnt channels, e.g., for expressive
gestures in music and dance. Data from severardiit physical and virtual sensors are
therefore likely to be integrated in order to pemiosuch a step. Each gesture is
characterized by the measures of the different exéieicted in the previous step (e.g.,
speed, impulsiveness, directness, etc. for movenmmtness, roughness, tempo, etc. for
music). Segmentation is a relevant problem at léwel: the definition of expressive
gesture does not help in finding precise boundakes example, in the second part of
this thesis, a motion phase in dance will be cared as an expressive gesture (and
segmentation will be done on the basis of the dede@mount of motion). In facts, this is
quite an arbitrary hypothesis: sub-phases of aangbhase (e.g., the phase of motion
preparation) could also be considered as expregmgtures as well as sequences of
motion and pause phases. Several possibilitie®@ea for the common representation
Layer 3 generates as its output. For example, pressive gesture can be represented as
a point or a trajectory in a semantic spaustering algorithms could then be applied
in order to group similar gestures and to distisgudifferent ones. Another possible
output is a symbolic description of the observedtges along with measurements of
several quantities describing them.

Layer 4 (Concepts and structuresyllects inputs mainly from Layers 2 and 3 and is
responsible to extract high-level expressive cdanterm expressive gestures. It can be
organized as a conceptual network mapping the artlafeatures and gestures into
(verbal) conceptual structures. For example, inttee experiments previously sketched
in this Chapter the focus was on the four basictems (anger, fear, grief, and joy) in

" Whether the representation has to be a pointtoajaectory depends on how the low-level features ar
processed in Layers 2 and 3. For example, if aovexintaining the averages of the low-level feause
calculated along the time duration of a gesture gesture is considered as a single event, it coeld
represented as a point in a multidimensional spiidastead more values for each feature are availa
(e.g., local values, or averages along gesturepbales) or if a gesture is considered as a sequénce
events (as it is likely to be) a trajectory is arenappropriate representation.
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the first one, and on spectator engagement (fr@mertain point of view something near
to arousal in the valence-arousal model) in the@s@wone. Other outputs are possible:
for example, a structure could be envisaged dasgriihe Laban’s conceptual
framework of gesture Effort, i.e., Laban’s typesEdfort such as “pushing”, “gliding”,
etc. (see Laban, 1947, 1963, and later in Chapteséyveral different machine learning
techniques can be used for building such structiameging from statistical techniques
like multiple regression and generalized lineahtegues, to fuzzy logics or probabilistic
reasoning systems such as Bayesian networks, imusakinds of neural networks (e.qg.,
classical back-propagation networks, Kohonen ndtg)prsupport vector machines,
decision trees.

The conceptual architecture sketched above is oatéor analysis, i.e., the Expressive
Gesture Analysis component of a virtual or mixeldjsct can be implemented following
these guidelines. Anyway, a similar structure caretmployed also for synthesis. Let’s
consider for example Layer 4: it may consist oeawork in which expressive content is
classified in term of the four basic emotions andear, grief, and joy depending on
current measures of low and mid-level cues. Iféadtof considering the framework
from a bottom-up perspective a top-down approackaken, an emotion the virtual
subject intends to convey can be translated byndasi network structure in values of
low and mid level cues to be applied to generatetioeand/or visual signals. In this way
the Expressive Gesture Synthesis component of taaVior mixed subject can be
obtained by using a similar multilayered architeetu

3.3.1. Customising analysis and synthesis

A virtual or mixed subject can evolve over time.ciin change the spatial and time
perspective under which it observes its environnfemy., it can observe the whole scene
or only particular aspects of it). It often needshe adapted to a real subject it is
associated with. Consider for example a virtualjettbin an EME playing the role of
avatar of a real subject inhabiting another EMEe &katar could be customised in order
to reproduce the attitudes of the real subjectcatsa with it. If for example the real
subject pays a particular attention to light changbe avatar could be customised in
order to have a similar attitude. It is therefoeeded to provide mechanisms for adapting
the behaviour of the analysis and synthesis Laydnge preserving at the same time the
modularity of the conceptual framework. This can digained by including some
intermediate modules in between the Layers of tiayais and synthesis framework (see
Figure 3.4 in the following page).

Suppose for example to have a module at Layer&talaxtract the “scenic presence” of
a dancer. The “scenic presence” would be a mid-Hkeature that could be used by Layer
4 for classifying the dancer’s current expressitention.

Modules in Layer 1 and 2 provide Layer 3 with théormation needed to perform this
task. On the basis of this information Layer 3 ghkdtes an index of scenic presence.
Suppose now that such an analysis is done by aernasassociated to a human real
subject (e.g., a spectator) paying particular &tianto light. In this case, lighting on
stage can strongly affect (in a non-linear way)d4benic presence index. For example, if
the dancer were standing in a lighted area in fofrthe stage, his/her scenic presence
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would sensibly grow. There is therefore the neednphasize in a non-linear way this
parameter. This can be done by means of an inteatee@etween Layer 3 and Layer 4)
mathematical module which takes as inputs the tatkt index of scenic presence, the
outputs from the physical layer (stage coordindighting position and intensity), and
the outputs of the low-level features layer (eaghount of detected motion to understand
whether the dancer is or is not moving), and gdasras output a modified (enhanced)
index of scenic presence.

Expressive Gesture Analysis (EGA) Component

Layer 4 — Concepts and structure
A A A

A

Layer 3 — Mid -level features and map
A A A

Intermediate
Modules

A
A 4

Layer 2 — Low-level feature:
A A A

A 4

Layer 1 - Physical signal:

Figure 3.4 role of the intermediate modules in the expresgigsture analysis process

It should be noted that the mid/high-level featlirelex of scenic presence” already
implicitly depends on the actual values of the lewel features from Layers 1 and 2: the
mechanism implemented by the intermediate modidevalto adapt and tune the index
according to the desired focus of attention andathitudes of a modelled human subject.
Intermediate modules add flexibility to the anadyand synthesis architecture, since they
allow the definition of “archetypical” models ofdwires (e.g., algorithms to calculate
them in “standard” conditions), while keeping separ(i) their evolution over time given
specific contexts, and (ii) different biasing dwe“personality”, attitudes and focus of
interest. Moreover, intermediate modules allow dyitaevolution of a virtual subject:
while the layers extract features by using “arcpieyl” algorithms, the use of one
(dynamic) or more intermediate modules can indwieandhic biases on the calculated
features depending on the evolution of the perfoicea

Several possibilities are available for implemegtintermediate modules, such as for
example (i) non-linear algebraic functions, (iipksup tables, (iii) threshold switches,
(iv) rule-based systems, (v) decision-making artd flasion modules.
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As mentioned in Chapter 3, three main tasks camdigiduated in expressive gesture
processing: (i) analysis of expressive gesture, decoding the expressive content that
expressive gestures contain and convey, (i) mappmh expressive gestures, i.e.,
deciding which expressive content (if any) to cogngiven the incoming inputs and
which expressive gesture to use to convey it, @dsynthesis of expressive gestures,
i.e., generating suitable expressive gestures dipgron the decisions made by the
mapping function. A virtual or mixed subject in amverbal MIEE should be able to
accomplish all these three tasks.

Chapter 3 presented a possible internal architedtur a virtual or mixed subject and
discussed analysis and synthesis of expressivaurgesty describing a conceptual
framework that both (i) allows to consider and oiga the analysis and synthesis
processes under a multimodal perspective, and pfigvides some guidelines for
implementing the Expressive Gesture Analysis amitt#gis components of a virtual or
mixed subject. Mechanisms for adapting virtual daked subjects with respect to the
attitudes of a real subject were also described.

This Chapter concludes the conceptual discussioexpressive gesture by dealing with
the mapping problem. The components related to mgpgf the architecture for virtual
or mixed subject presented in the previous Chapiébe analysed in details. Possible
techniques for making decisions about which expressontent to convey and how to
convey it will be shortly described. In particularsoftware module developed for such a
task will be presented. The Chapter will finishiwé discussion on expressive autonomy:
in fact, mapping is strictly dependent on expressiutonomy since the actual degree of
expressive autonomy a virtual or mixed subject $tagngly affects its capabilities to
make decision about expressive content, i.e., mgppi

4.1. A multilayered model for mapping

Mapping of expressive gestures involves two mapeets:

() Making decisions about if, when, and how to answeincoming inputs. This
problem is strictly related with the paradigm ofeiraction that is employed. For
example, in (Rowe, 2001, 1993) interactive systéonsmusic are distinguished
with respect to interaction paradigms in two suf®dés: instrument paradigm
systems “that treat the machine contribution asxdansion or augmentation of the
human performance”, and player paradigm systemsidering the machine as an
interlocutor. More in general, a distinction can inpade between systems (and
situations) in which a continuous mapping of inpatgo outputs is needed and
systems (and situations) in which a sort of didbdges place. These two conditions
can be again considered as extreme boundaries bninuum of possible
intermediate situations and virtual and mixed stiisjecan be though to be
continuously and dynamically evolving over timerajahis continuum.



Chapter 4 — Mapping of expressive gestures

(i)  Making decisions about which channel to use forrésponse. That is, once the
virtual or mixed subject decided to try to convegigen expressive content, the
most suitable ways (i.e., expressive gestures) hawe chosen in order to do it.
This obviously depends on the subject’s capalsli(@ course, a subject endowed
with only audio outputs can only generate sound anic outputs). If many
possible output channels are available, the sulfjastto decide which one or
which ones are most suitable given the actual ebnte

Mapping can take place on several layers: for exantpis possible to associate a
decoded emotional intention (e.g., one of the fmasic emotions anger, fear, grief, and
joy) to the generation of expressive gestures cgingethe same or another emotional
intention (e.g., it might be possible to create iadkof empathic agent showing its
understanding of one’s emotional state by dispkayihe same emotional state or,
conversely, a subject answering to an emotionaniidn by displaying the opposite
on€): in this case mapping would take place at Layén #he conceptual framework
depicted in Section 3.3. It is also possible tediy associate values of cues extracted by
modules at Layer 2 with values of similar cues lagd in synthesis: for example a
movement performed with high energy can be asstitd a musical excerpt played
loudly. In this case mapping takes place at LayeiNBile moving bottom-up along the
Layers, it is likely that interaction mechanisms wv@oalong the continuum from
continuous mapping to dialogical mapping.

The general architecture for virtual and mixed satg presented in Chapter 3 considers
three main layers (components) for mapping. Theyshown in Figure 4.1.

Expressive Mapping Component

—N Expressive Mapping i
—/

Monitoring

\4

Mappin N Mappin
. InppUtg Expressive High Level o&p mg
Boressie. "™ /] T agning :
; < > — Gesture
Analysis 7/ —$ Synthesis
(Input) (Output)

v A 4

Expressive Direct
> Mapping >

Figure 4.1 structure of the mapping component of a virtuainixed subject

! Indeed, the last one would be quite a sadistiestisince it would be happy when you are sad!
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All of them can receive inputs from the four layefsthe Expressive Gesture Analysis
component and can influence the four layers of Expressive Gesture Synthesis
component. The three layers correspond to thrdereift kind of mapping strategies
ordered with respect to increasing complexity. Timeyude:

(i) Expressive direct mappinguch as for example in the case of algebraictinms
associating, without any dynamics, features ofitlceming expressive gestures to
features of generated expressive gestures (e.gpintaof movement cues onto
parameters of algorithms for sound synthesis or-paxessing and visual media).

(i)  Expressive high-level indirect mappjngcluding reasoning and decision-making
processes. For example, consider a software madideto make decisions based
on the incoming decoded expressive content: itcceelect an algebraic function
as the ones in (i) within a collection of possiblgebraic functions, thus allowing
direct mapping to be adapted to the current context implementing an adaptive
and dynamic direct mapping.

(i) Expressive mapping monitoringe., algorithms trying to measure the effectesn
of the lower mapping layers with respect to theralgjoals of the subject and of
the performance. They can modify and adapt thegsging of the lower mapping
layers (e.g., by modifying decision parameters lwanging possible collection of
algebraic functions) as a result of their evalusio

As usual, the white and thick arrows represent $laf data between the components,
while the black and thin arrows represent influsniteat a component exerts on another
one. Implementation guidelines as the ones disduss€hapter 3 are still valid.

The three typologies of expressive mapping will nbe discussed in more details.
Notice that the term “expressive” is explicitly niemed while speaking about mapping:
this should help in avoiding misunderstandings wé$pect to other possible uses of the
terms “mapping” and “mapping strategies” that cam found in the literature. In
particular, with “expressive mapping” and “expr@ssmapping strategies” here | do not
intend the association of features of analysedugestto emotional categorfesior |
mean the association of the physical movementpdréormer with the generated sound
of an (hyper) instrumeft

4.1.1. Expressive direct mapping

With expressive direct mapping intend an association without any dynamics of
expressive features of analysed expressive gestuiths parameters of synthesised
expressive gestures. For example, the actual positfi a dancer on the stage can be
mapped onto the reproduction of a given sound. &sgive direct mapping is often
associated with the lower levels of the conceptaahework for analysis and synthesis
discussed in the previous Chapter: for examplenpai@rs calculated in Layer 2 (e.g.,

2 This would be a “vertical” mapping between layefsthe analysis framework. Here | am instead
concerned with a “horizontal” mapping between layieranalysis and layers in synthesis.

% This kind of mapping could be indeed includedhia toncept of “horizontal” mapping | am dealinghwit

it is just a possible particular aspect in a broadenario.
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amount of motion — loudness) can be used to copadicular features in the real-time

generation of audio and visual content. Moreoveeatl expressive mapping is also more

likely to be employed in continuous mappings rathan in dialogic ones.

Expressive direct mapping allows obtaining simpbactive behaviours in virtual or

mixed subjects, and therefore it can be assochaitd the reactive component of the

Emotional Agent architecture (see Chapter 3 andu@ammnd Coglio, 1998).

Several possible implementations are availablexpressive direct mapping such as for

example the following:

(i) Collections of pre-defined condition-action rules,, set of rules associating given
configurations of parameters coming from the analyside with given
configurations of synthesis parameters. For exanpgaends or visual outputs can
be associated with regions in the space, the usegbfen post-processing with a
given expressive cue, the automatic recognitioa given expressive gesture with
the automatic generation of another expressiveigest

(i) Collections of algebraic functions, calculating ued of synthesis parameters
depending on values of analysed expressive cuess kall u a vector of
expressive cuesu will contain numerical values calculated by thealgsis
component (e.g., the occupation rate of a regiatheénenvironment, the calculated
fluency of a movement, the roughness of a musikeémpt). Let's also cals a
vector of synthesis parameters (for example thamaters of a physical model for
sound generation, the parameters controlling thevement of a computer
generated character).df 1 S andu [J U, an expressive direct mapping strategy can
be though as a functiom: S -~ U, s = m (u) algebraically connecting analysis
parameters with synthesis parameters. It shouldnbtced that while the
complexity of the algebraic function can be freatgreased according to any
possible need, it anyway remains a static funciien, the mapping it induces does
not change anymore once the function is definedpama@t work.

4.1.2. Expressive high-level indirect mapping

Expressive high-level indirect mapping strategias be associated with explicit use of
reasoning techniques, and can therefore be relatatie rational component of the
Emotional Agent architecture. They are charactertne

(i) A state evolving over time (that is, they are dyrm@aprocesses): such a state can be
updated for example by applying some kind of reasptechnique to the available
information.

(i) Decisional processes, i.e., the system could makesidns based on the incoming
information from analysis and the acquired knowkdguch decisions can concern
the kind of expressive content to produce and fomwaonvey it, and can be related
for example to the narrative structure of a perfamoe.

Production systems and decision-making algorithars e employed to implement this
kind of mapping strategies. Let's consider agam ¥Rctoru of expressive parameters
returned by the analysis algorithms and the vestdrsynthesis parametes[] S eu [
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U. Let’'s consider also a collection &f possible expressive direct mapping algebraic
functionssm¢: S - U,s=mk (u) withk =1...K

Each functiom directly maps a given configuration of analysisgpaeters onto a given
configuration of synthesis parameters, as prewowsscribed while talking about
expressive direct mapping.

TheK direct mapping functions can be considered asilpesslternatives among which
a higher level module can choose depending onwthigaalle and incoming information.
A decision-making algorithm can thus be employeddiect the direct mapping function
my that results to be the most suitable in the gisimation (for example, in a given
moment of a performance): it is therefore possibldhave a collection of expressive
direct mapping strategies among which a choice aslenby a higher level mapping
strategy (the decision-making algorithm).

A particular but relevant case is represented hgali direct mapping functions. These
function can be written as= my (U) = Mg U, whereMy is anmxn matrix (beings. mx1
andu: nx1). In this case the decision-making algorithm ltasitoose amon matrices
M ... Mk, representing thK linear direct mappings.

Mechanisms can be included providing smooth treomstbetween direct mappings, i.e.,
when the decision-making algorithm decides to ckatihg underlying direct mapping,
the smoothness and the time duration along whiehcttange has to take place can be
decided as well (in a sense, smoothness and timaialu could be mapping parameters
as well).

This paradigm can be further iterated, leading i@rdnchies of mapping functions:
suppose for example that sets of direct mapping functions are availablechEaet
contains respectivell; ... Ky functions. A first decision can then be made alvahith

of the H sets should be considered. A second decisionowsiicern which of thép-
functions in the selected set has to be employ#utwe incoming analysis data.

Notice that a similar approach can be applied evdre direct mapping is implemented
through condition-action rules and sets of cond#aation rules. A decision-making
algorithm can be employed to decide whichKofules that can be applied in a given
situation (i.e., whose conditions are matched) khbe employed. In the literature of
classical production systems this problem is uguatdressed as the “conflict
resolution” problem (see for example Russell andvidp 1995) and it is usually solved
by employing simple algorithms (e.g., selectiontltd rule having the highest priority,
selection of the most specific rule). If many seftsules are available at the same time a
two-step procedure as the one described for melset of algebraic functions can be
considered.

4.1.3. Expressive mapping monitoring

A further layer of processing can be envisageduarfting both direct and indirect
mapping. Such layer concerns the evaluation of dffectiveness of the currently
employed mapping strategies whether they are doedhdirect. Effectiveness can be
considered under several aspects: for artisticopadnces it can be related to the
audience’s engagement; in a museum scenario itldmilassociated to visitors’ fruition
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of the museum exhibit. Such a measure could beadbelt of a direct evaluation by
spectators, in case it is not possible to calctiatatomatically.

Once a measure of effectiveness is available nitbeaused to make decisions aiming at
improving the overall performances of the virtualmixed subject by modifying and
adapting its behaviour in order to maximize effestiess.

Decisions made at the expressive mapping monitotager can influence both
expressive direct and indirect mappings. Expresdixect mapping is affected through
mechanisms similar to the ones described abovegcakections of functions or rules can
be replaced by more suitable sets. But expressaygpimg monitoring can operate also
on indirect mapping. Suppose for example that madegision-making algorithms are
available in the indirect mapping component. Mamggibilities for interpreting and
decoding information coming from analysis couldoalse available. Measures of
effectiveness could thus be used to select amomg atvailable decision-making
algorithms which one is most suitable given the snead effectiveness and the current
situation (e.g., the part of the performance whghctually taking place). It could also
be possible to dynamically adapt the way in whicapping processes the incoming
inputs or sends information to the synthesis coreptin

4.1.4. The expressive mapping input and output subcompasen

Before talking about a possible implementationrafiiect mapping, let's conclude the
description of the structure of the expressive nrappomponent by shortly describing
the mapping input and output subcomponents.

The main role of the input component is to encdaeinformation coming from analysis
in a way that can be processed by the mapping coeme. For example, if direct
mapping is implemented as a set of condition-actides, the input component has to
encode the information coming for analysis accaydmthe syntax of the condition part
of the rules. Another task the mapping input congmbris responsible for is dispatching
information coming from the four layers of the grsad framework to the appropriate
subcomponents of the mapping component. For exantemore likely that the output
of an emotion classifier at Layer 4 will be senthe indirect mapping sub-component,
rather than to the direct mapping one.

Conversely, the main task of the output sub-compbigeto translate the output of the
mapping components as required by the algorithnmeimented in the synthesis Layers.
For example the action part of a condition-actiole rcould needs to be translated in a
vector of control parameters for the synthesisrdlgms. The output subcomponent also
has to dispatch information to the four layershaf synthesis framework. For example, it
can send to the physical layer the name of a Mtotes that has to be played, and to the
conceptual layer the emotional intention accordimgvhich expressive deviations on
performance parameters have to be calculated.

* In fact the expressive mapping monitoring layesuth be though as a conceptual layer. At the moment
no commitment is done about the possibility to iplyt or fully implement it. Anyway, it should be
noticed that experiments like the ones sketche@hapter 3 and further discussed in the following ar
investigating the possibility to measure spectaterigagement.
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4.2. The Affective Decision Maker (ADM)

Direct mapping can be implemented by means of stahdathematical functions or
classical production systems. Here attention fazuse a pilot implementation of an
expressive indirect mapping component employingsttat-making algorithms to make
decisions among a collection of possible expresg@stures to be generated as output by
a virtual or mixed subject.

The Affective Decision Maker (ADM) is a determindsimultiattribute decision maker
that can be influenced in its processing by theesgive information the analysis layers
extract from expressive gestuteghe ADM operates on a set of alternatives among
which a choice has to be done. Each alternatiechasacterized by the values of a set of
attributes. Each attribute represents a criteriotih iespect to which the decision is
made. The table made by the values of the attigbie each alternative is called
decision table and is the main internal data surecbf the ADM.

Consider, for example, that you have to buy a n€wtRe overall cost, the CPU clock
frequency, the amount of RAM etc. are relevant etspéattributes) that you have to
consider in order to make your choice. The finalicé will be made among several PCs
(alternatives), each one characterized by a pé#atigiven value for each attribute.

In the case of the ADM both the attributes anddieision-making mechanisms are (or
can be) related to expressive content.

The ADM selects among alternatives taking into aotdwo kinds of information: (i)
information about the environment in which it ogesa(Environmental Information) and
(i) information about the expressive content cogriiom the analysis layers (Expressive
Information).

Consider, for example, a museum application. Auwirtsubject observes visitors’
behaviour and tries to catch their attention fopriaving fruition and possibly making
more interesting their visit. In this context, thesitions of visitors inside a room or the
number of visitors can be considered as Environaténtormation; the detected posture
of a visitor, some properties of his/her movemenhmunicating an expressive content
(e.g., interest) can be considered as Expressieentation. In some other contexts the
distinction is not so clear. In the case of a dgmedormance in a theatre, for example,
the position of a dancer on the stage could beidered Environmental Information, but
the same position carries also an expressive corfeeg., in relationship with the
scenery) so that it could be considered Expreskif@mation as well. In fact, what
should be considered Expressive and what shouldcdesidered Environmental
Information strongly depends on the specific apian: the decision is usually up to the
designer of the application.

The ADM returns as output the alternative it s&ldcon the basis of the incoming
Expressive and Environmental Information, of theent decision making algorithm and
of the algorithms that have been used to updatetésnal data structures.

Figure 4.2 shows the internal structure of the ADMis divided up into two main
components: an information-processing module andeesion-making module. The

® The Affective Decision Maker described in thistgst is inspired to previous studies investigatthg
rational component of the Emotional Agent architeet In particular, a component similar to the ADM
has been there used for selecting among seversibfgoals of the agent (Camurri and Volpe, 1999).
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information-processing module manages the intedatd structures: a decision table and
an array of decision parameters. The decision makatains the decision-making
algorithms and is responsible to make the decision.

Alternatives

Values of
attributes

DECISION

TABLE Selected
] INFORMATION | DECISION alternative
PROCESSING | Decision making parameters |  MAKING >

ALGORITHM

A 4

' LAST DEC.

v

Figure 4.2 the internal structure of the ADM

During the initialisation phase, an initial decisitable is loaded in the internal decision
table data structure. Such data structure is aixn@intaining a row for each alternative
and a column for each attribute. The values ofédtiebutes in the decision table are
normalized to 1. An array of decision parameter@ss maintained: it contains a weight
for each attribute and a parameterused when the Hurwicz and Hurwicz Modified
decision-making algorithms are selected (see b#h@ndescription of the five decision-
making algorithms the ADM implements at the momeiit)e weights are in the range
[0, 1] and their sum must be 1. The parametes also in the range [0, 1]. In the
initialisation phase is set to 0.5 and the weights are set to 1/(NurabAttributes).

At run-time, the decision table and the decisiorapeeters are updated according to the
input information. Then, (if needed) the currensiglected decision-making algorithm
chooses an alternative according to the actuaknbectable and decision parameters. The
last decision can be taken into account to avoabsimg it again.

Both the update and decision-making algorithms lsardynamically changed at run-
time, for example depending on the expressive nmgpmionitoring component.

4.2.1. ADM’s decision-making algorithm

Before looking in more details at the mechanisnesABDM uses to deal with expressive
content, the five decision-making algorithms the MRurrently implements are here
shortly reviewed. Four of them are classical mtilitaute decision-making algorithms;
the fifth is a modification of the classical Hur@ialgorithnf.

® See (Camurri and Volpe, 1999) and (Volpe, 1998afmore detailed description.
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Let considerx; to be the value of thé" jattribute for the'i alternative. Let ben the
number of alternatives amdthe number of attributes. The decision table bélla matrix
having the following structure:

X11 X1z e le e Xin
X21 X2 e ij e Xon
X1 Xi2 e X e Xin

X Xmz  Leee X oo Xur

Let bew a vector of weightsw contains a weight for each attribute, therefose it
dimension ix. The weights must sum to 1 (thatij =1)
i

Note that the algorithms can select not just onerrstive: it can happen that some
alternatives result equivalent for a given algontihe algorithms, therefore, return a set
of alternatives. A choice has to be made amongvatgrit alternatives in this set. In the
current implementation, just the first alternativethe set (according to the order in
which the alternatives are stored in the decisadnhe) is returned as output by the ADM.
The five decision-making algorithms are the follogi

(i) MAXIMAX The setA* of the indexes of the selected equivalent alterests:
A ={i:i =argmax(maxx;) } .
i j

The algorithm calculates the maximum value for e@eh (that is, each alternative
has a “score” equal to the value of the attribudgimg the maximum value with
respect to the other attributes). Then the alter@awith the maximum score is
selected. If two or more alternatives have the sarag@mum score they are all part
of the set of selected equivalent alternatives.

(i)  MAXIMIN. The setA* of the indexes of the selected equivalent alterests:
A ={i:i= argmiax(mjin X;) }

The algorithm calculates the minimum value for eemh (that is, each alternative
has a “score” equal to the value of the attribudgifg the minimum value with
respect to the other attributes). Then the alter@awith the maximum score is
selected. If two or more alternatives have the sama@mum score they are all part
of the set of selected equivalent alternatives.

(i) HURWICZ The setA* of the indexes of the selected equivalent altéerests:
A ={i:i= argmiax[a m]_in X +@d-a) mjaxxij]}

The algorithm calculates the maximum and minimunues for each row. A
“score” consisting in a trade-off between the vabfethe attribute having the
maximum value with respect to the other attribiged the value of the attribute
having the minimum value represents each alter@afifhie trade-off is obtained
through the parameter. Then the alternative with the maximum score lscted.
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(iv)

(v)

If two or more alternatives have the same maximuaoresthey are all part of the
set of selected equivalent alternatives.

HURWICZ MODIFIED The set A* of the indexes of the selected equivalent
alternatives is:

A ={i:i= argmia>{amjax;j +(1-a) m]_in z]}, wherez, = w; x; .

The algorithm is very similar to the previous claakHurwicz algorithm. The only
difference is that the weights of the attributes @so taken into account. So, in this
case the trade-off is made not just on the valddbeattributes, but also on the
weighted values of the attributes (and the weiglats depend on the expressive
content).

SAW (Simple Additive Weighting)The set A* of the indexes of the selected
equivalent alternatives is:

A = {i 1i = argmax)_w, Xu}
j

In this case, the “score” given to each alternasve weighted sum of the values of
the attributes, where the weights are the weigbée@ated to each attribute. Then
the alternative with the maximum score is selectedwo or more alternatives
have the same maximum score they are all partefs#t of selected equivalent
alternatives.

It should be noticed that depending on the valwegained inside the decision table and
the weights assigned to each attribute, differeattision-making algorithms can obtain
different choices. Notice also that:

Peaks in the values of an attribute can lead th&XMBAX algorithm to choose the
alternative with a high value for an attribute, ®vié the values for the other
attributes are quite low.

MAXIMIN often selects an alternative having valumesund the mean values.
MAXIMAX, MAXIMIN and classical Hurwicz algorithms d not use any
information about the weight assigned to the aitab. When one of these
algorithms is selected the weights and the wayhitkvthe weights are updated do
not influence the decision-making process.

The MAXIMAX strategy could be seen as an “optingttrategy: it takes the best
among the best values, while the MAXIMIN strategyld be considered as a
“pessimistic” or “prudent” strategy since it takié®e best among the worst values.
In this perspective, if the Hurwicz or Modified Hicz algorithms are used, the
parameteir can be seen as a measure of the trade-off bettheeoptimistic and
pessimistic point of view.

4.2.2. Affective Decision Maker: some issues

After describing the structure of the ADM and thgoaithms it employs, some further
relevant issues need to be discussed and clarifibech are the mechanisms through
which expressive content influence decision makiHgWw can the ADM be adapted to
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dynamically changing environments (this is an int@oir aspect for a virtual or mixed
subject that should be able to adapt its behaviadow should the ADM decide that it is
time to make another decision since the previogsi®mot suitable anymore? How can a
suitable set of attributes be selected? This gedties to answer to some of these
guestions.

1. Why affectiveAs it was described up to this point, the ADM coskem to be a
common deterministic, multiattribute decision makerfact, it can be used in such a
way, if needed. Anyway, the ADM was designed ppatly to support decision making
in contexts where expressive/emotional informati@as a particular importance and
directly affects the decision making process. BADM architecture, expressive content
can influence the decision making process in thrierent stages:

() When the decision table is updated: the algorithpdating the values in the
decision table takes into account the Expressif@rmation input. In this way, the
values of the attributes can directly reflect tikpressive/emotional content. Note
that the attributes themselves can be definedlatkedeto expressiveness: e.g., the
expressive importance of an action can be an at&iln the decision process
leading to the selection of an action (while oth#éributes can be related to the
actual utility of an action).

(i) When the decision parameters are updated: theithlgoupdating the decision
parameters also takes into account the Expressieemation input. In this way,
attributes can be differently weighted according érpressive content. For
example, if an attribute represents a measure of much a certain action is
supposed to catch the attention of a user, thehweifjthis attribute should be
increased when the information in input shows a ttegree of attention from the
user.

(i) Directly in the decision-making phase: for examplee Hurwicz and Hurwicz
Modified decision-making algorithms contain the gaetera that can be updated
accordingly to the Expressive Information inputphrticular, as already discussed,
the parametem can be seen as a measure of the trade-off bettepémistic” and
“pessimistic” decision-making strategies.

2. Dynamic update of algorithms and decisional tegts. The update and decision-
making algorithms can be dynamically changed attime. This feature provides a
further mechanism for expressive content to infagethe decision making process and,
at the same time, allows the ADM to adapt its behavto changing decision making
contexts. In fact, changing the update algorithnamsechanging the way in which the
expressive (and environmental) information influemthe updating of the decision table
and decision parameters (according to the firsthameism described above). Changing
the current decision making algorithm means (i)ngjirag the way in which the internal
data structure are considered in order to makeceida (ii) changing the way in which
expressive information influences the decisionalcpss (e.g., if the current Hurwicz
Modified Algorithm is replaced by the MAXIMAX Algothm two of the three
“affective” mechanisms described above, attribuiighting anda, are not working
anymore). Basically, the need of changing the wp@ad decision-making algorithms
emerges from the need of adapting the behaviotineofADM to dynamically changing
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decisional contexts. For example, in a (quite lodghce performance several update
algorithms could be used in the different phasethefperformance in order to modify
and adapt the mapping between Expressive Informatimd Decision Table/Decision
Parameters so that the mapping can be better statélde content (and in particular
expressive content) of each phase of the perforenaibe decision about when to
change the current algorithms and which ones shbeldised is up to other mapping
modules (e.g., a mapping monitoring component) arat human supervisor. The
information used by the mapping monitoring compdr@nby the human supervisor in
order to make such a decision also has an importéert for example, if a measure of
effectiveness could be defined measuring how mbehptevious decisions were good,
the algorithms could be replaced when such a meagmes under a given threshold.

The same expressive information could be used irersabtle ways too: changing the
update algorithms on the basis of some expressiicgmation means that expressive
information is used to state how expressivenesdf ighould influence the decision
making process. For example, suppose that an amatysdule were able to detect
happiness: depending on this information the ctraedgorithms could be replaced by
some new more “optimistic” ones, that is, not ahig possible to change some values in
the tables, or some weights, or thearameter depending on the recognized degree of
happiness, as described in the previous section,ths also possible to decide to
completely change even the algorithms that are @yeplto calculate such values.

3. Temporal scope of decisions.the previous sections, when describing the bielav
of the ADM at run-time, it was said that the ADM kea a new decision “if needed”.
How is it decided if a new decision is needed?him ¢urrent implementation the ADM
just exports a command and makes a new decisidnteae such a command is given.
Sending this command is up to another componemt, @ mapping monitoring
component (that could be implemented by another ADiVa human supervisor.

4. Selecting a suitable set of attributdgultiattribute decision makers are commonly
used in order to make financial decisions (e.g.e@nomy). In such contexts, it is
usually well known how to characterize an altengti.e., the sets of attributes are quite
well defined for any given problem and methods arailable to obtain the values for
each attribute. For example, consider you haveutp & new car and you can select
among several models. Each model will representakdrnative and each model
(alternative) will be characterized by the valués set of features (attributes). It's quite
well known what are the relevant features for a (@ag., average fuel consumption,
maximum speed, price etc.) and it's quite easybtaia such data. Thus, once filled the
decision table, the decision maker is able to m#kehoice. But, when we move on
contexts where expressiveness has an importantiraleuld be difficult to find a set of
attributes characterizing an alternative and thesasure their values. Suppose, for
example, you have to select an audio or video fagramong a collection of available
fragments. You should be able (i) to characterizehefragment with some numerical
values related to expressiveness (ii) to assigh satues in order to fill the decision
table. In practice, you have to answer a quesiimiles to this one: “Given the inputs |
have (for example, measured features of the movenfea dancer, a recognized basic
emotion in a music performance...), why shouldlé&ethis video fragment instead of
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another one?” Often this is not an easy task. Sgooel attributes could measure how
much an alternative is suitable with respect toesomeasured features (for example, how
much playing a given audio or video fragment isadle with respect to the rate of

occupation by a dancer of a certain region on thges: in this case, the (affective)

decision maker would select the alternative (¢hg ,audio or video fragment) that seems
to be the most suitable given the inputs.

4.3. Expressive autonomy

As already sketched in Chapter 2, expressive autgnplays a role of paramount
importance in designing interactive systems foistict applications. It is related to the
role of technology in the performance and to th&ti@nship between automatic
decisions and decisions made by the director/aredtite artistic performance.

In the framework of MIEEs in which virtual and mikesubjects interact with real
subjects the problem of the expressive autonomy bmnntroduced by proposing a
guestion: to which extent can a virtual or mixedbjeat make autonomous decisions?
That is, does the virtual or mixed subject havdoltow the instructions given by the
director, the choreographer, the composer, (in igeiilee creator of a performance or of
an installation) or is it allowed some degree etftom in its behaviour?

This question was firstly asked in (Camurri, CaetRicchetti, Volpe, 2000) where
expressive autonomy was defined by taking as examplialog between a dancer and a
robot. The issue was raised by the design and mmwpiéation of a robot-dancer
interaction (in the context of the performance “ldAdei Sensi”, held in Fearrara, Italy,
in November 1999) in which the robot was an intetg@r (that is, conveying some
expressive content) of a predefined “score of maarsy.

In fact, many hours in rehearsals were spent taiolihe desired behaviour and once
obtained, the robot was not allowed anymore to atevioo much from the expected
behaviour. A similar situation can be found in mmstsic and theatre performances. The
performer is often asked to convey the expressiveent that the director, the composer,
the choreographer intends (or intended) to comnatiic

In general, a virtual or mixed subject in a MIEEh deve different degrees of expressive
autonomy. According to the definition given in ttited paper, the expressive autonomy
of a virtual or mixed subject in a MIIEE is definad the amount of degrees of freedom
that a director, a choreographer, a composer (geieral the designer of a MIEE or the
author of an application involving communication edpressive content) leaves to the
subject in order to make decisions about the maisitse expressive content to convey
in a given moment and about the way to convey.at,(which expressive gestures have
to be generated to convey it).

It should be noticed that expressive autonomy ereflore somewhat different with
respect to autonomy as intended in Atrtificial Ih¢glnce and Robotics (see for example
Russell and Norvig, 1995): in fact, expressive aaty does not concern the amount of

" The concept of expressive autonomy has been intemtiand discussed in (Camurri, Coletta, Ricchetti,
and Volpe, 2000) from which this Section partialirives.
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built-in knowledge the subject (agent) contains it®icapabilities to make decisions on
its own on the basis of the feedback coming franpltysical sensors.

It is immediately evident from the definition thexpressive autonomy is strictly related
to mapping, being mapping the process devoted aosshg the expressive content that
has to be conveyed and the expressive gesturesi doitconvey it. In fact, a virtual or
mixed subject having no expressive autonomy woolkdneed any mapping component:
mapping strategies would be selected in advanciéhdyuthor of the performance and
the only task of the subject would be to executatvtiie author already decided.

Let's consider again the example of the robot adBng with a dancer: if during a
performance the robotic subject is asked to perforan expressive way a sequence of
movements that the director predisposed and thatblean repeatedly tuned during a
number of rehearsals, then the robot is only millyrexpressively autonomous or it is
not expressively autonomous at all. In this cass,just needed to pre-program the robot
with the sequence of movements that have to bemeed and with the way in which
they have to be performed (and that was decided tastéd by the director): no
components for expressive direct or indirect magpane needed, except for possible
recovering from unexpected situations.

Of course, this is not always the case: if, asaigens for performers, some degrees of
freedom are still present and the subject (e.g.rdbot) is flexible, versatile and rational
enough to intervene when necessary to add nuaadeskiehaviour coherently with the
performance, then it could be said that the suligeekpressively semiautonomous. That
is, it plays the role the author or the directmigised to it, but it can still make decisions
for example about the way of conveying expressiamtent. For example, an
expressively semiautonomous robotic subject colloose which expressive gestures
(e.g., which style of movement) are most suitablgdnerate in order to appear happy, in
a part of a performance during which the directants the robot to appear happy. A
semiautonomous subject has therefore to be providid mapping components,
although they would be allowed to directly contoolly certain aspects of the subject’'s
behaviour, while other aspects would be pre-prognachas in the previous case.

It is also possible (and this is the most intenggs8ituation) to design MIEEs in which
automatic subjects have a high degree of expressit@omy: it is for example the case
of the installation at the permanent science eklfdbichildren “La Citta dei Bambini”,
developed in Genova, ltaly, in 1997 (see Camurd &oglio 1998; Camurri and
Ferrentino, 1999) where a robot played the rolegutle for visitors or was a visitor
itself. More recently (opening in November 2001)ihee permanent science exhibit “La
Citta della Scienza” in Napoli, Italy, a virtual affacter was developed inhabiting five
different computer stations. A human supervisog.(ea mime) controls one of the
stations and directs movements and expressionbBeoVittual character by means of
sensor systems (e.g., a data glove). The superaisorgives his/her voice to the virtual
character. The remaining stations (four or all five stations if the supervisor is not
present) are automatically managed, that is thealicharacter is endowed with suitable
mapping strategies enabling him to autonomouslgraat with visitors. For making
decisions about its behaviour, the virtual charaates both inputs coming from the
museum environment and captured by microphonesveledbcameras and information
about possible narrative structures in its dialdtdp wisitors.
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In such a case, although the subject could havelltov a narrative thread, however it
can choose what expressive content to convey iera increase the interest of its
audience: the author of the application builds eati@e structure, and the subject is
assigned with the task to instantiate/interpretnita suitable way given its current
audience and context. The actual degree of expeessitonomy, however, can depend
on the structure and dynamics of the narrationcamdvary over the time during the visit.
For example, some schema could be provided (eegivedl from sociological studies)
within which and on the basis of which narratiokets place. The subject can therefore
be allowed of a high degree of expressive autonaithyin such schemés

Complete expressive autonomy implies that at angimement the subject is completely
free to choose the expressive content it want®twey as well as the way to convey it.
Complete expressive autonomy therefore implies eékiestence of a full mapping
component implementing all the mechanisms previjodsscribed.

With respect to expressive autonomy subjects caildmed along a continuum, having at
one of its extreme points the completely controbetbject, on the other the completely
expressive autonomous subject, and in betweernalbégrees of semi-autonomy. The
continuum is represented in Figure 4.3.

< >
Completely Semiautonomous Completely
controlled subjects expressive
subjects autonomous
subjects

Figure 4.3 the expressive autonomy continuum

Notice that the expressive autonomy continuum g genilar to the continuum sketched
for Active EMEs in Chapter 2. In fact, in the frawark of MIEES, EMESs are regarded
as subjects at a higher-level metaspace: therdfesehave a given degree of expressive
autonomy. Thus a subject representing a complgtagsive EME in the higher-level
metaspace will not have any expressive autonomyewahsubject representing a highly
dynamic active environment will have a high degreexpressive autonomy.

Notice also that the continuum should be intended dynamic way, i.e., a subject can
dynamically change its current degree of expresasitenomy. For example a robot can
be completely controlled in a certain part of afp@nance and then “come to life” in
another part by acquiring a high degree of expvesautonomy. Of course, this implies
that the robot should be endowed with the needg@deszive mapping components and
that it should be possible to dynamically enable disable mapping components during
the performance.

8 Notice that schemas can help in matching the neétise author with the needs and the capabilities
technology: in fact, if from the one hand they deais the expressive autonomy of the created stdyjea
the other hand they also constrain the expressitenamy of the author who should organize the
performance or the installation around them, omtected.
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The required degree of expressive autonomy (ikee, gosition of a subject in the
expressive autonomy continuum) is crucial also frahe point of view of
implementation. In fact, a high degree of expressiutonomy requires the subject to
have more sophisticated capabilities in order t&erits expressive choices. Thus, while
the design and the implementation of a subject withmited degree of expressive
autonomy may result quite simple (e.g., only exgikes direct mapping might be
needed), a high expressively autonomous subjechtnmiged to be equipped with
different kinds of expressive mapping componentghldirect and indirect mappings
and mapping monitoring).

As a final remark, | have to notice that the frarodwdepicted so far is mostly a
conceptual framework. A big challenge is now to lienpent it fully or partially, i.e., to
design and implement tools being high-level andilile enough to allow authors to
build artistic performances (or other applicatiolise museum applications) based on
MIEEs inhabited by expressive subjects with différdegrees of expressive autonomy,
without they have to worry about the technologisaties and the underlying complexity.
The EyesWeb open software platform developed dweryears at the DIST — InfoMus
Lab (see Appendix A for a more detailed descriptisra first step in this direction, but
more high-level capabilities (e.g., the definitioh a high-level language describing
MIEEs and their content) would be needed and shioelldeveloped.
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ANLYSIS OF EXPRESSIVE GESTURE
IN HUMAN FULL-BODY MOVEMENT



5. Expressive gesture in human full-body movement

After introducing MIEES, their components, and eqsive gesture as a main non-verbal
communication channel, the focus now moves on aifipeaspect. analysis of
expressive gesture in human full-body movementt duman full-body movement is
investigated as an example of conveyor of expressontent in interaction within a
MIEE. A collection of techniques for analysis ofpegssive gesture in human full-body
movement at different layers is discussed in taengwork of an experiment carried out
at the DIST InfoMus Lab in collaboration with thesartment of Psychology of the
University of Uppsala (Sweden) in the context & EU-IST MEGA project.

From a scientific point of view the experiment $ri0 give some first answers to
guestions like the following ones: which are thatdees in expressive gesture that are
mainly responsible of conveying expressive contéfd® can they be measured? How is
the temporal dynamics of such features relatedht®® communication of different
expressive contents? Is it possible to build asdi@s able to automatically classify
expressive gestures on the basis of the expressiment they convey? Are the outputs
of the automatic classifier consistent with spestitperception of expressive gestures?
From a technical point of view the experiment iseimded to shed light on possible
design and implementation of a virtual or mixedjeabcapable to observe expressive
gestures in full-body movement of people interagtmith it and to decode the conveyed
expressive content associated with them. This @lgamplies the implementation of
the conceptual framework illustrated in Chaptema8afpted to this specific application)
by developing and applying the techniques operaiingach level on data coming from
sensors and further processed by the subject.

In this perspective this Chapter is devoted to gmeghe theoretical framework with
respect to which motion analysis is carried outhvparticular reference to the sources
driving the investigation: mainly, theories by pkgtogists (e.g., Wallbott, Argyle,
Boone and Cunningham) and choreographers and cbgearon human movement (e.g.,
Laban). Possible different perspectives and appesmdo human full-body motion
analysis are discussed. The experiment in itsainitypotheses and its methodology is
also described.

The following two Chapters will go deeper in thesalission and will deal with two
different topics: the employed techniques for ecttrey expressive cues from motion at
different layers in Chapter 6, the classificationlgem and an attempt to deal with it in
Chapter 7.

5.1. Background and sources

The analysis of expressive gesture in human-fullybsmovement described in this
dissertation is inspired to several sources randgnogn approaches grown in the
traditional fields of science (e.g., psychologydamngineering (e.g., biomechanics) to
approaches derived from theories from art and hitrean(e.g., choreography, music
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composition). In a sense, this work can be consttl@s an attempt to bridge the gap

between these two fields toward the common goalnaferstanding expressive gestures

and exploiting their communicative power under er#ific perspective (i.e., a deeper

understanding of non-verbal communication chanpals)engineering perspective (i.e.,

building enhanced and effective interactive systdorsseveral different application

domains), and an artistic perspective (i.e., exiplgpithe means technology provides in
order to enrich language and to pioneer novelaams).

Main sources on which the approach here adopted fis foundations come from:

() Research and theories on KANSEI and emotion ar@mahkisal (e.g., the
Hashimoto’s theory on KANSEI Information Processskgtched in Chapter 1);

(i)  Biomechanics, techniques for motion capture andprder vision;

(i) Research and theories from art and humanities ommumication of
expressiveness in dance (e.g., Rudolf Laban’s ThebEffort, Laban 1947) and
music (e.g., Pierre Schaeffer's Sound MorpholodngeSfer 1977);

(iv) Research and theories from psychology on non-vedmahmunication of
expressiveness (Wallbot 1980, Argyle 1980, Boore@umnningham, 1998);

Since KANSEI Information Processing has alreadynbdescribed in Chapter 1 and
biomechanics and techniques for motion capturecamaputer vision mainly deal with
technical aspects of motion detection and procgsdescribed in Chapter 6, here the
focus will be on the two last sources: art and hities and psychology.

5.1.1. Theories from art and humanities

A classical approach frequently employed in macHeaning consists in creating an
explicit description of a studied phenomenon imtef a collection of parameters. The
values of such parameters forming a vector of patara for every available sample in
the training set are then used to perform anal{isés, recognition, classification,
regression). For example, starting from a humanenmnt signal, this approach builds a
description in terms of expressive cues (such asnthess, directness, energy, etc.),
shapes, and phrasing. While from the one hand apoach is commonly used in
machine learning, on the other hand it finds sorasishalso in theories from art and
humanities. As an analogy, in music this would lo@iwalent to recreate a “score”
starting from a sound signal, or, better, to bailcepresentation of the signal in terms of
a vocabulary similar to Pierre Schaeffer’'s Morplyyi¢Schaeffer, 1977).

As already sketched in Chapter 2, Schaeffer's Moligdy is an attempt to describe and
study “concrete music” where music objects extdral ttaditional musical instruments
with sounds coming from the real life, produceddmycrete objects. In this direction,
Schaeffer’'s Morphology is an approach supportingioalogical analysis of such music.
Morphological qualities based on perceptual feat@mable segmentation of continuous
streams of a (concrete) sound signal: segmentatidndentification of music objects are
based on perceptual cues such as “grain”, “texjutaflure” etc. Analogies can be
investigated with analysis in human movement wisarelar problems can be envisaged
(e.g., segmentation of a continuous stream of mewtrdata, identification of motion
primitives, extraction of a collection of perceptu@es). From such a comparative
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analysis it may be possible to individuate a caibecof features having a similar role in
both music and movement domdins

Some research works showing analogies between rteigic level envelopes of tones)
and movement (e.g., force patterns in walking) lsarfound in the literature (Sundberg,
Friberg, Frydén, 1994; Friberg and Sundberg, 1888erg, Sundberg, Frydén, 2000).
Rudolf Laban’s Theory of Effort (Laban and Lawrerc®47, Laban 1963) provides a
similar “cues language” in the domain of human rnmoget (e.g., in dance). The Theory
of Effort is one of the main inputs for the anatysiarried out in this work and it is
therefore worth to be described in some more detail

In the Theory of Effort, Laban points out the dymamature of movement and the
relationship among movement, space and time. Labapproach is an attempt to
describe, in a formalized way, the main featurebwhan movement without focusing
on a particular kind of movement or dance expresdio fact, it should be noticed that
while being a choreographer, Laban did not focusaty on dance, but rather he
envisaged in his theory the whole complexity of Bmmmovement including dance
expression but also extended to everyday moventigatthe ones performed by workers
in their usual activities.

The basic concept of Laban’s theoryeifort considered as a property of movement.
From an engineering point of view it can be con®deas a vector of parameters
identifying the qualities of a movement performantdias to be noticed that Theory of
Effort describes thguality of movemeniThat is, it is not concerned with, for example,
degrees of rotation of a certain joint or the motrgmat has to be applied, rather it
considers movement as a communication media agl ti extract parameters related to
its expressive power.

The effort vector can be regarded as having founpmnents generating a four-
dimensional “effort space” whose axes are Spairee TWeight, and Flofv During a
movement performance such effort vector descritigmotion qualities moves in the
effort space. Laban investigates the possible paihewed by the vector and the
expressive intentions that may be associated Wéthit

Each effort component is measured on a bipolaresdhke extreme values of which
represent opposite qualities along each axis.

Space refers to the actual direction of a motiaokst and to the path followed by
subsequent strokes (a sequence of direction)elfrtovement follows these directions
smoothly the space component in the effort spacensidered to be “flexible”, while if
it follows them along a straight trajectory it wile marked as “direct”.

Time is also considered with respect to two différ@spects: an action can be “sudden”
or “sustained”, which allows the binary descriptiointhe time component of the effort

1 Of course, it is often not straightforward to fimddirect connection between features in music and
features in movement. Anyway, concepts that ardlairin the two fields can be worked out in order t
individuate a collection of features having similales in the two domains.

2 In his original theory Laban considered a thrematisional space defined by the Space, Time, and
Weight components. The fourth component, Flow, iméended as a kind of modifier with respect to the
three basic components.

% Notice that expressive content is more likely éoémcoded in the trajectory of the effort vectottia
effort space, rather than in its absolute positidmat is, expressive gestures are characterizeétebgffort
dynamics (i.e., variations) along time, rather thgrthe values of the effort components at a ghiee.
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space. Moreover, in a sequence of movements, dabhbra has a given duration in time:
the ratio of the durations of subsequent movemgintss the time-rhythm, as in a music
score and performance.

Weight is a measure of how much strength and wagleixerted in a movement. For
example, in pushing away a heavy object it is nreargsto use a strong weight, while in
handling a delicate and light object, the weightiponent has to be light.

Flow is a measure of how bound or free a movemana sequence of movements,
appears. Laban describes it in these terms: “lacion capable of being stopped and
held without difficulty at any moment during the wement, the flow iound In an
action in which it is difficult to stop the moventesuddenly, the flow i$ree or fluent
(Laban, 1963, p. 56).

The two extremes of each bipolar scale along eaishcan be interpreted as “indulging”
with respect to a given dimension (e.g., light #ledible movements indulge in weight
and space) or “fighting” against it (e.g., quickdamound movements fight against time
and flow). A graphical notation is also provided flscribing movements with different
effort qualities. Figure 5.1 summarizes in a table eight extreme qualities along each
effort axis and shows the graphical notation Latbeweloped to describe effort.

. Flexible
Light
Axes Indulging  Fighting
Effort Effort
Space Flexible Direct
. - - Free
Time Sustained Quick
Weight Light Strong Sustained Quick
Flow Free Bound
Strong

Figure 5.1: efforts table and graphical notation

Laban’s basic theory considers mainly the firseéhcomponents of effort (Space, Time,
and Weight) to develop a description of human ma@mBy considering the three-
dimensional space built on these three axes andpbesite qualities for each effort
component, it is possible to identify eight combioas of the Space, Time, and Weight
components (addressed as basic efforts), correspptml states that the movement can
assume in its development. These eight combinattansbe considered as the vertexes
of a cube in the effort space whose axes are Sfawe, and Weight. Such a cube is
represented in Figure 5.2. The eight basic effang their qualities are summarized in
Table 5.1.
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Gliding S Floating
T
T
Dabbing I
S Flicking
w w
w w
P .
ressing S Wringing
T T
Punchin
g S Slashing

Figure 5.2 the effort cube (Laban, 1947). A basic efforagsociated to each vertex. The letter on each
edge indicates the effort component that changesnwhoving from one vertex to an adjacent one (S =
Space, T = Time, W = Weight).

Basic Effort Space Time Weight
Pressing Direct Sustained Strong
Flicking Flexible Sudden Light
Punching Direct Sudden Strong
Floating Flexible Sustained Light
Wringing Flexible Sustained  Strong
Dabbing Direct Sudden Light
Slashing Flexible Sudden Strong
Gliding Direct Sustained Light

Table 5.1 the eight basic effort and their qualities ascdbgd in (Laban, 1963)

In a recent study (Zhao, 2001), four neural netwdrive been trained to recognize the
two extreme qualities for each effort componente Tinaining set consisted of a
collection of arm movements whose features have leatacted by using both motion
capture systems and videocamera based systems.
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5.1.2. Research in psychology

Research on human movement as a mean for humamhconamunication has been
widely developed in psychology. Several researcliges for example Argyle, 1980)
stressed the importance of full-body gestures (bpolstures and movements) in non-
verbal human-human communication.

A main research field concerns visual perceptiomwhan movement and its qualities.
For example, in his well-known investigation on rgdiight displays Johansson (1973)
showed that human observers are able to still getié impression of human movement
even if only points of light placed on body joirsie displayed. Beside the importance of
the result (i.e., lot of information about the muyiperson can be subtracted away yet
maintaining a vivid impression of the performed mment), this also allows to produce
and manipulate motion stimuli (as trajectories @fiypjoints) in a relatively easy way.
Following the path opened by Johansson, other refsei@ devoted their work to visual
perception of movement focusing on specific quadit{e.g., genre and identity of the
moving person) or on specific actions (e.g., walkirDevelopmental studies have also
been carried out. A short review of the researcihhkvwam visual perception of human
movement can be found for example in (Pollick, 2003

A field of particular interest for the work desaib in this dissertation concerns the
relationships between movement and expressivenéssespect to two main aspects: (i)
which are the movement features that are mainlpamsible to convey expressive
content (what | call “expressive cues”) and (ii)whthese expressive cues relate to a
particular expressive content, or, in other wotdsy an expressive message is encoded
in the dynamics of these cues. In the traditiorthef work by Johansson, it has been
shown that it is possible for human observers t@gyee emotions in dance from point
light displays (Walk and Homan, 1984, Dittrich ¢t, 4996). Pollick (2001) analysed
recognition of emotion in everyday movements (edginking, knocking) and found
significant correlations between motion kinematigs particular speed) and the
activation axis in the two-dimensional space hawasgaxes activation and valence as
described by Russell (1980) with respect to hisuciplex structure of affect. Wallbott
(1980) in his paper dealing with measurement of &ruraxpression after reviewing a
collection of works concerning movement featurekateel with expressiveness and
techniques to extract them (either manually or @atiically), classified these features by
considering six different aspects: spatial aspetdsporal aspects, spatio-temporal
aspects, aspects related to “force” of a movemégestalt” aspects, categorical
approaches. Boone and Cunningham (1998) startomg firevious studies by De Meijer
(1989, 1991) identified six expressive cues invdlue the recognition of the four basic
emotions anger, fear, grief, and happiness, antidutested the ability of children in
recognizing emotions in expressive body movemerdutjh these cues. Such six cues
are “frequency of upward arm movement, the duratibtime arms were kept close to
the body, the amount of muscle tension, the duratb time an individual leaned
forward, the number of directional changes in fand torso, and the number of tempo
changes an individual made in a given action secgigfBoone and Cunningham, 1998).
It has to be noticed that in their paper Boone @uthningham distinguish between
propositional and nonpropositional aspects of mev@n{Buck, 1984, cited in Boone
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and Cunningham, 1998). This distinction can beteelao what already said about
gestures that can be expressive both if they hasgeaific denotative meaning and if
they do not have it. In fact, propositional moveseare intended as established signs
transmitting a given meaning (e.g., a raised hanthdicate stop). Specific movements
corresponding to emotion stereotypes can also beidered as propositional (e.g., a
clenched fist to show anger or raised arms to detnate joy). Non-propositional
movements are instead embodied in the direct andal@motional expression of body
movement based on fundamental elements such a® t@mapforce that can be combined
in a wide range of movement possibilities. Therefaron-propositional movements do
not rely on specific movements, but build on thealgy of movements i.e., how
movements are carried through, for instance whether with lightness or heaviness
(Camurri, Lagerlof, Volpe, 2003). Non-proposition@ovements are thus expressive
gestures that do not have a denotative meaningthat kind of expressive gesture that
more often is encountered in performing arts.

5.2. Perspectives of analysis

Human full-body movement can be analysed undeemfft views and perspectives.
Several aspects contributing in encoding expressiveent in expressive gestures have
to be taken into account by a virtual or mixed subjobserving the motion of a
user/participant interacting with it. Moreover, tivay in which each of these aspects is
dealt with strongly influences the design and impatation of virtual and mixed
subjects. Some of these aspects (partially follgwitre classification of movement cues
described in Wallbott, 1980) are shortly discussethis Section.

5.2.1. Space views

A first aspect concerns the space under analysis, which extent is considered and
which level of detail is assumed in analysis wibpect to the spatial component. In his
book “Modern Educational Dance” Laban (1963) introgls two relevant concepts: the
Kinesphere referred also aBersonal Spageand theGeneral Spacethe whole space
surrounding the Kinesphere In particular Laban séy¢henever the body moves or
stands, it is surrounded by space. Around the hedthe sphere of movement, or
Kinesphere, the circumference of which can be reddby normally extended limbs
without changing one’s stance, that is, the pldcgupport. The imaginary inner wall of
this sphere can be touched by hands and feet,|lapdirts of it can be reached. Outside
this immediate sphere lies the wider or “gener@éce which man can enter only by
moving away from their original stance. He has tepsoutside the borders of his
immediate sphere and create a new one from the stamce, or, in other words, he
transfers what might be called his “personal” spheranother place in the general space.
Thus, in actual fact, he never goes outside hisqmal sphere of movement, but carries it
around with him like a shell” (Laban, 1963,8%).
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A first distinction can thus be done between ansliysthe Personal Space and analysis
in the General Space. This distinction does noy adtermine the spatial extent on
which analysis has to be carried out (e.g., in a@fsdance performances, the space
occupied by the body of a dancer for the Persopac& and the whole stage for the
General Space), but it also affects the kind ofinepues employed for analysis. In fact,
even if analogies can be found among featuresdarP#rsonal Space and in the General
Space, different techniques can be needed to éxtineen. The next Chapter will
illustrate algorithms for analysis in the Perso8ahce, while Chapter 8 will discuss a
reference model for analysis in the General Space.
Further subdivisions can be done depending onrkisaged level of detail in both the
Personal and the General Spaces. For examplepdsisible to consider the motion of
only one person (e.g., a dancer) within the Gen8palce or the motion of a group of
persons in order to analyse the behaviour of tbemgas a whole. In the Personal Space
it is possible to consider global features, suchfamsexample the global amount of
detected motion or the contraction/expansion of wiwle body (examples will be
discussed in Chapter 6) or local features like eéhdesscribing the motion of a given joint
or of a given part of the body (e.g., head, hafeks).
In a perspective from wide to narrow these differepatial points of view can be
summarized as follows:
(i) Global properties in the General Space, i.e., bebawf a group considered as a
whole in the General Space;
(i) Local properties in the General Space, i.e., behaviof single individuals,
separately analysed, in the General Space;
(i) Global properties in the Personal Space, i.e.,\netaof the body considered as a
whole in the Personal Space;
(iv) Local properties in the Personal Space, i.e., hehawf given parts of the body,
separately analysed, in the Personal Space

It should be noticed that this subdivision shoutd be considered as a rigid and static
one, but rather as a continuum of possibilitiesulgh which the focus of attention of a

virtual or mixed observer moves, depending on tiveenit needs. Many analyses at each
of the four levels of detail can be carried outparallel and their results integrated

toward a global interpretation of the detected nnoset.

5.2.2. Time views

Time also plays a very important role in analysiginly with respect to the time interval
on which analyses are carried out. The time intecaa vary from a few milliseconds
(e.g., one frame from a videocamera) to severalutag(a whole performance) and it
depends on the evolution of the performance andaitgative structure (e.g., in a dance
performance) as well as on considerations aboutmowement is perceived by humans
with respect to time. The adopted mapping strate@ivhether continuous or dialogical,
see Chapter 4) can also strongly influence thetduraf time that is considered for
analysis, continuous mapping often requiring gstert time windows on which fast
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computations have to be performed, while dialogio@pping needs to segment

expressive gestures and analyse them in their whobgion.

The problem has been dealt with also (and maybelyan the framework of analysis

of music. For example, in a taxonomy of descriptirsnusical audio worked out by

Marc Leman and colleagues in the context of audiing (Leman et al., 2001, 2003) a

distinction is made among non-contextual “low leglekcriptors obtained from a frame-

based analysis of the acoustical wave” (e.g., shseffsets, roughness), mid-level

descriptors “derived from musical context dependEnaevithin time-scales of about 3

seconds” (e.g., beat, short rhythmic patterns,tshterval sequences, tonal tension) and

allowing through segmentation an event-based reptagson of musical objects, and
high-level descriptors that “typically involve ledng and categorization beyond the
representation of theow’, referring to time intervals longer than 3 secenand related
to the cognitive and emotional/affective domaingyi-evel features are related to long-
term memory processes, while low and mid-leveluess are mainly dealt with by the
short-term memory.

A similar approach can be envisaged also for tine taspect of motion descriptors. That

is, it is possible to distinguish between descriptalculated on different time scales:

(i) Low-level descriptors, calculated on a time inténfaa few milliseconds (e.g., one
or a few frames coming from a videocamera). Fomgx{a the current amount of
contraction/expansion can be calculated on justfrarae (see the description of
the Contraction Index in Chapter 6), i.e., on 40with the common sample rate of
25 fps.

(i)  Mid-level descriptors, calculated on a movemenokdr (in the following also
referred as “motion phase”), on time durations ¢éw seconds. Examples of such
descriptors are the overall direction of the mowvetie the stroke (e.g., upward or
downward) or its directness (i.e., how much the emognt followed direct paths).
At this level it is possible to obtain a first segmtation of movement in strokes that
can be employed for developing an event-based septation of movement. In
fact, strokes or motion phases can be charactebyea beginning, an end, and a
collection of features including both mid-level tigges calculated on the stroke and
statistical summaries (e.g., average, standarcatien), performed on the stroke,
of low-level features (e.g., average body contoazéxpansion during the stroke).

(i) High-level descriptors related to the conveyed eggive content (but also to
cognitive aspects) and referring to sequences afement strokes or motion (and
pause) phases. Time intervals in the case of dped®rmances range from a
motion phrase (some seconds), to a microdance dd dance fragment with a
duration up to a few minutes, see in the followjrtg)a whole dance performance
(several minute8)

With respect to the general framework illustratedChapter 3, low-level descriptors can
be collocated at layers 1 and 2, mid-level desaoript layer 3, and high-level descriptors
at layer 4.

* It should be noted that it seems that even onéewrmotion strokes can already convey expressive
content. See for example the work by Pollick (20@idjvhich human observers were able to distinguish
emotions in very short everyday movements (e.@nkirg or knocking).
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It should be noted that the time aspect is ongelaxtent complementary with respect to
the space aspect described above, i.e., it is lgesk have low-level, mid-level, and
high-level descriptors for the movement of a linmbtlhe Personal Space (consider for
example the amount of research in analysis of aowements), for the movement of the
full-body in the Personal Space (the main subjdcthe experiment discussed in the
following), and for the movement of individuals agbups in the General Space as for
example in studies about the global behaviour sifatis of a museum exhibit.

5.2.3. Spatio-temporal views: “polyphony”

Another important aspect concerns how movementsnsedeaved and orchestrated in
space and time. Parallelism and orchestration eavidwed both with respect to space,
i.e., orchestration of gestures of different bodyte of the same or different dancers
(e.g., a coordination of different features andiges in arms and legs such as elasticity
and high-energy in legs and low-energy and inedii@ct movement in arms can reflect
happiness), and with respect to time, i.e., sulmgigonovement strokes connected with
fluency versus “broken” and hesitating motion, aspsimilar to articulation in music.
“Polyphony” is also related to what Laban (1963l)sc&ffort rhythms”, i.e., sequences
of basic efforts preceded by a preparation phasefaiowed by a termination phase.
Such sequences stress in different ways the fdortefomponents of Space, Time,
Weight, and Flow depending on which components ghaand which remain constant
during the sequence. By stressing one componant ¢(Brectness in space) with respect
to another different expressive contents can beemd.

5.2.4. Motion with respect to its target

In everyday life motion is often a goal-directedi@e, i.e., movement is intended to
reach a given target in the space. Something sicala happen also in dance, the artistic
expression of movement: one or more dancers cahttereach a target on the stage. As
a consequence, spectators perceive a sort of réimaneed for” a target rising from
the observed movements. A target can be made éxplicugh the design of the scenery
and through specific dialogue mechanisms betweenahs on stage: for example, a
dancer following another one or escaping from agotime.

The reach of a target and the physical effort dtag) it costs is an important element in
analysis, even if often difficult to measure.

The way in which a target position is approached also be relevant for analysis. A
collection of features can be extracted descriliog the target is approached in space
and time (e.g., in a direct and sudden way or Wlatkible and sustained movements).
Beside the importance of this kind of analysis om4verbal communication through
expressive gestures, the way in which a targeeashred plays also a relevant role in
other application domains, such as for examplehigrapy and rehabilitation where
measures like the directness of the trajectoryp¥adid to reach the target can be used as
evidence for diagnosis of particular pathologied fom therapy monitoring.
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5.2.5. Postures

Not only motion strokes are important for decodihg expressive content conveyed
through movement, but also pauses (or pause phasd®tween strokes can have a
relevant role. During a pause it is likely that artigular posture is assumed. Argyle
(1980) discusses the importance of postural a#guch non-verbal communication:
postures are used to express interpersonal asituglaotions, and personality traits.
Moreover, a given gesture assumes a different egwe “strength” according to the
postural conditions in which it is made (e.g., fasture assumed before and after the
gesture or the posture of the whole body when anpart of it, for example a limb, is
performing the gesture). In interpersonal commurooa postural attitudes define the
basic style of communication: for example relaxiinglfferent, curious.

Analysis of postures during pauses in the movensanttherefore be needed to fully
understand the expressive content associated wpilegsive gestures in human full-body
movement.

5.3. Approaches to analysis of expressive gesture in mawent

After introducing the main aspects that have tadden into account when analysing
expressive gesture in human movement, here twaappes are presented that can be
followed in performing the analysis. The first oisea bottom-up approach that in the
framework of the conceptual architecture descrilme@hapter 3 starts from processing
of physical signals for extracting movement feasuaed tries to decode the expressive
content by using the motion descriptors that ar@inobd at the subsequent layers. The
second one, following the tradition starting froesearch on point light displays by
Johansson (1973), proceeds by progressively stibgainformation from a rich
stimulus in order to find the cues that are maimyolved in expressive content
communication.

Until now the discussion concerned expressive gesitu human movement from a
general point of view even if lot of times movemantdance has been considered as a
useful example. Even the work by Laban addressednig dance, but also more general
aspects like movements of workers in their everyaeyities and, in fact, the research
on expressive gesture described in this dissentamiainly concerns the development of
interactive multimedia systems enabling novel etéon paradigms and allowing a
deeper engagement of the user in a number of diffepplication scenarios.

However, a particular focus is put on performingsaand on artistic performances
because of the strongly use in their language®ofuerbal communication mechanisms
to convey expressive content. Dance and music qpediaces therefore constitute an
ideal test-bed where computational models of expresgesture and algorithms for
expressive gesture processing can be developetiediand tested. The two approaches
will be therefore described with reference to dapedgormance and they will be applied
to a collection of dance performances.
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5.3.1. Bottom-up approach: microdances

The bottom-up approach tries to individuate and eh@Xpressive cues by studying a
reference archive of microdances recorded for phigpose. With “microdance” it is
meant a short video fragment containing enoughrinédion to be able to decode and
classify expressive content.

Microdances can be useful to individuate that fiestithat are mainly responsible of
conveying expressive content. In particular, anslysf microdances can provide
experimental evidence with respect to the cues thateographs and psychologists
already identified: this is mainly obtained by aralysis of differences and invariants in
the same choreography performed with different esgve intentions. For example, a
comparison can be done between a choreographyrpedoin a “neutral” way, i.e.,
didactically and without any expressive intentiand the same choreography performed
with expressive intentions corresponding to thedasotions fear, grief, anger, and joy.
At a first stage, such a comparison can be doneabyg or through annotations asked to
choreographers and dance experts.

Once a set of possible expressive cues is inditedualgorithms can be developed for
automatically extract them from the available miamoces. Techniques can then be
applied for expressive content classification.

Microdances can also be used for testing the dpedlanodels and algorithms. Human
observers evaluate each microdance. The outpussneldtby the developed algorithms
and models are then compared with spectators’gatirthe same dance fragment, thus
allowing evaluation of the performances of the athms.

Notice that the same approach can be applied &relift layer with respect to the
conceptual framework described in Chapter 3: arl@yfor a perceptual validation of the
extracted low/mid level cues (e.g., spectators lmarasked to evaluate the amount of
perceived motion and the results compared withotitputs of the algorithm computing
the amount of detected motion), at layer 3 for aceetual validation of gesture
segmentation (segmentation of dance gestures bstatpes and by a segmentation
algorithm can be compared), at layer 4 for expvessontent classification (for example,
classification of dance fragments with respecthe tour basic emotions anger, fear,
grief, and joy, performed by spectators and by sili@stion techniques can be
compared).

5.3.2. The subtractive analysis approach

The subtractive approach starts from the work dyadeson on point light displays. It
aims at identifying those features that are mamdgponsible of expressive content
communication by progressively reduce informatiosanf the initial stimulus. With
respect to the works on point light displays, #agproach does not only intend to show
that recognition is possible with reduced inforroatbut it also attempts to evaluate the
contribute and the weight of the contribute thdfedent kinds of information bring to
expressive content decoding and understanding.
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An aspect on which the subtractive approach caerbployed is related to emotional
arousal, i.e., the effective engagement of spest&qgposed to artistic stimuli.

In this case, for example, the inputs to the sghtra analysis are genuinely artistic live
performances and their corresponding video recgsdi reference archive of artistic
performances, chosen after a strict interactioh aitists and performers, has to be built.
Image processing techniques can then utilizedadually subtract information from the
video recordings. For example, parts of the dasdaewdy could be progressively hidden,
deforming filters could be applied (e.g., blur)e tihame rate could be slowed down, etc.
Each time information is reduced spectators areechgk rate the intensity of their
engagement in a scale ranging from negative totipesvalues (a negative value
meaning that the video fragment rises some fedtirige spectator but such a feeling is a
negative one). The transitions between positiveraghtive rates and a rate of zero (i.e.,
no expressiveness has been found by the speatatme analysed video sequence) would
help to identify what are the movement featuresyaag expressive information.

Of course, a deep interaction is needed betweennthge processing phase (i.e., the
decisions on what information has to be subtracied)the rating phase.

In the following of this dissertation and in padiar in the experiment that will be now
described and that will provide the framework inieththe developed algorithms will be
discussed, the bottom-up approach will be mainljofeed. Nevertheless, experiments
using the subtractive approach are also curremtigied out at the DIST - InfoMus Lab,
even if they are not subject of this discussion.

5.4. An experiment on analysis of expressive gesture dance performance

As an example of analysis of expressive gestudante performance, an experiment is
now discussed, carried out in collaboration wite tepartment of Psychology of the
University of Uppsala (Sweden) in the frameworkhed EU-IST MEGA project.

The aim of the experiment is twofold: (i) individug which motion cues are mostly
involved in conveying the dancer’s expressive ititars to the audience during a dance
performance and (ii) testing the developed modets @gorithms by comparing their
performances with spectators’ ratings of the saared fragments.

In particular, in the case of this experiment espnee gesture has been analysed with
respect to its ability to convey emotions to thdiance. The study is in fact focused on
the communication through dance gesture and rettogrby spectators of the four basic
emotions: anger, fear, grief, and joy.

After outlining some research hypotheses a cotlectif motion descriptors (expressive
cues) has been identified and algorithms developecktract them. The algorithms have
been applied on twenty microdances constituting tk&erence archive for the
experiment. At the same time, spectators have lbsk&rd to indicate the expressive

® The description of the experiment is partiallygakrom the following papers:

Camurri A., Lagerlof 1., Volpe G., “Emotions andecextraction from dance movements”, International
Journal of Human Computer Studies, in press, 2003.

Camurri A., Mazzarino B., Timmers R., Volpe G., “Mmodal analysis of expressive gesture in music
and dance performances”, V International Gesturekélmp, Genova, 2003.
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content (i.e., the basic emotions) they were abldentify in the dances. Finally, ratings
from spectators have been compared with the resfilthe employed classification
techniques. This Section describes the experinitsrtypotheses and methodology. The
following two Chapters will deal respectively withlgorithms for extraction of
expressive cues and with the obtained results.

5.4.1. Research hypotheses

The research hypotheses are grounded on the rallarnioe expressive gesture of the
Laban’s dimensions of Space, Time, Weight, and Flawpatrticular, as a result of a joint
discussion with the psychologists in Uppsala thiewng aspects emerged.

- The Space dimension is considered in its aspeletiedeto Laban’s Personal Space by
measuring to what extent limbs are contracted gaeded in relation to the body
centre, how much movements are direct or flexible.,(tend to follow straight
trajectories or smooth ones), which direction resstb be prevalent in motion (for
example, Boone and Cunningham, 1998, showed tlas joharacterized by a higher
amount of upward movements);

- The Time dimension is considered in terms of ovVedalration of the whole
performance, of duration of motion strokes (i.eauge and motion phases), and of
tempo changes (that also contribute to the unaeylgtructure of rhythm or flow in
the movement).

- The Weight dimension is considered with respecth® amount of tension and
dynamics in movement: since the technical diffieglt arising when measuring
aspects like movement tension, weight has beenlynassociated with the vertical
component of acceleration.

- The Flow dimension is considered in terms of analgs shapes of speed and energy
curves, frequency/rhythm of motion and pause phas®®unt of acceleration and
deceleration during motion phases.

In the hypotheses discussed with the psycholotisise expressive cues are associated
in different combinations to each emotion categéir. example, in (Lagerlof and Djerf,
2002), also reported in (Camurri, Lagerlof, and p&l12003), the table in the following
page can be found.

5.4.2. Description of the experiment

An experienced choreographer was asked to destypor@ography such that it excluded
any propositional gesture or posture and it avogteceotyped emotions.

In Uppsala, five dancers performed this same davitte the four different emotional
expressions: anger, fear, grief and joy. Each dgpedormed all the four emotions. The
dance performances were video-recorded by twoaligideocameras (DV recording
format) standing fixed in the same frontal viewtbé dance (a spectator view). One
camera obtained recordings to be used as stimulspectators’ ratings. The second
video camera was placed in the same position kbt syecific recording conditions and
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hardware settings to simplify and optimise automhatecognition of movement cues
(e.g., manual shutter). Dancers’ clothes were am{dlark), contrasting with the white
background, in an empty performance space withoyt scenery. Digitised fading
eliminated facial information and the dancers app@as dark and distant figures against
a white background.

The psychologists in Uppsala then proceeded irecitig spectators’ ratings: the dances
were judged with respect to the perceived emotign3® observers, divided in two
groups. In one group ratings were collected by c®or choice” (choose one emotion
category and rate its intensity) for each perforoeanthe other group was instead
instructed to use a multiple choice schemata,togate the intensity of each emotion for
all the four emotions for each performance.

At the same time, at the DIST - InfoMus Lab motmres have been extracted from the
video recordings and models for automatic classificm of dance gestures in term of the
conveyed basic emotion have been developed.

In the next Chapter, the algorithms used for exitnganotion cues will be presented. An
extended discussion of the output of the computati@and statistical models and a
comparison with spectators’ ratings will be incldde Chapter 7.

Basic Emotion Expressive Cues

Anger Short duration of time
Frequent tempo changes, short stops between change
Movements reaching out from body centre
Dynamic and high tension in the movement
Tension builds up and then “explodes”

Fear Frequent tempo changes
Long stops between changes
Movements kept close to body centre
Sustained high tension in movements

Grief Long duration of time
Few tempo changes, “smooth tempo”
Continuously low tension in the movements

Joy Frequent tempo changes
Longer stops between changes
Movements reaching out from body centre
Dynamic tension in movements
Changes between high and low tension

Table 5.2 association between expressive cues and conumad emotions according to the hypotheses
of the experiment (Camurri, Lagerlof, Volpe, 2003).
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This Chapter illustrates the techniques that hagenbdeveloped in order to extract
expressive cues from human full-body movement. drtigular, such techniques have
been applied to the twenty dance performances deduin the reference archive
recorded for the experiment described in Chaptéfdst of these expressive cues have
then been employed to classify fragments (motiookss) of the dance performances
with respect to the four basic emotions anger, fg@ef, and joy (see Chapter 7).
According to the sources and the research hypathesilined in Chapter 5, such
expressive cues include:

— Global measures in the Personal Space (i.e., e@ssiding the movement of the full
body) such as global amount of detected motion,usanof contraction/expansion,
orientation of the body (i.e., an elliptical appiroation of the body silhouette has
been used and the orientation of the axes has dm®idered as approximating the
orientation of the body), overall motion direction;

— Measures inspired to psychological researches sscBoone and Cunningham'’s
global amount of upward movement or measures imvghthe dynamic of the
contraction/expansion of the body (e.g., the amofitime limbs are kept close to the
body);

— Cues inspired by the Rudolf Laban’s Theory of Bffeuch as directness (i.e., how
much the trajectory of a movement is direct orit), impulsiveness, fluency, or
coming from more recent studies based on Labargsih(e.g., Zaho 2001).

— Cues inspired by analogies with audio analysis, éter Onset Intervals, frequency
analysis;

— Kinematical measures such as velocity, acceleratwarage and peak velocity and
acceleration.

The expressive cues and the algorithms developedttact them will be now presented
with reference to the layered conceptual framewdr&cussed in Chapter 3 and
instantiated on the particular task of analysisexpressive gesture in human full-body
movement (see Figure 6.1).

The techniques here described together with madgiéchniques such the one discussed
in the next Chapter (decision trees) or other datang and machine learning techniques
(e.g., neural networks, support vector machinedtiphel regression, fuzzy sets) are the
basic bricks for building the Expressive Gesturalfsis (EGA) component of a virtual
or mixed subject (observer) in a MIEE.

All the algorithms have been implemented as a ctotle of software modules for the
EyesWeb open architecture (seaw.eyesweb.orgAppendix A, and Camurri, Coletta,
Peri, Ricchetti, Ricci, Trocca, Volpe, 2000). Inrgpaular, they constitute the core of the
EyesWeb Expressive Gesture Processing Library &ggendix B, and Camurri,
Mazzarino, Volpe, 2003).

! The algorithms illustrated in this Chapter haverbpartially discussed in several papers, seeximple
(Camurri, Trocca, Volpe, 2002) and (Camurri, LagE/olpe, 2003).
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Recognized emotions (e.g., anger, fearf,gag)

i}

Layer 4: classification techniques (for example, in terrhbasic emotions): e.g.,
multiple regression, neural networks, support w machines, decisionees

U

Pause and motion phases and related parametersalesglute and relative durations,
fluency, impulsiveness), trajectories represengiegtures in semantic spaces, post

i}

Layer 3: techniques for motion segmentation (e.g., in paasd motion phases),
representation of gestures (e.g., using semantcesp like Laban’s Effort space),
techniques for posture recognition.

Motion descriptors and expressive cues: e.g., Qyaot Motion (QoM), Contraction

Index (CI)

Layer 2: computer vision techniques on the incoming imagatistical measured,
signal processing techniqu

Images pre-processed to detect movement, trajeofqupints (e.g., trajectories of body
parts, trajectories of dans in the spac

i}

Layer 1: Techniques for background subtraction, motion a&te, motion tracking
(e.q., Luca- Kanade feature trackii).

Data from several kinds of sensors, e.g., imagem fvideocameras, positions from
localization systems, data from accelerome

Figure 6.1 the conceptual framework described in Chaptein8tantiated for analysis of expressive
gesture in human full-body movement and, in paldiclin dance performance (Camurri, Lagerlof, Volpe
2003).
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6.1. Layer 1: processing of physical signals

Layer 1 is responsible of processing the infornmattoming from sensors in order to
detect and obtain information about the motion taatctually occurring It receives as
input images from one or more videocameras andsilplgs information from other
sensors (e.g., accelerometers).

A common set-up that is often employed due to #ative easiness in preparing it and
in the management of the incoming information csissin acquiring images with just
one videocamera (monocular vision) at 25 fps niatrieaved.

Set-ups with two or more videocameras can alsmhsidered. They range from systems
employing two videocameras (e.g., for stereoscemmon) to systems using many of
them. For example, well-known motion capture systaree a quite huge number of
videocameras (e.g., 12 or 14) disposed along decpaositioned around the location
where movements are going to be performed. Indase, techniques (sometimes quite
computationally expensive and not real-time) areded for integrating information
coming from each videocamera.

Sometimes it is also possible to use on-body mar&ed sensors (e.g., accelerometers),
even if it should be noticed that the particulaplagation field (artistic performances)
often does not allow the use of on-body sensoresinwould be too much constraining
and disturbing for dancers.

For the sake of easiness, here algorithms are¢rdkesl with reference to the simplest set-
up, i.e., just one fixed videocamera acquiring inteérleaved frames at the frame rate of
25 fps. Furthermore, since the analyses here disdusefer to the Personal Space, the
movement of just one dancer is considered. Howetvieas to be noticed that most of the
described techniques can be extended for possiklénumore complex set-ups (at least 2
videocameras) and with more than one dancer.

Layer 1 generates two kinds of output: processeages (e.g., the silhouette of the
dancer, see Figure 6.2) and trajectories of bodis ghoth points on the body without
any specific reference to anatomical parts, andtpoiepresenting the movement of
specific joints or parts like head, hands, feet).

Layer 1 accomplishes its task by means of congelil@omputer vision techniques
usually employed for real-time analysis and recigmiof human motion and activity:
see for example the temporal templates techniqueefresentation and recognition of
human movement described in Bobick and J. DaviiR0It should be noticed,
however, that in contrast to Bobick and J. Davseagch, here the aim is not at detecting
or recognizing a specific kind of motion or actyvit

In the following some basic techniques (e.g., bamligd subtraction, feature tracking)
usually employed at this step are shortly illustdatvithout going in too many details that
would be outside the scope of this dissertationtail®e descriptions can be found in
computer vision books and in papers from the cospuision community (like for
example the cited Bobick and J. Davis, 2001).

2 1n a way Layer 1 can be considered as a layerirtdial sensors, i.e., including both the employed
physical sensors (e.g., videocameras) and theitlgw used to extract a given set of low-level data
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6.1.1. Silhouette extraction

A first step that is often (even if not alwdysieeded and sometimes critical is the
extraction of the silhouette of the dancer. Backgrb subtraction techniques can be
employed allowing separating the silhouette of damcer from the background. The
most general formula for background subtraction is:

Silhouettét] = ThresholdFramgt] - Background_Image

being Framdt] a frame acquired at instamt Background_Imagean image of the
background without any foreground object (i.e.this case no dancers), amtreshold

a function that given the difference image extrdias it pixels belonging to a certain
range of value.

In the simplest case the background image is & stahge, recorded once and never
updated, that holds a picture of the backgrounguréi 6.2 shows a dancer’s silhouette
extracted with EyesWeb by using this method (thgpwuimage is a monochromatic
representation of the silhouette, a median filees heen used to eliminate noise).

There are two major drawbacks in this simple imm@satation that can be extremely
critical in artistic applications: light conditior{gshanges in lights produce a degradation
of the performances), or, worse than that, detdilhe background can change. In such
cases performances can degrade fast requirincastt &ere-calibration of the threshold
value or the acquisition of a new background image.

(@) (b)

Figure 6.2 silhouette extraction using EyesWeb: (a) the imicy video frame; (b) the dancer’s silhouette
extracted with EyesWeb.

% For example if a colour-tracking algorithm is eoy#d, usually background subtraction is not needed.
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Improvements can be obtained by acting on two idiffeaspects: the background image
and the threshold function.

As for the background image, a main improvemensisis in continuously updating it
instead of using a static image. Several strategiade adopted, considering and mixing
the incoming frames in a new background imageekample, the background image can
be updated with portions of the current frame theg recognised to belong to the
background, or the output of an integrator opegatin the grabbed frames can be used to
generate a new background image from the incomiagéds. Algorithms for adaptive
background subtraction can be found in the computaon literature. More complex
approaches make also use of statistical modelsedb@ckground

The threshold function can be made more complearder to improve performances.
For example, it can consider the background imageder to apply different thresholds
to different areas in the image. This lead to aghold function defined as follows:

ThresholdFramdt] - Background_Image, Background_Image

This kind of function uses available knowledge dhibe background in order to detect
the silhouette. For example, the threshold can loeemestrictive in case of bright
backgrounds and less restrictive in case of dadsoNlany different thresholds can in
principle be applied to differently dark and liglsteas. Virtually, it would possible to
have up to 256 different thresholds in b/w imagadec with 8 bits per pixel, even if the
background subtraction process would soon becommanageable.

Research on background subtraction is still a aetive field in computer vision and the
most recent developments can be found in computgprv journals and in the

proceedings of the main computer vision conferences

6.1.2. Silhouette Motion Images (SMIs)

A straightforward use of the dancer’s silhouettdramted through the previously

described background subtraction techniques iesepted by Silhouette Motion Images
(Trocca, 2001; Camurri, Trocca, Volpe, 2002). AhSilette Motion Image (SMI) is an

image carrying information about variations of #iouette shape and position in the
last few frames. SMIs are generated by the follg@Wormula:

Silhouette Motion_Imag€[t] = {Z Silhouettdt - i]} - Silhouettégt]

The SMI at framet is generated by adding together the silhouettésaeed in the
previousn frames and then subtracting the silhouette at dranThe resulting image
contains just the variations happened in the prevsfeames. Ih is the number of frames
on which the SMI is calculated amd= 1, then the SMI carries information about the
instantaneous variations of the silhouette. Workinty a highem allows capturing more
information about the shape of motion and resulés smoother, because the effect is
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similar to average filtering. Figure 6.3a showsSl with n = 4. In the figure the SMI is
the grey area, while the darker contour shows tbstmecent silhouette.

SMis are inspired to motion-energy images (MEI) andtion-history images (MHI)
(Bradsky and J. Davis, 2002, Bobick and J. Daw§13. They differ from MEIs in the
fact that the silhouette in the last (more recéaine is removed from the output image:
in such a way only motion is considered while tbeaent posture is skipped. Thus, SMIs
can be considered as carrying information aboutdh®unt of motion” occurred in the
lastn frames. Information about time is implicit in SMdad is not explicitly recorded.

An extension of SMIs can be considered, which a@#des into account the internal
motion in silhouettes (see Figure 6.3b). In sucklvay it is possible to distinguish
between global movements of the whole body in thendgal Space and internal
movements of body limbs inside the Personal Space.

(b)

Figure 6.3 examples of Silhouette Motion Images (SMIs): da)SMI with time window rf) of 4 frames;
(b) measure of internal motion using SMls (the dgndy area inside the silhouette).

6.1.3. Motion tracking

Motion tracking is a very wide field in the computasion literature. Here only the
Lucas-Kanade tracking algorithm (Lucas and Kand@81) is shortly described since it
has been employed for the experiment discussdddgrdissertation. It provides as output
the trajectories of a redundant number of pointeloanly positioned on the moving
body: no in formation about position of joints oody parts is available, rather the
obtained trajectories can be processed in ordextact some global measures (e.qg.,
speed calculated as average on all the trajectoktsvever, it should be noticed that
other techniques such as for example skin col@oking are available in EyesWeb for
extracting positions and trajectories of specibidy parts (e.g., hands and head).

The Lucas-Kanade feature-tracking algorithm allérasking the movements of a certain
number of points in a sequence of images. It isrofised to track the movement of a
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mobile camera while recording a scene with fixegects. Anyway, it can be used with
interesting results also to track moving objedtsdid by a fixed camera.
The algorithm works as follows:

1. Select points in the imagethat seems to be easy to track, i.e., well defieeges
(Shi and Tomasi, 1994)

2. Atimage (framen+1, calculate the local optical flow in the neighbofithe selected
points.

3. For each point estimate the new position and thiabikty of such prediction. If
reliability is under a certain threshold the pasmtonsidered lost.

4. Incrementn and repeat step 2 and 3.

Usually the user specifies how many points havgettracked and the algorithm attempts
to follow them. However, the procedure that findattires classified as “good to track”
can find less than the specified amount of pointssuch points can be marked lost after
a few frames. It is therefore necessary to callmatiee procedure that selects points that
can be tracked reliably and, among the proposetatgaelects a few of them in order to
maintain almost constant the number of trackedufeat This step is called substitution.
This algorithm has been implemented in EyesWebgusie Open Computer Vision
Library (OpenCV). However, at the moment of the iempentation the OpenCV library
did not provide a function that can directly penfiofeature substitution. This has been
done by calling again the function that finds tigedd to track” features and selecting in
the resulting list those that are above a minimistadce from those already tracked.
The main disadvantage of the Lucas-Kanade feataokihg is that the selected points
can fall everywhere in the image, i.e., either ba background or on the body of the
dancer. In order to guarantee that some of theteelgpoints will fall on the dancer, it is
necessary to track a high number of points. Fumbee it is impossible to know where,
on the body of the dancer those points are, argkthitat are attached to the background
are a major waste of resources. It is possibleisorichinate between points on the
background and on the body by observing their vidsc (points on the background
should be still, even if noise can make this stat@nfalse). Another problem is point
substitution. If the substitution happens while dagacer is moving, the blur produced by
motion may prevent new points to be attached tdotuy.

These problems have been partially solved by comdpirmotion tracking with a
background subtraction module that extracts thecelé silhouette. The silhouette is
used as a mask to extract from the original fraost the image of the dancer. The
resulting image is then sent to the tracker. THesette can also be used to estimate if
the dancer is moving or not, and the point setlmmompletely or partly re-initialised
when the dancer is still or moving slowly.

Figure 6.4 shows the output of the Lucas-Kanadd¢ufeatracker included in the
EyesWeb Expressive Gesture Processing Library.ahtiqular, Figure 6.4a shows the
points that have been selected for tracking, whidgire 6.4b displays the trajectories of
the tracked points (in a time window of 1 s).

Information motion detection and tracking providesthe upper levels is therefore
encoded in two different forms: positions and trajeies of points on the body (as the
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output of the Lucas-Kanade feature tracker), andges directly resulting from the
processing of the input frames (e.g., dancer’ ©sidttes, SMIs).

(@) (b)

Figure 6.4 Lucas-Kanade feature tracking: (a) the pointg tleve been selected for tracking; (b) the
trajectories of the tracked points.

6.2. Layer 2: motion descriptors and expressive cge

Layer 2 is responsible of the extraction of a $ehotion descriptors and expressive cues
from the data coming from low-level motion detentiand tracking. Its inputs are the
processed images and the trajectories of pointsody coming from Layer 1. Its output
is a collection of motion cues describing movermamd its qualities. To accomplish its
task, Layer 2 employs computer vision, statistiaal] signal processing techniques. The
expressive cues that have been employed in thestied experiment are now reviewed
and algorithms for their extraction described.

6.2.1. Quantity of Motion (QoM)

Quantity of Motion (QoM) is computed as the area.{inumber of pixels) of an SMI
(e.g., the number of pixels in the grey area inuF@g6.3a). It can be considered as an
overall measure of the amount of detected motiomolving velocity and force. QoM
can be thought as a first and rough approximatioth® physical momenturg = m-y
wherem is the mass of the moving body andtands for its velocity. The shape of the
QoM graph is close to the shape of the graphs lufcitg of a marker put on a limb.
QoM has two main problems: (i) the measure dependhe distance from the camera;
(i) difficulties emerge when comparing measuresrirdifferent dancers. Such problems
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can be (at least partially) solved by scaling th& Srea by the area of the most recent
silhouette. The following formula is thus obtained:

Quantity_of _Motion = Area(SMI[t, n]) / Area(Silhotte]t])

In this way, the measure becomes relative, i.egpendent from the camera’s distance
(in a range depending on the resolution of theaddenera), and it is expressed in terms
of fractions of the body area that moved. For eXafipis possible to say that at instant
a movement corresponding to the 2.5% of the totah aovered by the silhouette
happened.

6.2.2. Contraction Index

The Contraction Index (CI) is a measure, rangiognfO to 1, of how the dancer’s body
uses the space surrounding it in terms of contratgkpansion of the body with respect
to its centre of gravity. For example, Figure 6f@ws two conditions characterized by
different values of the Contraction Index: a higillue (near to 1) in Figure 6.5a where
the body fills almost completely the rectangle esirig it (usually called “bounding
rectangle”), a low value (near to 0) in Figure 6vilirere limbs (especially arms) are kept
quite far from the centre of gravity.

(@) (b)

Figure 6.5 two conditions characterized by different valoéshe Contraction Index: a high value (near to
1) in (a) and a low value (near to 0) in (b).

The algorithm computing the CI combines two différeechniques: the individuation of
an ellipse approximating the body silhouette anchmatations based on the bounding
rectangle. The former is based on an analogy betweage moments and mechanical
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moments: in this perspective, the three central emam of second order build the
components of the inertial tensor of the rotatidrthe silhouette around its centre of
gravity: this allows to compute the axes (corresipog to the main inertial axes of the
silhouette) of an ellipse (see Figure 6.6) that lbarconsidered as an approximation of
the silhouette: eccentricity of such an ellipserédated to contraction/expansion;
orientation of the axes is related to the orientadf the body (Kilian, 2001). The second
technique used to compute CI is related to the dhognrectangle, i.e., the minimum
rectangle surrounding the dancer’s body (see Figusg The algorithm compares the
area covered by this rectangle with the area ctiyretovered by the silhouette.
Intuitively (see Figure 6.5a and b), if the limbe &ully stretched and not lying along the
body, this component of the CI will be low (neatOjo while, if the limbs are kept tightly
nearby the body, it will be high (near to 1). Whilee dancer is moving the CI varies
continuously. Even if it is used with data from pwne camera, its information is still
reliable, being almost independent from the distaoicthe dancer from the camera. A
use of this cue consists of sampling its valueghat end and the beginning of a
movement stroke, in order to classify that movenasm contraction or expansion.

Figure 6.6 computation of an ellipse approximating the dasceilhouette. The axes of the ellipse allow
estimating the orientation of the body; its ecdeitiris related to body contraction/expansion

A further use of the Contraction Index consistaalysing its dynamics along time (for
example by computing the amount of time Cl remaialedve a given threshold, i.e., the
body has been contracted, during a motion straka@s kind of analysis is related to one
of the expressive cues individuated by Boone andn@igham (1998): the duration of
time arms are kept close to the body, that couldyémeralized in order to take into
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account not only the movement of the arms, but #igocontraction/expansion of the
whole body.

6.2.3. Features extracted from motion trajectories

Layer 1 provides Layer 2 with processed images,(8&Mlls) and trajectories of points
located on the dancer’s body (e.g., the outpubhefiLiucas-Kanade feature tracker). QoM
and CI are example of expressive cues extracted frocessed images. Expressive cues
can also be obtained from motion trajectories, filskeexample cues depending on the
shape and the geometry of the analysed trajectogy, direction, length, directness) and
kinematical cues (e.g., velocity, acceleration)reHgome of the geometrical cues will be
introduced while in the following cues related totran kinematics will be discussed.
Two of the most straightforward cues that can biaeted from trajectories recorded
during a motion stroke are motion length and motimaction.

Motion length is computed by adding together tmgths of the segments composing the
trajectory (i.e., all the segments joining two sedpsent points of the sampled trajectory).
It can give indirect indication about the complgxaf a movement, its directness, and its
dynamics (e.qg., if it has been either fast or slokyusing Laban’s terminology, quick or
sustained). However, information motion length jpdeg usually needs to be integrated
with other cues in order to be able to draw somelksions about these properties. For
example motion length contributes to a more rediabkasure of motion directness: the
Directness Index (DI).

The Directness Index for a motion trajectory iscaldted as the ratio between the length
of the straight trajectory connecting the first ahd last point of the motion trajectory
and the sum of the lengths of each segment cotisgitthe motion trajectory (i.e., the
motion length). Therefore, the more the Directnesiex is near to one, the more direct
is the motion trajectory (i.e., the motion trajegtes “near” to the straight one). Further
aspects can be taken into account in order to imgptiee computation of the Directness
Index, e.g., the deviations of the sampled poifthe® motion trajectory with respect to
the straight one can be calculated and their aeesiag standard deviation analysed. The
Directness Index can contribute to the analysithéLaban’s dimension of Space, i.e.,
its values can be used for a first rough estimateo much a motion stroke is direct or
flexible.

Motion direction is calculated by measuring thelarg the vector joining the first and
last sampled points of the motion trajectory in gt n frames. The selected value rof
determines how much motion direction refers toretantaneous or short-term direction
(low values ofn) or to a sort of average direction during a mostnoke (high values of

n or direction calculated on a whole motion strokédtion direction is related to another
expressive cue that Boone and Cunningham (1998)dféa be relevant for expressive
content decoding: the frequency of upward arm maremin this case too the original
cue by Boone and Cunningham can be generalisazhgder not only arm, but also full-
body upward movements. For example, the duraticima in a motion stroke in which
upward movement has been detected can be compudedoasidered as a tendency of
the motion stroke to be upward directed.
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As an example, Figure 6.7 shows a sampled trajedi@d line) and the computed
motion direction (the green segment, whose lengthprioportional to the overall
displacement).

(= M=)

N

Figure 6.7 a motion trajectory and the computed motion diogc

In the case that many motion trajectories are albilat the same time (e.g., the Lucas-
Kanade feature tracker can provide a redundant eummbpoints distributed over the
whole body), averages can be computed on themderdo obtain cues reflecting the
global properties (i.e., motion length, directidirectness) of the analysed stroke.

6.2.4. Kinematical measures

Trajectories can also be analysed with respectinenkatical aspects. In particular,
velocity and acceleration can be extracted by usiegjl-known techniques for
approximated numerical derivative. For example, sbfware modules included in the
EyesWeb Expressive Gesture Processing Library altmiculating velocity and
acceleration by using either the asymmetric bac#waumeric derivative or the
symmetric numeric derivative whose formulas (fotoeay) are reported here below.
Notice that in the formulas andy stand for the x and y coordinates of the positiba
sampled point in the motion trajectory, whilss the index related to time: @) is the x
coordinate of the currently sampled point whiig-1) is the x coordinate of the last
sampled point. Notice also that symmetric numernigalvative introduce a delay of one
sample, i.e., 40 ms in case the usual samplingiénecy of 25 fps is employed.
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v.(i) = x(i) = x(i 1)
- At -
Asymmetric backward numeric derivative (for velggit V(i) = y(i)-y(@ -1
Y At

v.(i-1)= X(@i) = x(i-2)
oAt

Symmetric numeric derivative (for velocity): V(i -1) = y(i)-y(i -2
Y 2At

A low-pass filter can be applied in order to redtloe noise introduced by the numerical

derivative operation.

As already explained for motion length, directiaand directness, if many motion

trajectories are available at the same time (&@n the Lucas-Kanade tracker) further

computations can be carried out to extract globaltion features. In particular
descriptive statistics (e.g., average, standarcatem, maximum) can be calculated:

() Along time for example, average and peak values calculatbéreon running
windows or on all the samples in a given time wvéé(e.qg., the average velocity of
the hand of the dancer during a given motion sjroke

(i)  Among trajectories for example, average velocity of groups of trigpees
available at the same time (e.g., the average ntastaous velocity of all the
tracked points located on the arm of a dancer).

6.3. Layer 3: gesture segmentation and representat

Layer 3 is responsible of segmenting motion in ptdendividuate motion strokes, i.e.,
motion and non-motion (pause) phases.

It is also in charge of extracting further highevél expressive cues that are the result of
an analysis of the segmented movement and of theneld sequence of motion and
pause phases. Examples of such cues are the téndooation of motion and pause
phases compared with the total duration of the elgperformance, impulsiveness, and
fluency.

Segmentation and cue extraction is performed frioeninput (i.e., the expressive cues)
coming from Layer 2. In a certain extent, motiord grause phases can be associated
with movement gesturésThe output of Layer 3 can thus be considered dssa
representation of gestures in term of values ofesgive cues associated with them.

* As already discussed in Chapter 3, associatingomaind pause phases with gestures is quite a rough
approximation since gestures can be observed slibae a single motion phase or covering someerhth
Anyway, it can be taken as a starting point foirst finalysis that hopefully will lead to understamore
subtle aspects.
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6.3.1. Motion segmentation

A straightforward way to individuate movement s@ekand therefore to segment
movement in motion and pause phases is to apgiyeahold on the detected energy or
amount of movement. As a first approximation, theMQmeasure has been therefore
used to perform such segmentation.

QoM is related to the overall amount of motion @scdevolution in time can be seen as a
sequence of bell-shaped curvewmfion bell3. In order to segment motion, a list of these
motion bells has been extracted and their feat(eeg., peak value and duration)

computed. For this task an empirical thresholdlwanlefined on the QoM: for example,

according to a threshold that has been used inraeapplications, the dancer is

considered to be moving if the area of his/her oroimage (i.e., the QoM) is greater

than 2.5% of the total area of the silhouette. F8g6.8 shows motion bells after

automated segmentation: a motion bell characteaaes motion phase.

nnnnn
Time (ms)

Figure 6.8 motion segmentation

The described segmentation technique based on Quobntity of Motion, even if
sufficient in most cases in the experiment undemgexcan be improved in several ways.
From the one hand further cues can be taken irtoust to perform the segmentation
task. For example, techniques based on analysiseo§peed and acceleration profiles
can be considered: (Bindiganavale, 2000) uses éne-aossings of acceleration to
detect changes in motion, (Zhao, 2001) uses a mebased on zero-crossings of
acceleration and curvature to segment the trajestéollowed by the arm joints.

On the other hand, more detailed segmentation eabtained. For example, Laban says
that “almost any work-operation or expressive gestshows the following pattern:
preparation — one or several main efforts — tertrona (Laban, 1963, p. 75). A further
goal of segmentation is therefore to individuate-phases within a motion phase.
Finally, it should be remarked that segmentatiogo@ihms based on extracted cues
could obtain a segmentation that is different frdime segmentation that a human
observer could perform. In other words, detectegimsmts could be different from
perceived segments. Perceptual experiments wouldebded in order to compare the
motion phases obtained from algorithms with theiomphases perceived by humans.
As a result of such experiments some kind of cusfgperceived motion could be
obtained replacing or modifying the curve of detdctmotion computed by the
algorithms. This observation raises issues thabayend the scope of this dissertation: it
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is just worth to be noticed that while in more titihal application (e.g., video
surveillance) and in application fields in whichetfocus is on measuring movement
what is important is the detected motion, in agtians like the ones envisaged in this
work (i.e., expressive interaction in artistic caxis) it could be more relevant to
consider the perceived motion.

6.3.2. Fluency and impulsiveness

Motion segmentation can be considered as a fegt tsiward the analysis of the rhythmic
aspects of dance. Analysis of the sequence of paudenotion phases and their relative
time durations can lead to a first evaluation afaatempo and its evolution in time, i.e.,
tempo changes, articulation (in analogy with musigato/staccato). Parameters from
pause phases can also be extracted to individealestill standing positions from active
pauses involving low-motion (hesitating or oscitatmovements).

Furthermore, motion fluency and impulsiveness carebaluated. They are related to
Laban’s Flow and Time axes.

Fluency can be estimated starting from an anabysthe temporal sequence of motion
bells. A dance fragment performed with frequenpstand restarts (i.e., characterized by
a high number of short pause and motion phases$)egllt less fluent than the same
movement performed in a continuous, “harmonic” wWag., with a few long motion
phases). The hesitating, bounded performance wall characterized by a higher
percentage of accelerations and decelerationseinirtiie unit (due to the frequent stops
and restarts), a parameter that has been demeaastrelevant importance in motion
flow evaluation (see, for example, Zhao 2001, wkeeneural network is used to evaluate
Laban’s Flow dimension).

A first measure of impulsiveness can be obtainechfthe shape of a motion bell. In fact,
since QoM is directly related to the amount of detd movement, a short motion bell
having a high pick value will be the result of ampulsive movement (i.e., a movement
in which speed rapidly moves from a value nearquaéto zero, to a peak and back to
zero). On the other hand, a sustained, continuoogement will show a motion bell
characterized by a relatively long time period ihieh the QoM values have little
fluctuations around the average value (i.e., spgsethore or less constant during the
movement).

6.3.3. Gesture representation

Several kinds of representation can be envisaged.pgossibility consists in producing a
symbolic description of the analysed sequence ofem@nts. This representation can be
useful because it can be understood by a humaaroksz in a relatively easy way and
also used by an automatic system. In fact, mott@mhgause phases would be represented
as motion objects (or gestures) in analogy with imusbjects: they would be
characterized by a beginning, an end, a time curatand a collection of values of
motion cues either the values of motion cues caotisly collected during the whole
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phase, or single values either summarizing a coatis cue (e.g., averages) or related to
cues that can be directly calculated on a whols@lt@.g., motion length).

For example, depending on the Contraction Indexadiam phase can be seen as a
contraction phase (if the value of CI at the endhef phase is higher than the one at the
beginning) or as an expansion phase. It is thezgiossible to obtain a description like
the following one:

Contraction(Start_Frame, Stop_Frame, Initial_Val@, Final_Value CI, other cues...)
Expansion(Start_Frame, Stop_Frame, Initial_Value_Fdhal_Value_CI, other cues...)

Another possibility is to build a representation terms of points or trajectories in
multidimensional semantic spaces, i.e., spaces avhrss are expressive cues having a
relevant influence with respect to the conveyedresgive content. As discussed in
Chapter 3, whether the representation has to ba@rd pr a trajectory depends on how
the low-level features are processed in Layers @ anFor example, if a vector
containing the averages of the Layer 2 expressues a@s calculated along the time
duration of a motion phase (gesture) or a motioasphis considered as a single event,
the gesture/motion phase could be representecbastiin the multidimensional space.
If instead more values for each cues are avail@bobe, local values, or averages along
sub-phases) or if a gesture is considered as a&seguwf events (as it is likely to be) a
trajectory is a more appropriate representation.

Figures 6.9a and b show an example of such kimdpresentation in a 2D space.

Peady [ Peayy
whstart| [ B S UL B 3 B |[Feves YEGOSMHG 25 mese| DAL S 8 >

WEY 0SES s

Figure 6.9 representation of gestures as trajectories iD aface.

The two dimensions are Quantity of Motion and fleyerin Figure 6.9a the dancer is not
moving: the current position in the space (windowthe right) is moving toward the
bottom left parts of the 2D space (yellow stripg)position characterized by low QoM
and low fluency (i.e., the amount of pause phasefominating the amount of motion
phases). In figure 6.9b, a high-energy gesturdsglaled. The red shadow around the
dancer (the SMI) in the upper-left window of Fig@®b is proportional to the QoM and
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the position in the space (the yellow stripe in tigit window) is moving toward the
top-right region in that window, characterized bgrhQoM and high fluency.

It should be noticed that this is just an exampiefact, a semantic space would need
experimental results in order to be establisheddimensions have to be proved to be
meaningful and possibly uncorrelated. However,tiih@ expressive cues here indicated
(QoM and fluency) are good candidate dimensionsstmh an expressive space being
the former related to energetic aspects of movenamt the latter to temporal,
rhythmical aspects, even if at the moment no ewviddras still been provided to support
this hypothesis.

Once gestures are represented as trajectoriesemantic multidimensional space cues
can be extracted from these trajectories. In padic it is possible to extract the cues
previously discussed with respect to motion traees also from trajectories of
expressive gestures in semantic spaces. The iug®btained can be used as input to
algorithms (e.g., clustering techniques) for grogpsimilar trajectories, i.e., similar
gestures, in order to interpret them. Notice thahotion gestures and music gestures
could be represented in the same (or a similaryesgve space, algorithms could be
used for grouping and analysing such gesturesnunléimodal perspective.

6.3.4. Posture recognition

As already discussed in Chapter 5, not only motsoimportant in expressive content
communication. Pauses also have a role of paramoyrdrtance. During a pause the
body may assume a particular posture and body f@sstan be considered as expressive
gestures having a relevant role in conveying exgivescontent to the audience (see for
example Argyle, 1980).

Algorithms for posture recognition have thus beemplemented in the EyesWeb
Expressive Gesture Processing Library, even ifduactly employed in the discussed
experiment.

One of them, robust enough to be employed in rg@-performances is based on Hu
moments (Hu, 1962), a set of seven moments, whiehranslation, scale and rotation
invariant, and have been widely used in computgprifor shape discrimination.

The algorithm employs a nearest-neighbour technidigg each considered (normalised)
posture Hu moments are calculated and stored iatexnDuring each pause phase, Hu
moments are calculated on the incoming (normalisgdduette. Euclidean distances are
computed between the Hu moments of the silhouattde current frame and the Hu
moments of each candidate posture accordinglyedaifowing formula:

whereu andyv are the Hu moment vectors (having 7 elements), angdis the degree of
the distancep can be provided as parameter to the algorithm.i/phe 1, the 1-distance
is obtained:
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d,(uv) = Ju -v
k=1

Whenp < 0, the algorithm calculates thedistance, i.e.,

d.(uyv) = ﬁ@la_nxluk _Vkl '

The posture corresponding to the minimum distas@andidate for recognition.
Mechanisms are provided to recognize a posture dnlg duration in time is long
enough to consider it effectively as a posturehdane a posture is recognized, the last
N recognized postures (where N is provided as arpeter to the algorithm) are
considered and compared against a threshold pmbvade parameter as well. The
threshold represents a percentage of recognitisimgluhe last N recognitions: if the
most frequently recognized posture among the lagpostures has a percentage of
recognition above this threshold, such a postum@ésgnized, otherwise no posture is
recognized. For instance, if the threshold is @&0% and N is set to 10, posture number
3 will be recognized only if the array of the in@exof the last 10 recognized postures
contains the index 3 at least nine times. In th#és/,wpostures cannot be recognized if
their time duration is too short with respect te tralue of N, the threshold, and the
sampling frequency. For instance, if N = 10, theeshold is 100%, and the frame rate is
25 Hz, a posture can be recognized only if its tlomas longer than 10x(1/25) = 0.4 s.
The algorithm returns also a confidence index erdmge [0, 1] describing how much it
is confident to have correctly recognized a givarstpre. The confidence index is
determined by comparing the value of the calculatéedmum distance with the distance
immediately larger than the minimum one, similaluea of the two distances meaning
an ambiguous recognition.

Figure 6.10 shows the five postures that have bsed to test the algorithm.

Figure 6.10Q five normalised postures used to test the diszlipssture recognition algorithm.
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7. Classification of dance fragments

The expressive cues described in Chapter 6 have eeacted from the 20 dance

fragments recorded for the experiment sketchedhapr 5. In this Chapter a model is

introduced for such data attempting to classifynmtheith respect to the four basic

emotions (anger, fear, grief, and joy) correspogdothe dancers’ expressive intentions.

Dance fragments have been segmented in motion andepphases as described in

Chapter 6. To this aim, an empirical threshold loe QoM has been defined for these

dances, corresponding to the 2.5% of the averalge v the QoM computed along each

whole dance fragment. A vector of 18 expressives dwas then been extracted for each

motion phase. According to the research hypothdsssribed in Chapter 5, such cues

include:

- Cues related to the time duration of motion andspagehases: duration of the current
motion phase, duration of the last pause phase;

- Cues related to the amount of movement (energra@e, standard deviation, and
peak value of the Quantity of Motion along a motpiase;

- Cues related to body contraction/expansion: aveeagk standard deviation of the
Contraction Index along a motion phase;

- Cues related to the use of space: Directness Indagth and overall direction of
motion trajectories along a motion phase;

- Cues derived from the cited studies by Boone andnigham (1998): amount of
upward movement, dynamics of the Contraction Index;

- Kinematical cues: average, standard deviation, p@ak value of speed along a
motion phase; average, standard deviation, and pedtke of the module of
acceleration along a motion phase;

For those cues depending on motion trajectoriescas-Kanade feature tracker has been
employed. A redundant set of 40 points randomliridisted on the whole body has been
tracked during each motion phase. Points have lEsssigned before the beginning of
the following motion phase so that a small and sighificant amount of points is lost
during tracking. Overall motion cues have been wated by averaging the values
obtained for each trajectory.

An explorative analysis has been carried out onettteacted cues. A decision tree has
been built for classifying motion phases dependinghe vector of extracted cues with
respect to the four basic emotions that dancezd to covey. The results from the model
have been compared with spectators’ ratings celieby the psychologists in Uppsala.

7.1. Explorative analysis

At a first stage the extracted variables have lmdiected to an explorative analysis
mainly consisting in calculating and analysing tlescriptive statistics of each of them.
When possible, the Analysis of Variance (ANOVA) Heesen performed with respect to
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the four emotional categories. The box-plots hage &deen drawn and analysed. The
results of such a preliminary analysis (part of akhcan be found in Mazzarino, 2002)
are summarized in the following together with acdssion of some emerging aspects.

7.1.1. Quantity of Motion

Quantity of Motion (QoM) has been considered urideze aspects: its average, standard
deviation and peak value along a motion phase.eSguM is related to the amount of
detected motion, the three variables derived frioand related respectively to the average
amount of motion during a motion phase, to the amtdynamics”, i.e., how much the
amount of detected motion remained constant oredain a motion phase, and to the
maximum amount of detected motion.

The box-plot of the average of the QoM with resgecthe four emotion categories is
shown here below.
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Figure 7.1: box-plot of the average of the QoM along the motatrases. The four basic emotions are
labelled as follows: 1 — Anger, 2 — Fear, 3 — Gref Joy.

The Analysis of Variance has been performed oratlegage of the QoM along motion
phases (since according to the Central Limit Thmotiee average of the QoM can be
thought to tend to be normally distributed evethé QoM is not normally distributed).

Results are displayed in Table 7.1 in the followrage.
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ANOVA Table

Source |SS df MS F Prob>F
Groups 0.53331 3| 0.17777| 88.852| 1.12E-02
Error 66.024 330| 0.020007

Total 71.358 333

Table 7.1 Analysis of Variance (ANOVA) for the averagestioé QoM along motion phases

With a p-value in the order of T0the average value of the QoM along motion phases
therefore appears to be statistically significamtanalysis.

The box-plots for the standard deviation and ferpleak value of the QoM are shown in
Figure 7.2 a and b respectively.
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Figure 7.2 box-plots of (a) the standard deviation and (i® peak value of the QoM along the motion
phases. The four basic emotions are labelled syl 1 — Anger, 2 — Fear, 3 — Grief, 4 — Joy.

Significant differences can be noticed (even if matthematically proved): for example
grief results to have the lower standard deviati@n, the lower variation in the amount
of detected motion, and the lowest peak value (thald mean a relative absence of
impulsive strokes, i.e., a quite low-energy andansd movement). The highest values
are associated with anger and joy that seem tbdééato emotions characterized by the
highest dynamics along the energy dimension.

An analysis of the average of the QoM along the levliances (i.e., the average of the
QoM for each performance) has been carried ouMiazgarino, 2002). The results are
shown in Figure 7.3 in the following page.

By inspecting such results it is possible to obseahat for example the performance of
the first dancer satisfies the hypothesis accordmgvhich higher energy should be
noticed in anger than in fear. In fact, the averagjethe QoM (along the whole
performance) for the first dancer is highest indhger performance (represented in blue)
and lowest in the grief performance (in yellow).
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Extending the observation to all the dancers itliamoticed that the lowest value of the
QoM average is always associated with the perfoomaonveying grief, but, at the same
time, the highest value does not always corresporide anger performance (this is not
the case for dancers number two and four).

Average Value of the QoM
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0.15 +— — @A
BmF

— oG
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FirstDancer SecondDancer ThirdDancer FourthDancer FifthDancer

Figure 7.3 the average of the QoM for each performance (ldaza, 2002)

As a remark, from the one hand it has to be notibed since the average along the
whole performance is now discussed, this does re#nnihat the same pattern can be
found in each motion phase: it is just a generadéacy observed in the whole dance.

On the other hand, the ANOVA on the average of @&/ along each motion phase

discussed above seems to confirm that such a deerdency is significant also at the

level of each motion phase.

7.1.2. Contraction Index

Contraction Index (CI) has been considered wittpees to its average and standard
deviation along a motion phase.

Furthermore, the dynamics of the Contraction Indieended as the duration in time in a
motion phase the values of the Cl have been abogiem threshold has also been
computed and measured as percentage with resptdwt wohole duration of the motion
phase under exam. The threshold has been empirge#cted in order to maximize the
differences between the four basic emotions wisipeet to this expressive cue: this lead
to select 0.7 as threshold for Contraction Indexdyics.
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Cl is related to the contraction/expansion of tlwelyo with respect to its Centre of

Gravity. The three variables derived from it arasthrelated to the average amount of
contraction/expansion during a motion phase, antdaw such contraction/expansion

evolves during a motion phase, i.e., how much eatittn/expansion remains constant or
varies in a motion phase (the standard deviatiothefCl), and how long the body

remains contracted during a motion phase (the Qtabycs). Cl Dynamics can be

considered as an extension of “the duration of @mmas were kept close to the body” by
Boone and Cunningham (1998).

The box-plot of the average of the CI with respiecthe four emotion categories is

shown here below.
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Figure 7.4: box-plot of the average of the Cl along the mopibases. The four basic emotions are labelled
as follows: 1 — Anger, 2 — Fear, 3 — Grief, 4 —.Joy

The Analysis of Variance has been performed onatlerage of the CI along motion
phases. The results displayed in Table 7.2 in dlewing page show a p-value of
0.0527, i.e. a confidence of 94.73%. This is atlitihé of statistical significance (usually
a confidence of 95% is required).

In fact, the box-plot seems to indicate that therage of the Cl mainly distinguishes
among fear and grief (characterized by higher Ewélcontraction) and angry and joy
(characterized by higher levels of expansion):hibuidd be noticed that this result is
however consistent with the research hypothesesdsita Chapter 5.
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ANOVA Table

Source |SS Df MS Prob>F
Groups 0.0623 3] 0.2077 2.59| 0.0527
Error 2.64394 330, 0.00801

Total 2.70624 333

Table 7.2 Analysis of Variance (ANOVA) for the averagestioé Cl along motion phases

The box-plots for the standard deviation of thea@dl for the Cl Dynamics are shown in
Figure 7.5 a and b respectively.
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Figure 7.5 box-plots (a) of the standard deviation of thea@d (b) of the Cl Dynamics along the motion
phases. The four basic emotions are labelled ksm®l 1 — Anger, 2 — Fear, 3 — Grief, 4 — Joy.

The standard deviation of the Cl does not seem sggyificant: its values are very
similar for all the four basic emotions. Contrantiondex Dynamics looks more
interesting: its values are higher for fear (ithe body remains contracted along more
time) and lower for joy (whose motion is characed by more expansions).

As for Quantity of Motion, the mean value of the n@action Index has also been
calculated along the whole performance. The arglysihe results (see Figure 7.6 in the
following page) seems to confirm the psychologistgothesis according to which fear
is characterized by a movement toward to the ceotr¢he personal space (i.e., a
contraction). Moreover, as psychologists expegtadul performances have a low value
of contraction index meaning that joyful movemeants generally open and “expanding”.
In conclusion, Contraction Index seems to be leggsifscant than Quantity of Motion.
This could be due to the fact that the choreograplag predefined, and therefore
contractions and expansions were pre-built in he differences that can be noticed
would therefore be due to different ways to sttesspredefined contractions/expansions
depending to the expressive intention. Such diffees, anyway, seem to be relevant
enough to keep the Contraction Index and its ddrowess in the analysis.
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Average value of the CI
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Figure 7.6 the average of the CI for each performance (Mdzaa2002)

7.1.3. Kinematical measures

Velocity and acceleration (in thex andy components) have been computed for the
trajectories of 40 points returned by the Lucas-dtnfeature tracker during each motion
phase. At the beginning of each motion phase theo#tis have been reassigned in order
to avoid loosing too many points during trackingpeTlsymmetric numeric derivative has
been used for calculating velocity and acceleratfotow-pass filter has been applied to
the result of the numerical derivative in orderréaluce the noise introduced by this
operation. An overall descriptor has been obtaibgdaveraging the values on the 40
trajectories. The modules of such overall velo(ity., speed) and acceleration have then
been computed. The average, standard deviationpeakl values along a motion phase
of such measures have finally been considered sslpe expressive kinematical cues.
The box-plot of the average of the speed along eamtion phase is displayed in Figure
7.7 in the following page.

The Analysis of Variance has been performed oratlezage of the speed along motion
phases whose results are displayed in Table 7.8h Wip-value of 0.0042 this cue
appears to be statistically significant for thelgsia".

The box-plots for the standard deviation and ferpkak value of the speed are shown in
Figure 7.8 a and b respectively.

! In fact, this should not be surprising since Qitamtf Motion, which is in many aspects relatedspeed,
already resulted significant. It should be notitedvever that the p-value for speed results highatr the
p-value for Quantity of Motion.

- 113 -



Chapter 7 — Classification of dance fragments
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Figure 7.7: box-plot of the average of the speed along the angthases. The four basic emotions are
labelled as follows: 1 — Anger, 2 — Fear, 3 — Gref Joy. Speed is measured in [pixels/s].

ANOVA Table

Source |SS df MS F Prob>F
Groups 5579.6 3| 1859.95 4.48) 0.0042
Error 137039 330 415.27

Total 142618.7 333

Table 7.3 Analysis of Variance (ANOVA) for the averagestioé speed along motion phases
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Figure 7.8 box-plots of (a) the standard deviation and [i® peak value of the speed along the motion
phases. The four basic emotions are labelled &snel 1 — Anger, 2 — Fear, 3 — Grief, 4 — Joy. Spise
measured in [pixels/s].
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Significant differences can be noticed (even if matthematically proved): for example

grief results to have the lowest standard deviaiien, the lowest variation in speed, and
the lowest peak value. The highest values are ededco anger that, according to the
initial hypotheses, should be characterized byrbst impulsive movements.

These observations should be also confirmed byalysis of acceleration.

The box-plot of the average of the module of theelration along each motion phase is
displayed in Figure 7.9.
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Figure 7.9: box-plot of the average of the module of the agegilen along the motion phases. The four
basic emotions are labelled as follows: 1 — Anger,Fear, 3 — Grief, 4 — Joy. Acceleration is meaduin
[pixels/s].

The Analysis of Variance has been performed onabwerage of the module of the
acceleration along motion phases, whose resuligispéayed in Table 7.4.

ANOVA Table

Source |SS Df MS F Prob>F
Groups | 1.40891-10° 3| 469637.7 9.27| 6.6607-10°
Error | 1.67159-10° 330, 50654.1

Total | 1.81248-10° 333

Table 7.4 Analysis of Variance (ANOVA) for the averagestadf the module of the acceleration along
motion phases
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With a p-value 06.6607-10°, this cue results statistically significant foetanalysis.
The box-plots for the standard deviation and fa geak value of the module of the
acceleration are shown in Figure 7.10 a and b otispéy.
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Figure 7.1Q box-plots of (a) the standard deviation and (@ peak value of the module of the
acceleration along the motion phases. The fourckasotions are labelled as follows: 1 — Anger,Pear,
3 — Grief, 4 — Joy. Acceleration is measured ixéfs/s].

Significant differences can be noticed also in ¢hbex-plots, confirming for example

that grief performances have the lowest valuescoélaration (both in average and as
peak value). Grief seems therefore to be charaekitby small changes in velocity and
therefore by movements sustained in Laban’s Timanv€rsely, anger seems to be
confirmed as the basic emotion having the highgsaihics (i.e., impulsiveness).

7.1.4. Space-related expressive cues

Space has been taken into account by extractingefiquressive cues related to it: length
of motion trajectories, direction of motion trajedes, Directness Index, and amount of
upward movement. These cues have been computegatdr motion phase (e.g., the
length of the trajectory followed by a point duritlge whole motion phase has been
calculated) on the trajectories of the same 40tpaulmose velocity and acceleration have
been considered above. An overall value for eaehh@as been obtained by averaging on
the 40 trajectories.

Motion length has been normalised with respecheduration of the motion phase in
which it has been calculated. Motion direction Ih@en obtained as the angle of the
vector representing the overall motion directiore@sured in radians intf71). Upward
movement has been computed as the fraction of trmthe motion phase motion
direction was in [071 (and therefore upward movement is in the rangdJObeing 1 the
condition in which motion direction was in [fl along the whole motion phase).
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The box-plots of the four space-related cues asplalyed in Figure 7.11a, b, ¢, and d
respectively.
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Figure 7.12 box-plots of (a) the normalised length of the rallemotion trajectory along a motion phase
(measured in [pixel/number of frames]), (b) themi motion direction along a motion phase (meadur
in radians in the rangerTi), (c) the overall Directness Index along a motjmase, (d) the overall
amount of upward movement in a motion phase. The Basic emotions are labelled as follows: 1 —
Anger, 2 — Fear, 3 — Grief, 4 — Joy.

These cues do not seem to be very significantheranalysis. The box-plots show quite
similar values of them with respect to the fouriba@snotions. A possible problem with
these cues is related to the duration of the matlmses. If a motion phase has a quite
long duration, many motion strokes with differemedtion and directness can be part of
it: if from the one hand the single values of dil@t and directness can be meaningful
for each stroke, on the other hand their averagtherwhole motion phase can lose its
significance since the strokes have too differealues. A deeper analysis would
therefore be needed on these cues taking into atddterent time views as it has been
illustrated in Chapter 5. It should be noticed heerethat, as predicted by Boone and
Cunningham (1998) upward movement shows a slightier value for joy. Even if
probably not relevant, these cues have been kepieimnalysis since they represent an
important aspect of motion analysis.
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7.1.5. Time-related expressive cues

Two time durations have been considered in thidyaisa the duration of the analysed
motion phase and the duration of the immediateyipus pause phase. The considered
time durations are relative, i.e., divided by theaion of the whole performance. The

box-plots for these cues are displayed in Figut@ @ and b respectively.

(@)

Figure 7.12 box-plots of (a) the relative duration of motiphases and (b) the relative duration of pause
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phases. The four basic emotions are labelled syl 1 — Anger, 2 — Fear, 3 — Grief, 4 — Joy.

The box-plots do not show very big differences evfegrief seems to have shorter

motion phases and longer pause phases.

Overall Time Duration of the Dance Preformances
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Figure 7.13the overall duration of the dance performanceshers dancers (Mazzarino, 2002)
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More interesting information can be obtained frdva overall duration of the dances (see
Figure 7.13 from Mazzarino, 2002). Psychologistguad that it should be longer for the
grief performance and shorter for the anger onés figpothesis seems to be confirmed
by the data at least for grief, while for anger sailiscrepancies are indeed observed. It is
however difficult to use the overall duration ofndas for classifying single motion

phases.

Another aspect concerns the number of motion ph#sesequence of pause and motion
phases and the sequence of the values of the atiesr(e.g., QoM and CI) along the
motion phases of a dance performance. These aspechsr example related to fluency.
As an example of some results in this directionnfGai, Lagerlof, and Volpe, 2003),

Figure 7.14 and 7.15 show the average values caupiar each motion phase of

Quantity of Motion and Contraction Index respedityevs. the index of the motion

phases (i.e., as they appear along time).

0.7

0.5

Average Quantity of Mction

0.2r-

Motion phases

Figure 7.14: average values of the QoM computed for each mqgtlase (Camurri, Lagerlof, and Volpe,
2003). The four graphs refer to four performanceshHe same dancer, each one expressing a different

basic emotion: anger — solid line; fear — dasleet joy — dash-dot line; grief — dotted line. TKeaxis is
the index of the motion phase in which the moventerst been segmented (therefore, X is not the time

axis).
In each figure the four graphs refer to four perfances by the same dancer in which the

dancer tried to express the four basic emotionghérfigures line types are associated to
emotions as follows: anger — solid line; fear —ha@kline; joy — dash-dot line; grief —

dotted line.
It can be noticed, for example, that curves repri@sg the average Quantity of Motion
for anger (solid line) and fear (dashed line) hawmilar trend: i.e., they starts with low
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values and slowly increase at the beginning, thHey tcontinuously increase with
increasing steepness. Fear, however, have much mmoteon phases than anger
indicating a less fluent motion.

Contraction Index for joy (dash-dot line) has qude values with respect to the other
emotions, while fear (dashed line) has quite higlues, meaning that the body is often
contracted (i.e., limbs are often close to thereeot gravity).

Grief (dotted line) always has a high number ofiotophases and a high variance of the
average values of Quantity of Motion, meaning feEguransitions between motion and
pause phases and very low fluency. Joy (dash-de},linstead, has few long motion
phases indicating a very fluent motion.

It can be also noticed that, while from the onedhaach of the four dancers has a
particular trend allowing distinguishing betweeprth on the other hand what it has been
observed above holds for all the four dancers, they expressed the four emotions by
acting on the expressive cues in the same way.
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Figure 7.15: average values of the Cl computed for each motimase (Camurri, Lagerlof, and Volpe,
2003). The four graphs refer to four performanceshHe same dancer, each one expressing a different
basic emotion: anger — solid line; fear — dasleet joy — dash-dot line; grief — dotted line. TKeaxis is

the index of the motion phase in which the moventers been segmented (therefore, X is not the time
axis).

In conclusion, the explorative analysis seems tofioo that at least some of the
extracted cues are statistically relevant for thealysis and satisfy the research
hypotheses outlined in Chapter 5. Other cues afgpeae relevant even if no statistical
evidence can be produced about them. Other seesasirgortant for classification

purposes. The next section reports an attempt itd bumodel for performing such an
automatic classification.
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7.2. Classification of motion phases using decisidrees

Segmentation applied to the 20 dances recordethédescribed experiment produced
334 motion phases, each one characterized by therables previously discussed. In
order to avoid problems with the range of the \@es, they have been standardised.
Decision tree models have been built in order &ssify such motion phases in term of
the four basic emotions anger, fear, grief, and jBie training sets (85% of the
available data) and five test sets (15% of thelabks data) have been extracted from the
data set. The samples for the test sets were omifadistributed along the four classes
and the five dancers. Five decision trees have lbedhon the five training sets and
evaluated on the five test sets. The Gini's indéheterogeneity has been used for
building the decision trees. Decision trees havenbselected for this study since they
produce rules that can be used to try to give #&rpretation of the results. However,
comparison with other classification techniqueg.(eNeural Networks, Support Vector
Machines) would be useful and remain as task fsside future work.

The results obtained on the five decision treessaremarized in Tables 7.5 and 7.6 in
the following pages (confusion matrices for theinirey sets and for the test sets
respectively).

Two models (model 3 and model 5) fit quite well ttlata set (the rates of correct
classification on the training set for these twodele averaged on the four classes are
respectively 78.5% and 61.6%). Models 1, 2, andaiveHdifficulties in classifying fear
(rates of correct classification on the training fee these three models averaged on the
four classes are respectively 41.9%, 38.7%, and).38%dels 2 and 4 have problems
also with joy (i.e., they distinguish only betwesmger and grief).

A similar situation can be observed in the evabrattarried out on the test set: only
models 3 and 5 are able to classify the four emsticModel 1 cannot classify fear;
models 2 and 4 cannot classify fear and joy.

The rates of correct classification on the tesf@ethe five models averaged on the four
classes are respectively: 40%, 36%, 36%, 26%, @%@ Fhus the average rate of correct
classification on the five models is 35.6%. Exdeptmodel 4 they are all above chance
level (25%). Model 5 can be considered as the mestel since it has a rate of correct
classification of 40% and is able to classify # four emotions.

These rates of correct classification that at st fifance seem to be quite low (40% the
best model) have however to be considered in oslshiip with the rates of correct
classification from spectators who have been astieddassify the same dances. In fact,
spectators’ ratings collected by psychologists ippshla show a rate of correct
classification (averaged on the 20 dances) of 56%.

The rate of correct recognition for automatic dfesation (35.6%) is thus in between
chance level (25%) and the rate of correct recagnibr human observers (56%).
Furthermore, if the rate of correct classificatimn human observers is considered as
referencé and percentages are recalculated taking it a81Q@., relative instead of
absolute rates are computed), the average raterofct automatic classification with

2 At the current state of the art of technologyhase fields, it is reasonable to consider that inashare
still not able to overcome humans in tasks likesifécation of emotions.
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respect to spectators is 63.6%, and the best nfoeelmodel 5) obtain a rate of correct
classification of 71.4%.

Model 1

Class Total |%Correct|%Error |Anger Fear Grief Joy
Anger 64 68.75 31.25 44 0 6 14
Fear 60 0 100 30 0 16 14
Grief 86 48,8372 |51,1628 |17 0 42 27
Joy 74 50 50 18 0 19 37
Model 2

Class Total |%Correct|%Error |Anger Fear Grief Joy
Anger 64 84.375 |15.625 |54 0 10 0
Fear 60 0 100 45 0 15 0
Grief 86 70,9302 |29,0698 |25 0 61 0
Joy 74 0 100 51 0 23 0
Model 3

Class Total |%Correct|%Error |Anger Fear Grief Joy
Anger 64 79,6875 (20,3125 |51 4 6 3
Fear 60 71,6667 |28,3333 |6 43 7 4
Grief 86 81,3954 [18,6047 |4 0 70 12
Joy 74 81,0811 [18,9189 |6 5 3 60
Model 4

Class Total |%Correct|%Error  |Anger Fear Grief Joy
Anger 64 68.75 31.25 44 0 20 0
Fear 60 0 100 37 0 23 0
Grief 86 76,7442 |23,2558 |20 0 66 0
Joy 74 0 100 45 0 29 0
Model 5

Class Total |%Correct|%Error  |Anger Fear Grief Joy
Anger 64 71.875 |28.125 |46 10 2 6
Fear 60 61,6667 |38,3333 |15 37 1 7
Grief 86 47,6744 52,3256 |10 19 41 16
Joy 74 64,8649 |35,1351 |13 8 5 48

Table 7.5 confusion matrices for the training set for thefdecision trees

By observing the confusion matrix of the best mogbeith for the test set and for the
training set) it can be noticed that fear is oftéassified as anger. This particularly holds
for the test set, where fear is the basic emotemeiving the lowest rate of correct
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classification since 6 of the 13 motion phasesaextd from fear performances are
classified as anger.

Model 1

Class Total |%Correct [%Error |Anger Fear Grief Joy
Anger 12 50 50 6 0 2 4
Fear 13 0 100 6 0 3 4
Grief 12 66,6667 [33,3333 |3 0 8 1
Joy 13 46,1538 |53,8462 |5 0 2 6
Model 2

Class Total |%Correct [%Error |Anger Fear Grief Joy
Anger 12 91,6667 [83.333 |11 0 1 0
Fear 13 0 100 7 0 6 0
Grief 12 58,3333 41,6667 |5 0 7 0
Joy 13 0 100 9 0 4 0
Model 3

Class Total |%Correct [%Error |Anger Fear Grief Joy
Anger 12 41,6667 |58,3333 |5 2 2 3
Fear 13 15,3846 [84,6154 |8 2 1 2
Grief 12 41,6667 |58,3333 |3 3 5 1
Joy 13 46,1538 |53,8462 |4 1 2 6
Model 4

Class Total |%Correct |%Error |Anger Fear Grief Joy
Anger 12 75 25 9 0 3 0
Fear 13 0 100 5 0 3 0
Grief 12 33,3333 [66,6667 |8 0 4 0
Joy 13 0 100 7 0 6 0
Model 5

Class Total |%Correct |%Error |Anger Fear Grief Joy
Anger 12 41,6667 |58,3333 |5 3 0 4
Fear 13 30,7692 169,2308 |6 4 2 1
Grief 12 41,6667 |58,3333 |2 0 5 5
Joy 13 46,1538 |53,8462 |4 0 3 6

Table 7.6 confusion matrices for the test set for the fieeision trees

Something similar can be observed also in spectatatings (Camurri, Lagerlof, Volpe,
2003). A more detailed comparison between autom@tssification and spectators’
ratings for each performance (i.e., for each damodreach basic emotion) can be found
in Table 7.7 in the following page.
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Automatic Classification

Anger |Fear Grief Joy Total
Dancer1 |50 13.2 70 6.6 29.94
Dancer 2 |73.2 10 40 20 39.96
Dancer 3 |30 6.6 60 33.4 30
Dancer 4 |67 0 33.2 30 36
Dancer5 |70 13.2 50 16.6 41.94
Total 60 9.153846 |48.3 27.67692 |35.568

Spectators' ratings

Anger |Fear Grief Joy Total
Dancer 1 40 33 40 67 45
Dancer 2 |93 40 56 81 67.5
Dancer 3 |23 75 a7 75 62.5
Dancer4 |73 67 31 76 61.75
Dancer5 (44 60 25 53 45.5
Total 60.6 55 39.8 70.4 56.45

Table 7.7 comparison between automatic classification grattors’ ratings.
The table of spectators’ rating is taken from (Ceimliagerl6f, Volpe, 2003).

The numbers appearing in the table of automatissdiaation are the average rates of
correct classification computed for each perforneamat the five decision trees.

While anger is generally well classified both besgators and by the automatic system
(60% for automatic recognition vs. 60.6% for spemtg, as already noticed quite bad
results are obtained for fear (below chance lemeatitomatic classification).

The biggest overall difference between spectatas aitomatic classification can be
observed for joy (70.4% for spectators vs. 27.4%t above chance level, for automatic
classification).

In the case of grief instead automatic classiftcaperforms better than human observers
(48.3% for automatic classification vs. 39.8% fpestators): in the tables this happens in
five cases and mainly for grief.

In seven cases the rate of correct classificatoriife automatic system is below chance
level (and this always happens for fear).

In one case automatic classification did not suddedinding the correct emotion (Fear
— Dancer 4), but spectators obtained 67% of conlassification.

In one case spectators’ ratings are below charvet (&rief — Dancer 5), but automatic
classification could obtain a rate of correct dfesstion up to 50%.

Dancer 1 obtained the lowest rates of correct ifleaBon both from spectators and from
the models. Dancer 5 obtains similar rates fronthbbD&ncer 2 is the best classified by
spectators and also obtains a quite high rate (wadpect to the other dancers) in
automatic classification.
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7.3. Discussion

From the results of automatic classification sketcin the previous section some issues
emerge that are worth to be shortly discussed.

The reduced rate of correct classification for hamaservers (56%) could be partially
due to facial expressions that have been remowvespfectators’ ratings. Moreover, it is
possible that some dancer did not perform at hiddkst (this aspect in reflected in the
variance of the rates of correct classificationaoi#d for each performance). Some
concerns also arise with respect to the methododoglyto the aims of the experiment.
For example, is it possible to ask a dancer to eldarying to express fear? Fear is usually
displayed without the intention of doing it (and mamften it is dissimulated in order to
avoid to give the impression of feeling fear). Rert how much is dance (or music) able
(or is it intended) to communicate a specific em@? While listening to music or
watching a dance performance it is not obvious #éhapecific emotion is triggered and
perceived by spectators. Therefore, if from the baed, the experiment here described
can be a good starting point for research on egpegesture, on the other hand other
kinds of experiments would probably be needed heestigating less specific aspects
(e.g., engagement, arousal) that are likely to bmas#e common component of the
emotional experience.

The gap among automatic classification and spestatatings could be due to the lack
of cues related to the temporal aspects of moverfient rhythm). Such aspects have
been only marginally considered in this experim@antact, among the 18 variables used
for classification only the duration of the motiphase and of the previous pause phase
can be considered as (weakly) related to rhythmasgects. Indexes of fluency and
impulsiveness as those sketched in Chapter 6 sladgmdbe introduced. Analogies with
music could be envisaged, e.g., cues related toukation: depending on if and how
much motion phases overlap each others somethmmtasito music legato and staccato
could be taken into account. Enhanced segmenttmmiques can be applied in order
to shed light on the internal and rhythmical stuoetof a motion phase (i.e., in analogy
with music, its attack, sustain, and decay sub-gdjas

By considering only single motion phases in theomstic classification, lot of
contextual information has been removed (i.e., mforination about previous motion
phases is available to the automatic classificagigorithm). Information about postures
in the previous pause phases has also been renmaweld reduction of information about
the context (related to the time perspective ithtsd in Chapter 5) may also be
responsible of the gap between spectators and atitoatassification.

In fact, in comparing spectators’ ratings and awttenclassification, it should be noticed
that spectators observed the whole dance befoneggifieir judgment, while automatic
classification is performed on single motion phasdsat is, spectators received more
information (i.e., overall duration of the danceformation related to the sequence of
motion and pause phases, information related toy hmubtures) with respect to the
automatic system. Thus, if from the one hand, sactomparison can be useful for
evaluating the performance of automatic classibcatand for indicating possible
directions for future work (e.g., by trying to umsiand the differences among the dances
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that received a high rate of correct classificatod those that did not), on the other hand
it could be misleading and it has to be considerigl prudence.

With respect to the conceptual framework discusséthapter 3 the automatic classifier
can be collocated at Layer 4. It is an examplehef kind of techniques that can be
employed at this level. As already stated, compariwith other possible techniques
could be useful and should constitute a reseandttthn for future work. The decision
trees mainly take into account cues located at L2yand some of them at Layer 3). The
classifier works on a vector of such cues. Alteusdy, it could be useful to work on a
Layer 3 representation of expressive gesture (@.¢erm of energy and rhythm or of the
dimensions of Laban’s Theory of Effort), for examptying to classify trajectories in
expressive spaces. While in music examples of sMphessive spaces are available (see
for example Canazza et al. 2000), in movement éurtiksearch is needed in order to
ground possible spaces on solid scientific bases.

In conclusion, this experiment can be considerec dsst step and a starting point
toward understanding the mechanisms of expres&stige communication in dance. A
collection of cues having some influence in suchoemmunication process has been
individuated, measured, and studied. A first atteaf@automatic classification of motion
phases has also been carried out and some res#tier (e.g., an average rate of
correct classification not particularly high, budwever well above chance level). Some
directions for future research also emerged.

A final remark (that will be reconsidered in thenctusion of this dissertation) concerns
possible exploitations in concrete applicationstlod obtained results. It should be
remembered that if the scientific focus was on toenmunicative mechanisms of
expressive gesture, from a technical/applicativesgective the goal was to develop
techniques enabling the development of novel iotera paradigms for interactive
multimedia (especially for artistic performanceBjom the applicative point of view,
what has been presented here can be considerefirstscancrete implementation of the
conceptual framework described in Chapter 3, aljhdimited to the aspects of analysis
of expressive gesture in human full-body movemdiitese techniques can thus be
employed in developing the Expressive Gesture Asslgomponent of a virtual or
mixed subject inhabiting a Multilayered IntegratBdpressive Environment. Such a
subject would be able to observe movement, measymessive cues, extract expressive
gestures, and possibly classify them accordinghéo donveyed expressive content. If
from the one hand, the way toward a subject fudlyihg such skills is still very long and

| do not know if it will be ever possible to obtanch a subjedton the other hand from
this first attempt it is already possible to geimsoinformation (e.g., the values of the
measured expressive cues) on the expressive geésaudancer is performing and such
information can already be used in design and implgation of interaction
mechanisms. In particular, in the field of perfongiarts the information that the
described algorithms already make available carvigeo artists and designers of
interactive systems with a collection of conceptaslwell as technical tools enabling
them to work in a scenario that technology only esagossible.

% Indeed | also don’t know if | really would like wbtain such a fully skilled subject able to auttiosly
classify people according to their emotional state...
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8. Analysis in the General Space *

As already described in Chapter 5, the conceptsKaiesphere”, referred also as
“Personal Space”, and of “General Space”, the whpkee surrounding the Kinesphere,
come from theories of the researcher and chorebgrapudolf Laban. Personal Space
and General Space constitute two different spacgppetives along which expressive
gesture in human movement can be analysed.

The models and techniques discussed in the previthepters mainly dealt with
movement in the Personal Space, i.e., they coresideverall descriptors of the body
movements of one dancer. The analysis of movemerihe General Space instead
consists in analysing the movement of one or mawacers (i.e., of his/her/their
Kinesphere) in the surrounding space. This Chaptexduces some main research issues
for analysis in the General Space and discussesdelnfor it. The model has been
implemented as a collection of software modulestifier EyesWeb Expressive Gesture
Processing Library.

8.1. Research issues

Analysis of movement in the General Space is hddeegssed with respect to four main

research issues. They can be shortly summarisedi@ss:

(i) Use of the spaceThe objective is to study how a darfcerses the space
surrounding him/her and the relationships betwesnai space and communicated
expressive content. The focus is on individuatirejettories in the space and
classifying them. Typical and repetitive patteras @lso be extracted and further
analysed. A set of parameters can be calculated asiche classified shape of a
trajectory, the level of utilization of regions ¢ime stage (e.g., occupation rates),
the periodicity of repetitive patterns. Notice tlmtthis stage of the analysis the
space is considered as “neutral” i.e., without scgror particular lighting (or, at
least, scenery and lighting are excluded from tredyeis).

(i) Relationship with elements such as lights and sgernkhe expressive content
conveyed by the movement of a dancer in the spaicemdely change depending
on elements giving a particular meaning to regionte space. For instance, if the
dancer moves continuously near a wall, the expressontent he/she conveys is
very different with respect to a situation in whithe dancer stands or moves
directly in front of the audience. Mechanisms tecasate an expressive potential to

! This Chapter is partially taken from Camurri A.aktarino B., Trocca R., Volpe G. “Real-Time Anadysi
of Expressive Cues in Human Movement”, in Proc.t@hs Conference on artistic, cultural and sciéntif
aspects of experimental media spaces, pp. 63-6&),EBeptember 2001.

2 Notice that if from the one hand the reference ehdd here defined with reference to a dance
performance, on the other hand it could be appbeitie more general case of an object moving iivang
space. As already mentioned, dance has been classentest-bed in this work since it is the artistic
expression of movement, therefore emphasizingdleeaf expressive gesture.
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regions in the space can thus be developed amttoajes in such expressive maps
can be studied. The parameters extracted in conditof “neutral space” as
described in (i) can thus be reconsidered in watatip with the expressive regions
of the space (e.g., trajectories repetitively pagdhrough a region with a high
expressive potential can assume a particular ret@ja

(i) Relationship between the movements of two or mameads.In the more general
situation in which two or more dancers are invohiada performance, their
movements in the General Space can be comparedaridigsis on more dancers
can be carried out both with respect to a “neutspkice and with respect to a space
having expressive potentials. The relationshipsveeh the movements of each
single dancer and the movement of the group caidoeinvestigated.

(iv) Relationship between parameters related to the @érfépace and parameters
related to the Kinespher&.he techniques developed for analysis in the Géner
Space are quite general: they can be applied t@nlé/sis of movement in the
Kinesphere as well. For example, analysis of ttajees, levels of utilization of
particular regions, detection of repetitive patsecan be applied also to the motion
trajectories of limbs inside the Kinesphere. Corebr, some parameters that are
calculated mainly with respect to the Kinesphera ba reconsidered from the
point of view of the General Space (e.g., “equilibv with respect to the
expressive potentials, ratio between rotational enwents and straight movements,
use of straight and direct trajectories with resp@smooth trajectories).

8.2. Reference model

The main contribution to analysis in the Generah@pdiscussed in this dissertation is
the development of a reference model that can bd as a basis for such analysis. The
model improves an older model coming from previstuglies carried out at the DIST —
InfoMus Lab in collaboration with Waseda Universitijokyo (Camurri, Hashimoto,
Suzuki, and Trocca, 1998). Extraction and analgEigarameters from this model is still
an ongoing work.

In the model, the General Space (considered astangde) is divided into active cells
forming a grid (see Figure 8.1). Each time the timsiof a tracked dancer is detected
the corresponding cell is individuated and its xeteh andk are returned. Discrete
potential functions can then be defined on the @dn8pace. A discrete potential
function can be represented by a mattix= [@;]. The items in the matrix directly
correspond to the cells in the grigis the value that the potential function assumes in
correspondence with the cell having jj has indexes. Three main kinds of potential
functions are envisaged:

% Here | do not face the problem of tracking theitimrs of the dancer in the General Space. Depending
the conditions of the stage (e.qg., lighting, numifedlancers on stage etc.), the solution coulditieult to
find and implement. Several techniques can be emploranging from computer vision techniques to
special purpose hardware localization systems.
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() Potential functionsot depending on the current position of the trackealcer.
(i)  Potential functions depending on the current pasitf the tracked dancer.
(i) Potential functions depending on the definitiomagjions inside the General Space.

Suitable mapping strategies (see Chapter 4) catebeloped in order to associate some
behaviour to a particular cell or set of cells (eagdirect mapping could generate some
kind of output when a particular cell is activatgdthe dancer passing on it).

yA
Y|

v

Figure 8.1 the General Space considered as a grid of actile

8.2.1. Potential functions not depending on the currentgition of the dancer

@; Iis constant with respect to the cell currentlyivated by the dancer. Consider, for
example, lights and fixed scenery: potential fumtsi can be associated to each element
of fixed scenery and to the lights that are usediparticular scene. The potential
function associated to each element can be regeesby a matrixP,. The overall effect
can be determined by summing the matrigegsn an overall matrixp = ®; + ®, + ... +

®p, being P the number of scenery and light elemiakisn into account. The trajectory
of the dancer with respect to such potential fumctan be studied in order to identify
relationships between movement and scenery andb$elimapping strategies can be
developed in order to associate outputs to movesnpatformed in relevant places.
Nevertheless, the current céil, k) in which the position of the dancer is mapped s
influence on the elemengg of the matrix representing the potential functitre values

of such elementsp; are in fact calculated only on the basis of thsitmms of the
considered fixed scenery and lights. Note that ttoss not mean thag; has to be
constant along time: consider, for example, lightst are turned on and off during the
performance. Their contribution to the overall pig function can be added only when
they are on. In this case, the valugschange over time, nevertheless the potential
function is still independent from the current piosi of the dancer.
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8.2.2. Potential functions depending on the current positi of the dancer

@ = @ (h, B where i, K is the cell currently occupied by the dancerthis way it is
possible to define potential functions moving ie #pace together with the movement of
the tracked dancer. Consider, for example, thevotlg potential function:

1
@ (hk) =1 |G =h)|+|(j = k)|
1 if (i, j) =(h,k)

if (i,j)#(hk)

(*)

The potential function depends on the current peBition (h, k) of the dancer and
changes every time he/she moves. For example,dByarshows the potential function
(*) calculated when the dancer occupies respegtivieé cells (10,10), (40,40) and
(60,60) (i.e., the dancer is moving along a dia@janaa space having 1800 cells.

Figure 8.2 the potential function (*) calculated for a danogoving along a diagonal, i.e., cells (10,10),
(40,40) and (60,60) in a space having 100x100 cells

In a more general perspective, it is possible éater potential functions forming a “bell”
around the dancer and moving with him: further ‘thell” can be modified (e.g., made
wider) corresponding to the analysed movement ensgite Kinesphere (e.g., a wide
“bell” associated to expansive movements of theeKphere). Mobile scenery can also
be associated to this kind of potential functions.

Another example: suppose that each cell is charseteby an activity level, i.e. a sort of
measure of how much the cell has been occupietidogancer. The activity levels of the
cells are stored in an>m matrix A = f;] wherei andj are the indexes associated to a
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cell. The matrix A defines a potential functiontire General Space. Consider a neutral
environment. An increment functionaf) and a decrement function &§ are defined.
Since, at a first stage, the space is considerateasal, i.e., no particular meaning is
associated to regions in the space, the same ierateand decrement functions are
applied to all the cells in the grid. Each time thesition of the tracked dancer is
detected, the corresponding cell is individuated &s activity level is incremented
according to the increment function. The activitglue of the remaining cells is
decremented according to the decrement functioms &€ample can be implemented
using a potential function depending on the curparition of the tracked dancer defined
as:

B D(a,) if (i, j) # (h,k)
a'(h’k)‘{l(a,) itG,0) = (hk)

8.2.3 Potential functions depending on the definition oégions

Regions can be defined on the grid. An hit functt{fjl and a miss function Nj{can be
associated to each region. The hit function isiaefdptio calculate the potential function
for a cell inside a region, each time the cell entlty occupied by the dancer is inside that
region. Otherwise, the miss function is us@d= @; (R(i,j)) where R(i,j) is the region to
which the cell (i, j) belongs. In particular if dgions R, Ry, ... , Ry are defined with the
correspondent HH;, ..., Hy hit functions and M M, ... , My miss functions,

. [H(@) ifRGj)=R =Rhk)
Q(R(I’])):{Mp(q) if R, ))=R #R(h,k)
Note that, since the hit and miss functions are luefined as functions of the previous
value of the potential function in the cdll j), some kind of memory is involved in this
approach.
The previous example concerning the activity ledfed cell in a neutral environment can
be also implemented by using a potential functiepethding on the definition of regions
in the General Space: in particular, in that casehecell defines a region (i.e.,xm
regions are defined) and the same hit functiof) H(l(a;) and miss function MJ =
D(a;) are associated to all the regions (cells). Suppoesw to consider a stage
environment with presence of scenery and lighte Teutral” values of the activity
level of each cell previously calculated are no enaalid: there will be some regions in
the General Space in which the presence of moveimembre meaningful than in others.
A certain number of “meaningful” regions (i.e., i@y on which a particular focus is
placed) can be defined and suitable hit and misstions can be associated to them. A
variation related to the meaning of a specifiedaegds added to the “neutral” evaluation
of the activity level, thus obtaining a new actMiével taking into account elements of a
particular stage environment.
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8.3. The EyesWeb Space Analysis Library

The model previously described has been implemeated collection of software
modules for the EyesWeb open software platform Gamurri, Coletta, Peri, Ricchetti,
Ricci, Trocca, Volpe, 2000, and Appendix A), inchadin the EyesWeb Space Analysis
Library. The EyesWeb Space Analysis Library is paitthe EyesWeb Expressive
Gesture Processing Library (see Camurri, MazzaNiotpe, 2003, and Appendix B).

The General Space model consists of four EyesWelbksl the first one allows
subdivision of an image in cells and returns apuuthe indexes of the cell currently
occupied by a given tracked point (e.g., a dancaviing on stage), the other three allow
the definition of (i) potential functions indepemidérom the position of a tracked object,
(i) potential functions depending on the curremsifion of a tracked object, (iii)
potential functions depending on the definitiomegions in the space.

Occupation rates

0.0162602|0.0650407)0.0243902(0.0203252(0.008130
0.0447154/0.04065040.0284553|0.0365854 (0.020325
j— |0.0365854)0.097561 |0.0284553/0.0528455/0.040650
l] 0447154|0.109756 |0.0731707)|0.0487805(0.028455
L 0 0162602]0.0284553/0.0487805|0. 0234553 0.012195
F

0[:[:u patmn rates

f C/ NG

Figure 8.3 occupation rates of cells in the General Space

Motion features can also be extracted from analystbe General Space. For example,
Figure 8.3 shows the occupation rates calculated mttangular space divided into 25
cells. After sampling the trajectory followed bytracked point, the occupation rate is
calculated for a given cell as the ratio betweenrtbmber of samples the tracked point
was inside that cell and the total number of abéglaamples. In the Figure the intensity
(saturation) of the colour for each cell is dirggbroportional to the occupation rate of
the cell. The trajectory of the tracked point scatlisplayed.
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This dissertation introduced Multilayered Integcatexpressive Environments (MIEES)
as environments in which novel forms of artisticfpenances can be developed, where
the performing action takes place in a number ofsgal as well as virtual connected
spaces, inhabited by real, virtual, and mixed subjeMIEESs have been discussed with
respect to their structure and the communicaticrcgsses taking places among the
subjects inhabiting them. A particular focus hasrbput on expressive gesture as a main
carrier of information in MIEEs in which, as it eft happens in artistic performances,
communication mostly exploits non-verbal mechanisArs architecture for virtual and
mixed subjects inhabiting MIEEs has been preserared,a conceptual framework for
multimodal analysis and synthesis of expressiveugesby such subjects has been
discussed.

Attention then moved on analysis of expressiveuwesin human full-body movement
considered as an example of processing a virtuahined subject has to carry out in
order to accomplish its task inside a MIEE. An akpent has been present analysing
expressive gesture in dance performance with réspéice emotions it is able to convey.
After reviewing the sources on which research hesnbgrounded, a collection of
techniques for real-time extraction of expressiuescfrom video-captured human full-
body movements has been presented. A prototypeaisidn tree classifier of expressive
gestures in term of the four basic emotions arfgar, grief, and joy has been developed
and its outputs have been described.

In conclusion, before shortly discussing obtainedults, future works, and possible
ethical concerns of this research, two concreteptaipplications are presented in this
Chapter, related to two different application sec@®a artistic performances and therapy
and rehabilitation. These are just examples ofatide possibilities of exploitation of the
developed models and techniques in a broad seiphitation fields, such as for example
interactive edutainment, interactive entertainmapplications for culture, museums, and
exhibits, tools for performing arts, for the indysof digital music instruments, for music
theatre, for therapy and rehabilitation.

9.1. Two sample applications

Two examples of concrete applications exploiting developed models and techniques
are now briefly introduced, the first one in theldi of performing arts, the second in
therapy and rehabilitation. The two applicationwvehdeen developed at the DIST —
InfoMus Lab in the framework of two EU projectsethbited EU IST project MEGA and
the EU-IST project CARE HERE (Creating Aesthetig&lesonant Environments for the
Handicapped, Elderly, and Rehabilitation).
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9.1.1. The concert “Allegoria dell’opinione verbale”

This piece was conceived by the composer Robertdi[daring a workshop at the DIST

- InfoMus Lab in June 2000 and performed (firstfpenance) in September 2001 at the
opening concert of the season of Teatro La FeMeejce, Italy. The concert has been
performed again in March 2002 at Auditorium “E. Male”, Teatro dell’Opera Carlo
Felice, Genova, Italy. During the concert an asti@ancesca Faiella) is on stage, seats
on a stool placed in the front of the stage neadédft side. The actress is turned towards
the left backstage (the audience therefore seegrbéte). A large screen projects her
face in frontal view. A videocamera is placed (lg@dyin the left part of the backstage,
and it is used both to get images of the face efdtiress to be projected on the large
screen and to acquire her lips and face movements.
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Figure 9.1 the EyesWeb patch for the concert “Allegoria 'dglinione verbale”

The actress plays the text in front of the cam&ree EyesWeb open platform and the
EyesWeb Expressive Gesture Processing Library amploged to process the

movements of actress’ lips and face, in order timaek expressive cues (similar to the
ones described in Chapter 6) used to record armkpsan real-time her voice and diffuse
spatialised electroacoustic music on four loudspesablaced at the four corners of the
auditorium in a standard electroacoustic musicupetThe signals reproduced by the
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loudspeakers are only derived by the actress’ véaener recordings of her voice, real-
time recordings, and post-processing in real-tifilbe audience can observe the
movements of the actress’ face in the large scnebite listening to the piece and thus
perceiving the overlapping and interaction of hewvaments with sound changes coming
from the loudspeakers. Figure 9.1 in the previoagepshows the EyesWeb patch
employed in the concert.

During the performance held in Genova in March 2002 experiment was carried out

(in collaboration with the Department of Psychologfy the University of Uppsala,

Sweden) in order to measure and evaluate the oeactf the audience to a concert

exploiting interactive technologies. The event wtactured as follows:

1) Performance of the piece.

2) Soon after the performance, distribution to theienck of a questionnaire prepared
by the psychologists in Uppsala (no explanatiothatentrance, only at this point).
No introductory words apart from the kind requestilt the questionnaire.

3) Discussion, presentation, explanation by the compdke actress, and prof. Antonio
Camurri of both the aesthetic/artistic and techgigla issues, including a short live
demonstration of how the system works by showirmpithe big screen.

4) A second performance of the piece.

5) The audience answers to a second questionnaire.

6) End of the event.

10
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Figure 9.2 mean and 95% confidence interval for the audienpesceived first impression of the
performance (first bar, from left), strength of erpnce (second bar), and to what extent the irspmes
(third bar) and strength (fourth bar) have beemgped by the second performance after discussidntit
staff.
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The audience included 60 people, with a wide varggincerning age, sex and culture.
Figures 9.2 shows the responses of the audienpeategely after the first and the
second performance and with respect to two asptxsoverall impression (positive or
negative) and the strength of the experience.

After the first performance the audience immediateressions were positive (Mean 6.0,
on a scale ranging fromery negatived to very positivel0, see first bar from the left in
Figure 9.2). The second bar in Figure 9.2 showspikeeived strength (mean 5.9)
indicating a common strong experience of the peréforce among people in the
audience. After the second performance (and digmusgith the staff) the impressions
were significantly more positive (mean 5.8) withspect to the audience’s first
impressions (on a scale ranging fronore negatived to more positivelO, third bar in
Figure 9.2). The strength of the experience was afected (mean 5.4, last bar) but not
significantly above scale-level 5, which for theotwightmost bars defines no change
with respect to the former performance.

9.1.2. Therapy and rehabilitation of Parkinson’s patients

The research outputs described in this dissertéizme also been used in the framework
of the EU-IST project CARE HERE to analyse the batyements of different kinds of
patients (Parkinson’s patients, severely handicdmbddren, people with disabilities in
the learning processes) and to map the analyseimpéers onto automatic real-time
generation of visual outputs, attempting to creasthetic resonance.

The underlying idea of aesthetic resonance is w@ giatients a visual and acoustic
feedback depending on a qualitative analysis af figll-body) movement, in order to
evoke ludic aspects (and consequently introduce tiemad-motivational elements)
without the need neither of the rigid standard@atiequired for typical motion analysis,
nor of invasive techniques: subjects can freely enmithout on body sensors/markers.

A pilot experiment carried out in order to test theveloped techniques on patients with
Parkinson’s disease (PD) is described in (CamMaizzarino, Volpe, Morasso, Priano,
Re, 2003). The experiment consisted in analysinggam@nt of two PD patients,
extracting a collection of motion parameters relai® motion energy and fluency, and
producing in real-time audio and visual feedback.

For example, Figure 9.3 shows the output of a flerac session where patients are
engaged in “interactive painting” with their owndyo The patient sees himself on a
large screen painting in real-time through histmetion in the space. Previous work in
the performing arts field exists where engageméttie@audience is obtained in a similar
way: see for example the PAGe - Painting by AdBakture system (Tarabella, 2001).
With PAGe the user can interact through an intevacparadigm like the MS Paint
software, using his hands while standing in frohadarge video screen: the user can
select a colour or an action with one hand, therdre paint with that colour with the
other hand. This therapeutic exercise is slighiferent: the interaction is based on
some of the movement cues described in Chaptesréexample, the colour may depend
on fluency; Quantity of Motion may be associatedhe intensity of the colour trace;
pauses in movement (using the segmentation teckmigueviously described) allow
restarting the process and re-assigning/adaptmgtppings strategies. In this way, by a
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careful choice of colours, e.g., by creating “pl@$ colour associations/mappings with
fluent and non-hesitating movements, it is possiblereate a sort of visual feedback
encouraging improvement of movement in patientsririguthis exercise the subject
looks at the picture painted on the screen androomisly changes it while moving. On
another display the researcher analyses the pagesmatd if needed corrects them in
order to tune the exercise on the patient’s needs.

-

Figure 9.3 example of therapeutic session using a paintiegaise. Colour and intensity of the colour
trace depend on automatically extracted movemetifes.

9.2. Research results and perspectives

The work presented in this dissertation can beidensd as belonging to a collection of

first attempts of understanding the mechanisms nyidg non-verbal communication

through expressive gesture. Research in such idinecd becoming more and more

important as demonstrated by the continuous growinthe Affective Computing and

KANSEI Information Processing fields in the U.S.dam Japan and by EU-funded

projects like the MEGA project.

This work contributes in the development of appi@mas for interactive multimedia

scenarios in which such non-verbal mechanismsharemain communication channels.

In this perspective, a particular focus has beenperforming arts, even if others

application domains are also envisaged (e.g., pyead rehabilitation).

Relevant outputs can be considered the contribsifizn

- The definition of a structure for inhabited muli#aed environments able to provide
a paradigm for the development of distributed mtéve performances and giving a
framework in which expressive gesture can be studsethe main carrier of non-
verbal information among the inhabiting real, vattuand mixed subject.

- A better (even if not exhaustive) definition of egpsive gesture taking into account
some of the existing literature on gesture modglliand processing and
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encompassing different aspects of expressive gestur its role in communication,

its aesthetical valence (as a main component dtiarperformances), its relation
with physicality (e.g., expressive gestures of @amand music performers with
respect to computer animated expressive gestures).

The definition of an architecture for virtual andixed subjects inhabiting

Multilayered Integrated Expressive Environmentst starting from previous works
on emotional agents for Multimodal Environments gndunding on the research
carried out with partners in the MEGA project paas a way to include in the same
framework analysis, synthesis, and mapping of esgive gesture in a multimodal
perspective.

The development of an instance of the analysis efdsuch architecture in the
context of dance performance and as a result ofegperiment aiming at

understanding emotion communication through expreggesture.

The development of algorithms for measuring glabgbressive cues from human
full-body movement, the analysis of such cues, thed use for a first attempt of

automatic classification of dance fragments in tefraonveyed basic emotions.

Of course, this work cannot be considered exhagiséimd conclusive since many
research issues still need to be discussed and padsectives are open for possible
future work. As an example, | just try to list soofehem:

The dissertation focused on the structure of MIEBSl on the communication
processes taking place inside them through expeeggisture. Another very relevant
aspect has been only marginally faced: the dynaofiddlIEEs along time. MIEEs
are not static constructions, but they continuogsiglve along time depending on
the storyboard of the performance for which theg amployed. A definition of
storyboard would therefore be needed and the meshanthrough which the
structure of MIEEs evolves would need a deepersiigation.

The implementation of a MIEE will employ some kiofl hardware and software
platform. The discussed structure of a MIEE, itsalyics, the interactions taking
place in it would therefore produce requirementstifi®@ employed platform. These
requirements would need to be stated and analysed.

The definition of expressive gesture should behmtworked out. A comparison
(and maybe a distinction) with respect to musidesand dance gesture would be
useful. A unified taxonomy of expressive cues cti@m@sing expressing gesture in
movement (e.g., dance), music, and visual medialdhme developed, grounded on
analogies between similar aspects in the diffemeodalities.

Other (and maybe more significant) aspects of esgive gesture need to be
investigated. As discussed in Chapter 7, emotiomghtmbe too specific (i.e.,
watching a dance performance and listening to masioot always trigger specific
emotions). In this perspective other experimenteHaeen carried out and are still
ongoing aiming at studying expressive gesture asporgsible of emotional
engagement in the audience. An example is the empest sketched in Chapter 3 on
the engagement of spectators exposed to musicalulstiIn this experiment
recordings of piano performances (a piece by Skriabd a piece by Liszt played by
professional concert pianist Massimiliano Dameriniflifferent situations (i.e., in a
studio situation without audience and in a perforogalike situation with the
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audience, both as a the first piece of the conmedfter a virtuosistic piece) have
been collected. Recordings consist of audio (fowerephones, two near the piano
and two in ambience) and video (four videocameifrasn the front, from the top,
from the left, and from the right with respect tioetpianist, see Figure 9.4).
Furthermore, MIDI data from the piano (a Yamahar@r&oda Disklavier, rented
for the experiment) have been collected. Spectditave been asked to evaluate their
emotional engagement while listening to the perforoes by using techniques for
continuous measurements (Schubert, 2001). Suchinooos measures from
spectators have been compared with extracted matidraudio cues in order to find
possible correlations. Preliminary results can ben@l in (Camurri, Mazzarino,
Timmers, Volpe, 2003, and Timmers, Camurri, VoR@03).

Some aspects in dance performance have only beegimaldy considered. In
particular, aspects related to rhythm should béhéurinvestigated. Expressive cues
like impulsiveness and fluency should be furtherked out. Moreover, perceptual
experiments would be needed to empirically validléeextracted expressive cues.
Multimodal integration should be deeper investidatee., analysis on particular
aspects (e.g., expressive gesture in dance andsichshould be better related to the
unifying conceptual framework described in ChaperWork on synthesis and
mapping strategies is still needed.

Figure 9.4 recordings of a piano performance for analysimgctators’ engagement.
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As the above incomplete list of possible extensimsws, lot of work is still needed for
really understanding the power of expressive gestuhuman-computer interaction and
for developing systems able to fully exploit it.

Expressive gestures can open a path toward nowedsfof artistic performances, in
which technology is not just something added toraitional scenario, but rather
becomes a component of the artistic language. @helso a challenge for designer of
interactive systems: as in software engineerinchots for designing and implementing
good software are developed and studied, the dasajrinteractive systems would need
methods to develop and adapt his/her work witheeisfp the application scenarios and
the requirements of the designer of a performancefoan installation. Moreover,
analysis of some aspects of expressive gesturkeadrto results that might be useful for
other research domains. For example, the analy®ssgagement in spectators exposed
to musical stimuli, or the analysis of the behaviofivisitors in a museum exhibit can
lead to the development of models of spectatoitdvésand, in more general terms to
models of users’ behaviour, taking into accounbrimfation related to the affective,
emotional sphere.

Of course, the broad possibilities of industriaplextation of such techniques also raise
ethical concerns. As an example, let's considerritle related to the availability of
techniques able to emotionally classify users atingrto their behaviour and to convey
them suitable emotional messages. Such techniqued allow third parties to control in
some way user's behaviour (e.g., as it is alreadyphning on a certain extent in
advertising, companies could use such informatmrcdntrol the behaviour of their
customers). Moreover, the emotional, affective sphis related to the most private
aspects of individuals’ life and techniques abledal with it must be carefully
considered with respect to privacy safeguard. @fs® as it often happens when dealing
with technology, models and algorithms are notaaly good or bad intrinsically.
Rather, it is how they are used that determinesliveinghey are ethically acceptable or
not. This technology has the power to bring bigamdages to humans (consider for
example the benefits of an enhanced human-compuggaction in term of diminished
stress for people working with computers, the piddities in therapy and rehabilitation
e.g., for autistic children, the possibility to inape the learning process by employing a
learning-by-playing paradigm). It has some poténtisks too. It is also our
responsibility, as scientists and technologistsully exploit any possible benefit and to
be on guard against any possible misuse.
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Appendix A. The EyesWeb open platform

The EyesWeb open hardware and software platfornm(@& Coletta, Peri, Ricchetti,

Ricci, Trocca, Volpe, 2000; www.eyesweb.org) hasrbadopted for the implementation

of the gesture processing algorithms discussed his tissertation and for the

development of the applications employing themféasexample the concert “Allegoria

dell’'opinione verbale” and the therapeutic exersidlestrated in Chapter 9).

EyesWeb is an open hardware and software platfasnteived for the design and

development of real-time music and multimedia aggtions. It supports the user in

experimenting computational models of non-verbgbregsive communication and in

mapping gestures from different modalities (e.gimhn full-body movement, music)

onto multimedia output (e.g., sound, music, visuatlia). It allows fast development and

experiment cycles of interactive performance setdpincluding a visual programming

language allowing mapping, at different levels,nadvement and audio into integrated

music, visual, and mobile scenery.

EyesWeb is the basic platform of the MEGA EU IS®ject and has also been adopted

in the EU IST CARE HERE project on therapy and bgltation. EyesWeb is fully

available at its website (www.eyesweb.org). Pubkgvsgroups also exist and are daily

managed to support the growing EyesWeb communitgrénthan 700 users at the

moment), including universities, research instgyugnd industries.

The EyesWeb open platform consists of a numbentefgrated hardware and software

modules that can be easily interconnected and @eteriThe EyesWeb software consists

of a development environment and a set of librasfegusable software components that

can be assembled by the user in a visual languadmuitd patches as in common

computer music languages.

EyesWeb includes a software Wizard enabling usersxtend the system with new

modules, data-types, and libraries.

The software runs on Win32 and is based on theddait COM/DCOM standard; it

supports Steinberg VST and ASIO; it supports OS@efOSound Control).

Two kinds of modules are currently available: “passnodules” (i.e. filters) and “active

modules”, i.e., modules with an internal dynamm$ich receive inputs as any other

module but may send outputs asynchronously withersto their inputs. For example,

the Affective Decision Maker module discussed imftkr 4 has been implemented as

an active module.

EyesWeb libraries include:

- Input: support for frame grabbers (from webcamsptofessional videocameras),
wireless on-body sensors (e.g. accelerometersip and MIDI input, serial, tcp/ip;

- Math and filters (e.g. pre-processing, modulessfgnal conditioning, etc.);

- Imaging (processing and conversions of images);

- Sound and MIDI libraries;

- Communication (e.g. MIDI, OSC, tcp/ip, serial, DCO#{c.);

- Output: visual, audio, MIDI, serial, tcp/ip, etc.



Appendix A — The EyesWeb open platform

In the particular framework of this dissertatioryeEWeb has been selected since (i) it
allows to interactively map motion parameters ostunds and visual media in a

multimedia scenario, (ii) it allows integration ofovel analysis techniques as new
libraries or extensions to existing libraries,)(iti allows fast design, development, and
testing of multimedia interactive applications,) (itvcan display in real time the analysed
expressive cues, (V) it supports different typesafsors (including wireless), one or
more videocameras, and can be programmed to pesjoegific analysis of movement in

real-time. To this last task, the EyesWeb ExpresgBesture Processing and Motion
Analysis Libraries (see Appendix B) have been dgwedl and employed, including

software modules for extraction and pre-processinghysical signals (e.g., video from

videocameras), and extraction and processing obmparameters.

Figure A.1 shows three examples of EyesWeb patchekich visual output is obtained

as a result of a direct mapping of expressive ewgmcted from movement.

Tin

Figure A.1: three examples of EyesWeb patches mapping expeesses extracted from human full-body
movement into real-rime generation of visual cohten
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Appendix B. The EyesWeb Expressive Gesture
Processing Library

The EyesWeb Expressive Gesture Processing Libsasy main concrete output of the
research discussed in this dissertation. It ingdudecollection of EyesWeb blocks
(software modules) and patches (interconnectionslaxfks) contained into three main
sub-libraries:

- The EyesWeb Motion Analysis Library: a collectiohnoodules for real-time motion
tracking and extraction of expressive cues from &ufall-body movement.

- The EyesWeb Space Analysis Library: a collectionnobdules for analysis of
occupation of 2D (real as well as virtual) spaces.

- The EyesWeb Trajectory Analysis Library: a colleatiof modules for extraction of
features from trajectories in 2D (real as well mtual) spaces.

The EyesWeb Motion Analysis Libramgpplies computer vision technigues to extract
expressive cues from human full-body movement.rét fayer consists in individuating
and tracking motion in the incoming images. Backgib subtraction is used to segment
the body silhouette. Algorithms based on searctiamgoody centroids and on optical
flow based techniques (e.g., the Lucas and Karadg&ihg algorithm, Lucas & Kanade,
1981) are available. Starting from silhouettes &nadking information a collection of
expressive cues is extracted (see Chapter 6). Thelude Quantity of Motion,
Contraction Index, Stability Index (i.e., equililam), orientation of body parts,
kinematics (speed, acceleration and their averadepaak values obtained by using the
outputs of the tracking algorithms as inputs to Thajectory Analysis sub-library),
overall motion direction, measures related to #maporal dynamics of movement (e.g.,
segmentation of movement in pause and motion phdseation of pause and motion
phases, inter-onset intervals as the time intdredkeen the beginning of two subsequent
motion phases). A set of modules for posture reitiogns also available.

The EyesWeb Space Analysis Librasybased on the discussed General Space model
considering a collection of discrete potentialsirted on a 2D space (see Chapter 8).
Objects and subjects in the space can be modeliadne-varying potentials (e.g., a
dancer on a stage can be modelled as a bell-shetedtial moving around the space).
Interactions between potentials can be used to Imotdgactions between (real, virtual,
or mixed) objects and subjects in the space. Regiothe space can also be defined. The
metaphor can be applied both to real spaces &gnery and actors on a stage) and to
virtual, semantic, expressive spaces (e.g., a spagearameters where gestures are
represented as trajectories). The library inclub&scks allowing the definition of
interacting discrete potentials on 2D spaces, @fenition of regions, the extraction of
cues (such as, for example, the occupation ratesgadns in the space).
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The EyesWeb Trajectory Analysis Libracpntains a collection of blocks for extraction

of features from 2D trajectories. Such featureslusie geometric measures (e.g.,

trajectory length, Directness Index) and kineméatimeasures (velocity, acceleration,

curvature). Statistic measures along time (e.gerane, peak values calculated both on
running windows or on all the samples between twmssquent commands) and statistic
measures among trajectories (e.g., average velotity trajectories) are also available.

Trajectories can be real trajectories coming fromtracking algorithms of the EyesWeb

Motion Analysis Library or virtual trajectories (g, trajectories representing gestures in
semantic, expressive spaces). The extracted featare be used as inputs to clustering
algorithms.
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