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ABSTRACT

FIRE DETECTION ALGORITHMS USING
MULTIMODAL SIGNAL AND IMAGE ANALYSIS

Behçet Uğur Töreyin

Ph.D. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. A. Enis Çetin

January, 2009

Dynamic textures are common in natural scenes. Examples of dynamic tex-

tures in video include fire, smoke, clouds, volatile organic compound (VOC)

plumes in infra-red (IR) videos, trees in the wind, sea and ocean waves, etc.

Researchers extensively studied 2-D textures and related problems in the fields

of image processing and computer vision. On the other hand, there is very little

research on dynamic texture detection in video. In this dissertation, signal and

image processing methods developed for detection of a specific set of dynamic

textures are presented.

Signal and image processing methods are developed for the detection of flames

and smoke in open and large spaces with a range of up to 30m to the camera

in visible-range (IR) video. Smoke is semi-transparent at the early stages of fire.

Edges present in image frames with smoke start loosing their sharpness and this

leads to an energy decrease in the high-band frequency content of the image.

Local extrema in the wavelet domain correspond to the edges in an image. The

decrease in the energy content of these edges is an important indicator of smoke

in the viewing range of the camera. Image regions containing flames appear as

fire-colored (bright) moving regions in (IR) video. In addition to motion and

color (brightness) clues, the flame flicker process is also detected by using a Hid-

den Markov Model (HMM) describing the temporal behavior. Image frames are

also analyzed spatially. Boundaries of flames are represented in wavelet domain.

High frequency nature of the boundaries of fire regions is also used as a clue to

model the flame flicker. Temporal and spatial clues extracted from the video are

combined to reach a final decision.
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Signal processing techniques for the detection of flames with pyroelectric (pas-

sive) infrared (PIR) sensors are also developed. The flame flicker process of an

uncontrolled fire and ordinary activity of human beings and other objects are

modeled using a set of Markov models, which are trained using the wavelet trans-

form of the PIR sensor signal. Whenever there is an activity within the viewing

range of the PIR sensor, the sensor signal is analyzed in the wavelet domain and

the wavelet signals are fed to a set of Markov models. A fire or no fire decision is

made according to the Markov model producing the highest probability.

Smoke at far distances (> 100m to the camera) exhibits different temporal and

spatial characteristics than nearby smoke and fire. This demands specific methods

explicitly developed for smoke detection at far distances rather than using nearby

smoke detection methods. An algorithm for vision-based detection of smoke due

to wild fires is developed. The main detection algorithm is composed of four

sub-algorithms detecting (i) slow moving objects, (ii) smoke-colored regions, (iii)

rising regions, and (iv) shadows. Each sub-algorithm yields its own decision as a

zero-mean real number, representing the confidence level of that particular sub-

algorithm. Confidence values are linearly combined for the final decision.

Another contribution of this thesis is the proposal of a framework for active

fusion of sub-algorithm decisions. Most computer vision based detection algo-

rithms consist of several sub-algorithms whose individual decisions are integrated

to reach a final decision. The proposed adaptive fusion method is based on the

least-mean-square (LMS) algorithm. The weights corresponding to individual

sub-algorithms are updated on-line using the adaptive method in the training

(learning) stage. The error function of the adaptive training process is defined

as the difference between the weighted sum of decision values and the decision

of an oracle who may be the user of the detector. The proposed decision fusion

method is used in wildfire detection.

Keywords: fire detection, flame detection, smoke detection, wildfire detection,

computer vision, pyroelectric infra-red (PIR) sensor, dynamic textures, wavelet

transform, Hidden Markov Models, the least-mean-square (LMS) algorithm, su-

pervised learning, on-line learning, active learning.



ÖZET

ÇOKKİPLİ İŞARET VE İMGE ÇÖZÜMLEME TABANLI
YANGIN TESPİT ALGORİTMALARI

Behçet Uğur Töreyin

Elektrik ve Elektronik Mühendisliği, Doktora

Tez Yöneticisi: Prof. Dr. A. Enis Çetin

Ocak, 2009

Dinamik dokular doğa görüntülerinde yaygın olarak bulunmaktadır. Video-

daki dinamik doku örnekleri arasında ateş, duman, bulutlar, kızılberisi videoda

uçucu organik bileşik gazları, rüzgarda sallanan ağaçlar, deniz ve okyanus-

lardaki dalgalar, vb. sayılabilir. Görüntü işleme ve bilgisayarlı görü alan-

larındaki araştırmacılar yaygın olarak iki boyutlu dokular ve ilgili problemleri

çalışmışlardır. Öte yandan, videodaki dinamik dokularla ilgili çalışma çok azdır.

Bu tezde, özel bir çeşit dinamik doku tespiti için geliştirilen işaret ve imge işleme

yöntemleri sunulmaktadır.

Görünür ve kızılberisi videoda, kameraya en fazla 30m mesafade bulunan açık

ve geniş alanlardaki alev ve dumanın tespiti için işaret ve imge işleme yöntemleri

geliştirilmiştir. Duman, yangınların ilk safhalarında yarı saydamdır. Duman

içeren imge çerçevelerindeki ayrıtlar keskinliklerini kaybetmeye başlar ve bu da

imgenin yüksek bant sıklık içeriğinde bir enerji azalmasına yol açar. Dalgacık

etki alanındaki yerel en büyük değerler bir imgedeki ayrıtlara karşılık gelmekte-

dir. Bu ayrıtlarda meydana gelen enerji düşmesi, kameranın görüş alanı içinde

duman olduğunun önemli bir göstergesidir. Alev içeren imge bölgeleri (kızılberisi)

videoda (parlak) ateş-renginde görünür. Hareket ve renk (parlaklık) özelliklerine

ek olarak, alevdeki kırpışma, alevin zamansal hareketini betimleyen bir saklı

Markov model kullanılarak tespit edilmektedir. İmge çerçeveleri uzamsal olarak

da çözümlenmektedir. Alev çevritleri dalgacık domeninde temsil edilmektedir.

Alevdeki kırpışmanın modellenmesi için ateş çevritinin yüksek sıklık özelliği de bir

ipucu olarak kullanılmaktadır. Videodan çıkarılan zamansal ve uzamsal ipuçları

son kararın alınması için birleştirilmektedir.

Alevin pyro-elektrik kızılberisi algılayıcılar (PIR) tarafından tespit edilebilmesi
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için de işaret işleme yöntemleri geliştirilmiştir. Denetimsiz bir yangının alev-

lerindeki kırpışma süreci ile insan ve diğer sıcak nesneler tarafından yapılan

sıradan hareketler, PIR algılayıcısı işaretine ait dalgacık dönüşümü katsayılarıyla

eğitilen saklı Markov modelleriyle modellenmektedir. PIR algılayıcısının görüş

alanı içinde bir hareketlilik meydana geldiğinde, algılayıcı işareti dalgacık etki

alanında çözümlenmekte ve dalgacık işaretleri bir dizi Markov modeline beslen-

mektedir. Yangın var ya da yok kararı en yüksek olasılık değerini üreten Markov

modeline göre alınmaktadır.

Uzak mesafedeki (kameraya mesafesi 100m’den büyük) duman, kameraya

daha yakında cereyan eden bir yangın neticesinde oluşan dumandan daha farklı

zamansal ve uzamsal özellikler sergilemektedir. Bu da yakın mesafe duman-

larının tespiti için geliştirilen yöntemleri kullanmak yerine, uzak mesafedeki du-

man tespiti için özel yöntemler geliştirilmesi gereğini doğurmaktadır. Orman

yangınlarından kaynaklanan dumanın tespit edilmesi için görüntü tabanlı bir al-

goritma geliştirilmiştir. Ana tespit algoritması (i) yavaş hareket eden nesneleri,

(ii) duman rengindeki bölgeleri, (iii) yükselen bölgeleri, ve (iv) gölgeleri tespit

eden dört alt-algoritmadan oluşmaktadır. Herbir alt-algoritma kendi kararını,

güven seviyesinin bir göstergesi olarak sıfır ortalamalı gerçel bir sayı şeklinde

üretmektedir. Bu güven değerleri son kararın verilmesi için doğrusal olarak

birleştirilmektedir.

Bu tezin bir diğer katkısı da alt-algoritma kararlarının etkin bir şekilde

birleştirilmesi için bir çerçeve yapı önermesidir. Bilgisayarlı görü tabanlı pekçok

tespit algoritması, son kararın verilmesinde ayrı ayrı kararlarının birleştirildiği

çeşitli alt-algoritmalardan oluşmaktadır. Önerilen uyarlanır birleştirme yöntemi

en küçük-ortalama-kare algoritmasına dayanmaktadır. Herbir alt-algoritmaya

ait ağırlık, eğitim (öğrenme) aşamasında çevrimiçi olarak uyarlanır yöntemle

güncellenmektedir. Uyarlanır eğitim sürecindeki hata fonksiyonu, karar

değerlerinin ağırlıklı toplamıyla kullanıcının kararı arasındaki fark olarak

tanımlanmıştır. Önerilen karar birleştirme yöntemi orman yangını tespitinde kul-

lanılmıştır.

Anahtar sözcükler : yangın tespiti, alev tespiti, duman tespiti, orman yangını

tespiti, bilgisayarlı görü, pyro-elektrik kızılberisi algılayıcı, dinamik dokular, dal-

gacık dönüşümü, saklı Markov modelleri, en küçük-ortalama-kare algoritması,

güdümlü öğrenme, çevrimiçi öğrenme, etkin öğrenme.
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Chapter 1

Introduction

Dynamic textures are common in many image sequences of natural scenes. Ex-

amples of dynamic textures in video include fire, smoke, clouds, volatile organic

compound (VOC) plumes in infra-red (IR) videos, trees in the wind, sea and

ocean waves, as well as traffic scenes, motion of crowds, all of which exhibit some

sort of spatio-temporal stationarity. They are also named as temporal or 3-D tex-

tures in the literature. Researchers extensively studied 2-D textures and related

problems in the fields of image processing and computer vision [32], [30]. On

the other hand, there is comparably less research conducted on dynamic texture

detection in video [18], [63], [12].

There are several approaches in the computer vision literature aiming at

recognition and synthesis of dynamic textures in video independent of their

types [71], [15], [16], [50], [29], [51], [33], [35], [89], [48], [49], [57], [79], [55],

[96], [62], [75], [28], [68], [90]. Some of these approaches model the dynamic

textures as linear dynamical systems [71], [15], [16], [50], some others use spatio-

temporal auto-regressive models [48], [79]. Other researchers in the field analyze

and model the optical flow vectors for the recognition of generic dynamic tex-

tures in video [29], [89]. In this dissertation, we do not attempt to characterize

all dynamic textures but we present smoke and fire detection methods by taking

advantage of specific properties of smoke and fire.

1
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The motivation behind attacking a specific kind of recognition problem is

influenced by the notion of ‘weak’ Artificial Intelligence (AI) framework which was

first introduced by Hubert L. Dreyfus in his critique of the so called ‘generalized’

AI [25], [26]. Dreyfus presents solid philosophical and scientific arguments on why

the search for ‘generalized’ AI is futile [61]. Current content based general image

and video content understanding methods are not robust enough to be deployed

for fire detection [21], [53], [43], [54]. Instead, each specific problem should be

addressed as an individual engineering problem which has its own characteristics.

In this study, both temporal and spatial characteristics related to flames and

smoke are utilized as clues for developing solutions to the detection problem.

Another motivation for video and pyroelectric infra-red (PIR) sensor based

fire detection is that conventional point smoke and fire detectors typically detect

the presence of certain particles generated by smoke and fire by ionization or

photometry. An important weakness of point detectors is that they cannot pro-

vide quick responses in large spaces. Furthermore, conventional point detectors

cannot be utilized to detect smoldering fires in open areas.

In this thesis, novel image processing methods are proposed for the detection

of flames and smoke in open and large spaces with ranges up to 30m. Flicker

process inherent in fire is used as a clue for detection of flames and smoke in (IR)

video. A similar technique modeling flame flicker is developed for the detection

of flames using PIR sensors. Wildfire smoke appearing far away from the camera

has different spatio-temporal characteristics than nearby smoke. The algorithms

for detecting smoke due to wildfire are also proposed.

Each detection algorithm consists of several sub-algorithms each of which tries

to estimate a specific feature of the problem at hand. For example, long distance

smoke detection algorithm consists of four sub-algorithms: (i) slow moving video

object detection, (ii) smoke-colored region detection, (iii) rising video object de-

tection, (iv) shadow detection and elimination. A framework for active fusion of

decisions from these sub-algorithms is developed based on the least-mean-square

(LMS) adaptation algorithm.
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No fire detection experiments were carried out using other sensing modali-

ties such as ultra-violet (UV) sensors, near infrared (NIR) or middle wave-length

infrared (MWIR) cameras, in this study. As a matter of fact, MWIR cameras

are even more expensive than LWIR cameras. Therefore, deploying MWIR cam-

eras for fire monitoring turns out to be an unfeasible option for most practical

applications.

There are built-in microphones in most of the off-the-shelf surveillance cam-

eras. Audio data captured from these microphones can be also analyzed along

with the video data in fire monitoring applications. One can develop fire detec-

tion methods exploiting data coming from several sensing modalities similar to

methods described in [31], [85], [88], [24].

1.1 Contribution of this Thesis

The major contributions of this thesis can be divided into two main categories.

1.1.1 Markov Models Using Wavelet Domain Features for

Short Range Flame and Smoke Detection

A common feature of all the algorithms developed in this thesis is the use of

wavelets and Markov models. In the proposed approach wavelets or sub-band

analysis are used in dynamic texture modeling. This leads to computationally

efficient algorithms for texture feature analysis, because computing wavelet coef-

ficients is an Order-(N) type operation. In addition, we do not try to determine

edges or corners in a given scene. We simply monitor the decay or increase in

wavelet coefficients’ sub-band energies both temporally and spatially.

Another important feature of the proposed smoke and fire detection methods is

the use of Markov models to characterize temporal motion in the scene. Turbulent

fire behavior is a random phenomenon which can be conveniently modeled in a
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Markovian setting.

In the following sub-sections, the general overview of the proposed algorithms

are developed. In all methods, it is assumed that a stationary camera monitors

the scene.

1.1.1.1 Flame Detection in Visible Range Video

Novel real-time signal processing techniques are developed to detect flames by

processing the video data generated by a visible range camera. In addition to

motion and color clues used by [64], flame flicker is detected by analyzing the

video in wavelet domain. Turbulent behavior in flame boundaries is detected by

performing temporal wavelet transform. Wavelet coefficients are used as feature

parameters in Hidden Markov Models (HMMs). A Markov model is trained with

flames and another is trained with ordinary activity of human beings and other

flame colored moving objects. Flame flicker process is also detected by using an

HMM. Markov models representing the flame and flame colored ordinary moving

objects are used to distinguish flame flicker process from motion of flame colored

moving objects.

Other clues used in the fire detection algorithm include irregularity of the

boundary of the fire colored region and the growth of such regions in time. All

these clues are combined to reach a final decision. The main contribution of the

proposed video based fire detection method is the analysis of the flame flicker and

integration of this clue as a fundamental step in the detection process.

1.1.1.2 Flame Detection in IR Video

A novel method to detect flames in videos captured with Long-Wavelength Infra-

Red (LWIR) cameras is proposed, as well. These cameras cover 8-12µm range in

the electromagnetic spectrum. Image regions containing flames appear as bright

regions in IR video. In addition to motion and brightness clues, flame flicker

process is also detected by using an HMM describing the temporal behavior as in
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the previous algorithm. IR image frames are also analyzed spatially. Boundary

of flames are represented in wavelet domain and high frequency nature of the

boundaries of fire regions is also used as a clue to model the flame flicker.

All of the temporal and spatial clues extracted from the IR video are combined

to reach a final decision. False alarms due to ordinary bright moving objects are

greatly reduced because of the HMM based flicker modeling and wavelet domain

boundary modeling. The contribution of this work is the introduction of a novel

sub-band energy based feature for the analysis of flame region boundaries.

1.1.1.3 Short-range Smoke Detection in Video

Smoldering smoke appears first, even before flames, in most fires. Contrary to

the common belief, smoke cannot be visualized in LWIR (8-12µm range) video.

A novel method to detect smoke in video is developed.

The smoke is semi-transparent at the early stages of a fire. Therefore edges

present in image frames start loosing their sharpness and this leads to a decrease

in the high frequency content of the image. The background of the scene is

estimated and decrease of high frequency energy of the scene is monitored using

the spatial wavelet transforms of the current and the background images.

Edges of the scene produce local extrema in the wavelet domain and a decrease

in the energy content of these edges is an important indicator of smoke in the

viewing range of the camera. Moreover, scene becomes grayish when there is

smoke and this leads to a decrease in chrominance values of pixels. Random

behavior in smoke boundaries is also analyzed using an HMM mimicking the

temporal behavior of the smoke. In addition, boundaries of smoke regions are

represented in wavelet domain and high frequency nature of the boundaries of

smoke regions is also used as a clue to model the smoke flicker. All these clues

are combined to reach a final decision.

Monitoring the decrease in the sub-band image energies corresponding to

smoke regions in video constitutes the main contribution of this work.
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1.1.1.4 Flame Detection Using PIR sensors

A flame detection system based on a pyroelectric (or passive) infrared (PIR) sen-

sor is developed. This algorithm is similar to the video flame detection algorithm.

The PIR sensor can be considered as a single pixel camera. Therefore an algo-

rithm for flame detection for PIR sensors can be developed by simply removing

the spatial analysis steps of the video flame detection method.

The flame detection system can be used for fire detection in large rooms. The

flame flicker process of an uncontrolled fire and ordinary activity of human beings

and other objects are modeled using a set of Hidden Markov Models (HMM),

which are trained using the wavelet transform of the PIR sensor signal. Whenever

there is an activity within the viewing range of the PIR sensor system, the sensor

signal is analyzed in the wavelet domain and the wavelet signals are fed to a set

of HMMs. A fire or no fire decision is made according to the HMM producing

the highest probability.

1.1.2 Wildfire Detection with Active Learning Based on

the LMS Algorithm

Wildfire smoke has different spatio-temporal characteristics than nearby smoke,

because wildfire usually starts far away from forest look-out towers. The

main wildfire (long-range smoke) detection algorithm is composed of four sub-

algorithms detecting (i) slow moving objects, (ii) smoke-colored regions, (iii) ris-

ing regions, and (iv) shadows. Each sub-algorithm yields its own decision as

a zero-mean real number, representing the confidence level of that particular

sub-algorithm. Confidence values are linearly combined with weights determined

according to a novel active fusion method based on the least-mean-square (LMS)

algorithm which is a widely used technique in adaptive filtering. Weights are up-

dated on-line using the LMS method in the training (learning) stage. The error

function of the LMS based training process is defined as the difference between

the weighted sum of decision values and the decision of an oracle, who is the
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security guard of the forest look-out tower.

The contribution of this work is twofold; a novel video based wildfire detection

method and a novel active learning framework based on the LMS algorithm. The

proposed adaptive fusion strategy can be used in many supervised learning based

computer vision applications comprising of several sub-algorithms.

1.2 Thesis Outline

The outline of the thesis is as follows. In Chapters 2 and 3, wavelet and HMM

based methods for flame detection in visible and IR range video are presented,

respectively. The short-range smoke detection algorithm is presented in Chapter

4. Detection of flames using PIR sensors is discussed in Chapter 5. In Chapter

6, wildfire (long-range smoke) detection with active learning based on the LMS

algorithm is described. Finally Chapter 7 concludes this thesis by providing an

overall summary of the results. Possible research areas in the future are provided,

as well.

The organization of this thesis is presented in Table 1.1. Note that, smoke

detection methods could only be developed for visible range cameras due to the

fact that smoke cannot be visualized with PIR sensors and LWIR cameras.

Table 1.1: Organization of this thesis.

Sensor type Flame Short-range (< 30m) Long distance (> 100m)
Smoke Smoke

Visible Range Camera Chapter 2 Chapter 4 Chapter 6
LWIR Camera Chapter 3 N/A N/A

PIR Sensor Chapter 5 N/A N/A



Chapter 2

Flame Detection in Visible

Range Video

In this chapter, the previous work in the literature on video based fire detection is

summarized, first. Then, the proposed wavelet analysis and Markov model based

detection method characterizing the flame flicker process is described. Markov

model based approach reduces the number of false alarms issued to ordinary

fire-colored moving objects as compared to the methods using only motion and

color clues. Experimental results show that the proposed method is successful in

detecting flames.

2.1 Related Work

Video based fire detection systems can be useful for detecting fire in covered ar-

eas including auditoriums, tunnels, atriums, etc., in which conventional chemical

fire sensors cannot provide quick responses to fire. Furthermore, closed circuit

television (CCTV) surveillance systems are currently installed in various public

places monitoring indoors and outdoors. Such systems may gain an early fire de-

tection capability with the use of a fire detection software processing the outputs

of CCTV cameras in real time.

8



CHAPTER 2. FLAME DETECTION IN VISIBLE RANGE VIDEO 9

There are several video-based fire and flame detection algorithms in the lit-

erature [64], [17], [48], [78], [38], [81], [80], [94]. These methods make use of

various visual signatures including color, motion and geometry of fire regions.

Healey et al. [38] use only color clues for flame detection. Phillips et al. [64]

use pixel colors and their temporal variations. Chen et al. [17] utilize a change

detection scheme to detect flicker in fire regions. In [78], Fast Fourier Trans-

forms (FFT) of temporal object boundary pixels are computed to detect peaks

in Fourier domain, because it is claimed that turbulent flames flicker with a char-

acteristic flicker frequency of around 10 Hz independent of the burning material

and the burner in a mechanical engineering paper [1], [14]. We observe that flame

flicker process is a wide-band activity below 12.5 Hz in frequency domain for a

pixel at the boundary of a flame region in a color-video clip recorded at 25 fps

(cf. Fig. 2.1). Liu and Ahuja [48] also represent the shapes of fire regions in

Fourier domain. However, an important weakness of Fourier domain methods is

that flame flicker is not purely sinusoidal but it’s random in nature. Therefore,

there may not be any peaks in FFT plots of fire regions. In addition, Fourier

Transform does not have any time information. Therefore, Short-Time Fourier

Transform (STFT) can be used requiring a temporal analysis window. In this

case, temporal window size becomes an important parameter for detection. If

the window size is too long, one may not observe peakiness in the FFT data. If

it is too short, one may completely miss cycles and therefore no peaks can be

observed in the Fourier domain.

Our method not only detects fire and flame colored moving regions in video but

also analyzes the motion of such regions in wavelet domain for flicker estimation.

The appearance of an object whose contours, chrominance or luminosity values

oscillate at a frequency higher than 0.5 Hz in video is an important sign of the

possible presence of flames in the monitored area [78].

High-frequency analysis of moving pixels is carried out in wavelet domain in

our work. There is an analogy between the proposed wavelet domain motion anal-

ysis and the temporal templates of [21] and the motion recurrence images of [43],

which are ad hoc tools used by computer scientists to analyze dancing people

and periodically moving objects and body parts. However, temporal templates
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Figure 2.1: Flicker frequency distribution for a pixel at the boundary of a flame
region in a color-video clip recorded at 25 fps. This frequency distribution is
obtained by analyzing the temporal variations in the red channel value of the
pixel.
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and motion recurrence images do not provide a quantitative frequency domain

measure. On the other hand, wavelet transform is a time-frequency analysis tool

providing both partial frequency and time information about the signal. One

can examine an entire frequency band in the wavelet domain without completely

loosing the time information [10], [52]. Since the wavelet transform is computed

using a subband decomposition filter bank, it does not require any batch pro-

cessing. It is ideally suited to determine an increase in high-frequency activity in

fire and flame colored moving objects by detecting zero crossings of the wavelet

transform coefficients.

In practice, flame flicker process is time-varying and it is far from being pe-

riodic. This stochastic behavior in flicker frequency is especially valid for uncon-

trolled fires. Therefore, a random model based modeling of flame flicker process

produces more robust performance compared to frequency domain based methods

which try to detect peaks around 10 Hz in the Fourier domain. In [84], fire and

flame flicker is modeled by using HMMs trained with pixel domain features in

video. In this thesis, temporal wavelet coefficients are used as feature parameters

in Markov models.

Turbulent high-frequency behaviors exist not only on the boundary but also

inside a fire region. Another novelty of the proposed method is the analysis of

the spatial variations inside fire and flame colored regions. The method described

in [78] does not take advantage of such color variations. Spatial wavelet analysis

makes it possible to detect high-frequency behavior inside fire regions. Variation

in energy of wavelet coefficients is an indicator of activity within the region. On

the other hand, a fire colored moving object will not exhibit any change in values

of wavelet coefficients because there will not be any variation in fire colored pixel

values. Spatial wavelet coefficients are also used in Markov models to characterize

the turbulent behavior within fire regions.
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2.2 Steps of Video Flame Detection Algorithm

The proposed video-based fire detection algorithm consists of four sub-algorithms:

(i) moving pixels or regions in the current frame of a video are determined, (ii)

colors of moving pixels are checked to see if they match to pre-specified fire colors.

Afterwards, wavelet analysis in (iii) temporal and (iv) spatial domains are carried

out to determine high-frequency activity within these moving regions. Each step

of the proposed algorithm is explained in detail in the sequel.

2.2.1 Moving Region Detection

Background subtraction is commonly used for segmenting out moving objects

in a scene for surveillance applications. There are several methods in the lit-

erature [19], [3], [77]. The background estimation algorithm described in [19]

uses a simple IIR filter applied to each pixel independently to update the back-

ground and use adaptively updated thresholds to classify pixels into foreground

and background.

Stationary pixels in the video are the pixels of the background scene because

the background can be defined as temporally stationary part of the video.If the

scene is observed for some time, then pixels forming the entire background scene

can be estimated because moving regions and objects occupy only some parts

of the scene in a typical image of a video. A simple approach to estimate the

background is to average the observed image frames of the video. Since moving

objects and regions occupy only a part of the image, they conceal a part of the

background scene and their effect is canceled over time by averaging. Our main

concern is real-time performance of the system. In Video Surveillance and Moni-

toring (VSAM) Project at Carnegie Mellon University [19] a recursive background

estimation method was developed from the actual image data using `1-norm based

calculations.

Let I(x, n) represent the intensity value of the pixel at location x in the n− th

video frame I. Estimated background intensity value, B(x, n + 1), at the same
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pixel position is calculated as follows:

B(x, n + 1) =

{
aB(x, n) + (1− a)I(x, n) if x is stationary

B(x, n) if x is a moving pixel
(2.1)

where B(x, n) is the previous estimate of the background intensity value at the

same pixel position. The update parameter a is a positive real number close to

one. Initially, B(x, 0) is set to the first image frame I(x, 0). A pixel positioned

at x is assumed to be moving if:

|I(x, n)− I(x, n− 1)| > T (x, n) (2.2)

where I(x, n−1) is the intensity value of the pixel at location x in the (n−1)−th

video frame I and T (x, n) is a recursively updated threshold at each frame n,

describing a statistically significant intensity change at pixel position x:

T (x, n + 1) =

{
aT (x, n) + (1− a)(c|I(x, n)−B(x, n)|) if x is stationary

T (x, n) if x is a moving pixel

(2.3)

where c is a real number greater than one and the update parameter a is a positive

number close to one. Initial threshold values are set to a pre-determined non-zero

value.

Both the background image B(x, n) and the threshold image T (x, n) are sta-

tistical blue prints of the pixel intensities observed from the sequence of images

{I(x, k)} for k < n. The background image B(x, n) is analogous to a local tem-

poral average of intensity values, and T (x, n) is analogous to c times the local

temporal standard deviation of intensity in `1-norm [19].

As it can be seen from Eq. 2.3, the higher the parameter c, higher the threshold

or lower the sensitivity of detection scheme. It is assumed that regions signifi-

cantly different from the background are moving regions. Estimated background

image is subtracted from the current image to detect moving regions which cor-

responds to the set of pixels satisfying:

|I(x, n)−B(x, n)| > T (x, n) (2.4)

are determined. These pixels are grouped into connected regions (blobs) and

labeled by using a two-level connected component labeling algorithm [40]. The
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output of the first step of the algorithm is a binary pixel map Blobs(x,n) that

indicates whether or not the pixel at location x in n− th frame is moving.

Other more sophisticated methods, including the ones developed by

Bagci et al. [3] and Stauffer and Grimson [77], can also be used for moving

pixel estimation. In our application, accurate detection of moving regions is not

as critical as in other object tracking and estimation problems; we are mainly

concerned with real-time detection of moving regions as an initial step in the fire

and flame detection system. We choose to implement the method suggested by

Collins et al. [19], because of its computational efficiency.

2.2.2 Detection of Fire Colored Pixels

Color values of moving pixels are compared with a pre-determined color distri-

bution, which represents possible flame colors in video in RGB color space. The

flame color distribution is obtained from sample images containing flame regions.

The cloud is represented by using mixture of Gaussians in the RGB color space

as described in [69] and [77].

Similar to the model in [77], the values of a particular pixel corresponding to

a flame region is considered as a ‘flame pixel process’. The ‘flame pixel process’ is

a time series of RGB vectors of pixels in a flame region. Let I(x, n) be a pixel at

location x of the image frame at time step n with color values rI(x, n), gI(x, n),

and bI(x, n) corresponding to red, green and blue channels. At any time step n,

the history of the pixel vectors are known:

{Q1, ..., Qn} = {[rI(x,m), gI(x, m), bI(x, m)] : 1 ≤ m ≤ n} (2.5)

where Qm = [rI(x,m), gI(x,m), bI(x,m)], represents the RGB color vector for

the pixel at location x and time step m.

A sample ‘flame pixel process’ is shown in Fig. 2.2 (a). It represents a flame

color distribution in RGB color space corresponding to a particular fire. Differ-

ent color distributions and flame pixel processes can be obtained by observing

different types of fire depending on the burning material.
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(a)

(b)

Figure 2.2: (a) A sample flame pixel process in RGB space, and (b) the spheres
centered at the means of the Gaussian distributions with radius twice the standard
deviation.
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A Gaussian mixture model with D Gaussian distributions is used to model

the past observations {Q1, ..., Qn}

P (Qn) =
D∑

d=1

η(Qn|µd,n, Σd,n) (2.6)

where D is the number of distributions, µd,n is the mean value of the d-th Gaussian

in the mixture at time step n, Σd,n is the covariance matrix of the d-th Gaussian

in the mixture at time step n, and η is a Gaussian probability density function

η(Q|µ, Σ) =
1

(2π)
n
2 |Σ| 12

e−
1
2
(Q−µ)T Σ−1(Q−µ) (2.7)

In our implementation, we model the flame color distribution with D = 10 Gaus-

sians. In order to lower computational cost, red, blue and green channel values

of pixels are assumed to be independent and have the same variance [77]. This

assumption results in a covariance matrix of the form:

Σd,n = σ2
dI (2.8)

where I is the 3-by-3 identity matrix.

In the training phase, each observation vector, Qn, is checked with the existing

D distributions for a possible match. In the preferred embodiment, a match is

defined as an RGB vector within 2 standard deviations of a distribution. If

none of the D distributions match the current observation vector, Qn, the least

probable distribution is replaced with a distribution with the current observation

vector as its mean value and a high initial variance.

The mean and the standard deviation values of the un-matched distributions

are kept the same. However, both the mean and the variance of the matching

distribution with the current observation vector, Qn, are updated. Let the match-

ing distribution with the current observation vector, Qn, be the d-th Gaussian

with mean µd,n and standard deviation σd,n. The mean, µd,n, of the matching

distribution is updated as:

µd,n = (1− c)µd,n−1 + cQn (2.9)

and the variance, σ2
d,n, is updated as:

σ2
d,n = (1− c)σ2

d,n−1 + c(Qn − µd,n)T (Qn − µd,n) (2.10)
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Table 2.1: The mean red, green and blue channel values and variances of ten
Gaussian distributions modeling flame color in Fig. 2.2 (b) are listed.

Distribution Red Green Blue Variance
1 121.16 76.87 43.98 101.16
2 169.08 84.14 35.20 102.77
3 177.00 104.00 62.00 100.00
4 230.42 113.78 43.71 107.22
5 254.47 214.66 83.08 100.11
6 254.97 159.06 151.00 100.08
7 254.98 140.98 141.93 100.39
8 254.99 146.95 102.99 99.57
9 255.00 174.08 175.01 101.01
10 255.00 217.96 176.07 100.78

where

c = η(Qn|µd,n, Σd,n) (2.11)

A Gaussian mixture model with ten Gaussian distributions is presented in

Fig. 2.2 (b). In this figure, spheres centered at the mean values of Gaussians

have radii twice the corresponding standard deviations. The mean red, green

and blue values and variances of Gaussian distributions in Fig. 2.2 (b) are listed

in Table 2.1.

Once flame pixel process is modeled and fixed in the training phase, the

RGB color vector of a pixel is checked whether the pixel lies within two standard

deviations of the centers of the Gaussians to determine its nature. In other words,

if a given pixel color value is inside one of the spheres shown in Fig. 2.2 (b), then

it is assumed to be a fire colored pixel. We set a binary mask, called FireColored,

which returns whether a given pixel is fire colored or not. The intersection of this

mask with Blobs formed in the first step is fed into the next step as a new binary

mask called Fire.
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2.2.3 Temporal Wavelet Analysis

The third step of our fire detection algorithm is to keep track of the frequency

history of pixels in the fire colored region and analyze the history. In order to

detect flicker or oscillations in pixels due to fire in a reliable manner, the video

capture rate should be high enough to capture high-frequency flicker in flames.

To capture 10 Hz flicker, the video should capture at least 20 frames per second

(fps). However, in some surveillance systems, the video capture rate is below 20

Hz. If the video is available at a lower capture rate, aliasing occurs but flicker due

to flames can still be observed in the video. For example, 8 Hz sinusoid appears

as 2 Hz sinusoid in a 10 fps video.

Figure 2.3: A two-stage filter bank. HPF and LPF represent half-band high-pass
and low-pass filters, with filter coefficients {−1

4
, 1

2
,−1

4
} and {1

4
, 1

2
, 1

4
}, respectively.

This filter bank is used for wavelet analysis.

Each pixel I(x, n) at location x in the image frame at time step n which

also belongs to the binary mask Fire is fed to a two stage-filter bank as shown

in Fig. 2.3. The signal Ĩn(x) is a one-dimensional signal representing the tem-

poral variations in color values of the pixel I(x, n) at location x in the n − th

image frame. Temporal wavelet analysis can be carried out using either the lu-

minance (Y component) in YUV color representation or the red component in

RGB color representation. In our implementation the red channel values of the

pixels are used. The two-channel subband decomposition filter bank is composed

of half-band high-pass and low-pass filters with filter coefficients {−1
4
, 1

2
,−1

4
} and
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{1
4
, 1

2
, 1

4
}, respectively, as shown in Fig. 2.3. The filter bank produces wavelet

subsignals dn(x) and en(x). If there is high frequency activity at pixel location

x, high-band subsignals d and e get non-zero values. However, in a stationary

pixel, the values of these two subsignals should be equal to zero or very close to

zero because of high-pass filters used in subband analysis. If the pixel is part of

a flame boundary at some time (see Fig. 2.4), then there will be several spikes

in one second due to transitions from background colors to flame colors and vice

versa. If there is an ordinary fire-colored moving object going through pixel at

location x, then there will be a single spike in one of these wavelet subsignals

because of the transition from the background pixel to the object pixel as shown

in Fig. 2.5. The number of zero crossings of the subband signals dn and en in a

few seconds can be used to discriminate between a flame pixel and an ordinary

fire colored object pixel. If this number is above some threshold, then an alarm

can be issued for this pixel.

The temporal history of the red channel of a pixel at location x = (111, 34)

which is part of a flame, and the corresponding wavelet signals are shown in

Fig. 2.4. A flicker in the red channel values of this flame pixel is obvious from the

figure. The pixel is part of a flame for image frames with time steps n=1, 2, 3, 19,

23, 24, 41 and 50. It becomes part of the background for n=12,...,17, 20, 21, 26,

27, 31,...,39, 45, 52,..., and 60. Wavelet domain subsignals dn and en reveal the

fluctuations of the pixel at location x = (111, 34) with several zero crossings. Due

to a down-sampling operation during wavelet computation, the length of wavelet

signals are halved after each stage of subband filtering. As a result, the value

of a sample in a subband signal corresponds to several samples in the original

signal, e.g., the value of d5(111, 34) corresponds to the values of Ĩ10(111, 34) and

Ĩ11(111, 34), and the value of e4(111, 34) corresponds to the values of Ĩ12(111, 34),

Ĩ13(111, 34), Ĩ14(111, 34) and Ĩ15(111, 34), in the original signal.

The temporal history of the red channel of a pixel at location x = (18, 34),

which is part of a fire colored object, and the corresponding wavelet signals are

shown in Fig. 2.5. As shown in this figure, neither the original nor the wavelet

signals exhibit oscillatory behavior. The pixel is part of a white-colored back-

ground for n=1, 2, and 3, becomes part of a fire colored object for n=4, 5, 6, 7,
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Figure 2.4: (a) Temporal variation of image pixel at location x = (111, 34), Ĩn(x).
The pixel at x = (111, 34) is part of a flame for image frames I(x, n), n=1, 2, 3,
19, 23, 24, 41 and 50. It becomes part of the background for n = 12,..., 17, 20,
21, 26, 27, 31,..., 39, 45, 52,..., and 60. Wavelet domain subsignals (b) dn and (c)
en reveal the fluctuations of the pixel at location x = (111, 34).



CHAPTER 2. FLAME DETECTION IN VISIBLE RANGE VIDEO 21

Figure 2.5: (a) Temporal history of the pixel at location x = (18, 34). It is
part of a fire-colored object for n = 4, 5, 6, 7, and 8, and it becomes part of
the background afterwards. Corresponding subsignals (b) dn and (c) en exhibit
stationary behavior for n > 8.
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and 8, then it becomes part of the background again for n > 8. Corresponding

wavelet signals dn and en do not exhibit oscillatory behavior as shown in Fig. 2.5.

Small variations due to noise around zero after the 10− th frame are ignored by

setting up a threshold.

The number of wavelet stages needed for used in flame flicker analysis is

determined by the video capture rate. In the first stage of dyadic wavelet de-

composition, the low-band subsignal and the high-band wavelet subsignal dn(x)

of the signal Ĩn(x) are obtained. The subsignal dn(x) contains [2.5 Hz, 5 Hz]

frequency band information of the original signal Ĩn(x) in 10 Hz video frame

rate. In the second stage the low-band subsignal is processed once again using a

dyadic filter bank, and the wavelet subsignal en(x) covering the frequency band

[1.25 Hz, 2.5 Hz] is obtained. Thus by monitoring wavelet subsignals en(x) and

dn(x), one can detect fluctuations between 1.25 to 5 Hz in the pixel at location x.

Flame flicker can be detected in low-rate image sequences obtained with a rate

of less than 20 Hz as well in spite of the aliasing phenomenon. To capture 10 Hz

flicker, the video should capture at least 20 frames per second (fps). However, in

some surveillance systems, the video capture rate is below 20 Hz. If the video is

available at a lower capture rate, aliasing occurs but flicker due to flames can still

be observed in the video. For example, 8 Hz sinusoid appears as 2 Hz sinusoid in a

10 fps video [87]. Aliased version of flame flicker signal is also a wide-band signal

in discrete-time Fourier Transform domain. This characteristic flicker behavior is

very well suited to be modeled as a random Markov model which is extensively

used in speech recognition systems and recently these models have been used in

computer vision applications [6].

Three-state Markov models are trained off-line for both flame and non-flame

pixels to represent the temporal behavior (cf. Fig.4.3). These models are trained

by using first-level wavelet coefficients dn(x) corresponding to the intensity values

Ĩn(x) of the flame-colored moving pixel at location x as the feature signal. A

single-level decomposition of the intensity variation signal Ĩn(x) is sufficient to

characterize the turbulent nature of flame flicker. One may use higher-order

wavelet coefficients such as, en(x), for flicker characterization, as well. However,
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this may incur additional delays in detection.

Figure 2.6: Three-state Markov models for a) flame and b) non-flame moving
flame-colored pixels.

Wavelet signals can easily reveal the random characteristic of a given signal

which is an intrinsic nature of flame pixels. That is why the use of wavelets

instead of actual pixel values lead to more robust detection of flames in video.

Since, wavelet signals are high-pass filtered signals, slow variations in the original

signal lead to zero-valued wavelet coefficients. Hence it is easier to set thresholds

in the wavelet domain to distinguish slow varying signals from rapidly changing

signals. Non-negative thresholds T1 < T2 are introduced in wavelet domain to

define the three states of the Hidden Markov Models for flame and non-flame

moving bright objects. For the pixels of regular hot objects like walking people,

engine of a moving car, etc., no rapid changes take place in the pixel values.

Therefore, the temporal wavelet coefficients ideally should be zero but due to

thermal noise of the camera the wavelet coefficients wiggle around zero. The

lower threshold T1 basically determines a given wavelet coefficient being close to

zero. The second threshold T2 indicates that the wavelet coefficient is significantly

higher than zero. When the wavelet coefficients fluctuate between values above

the higher threshold T2 and below the lower threshold T1 in a frequent manner

this indicates the existence of flames in the viewing range of the camera.
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The states of HMMs are defined as follows: at time n, if |w(n)| < T1, the

state is in S1; if T1 < |w(n)| < T2, the state is S2; else if |w(n)| > T2, the

state S3 is attained. For the pixels of regular flame-colored moving objects, like

walking people in red shirts, no rapid changes take place in the pixel values.

Therefore, the temporal wavelet coefficients ideally should be zero but due to

thermal noise of the camera the wavelet coefficients wiggle around zero. The

lower threshold T1 basically determines a given wavelet coefficient being close to

zero. The state defined for the wavelet coefficients below T1 is S1. The second

threshold T2 indicates that the wavelet coefficient is significantly higher than zero.

The state defined for the wavelet coefficients above this second threshold T2 is

S3. The values between T1 and T2 define S2. The state S2 provides hysteresis

and it prevents sudden transitions from S1 to S3 or vice versa. When the wavelet

coefficients fluctuate between values above the higher threshold T2 and below the

lower threshold T1 in a frequent manner this indicates the existence of flames in

the viewing range of the camera.

In flame pixels, the transition probabilities a’s should be high and close to each

other due to random nature of uncontrolled fire. On the other hand, transition

probabilities should be small in constant temperature moving bodies because

there is no change or little change in pixel values. Hence we expect a higher

probability for b00 than any other b value in the non-flame moving pixels model

(cf. Fig.4.3), which corresponds to higher probability of being in S1. The state

S2 provides hysteresis and it prevents sudden transitions from S1 to S3 or vice

versa.

The transition probabilities between states for a pixel are estimated during a

pre-determined period of time around flame boundaries. In this way, the model

not only learns the way flame boundaries flicker during a period of time, but also

it tailors its parameters to mimic the spatial characteristics of flame regions. The

way the model is trained as such, drastically reduces the false alarm rates.

During the recognition phase, the HMM based analysis is carried out in pixels

near the contour boundaries of flame-colored moving regions. The state sequence

of length 20 image frames is determined for these candidate pixels and fed to
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the flame and non-flame pixel models. The model yielding higher probability is

determined as the result of the analysis for each of the candidate pixel. A pixel

is called as a flame or a non-flame pixel according to the result of this analysis.

A fire mask composing of flame pixels is formed as the output of the method.

The probability of a Markov model producing a given sequence of wavelet coef-

ficients is determined by the sequence of state transition probabilities. Therefore,

the flame decision process is insensitive to the choice of thresholds T1 and T2,

which basically determine if a given wavelet coefficient is close to zero or not.

Still, thresholds can be determined using a k-means type algorithm, as well.

2.2.4 Spatial Wavelet Analysis

The fourth step of our fire detection algorithm is the spatial wavelet analysis of

moving regions containing Fire mask pixels to capture color variations in pixel

values. In an ordinary fire-colored object there will be little spatial variations in

the moving region as shown in Fig. 2.7 (a). On the other hand, there will be

significant spatial variations in a fire region as shown in Fig. 2.8 (a). The spatial

wavelet analysis of a rectangular frame containing the pixels of fire-colored moving

regions is performed. The images in Figs. 2.7 (b) and 2.8 (b) are obtained after a

single stage two-dimensional wavelet transform that is implemented in a separable

manner using the same filters explained in Subsection 2.2.3. Absolute values of

low-high, high-low and high-high wavelet subimages are added to obtain these

images. A decision parameter v4 is defined for this step, according to the energy

of the wavelet subimages:

v4 =
1

M ×N

∑

k,l

|Ilh(k, l)|+ |Ihl(k, l)|+ |Ihh(k, l)|, (2.12)

where Ilh(k, l) is the low-high subimage, Ihl(k, l) is the high-low subimage, and

Ihh(k, l) is the high-high subimage of the wavelet transform, respectively, and

M ×N is the number of pixels in the fire-colored moving region. If the decision

parameter of the fourth step of the algorithm, v4, exceeds a threshold, then it is

likely that this moving and fire-colored region under investigation is a fire region.
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(a) (b)

Figure 2.7: (a) A child with a fire-colored t-shirt, and b) the absolute sum of spa-
tial wavelet transform coefficients, |Ilh(k, l)|+|Ihl(k, l)|+|Ihh(k, l)|, of the region
bounded by the indicated rectangle.

(a) (b)

Figure 2.8: (a) Fire, and (b) the absolute sum of spatial wavelet transform co-
efficients, |Ilh(k, l)|+|Ihl(k, l)|+|Ihh(k, l)|, of the region bounded by the indicated
rectangle.
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Both the 1-D temporal wavelet analysis described in Subsection 2.2.3 and

the 2-D spatial wavelet analysis are computationally efficient schemes because a

multiplierless filter bank is used for both 1-D and 2-D wavelet transform computa-

tion [34], [45]. Lowpass and highpass filters have weights {1
4
, 1

2
, 1

4
} and {−1

4
, 1

2
, −1

4
},

respectively. They can be implemented by register shifts without performing any

multiplications.

The wavelet analysis based steps of the algorithm are very important in fire

and flame detection because they distinguish ordinary motion in the video from

motion due to turbulent flames and fire.

2.3 Decision Fusion

In this section, we describe a voting based decision fusion strategy. However,

other data fusion methods can be also used to combine the decision of four stages

of the flame and fire detection algorithm.

Voting schemes include unanimity voting, majority voting, and m-out-of-n

voting. In m-out-of-n voting scheme, an output choice is accepted if at least

m votes agree with the decisions of n sensors [60]. We use a variant of m-out-

of-n voting, the so-called T -out-of-v voting in which the output is accepted if

H =
∑

i wivi > T where the wi’s are user-defined weights, the vi’s are decisions

of the four stages of the algorithm, and T is a user-defined threshold. Decision

parameter vi can take binary values 0 and 1, corresponding to normal case and

the existence of fire, respectively. The decision parameter v1 is 1 if the pixel is

a moving pixel, and 0 if it is stationary. The decision parameter v2 is taken as

1 if the pixel is fire-colored, and 0 otherwise. The decision parameter v3 is 1 if

the probability value of flame model is larger than that of non-flame model. The

decision parameter v4 is defined in Equation (2.12).

In uncontrolled fire, it is expected that the fire region should have a non-

convex boundary. To gain a further robustness to false alarms, another step

checking the convexity of the fire region is also added to the proposed algorithm.



CHAPTER 2. FLAME DETECTION IN VISIBLE RANGE VIDEO 28

Convexity of regions is verified in a heuristic manner. Boundaries of the regions

in the Fire mask are checked for their convexity along equally spaced five vertical

and five horizontal lines using a 5 × 5 grid. The analysis simply consists of

checking whether the pixels on each line belong to the region or not. If at least

three consecutive pixels belong to the background, then this region violates the

convexity condition. A Fire mask region which has background pixels on the

intersecting vertical and/or horizontal lines, is assumed to have a non-convex

boundary. This eliminates false alarms due to match light sources, sun, etc.

2.4 Experimental Results

The proposed method, Method-2.1, is implemented on a PC with an Intel Pen-

tium 4, 2.40 GHz processor. It is tested for a large variety of conditions in

comparison with the method utilizing only the color and temporal variation in-

formation, which we call Method-2.2, described in [64]. The scheme described

in [17] is also implemented for comparison and it is called as Method 3 in the

rest of the article. The results for some of the test sequences are presented in

Table 2.2.

(a) (b)

Figure 2.9: (a) With the method using color and temporal variation only
(Method-2.2) [64], false alarms are issued for the fire colored line on the mov-
ing truck and the ground, (b) our method (Method-2.1) does not produce any
false alarms.
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Method-2.2 is successful in determining fire and does not recognize stationary

fire-colored objects such as the sun as fire. However, it gives false alarms when the

fire-colored ordinary objects start to move, as in the case of a realistic scenario.

An example of this is shown in Fig. 2.9 (a). The proposed method does not give

any false alarms for this case (Fig. 2.9 (b)). The fire-colored strip on the cargo

truck triggers an alarm in Method-2.2 when the truck starts to move. Similarly,

false alarms are issued with Method-2.2 in Movies 3, 7 and 9, although there are

no fires taking place in these videos. The moving arm of a man is detected as

fire in Movie 7 (Fig. 2.10 (c)), and a red parking car is marked as fire in Movie 9

with Method-2.2 (Fig. 2.10 (d)).

(a) (b)

(c) (d)

Figure 2.10: Sample images (a) and (b) are from Movies 7 and 9, respectively.
(c) False alarms are issued for the arm of the man with the method using color
and temporal variation only (Method-2.2) [64] and (d) on the fire-colored parking
car. Our method does not give any false alarms in such cases (see Table 2.2).

Method-2.3 gives similar detection results for fire. However, it also suffers from

inefficient analysis of the motion of fire colored objects. Fire-colored ordinary
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(a) (b)

(c) (d)

Figure 2.11: Sample images (a) and (b) are from Movies 2 and 4, respectively.
Flames are successfully detected with our method (Method-2.1) in (c) and (d).
In (c), although flames are partially occluded by the fence, a fire alarm is issued
successfully. Fire pixels are painted in bright green.
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moving objects causes Method-2.3 to give false alarms in Movies 1, 3, 7 and

9. If Method-2.1 is used, moving fire-colored ordinary objects do not cause an

alarm to be raised. This is because the cyclic movement of flames is taken into

account in our method, as well as the spatial variation in the color/brightness

values of the moving fire-colored regions. Method-2.1 successfully detects fire in

videos covering various scenarios, including partial occlusion of the flame. Sample

images showing the detected regions are presented in Fig. 2.11.

In Movie 11, a man wearing a fire-colored shirt intentionally waves his arms to

mimic the quasi-periodic flicker behavior in flames. Although all of the methods

produce false alarms in this Movie, Method 1 significantly decreases the number

of false positives relative to Methods-2.2 and 2.3.

These methods are also compared to each other in terms of computational

cost (as shown in Table 2.3). Movies in Tables 2.2 and 2.3 are all captured at

10 fps with a frame size of 320 by 240 pixels. The average processing times

per frame are 17.0 msec, 12.5 msec and 14.5 msec, for our method, Method-2.2,

and Method-2.3, respectively. Our method is computationally more demanding

due to additional wavelet analysis based steps. Since only shift and add type

operations take place when convolving signals with the wavelet filters, additional

cost is not high. Our implementation works in real-time for videos with frame

size 320 by 240 pixels, captured at 10 fps or higher in a PC.

The video clips that we tested our method contain a total of 83,745 frames in

61 sequences. In 19 of the sequences fire takes place. Our method is successful in

detecting fire in all of these sequences. This corresponds to a fire detection rate

of 1.0. A fire contour recognition rate of 0.999 is reported in [48], which corre-

sponds to a fire detection rate of 0.999. Our overall false alarm (false positive)

rate is 0.001. It is reported that non-fire contour recognition rate is 1.0 in [48]

which corresponds to a false alarm rate of 0. The video sequences containing fire

in [48] are not publicly available. Therefore we used our own data set. We also

test our method with the data set of the EC funded Context Aware Vision us-

ing Image-based Active Recognition (CAVIAR) project [8], publicly available at

URL: http://homepages.inf.ed.ac.uk/rbf/CAVIAR/. Although there are a lot of
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clips with moving fire-colored objects, none of the clips in this data set contains

fire. Our method gives no false alarms in any of these sequences.

2.5 Summary

In this chapter, an algorithm for flame detection in visible range video is devel-

oped. The algorithm not only uses color and temporal variation information, but

also characterizes flicker process in flames using HMMs trained with 1-D temporal

wavelet transform coefficients and color variation in fire-colored moving regions

using 2-D spatial wavelet transform. Methods based on only color information

and ordinary motion detection may produce false alarms in real scenes where no

fires are taking place. The experimental results show that false alarms can be

drastically reduced by developing a Markovian setting with temporal and spatial

wavelet analysis.

The method can be used for detection of fire in movies and video databases,

as well as real-time detection of fire. It can be incorporated into a surveillance

system monitoring an indoor or outdoor area of interest for early detection of

fire.
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Table 2.2: Comparison of the proposed method (Method-2.1), the method based
on color and temporal variation clues only (Method-2.2) described in [64], and
the method proposed in [17] (Method-2.3).

Number of frames Number of false
Video Number of frames detected as fire positive frames Description

sequences with fire Method Method
2.1 2.2 2.3 2.1 2.2 2.3

Movie 1 0 0 46 13 0 46 13
A fire-colored
moving truck

Movie 2 5 5 5 5 0 0 0 Fire in a garden

Movie 3 0 0 7 5 0 7 5
A car leaving
a fire-colored
parking lot

Movie 4 37 37 44 47 0 7 10 A burning box

Movie 5 64 64 88 84 0 24 20 A burning pile
of wood

Movie 6 41 41 56 50 0 15 9
Fire behind a

man with a fire
colored shirt

Movie 7 0 0 14 7 0 14 7 Four men walking
in a room

Movie 8 18 18 18 18 0 0 0
Fire in

a fireplace

Movie 9 0 0 15 5 0 15 5
A crowded
parking lot

Movie 10 0 0 0 0 0 0 0
Traffic on
a highway

Movie 11 0 2 107 86 2 107 86
Dancing man

with
fire-colored shirt
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Table 2.3: Time performance comparison of Methods 2.1, 2.2, and 2.3 for the
movies in Table 2.2. The values are the processing times per frame in milliseconds.

Videos Method-2.1 Method-2.2 Method-2.3
Movie 1 16 12 14
Movie 2 17 12 14
Movie 3 17 12 14
Movie 4 16 12 14
Movie 5 18 13 15
Movie 6 18 13 15
Movie 7 17 13 15
Movie 8 18 13 15
Movie 9 16 12 14
Movie 10 17 12 14
Movie 11 17 12 14



Chapter 3

Flame Detection in

Infra-red (IR) Video

In this chapter, a novel method to detect flames in infra-red (IR) video is de-

scribed. The chapter begins with the previous work in the literature related with

IR video based fire detection. IR cameras produce a single channel video and

flames and other hot objects appear as bright objects. Therefore, color infor-

mation in regular video cannot be used. However, brightness information is an

important clue for fire detection. In the subsequent sections, the proposed flame

detection method in IR video is presented. The method essentially consists of

spatial analysis of flame regions in wavelet domain, and temporal modeling of

flame pixels using hidden Markov models (HMMs). In Section 3.2.1, the spatial

image analysis and feature extraction method based on wavelet analysis is de-

scribed. In Section 3.2.2, temporal video analysis and HMM based modeling of

the flicker process is presented. Simulation examples are presented in Section 4.3.

3.1 Previous Work

Current fire and flame detection algorithms in regular video [64], [17], [84], [87]

use color information in video. They are not robust in outdoor applications,

35



CHAPTER 3. FLAME DETECTION IN INFRA-RED (IR) VIDEO 36

for example, they may produce false alarms to reddish leaves flickering in the

wind and reflections of periodic warning lights. IR cameras can be used to realize

robust systems. However IR cameras and systems are more expensive than regular

cameras.

A bright-looking object in IR video exhibiting rapid time-varying contours is

an important sign of presence of flames in the scene. This time-varying behavior

is not only directly observable in the contours of a fire region but also observable

as variations of color channel values of the pixels in regular video. On the other

hand, entire fire region appears as a flat white region in IR cameras operating in

white-hot mode.

As pointed out in Chapter 2, turbulent flames flicker with a frequency of

around 10 Hz [14] and [1]. Various other flame flicker values were reported for

different fuel types in [5] and [42], such as 11.7 Hz and 12.5 Hz. The flicker process

is modeled using Markov models as in regular video. The use of infra-red (IR)

cameras instead of a regular camera provides further robustness to imaging based

fire detection systems especially for fires with little radiance in visible spectrum,

e.g. alcohol and hydrogen fires which are common in tunnel collisions. Unfor-

tunately, the algorithms developed for regular video cannot be used in IR video

due to the lack of color information and there is almost no spatial variation or

very little texture information in fire regions in IR video as in most hot objects.

Therefore, new image analysis techniques have to be developed to automatically

detect fire in IR videos.

In IR video, boundaries of moving bright regions are estimated in each IR

image frame. It is easier to estimate hot object boundaries in IR video to contour

estimation in color video. A one-dimensional curve (1-D) representing the dis-

tance to the boundary from the center of mass of the region is extracted for each

moving hot region. The wavelet transform of this 1-D curve is computed and the

high frequency nature of the contour of the fire region is determined using the

energy of the wavelet signal. This spatial domain clue replacing the spatial color

variance information in regular video is combined with temporal clues to reach a

final decision.
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The proposed algorithm is designed for ranges up to 30 meters. After this

range, flame flicker is hard to observe and object contours cannot be estimated

accurately.

3.2 Fire and Flame Behavior in IR Video

Most IR imaging sensors provide a measure of the heat distribution in the scene

in a range of wavelengths and each pixel has a single value. Usually, hot (cold)

objects in the scene are displayed as bright (dark) regions in white-hot mode in

IR cameras. Therefore fire and flame pixels appear as local maxima in an IR

image. If a relatively bright region moves in the captured video then it should

be marked as a potential region of fire in the scene monitored by the IR camera.

However, an algorithm based on only motion and brightness information will

produce many false alarms because vehicles, animals, and people are warmer than

the background and they also appear as bright objects. In the proposed approach,

in addition to motion and relative brightness information object boundaries are

analyzed both spatially (intra-frame) and temporally (inter-frame).

Boundaries of uncontrolled fire regions in an image frame are obviously ir-

regular. On the other hand, almost all regular objects and people have smooth

and stationary boundaries. This information is modeled using wavelet domain

analysis of moving object contours which is described in the next subsection. One

can reduce the false alarms which may be due to ordinary moving hot objects

by carrying out temporal analysis around object boundaries to detect random

changes in object contours. This analysis is described in Section 3.2.2.

3.2.1 Wavelet Domain Analysis of Object Contours

Moving objects in IR video are detected using the background estimation method

developed by Collins et al. [19]. This method assumes that the camera is sta-

tionary. Moving pixels are determined by subtracting the current image from the
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background image and thresholding. A recursive adaptive threshold estimation

is described in [19] as well. Other methods can be also used for moving object

estimation. After moving object detection, it is checked whether the object is

hotter than the background, i.e., it is verified if some of the object pixels are

higher in value than the background pixels.

Hot objects and regions in IR video can be determined in moving cameras as

well by estimating local maxima in the image. Contours of these high temperature

regions can be determined by region growing.

The next step of the proposed method is to determine the center of mass

of the moving bright object. A one-dimensional (1-D) signal x(θ) is obtained

by computing the distance from the center of mass of the object to the object

boundary for 0 ≤ θ < 2π. In Fig. 3.1, two FLIR (forward looking infra-red) image

frames are shown. Example feature functions for walking man pointed with an

arrow and the fire region in Fig. 3.1 are shown in Fig. 4.5 for 64 equally spaced

angles x[l] = x(lθs), θs = 2π
64

. To determine the high-frequency content of a curve,

we use a single scale wavelet transform shown in Fig. 4.2. The feature signal x[l]

is fed to a filterbank shown in Fig. 4.2 and the low-band signal

c[l] =
∑
m

h[2l −m]x[m] (3.1)

and the high-band subsignal

w[l] =
∑
m

g[2l −m]x[m] (3.2)

are obtained. Coefficients of the lowpass and the highpass filters are h[l] =

{1
4
, 1

2
, 1

4
} and g[l] = {−1

4
, 1

2
,−1

4
}, respectively [34], [11], [45].

The absolute values of high-band (wavelet) w[l] and low-band c[l] coefficients

of the fire region and the walking man are shown in Figs. 4.6 and 4.7, respec-

tively. The high-frequency variations of the feature signal of the fire region is

clearly distinct from that of the man. Since regular objects have relatively smooth

boundaries compared to flames, the high-frequency wavelet coefficients of flame

boundary feature signals have more energy than regular objects. Therefore, the
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Figure 3.1: Two relatively bright moving objects in FLIR video: a) fire image,
and b) a man (pointed with an arrow). Moving objects are determined by the
hybrid background subtraction algorithm of [19].



CHAPTER 3. FLAME DETECTION IN INFRA-RED (IR) VIDEO 40

0 /2 3  /2 2
0

20

40

60

80
a) Man Contour

Angle −    (rad)

di
st

an
ce

 (
px

)

0 /2 3  /2 2
0

20

40

60

80
b) Fire Contour

Angle −    (rad)

di
st

an
ce

 (
px

)

π π 

π π 

π π 

π π 

θ 

θ 

Figure 3.2: Equally spaced 64 contour points of the a) walking man, and b) the
fire regions shown in Fig. 3.1.

Figure 3.3: Single-stage wavelet filter bank. The high-pass and the low-pass filter
coefficients are {−1

4
, 1

2
,−1

4
} and {1

4
, 1

2
, 1

4
}, respectively.
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ratio of the wavelet domain energy to the energy of the low-band signal is a good

indicator of a fire region. This ratio is defined as

ρ =

∑
l |w[l]|∑
l |c[l]|

(3.3)

The likelihood of the moving region to be a fire region is highly correlated with the

parameter ρ. Higher the value of ρ, higher the probability of the region belonging

to flame regions.
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Figure 3.4: The absolute values of a) high-band (wavelet) and b) low-band coef-
ficients for the fire region.

A threshold ρT for ρ was experimentally estimated off-line. During real-time

analysis, regions for which ρ > ρT are first determined. Such regions are possible

fire regions. In order not to miss any fire region, a low threshold value for ρT

is selected. Therefore, temporal flicker analysis should be carried out in these



CHAPTER 3. FLAME DETECTION IN INFRA-RED (IR) VIDEO 42

5 10 15 20 25 30
0

5

10

15
(a) Man Contour Wavelet Coefs.

index n

|w
|

5 10 15 20 25 30
0

20

40

60

80
(b) Man Contour Low−band Coefs.

index n

|c
|

Figure 3.5: The absolute a) high-band (wavelet) and b) low-band coefficients for
the walking man.
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regions to reach a final decision. Flicker detection process is described in the

next subsection.

3.2.2 Modeling Temporal Flame Behavior

It was reported in mechanical engineering literature that turbulent flames flicker

with a frequency of 10 Hz [1]. In [48], the shape of fire regions are represented in

Fourier domain. Since, Fourier Transform does not carry any time information,

FFTs have to be computed in windows of data and temporal window size and the

peak or energy around 10 Hz is very critical for flicker detection. If the window

size is too long then one may not get enough peaks in the FFT data. If it is

too short then one may completely miss flicker and therefore no peaks can be

observed in the Fourier domain. Furthermore, one may not observe a peak at

10 Hz but a plateau around it, which may be hard to distinguish from the Fourier

domain background.

Another problem is that one may not detect periodicity in fast growing uncon-

trolled fires because the boundary of fire region simply grows in video. Actually,

the fire behavior is a wide-band random activity below 15 Hz and a random pro-

cess based modeling approach is naturally suited to characterize the rapid time-

varying characteristic of flame boundaries. Broadbent [5] and Huang et al. [42]

independently reported different flicker frequency distributions for various fuel

types. In general, a pixel especially at the edge of a flame becomes part of the

fire and disappears in the background several times in one second of a video at

random. In fact, we analyzed the temporal characteristics of the red channel

value of a pixel at the boundary of a flame region in color-video clips recorded at

10 fps and 25 fps. We also analyzed the temporal characteristics of the intensity

value of a pixel at the boundary of a flame region in an IR video clip recorded

at 10 fps. We obtained the flicker frequency distributions shown in Fig. 3.6 for

10 fps color video, 25 fps color video and 10 fps IR video, respectively. We as-

sumed that the flame flicker behavior is a wide-band random activity below 15 Hz

for all practical purposes. This is the basic reason behind our stochastic model.



CHAPTER 3. FLAME DETECTION IN INFRA-RED (IR) VIDEO 44

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

500

1000

Frequency (Hz)

A
bs

. D
F

T
 c

oe
f.

Flicker Frequency Distribution − 10 fps

−12.5 −10 −5 0 5 10 12.5
0

500

1000

Frequency (Hz)

A
bs

. D
F

T
 c

oe
f.

Flicker Frequency Distribution − 25 fps

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

500

1000

Frequency (Hz)

A
bs

. D
F

T
 c

oe
f.

Flicker Frequency Distribution − 10 fps/IR

Figure 3.6: Flicker frequency distributions for a) 10 fps color video, b) 25 fps
color video and c) 10 fps IR video. These frequency distributions were obtained
by analyzing the temporal variations in the red channel value of a pixel at the
boundary of a flame region in color-video clips recorded at 10 fps and 25 fps and
intensity value of a pixel at the boundary of a flame region in an IR video clip
recorded at 10 fps, respectively.
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Similar to the discussions in Chapter 2, flame flicker process in IR video is

characterized by a random Markov model. As in the previous chapter, three-

state Markov models are trained off-line for both flame and non-flame pixels to

represent the temporal behavior (cf. Fig. 4.3). These models are trained using a

feature signal which is defined as follows: Let Ik(n) be the intensity value of the

k − th pixel at frame n. The wavelet coefficients of Ik are obtained by the same

structure shown in Fig. 4.2, but filtering is implemented temporally.

Figure 3.7: Three-state Markov models for a) flame and b) non-flame moving
pixels.

The states of HMMs are defined as follows: at time n, if |w(n)| < T1, the

state is in S1; if T1 < |w(n)| < T2, the state is S2; else if |w(n)| > T2, the state

S3 is attained. For the pixels of regular hot objects like walking people, engine

of a moving car, etc., no rapid changes take place in the pixel values. When the

wavelet coefficients fluctuate between values above the higher threshold T2 and

below the lower threshold T1 in a frequent manner this indicates the existence of

flames in the viewing range of the IR camera.

The transition probabilities between states for a pixel are estimated during a

pre-determined period of time around flame boundaries. During the recognition

phase, the HMM based analysis is carried out in pixels near the contour bound-

aries of bright moving regions whose ρ values exceed ρT . The state sequence of
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length 20 image frames is determined for these candidate pixels and fed to the

flame and non-flame pixel models. The model yielding higher probability is de-

termined as the result of the analysis for each of the candidate pixel. A pixel is

called as a flame or a non-flame pixel according to the result of this analysis. A

fire mask composing of flame pixels is formed as the output of the method.

3.3 Experimental Results

The proposed method was implemented in a personal computer with an AMD

AthlonXP 2000+ 1.66GHz processor. The HMMs used in the temporal analysis

step were trained using outdoor IR video clips with fire and ordinary moving

bright objects like people and cars. Video clips have 236577 image frames with

160 by 120 pixel resolution. All of the clips are captured at 10 fps using a cooled

long-wave IR camera with a spectral range of 8-12 µm. This camera has a longer

range than 30 meters up to which distance the proposed algorithm is developed

for. We cannot detect a starting fire in longer distances using the proposed

algorithm, because flame flicker cannot be observed in long distances.

There are moving cars and walking people in most of the test video clips.

Image frames from some of the clips are shown in Figs. 3.8 and 3.9. To increase

the number of videos in experimental studies, black and white video clips are also

used.

We used some of our clips for training the Markov models. The fire model was

trained with fire videos and the other model was trained with ordinary moving

bright objects. The remaining 48 video clips were used for test purposes. Our

method yields no false positives in any of the IR test clips.

A modified version of a recent method by Guillemant and Vicente [36] for

real-time identification of smoke in black and white video is implemented for

comparison. This method is developed for forest fire detection from watch tow-

ers. In a forest fire, smoke rises first, therefore, the method was tuned for smoke

detection. Guillemant and Vicente based their method on the observation that
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Figure 3.8: Image frames from some of the test clips. a), b) and c) Fire regions
are detected and flame boundaries are marked with arrows. d), e) and f) No false
alarms are issued for ordinary moving bright objects.
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Figure 3.9: Image frames from some of the test clips with fire. Pixels on the
flame boundaries are successfully detected.
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the movements of various patterns like smoke plumes produce correlated tempo-

ral segments of gray-level pixels, which they called as temporal signatures. For

each pixel inside an envelope of possible smoke regions, they recovered its last d

luminance values to form a point P = [x0, x1, ..., xd−1] in d-dimensional “embed-

ding space”. Luminance values were quantized to 2e levels. They utilized fractal

indexing using a space-filling Z-curve concept whose fractal rank is defined as:

z(P ) =
e−1∑
j=0

d−1∑

l=0

2l+jdxj
l (3.4)

where xj
l is the j − th bit of xl for a point P . They defined an instantaneous ve-

locity for each point P using the linked-list obtained according to Z-curve fractal

ranks. After this step, they estimated a cumulative velocity histogram (CVH)

for each possible smoke region by including the maximum velocity among them

and made smoke decisions about the existence of smoke according to the stan-

dard deviation, minimum average energy, and shape and smoothness of these

histograms [36].

Our aim is to detect flames in manufacturing and power plants, large audito-

riums, and other large indoor environments. So, we modified the method in [36]

similar to the approach presented in Sec. 2.2. For comparison purposes, we re-

placed our wavelet-based contour analysis step with the CVH based method and

leave the rest of the algorithm as proposed. We formed two three-state Markov

models for flame and non-flame bright moving regions. These models were trained

for each possible flame region using wavelet coefficients of CVH standard devia-

tion values. States of HMMs were defined as in Sec. 3.2.2.

Comparative detection results for some of the test videos are presented in Ta-

ble 3.1. The second column lists the number of frames in which flames exist in

the viewing range of the camera. The third and fourth columns show the number

of frames in which flames were detected by the modified CVH method explained

in the above paragraph, and our method, respectively. Our method detected

flame boundaries that have irregular shapes both temporally and spatially. Both

methods detected fire in video clips V3–V6 and V8–V12 which contain actual

fires indoor and outdoor. In video clip V3, flames were behind a wall most of the
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time. The distance between the camera and fire ranges between 5 to 50 meters

in these video clips. Video clips V1, V2, and V7 do not contain any fire. There

are flames and walking people in the remaining clips. Some flame frames are

missed by both methods but this is not an important problem at all, because

the fire was detected in the next frame or the frame after the next one. The

method using CVH detected fire in most of the frames in fire containing videos,

as well. However, it yielded false alarms in clips V1, V7 and V9–V12, in which

there were a group of people walking by a car and around fire place. Proposed

method analyzes the contours of possible fire regions in wavelet domain. This

makes it more robust to slight contour changes than the modified method which

basically depends on the analysis of motion vectors of possible fire regions.

Flames of various burning materials have similar yet different temporal and

spatial characteristics. For example, oil flame has a peak flicker frequency around

15 Hz whereas it is around 5 Hz for coal flame (cf. Fig. 2 in [5]). In fact, flames

of the same burning material under different weather/wind conditions have also

different temporal and spatial characteristics. What is common among various

flame types is the wide-band random nature in them causing temporal and spatial

flicker. Our method exploits this stochastic nature. We use wavelet based feature

signals obtained from flickering flames to train and test our models in order to get

rid of the effects of specific conditions forming the flames. The wavelet domain

feature signals capture the condition-independent random nature of flames.

To verify the performance of our method with respect to flames of different

materials, we set up the following experiment:

1. We train the model with ‘paper’ fire and test it with both ‘paper’ and

‘paper + alcohol’ fires.

2. We train the model with ‘paper + alcohol’ fire and test it with both ‘paper’

and ‘paper + alcohol’ fires.

The results of this experiment for some of the test clips are presented in

Table 3.2. The results show that the method has similar detection rates for

different fires when trained with different flame types.
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Table 3.1: Detection results for some of the test clips. In the video clip V3, flames
are hindered by a wall for most of the time.

Number of frames Number of false
Video Number of frames in which flames detected positive frames
clips with flames CVH Method Our Method CVH Method Our Method
V1 0 17 0 17 0
V2 0 0 0 0 0
V3 71 42 63 0 0
V4 86 71 85 0 0
V5 44 30 41 0 0
V6 79 79 79 0 0
V7 0 15 0 15 0
V8 101 86 101 0 0
V9 62 52 59 8 0
V10 725 510 718 54 0
V11 1456 1291 1449 107 0
V12 988 806 981 19 0

The proposed method was also tested with regular video recordings in com-

parison with the modified version of the method in [36] and the fire detection

method described in [87]. The method in [87] uses frequency subband analysis to

detect 10 Hz flame flicker, instead of using HMMs to capture the random tempo-

ral behavior in flames. Results for some of the clips are presented in Table 3.3.

The clip V17 does not contain any fire, either. However it leads to false alarms

because a man with bright fire colored shirt dances in front of the camera to fool

the algorithm. This man would not cause any false alarms if an infrared camera

were used instead of a regular visible range camera.

It should also be noted that, the proposed method is computationally more

efficient than [36] because it is mostly based on contour analysis of the bright

moving objects. Average processing time per frame for the proposed method is

5 msec as shown in Table 3.3.
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Table 3.2: Fire detection results of our method when trained with different flame
types.

Number of frames
Video Flame Number of frames in which flames detected by
clips type with flames Our Method trained with

Paper fire Paper+alcohol fire
V9 Paper 62 60 58
V10 Paper 725 722 722
V11 Paper+alcohol 1456 1449 1453
V12 Paper+alcohol 993 988 991
V13 Paper+alcohol 1434 1426 1430
V14 Paper 999 996 995

Table 3.3: Comparison of the proposed method with the modified version of the
method in [36] (CVH method) and the fire detection method described in [87]
for fire detection using a regular visible range camera. The values for processing
times per frame are in milliseconds.

Number of frames Processing time
Video Number of frames in which flames detected per frame (msec)
clips with flames Our Method CVH Our Method CVH

Method in [87] Method Method in [87] Method
V15 37 31 37 26 5 16 11
V16 18 13 18 8 5 17 10
V17 0 2 9 7 4 16 10

3.4 Summary

A novel method to detect flames in IR video is developed. The algorithm uses

brightness and motion clues along with a temporal and a contour analysis in

wavelet domain. The main contribution of the method is the utilization of hidden

Markov models trained using temporal wavelet domain information to detect

random flicker process. The high frequency behavior of flame region boundaries

are analyzed using a wavelet based contour analysis technique. The experimental

results indicate that when the fire falls into the viewing range of an IR camera,

the proposed method is successful in detecting the flames without producing false
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alarms in all the examples that we tried. The method can be used for both indoor

and outdoor early fire detection applications.



Chapter 4

Short Range Smoke Detection in

Video

Smoldering smoke appears before flames in most fires. In addition, the source

of the fire and flames cannot always fall into the field of view of a camera or

a sensor monitoring an area of interest. Long Wave Infra-Red (LWIR) cameras

and pyro-electric infra-red (PIR) sensors which are used in flame detection are

not suitable for smoke detection. Contrary to the common belief, smoke cannot

be visualized in 8 − 12µm range LWIR cameras and sensors including Forward

Looking Infra-Red (FLIR) cameras and PIR sensors [76, 44]. However, smoke of

an uncontrolled fire can be easily observed by a visible range camera even if flames

are not visible. This results in early detection of fire before it spreads around.

This is vital for fire alarm systems when large and open areas are monitored.

A novel method to detect smoke in video is described in this chapter. The

chapter begins with the introduction of the video smoke detection method. In

Section 4.3, contour analysis is described. Experimental results are presented in

Chapter 4.4.

54
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4.1 Detection Algorithm

The flames of a fire may not always fall into the visible range of the camera

monitoring a scene covering large areas like plane hangars or open spaces. Fire

detection systems should tackle with such situations by successful detection of

smoke without flame. In this chapter, temporal and spatial wavelet analysis as

well as an analysis of contours of possible smoke regions are carried out for smoke

detection.

Smoke gradually smoothen the edges in an image. This characteristic prop-

erty of smoke is a good indicator of its presence [52], [10]. Edges in an image

correspond to local extrema in wavelet domain. Degradation of sharpness in the

edges result in a decrease in the values of these extrema. However, these extrema

values corresponding to edges do not totally boil down to zero when there is

smoke in the scene. In fact, they simply loose some of their energy but they still

stay in their original locations, occluded partially by the semi-transparent smoke.

Independent of the fuel type, smoke naturally decrease the chrominance chan-

nels U and V values of pixels. Apart from this, as discussed in the previous

chapters, both flame and smoke are turbulent phenomena. Smoke regions have

time-varying boundaries similar to flame regions. Smoke partially covers and

uncovers background objects especially at the early stages of fire. Therefore, a

Markov model based modeling of turbulent smoke behavior is appropriate as in

flame detection. However, smoke boundaries move with a lower frequency at the

early stages of fire.

In addition to color and turbulent behavior analysis, boundaries of smoke

regions are also estimated in each video image frame. A one-dimensional curve

(1-D) representing the distance to the boundary from the center of mass of the

region is extracted for each smoke region. The wavelet transform of this 1-D

curve is computed and the high frequency nature of the contour of the smoke

region is determined using the energy of the wavelet signal. This spatial domain

clue is also combined with temporal clues to reach a final decision.
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Smoke detection algorithm consists of five steps: (i) moving pixels or regions

in the current frame of a video are determined, (ii) the decrease in high frequency

content corresponding to edges in these regions are checked using spatial wavelet

transform. If edges loose their sharpness without vanishing completely (iii) the

U and V channel values corresponding to edge pixels are checked, (iv) turbulent

behavior analysis is carried out by HMMs which use temporal wavelet transform

coefficients. Finally, (v) object contours are analyzed in wavelet domain.

Moving objects in video are detected using the background estimation method

developed by Collins et al. [19]. This method assumes that the camera is sta-

tionary. Moving pixels are determined by subtracting the current image from the

background image and thresholding. A recursive threshold estimation is described

in [19].

In order to detect smoke, it is necessary to analyze moving regions in video

to determine if the motion is due to smoke or an ordinary moving object. Smoke

obstructs the texture and edges in the background of an image. Since edges

and texture contribute to the high frequency information of the image, energies

of wavelet sub-images drop due to smoke in an image sequence. Based on this

fact we monitor wavelet coefficients as in Fig. 4.1 and we detect decreases in

local wavelet energy, and detect individual wavelet coefficients corresponding to

edges of objects in background whose values decrease over time in video. It is

also possible to determine the location of smoke using the wavelet sub-images as

shown in Fig. 4.1.

Let Iv(x, y) = |ILH(x, y)| + |IHL(x, y)| + |IHH(x, y)| represent a composite

image containing high-frequency information corresponding to the image frame

I obtained by a single-level 2-D discrete wavelet transformation operation. In

order to make the analysis faster, this sub-band image is divided into small

blocks of size (K1, K2) and the energy eI(l1, l2) value of each block is computed

as eI(l1, l2) =
∑

(x,y)∈Ri
Iv(x + l1K1, y + l2K2) where Ri represents a block of

size (K1, K2) in the wavelet sub-image. If the wavelet sub-images are computed

from the luminance (Y) image, then there is no need to include the chrominance

wavelet images. If wavelet transforms of red (R), green (G), and blue (B) color
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Figure 4.1: Image frame with smoke and its single level wavelet sub-images.
Blurring in the edges is visible. The analysis is carried out in small blocks.

images are computed, then the energy value, e(l1, l2), should be computed using

all wavelet sub-images of the R, G, and B color images. In our implementation,

sub-images are computed from the luminance image only and the block size is

taken as 8 by 8 pixels.

Let B represent a background image built-up in time according to the IIR-type

background update filter described in Section 2.2.1. Let Bv(x, y) = |BLH(x, y)|+
|BHL(x, y)|+ |BHH(x, y)| represent a composite image containing high-frequency

information corresponding to the background image B obtained by the same

single-level 2-D discrete wavelet transformation operation as for Iv(x, y). In a

similar manner, local energy values, eB(l1, l2), of the composite image for the back-

ground image can be computed as eB(l1, l2) =
∑

(x,y)∈Ri
Bv(x + l1K1, y + l2K2)

where Ri represents a block of size (K1, K2) in the wavelet sub-image of the

background.

These local energy values, eI(l1, l2) and eB(l1, l2), corresponding to current

and background images are compared with each other. If there is a decrease in

energy value eB(l1, l2) of a certain block at location (l1, l2), then this means that

the texture or edges of the scene monitored by the camera no longer appear as

sharp in the current image of the video, as they used to be. Therefore, the image

region in the viewing range of the camera corresponding to (l1, l2)-th block could

be covered with smoke. One can set up thresholds for the comparison. If a certain

local background energy value eB(l1, l2) drops below a pre-determined threshold,
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a warning may be issued.

It is also well-known that wavelet sub-images contain the edge information

of the original image. Edges produce local extrema in wavelet sub-images [10].

Wavelet sub-images LH, HL and HH contains horizontal, vertical and diagonal

edges of the original image, respectively. If smoke covers one of the edges of

the original image then the edge initially becomes less visible and after some

time it may disappear from the scene as smoke gets thicker. Let the wavelet

coefficient IHL(x, y) be one of the wavelet coefficients corresponding to the edge

covered by smoke. Initially, its value decreases due to the reduced visibility,

and in subsequent image frames it becomes either zero or close to zero whenever

there is very little visibility due to thick smoke. Therefore locations of the edges

of the original image is determined from the significant extrema of the wavelet

transform of the background image in the proposed method. Slow fading of a

wavelet extrema is an important clue for smoke detection. If the values of a

group of wavelet coefficients along a curve corresponding to an edge decrease in

value in consecutive frames, then this means that there is less visibility in the

scene. In turn, this may be due to the existence of smoke.

An instantaneous disappearance or appearance of a wavelet extremum in the

current frame cannot be due to smoke. Such a change corresponds to an ordinary

moving object covering an edge in the background or the boundary of a moving

object and such changes are ignored.

Color information is also used for identifying smoke in video as the third step.

Initially, when smoke starts to expand, it is semi-transparent. Consequently, color

values of the pixels within semi-transparent smoke covered image regions decrease

with comparable rates. This in turn results in the preservation of the direction of

the vector defined by the RGB channel values. This is another clue for differenti-

ating between smoke and an ordinary moving object. By itself, this information

is not sufficient because shadows of moving objects also behave similarly. As

smoke gets thicker, however, the resemblance of the current image frame and the

background image decreases. The chrominance values U and V of the candidate

smoke pixels in the current frame gets smaller values than their corresponding
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Figure 4.2: Single-stage wavelet filter bank.

values in the background image.

The turbulent characteristic of smoke is also used as an additional informa-

tion. The candidate regions are checked whether they continuously appear and

disappear over time. In general, a pixel especially at the edge of a smoke becomes

part of smoke and disappears in the background several times in one second of a

video at random. This characteristic behavior is very well suited to be modeled

as a random Markov model.

Similar to flame detection methods presented in the previous chapters, three-

state Markov models are temporally trained for both smoke and non-smoke pixels

(cf.Fig.4.3) using a wavelet based feature signal. These models are trained using

a feature signal which is defined as follows: Let I(x, n) be the intensity value of

a pixel at location x in the image frame at time step n. The wavelet coefficients

of I are obtained by the filter bank structure shown in Fig.4.2. Non-negative

thresholds T1 < T2 introduced in wavelet domain, define the three states of the

hidden Markov models for smoke and non-smoke moving objects. At time n,

if |w(n)| < T1, the state is in F1; if T1 < |w(n)| < T2, the state is F2; else

if |w(n)| > T2, the state Out is attained. The transition probabilities between

states for a pixel are estimated during a pre-determined period of time around

smoke boundaries. In this way, the model not only learns the turbulent behavior

of smoke boundaries during a period of time, but also it tailors its parameters to

mimic the spatial characteristics of smoke regions.
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Figure 4.3: Three-state Markov models for smoke(left) and non-smoke moving
pixels.

4.2 Wavelet Domain Analysis of Object Con-

tours

In addition to temporal and color analysis, contours of possible smoke regions

are further analyzed. For this purpose, the centers of masses of the moving

objects are determined. A one dimensional (1-D) signal is obtained by computing

the distance from the center of mass of the object to the object boundary for

0 ≤ θ < 2π. In Fig. 4.4, two image frames are shown. Example feature functions

of 64 equally spaced angles for moving vehicle and the fire region in Fig. 4.4 are

shown in Fig. 4.5. The high-frequency variations of the feature signal of smoke

region is clearly distinct from that of the car and lights.

To determine the high-frequency content of a curve, we use a single scale

wavelet transform shown in Fig. 4.2. The absolute wavelet (w) and low-band (c)

coefficients of smoke region and the moving car are shown in Figs. 4.6 and 4.7,

respectively. The ratio of the wavelet domain energy to the energy of the low-band

signal is a good indicator of a smoke region. This ratio is defined as ρ =
∑

n |w[n]|∑
n |c[n]| .

The likelihood of the moving region to be a smoke region is highly correlated with

the parameter ρ.
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Figure 4.4: Two moving objects in video: smoke image (top), and a vehicle
(bottom). The object boundaries are determined by the background subtraction
algorithm.
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Figure 4.5: Equally spaced 64 contour points of smoke (top) and the vehicle
regions (bottom) shown in Fig.4.4.
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Figure 4.6: The absolute a) wavelet and b) low-band coefficients for the smoke
region.
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Figure 4.7: The absolute a) wavelet and b) low-band coefficients for the vehicle.
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4.3 Experimental Results

The proposed method (Method-4.1) is implemented in a PC with an AMD

AthlonXP 2000+ 1.66GHz processor and tested for a large variety of conditions

including real-time and off-line videos containing only smoke, both flame and

smoke, and videos with no smoke or flame.

It is observed that, the proposed method is suitable for detection of smoke

in a range of up to 30m to the camera. This is due to the fact that as the

distance increases, the turbulent movements in smoke regions start to disappear

and become unobservable after a certain point. It is also hard to estimate the

contours of smoke regions at longer distances.

The computational cost of the wavelet transform is low. The filter-bank in

Fig. 4.2 have integer coefficient low and high-pass Lagrange filters. The same

filters are used for a single level wavelet decomposition of image frames in the

spatial wavelet analysis step and also for contour analysis. Smoke detection is

achieved in realtime. The processing time per frame is about 5 msec for frames

with sizes of 160 by 120 pixels.

Detection results for some of the test sequences are presented in Table 4.1.

Smoke is successfully detected in all of the shots containing smoke. No false

alarms are issued in live tests and off-line videos recorded in the day time. False

alarms are eliminated also for the videos recorded in the night with the help of

the contour analysis. A false alarm is issued with the method in [86], Method-4.2,

in Movie 9 which is recorded at night. A parking car is captured from its front in

this video. The driver intentionally varies the intensity of the front lights of the

car. The light beams directed towards the camera at night defines artificial edges

around them. These edges appear and disappear continuously as the intensity

of the lights change. The U,V channel values of the pixels decrease as the light

intensities are lowered, since everywhere in the scene is dark other than the car

lights. In this way, car lights at night mimic smoke characteristics in the day

time and a false alarm is issued using Method-4.2. However, using the method

proposed in this chapter (Method-4.1), this false alarm is eliminated, because
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the contour of the moving region defined by the car lights does not possess high

frequency characteristics as in a smoke region.

Proposed smoke detection method, Method-4.1, is also compared with the fire

detection method presented in [87], Method-4.3, in videos containing both smoke

and flame. The comparison results in some of the test sequences are presented

in Table 4.2. At the early stages of fire, smoke is released before flames become

visible. Method-4.1 successfully detects smoke in such situations earlier than

Method-4.3. Hence, early detection of fire is possible with the proposed smoke

detection method. In Movies 11 and 12, flames are not in the viewing range of

the camera. A fire detection system without smoke detection capability fails in

detecting the fire before it spread around.

Table 4.1: Detection results of Method-4.1 and Method-4.2 for some live and
off-line videos.

Number of Shots
Video Number of shots detected as Smoke Description

Sequences with smoke Method-4.1 Method-4.2
Movie 1 0 0 0 Smoke-colored parking car
Movie 2 5 5 5 Fire in a garden
Movie 3 5 5 5 Fire in a garden in snow
Movie 4 7 7 7 A burning box
Movie 5 6 6 6 A burning pile of woods
Movie 6 3 3 3 Fire in a waste-bin in the garden

monitored from an indoor camera
Movie 7 0 0 0 Three men walking in a room
Movie 8 8 8 8 Fire in a garden
Movie 9 0 0 1 A parking car in the night

4.4 Summary

In this chapter, a novel method for detecting short range smoke in visible range

video is developed. The algorithm is mainly based on determining the edge

regions whose wavelet sub-band energies decrease with time and wavelet based
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Table 4.2: Smoke and flame detection time comparison of Method-4.1 and
Method-4.3, respectively. Smoke is an early indicator of fire. In Movies 11 and
12, flames are not in the viewing range of the camera.

Video Method Detection time Description
Sequences (sec.)
Movie 10 Method-4.1 3 Fire in a garden

Method-4.3 8
Movie 11 Method-4.1 4 Fire in a trash bin

Method-4.3 N/A
Movie 11 Method-4.1 7 Fire at a distance of 30m

Method-4.3 N/A

contour analysis of possible smoke regions. These regions are then analyzed

along with their corresponding background regions with respect to their RGB

and chrominance values. The turbulent behavior of smoke is also modeled with

Markov models and set as an additional clue for the final smoke decision.

The method can be used for detection of smoke in movies and video databases

as well as real-time detection of smoke. It can be incorporated with a surveillance

system monitoring an indoor or an outdoor area of interest for early detection of

fire. It can also be integrated with the flame detection method in [87] in order to

have a more robust video based fire detection system.



Chapter 5

Flame Detection Using PIR

Sensors

In this chapter, a flame detection system based on a pyroelectric (or passive)

infrared (PIR) sensor is described. Since the PIR sensor can be visualized as

a single-pixel camera, an algorithm similar to the (IR) video flame detection is

developed.

The fundamental property that is used in the methods described in Chapters

2 and 3 for is the random flicker of flames. As pointed out in Chapters 2 and 3,

flame flicker behavior is a wide-band activity. Similar behavior for flame flicker

are also reported in [82] and [7]. As a result, a Markov model based modeling of

flame flicker process produces more robust performance compared to frequency

domain based methods. In [82], several experiments on the relationship between

burner size and flame flicker frequency are presented. Recent research on pyro-IR

based combustion monitoring includes [7] in which a monitoring system using an

array of PIR detectors is realized.

A regular camera or typical IR flame sensors have a fire detection range of 30

meters. This is due to the fact that flicker in flames cannot be or sensed from

longer distances. Therefore, PIR based systems provide a cost-effective solution

to the fire detection problem in relatively large rooms as the unit cost of a camera

68
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based system or a regular IR sensor based system is in the order of one thousand

dollars.

In this chapter, wavelet domain signal processing is also used, which provides

robustness against sensor signal drift due to temperature variations in the ob-

served area. Regular temperature changes due to hot plates and radiators are

slow variations compared to the moving objects and flames. Since wavelet sub-

signals of a waveform are high-pass and band-pass in nature they do not get

affected by the slow variations.

Events are classified into two different classes in this approach. The first

class represents fire events, on the other hand, the second class represents non-

fire events. PIR sensor circuits are designed for detecting the movement of hot

objects. Therefore, we include regular human motion events such as walking or

running in the non-fire event class.

The PIR sensor can be considered as a single-pixel camera without loss of

generality. Therefore, the proposed PIR based fire detection algorithm is obtained

simply by removing the spatial analysis steps of the video flame detection methods

developed in Chapters 2 and 3.

Data acquisition and the PIR systems are described in the next Section. The

proposed algorithm and the experiments are presented in Sections 5.2 and 5.3,

respectively.

5.1 PIR Sensor System and Data Acquisition

Commercially available PIR sensor read-out circuits produce binary outputs.

However, it is possible to capture a continuous time analog signal indicating the

strength of the received signal in time. The corresponding circuit for capturing

an analog signal output is shown in Fig. 5.1.

The circuit consists of 4 operational amplifiers (op amps), IC1A, IC1B, IC1C

and IC1D. IC1A and B constitute a two stage amplifier circuit whereas IC1C
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Figure 5.1: The circuit diagram for capturing an analog signal output from a PIR
sensor.

and D couple behaves as a comparator. The very-low amplitude raw output at

the 2nd pin of the PIR sensor is amplified through the two stage amplifier circuit.

The amplified signal at the output of IC1B is fed into the comparator structure

which outputs a binary signal, either 0 V or 5 V. Instead of using binary output

in the original version of the PIR sensor read-out circuit, we directly measure the

analog output signal at the output of the 2nd op amp, IC1B.

In order to capture the flame flicker process the analog signal is sampled with

a sampling frequency of fs = 50Hz because the highest flame flicker frequency is

13Hz [1] and fs = 50Hz is well above 2×13Hz. In Fig. 5.2, a frequency distribu-

tion plot corresponding to a flickering flame of an uncontrolled fire is shown. It

is clear that the sampling frequency of 50Hz is sufficient. Typical sampled signal

for no activity case using 8 bit quantization is shown in Fig. 5.3. Other typical

received signals from a moving person and flickering fire are presented in Fig. 5.4.

The strength of the received signal from a PIR sensor increases when there

is motion due to a hot body within its viewing range. In fact, this is due to

the fact that pyroelectric sensors give an electric response to a rate of change
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Figure 5.2: Flame flicker spectrum distribution. PIR signal is sampled with 50
Hz.
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Figure 5.3: A typical PIR sensor output sampled at 50 Hz with 8 bit quantization
when there is no activity within its viewing range.
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(a)

(b)

Figure 5.4: PIR sensor output signals recorded at a distance of 5m for a (a)
walking person, and (b) flame.
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of temperature rather than temperature itself. On the other hand, the motion

may be due to human motion taking place in front of the sensors or flickering

flame. In this chapter the PIR sensor data is used to distinguish the flame flicker

from the motion of a human being like running or walking. Typically the PIR

signal frequency of oscillation for a flickering flame is higher than that of PIR

signals caused by a moving hot body. In order to keep the computational cost

of the detection mechanism low, we decided to use Lagrange filters for obtaining

the wavelet transform coefficients as features instead of using a direct frequency

approach, such as FFT based methods.

5.2 Sensor Data Processing and HMMs

There is a bias in the PIR sensor output signal which changes according to the

room temperature. Wavelet transform of the PIR signal removes this bias. Let

x[n] be a sampled version of the signal coming out of a PIR sensor. Wavelet coef-

ficients obtained after a single stage subband decomposition, w[k], corresponding

to [12.5 Hz, 25 Hz] frequency band information of the original sensor output sig-

nal x[n] are evaluated with an integer arithmetic high-pass filter corresponding to

Lagrange wavelets [13] followed by decimation. The filter bank of a biorthogonal

wavelet transform is used in the analysis. The lowpass filter has the transfer

function:

Hl(z) =
1

2
+

1

4
(z−1 + z1) (5.1)

and the corresponding high-pass filter has the transfer function

Hh(z) =
1

2
− 1

4
(z−1 + z1) (5.2)

The term HMM is defined as “hidden-state” Markov model in Rabiner [67].

However, the term HMM is also used in a relaxed manner when several Markov

models are used to classify events. The term “hidden” refers to the fact that the

model producing the observed data is unknown.
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An HMM based classification is carried out for fire detection. Two three-state

Markov models are used to represent fire and non-fire events (cf. Fig. 6.2). In

these Markov models, state S1 corresponds to no activity within the viewing range

of the PIR sensor. The system remains in state S1 as long as there is not any

significant activity, which means that the absolute value of the current wavelet

coefficient, |w[k]|, is below a non-negative threshold T1. A second threshold T2

is also defined in wavelet domain which determines the state transitions between

S2 and S3. If T1 < |w[k]| < T2, then state S2 is attained. In case of |w[k]| > T2,

state S3 is acquired.

Figure 5.5: Two three-state Markov models are used to represent (a) ‘fire’ and
(b) ‘non-fire’ classes, respectively.

The first step of the HMM based analysis consists of dividing the wavelet

coefficient sequences in windows of 25 samples. For each window, a corresponding

state transition sequence is determined. An example state transition sequence of

size 5 may look like

C = (S2, S1, S3, S2, S1) (5.3)

Since the wavelet signal captures the high frequency information in the signal,

we expect that there will be more transitions occurring between states when
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monitoring fire compared to human motion.

5.2.1 Threshold Estimation for State Transitions

The thresholds T1 and T2 in the wavelet domain determine the state transition

probabilities for a given sensor signal. In the training step, the task is to find

optimal values for T1 and T2. Given (T1, T2) and ground-truth fire and non-fire

wavelet training sequences, it is possible to calculate the transition probabilities

for each class. Let aij denote the transition probabilities for the ‘fire’ class and

bij denote the transition probabilities for the ‘non-fire’ class.

The decision about the class affiliation of a state transition sequence C of size

L is done by calculating the two joint probabilities Pa(C) and Pb(C) corresponding

to fire and non-fire classes, respectively:

Pa(C) =
∏

i

pa(Ci+1|Ci) =
∏

i

aCi,Ci+1
(5.4)

and

Pb(C) =
∏

i

pb(Ci+1|Ci) =
∏

i

bCi,Ci+1
(5.5)

where pa(Ci+1|Ci) = aCi,Ci+1
, and pb(Ci+1|Ci) =

∏
i bCi,Ci+1

, and i = 1, ..., L .

In case of Pa(C) > ξPb(C), for ξ > 0, the class affiliation of state transition

sequence C will be declared as ‘fire’, otherwise it is declared as ‘non-fire’. In our

implementation, we take ξ = 1 without loss of generality.

Given Na training sequences A1, ..., ANa from ‘fire’ class and Nb training se-

quences B1, ..., BNb
from ‘non-fire’ class, the task of the training step is to find

the tuple (T1, T2) which maximizes the dissimilarity D = (Sa − Sb)
2, where

Sa =
∑

i Pa(Bi) and Sb =
∑

i Pb(Ai).

This means that, for each given tuple (T1, T2), there is a specific value of the

dissimilarity D, so that D is a function of (T1, T2)

D = D(T1, T2) (5.6)
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Figure 5.6 shows a typical plot of the dissimilarity function D(T1, T2). It can

be seen from this figure that the cost function D is multi-modal and and non-

differentiable. Therefore, we solve this maximization problem using a Genetic

Algorithm (GA) having the objective function D(T1, T2).
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Figure 5.6: A typical plot of the dissimilarity function D(T1,T2)x10−4. It is
multi-modal and non-differentiable.

For the training of the HMMs, the state transition probabilities for human

motion and flame are estimated from 250 consecutive wavelet coefficients covering

a time frame of 10 seconds.

During the classification phase a state history signal consisting of 50 consecu-

tive wavelet coefficients are computed from the received sensor signal. This state

sequence is fed to fire and non-fire models in running windows. The model yield-

ing highest probability is determined as the result of the analysis of PIR sensor

data.
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For flame sequences, the transition probabilities a′s should be high and close

to each other due to random nature of uncontrolled fire. On the other hand,

transition probabilities should be small in constant temperature moving bodies

like a walking person because there is no change or little change in PIR signal

values. Hence we expect a higher probability for b00 than any other b value in

the non-fire model which corresponds to higher probability of being in S1. The

state S2 provides hysteresis and it prevents sudden transitions from S1 to S3 or

vice versa.

5.3 Experimental Results

The analog output signal is sampled with a sampling frequency of 50 Hz and

quantized at 8 bits. Real-time analysis and classification methods are imple-

mented with C++ running on a PC. Digitized output signal is fed to the PC via

RS-232 serial port.

The detection range of a PIR sensor based system is 5 meters but this is

enough to cover most rooms with high ceilings. In our experiments we record

fire and non-fire sequences at a distance of 5m to the sensor, as well. For fire

sequences, we burn paper and alcohol, and record the output signals. For the

non-fire sequences, we record walking and running person sequences. The person

within the viewing range of the PIR sensor walks or runs on a straight line which

is tangent to the circle with a radius of 5m and the sensor being at the center.

The training set consists of 90 fire and 90 non-fire recordings with durations

varying between three to four seconds. The test set for fire class is 198 and that of

non-fire set is 558. Our method successfully detects fire for 195 of the sequences

in the fire test set. It does not trigger fire alarm for any of the sequences in the

non-fire test set. This is presented in Table 5.3.

The false negative alarms, 3 out of 198 fire test sequences, are issued for the

recordings where a man was also within the viewing range of the sensor along with

a fire close to diminish inside a waste-bin. The test setting where false alarms
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Table 5.1: Results with 198 fire, 588 non-fire test sequences. The system triggers
an alarm when fire is detected within the viewing range of the PIR sensor.

No. of Sequences No. of False Alarms No. of Alarms
Fire Test Sequences 198 3 195

Non-Fire Test Sequences 588 0 0

are issued is presented in Fig. 5.7.

5.4 Summary

In this chapter, a method for flame detection using PIR sensors is proposed.

Analog signal from a PIR sensor is sampled with a sampling frequency of 50 Hz

and quantized with 8 bits. Single level wavelet coefficients of the output signal

are used as feature vectors for flame detection.

PIR sensor output recordings containing various human movements and

flames of paper and alcohol fire at a range of 5m are used for training the HMMs

corresponding to different events. Thresholds for defining the states of HMMs

are estimated using an evolutionary algorithm, since the underlying cost function

to be minimized has proved to be multi-modal and non-differentiable. Flame de-

tection results of the proposed algorithm show that the single-pixel assumption

for PIR sensor proves to be a correct one.

This thesis demonstrates that low-cost PIR sensors which are commonly used

as indoor and outdoor motion detectors, can be utilized as fire sensors when

coupled with appropriate processing. The main advantage of a PIR based fire

detection system over conventional particle sensors is its ability to detect the

presence of fire from a distance which results in a faster response time.
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Figure 5.7: The PIR sensor is encircled. The fire is close to die out completely.
A man is also within the viewing range of the sensor.



Chapter 6

Wildfire Detection

In this chapter, a computer vision based algorithm for wildfire detection is devel-

oped. The main detection algorithm is composed of four sub-algorithms detect-

ing (i) slow moving objects, (ii) smoke-colored regions, (iii) rising regions, and

(iv) shadows. Each sub-algorithm yields its own decision as a zero-mean real

number, representing the confidence level of that particular sub-algorithm. Con-

fidence values are linearly combined with weights determined according to a novel

active fusion method based on the least-mean-square (LMS) algorithm which is

a widely used technique in adaptive filtering. Weights are updated on-line using

the LMS method in the training (learning) stage. The error function of the LMS

based training process is defined as the difference between the weighted sum of

decision values and the decision of an oracle, who is the security guard of the

forest look-out tower. Simulation results are presented.

6.1 Related Work

Manned lookout posts are widely available in forests all around the world to detect

wild fires. Surveillance cameras can be placed on to these surveillance towers to

monitor the surrounding forestal area for possible wild fires. Furthermore, they

can be used to monitor the progress of the fire from remote centers.
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In this chapter, a computer vision based method for wildfire detection is pre-

sented. Currently, average fire detection time is five minutes in manned lookout

towers in Turkey. Guards have to work 24 hours in remote locations under difficult

circumstances. They may get tired or leave the lookout tower for various reasons.

Therefore, computer vision based video analysis systems capable of producing

automatic fire alarms are necessary to reduce the average forest fire detection

time.

There are several approaches on automatic detection of forest fires in the

literature. Some of the approaches are directed towards detection of the flames

using infra-red and/or visible-range cameras and some others aim at detecting

the smoke due to wildfire [22] [46], [4] [36]. There are also recent papers on

sensor based detection of forest fires [39], [70]. Infrared cameras and sensor based

systems have the ability to capture the rise in temperature however they are much

more expensive compared to regular pan-tilt-zoom (PTZ) cameras.

It is almost impossible to view flames of a wildfire from a camera mounted

on a forest watch tower unless the fire is very near to the tower. However, smoke

rising up in the forest due to a fire is usually visible from long distances. A

snapshot of a typical wildfire smoke captured by a look-out tower camera from a

distance of 5 Km is shown in Fig. 6.1.

Guillemant and Vicente based their method on the observation that the move-

ments of various patterns like smoke plumes produce correlated temporal seg-

ments of gray-level pixels. They utilized fractal indexing using a space-filling

Z-curve concept along with instantaneous and cumulative velocity histograms for

possible smoke regions. They made smoke decisions about the existence of smoke

according to the standard deviation, minimum average energy, and shape and

smoothness of these histograms [36].

Smoke at far distances (> 100m to the camera) exhibits different spatio-

temporal characteristics than nearby smoke and fire [84], [23], [87]. This demands

specific methods explicitly developed for smoke detection at far distances rather

than using nearby smoke detection methods described in [86]. This approach is in

accordance with the ‘weak’ Artificial Intelligence (AI) framework [61] introduced
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Figure 6.1: Snapshot of a typical wildfire smoke captured by a forest watch tower
which is 5 km away from the fire (rising smoke is marked with an arrow).

by Hubert L. Dreyfus as opposed to ‘generalized’ AI. According to this framework

each specific problem in AI should be addressed as an individual engineering

problem with its own characteristics [25], [26].

The proposed automatic video based wildfire detection algorithm is based on

four sub-algorithms: (i) slow moving video object detection, (ii) smoke-colored

region detection, (iii) rising video object detection, (iv) shadow detection and

elimination. Each sub-algorithm decides on the existence of smoke in the viewing

range of the camera separately. Decisions from sub-algorithms are combined to-

gether by an adaptive active fusion method. Initial weights of the sub-algorithms
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are determined from actual forest fire videos and test fires. They are updated us-

ing the least-mean-square (LMS) algorithm during initial installation. The LMS

algorithm was initially developed by Widrow in 1960’s together with neural net-

works [91]. The error function in the LMS adaptation is defined as the difference

between the overall decision of the compound algorithm and the decision of an

oracle. In our case, the oracle is the security guard. The compound decision al-

gorithm will obviously produce false alarms. The system asks the guard to verify

its decision whenever an alarm occurs. In this way, the user actively participate

in the learning process.

The chapter is organized as follows: Section 6.2 describes briefly each one

of the four sub-algorithms which make up the compound (main) wildfire detec-

tion algorithm. Adaptive active fusion method is described in Section 6.3. In

Section 6.4, experimental results are presented and the proposed online active

fusion method is compared with the universal linear predictor and the weighted

majority algorithms. Finally, conclusions are drawn in Section 6.5.

6.2 Building Blocks of Wildfire Detection Algo-

rithm

Wildfire detection algorithm is developed to recognize the existence of wildfire

smoke within the viewing range of the camera monitoring forestal areas. The pro-

posed wildfire smoke detection algorithm consists of four main sub-algorithms:

(i) slow moving object detection in video, (ii) smoke-colored region detection,

(iii) rising video object detection, (iv) shadow detection and elimination of shadow

regions, with decision functions, D1(x, n), D2(x, n), D3(x, n) and D4(x, n), re-

spectively, for each pixel at location x of every incoming image frame at time

step n. Computationally efficient sub-algorithms are selected in order to realize

a real-time wildfire detection system working in a standard PC.

Decision functions Di, i = 1, ..., M of sub-algorithms do not produce binary

values 1 (correct) or −1 (false), but they produce zero-mean real numbers for
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each incoming sample x. If the number is positive (negative), then the individual

algorithm decides that there is (not) smoke due to forest fire in the viewing range

of the camera. Output values of decision functions express the confidence level

of each sub-algorithm. Higher the value, the more confident the algorithm.

6.2.1 Detection of Slow Moving Objects

Video objects at far distances to the camera seem to move slower (px/sec) in

comparison to the nearby objects moving at the same speed. Assuming the

camera is fixed, two background images, Bfast(x, n) and Bslow(x, n) corresponding

to the scene with different update rates are estimated [9], [65], where x is the

location of the pixel at frame number n.

In [19] a background image B(x, n + 1) at time instant n + 1 is recursively

estimated from the image frame I(x, n) and the background image B(x, n) of the

video as follows:

B(x, n + 1) =

{
aB(x, n) + (1− a)I(x, n) if x is stationary

B(x, n) if x is a moving pixel
(6.1)

where I(x, n) represent the intensity value of the pixel at location x in the nth

video frame I, and a is a parameter between 0 and 1. Initially, Bfast(x, 0) and

Bslow(x, 0) can be taken as I(x, 0). Stationary and moving pixel definitions are

given in [19]. Background images Bfast(x, n) and Bslow(x, n) are updated as in

Eq. 6.1 with different update rates. In our implementation, Bfast(x, n) is updated

at every frame and Bslow(x, n) is updated once in a second with a = 0.7 and 0.9,

respectively.

Slow moving objects within the viewing range of the camera are detected by

comparing background images, Bfast and Bslow [83], [9], [65]. If there exists a

substantial difference between the two images for some period of time, then an

alarm for slow moving region is raised, and the region is marked.

The decision value indicating the confidence level of the first sub-algorithm is

determined by the difference between background images. The decision function
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D1(x, n) is defined as:

D1(x, n) =





−1 if |Bfast(x, n)−Bslow(x, n)|≤Tlow

2 |B
fast(x,n)−Bslow(x,n)|−Tlow

Thigh−Tlow
−1 if Tlow≤|Bfast(x, n)−Bslow(x, n)|≤Thigh

1 if Thigh≤|Bfast(x, n)−Bslow(x, n)|
(6.2)

where 0 < Tlow < Thigh are experimentally determined threshold values. In our

implementation, Tlow (Thigh) is taken as 10 (30) on the luminance (Y) component

of video.

Confidence value is 1 (−1), if the difference |Bfast(x, n)−Bslow(x, n)| is higher

(lower) than threshold Thigh (Tlow). The decision function D1(x, n) takes real

values in the range [-1,1] if the difference is in between the two threshold values.

Smoke due to forest fires at further distances (> 5km) to the camera seem

to move even slower. Therefore, smoke regions at these distances appear neither

in Bfast nor Bslow images. This results in lower difference values between back-

ground images Bslow and Bfast. In order to have substantial difference values and

detect smoke at distances further than 5km to the camera, Bfast terms in Eq. 6.2

are replaced by the current image I.

6.2.2 Detection of Smoke-Colored Regions

Whenever a slow moving region is detected, its color content is analyzed. Smoke

due to forest fires is mainly composed of carbon dioxide, water vapor, carbon

monoxide, particulate matter, hydrocarbons and other organic chemicals, nitro-

gen oxides, trace minerals and some other compounds [2]. The grayish color of

the rising plume is primarily due to water vapor and carbon particles in the out-

put fire composition. Such regions can be identified by setting thresholds in the

YUV color space. Also, luminance value of smoke regions should be high espe-

cially at the initial phases of a wildfire, as shown in Fig. 6.1. On the other hand,

the chrominance values should be very low in a smoke region. Confidence value

corresponding to this sub-algorithm should account for these characteristics.
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The decision function D2(x, n) takes values between 1 and −1 depending

on the values of the Y (x, n), U(x, n) and V (x, n) channel values. The decision

function D2(x, n) is defined as:

D2(x, n) =

{
1− |U(x,n)−128|+|V (x,n)−128|

128
, if Y (x, n) > TI

−1, otherwise
(6.3)

where Y (x, n), U(x, n) and V (x, n) are the luminance and chrominance values of

the pixel at location x of the input image frame at time step n, respectively. The

luminance component Y takes real values in the range [0, 255] in an image and

the mean values of chrominance channels, U and V are increased to 128 so that

they also take values between 0 and 255. The threshold TI is an experimentally

determined value and taken as 100 on the luminance (Y) component in this

work. The confidence level of D2(x, n) is −1 if Y (x, n) is below TI . The reason

that we have the threshold TI is to eliminate dark regions which also have low

chrominance values. Since wildfire smoke regions are mostly colorless, having very

low chrominance values, the decision value approaches to 1 as the chrominance

values U(x, n) and V (x, n) are around the mean value of 128 for pixels whose

luminance values are greater than TI . Confidence value drops down to −1 for

pixels with high chrominance values.

6.2.3 Detection of Rising Regions

Wildfire smoke regions tend to rise up into the sky at the early stages of the fire.

This characteristic behavior of smoke plumes is modeled with three-state Hidden

Markov Models (HMM) in this chapter. Temporal variation in row number of the

upper-most pixel belonging to a slow moving region is used as a one dimensional

(1-D) feature signal, F = f(n), and fed to the Markov models shown in Fig.6.2.

One of the models (λ1) corresponds to genuine wildfire smoke regions and the

other one (λ2) corresponds to regions with clouds and cloud shadows. Transition

probabilities of these models are estimated off-line from actual wildfires and test

fires, and clouds. The state S1 is attained, if the row value of the upper-most pixel

in the current image frame is smaller than that of the previous frame (rise-up).

If the row value of the upper-most pixel in the current image frame is larger than
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that of the previous frame, then S2 is attained and this means that the region

moves-down. No change in the row value corresponds to S3.

Figure 6.2: Markov model λ1 corresponding to wildfire smoke (left) and the
Markov model λ2 of clouds (right). Transition probabilities aij and bij are esti-
mated off-line.

A slow moving region is classified as a rising region when the probability of

obtaining the observed feature signal F = f(n) given the probability model λ1

is greater than the probability of obtaining the observed feature signal F = f(n)

given the probability model λ2, i.e., when the upper-most pixel belonging to a

slow moving region tends to exhibit a rising characteristic:

p1 = P (F |λ1) > p2 = P (F |λ2) (6.4)

where F is the observed feature signal, λ1 and λ2 represent the Markov models

for wildfire smoke and clouds, respectively.

As the probability p1 (p2) gets a larger value than p2 (p1), the confidence level

of this sub-algorithm increases (decreases). Therefore, the zero-mean decision

function D3(x, n) is determined by the normalized difference of these probabilities:

D3(x, n) =
p1 − p2

p1 + p2

(6.5)
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When a slow moving region is classified as a rising region, i.e., p1 À p2, D3(x, n)

is close to 1. Otherwise, the decision function D3(x, n) is close to −1.

6.2.4 Shadow Detection and Removal

Shadows of slow moving clouds are major source of false alarms for video based

wildfire smoke detection systems. Unfortunately, shadows of clouds have very

low U and V values, similar to smoke regions due to wildfires.

The decision function for shadow regions are defined based on the shadow

detection method described in [41]. Average RGB values are calculated for slow

moving regions both in the current and the background images. Let S(n) repre-

sent a slow moving region in the image I at frame number n. The average color

vector, ~cI,S(n), of this region in the image I at frame number n is calculated as

follows:

~cI,S(n) =
1

AS(n)

(
∑

x∈S(n)

rI(x, n),
∑

x∈S(n)

gI(x, n),
∑

x∈S(n)

bI(x, n)) (6.6)

where AS(n) is the area of the slow moving region S(n), and rI(x, n), gI(x, n),

and bI(x, n) are the red, green and blue channel values of the pixel at location x

in the n − th image frame I. Similarly, average color vector, ~cB,S, of the same

region in the background image, B, is calculated as follows:

~cB,S(n) =
1

AS(n)

(
∑

x∈S(n)

rB(x, n),
∑

x∈S(n)

gB(x, n),
∑

x∈S(n)

bB(x, n)) (6.7)

where rB(x, n), gB(x, n), and bB(x, n) are the red, green and blue channel values of

the pixel at location x in the background image frame B at frame number n. We

used the background image Bslow as the background image in our implementation.

In shadow regions, the angle, θ(x), between the average color vectors, ~cI,S

and ~cB,S, should be small and the magnitude of the vector in the current im-

age should be smaller than that of the vector in the background image, i.e.,

| ~cI,S(n)| < | ~cB,S(n)| [41]. This is because shadow regions retain the color and

the underlying texture to some extent.
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The confidence value of this sub-algorithm is defined according to the angle

and magnitudes of average color vectors, ~cI,S(n) and ~cB,S(n). The decision func-

tion D4(x, n) corresponding to this sub-algorithm for a pixel in the n− th image

and background frames is given by:

D4(x, n) =

{
4|θ(x)|

π
− 1, if | ~cI,S(n)| < | ~cB,S(n)|

−1, if | ~cI,S(n)| > | ~cB,S(n)|
(6.8)

where θ(x) is the angle between the two color vectors. When the angle between

the two color vectors are close to each other, the function D4(x, n) is close to

−1 which corresponds to shadow regions. Similar decision functions for shadow

detection can be defined according to other color spaces including the Y UV space.

There are other shadow detection algorithms in the literature [66]. However,

we selected the algorithm described in this section, because of its low computa-

tional complexity. Our aim is to realize a wildfire detection system working in

real-time.

The threshold values in all of the decision functions described in this section

are chosen in such a way that they produce positive values for all of the wild fire

video recordings that we have. Still, one can define other sets of decision functions

with different threshold values representing various threat/security levels. In the

standard monitoring mode without any fires in the viewing range of the cameras,

the security level may be kept as ‘low’. Once a fire is detected, the system

can automatically switch to security level ‘high’ and increase the probability of

detecting possible fires that may follow the initial one, by lowering the thresholds

in the decision functions.

Decision results of four sub-algorithms, D1, D2, D3 and D4 are linearly com-

bined to reach a final decision on a given pixel whether it is a pixel of a smoke

region or not. Equal weights could be assigned to each sub-algorithm, however,

this would yield a non-adaptive algorithm without any learning capability. On

the other hand, wildfire detection is actually a dynamic process. There may

be wild variations between forestal areas and substantial temporal changes may

occur within the same forestal region. An adaptive combination of different sub-

algorithms would be more appropriate for robust wildfire detection. In the next
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section the adaptive active learning algorithm will be discussed.

6.3 Adaptation of Sub-algorithm Weights

Cameras, once installed, operate at forest watch towers throughout the fire season

for about six months. There is usually a guard in charge of the cameras, as well.

The guard can supply feed-back to the detection algorithm after the installation of

the system. Whenever an alarm is issued, she/he can verify it or reject it. In this

way, she/he can participate the learning process of the adaptive algorithm. The

proposed active fusion algorithm can be also used in other supervised learning

problems.

As described in the previous section, the main wildfire detection algorithm is

composed of four sub-algorithms. Each algorithm has its own decision function

yielding a zero-mean real number for slow moving regions at every image frame of

a video sequence. Decision values from sub-algorithms are linearly combined and

weights of sub-algorithms are adaptively updated in our approach. Sub-algorithm

weights are updated according to the least-mean-square (LMS) algorithm which

is by far the most widely used adaptive filtering method [37], [93]. It also finds

applications in general classification and pattern recognition problems [27]. How-

ever, to the best of our knowledge, this thesis is the first example of an LMS

based approach introduced in an online active learning framework. Due to the

tracking capability of the algorithm, the proposed framework for online active

decision fusion may find applications in problems with drifting concepts.

Another innovation that we introduced in this chapter is that individual deci-

sion algorithms do not produce binary values 1 (correct) or −1 (false), but they

produce a zero-mean real number. If the number is positive (negative), then the

individual algorithm decides that there is (not) smoke due to forest fire in the

viewing range of the camera. Higher the absolute value, the more confident the

sub-algorithm.

Let the compound algorithm be composed of M -many detection algorithms:
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D1, ..., DM . Upon receiving a sample input x, each algorithm yields a zero-mean

decision value Di(x) ∈ R. The type of the sample input x may vary depending

on the algorithm. It may be an individual pixel, or an image region, or the entire

image depending on the sub-algorithm of the computer vision problem. In the

wildfire detection problem the number of sub-algorithms, M=4 and each pixel at

the location x of incoming image frame is considered as a sample input for every

detection algorithm.

Let D(x, n) = [D1(x, n)...DM(x, n)]T , be the vector of confidence values of

the sub-algorithms for the pixel at location x of input image frame at time step

n, and w(n) = [w1(n)...wM(n)]T be the current weight vector.

We define

ŷ(x, n) = DT(x, n)w(n) =
∑

i

wi(n)Di(x, n) (6.9)

as an estimate of the correct classification result y(x, n) of the oracle for the

pixel at location x of input image frame at time step n, and the error e(x, n) as

e(x, n) = y(x, n)− ŷ(x, n). Weights are updated by minimizing the mean-square-

error (MSE):

min
wi

E[(y(x, n)− ŷ(x, n))2], i = 1, ..., M (6.10)

where E represents the expectation operator. Taking the derivative with respect

to weights:

∂E

∂wi

= −2E[(y(x, n)− ŷ(x, n))Di(x, n)] = −2E[e(x, n)Di(x, n)], i = 1, ..., M

(6.11)

and setting the result to zero:

−2E[e(x, n)Di(x, n)] = 0, i = 1, ..., M (6.12)

a set of M equations is obtained. The solution of this set of equations is called the

Wiener solution [37], [93]. Unfortunately, the solution requires the computation

of cross-correlation terms in Eq. 6.12. The gradient in Eq. 6.11 can be used in

a steepest descent algorithm to obtain an iterative solution to the minimization

problem in Eq. 6.10 as follows:

w(n + 1) = w(n) + λE[e(x, n)D(x, n)] (6.13)
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where λ is a step size. In the well-known LMS algorithm, the ensemble average

E[e(x, n)D(x, n)] is estimated using the instantaneous value e(x, n)D(x, n) or it

can be estimated from previously processed pixels as follows:

ê(x, n)D̂(x, n)] =
1

L

∑
x,n

e(x, n)D(x, n) (6.14)

where L is the number of previously processed pixels which is equal to the number

of terms inside the summation. The LMS algorithm is derived by noting that

the quantity in Eq. 6.13 is not available but its instantaneous value is easily

computable, and hence the expectation is simply replaced by its instantaneous

value [73]:

w(n + 1) = w(n) + λe(x, n)D(x, n) (6.15)

Eq. 6.15 is a computable weight-update equation. Whenever the oracle provides

a decision, the error e(x, n) is computed and the weights are updated according

to Eq. 6.15. Note that, the oracle does not assign her/his decision to each and

every pixel one by one. She/he actually selects a window on the image frame and

assigns a “1” or “−1” to the selected window.

Convergence of the LMS algorithm can be analyzed based on the MSE surface:

E[e2(x, n)] = Py(x, n)− 2wTp−wTRw (6.16)

where Py = E[y2(x, n)], p = E[y(x, n)D(x, n)], and R = E[D(x, n)DT (x, n)],

with the assumption that y(x, n) and D(x, n) are wide-sense-stationary random

processes. The MSE surface is a function of the weight vector w. Since E[e2(x, n)]

is a quadratic function of w, it has a single global minimum and no local minima.

Therefore, the steepest descent algorithm of Eqs. 6.13 and 6.15 is guaranteed to

converge to the Wiener solution, w∗ [73] with the following condition on the step

size λ [93]:

0 < λ <
1

αmax

(6.17)

where αmax is the largest eigenvalue of R.

In Eq. 6.15, the step size λ can be replaced by

µ

||D(x, n)||2 (6.18)
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as in the normalized LMS algorithm, which leads to:

w(n + 1) = w(n) + µ
e(x, n)

||D(x, n)||2D(x, n) (6.19)

where the µ is an update parameter and the normalized LMS algorithm converges

for 0 < µ < 2 to the Wiener solution, w∗ with the wide-sense-stationarity as-

sumption. Initially the weights can be selected as 1
M

. The adaptive algorithm

converges, if y(x, n) and Di(x, n) are wide-sense stationary random processes and

when the update parameter µ lies between 0 and 2 [92]. The update algorithm

is summarized in Fig. 6.5.

The sub-algorithms described in the previous section are devised in such a

way that each of them yields non-negative decision values, Di’s, for pixels inside

smoke regions, in all of the wild fire video recordings that we have. The final

decision which is nothing but the weighted sum of individual decisions must also

take a non-negative value when the decision functions yield non-negative values.

This implies that, in the weight update step of the active decision fusion method,

weights, wi(n) ≥ 0, should also be non-negative. In the proposed method, the

weights are updated according to Eq. 6.19. If any one of the weights happens to be

negative then it is set to zero complying with the non-negative weight constraint.

Unfortunately, the wide-sense-stationarity assumption is not a valid assump-

tion in natural images, as in many signal processing applications. Nevertheless,

the LMS algorithm is successfully used in many telecommunication and signal

processing problems. Wide-sense-stationarity assumption may be valid in some

parts of a sequence in which there are no spatial edges and temporal changes.

The main advantage of the LMS algorithm compared to other related meth-

ods, such as the weighted majority algorithm [47], is the controlled feedback

mechanism based on the error term. Weights of the algorithms producing incor-

rect (correct) decision is reduced (increased) according to Eq. 6.19 in a controlled

and fast manner. In weighted majority algorithm, conflicting weights with the

oracle are simply reduced by a factor of two [47], [58]. Another advantage of the

LMS algorithm is that it does not assume any specific probability distribution

about the data.
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6.3.1 Set Theoretic Analysis of the Weight Update Algo-

rithm

The weight update algorithm summarized in Fig. 6.5 can be also analyzed in a

vector space framework without using stochastic signal processing concepts.

Ideally, weighted decision values of sub-algorithms should be equal to the

decision value of y(x, n) the oracle:

y(x, n) = DT (x, n)w (6.20)

which represents a hyperplane in the M-dimensional space, w ∈ RM . A hyper-

plane is a close and convex set in RM . At time instant n, DT (x, n)w(n) may not

be equal to y(x, n). The next set of weights are determined by projecting the

current weight vector w(n) onto the hyperplane represented by Eq. 6.20. This

process is geometrically depicted in Fig. 6.4. The orthogonal projection w(n+1)

of the vector of weights w(n) ∈ RM onto the hyperplane y(x, n) = DT (x, n)w is

the closest vector on the hyperplane to the vector w(n) (cf. Fig 6.3).

Figure 6.3: Orthogonal Projection: Find the vector w(n + 1) on the hyperplane
y(x, n) = DT (x, n)w minimizing the distance between w(n) and the hyperplane.

Let us formulate the problem as a minimization problem:

w(n + 1) = arg min
w
||w −w(n)|| (6.21)

s.t. DT (x, n)w = y(x, n) (6.22)
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Solution can be obtained by using Lagrange multipliers:

L =
∑

i

(wi(n)− wi)
2 + λ(DT (x, n)w − y(x, n)) (6.23)

Taking partial derivatives with respect to wi:

∂L
∂wi

= 2(wi(n)− wi) + λDi(x, n), i = 1, ..., M (6.24)

and setting the result to zero:

2(wi(n)− wi) + λDi(x, n) = 0, i = 1, ..., M (6.25)

a set of M equations is obtained:

w(n + 1) = w(n) +
λ

2
D(x, n) (6.26)

The Lagrange multiplier, λ, can be obtained from the condition equation:

DT (x, n)w − y(x, n) = 0 (6.27)

as follows:

λ = 2
y(x, n)− ŷ(x, n)

||D(x, n)||2 = 2
e(x, n)

||D(x, n)||2 (6.28)

where the error, e(x, n), is defined as e(x, n) = y(x, n) − ŷ(x, n) and ŷ(x, n) =

DT (x, n)w(n). Plugging this into Eq. 6.26

w(n + 1) = w(n) +
e(x, n)

||D(x, n)||2D(x, n) (6.29)

is obtained. Note that this is identical to Eq. 6.30

The projection vector w(n + 1) is calculated as follows:

w(n + 1) = w(n) +
e(x, n)

||D(x, n)||2D(x, n) (6.30)

This equation is the same as the NLMS equation, Eq. 6.19, with µ = 1.

Whenever a new input arrives, another hyperplane based on the new decision

values D(x, n) of sub-algorithms, is defined in RM

y(x, n + 1) = DT (x, n + 1)w (6.31)
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Figure 6.4: Geometric interpretation: Weight vectors corresponding to decision
functions at each frame are updated as to satisfy the hyperplane equations defined
by the oracle’s decision y(x, n) and the decision vector D(x, n). Lines in the figure
represent hyperplanes in RM .

This hyperplane will probably not be the same as y(x, n) = DT (x, n)w(n) hy-

perplane as shown in Fig. 6.4. The next set of weights, w(n + 2), are determined

by projecting w(n + 1) onto the hyperplane in Eq. 6.31. Iterated weights con-

verge to the intersection of hyperplanes [10], [20] for 0 < µ < 2 according to the

projections onto convex sets (POCS) theory [13], [95], [56].

If the intersection of hyperplanes is an empty set, then the updated weight

vector simply satisfies the last hyperplane equation. In other words, it tracks de-

cisions of the oracle by assigning proper weights to the individual subalgorithms.

Another weight update algorithm can be developed by defining hyperslabs in

RM as follows:

y(x, n)− ε ≤ DT (x, n)w ≤ y(x, n) + ε (6.32)

where ε > 0 is an artificially introduced positive number such that hyperslabs de-

fined at different time instants produce a nonempty intersection set. In Eq. 6.32,

if y(x, n) = 1 then y(x, n)− ε ≥ 0 and if y(x, n) = −1 then y(x, n) + ε < 0.

Furthermore, when y(x, n) = 1, the upper bound can be simply removed and

projections can be performed onto the half-spaces. A half-space can be defined
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as follows:

DT (x, n)w ≥ 0 (6.33)

In other words, weighted combination of decision values of sub-algorithms must

be greater than 0, because the oracle states that y(x, n) = 1.

Weights, wi(n) ≥ 0, are kept non-negative in the weight update step to detect

smoke. Each wi(n) ≥ 0 corresponds to a half-space which are closed and convex.

Therefore, the POCS theory can be applied to this case as well. Whenever a

weight happens to be negative, its projection onto the half-space wi(n) ≥ 0 is

taken as 0.

For y(x, n) = −1, we have

DT (x, n)w < 0 (6.34)

In this case, the weight update equation for y(x, n) = 1 will be

w(n + 1) =

{
w(n), if DT (x, n)w > 0

w(n) + µ e(x,n)
||D(x,n)||2D(x, n), otherwise

(6.35)

where e(x, n) = Γ−DT (x, n)w(n) and Γ is any positive number. With this choice,

w(n + 1) satisfies DT (x, n)w(n + 1) > 0 (for Γ = 0, the weights correspond to

projection onto the hyperplane DT (x, n)w(n + 1) = 0).

For y(x, n) = −1, the weight update equation will be

w(n + 1) =

{
w(n), if DT (x, n)w < 0

w(n) + µ e(x,n)
||D(x,n)||2D(x, n), otherwise

(6.36)

where e(x, n) = Υ−DT (x, n)w(n) and Υ is any positive number.

It is almost impossible to know whether hyperplanes have a nonempty inter-

section set for this computer vision application. However, half-spaces defined by

Eqs. 6.33 and 6.34 and they probably have a nonempty intersection set. As a

result, weight updates do not diverge [95].

This set theoretic framework with tracking capability is especially useful

when the on-line active learning problem is of dynamic nature with drifting con-

cepts [72]. In this problem, the nature of forestal recordings vary over time due
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Active Decision Fusion(x,n)
for i = 1 to M do

wi(0) = 1
M

, Initialization
end for
ŷ(x, n) =

∑
i wi(n)Di(x, n)

if ŷ(x, n) ≥ 0 then
return 1

else
return -1

end if
e(x, n) = y(x, n)− ŷ(x, n)
for i = 1 to M do

wi(n) ← wi(n) + µ e(x,n)
||D(x,n)||2 Di(x, n)

end for

Figure 6.5: The pseudo-code for the active decision fusion algorithm

to weather conditions and changes in illumination which makes it necessary to

deploy an adaptive wildfire detection system. It is not feasible to develop one

strong fusion model with fixed weights in this setting with drifting nature. An

ideal on-line active learning mechanism should keep track of drifts in video and

adapt itself accordingly. The projections in Eqs. 6.19, 6.30, 6.35, and 6.36 adjust

the importance of individual sub-algorithms by updating the weights according

to the decisions of the oracle.

6.4 Experimental Results

The proposed wildfire detection scheme with LMS based active learning method

is implemented on a PC with an Intel Core Duo CPU 1.86GHz processor and

tested with forest surveillance recordings captured from cameras mounted on top

of forest watch towers near Antalya and Mugla regions in Turkey. The installed

system successfully detected three forest fires in the summer of 2008.

The proposed active decision fusion strategy is compared with the univer-

sal linear predictor (ULP) scheme proposed by Oza [58], [59], and Singer and

Feder [74] for online active learning. In the ULP scheme, decisions of individual
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Universal Predictor(x,n)
for i = 1 to M do

wi(0) = 1
M

, Initialization
end for
ŷu(x, n) =

∑
i vi(n)Di(x, n)

if ŷu(x, n) ≥ 0 then
return 1

else
return -1

end if
for i = 1 to M do

vi(n + 1) =
exp(− 1

2c
`(y(x,n),Di(x,n)))∑

j exp(− 1
2c

`(y(x,n),Dj(x,n)))

`(y(x, n), Di(x, n)) = [y(x, n)−Di(x, n)]2

end for

Figure 6.6: The pseudo-code for the universal predictor

algorithms are linearly combined similar to Eq. 6.9 as follows:

ŷu(x, n) =
∑

i

vi(n)Di(x, n) (6.37)

where the weights, vi(n), are updated according to the ULP algorithm, which

assumes that the data (or confidence values Di(x, n), in our case) is governed by

some unknown probabilistic model P [74]. The objective of a universal predictor is

to minimize the expected cumulative loss. An explicit description of the weights,

vi(n), of the ULP algorithm is given as follows:

vi(n + 1) =
exp(− 1

2c
`(y(x, n), Di(x, n)))∑

j exp(− 1
2c

`(y(x, n), Dj(x, n)))
(6.38)

where c is a normalization constant and the loss function for the i-th decision

function is:

`(y(x, n), Di(x, n)) = [y(x, n)−Di(x, n)]2 (6.39)

The constant c is taken as 4 as indicated in [74]. The universal predictor based

algorithm is summarized in Fig. 6.6.

We also implemented the Weighted Majority Algorithm (WMA) as the de-

cision fusion step [47]. The WMA is summarized in Fig. 6.7 [58]. In WMA,

as opposed to our method, individual decision values from sub-algorithms are
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Weighted Majority(x,n)
for i = 1 to M do

wi(0) = 1
M

, Initialization
end for
if

∑
i:di(x,n)=1 wi(n) ≥ ∑

i:di(x,n)=−1 wi(n) then
return 1

else
return -1

end if
for i = 1 to M do

if di(x, n) 6= y then

wi(n + 1) ← wi(n)
2

end if
end for

Figure 6.7: The pseudo-code for the Weighted Majority Algorithm

binary, i.e., di(x, n) ∈ {−1, 1}, which are simply the quantized version of real val-

ued Di(x, n) defined in Section 6.2. In the WMA, the weights of sub-algorithms

yielding contradictory decisions with that of the oracle are reduced by a factor of

two in an un-controlled manner, unlike the proposed LMS based algorithm and

the ULP scheme. Initial weights for WMA are taken as 1
M

, as in the proposed

LMS based scheme.

The LMS based scheme, the ULP based scheme, the WMA based scheme, and

the non-adaptive approach with fixed weights are compared with each other in

the following experiments. In Tables 6.1 and 6.2, 6-hour-long forest surveillance

recordings containing actual forest fires and test fires as well as video sequences

with no fires are used.

We have 7 actual forest fire videos and 5 test fire videos ranging from 2 km

to 8 km captured in Antalya and Mugla regions in Turkey, in the summers of

2007 and 2008. All of the above mentioned decision fusion methods detect forest

fires within 8 seconds, as shown in Table 6.1. The detection rates of the methods

are comparable to each other. On the other hand, the proposed adaptive fusion

strategy significantly reduces the false alarm rate of the system by integrating the

feedback from the guard (oracle) into the decision mechanism within the active

learning framework described in Section 6.3. In Fig. 6.8 a typical false alarm



CHAPTER 6. WILDFIRE DETECTION 102

issued for shadows of clouds by an untrained algorithm with decision weights

equal to 1
4

is presented as a sequence of snapshots taken at seconds 1, 7, 13 and

18 from the clip V 15. The proposed algorithm does not produce a false alarm in

this video.

When a false alarm is issued by the compound algorithm, the learning process

is much faster for the LMS based scheme in comparison to the ULP and WMA

based methods. This is reflected in Fig. 6.9, in which the average squared error

functions ĒLMS(n), ĒULP (n) and ĒWMA(n) at image frame n, for the LMS, ULP

and the WMA based methods are shown, respectively. The average squared error

values are computed over all x in the image frame n, and defined as:

Ē(n) =
1

NI

∑
x

(e(x, n))2 (6.40)

where NI is the total number of pixels in the image frame, e(x, n) = y(x, n)− ŷ(x, n)

and ŷ(x, n) =
∑

i wi Di(x, n). The average squared error values ĒLMS(n),

ĒULP (n) and ĒWMA(n) are computed after the first false alarm is issued. The

average squared error value ĒLMS(n) corresponding to the LMS based scheme

decays fast reaching around 0 within 5 frames of video which is about 1 sec. It

takes about 3 sec and 6 sec for the average squared error values ĒULP (n) and

ĒWMA(n) corresponding to the ULP and the WMA based schemes to converge.

The proposed LMS based method produces the lowest number of false alarms

in our data set. A set of video clips containing moving cloud shadows is used to

generate Table 6.2. These video clips are especially selected. Number of image

frames in which false alarms are issued by different methods are presented in

Table 6.2. Total number of false alarms for the clips in Table 6.2 issued by the

methods (a) the LMS based scheme, (b) the ULP based scheme, (c) the WMA

based scheme and (d) the non-adaptive approach with fixed weights are 5, 93,

240 and 612, respectively.

The software is currently being used in 10 forest watch towers in Antalya and

Mugla regions. We tested the system live and monitored the number of false

alarms for two days in September 2008. The current system produces 0.25 false

alarms per hour. This is an acceptable rate for a look-out tower.



CHAPTER 6. WILDFIRE DETECTION 103

Figure 6.8: Sequence of frames excerpted from clip V 15. Within 18 seconds
of time, cloud shadows cover forestal area which results in a false alarm in an
untrained algorithm with decision weights equal to 1

4
depicted as a bounding box.

The proposed algorithm does not produce a false alarm in this video.
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Table 6.1: Frame numbers at which an alarm is issued with different methods for
wildfire smoke captured at various ranges and fps. It is assumed that the smoke
starts at frame 0.

Video Range Capture Frame number at which an alarm is issued
Sequence (km) Frame Rate LMS Universal WMA Fixed

(fps) Based Based Weights
V1 4 7 24 22 28 20
V2 8 7 44 48 40 51
V3 2 7 28 35 38 29
V4 3 5 33 38 26 37
V5 5 10 58 67 69 41
V6 6 10 40 41 38 32
V7 6 10 38 36 30 35
V8 6 10 53 57 56 47
V9 6 10 67 71 56 71
V10 3 5 28 34 32 35
V11 5 7 42 40 36 39
V12 5 7 51 55 54 44

6.5 Summary

An automatic wildfire detection algorithm using an LMS based active learning ca-

pability is developed. The compound algorithm comprises of four sub-algorithms

yielding their own decisions as confidence values in the range [−1, 1] ∈ R. The

LMS based adaptive decision fusion strategy takes into account the feedback from

guards of forest watch towers. Experimental results show that the learning du-

ration is decreased with the proposed online active learning scheme. It is also

observed that false alarm rate of the proposed LMS based method is the lowest in

our data set, compared to universal linear predictor (ULP) and weighted majority

algorithm (WMA) based schemes.

The tracking capability of the LMS algorithm is analyzed using a set theoretic

framework. The proposed framework for decision fusion is suitable for problems

with concept drift. At each stage of the LMS algorithm, the method tracks the

changes in the nature of the problem by performing an orthogonal projection

onto a hyperplane describing the decision of the oracle.
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Table 6.2: The number of false alarms issued by different methods to video se-
quences without any wildfire smoke.

Frame Video Number of frames
Video Rate Duration with false alarm

Sequence (fps) (sec.) LMS Universal WMA Fixed
Based Based Weights

V13 7 100 0 16 37 73
V14 10 100 0 11 48 172
V15 10 100 0 13 28 116
V16 5 100 0 9 19 41
V17 5 100 2 6 24 59
V18 7 100 1 15 32 67
V19 7 100 2 23 52 84
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Figure 6.9: The average error curves for the LMS, universal predictor, and the
WMA based adaptation algorithms in clip V 13. All of the algorithms converge
to the same average error value in this case, however the convergence rate of
the LMS algorithm is faster than both the universal predictor and the WMA
algorithm.
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Conclusion and Future Work

Fire detection systems are vital in saving people’s lives, and preventing hazards

before they get out of control. Particle based detectors are commonly used in

such systems. These sensors are sensitive to produced during fire. An alarm

is issued only if these chemicals physically reach the sensor and their presence

is detected by either ionization or photometry. This requirement makes these

sensors dependent on the distance to fireplace as well as their location. Besides,

these sensors cannot be used outdoors. Image and video based systems can be

an alternative to particle sensors for fire detection.

In this thesis, we developed novel signal and image analysis techniques for au-

tomatic fire detection using cameras and infra-red sensors. Fire detection problem

can be also viewed as a problem of recognition of a specific dynamic texture type

in video. Dynamic texture and flame and smoke behavior can be modeled using

stochastic methods. In this thesis, we used Markov models which are tailored for

flame and smoke detection. We developed specific methods for flame, smoke and

wildfire smoke which have various spatio-temporal characteristics.

We developed dedicated methods for various aspects of fire using different

types of sensors. We explicitly developed real-time methods for

- short-range (< 30m) flame detection in visible range video,

106
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- short-range (< 30m) flame detection in long-wave infra-red (LWIR) video,

- short-range smoke detection in visible range video,

- short-range flame detection using pyro-electric infra-red (PIR) sensor, and

- long-range (> 100m) smoke detection in visible range video.

Each type of sensor has its own advantages and disadvantages on visualizing

different aspects of fire. Flames are visible when viewed by visible and IR sensors.

Although flame flicker becomes hard to observe as distance to the location of fire

increases. As a result, methods for short-range flame detection by IR and visible

sensors are proposed. Gradual increase in temperature can be monitored with IR

cameras and PIR sensors which can be helpful to take precautions even before

a fire starts. However, smoke, which is an early indicator of smoldering fires, is

transparent for LWIR cameras and PIR sensors. Consequently, smoke detection is

not possible using IR sensors. Smoke detection, both short and long-range, is only

possible with visible range cameras. Since long-range smoke has different spatio-

temporal characteristics than nearby smoke, separate algorithms are developed

for each case.

One common novelty that is introduced in all of the methods developed for

fire detection using several types of sensors is that flicker process in fire is charac-

terized using Markov models trained with wavelet based feature signals. Flicker

was not thoroughly characterized by previous studies on video based fire detec-

tion, which resulted in higher false alarm rates. Flicker modeling in a Markovian

setting suits well with the stochastic nature of fire. Besides, sub-band analysis (or

wavelet analysis) extracts non-stationarity inherent in flames and smoke. The use

of wavelet transform based feature signals, leads to the development of computa-

tionally efficient algorithms that work in real-time running on a standard PC.

Another important contribution of the thesis is the introduction of a novel set

theoretic framework for decision fusion and on-line active learning. As described

throughout the thesis, all of the proposed algorithms are composed of several sub-

algorithms yielding their own decisions and confidence values about the observed



CHAPTER 7. CONCLUSION AND FUTURE WORK 108

phenomenon. In the last stage of each detection algorithm, individual decisions

from sub-algorithms are combined together to reach a final decision. A least-

mean-square (LMS) based active decision fusion strategy is proposed and this

framework is successfully applied in the decision fusion step of the long-range

wildfire detection method.

The LMS adaptive decision fusion framework takes into account the feedback

from an oracle (security-guard) whose decisions are taken as the ground-truth.

Individual sub-algorithm weights are updated in such a way that the final decision

tracks the classification results of the oracle at each time step. At each stage of

the LMS algorithm, the method tracks the changes in the nature of the problem

by performing an orthogonal projection onto a hyperplane describing the decision

of the oracle. Therefore, the proposed framework for decision fusion may provide

insight in problems with drifting concepts belonging to many other research areas

in machine learning applications including computer vision.

The proposed wildfire detection method is integrated into forest fire early

warning systems which are installed in ten forest watch towers in Turkey. Our

system successfully did not miss any smoke due to test fires. It also detected three

forest fires in their early stages in Antalya and Aksehir regions in the summer

of 2008. The system is developed to assist the guard in fire detection. The

Directorate of Forestry and Ministry of Environment and Forestry of Turkey will

install the system to other forestal areas under high risk of fire in upcoming years.

In this thesis, we developed signal and image processing algorithms for fire

detection dedicated to sensing modalities like visible range and LWIR cameras,

and PIR senors. In the proposed setting, just a single type of sensor is assumed

to monitor an area of interest for each sensing modality.

A natural future direction pertains to extending both the number and types

of sensors covering an indoor or an outdoor area of interest. This extension

requires the development of algorithms that efficiently extract useful information

from multitude of sensors and interpret them to reach a final decision. The same

analysis algorithms may be used for each sensor. However, overall decision can

be given by linearly combining sensor outputs that define confidence levels for
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each sensor. The proposed set theoretic framework can be used to actively adapt

individual sensor weights in accordance with the feedback from an oracle.
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[85] B. Töreyin, Y. Dedeoglu, and A. Cetin. HMM Based Falling Person Detec-

tion Using Both Audio and Video. In Proceedings of the IEEE International

Workshop on Human-Computer Interaction (HCI), volume 3766, pages 211–

220, 2005.
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