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Abstract

This thesis deals with estimation of states and parameterarilinear and non-Gaussian
dynamic systems. Sequential Monte Carlo methods are masgdg to this end. These
methods rely on models of the underlying system, motivasimmge developments of the
model concept. One of the main reasons for the interest itinegar estimation is that
problems of this kind arise naturally in many important &mtions. Several applications
of nonlinear estimation are studied.

The models most commonly used for estimation are based chagttic difference
equations, referred to as state-space models. This tas@inly concerned with models
of this kind. However, there will be a brief digression frohist in the treatment of the
mathematically more intricate differential-algebraicuations. Here, the purpose is to
write these equations in a form suitable for statisticahaigrocessing.

The nonlinear state estimation problem is addressed usiqgestial Monte Carlo
methods, commonly referred to as particle methods. Whee ikex linear sub-structure
inherent in the underlying model, this can be exploited gy pbwerful combination of
the particle filter and the Kalman filter, presented by thegimadized particle filter. This
algorithm is also known as the Rao-Blackwellized partidteifiand it is thoroughly de-
rived and explained in conjunction with a rather generas<slaf mixed linear/nonlinear
state-space models. Models of this type are often used dyisiy positioning and tar-
get tracking applications. This is illustrated using saVexamples from the automotive
and the aircraft industry. Furthermore, the computatieoahplexity of the marginalized
particle filter is analyzed.

The parameter estimation problem is addressed for a relatieneral class of mixed
linear/nonlinear state-space models. The expectationmieation algorithm is used to
calculate parameter estimates from batch data. In devthisgalgorithm, the need to
solve a nonlinear smoothing problem arises, which is hahdéng a particle smoother.
The use of the marginalized particle filter for recursivegpagter estimation is also inves-
tigated.

The applications considered are the camera positioninglgmo arising from aug-
mented reality and sensor fusion problems originating femtomotive active safety sys-
tems. The use of vision measurements in the estimationgrold central to both appli-
cations. In augmented reality, the estimates of the casme@sition and orientation are
imperative in the process of overlaying computer generatgects onto the live video
stream. The objective in the sensor fusion problems arisiagitomotive safety systems
is to provide information about the host vehicle and its aundings, such as the posi-
tion of other vehicles and the road geometry. Informatiothaf kind is crucial for many
systems, such as adaptive cruise control, collision angieland lane guidance.






Sammanfattning

Denna avhandling behandlar skattning av tillstdnd ochrpaterar i olinjara och icke-
gaussiska system. For att dstadkomma detta anvands hiligdaasekventiella Monte
Carlo-metoder. Dessa metoder forlitar sig p& modeller dawudeerliggande systemet,
vilket motiverar vissa utvidgningar av modellkonceptet.d de viktigaste anledningarna
till intresset for olinjar skattning ar att problem av detlag uppstar naturligt i manga
viktiga tillampningar. Flera tillampade olinjara skatigsproblem studeras.

De modeller som anvands for skattning ar normalt baseradtopastiska differen-
sekvationer, vanligtvis kallade tillstandsmodeller. Bamvhandling anvander huvudsak-
ligen modeller av detta slag. Ett undantag utgérs dock av atematiskt mer komplice-
rade differential-algebraiska ekvationerna. Malet artialfall att skriva om ekvationerna
pa en form som lampar sig for statistisk signalbehandling.

Det olinjara tillstdndsskattningsproblemet angrips mgdphav sekventiella Monte
Carlo-metoder, dven kallade partikelmetoder. En linjdssswktur ingdende i den un-
derliggande modellen kan utnyttjas av den kraftfulla kamalion av partikelfiltret och
kalmanfiltret som tillhandahalls av det marginaliseradgikeafiltret. Denna algoritm gar
aven under namnet Rao-Blackwelliserat partikelfilter oeh barleds och forklaras for en
generell klass av tillstindsmodeller bestaende av savjardi, som olinjara ekvationer.
Modeller av denna typ anvands vanligen for att studeraipositings- och malféljnings-
tillampningar. Detta illustreras med flera exempel framéors- och flygindustrin. Vidare
analyseras aven berakningskomplexiteten for det maigaratle partikelfiltret.

Parameterskattningsproblemet angrips for en relativegghklass av blandade lin-
jara/olinjara tillstandsmodeller. “Expectation maximipn’-algoritmen anvands for att
berékna parameterskattningar fran data. Nar denna atgapipliceras uppstar ett olinjart
glattningsproblem, vilket kan I6sas med en partikelgiattAnvandandet av det margina-
liserade partikelfiltret for rekursiv parameterskattnimglersoks ocksa.

De tillampningar som betraktas ar ett kamerapositionspngblem harstammande
fran utokad verklighet och sensor fusionproblemet som t#ppsktiva sakerhetssystem
for fordon. En central del i bada dessa tillampningar ar adaadet av matningar fran
kamerabilder. For uttékad verklighet anvénds skattningasnkamerans position och ori-
entering for att i realtid 6verlagra datorgenererade dbjlknsekvenser. Syftet med sen-
sor fusionproblemet som uppstar i aktiva sakerhetssysterilar ar att tillhandahalla
information om den egna bilen och dess omgivning, sdsomadodions positioner och
vagens geometri. Information av detta slag ar nodvandigiitga system, sdsom adaptiv
farthallning, automatisk kollisionsundvikning och autatisk filféljning.
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Introduction

HIs thesis is concerned with the problem of estimating variawegjties in nonlinear
dynamic systems. The ability to handle this problem is oapayunt importance in
many practical applications. In order to understand howstesy, for instance, a car, an
aircraft, a spacecraft or a camera performs, we need to l@essto certain important
guantities associated with the system. Typically we do aweldirect access to these, im-
plying that they have to be estimated based on various nagssarements available from
the system. Both theoretical developments and applicatiemted studies are presented.
The interplay between the theory and application providésrésting and valuable in-
sights and it prevents us from developing fallacies coringrthe relative importance
of various theoretical concepts, allowing for a balanceswiFurthermore, it enables a
systematic treatment of the applications.

This first chapter illustrates the kind of problems that cartnandled using the theory
developed in this thesis, by explaining two applicationse Tirst applications stems from
the automotive industry, where the current developmenttivesafety systems require
better use of the available sensor information. The secpptcations deals with the
problem of estimating the position and orientation of a canasing information from
inertial sensors and computer vision. Mathematically kjpeg the two applications are
rather similar, they both result in nonlinear estimatioolgems. Another common char-
acteristic is that information from several different sensshave to be merged or fused.
Problems of this kind are commonly referred tosesisor fusiomproblems.

A unified approach to handle the sensor fusion problem arisiutomotive safety
systems is introduced in Section 1.1 and exemplified in 8ecti2. The second ap-
plication is introduced in Section 1.3. In Section 1.4 wevje a brief mathematical
background to the problem under study. The outline is pexbith Section 1.5. Finally,
the chapter is concluded with a statement of the contribatio Section 1.6.

1



2 1 Introduction

1.1 Automotive Navigation — Strategy

The automotive industry is an industry in change, where tlvei$ is currently shifting
from mechanics to electronics and software. To quantifg #tatement the monetary
value of the software in a car is predicted to increase fiémin 2003, t013% in 2010
(Forssell and Gustafsson, 2004). The key reason for thistaatial increase is the rather
rapid development of automotive safety systems (Gustaf<X@05). This opens up for
many interesting applications and research opportunitigisin the field of estimation
theory.

Automotive safety systems are currently serving as a tdogiwal driver in the de-
velopment and application of estimation theory, very muthhe same way that the
aerospace industry has done in the past. In fact, the aut@matustry is currently
faced with several of the problems already treated by thespace industry, for example
collision avoidance and navigation. Hence, a lot can prighladgained in reusing results
from the latter in solving the problems currently under stigation in the former. The
development within the aerospace industry is reviewed bdeand Schmidt (1985).
Within the next10-20 years there will most certainly be similar reviews writtéreat-
ing the development within the automotive industry, indeedearly example of this is
Gustafsson (2005).

The broadest categorization of automotive safety systenrsterms ofpassiveand
active systems. Passive systems are designed to mitigate harffefaiseduring acci-
dents. Examples include seat belts, air bags and belt jgietemrs. The aim of active
systems is to prevent accidertisforethey occur. To mention some examples of active
systems, we have ABS (Anti-lock Braking System), ACC (AdapiCruise Control)
and collision avoidance. More thorough reviews of exis@ing future systems are given
in Eidehall (2004), Jansson (2005), Danielsson (2005)ta&sson (2005). There is an
interesting study by Eidehall (2004), where different pbigd active safety systems are
profiled with respect to accident statistics, system corifyi@and cost.

The current situation within the automotive industry istthach control system, read
active safety system, comes with the necessary sensorns.seasor belongs to a certain
control system and it is only used by this system. This effelst prevents other systems
from using the, potentially very useful, information delied by the sensor. This situation
is most likely to be changed in the future, concurrently wiita introduction of more con-
trol systems in cars. A unifying feature of all control systeis that they rely on accurate
staté information. As Gustafsson (2005) points out, it is curkemore important to have
accurate state information than advanced control algodtindeed, it is often sufficient
to employ simple P(1)D controllers. Hence, it is more impottwhat information to feed
back than how the actual feedback is performed.

The natural conclusion from the discussion above is thatddte from the differ-
ent sensors should be jointly analyzed to produce the basilije estimate of the state.
The state information can then be accessed by all contrégmsgsin the cars. This idea
is briefly illustrated in Figure 1.1. This approach is emgdyin the applied research

1Depending on which control system we are concerned withttite & obviously different. In the example
given in the subsequent section, the state contains infamabout the motion of the host vehicle and the
surrounding vehicles and the road geometry.
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Feature
Camera extraction
Steering angle
Host vehicle| \\heel speed Sensor
sensors IMU fusion
Etc. Estimates
: Radar .
Ranging Lid Detection
sensors 1aar processing
Ultrasonic
Position GPS
and maps| Map database

Figure 1.1: The most important factor enabling future automotive sa$gstems
is the availability of accurate information about the statbe process of obtaining
this information is to a large extent dependent on a unifiedttnent of the sensor
information, as illustrated in this figure. The aim of thisiser fusion approach
is to provide the best information possible for as many psegoas possible. In
Section 1.2 this strategy is exemplified using the sensdvslahfont.

project, SEF% where we take part. Similar ideas have previously beenesigd, for
instance by Streller et al. (2002). The figure does not claimontain an exhaustive list
of possible sensors, it is merely intended as an illustnagfdhe idea. For an introduction
to automotive sensors, see, for example, Danielsson (200@gboso (1993), Strobel
et al. (2005). In the subsequent section an explicit exanspgbeovided, where the idea
presented above has been employed and evaluated usingtauttadfic data.

1.2 Automotive Navigation — Example

The objective of this study is to calculate estimates of taelrgeometry, which are impor-
tant in several advanced control systems such as lane gaidand collision avoidance.
The sensors used to accomplish this are primarily radar ameé@, with appropriate im-
age processing provided by the supplier. Hence, the ideaieed here follows from
the general framework introduced in Figure 1.1. The resisiing authentic traffic data,
will illustrate the power of a model based sensor fusion apph. Here, information

2SEnsor Fusion for Safety systefBEFS) is an applied research project, with participamsifAB Volvo,
Volvo Car Corporation, Mecel, Chalmers University of Teclugy and Linkdping University. The financial
support is provided by the Intelligent Vehicle Safety Sysi€1VSS) program.



4 1 Introduction

from several sensors is used to obtain better performamnae separate use of the sensors
would allow for. The vision system delivers estimates ofried geometry, but the qual-
ity of these estimates is not sufficient for future automm®afety systems. The idea is
to improve the quality by using information available frohetmotion of the surrounding
vehicles, measured using the radar, together with infaoméitom the vision system. The
key assumption is that the leading vehicles will keep followthgir lane, and their lateral
movement can thus be used to support the otherwise difficottgss of road geometry
estimation. For example, when entering a curve as in Figiteéht vehicles ahead will
start moving to the right and thus there is a high probabithgt the road is turning to

Figure 1.2: When entering a curve, all vehicles start moving in the latéraction.
This information can be used to support the road geometiyata.

the right. This information, obtained from radar measunetsiecan be used to signifi-
cantly improve the rather crude road geometry estimates fte vision system. This
idea of jointly estimating the position of the surroundirgiicles and the road parameters
has previously been successfully applied, see, e.g., Blid@004), Dellaert and Thorpe
(1997), Zomotor and Franke (1997), but as will be explaimethe sequel the estimates
can be further enhanced.

In the subsequent sections this problem will be posed astiamegi®n problem, which
can be solved using the model based estimation algorithesepted in this thesis. First
of all a dynamic model is derived. More specifically, the tesg model is a mixed
linear/nonlinear state-space model, to be described ip€h&. The state estimation
problem arising from models in this form can be handled ugitiger the marginalized
particle filter, thoroughly derived in Paper A, or the exteddalman filter (EKF).

1.2.1 Dynamic Model

Dynamic motion models for various objects have been extelysstudied and the litera-
ture contains hundreds of papers describing different tspdearing names like constant
velocity model, constant acceleration model, coordin&tied model, etc. The resulting
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models are all expressed in the general classes introdncgtapter 2. There are sev-
eral surveys available, dealing with various motion modste, e.g., Bar-Shalom and Li
(1993), Li and Jilkov (2003, 2001), Blackman and Popoli (@99

For the present study we need models describing the motitimedfiost vehicle, the
surrounding vehicles and the road. In the host vehicle we la@cess to sensors mea-
suring wheel speed, yaw rate, steering wheel angle, et alloiws for a more detailed
model of the host vehicle, than what can be devised for th@snding vehicles. We will
make use of the model derived by Eidehall (2004). For thegmtediscussion it is only
the lateral motion model of the surrounding vehicles whihmportant. Further details
concerning the model are given in the Appendix of Paper |. 8sential feature of the
model is that it is based on a curved coordinate system, vihttached to the road. This
will enable the use of very simple models for the surroundielgicles. The key assump-
tion introduced above, that the surrounding vehicles wékpx following the same lane,
is in discrete-time expressed 9§1 = yi + wg, wy ~ N(0,Quat). Here,y' denotes the
lateral position of vehicleé andw; denotes Gaussian white noise which is used to account
for model uncertainties.

1.2.2 State Estimation

The resulting nonlinear state estimation problem can beedalising either the extended
Kalman filter (Eidehall and Gustafsson, 2004) or the malgied particle filter (Eidehall
et al., 2005). For the present study the extended Kalman fitte been employed. The
estimate of the road curvature during an exit phase of a danllestrated in Figure 1.3.
To facilitate comparison, the true reference signal anddhevision measurement of the
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Figure 1.3: Comparison of estimation performance from two filters, orith\a
largeQa: and one with a small);;;.. The raw measurement signal from the image
processing unit is also included. Comparing this raw vigiegasurement to the
result from the filters clearly illustrates the power of a mbblased sensor fusion
approach.
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curvature are included as well. The true reference signalgeaerated using the method
proposed by Eidehall and Gustafsson (2006). Comparingaiisvision measurement
to the result from the filters clearly illustrates the powéaanodel based sensor fusion
approach. In this particular scenario there are two leadéigcles used to support the
curvature estimates, see Figure 1.2.

From Figure 1.3 it is clear that the filter with a low value @fy performs much
better, than the filter with a high value @iz, during the curve exit. This suggests that
the filter should be tuned using a low value @g;. However, at timel270 s, when the
road is straight, the performance of this filter deterigatéthe recorded video is studied,
see Figure 1.4, it can be seen that this performance degradatincides exactly with a

Figure 1.4: A snapshot from the video just after tim270 s, when the lane change
of the tracked vehicle commences.

lane change of one of the leading vehicles. Obviously, #me Ichange violates the key
assumption, that the leading vehicles will keep drivingi@ same lane. In fact, all lateral
movements, such as lane changes, performed by the leadifdjewwill be interpreted as
aturn in the road by the present approach. However, the titfieig a larger value ap)a
does not suffer from this problem. This is natural, sinceghér value of));; corresponds
to that the model allows for larger lateral movements of gagling vehicles. On the other
hand, since this model contains more noise than neceskarguglity of the estimates is
bad due to this. This is manifested by the time delay in thiene¢¢ during the curve exit
and its overall shaky behavior. This is actually an exampthefundamental limitation
present in all linear filters; the estimation performancea sompromise between noise
attenuation and tracking ability.

Based on the discussion above it is advisable to use a lowe ¥ahd) o when the key
assumption holds and a larger value €% when it does not hold. This can be achieved
by detecting vehicles which violate the key assumption, performs lane departures,
and adapt the model accordingly. This is further inveséigan Paper I, where it is shown
to result in significantly improved road geometry estimates
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1.3 Navigation for Augmented Reality

The following navigation application stems from the aresaofmented reality (AR),
where the idea is to overlay virtual, computer generatedaibjonto an authentic scene
in real time. This can be accomplished either by displayiregt in a see-through head-
mounted display or by superimposing them on the images fraranaera. There are
many applications for augmented reality, ranging from Hoaesting and film production,
to industrial maintenance, medicine, entertainment amdega see Figure 1.5 for some
examples. For a survey of the field, see, e.g., Azuma (199)ma et al. (2001).

(a) Visualization of virtual objects in a live (b) Assistance during maintenance.
broadcast. Courtesy of BBC R&D. Courtesy of Fraunhofer IGD.

P ppeion -
(c) Adding virtual graphics to sports scenes(d) Visualization of virtual recon-

Courtesy of BBC R&D. structions of archaeological sites.
Courtesy of Fraunhofer IGD.

Figure 1.5: Some examples illustrating the concept of augmented yealit

One of the key enabling technologies for augmented reality be able to determine
the position and orientation of the camera, with high accpiend low latency. To ac-
complish this there are several sensors which can be usetilyasleh and Foxlin (2002)
for an overview. Accurate information about the positiod anientation of the camera is
essential in the process of combining the real and the Viotjacts. Prior work in this re-
cent research area have mainly considered the problem invinoement which has been
prepared in advance with various artificial markers, seg, €homas et al. (1997), Caarls
et al. (2003), Yokokohiji et al. (2000), You and Neumann (200mhe current trend is to
shift from prepared to unprepared environments, which m#ke problem much harder.
On the other hand, the costly procedure of preparing the@mvient with markers will no
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IMU Angular velocity,
acceleration
Sensor Position and
Camera fusion orientation
Y
Computer Image coordinates
vision and corresponding
3D coordinates
3D scene
model

Figure 1.6: Schematic illustration of the approach. The sensor fusiodute is
basically a recursive nonlinear state estimator, usingrinétion from the inertial
measurement unit (IMU) and the computer vision system togtdman estimate of
the position and orientation of the camera.

longer be required. Furthermore, in outdoor situations @geénerally not even possible to
prepare the environment with markers. The idea is to makefus&tural features, occur-
ring in the real scene, as markers. This problem of estimdtia camera’s position and
orientation in an unprepared environment has previousiy latscussed in the literature,
see, e.g., Simon and Berger (2002), Lepetit et al. (2003)c@e al. (2002), You et al.
(1999), Klein and Drummond (2003). Furthermore, the worlDayison (2003), Davi-
son et al. (2004) is interesting in this context. Despitedtadl current research within the
area, the objective of estimating the position and origamaif a camera in an unprepared
environment still presents a challenging problem.

The problem introduced above can in fact be cast as a nonktege estimation prob-
lem. This work is performed within a consortium, called MABR(2005§, where the
objective is to solve this estimation problem in an unpredagnvironment, using the
information available in the camera images and the acd&asand angular velocities
delivered by an inertial measurement unit (IMU). A scheméltistration of the approach
is given in Figure 1.6. The IMU, which is attached to the caanprovides measurements
of the acceleration and the angular velocity of the cameha.dccelerometers and the gy-
roscopes used to obtain these measurements are of MEMSrtygging small, low cost
sensors. However, these sensors are only reliable on atsherscale, due to an inherent
drift. This drift is compensated for using information fratre computer vision system,

3Markerless real-time Tracking for Augmented Reality ImagetBgsis (MATRIS) is the name of a sixth
framework research program, funded by the European Union, (Edftract number: 1ST02013. It is an
interdisciplinary applied research project with the fallog partners; Fraunhofer IGD, BBC R&D, Christian-
Albrechts University, Xsens Technologies B.V. and LinkigpUniversity.
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which consists of a 3D scene model and real time featureaidra The 3D model is
generated off-line using images of the scene or existing @#ddels (Koch et al., 2005).
It contains positions of various natural markers, which taen detected in the images
using feature extraction techniques. This allows the cderpusion system to deliver the
3D coordinates of a natural marker, together with the cpording coordinates for this
marker in the present image. This information is then usegétteer with the informa-
tion from the IMU in order to compute an estimate of the positand orientation of the
camera. This computation is performed in the sensor fudiockbn Figure 1.6. Hence,
sensor fusion is interpreted as the process of forming arogppte nonlinear state esti-
mation problem, which can be solved in real time, using tteglalble sensor information
as efficient as possible. For further details regardingdpizroach, see Paper G and Hol
(2005).

The simultaneous use of information present in images aodnration from inertial
sensors is currently under investigation within many bihesoof science and there exists
a vast amount of interesting application areas. In the ptevsection it was illustrated
that this is a sub-problem arising in the development ofmotive safety systems. A use-
ful prototype for investigating this problem has been depet in the MATRIS project,
see Figure 1.7. By using the data from this prototype togetiith the simultaneous lo-

Figure 1.7: This is a prototype developed in the MATRIS project. It cetsiof a
camera, an IMU and a low-power digital signal processorduee pre-processing
of the sensor signals. Courtesy of Xsens Technologies B.V.

calization and mapping (SLAM) ideas of Davison (2003) it@ldde possible to derive
rather good estimates. Furthermore, the presence of th@lneformation will probably
allow for the use of simple image processing. Perhaps verglsipoint-of-interest (POI)
detectors such as the Harris detector, introduced by HandsStephens (1988), can be
used. Another interesting observation elaborated uponusged (2003) is that the vision
measurements can be interpreted as bearing measureméigop€&ns up for reuse of
the research performed on the bearings-only problem, spe Karlsson and Gustafsson
(2005) for an introduction to this problem using radar, s@ral infrared measurements.
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1.4 Mathematical Background

In the previous sections two applications were introdutedh resulting in asensor fu-
sionproblem, where the objective is to utilize existing and afftble sensors to extract as
much information as possible. The framework for nonlin¢atesestimation discussed in
this thesis provides a systematic approach to handle s&rson problems. This thesis
will, to a large extent, make use of a probabilistic framewiordealing with estimation
problems of this kind. Thexpressive powenf probability density functions opens up for
a rather systematic treatment of the estimation problensrathe main ideas can be con-
veyed, without getting lost in tedious matrix calculationore specifically, we will make
extensive use of the theory originating from the work of theylish Reverend Thomas
Bayes, published two years after his death in Bayes (1768).distinguishing feature of
the Bayesian theory is that all unknown variables are censilto be random variables.
In the classical theory, represented by Fisher (1912, 188&)his method ofnaximum
likelihood the parameters to be estimated are treated as unknown etsndtathe liter-
ature there is a lively debate, concerning the two viewoirgpresented by Bayes and
Fisher, which has been going on for almost a century now. Sgwod entry points into
this debate are provided by Box and Tiao (1992), Edwards21 ¥pall (1988), Robert
(2001). We will adopt a rather pragmatic viewpoint, implyitihat the focus is on using
the best approach for each problem, without getting tooliegbin the philosophical dis-
cussions inherent in the debate mentioned above. The Baythsory is extensively used
in discussing the state estimation theory. On the other,iésler's method of maximum
likelihood is employed in solving certain system identifioa problems. The probabilis-
tic framework for solving estimation problems is indeedyveowerful. However, despite
this, it is still fruitful to consider the estimation proloteas a deterministic problem of
minimizing errors. In fact, the two approaches are not agffart as one might first think.

The estimation problems are handled usimgdel baseanethods. The systems under
study are dynamic, implying that the models will mostly bedghamic nature as well.
More specifically, the models are primarily constituted tmchastic difference equations.
The most commonly used model is the nonlinear state-spadelmand various special
cases thereof. The nonlinear state-space model consiatsystem of nonlinear differ-
ence equations according to

Tir1 = [(2, ug, 0) + wy, (System model) (1.1a)
yr = h(xg, ug, 0) + e, (Measurement model) (1.1b)

wherez; denotes the state variable,denotes the known input signéldenotes the static
parametersy; denotes the measurements,ande; denote the process and measurement
noise, respectively. Th&ystem mode(1.1a) describes the evolution of the state variables
over time, whereas th@easurement mod€l.1b) explains how the measurements relate
to the state variables. The dynamic model must describes$enéal properties of the
underlying system, but it must also be simple enough to make that it can be used
to devise an efficient estimation algorithm. In tackling tianlinear state estimation
problem it is imperative to have a good model of the systemaatdhprobably more
important than in the linear case. If the model does not peain adequate description
of the underlying system, it is impossible to derive an appete estimation algorithm.
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Itis, surprisingly enough, possible to derive expressfonshe complete solution to
the nonlinear state estimation problem. However, theredswvere limitation inherent
in these expressions, they involve multidimensional irgkgwhich only permit closed-
form solutions in certain special cases. The most imporsgetial case occurs when
all equations are linear and the noise terms are Gaussiahlj (The solution is in
this case provided by thi€alman filterintroduced by Kalman (1960). In the nonlinear,
non-Gaussian case approximate techniques have to be eedpldycommon idea is to
approximate the nonlinear model by a linear model and therthesKalman filter for this
linearized model, resulting in the extended Kalman filtehefe are many applications
where this renders acceptable performance, but there swecates where the resulting
state estimates diverge. Furthermore, conceptually dgtissatisfactory solution, since in
a way it is solving the wrong problem. A solution, which is ceptually more appealing
can be obtained by keeping the nonlinear model and tryingppocximate the optimal
solution. The reason is that the effort is now spent on tryingplve the correct problem.
There is a class of methods, referred tsagquential Monte Carlo methqgdsrailable for
doing this. A popular member of this class is the particlefjltntroduced by Gordon
et al. (1993). An attractive feature with these methodsssyas noted above, that they
provide an approximate solution to the correct problem, rather graoptimal solution
to the wrong problemThe sequential Monte Carlo methods constitute an impbptart
of this thesis. They will be employed both for the nonlineates estimation problem and
the nonlinear system identification problem.

1.5 Outline

There are two parts in this thesis. The objective of the fiast is to give a unified view of
the research reported in this thesis. This is accomplisiexkplaining how the different
publications in Part Il relate to each other and to the exgstiheory.

1.5.1 Outline of Part |

This thesis is concerned with estimation methods that eyngymamic models of the

underlying system in order to calculate the estimates. tleioto be able to use these
methods there is of course a need for appropriate matheahatmdels. This motivates

the discussion on various model classes in Chapter 2. Arrgtmeral account of the

state estimation theory is given in Chapter 3. The sequévitate Carlo methods are

then reviewed in Chapter 4. The nonlinear system identifingbroblem is treated in

Chapter 5, where special attention is devoted to the usesaftpectation maximization

algorithm. Finally, Chapter 6 provide concluding remarkssisting of conclusions and
some ideas for future research.

1.5.2 Outline of Part Il

This part consists of a collection of edited papers, intosdlibelow. Besides a short
summary of the paper, a paragraph briefly explaining thedrackd and the contribution
is provided. The background is concerned with how the rebezame about, whereas the
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contribution part states the contribution of the presettiti@u In Table 1.1 the papers are
grouped according to the nature of their main content.

Table 1.1: Grouping of the papers according to the nature of their maitient.

Content Paper
Theory, state estimation A B, C,D
Theory, system identification E, F
Applications G, H, I

Paper A: Marginalized Particle Filters for Mixed Linear/Nonlinear
State-Space Models

Schon, T., Gustafsson, F., and Nordlund, P.-J. (2005). Maliged particle
filters for mixed linear/nonlinear state-space modéfsEE Transactions on
Signal Processing3(7):2279-2289.

Summary: The particle filter offers a general numerical tool to apjmede the filtering
density function for the state in nonlinear and non-GausSitering problems. While the
particle filter is fairly easy to implement and tune, its mdiawback is that it is quite
computer intensive, with the computational complexityr@asing quickly with the state
dimension. One remedy to this problem is to marginalize lo@istates appearing linearly
in the dynamics. The result is that one Kalman filter is asgedi with each particle.
The main contribution in this paper is to derive the detaiisthe marginalized particle
filter for a general nonlinear state-space model. Sevembitant special cases occurring
in typical signal processing applications are also disedissThe marginalized particle
filter is applied to an integrated navigation system forraiftc It is demonstrated that the
complete high-dimensional system can be based on a pditieteusing marginalization
for all but three states. Excellent performance on real fliigtta is reported.

Background and contribution: The results from Nordlund (2002) have been extended
and improved. The author of this thesis wrote the major pfattie paper. The example,
where the theory is applied using authentic flight data, ésrésult of the Master’s thesis
by Frykman (2003), which the authors jointly supervised.

Paper B: Complexity Analysis of the Marginalized Particle Filter

Karlsson, R., Schon, T., and Gustafsson, F. (2005). Coritplaralysis of
the marginalized particle filter.[EEE Transactions on Signal Processing
53(11):4408-4411.

Summary: In this paper the computational complexity of the margiredi particle filter,
introduced in Paper A, is analyzed and a general method forpethis analysis is given.
The key is the introduction of the equivalent flop measurearirextensive Monte Carlo
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simulation different computational aspects are studiedl @mpared with the derived
theoretical results.

Background and contribution: Several applications of the marginalized particle filter
are discussed in Paper H. During this work the need for a tigirdheoretical investiga-
tion of the computational complexity of the algorithm wasndified, motivating the work
reported in this paper. This investigation was carried outlose co-operation with Dr.
Rickard Karlsson.

Paper C: A Modeling and Filtering Framework for Linear
Differential-Algebraic Equations

Schon, T., Gerdin, M., Glad, T., and Gustafsson, F. (2008a)odeling and
filtering framework for linear differential-algebraic egfions. InProceedings
of the 42nd Conference on Decision and Contkdui, Hawaii, USA.

Summary: General approaches to modeling, for instance using objeetted software,
lead to differential-algebraic equations (DAE). For segBmation using observed system
inputs and outputs in a stochastic framework similar to Kainfiltering, we need to
augment the DAE with stochastic disturbances, “processefigivhose covariance matrix
becomes the tuning parameter. In this paper we determireitigpace of possible causal
disturbances based on the linear DAE model. This subspaeentaes all degrees of
freedom in the filter design, and a Kalman filter algorithmiiseg.

Background and contribution: This paper is the result of work conducted in close co-
operation with Markus Gerdin. It provided a start for intuethg stochastic processes in
differential-algebraic equations. The results have régdieen refined by Gerdin et al.
(2005a). Finally, a paper presenting the resulting franmkviar system identification and
state estimation in linear differential-algebraic eqoiagi has been submitted to Automat-
ica (Gerdin et al., 2005b).

Paper D: A Note on State Estimation as a Convex Optimization
Problem

Schon, T., Gustafsson, F., and Hansson, A. (2003b). A nostate estima-
tion as a convex optimization problem. Rroceedings of the IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Priogps®lume 6,
pages 61-64, Hong Kong.

Summary: We investigate the formulation of the state estimation [@mmbas a convex
optimization problem. The Kalman filter computes the maxima posteriori (MAP)
estimate of the state for linear state-space models witts§aim noise. We interpret the
Kalman filter as the solution to a convex optimization probl@nd show that the MAP
state estimator can be generalized to any noise with logas@ndensity function and any
combination of linear equality and convex inequality coaistts on the state.

Background: This work started as a project in a graduate course in corptismization
held by Dr. Anders Hansson. My thesis advisor Professorrir&listafsson came up
with the idea when he served as opponent for the thesis byrasale (2002).
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Paper E: Particle Filters for System Identification of State-Space
Models Linear in Either Parameters or States

Schoén, T. and Gustafsson, F. (2003). Particle filters fotesgsdentification

of state-space models linear in either parameters or stéteBroceedings
of the 13th IFAC Symposium on System Identificatigiages 1287-1292,
Rotterdam, The Netherlands. Invited paper.

Summary: The potential use of the marginalized particle filter for lioear system iden-
tification is investigated. Algorithms for systems whicle &near in either the parameters
or the states are derived. In these cases, marginalizatjgiea to the linear part, which
firstly significantly widens the scope of the patrticle filterrhore complex systems, and
secondly decreases the variance in the linear paramesees/sor fixed filter complex-
ity. This second property is illustrated in an example of aatlt model. The particular
case of freely parameterized linear state-space modeisnon in subspace identification
approaches, is bilinear in states and parameters, and tlus&ses above are satisfied.

Background and contribution: At the ERNSI (European Research Network System
Identification) workshop held in Le Croisic, France in 20@2neone mentioned that it
would be interesting to investigate if the particle filtendse useful for the system identi-
fication problem. This comment, together with the invitedssen on particle filters held
at the 13th IFAC Symposium on System Identification, in Rdten, the Netherlands,
served as catalysts for the work presented in this paper.

Paper F: Maximum Likelihood Nonlinear System Estimation

Schoén, T. B., Wills, A., and Ninness, B. (2006b). Maximunelikood non-
linear system estimation. |Rroceedings of the 14th IFAC Symposium on
System IdentificatiorNewcastle, Australia. Accepted for publication.

Summary: This paper is concerned with the parameter estimation ofagively gen-
eral class of nonlinear dynamic systems. A Maximum LikedtidML) framework is
employed in the interests of statistical efficiency, ang itlustrated how an Expectation
Maximization (EM) algorithm may be used to compute these Mtineates. An essen-
tial ingredient is the employment of particle smoothing noets to compute required
conditional expectations via a sequential Monte Carlo @@ghn. A simulation example
demonstrates the efficacy of these techniques.

Background and contribution: This work is a result of the author’s visit to the Univer-
sity of Newcastle in Newcastle, Australia during the pefi@bruary — May, 2005. It was

conducted in close co-operation with Dr. Adrian Wills and Brrett Ninness, both having

extensive experience in using the EM algorithm for systeentification, whereas the

author of this thesis has been working with sequential M@#do methods. We agreed
on that it would be interesting to try and combine those ideasder to tackle a certain

class of nonlinear system identification problems.
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Paper G: Integrated Navigation of Cameras for Augmented Reality

Schon, T. B. and Gustafsson, F. (2005). Integrated navigati cameras for
augmented reality. IRroceedings of the 16th IFAC world CongreBsague,
Czech Republic.

Summary: In augmented reality, the position and orientation of a ganneust be esti-
mated very accurately. This paper proposes a filtering @gbr,csimilar to integrated nav-
igation in aircraft, which is based on inertial measurerme primary sensor on which
dead-reckoning can be based. Features extracted from Hgeiare used as support-
ing information to stabilize the dead-reckoning. The iméggures are considered to be
sensor signals in a Kalman filter framework.

Background and contribution: This paper is a result of the MATRIS (2005) project,
which is an applied interdisciplinary research projecte Tontents is influenced by the
many interesting discussion held during the project mgstaround Europe.

Paper H: The Marginalized Particle Filter in Practice

Schoén, T. B., Karlsson, R., and Gustafsson, F. (2006a). Téamginalized
particle filter in practice. InProceedings of IEEE Aerospace Conference
Big Sky, MT, USA. Invited paper, accepted for publication.

Summary: This paper is a suitable primer on the marginalized parfittier, which is

a powerful combination of the particle filter and the Kalmdtefi It can be used when
the underlying model contains a linear sub-structure, estitip Gaussian noise. This
paper will illustrate several positioning and target tiagkapplications, solved using the
marginalized particle filter.

Background and contribution: In this paper we have tried to provide a unified inventory
of applications solved using the marginalized particlefilThe author of this thesis has
been involved in the theoretical background, the commnaticomplexity part and the
applications concerned with aircraft terrain-aided posihg, automotive target tracking
and radar target tracking.

Paper |. Lane Departure Detection for Improved Road Geometry
Estimation

Schon, T. B., Eidehall, A., and Gustafsson, F. (2005). Lamadure detec-
tion for improved road geometry estimation. Technical Repd H-ISY-R-
2714, Department of Electrical Engineering, Linkdping \msity, Sweden.
Submitted to the IEEE Intelligent Vehicle Sympositfokyo, Japan.

Summary: An essential part of future collision avoidance systems Isetable to predict
road curvature. This can be based on vision data, but thealateevement of leading
vehicles can also be used to support road geometry estimalibis paper presents a
method for detecting lane departures, including lane chsinof leading vehicles. This
information is used to adapt the dynamic models used in tiraa&on algorithm in order
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to accommodate for the fact that a lane departure is in pssgréhe goal is to improve

the accuracy of the road geometry estimates, which is affieloy the motion of leading

vehicles. The significantly improved performance is denraisd using sensor data from
authentic traffic environments.

Background and contribution: The idea for this paper was conceived during one of the
authors frequent visits to Goteborg. The work was perforinezdlose co-operation with
Andreas Eidehall.

Publication of related interest, but not included in thisdis:

Gerdin, M., Schon, T. B., Glad, T., Gustafsson, F., and Ljung(2005b).
On parameter and state estimation for linear differertigébraic equations.
Submitted to Automatica

Eidehall, A., Schon, T. B., and Gustafsson, F. (2005). Thegmalized par-
ticle filter for automotive tracking applications. FProceedings of the IEEE
Intelligent Vehicle Symposiuppages 369-374, Las Vegas, USA,

Schoén, T. (2003)On Computational Methods for Nonlinear Estimatidui
centiate Thesis No 1047, Department of Electrical EngingelLinkdping
University, Sweden.

1.6 Contributions

The main contributions are briefly presented below. Sinedtitle of this thesis isEsti-
mation of Nonlinear Dynamic Systems — Theory and Appliaagidhe contributions are
naturally grouped after theory and applications.

Theory

e The derivation of the marginalized patrticle filter for a mtlgeneral mixed lin-
ear/nonlinear state-space model. This is presented irr Pajogether with a thor-
ough explanation of the algorithm.

e The analysis of the computational complexity of the marigea particle filter,
presented in Paper B.

e Anew approach to incorporate white noise in linear difféisdralgebraic equations
is presented in Paper C. This provided the start for a frameaiowing for state
estimation and system identification in this type of models.

e Two algorithms are introduced to handle the system ideatiia problem occur-
ring in a class of nonlinear state-space models, with affarameter dependence.
In Paper E the marginalized particle filter is employed anBaper F an algorithm
based on a combination of the expectation maximizationréhgo and a particle
smoothing algorithm is derived.
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Applications

e Theidea of using feature displacements to obtain infolwnétiom vision measure-
ments is introduced in Paper G.

e Several applications of the marginalized particle filter discussed in Paper H.

e A new approach to estimate road geometry, based on charegtidat is presented
in Paper I.
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Models of Dynamic Systems

THE estimation theory discussed in this thesis is model basedcé] the need for an
appropriate model is imperative. By appropriate we meand@ettbat is well suited
for its intended purpose. In other words, when a model isldpeel it must always be
kept in mind what it should be used for. The model must desdtile essential proper-
ties of the underlying system, but it should also be simpleugh to make sure that it
can be used to devise an efficient estimation algorithm. dftthderlying model is not
appropriate it does not matter how good the estimation dfgoris. Hence, a reliable
model is essential to obtain good estimates. When we refemiacel, we mean a system
of equations describing the evolution of the states and ts@sorements associated with
the application. Other models are for instance impulseaesgs, transfer functions and
Volterra series.

The purpose of this chapter is to provide a hierarchicakdiaation of the most com-
mon model classes used here, starting with a rather ger@ralfation. In deriving
models for a specific application the need for solid backgdoknowledge of the appli-
cation should not be underestimated. Several examplesptitagion driven models are
given in the papers in Part II. These models are all instaottee general model classes
described in this chapter.

The most general model class considered isstbehastic differential-algebraic equa-
tions (SDAE), briefly introduced in Section 2.1. However, mostltd tnodels currently
used within the signal processing and automatic controhoonities are state-space mod-
els, which form an important special case of the SDAE modaeSdction 2.2 we prepare
for the state-space model, which is introduced in Secti8n Binally, Section 2.4 con-
cludes the chapter with a discussion on how to include whitseninto linear differential-
algebraic equations.

21
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2.1 Introduction

The current demand for modularity and more complex models fevored the approach
based orobject-oriented modelingvhere the model is obtained by connecting simple
sub-models, typically available from model libraries. Exdes of modeling tools of this
kind are Modelica, Dymola and Omola (Fritzson, 2004, Tjll2001, Mattsson et al.,
1998). The modeling software will then collect all the edoras involved and construct
a resulting model, which involves both differential andeddgpic equations. A general
formulation of such a model is given by

F(é‘(t), Z(ﬁ),ﬂ(t), Q,t) =0, (2.1)

where the dot denotes differentiation w.r.t. timedenotes the internal variable vectar,
denotes the external signatsdenotes a time-invariant parameter vector amtknotes
time. Finally, the dynamics are described by the possiblylinear functionF', which

is a differential-algebraic equatio(DAE)*. This introductory discussion is held using
continuous-time models, since that is typically where weeha start, due to the fact that
most physical phenomena are continuous. However, distireéemodels can be derived
from the continuous-time models. In (2.1) there are two irtgot types of external sig-
nalsw, which have to be treated separately. The first type is doeti byknown input
signals, denoted by. Typical examples include control signals or measuredithsinces.
The second type isnmeasuredhputs, denoted bw. These signals are typically used to
model unknown disturbances, which are described usindpastic processes.

A DAE that contains external variables described by staghasocesses will be re-
ferred to as a stochastic differential-algebraic equatidhere will always be elements
of uncertainty in the models, implying that we have to be abldandle SDAEs. As
of today there is no general theory available on how to da thiswever, several spe-
cial cases have been extensively studied. In Brenan et@6§land Ascher and Petzold
(1998) there is a thorough discussion on deterministieecgfitial-algebraic equations.
There has also been some work on stochastic differentigbaic equations (see, e.g.,
Winkler, 2003, Schein and Denk, 1998, Penski, 2000, RomaschWinkler, 2003), but
there is still a lot that remains to be done within this fieldn itrinsic property of the
differential-algebraic equation is that it may hide imflitifferentiations of the external
signalsa. This poses a serious problemdifis described by white noise, because the
derivative of white noise is not a well-defined mathematidgect. It is thus far from ob-
vious how stochastic processes should be included in thesdfequation. In Section 2.4
and Paper C a proposition is given for how to properly incoapowhite noise in linear
stochastic differential-algebraic equations.

Besides the model for how the system behaves, there is alsedafar a model de-
scribing how the noisy measurements are related to thenaiteariables, i.e., a measure-
ment model. Since we cannot measure infinitely often, thesorements are obtained at
discrete time instances according to (in the sequel it israsd that the sampling time is
1 for notational convenience)

H(y(tr), z(tr), u(ty), e(tx), 0,tr) = 0, (2.2)

10other common names for the model class described by (2.1) areinsgttems, descriptor systems, semi-
state systems, singular systems, generalized systems, ferdulifal equations on a manifold (Campbell, 1990).
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wherey € R"v denotes the measuremeatc R denotes the measurement noise,
denotes the discrete time index, aHddenotes a possibly nonlinear function describing
how the measurements are obtained. The measurement ecgtated in (2.2) is implicit,
as opposed to the more specific explicit measurement equatio

y(te) = h(z(tr), u(te), e(tr), 0, tx), (2.3)

which is the most common type. However, there are applioatimplying implicit mea-

surement equations. Examples of this involve positioniygtesns relying on map in-
formation, see, e.g., Gustafsson et al. (2002), Bergma@9j1Hall (2000), Svenzén
(2002). Furthermore, measurement equations derived frdommation in images are
sometimes in the form (2.2), which is exemplified in Paper c@llecting (2.1) and (2.2)
a rather general model class can be formulated, the staclé&trential-algebraic equa-
tion model.

Model 1 (Stochastic Differential-Algebraic Equation (SDAEB model)
The nonlinear stochastic differential-algebraic equatimdel is given by

F(2(¢), 2(t), u(t), w(t),0,t) = 0, (2.4a)
H(y(tk)aZ(tk)vu(t)ve(tk)’avtk) = 07 (24b)

wherew(t) ande(t) are stochastic processes.

For a mathematically stricter definition the theory of stastic differential equations and
It6 calculus can be used (Jazwinski, 1970, @ksendal, 200®)ever, the definition used
here will serve our purposes. As mentioned above the theohow to handle this quite
general stochastic DAE model is far from mature. Severatiapeases of Model 1 have
been extensively studied. The rest of this chapter is devimtalescribing some of the
most important discrete-time special cases. In fact, mioteomodels used in the signal
processing and the automatic control communities can bsidered to be special cases
of the rather general formulation in terms of differentiddiebraic equations given above.
There are of course many different ways to carry out suchsaifieation. We have chosen
a classification that we believe serves our purpose best.
An important special case of Model 1 arises whéh) can be explicitly solved for,

2(t) = f(z(t),u(t),w(t),d,1). (2.5)

The resulting model is then governed bwdinary differential equationfODE), rather
than by differential-algebraic equations. This model isnownly referred to as the
continuous-timestate-space modello conform with the existing literature the internal
variable is referred to as th&tate variablan this special case. Several nonlinear model
classes are reviewed by Pearson (1999).

2.2 Preparing for State-Space Models

The discussion is this section is heavily inspired by prdigltheory. The objective is
to provide a transition from the rather general SDAE modé&sussed in the previous
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section to the state-space models introduced in the subsegaction. Note that only
discrete-time models are considered and that the possiisterece of known input signals
u, is suppressed for brevity.

Thesystem modeiks the dynamic model describing the evolution of the stat@bées
over time. A fundamental property ascribed to the systemahisdthe Markov property.

Definition 2.1 (Markov property). A discrete-time stochastic procegs;} is said to
possess the Markov property if

p(zig1]zr, ..., xe) = p(Tiga|Te). (2.6)

In words this means that the realization of the process & tioontains all information
about the past, which is necessary in order to calculatautivesf behavior of the process.
Hence, if the present realization of the process is knowafuture is independent of the
past. This property is sometimes referred to asglreralized causality principléhe
future can be predicted from knowledge of the present (Jeski1970). The system
model can thus be described as

L1 pe(xt+1|$1> cee »l't) = p0($t+1|$t)7 (2.7)

where we have made use of the Markov property. The notai¢n) is used describe
a family of probability density functions, parameterizegé The probability density
functionpy(z.41|x:) describes the evolution of the state variable over time .elmegal it
can be non-Gaussian and include nonlinearities. Thelisttde is assumed to belong to a
probability density functiomy (), commonly referred to as thgrior. Furthermore, the
system model can be parameterized by the static parafeteiindicated in (2.7). If the
parameters are unknown, they have to be estimated beforadtiel can be used for its
intended purpose. The task of finding these parameters laste: available measure-
ments is known as thgystem identificationproblem, which is introduced in Chapter 5.
Furthermore, various aspects of the system identificatioblpm are discussed in Paper E
and Paper F.

The state processt; } is an unobserved (hidden) Markov process. Information sbou
this process is indirectly obtained from measurementsef@bsions)y; according to the
measurement model

Yt ~ po(ye|we). (2.8)

The observation proceds); } is assumed to be conditionally independent of the state
process{a;}, i.e.,

p@(yt|$1»- . a'IN) :pe(yt‘zt)a vt7 1 <t< N. (29)

Furthermore, the observations are assumed to be mutudipé@ndent over time,

N
Po(ts - unlae, - an) = [ [ po(wilae, .. an)
i=t

N
=[Ipewilz:s), vt 1<t<N. (2.10)
1=t



2.3 State-Space Models 25

where (2.9) is used to obtain the last equality. In certagksasuch as convergence
proofs, more advanced tools from measure theory (Chungt, Billingsly, 1995) might
be needed. This implies that the model has to be defined wéthimeasure theoretic
framework. We will not be concerned with measure theory istiesis, but the interested
reader can consult, e.g., Crisan (2001), Crisan and Do@66g] for discussions of this
kind. The above discussion is summarized by Model 2, redeioes thehidden Markov
model(HMM) (Doucet et al., 2000a).

Model 2 (Hidden Markov Model (HMM))
The hidden Markov model is defined by

Tet1 ~ po(Teq1|ae), (2.11a)
Yi ~ po(yelt), (2.11b)

wheref is used to denote a static parameter.

This model is rather general and in most applications it ficsent to use one of its
special cases. The natural first step in making the class nestective is to assume
explicit expressions for both the system model and the nieasnt model, resulting in
the state-space model.

2.3 State-Space Models

A state-space model is a model where the relationship betthednput signal, the output
signal and the noises is provided by a system of first-ordiéerdntial (or difference)
equations. The state vectoy contain all information there is to know about the system
up to and including time, which is needed to determine the future behavior of theegyst
given the input. Furthermore, state-space models cotestituery important special case
of Model 1, widely studied within the areas of signal progegs&nd systems and control
theory. The rest of this section is concerned with variougdrtant state-space models,
starting with the most general.

2.3.1 Nonlinear State-Space Models

The aim of this section is to provide an introduction to noeér, non-Gaussian state-
space models. It will also be illustrated that the resultimzdel is indeed a discrete-time
special case of Model 1. The assumption of explicit expoessior both the system model
and measurement model in (2.11) result in

J)t+1 - f('rh Wt, 97 t)y (212a)
Yt = h(mtaetaevt)7 (212b)

wherew; ande,; are independent random variables, commonly referred thegsrocess

noiseand themeasurement noiseespectively. The functiong andh in (2.12) describe

the evolution of the state variables and the measuremeatgiowe. The model is usually
restricted even further by assuming that the noise prosesger additively.
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Model 3 (Nonlinear state-space model with additive noise)

The nonlinear, discrete-time state-space model with aédibise is given by

Try1 = f($t797t) + we, (2133)
Yt = h($t79,t) + €4, (213b)

wherew,; ande, are assumed to be mutually independent noise processes.

Model 3 can be put in the form of Model 2 by the following obs#ion,

Do (Zf?t+1|5€t) = Pw; ($t+1 - f(ﬂft, 0, t)), (2-143)
Po (Yt|wt) = pe, (yr — h(4,0,1)). (2.14b)

There are theorems available describing how to obtain aimdlations when the noise
does not enter additively as in (2.13). For further detaflglus topic, see Gut (1995),
Jazwinski (1970).

The assumption that the observations are mutually indepgmder time (2.10) trans-
lates to mutual independence of the measurement apiseer time,

N N
pe(yta cee 7yN‘xta cee 7xN) = Hpe(yl“rt) = Hpez (yL - h(xia 9,7;)) (215)
i=t 1=t

Furthermore, using conditioning and the Markov propertyhaee

N-1 N-1
po(@s,.. . an) = [ po(@isalzi) = 1] pui(@iva = f(2.6,0)). (2.16)

1=

Hence, the process noisg should also be mutually independent over time. The above
discussion does in fact explain how the previous assumptianslate to the use of white
noise in Model 3. We could just as well have started from théeumoise assumption in
Model 3 and motivated the assumptions from this. In thediige the exact definition

of white noise differs. Papoulis (1991) refersuitiite noiseas a proces$w, }, which is
uncorrelated,

E {(w; — E{w})(ws — E{w,})"} =0, t# s. (2.17)

A stricter definition is given by Séderstrém (1994), whemapendence is required. This
is referred to astrictly white noise by Papoulis (1991). Furthermore, it is mostguased
that the mean value of a white noise sequence is zero. Welgiiellowing definition.

Definition 2.2 (White noise). A discrete-time stochastic process, } is said to be white
if it is independent over time, that is

p(wtv ws) = p(wt)p(ws)v t 7£ S. (218)
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In discussing linear and Gaussian systems it is sufficiengoire the process to be uncor-
related according to (2.17), since it is only the two first neoits that matter. However, in
discussing nonlinear, non-Gaussian systems higher orderemts have to be accounted
for as well, motivating the independence requirement. [tefin2.2 implies that all the
entities of the proceséw;} are mutually independent. Hence, there is no information
about the future realizations of the white noise processemtein the past realizations,
implying that white noise is totally unpredictable. The wdevhite noise can also be
motivated from a users perspective. When all systematicrimition about the studied
system has been incorporated in the model equations, thikedways remain some ran-
dom effects which cannot be accounted for. The fact thatenfitise is totally random,
without temporal correlation, implies that it provides aaganodel for these effects.

In studying the nonlinear system identification problem wi# eonsider a further
special case of Model 3. It is a nonlinear state-space madiere the dependence on the
static parameters is affine in nature.

Model 4 (Nonlinear state-space model with affine parameters)
A nonlinear state-space model, with affine parameter depreredis defined as

Tepr = fr(xe, ue, )0 + fae, ug, t) + wy, (2.19q)
Yr = hi(we,us, 0)0 + ho(we, ug, t) + ey, (2.19b)

wherew; ~ N (0,Q;) ande; ~ N(0, R;) are white noise sequences.

Note that, since this model class will be used for systemtifiestion, the known input
signalsu, are explicitly included. A key observation worth mentiogiis that, condi-
tioned on the nonlinear states this is a rather simple model, where the parameters can
be solved for using standard linear regression technidlieis. observation is utilized in
Paper F. The idea of using conditioning in order to obtain&mmodels naturally brings

us over to the next section dealing with mixed linear/nadinstate-space models.

2.3.2 Mixed Linear/Nonlinear State-Space Models

It is a very ambitious endeavor to solve the estimation @wisl arising when the under-
lying model is nonlinear. We have tried to approach this feabby studying certain

tractable sub-classes of the general nonlinear stateegpadel. An important part of
the thesis is in fact the derivation and application of eation algorithms especially de-
vised to exploit linear sub-structures inherent in the ulyiteg models. When such a
sub-structure is present it is instructive to partition stege variable according to

l
= (2) : (2.20)

wherex! denotes the linear state variables ariddenotes the nonlinear state variables.
Models allowing for the partitioning (2.20) will be refedr¢o asmixed linear/nonlinear
state-space modelshNhen there is a linear sub-structure present in the modelame ¢
take advantage of this in deriving algorithms to solve uasiestimation problems. The
most general mixed linear/nonlinear state-space modelisiigd in this thesis is summa-
rized in Model 5. Note that the possible dependence on unkrstatic parametei®has
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been suppressed for brevity. For a more thorough discussgarding this model, see
Paper A.

Model 5 (Mixed linear/nonlinear state-space model)

The mixed linear/nonlinear state-space model is given by

afy =[] )+ A" (@] )+ G (2], by, (2.21a)
ah oy = fl ) +A @), t)al +GH (el twl, (2.21b)
yr = h(z}, 1) —&—C’(az?,t)mi +e, (2.21c)

where the process noise is assumed white and Gaussiabutisttivith

! l In
wy = <zUUfL> ~N(0,Q:), Q= <(Q%)T Q}) . (2.223)

The measurement noise is assumed white and Gaussianutistiip ~ N(0, Ry). Fur-
thermore,rf) is Gaussian distributed) ~ N (zo, Py). The density of:{} can be arbitrary,
but it is assumed known.

Conditioned on the nonlinear states, the model describedeais lineaf. This can be
used in deriving estimation algorithms for models of thigey An interesting algorithm
for this is themarginalized patrticle filteor the Rao-Blackwellized particle filter (Doucet
et al., 2000a). It is briefly introduced in Section 4.4 anddlughly treated in Paper A.
Model 5 is quite general and in most applications it is siudfitito consider a special case
of it. A quite common and important special case is when theaadyics is linear and the
measurement equation is nonlinear.

Model 6 (Model 5 with linear dynamics and nonlinear measuremets)

A common special case of Model 5 occurs when the dynamicséafiand the measure-
ments are nonlinear.

ap = A} + APz + Gruy, (2.23a)
iy = Ap gy + Al + Gy, (2.23b)
Yt = h(l’?, t) + €, (223C)

wherew} ~ N(0,Q7) andw! ~ N(0,Q}). The distribution fore, can be arbitrary, but
it is assumed known.

In positioning and target tracking applications modelshig type are quite commonly
used. Several examples of this are given in Paper H and teeerafes therein. For more
information concerning various modeling issues, see, €.gstafsson et al. (2002), Bar-
Shalom and Li (1993), Li and Jilkov (2001, 2003).

2strictly speaking the model is affine, due to the possiblegues of the terny!.
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2.3.3 Linear State-Space Models

The most important special case of Model 3 is probably thealinf andh are linear
functions) state-space model, subject to Gaussian notse.rdason for this is probably
the fundamental work of Kalman in the 1960s on the predictiad linear quadratic
control, based on this model.

Model 7 (Linear state-space model with Gaussian noise)
The discrete-time linear state-space model, subject ta$au noise is given by

T = Ag(0)xy 4wy, (2.24a)
Yt = Ct(e).’lft + €t, (224b)

wherew; ~ N'(0,Q:(0)), e; ~ N'(0, Ry(0)), andE {wqel } = 0.

In Model 7 abovey,; is the Kronecker delta function, which @swhenevert # s, and

1, whent = s. Itis important to note that Model 7 is a bit more general thaeems at

a first glance. The reason is that if we have colored noisesss®s or a non-zero cross-
correlation between; ande, the model can be rewritten in the form (2.24). For details,
see Kailath et al. (2000).

The theory concerning linear state-space models is by né mature. For the de-
tails concerning linear system theory two good referencesRaigh (1996) and Kailath
(1980). For the linear state estimation problem Kailathl.e2900) is the standard ref-
erence. The parameter estimation problem is thorough#yeicein Ljung (1999), Soder-
strdm and Stoica (1989).

2.4 Linear Differential-Algebraic Equations

In the thesis, Model 3 and some of its special cases are usedseely. However, we
will also discuss possible extensions in terms of diffdedrgtlgebraic equations. The first
obstacle to overcome is to solve the problem of introductoglgstic processes into this
type of model. This is not as simple as it is with state-spacéats. In this section
the problem is briefly described and in Paper C a detailedgsafor how to solve this
problem is provided. These results have recently been tefind sharpened, see Gerdin
etal. (2005a,b). Thénear stochastic differential-algebraic equatisdefined in Model 8
below.

Model 8 (Linear stochastic differential-algebraic equation model)
The linear stochastic differential-algebraic equatiordelas given by

E0)2(t) + F(0)2(t) = Bu(0)w(t), (2.25a)
y(te) = C(0)z(tx) + e(tr), (2.25b)

whereE (0) might be singular and (t) ande(t;,) are white Gaussian noises.

The reason for incorporating white noise in linear DAES iattth opens up for using
the standard methods of statistical signal processing.eMpecifically, it allows for a
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systematic treatment of the two problems of estimating titerinal variables:(¢) and
static parameter@. The system identification problem is thoroughly treate@grdin
(2004) and Gerdin et al. (2005b) and estimation of the itievariables is discussed in
Paper C and Gerdin et al. (2005b). In the discrete-time cashinas already been done,
see, e.g., Dai (1987, 1989), Darouach et al. (1993), Dendiian(d 999), Nikoukhah et al.
(1998, 1999). However, models obtained from object-oedmnodeling languages are
mostly in continuous-time, further motivating the need éodble to introduce stochastic
processes in continuous-time DAE models.

The problem of introducing stochastic processes in lind&rdntial-algebraic equa-
tions boils down to making sure that the implicit differextibn ofw that may be hidden
in the equations does not lead to intractable mathematiijatts, such as differentiated
white noise. In order to understand this it is instructiverdarrite the equations in the
standard form provided by Theorem 2.1.

Theorem 2.1 (Standard form for Model 8)
Suppose that there exists a scalaisuch thatA\E + F' is invertible. Then there exist
nonsingular matriceg” and @ such that the transformation

PEQQ ™ '4(t) + PFQQ '2(t) = PB,w(t), (2.26)

allows us to writg(2.25)as

I 0 j?l(t) —-A 0 xl(t) . Gl
(o N) (:i:g(t)) i ( 0 I) (xg(t) =) @ (2.27)
where N is a matrix of nilpotency, i.e., N* = 0 for somek. (Q is used as a variable
substitutionz(t) = Q~1z(t) and P is multiplied from the left irf{2.25a))

Proof: Kronecker’'s canonical form (see Kailath, 1980, Gantmach®69) provides a
proof for the existence of this standard form. For a detgiledf see Gerdin (2004).

It is worth noting that although this standard form alwayssexit can indeed be
numerically hard to find the transformation matridésand(. However, using the ideas
from Varga (1992) this problem can be handled, see, e.gdiGé2004), Gerdin et al.
(2005b) for details regarding these numerical issues..252is rewritten according

.’i‘l(t) = Aﬂ?l(t) + le(t), (2288.)
k—1 ;
i d'w(t)
wa(t) = ; (~N)' G, (2.28b)
it can be seen that white noise is prevented from being éiffimted if
NGy =0. (2.29)

In Paper C this is utilized to derive conditions on the modas$s that imply that white
noise is not differentiated.



Nonlinear State Estimation

RECURSIVE nonlinear state estimation theory is the topic of the preskapter. As

previously mentioned, the state estimation problem is esfird mainly within a
probabilistic framework. More specifically, the approashhieavily influenced by the
Bayesian view of estimation. This implies that the compkiition to the estimation
problem is provided by the probability density functiptx;|Y). This density function

contains all available information about the state vagabDepending on the relation
between ands in p(z,|Ys) three different estimation problems are obtained

e Thefiltering problem,t = s.
e Thepredictionproblem,t > s.
e Thesmoothingproblem,t < s.

This chapter will illustrate how the expressive power of phebability density functions
opens up for a rather systematic treatment of the three gmubimentioned above. When

a representation fg#(z,|Ys) is obtained it can be used to estimate the expected value of
any functiong of the state variabledg(x;)) according to

I(g(20)) £ oy {9(e0)} = / g(z0)p(@|Ys) day. (3.1)

The chapter starts with a brief history of the estimatiorbpgm in Section 3.1. In Sec-
tion 3.2 the general solutions to the filtering, predictiord amoothing problems are
derived, in terms of probability density functions. Theadission then continues with
Section 3.3, where several of the most common estimatesd@introduced. The state
estimation problem arising from nonlinear systems is dised in Section 3.4. The com-
mon special case of linear models, subject to Gaussian isdisen treated in Section 3.5.
Change detection can be used to adapt the models accordihgriges in the underlying

31
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system, with better state estimates as result. This is thie tf Section 3.6. Finally,
the chapter is concluded with Section 3.7, where we providetarministic view of the
estimation problem and illustrate how this together withv@x optimization techniques
can be used to handle constraints present in the problem.

3.1 Brief History of the State Estimation Problem

The aim of this section is to provide a short historic accafrthe estimation problem.
We will merely skim the surface of this fascinating topict e will try to provide ade-
guate references for further studies. Some general refesaare Spall (1988), Jazwinski
(1970), Sorenson (1970), Mendel and Gieseking (1971).

The first attempts to systematically approach the estimagiioblem, as it is known
today, were taken by Gauss and Legendre in studying astioabproblems during the
late 18th and the early 19th century. More specifically, tiieg to estimate the positions
of planets and comets using telescopic measurements. @Geagsuse of the method of
least-squares for the first time in 1795 at the age8oHowever, it was not until 1809 that
he published his results in his bo@keoria Motus Corporum Celestiuf@auss, 1809). A
few years earlier, in 1805 Legendre had independently te¢kand published the method
in his bookNouvelles méthodes pour la determination des orbites degtes This gave
rise to a big dispute between Gauss and Legendre, concevhimgvas the inventor of the
least-squares method (Sorenson, 1970). A thorough discuskthe early contributions
to estimation theory is provided by Seal (1967) and Sore(s910).

The next major development in the study of the estimatioblera came in the 1940s,
with the filtering work of Wiener (1949) and Kolmogorov. Thiegth studied the problem
of extracting an interesting signal in a signal-plus-na@istting and independently solved
the problem, using a linear minimum mean-square technifjue solution is based on the
rather restrictive assumptions of access to an infinite atnofudata and that all involved
signals can be described as stationary stochastic pracegsging the 1940s and the
1950s much research was directed towards trying to relssetagssumptions and extend
the Wiener — Kolmogorov filtering theory. The breakthrougime with the Kalman filter,
introduced by Kalman (1968) It changed the conventional formulation of the estimation
problem and in doing so it moved the research into a completelv direction, away
from the theory of stationary stochastic processes. Thérnggdient in this turn was the
Kalman filter's inherent access to the powerful state-spiagery, that had recently been
developed within the automatic control community. The im@ot connection between
the estimation problem and the state-space theory had nemvdstablished.

The Kalman filter allows us to drop the assumptions of statiprsignals and ac-
cess to an infinite amount of data. Furthermore, Kalmantestpace approach naturally
lends itself to multivariable problems, whereas the Wieni€olmogorov theory and other
frequency domain techniques bump into severe problems thgeextension to the mul-
tivariable case is considered.

During the 1960s, 1970s and the 1980s many suggestions where on how to

1in the late 1800s, the Danish astronomer T. N. Thiele develagecursive procedure, for determining the
distance from Copenhagen to Lund. Interestingly enouglsdiigion was a special case of the Kalman filter
(Spall, 1988). A modern discussion of Thiele’s work is pr@ddy Lauritzen (1981) and Hald (1981).
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extend the Kalman filtering theory to handle more generainegion problems. In 1993
the particle filterwas first introduced by Gordon et al. (1993). It provides aesysitic
procedure for solving the nonlinear, non-Gaussian esiimatroblem. As Kailath (1974)
points out the Kalman filter was the new idea that allowed tékl fio move in a new,
fruitful direction after the Wiener — Kolmogorov theory. fAaps we can think of the
particle filter along the same line, as a new, fruitful directallowing us to tackle even
harder estimation problems.

3.2 Conceptual Solution

This section is concerned with the problem of calculatirggtobability density functions
relevant in solving the estimation problem. The discussiihbe rather general using
Model 2 defined in Section 2.3.1, briefly summarized in (302)convenience

Tep1 ~ p(Tea|ze), (3.2a)
Ye ~ p(yelze). (3.2b)
In the development that follows Bayes’ theorem and the Maproperty will be instru-

mental. The Markov property was previously defined in Dgbni2.1. Using the two
stochastic variables andy, Bayes’ theorem for probability density functions is giusn

_ pllo)p(z)  ply,z)
plely) = ply)  ply) 53

Consider the filtering density,

p(yt‘xhytfl)p(mt‘yvtfl)
xr Y = €T 7Y7 =
P( t| t) P( t|yt t 1) p(@/t|Yt—1)

_ p(yelz)p(e|Yio1)

_ , (3.4)
p(ye|Yi-1)
wherep(y:|Y;—1) can be calculated according to
pl¥ie) = [ pluanlYior)don = [ plunkoe Yiop(add Vi) doy
R Rnx
— [ plurlen)plal¥ics) da. (35)
Rne

Furthermore, in order to derive the expression for the oap ahead prediction density
p(z+1]Y:) the following equation is integrated w.rt;,

p(xt-s-la $t|Yt) = p($t+1\$ta Yt)P(fL't|Yt) = p(xt+1|xt)p(xt\Y2), (3.6)

resulting in the following expression

p(Te1]Yy) = /p($t+1|$t)p($t|3@)d9€t- (3.7)
Rz
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This equation is commonly referred to as tlkeapman—Kolmogorogquation (Jazwinski,
1970). Itis straightforward to generalize this idea to obtn expression for the-step
ahead prediction density. Rather than integragig; 1, x¢|Y;) w.r.t. z; we integrate

p(.’L‘t+k, e ,xt|}/;g) W.I.T. Xt:t+k‘71 = {1'1 E:fil. Hence,

p(Te4k]Y:) = /p($t+k>~--azt‘Yt)dzt:t-&-k—l

RF e
k
= [ TLprsslosioa)pl¥s) doeor. (3.8)
Rina =1
In deriving suitable expressions for the smoothing dersétyeral alternatives exist. Let
us first derive an expression for the marginal smoothingitepsz;|Yx) by observing
that

p(z|Yn) = / p(ze, i1 |YN) dogg, (3.9)
R"«
where
p(ﬂﬂt, l’t+1|YN) = P(l't|$t+1, YN)p(xt+1‘YN)~ (3.10)
Furthermore,

p($t|l’t+17 YN) = p(l’t‘ﬂcwla Y:, Yt+1:N)

P(Yeprn|we, 2ep1, Vo) p(we|wi, Yr)
B =p(@i|re41,Yy),  (3.11
P(Yir1:N|Teg1, Ye) (we]zeq1,Y2),  (3.11)

where the last equality follows from the fact that given ;, there is no further informa-
tion aboutY; ;. available inz;. Using this result the smoothing density (3.9) can be
written according to

p(ae|Yn) = /P($t|$t+1aYt)P($t+1|YN)dfft+1
Rz
_ / P(xyp1|ze, Yi)p(a|Yy)
B p(@e41|Y2)

P(@41|YN) dae s

2

T T T Y;
— p(w V) / p(i1|ze)p(ze1|YN) gy, (3.12)
p(reg1]Y:)

Another useful expression for the smoothing density isrreteto as thawo-filter for-
mula See Kitagawa (1994), Bresler (1986) for a detailed treatrmotthis formula.

Similar derivations to the ones given above can be foundnfstance in Ho and Lee
(1964), Jazwinski (1970), Kitagawa (1991). For future refee the main results are
collected in Theorem 3.1.
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Theorem 3.1
If the dynamic model is given K.2) the filter densityp(x;|Y;), the one step ahead
densityp(z;+1|Y?), and the marginal smoothing densijiyx;|Yx ) are given by

P(ye|we)p(e| Y1)

x| Yy) = 3.13a
p(zelY:) (Y| Yi—1) ( )
p(wesa]Vi) = / p(@est|en)p(zYs) da, (3.13b)
Rnz
p(zegi|ze)p(xe41|YN)

Yn) = Y; d , 3.13c
pal¥y) = playy) [ HELPRCOE - (3130)

R«

where

p(lYie1) = / p(ue0)p(eel Vo) e, (3.13d)

Rna

Given the complexity of the problem it is actually quite rekeble that we are able
to derive a result as the one given in Theorem 3.1 above. Hawihere is a severe prob-
lem with this solution, the multidimensional integralsahved only permit an analytical
solution in a few special cases. The most important speeis¢ ¢s when the dynamic
model is linear and the involved stochastic variables arenah which has been exten-
sively discussed in the literature over the last decadess iStdue to the fact that the
mathematics involved is tractable, but most importantlgiitges on the fact that there
are a vast amount of real world applications where this shease has been successfully
applied. However, most applications would perform bettéh& nonlinear estimation
problem could be properly solved. This would also allow utattkle more complicated
applications, which do not lend themselves to linear athors.

3.3 Point Estimates

The task of finding a point estimate can, in abstract termsabeas a problem of finding
a transformationn,;, which makes use of the information in the measurements tand t
known input signals to produce estimates of the states efést.

me: Uy x Yy — R™ (3.14)

All information available in the measurements has beenge®ed and inferred into the
density functiorp(x;|Ys). This density function can then be used to derive varioustpoi
estimates, which is normally what the used would expect fitoenestimation algorithm.
Typically, the application does not need the entire prdiigldensity function. Instead
it needs to know how the values of the various states evolee time and it also need a
quality assessment of these values. It is reasonable to that an estimate is useless, if
we do not know how good it is. Since a probabilistic framewsremployed, this opens
up for using the tools available in probability theory aratistics for assessing the quality
of estimates, such as covariances, confidence regions, éést
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This section is concerned with some of the most common mgpfi14) present in
the literature. Most of the estimates are indeed based awoxipgations of the probability
density function(z;|Y;), but the estimates can also be based on deterministic consid
erations. This approach to estimation is discussed in @e8ti7. For more information
about various estimates, see, e.g., Kailath et al. (20@@)idski (1970), Kay (1993),
Anderson and Moore (1979).

From a probabilistic point of view a rather appealing poistiraate is provided by
choosing the value that minimizes the variance of the esomarror, referred to as the
minimum varianc€MV) estimate

#MV 2 argmin E{Hx —&|? |y} (3.15)

where||z||? = T . Itis in fact possible to derive an explicit expression fustestimate.
E{ja-all [y} =E{@-2)" @- |y}

=E {xTx|y} — 28T E{z|y} + 272
= ||& = E{aly}I” + E{llz|*ly} — |1E {z]y}]” (3.16)

The two last terms in (3.16) are independent:@nd (3.16) is clearly minimized by

MV = E{zly} = /:cp(z|y) dzx. (3.17)

The above calculation explains the nam@nimum mean square err@MSE), which
is commonly used as an alternative name for the estimat&)(3.1

Another point estimate which suggests itself, within thelabilistic framework, is
the most probable outcome,

FMAP 2 argmax p(x|y) = arg max p(y|z)p(z), (3.18)

which is referred to as theiaximum a posteriofMAP) estimate. In the second equal-
ity of (3.18) Bayes’ theorem is employed, together with taetfthat the maximization
is performed overz. The prior density functionp(z) in (3.18) is within the classical
school assumed completely uninformative, giving rise @rttaximum likelihood(ML)
estimate,

#ME 2 argmax p(ylz). (3.19)

The method of maximum likelihood was introduced by Fish&1@, 1922). The max-

imum likelihood method is used extensively in the study okéain class of nonlinear
system identification problems, see Paper F.

3.4 Nonlinear Systems

Most of the problems encountered in practice are of a noatinature, which implies
that we have to be able to solve estimation problems in theegbof nonlinear systems.
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The nonlinear systems theory is, as opposed to its lineantequart, far from mature.
However, there is a flurry of results readily available, geg,, the monographs by Khalil
(2002) and Isidori (1989). When it comes to nonlinear estiomatheory the book by
Jazwinski (1970) is still very interesting reading.

There is a wealth of representations available when it caime®nlinear systems.
However, the most common representation, at least whemiesdo solving estimation
problems is given by Model 3, repeated here for convenience

Tiy1 = f(xe,t) +wy, wy ~ N(0,Q4), (3.20a)
yr = h(xe,t) + ey, er ~ N(0, Ry). (3.20b)

In discussing the implications of Theorem 3.1 we observat th general, there does not
exist any analytical solution to the nonlinear recursivinestion problem. This implies
that we are forced to approximations of some kind in ordepfmr@ach this problem. The
approximations suggested in literature this far, can rbubé divided into two different
classes, local and global. This distinction has previobslgn discussed, for instance by
Sorenson (1974) and Kulhavy (1996). The local approachcaxppates (3.20) using a
locally valid linear, Gaussian model. This is then used injeoction with the Kalman
filter to obtain the estimates. The idea underpinning théalapproach is indeed more
appealing. It makes use of the nonlinear model and triespgooapnate the solution pro-
vided in Theorem 3.1. Hence, it is a matter of either apprexing the model and using
the linear, Gaussian estimator or using the correct modehpproximate the optimal so-
lution. Despite the fact that there are a lot of differentlimear estimators available, the
local approach is still the most commonly used nonlinednegbr when it comes to ap-
plications. This approach is explained in more detail inghlesequent section. However,
in recent years the sequential Monte Carlo methods havegeahers interesting global
approaches, gaining more and more ground, both when it ctonteeory and when it
comes to applications.

3.4.1 Local Approximations

The idea employed in local methods is to approximate theimeat model by a linear,
Gaussian model. This model is only valid locally, but the idah filter can readily be
applied. The first approach along those lines was to linedhig model along a nominal
trajectory, resulting in thénearized Kalman filte(Kailath et al., 2000). An improvement
to this was suggested by S. F. Schnedil. They suggested that the linearization should
be performed around the current estimate, rather than draumominal trajectory. The
result is theextended Kalman filter(or more appropriately the Schmidt EKF) (Smith
et al., 1962, Schmidt, 1966). To the best of the authors kedgéd the paper by Smith
et al. (1962) describes the first practical application ef(gxtended) Kalman filter. More
specifically, the local approximation is obtained by lineiag the nonlinear model (3.20)
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by applying a first-order Taylor expansion around the curestimate,

. of(z,t .
J(we,t) = [y, t) + ff()l ) (¢ — Type), (3.21a)
=Tt
. Oh(z,t ~
h(l’t,t) ~ h(a:t‘t,l,t) + éx ) (It — xt\t71)~ (321b)
T=Ty|t—1
Using this approximation in (3.20) gives
Tip1 = (T t) — Felbyy + Fray + wy, (3.22a)
Ye = W(@y—1,t) — HyZyp—1 + Hex + ey, (3.22b)
where
F A Of(x,t) ’ o2 Oh(x,t) (3.23)
530 m:it\t 83: T=Fy|p—1

The approximate model given in (3.22) is a linear, Gaussiadehin x;, which implies
that the Kalman filter given in Corollary 3.1 can be appliedheTesult is the extended
Kalman filter, given in Algorithm 3.1.

Algorithm 3.1 (Extended Kalman Filter (EKF))

Consider Model 3, repeated (B.20) An approximate sub-optimal estimate for the filter
density functiorp(z.|Y;), obtained by linearization, is recursively given accogtia

P(xe]Ye) = N (2| L4y, Pope), (3.24a)
Dz [Ye) = N(@ | o p1pes Prrape), (3.24b)
where

Toje = Tee—1 + Ke (ye — M(Ey-1,1)) (3.25a)
Py = Pyy—1 — KeHy Py, (3.25h)
Toyre = f( @0, 1), (3.25c¢)
Py = Fe Py FF + Qy, (3.25d)
Ky = Py H} (H Py H + Ry)™", (3.25e)

with initial valuesi, o = 1 andP, )y = I1,. FurthermoreF, andH, are defined by
F=2 ((;; o m- 8héi’ 2 (3.26)

wo=ty) Te=Bejr_1

For a more thorough treatment of the EKF the reader is refeelazwinski (1970),
Anderson and Moore (1979), Kailath et al. (2000). An appigafocused discussion
is given in Sorenson (1985). One of the problems inherenthénBKF is that it might
diverge. The literature contains several more or E$&ocmethods trying to counteract
this phenomenon and to further enhance the general penfoera the EKF. To mention
a few examples we have, thierated EKFtreated by Kailath et al. (2000) and higher-
order Taylor expansions discussed by Bar-Shalom and Fortrfi088) and Gustafsson
(2000).
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3.4.2 Global Approximations

The solution to the nonlinear recursive estimation prohiegiven by Theorem 3.1. This
factis neglected by methods based on local model approxingatHowever, if we choose
to use this theorem the nonlinear models derived from thenyidg physics can be used
and rather than approximating the models, the optimal isolls approximated using

numerical methods. Over the years several different mstfmdperforming this approx-

imation have appeared. These methods are of two differaedskieither the probability

density functions of interest are parameterized by a finit@lper of parameters, which
are updated according to Theorem 3.1 or the integrals inrEne@.1 are handled using
numerical integration. Here, only a few of the most imparglobal approximations are
mentioned. For more references on this topic see, e.g.aKul{1L996), Bergman (1999),
Sorenson (1974).

One of the first approaches using an approximation based niteadet of parameters
is the Gaussian sunapproach by Sorenson and Alspach (1971), Alspach and Sworens
(1972), where the filtering density is approximated usingia ®f Gaussian densities
according to

N
plzefYe) ~ Z‘J“W( wL ) Y =1, gV zo0 v (@27)
=1

Another approximation is provided by tlp@int-mass filteoriginally suggested by Bucy
and Senne (1971) which, as the name reveals, approximatéiftenng density by a set
of points on a predefined grid,

N
p(z|Y) Zq( )5 (x — xgl)} qui) =1, q,gi) >0, Vi. (3.28)
i=1

This idea has been refined and generalized over the years fasiinstance piecewise
constant approximations and spline interpolations. Thatpuoass filter is thoroughly
treated in Bergman (1999), Bergman et al. (1999), whereadisis applied to the aircraft
navigation problem. Another approach which recently hgseaped is theunscented
Kalman filter(UKF), which is based on the unscented transform, discussadlier et al.
(2000), Julier and Uhimann (2004). The basic idea here iséoauset of grid points in
the state-space, chosen by the unscented transform.

There is another family of algorithms which makes use of ipi@tmodels in order to
derive an estimate. They use a set of models describingugbiehaviors of the underly-
ing system. This approach is common in target tracking apfins, where different ma-
neuvers of the tracked vehicle constitutes the differerdef® Examples of algorithms of
this type are thénteracting multiple mode{IMM) and thegeneralized pseudo-Bayesian
(GPB) approaches, which are thoroughly described by Bate®hand Li (1993), with
the target tracking application in mind. Yet another altion within this family is the
range parameterized extended Kalman fi(fPEKF) (Peach, 1995, Arulampalam and
Ristic, 2000), which is described and applied to a bearongg-tracking application by
Karlsson (2005).

Another approach, which can be interpreted as an extenéibe point-mass filter is
provided by thesequential Monte Carlo methqdsferred to as thparticle filter(Gordon
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etal., 1993, Kitagawa, 1996, Doucet et al., 2001a) in therfilg case. In these algorithms
the probability density function is also approximated bygas grid points. However, the
grid is not chosen deterministically, as is the case in poiass filters. Due to its relevance
for the present thesis the sequential Monte Carlo methaddiscussed in more detail in
Chapter 4. It is worth mentioning that there is a vast amodiiterature dealing with
different combinations and variations of the approachssutised above.

3.5 Linear Systems

The classic special case when it comes to estimation, andnsggsheory in general, is
constituted by linear systems subject to Gaussian noisepses. The theory concerned
with linear systems is by now rather mature, see, e.g., RUg96), Kailath (1980) for a
general treatment without stochastic processes. The lilye@amic model was introduced
as Model 7 in Section 2.3.3, but the equations, including @awmninput signak.;, are
repeated here for convenience,

Tey1 = Apry + Byug + wy, wy ~ N(0,Qy), (3.29a)
yr = Crxy + Dyuy + ey, er ~ N(0, Ry). (3.29b)

A solid treatment of the linear estimation problem is givgnkailath et al. (2000), the
fundamental innovation process is extensively used. lretstdnding linear estimation it
is advantageous to appeal to the geometrical intuitionclvis possible due to the fact
that linear estimation can be interpreted as projectiohBlbert spaces. There exist a vast
amount of literature dealing with the linear estimationipemn, and the Kalman filter in
particular, see, e.g., Kailath et al. (2000), Kay (1993¢wlaski (1970), Anderson and
Moore (1979), Sorenson (1985), Gustafsson (2000), WestHandson (1997), Harvey
(1989), Bryson and Ho (1975).

An important property of the linear model (3.29) is that ahdity functions involved
are Gaussian. This is due to the fact that a linear transfiwsmaf a Gaussian random
variable will result in a new Gaussian random variable. lenore, a Gaussian den-
sity function is completely parameterized by two parangettre first and second order
moments, i.e., the mean and the covariance. This impligsftitas assumed that the
underlying model is given by (3.29) the recursions in TheoBel can be recast as recur-
sive relations for the mean values and the covariances antob/ed probability density
functions. In Section 3.5.1 this is illustrated for the filtgy and the prediction densities,
which will result in an important corollary to Theorem 3.1.s&cond corollary is given
in Section 3.5.2, where the smoothing problem is considered

3.5.1 Filtering and Prediction

The special case obtained by assuming a linear, Gaussiaal f®#89) allows for an
explicit solution to the expressions given in Theorem 3.lhe Tiltering and one-step
ahead prediction solutions are given by the Kalman filtest fierived by Kalman (1960)
and Kalman and Bucy (1961). Before stating the theorem tketioa 7, , is introduced,
which denotes the estimate of the statat time¢ using the information available in the
measurements up to and including timen other words;, |, = E {z;|Y}.
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Corollary 3.1 (Kalman filter)

Consider(3.29)and assume that the initial state is distributech@as~ N (zo, Py). Then,
the estimates for the filtering density function and the dap ahead prediction density
function are both normal, according to

D] Yy) = N (2| Z4)0, Py, (3.30a)
p(xe1|Ye) = N(@ [ Ze1)6, Pryape)), (3.30b)
where
Tyje = Bep—1 + Kie(ye — Ciyp—1 — D), (3.31a)
Py = Byjp—1 — KiCy Py, (3.31b)
Typ1e = ArZy + Brug, (3.31c)
Py = AtPt\tAtT + Qs (3.31d)
Ky = Pyy_1C{ (CyPyy—1 CF + Ry) ™, (3.31e)

with initial valuesio|_, = Zo and Py = Py.

Proof: There are many different ways in which this result can be gdoin Appendix A
a proof based on the results of Theorem 3.1 is provided. Mpeeifically, the rele-
vant expressions from Theorem 3.1 are simplified using theosed linear, Gaussian
model (3.29). These calculations can also be found in Ho a&l (L964), Nordlund
(2002). For alternative proofs, see, e.g., Kailath et &0(®, Anderson and Moore (1979),
Gustafsson (2000). An interesting proof is given by Rao @0®here the Kalman filter
is obtained as the recursive solution to a weighted least+eg problem. O

The intuition for the Kalman filter is helped by thinking inrtes of time updates
and measurement updates. THeasurement update given in (3.31a) — (3.31b) and
the name derives from the fact that these are the equatioaesevithe information in the
present measuremegt is incorporated into the estimate. In (3.31a) this implres the
state estimate is adjusted as a weighted average of thepsegstimate and the new in-
formation available iny,. The uncertainty is reduced in (3.31b) as a direct consemuei
the fact that new information has been added. Furthermioedinbe updatecorresponds
to a prediction, implying an increased uncertainty (3.3Ti)e to the fact that the process
noisew, by definition, cannot be predicted the state evolution taioled simply by using
the deterministic part of the dynamic model, as in (3.31c).

An important, if not the most important, factor in making talman filter so funda-
mental is its applicability. The first application of the IK&n filter is probably the one
discussed by Smith et al. (1962). Furthermore, a good anekthéhteresting account
of the history concerning the development of the Kalmanrfdean engineering tool is
given by McGee and Schmidt (1985). The aerospace indusfginae the 1960s made
extensive use of the Kalman filter. In Chapter 1 it was meutibthat the same trend is
currently appearing in the automotive industry, due to thedifor more advanced driver
assistance functions. Since its first application the Kalffilger has been successively
applied within many different branches of science. Theetar now several applica-
tion oriented texts dealing with the Kalman filter, see, ,eB@ar-Shalom and Li (1993),
Bar-Shalom and Fortmann (1988), Brown and Hwang (1997 gr&am (1985).
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The linear observer theory developed by Luenberger (19881 )ican be considered
to be a deterministic version of the Kalman filter. In the #inebserver theory it ipostu-
latedthat the best way to construct the state estimate is to udeltbeing structure for
the estimator

jt—&-l = Atii't + Btut -+ Kt(yt — Cti't — Dtut). (332)

It is here important to observe a subtle, but important céffiee between the observer
theory and the Kalman filter theory. In the former the striet{8.32) of the estimator
is postulated, whereas in the latter this structure is aamuence of more elaborate as-
sumptions and calculations, see Theorem 3.1 and CorollaryTBese assumptions stems
from the fact that we made use of a probabilistic appréathkleriving the Kalman filter,
where the errors are modeled as well, not just the detertitiignamics. Furthermore,
this implies that the gain matrik’; is optimally? calculated in the Kalman filter, whereas
in the observerk,; has to be calculated “by hand” as a compromise between sgeed o
reconstruction and sensitivity to disturbances. From aenpoactical point of view one
might say that this compromise has been conveniently pdesined in terms of the de-
sign variables, which serve as tuning knobs in finding thé d@i® matrix for a particular
problem.

There are several applications where it is required to tatlek-step ahead predic-
tions, k > 1. For the general case thiestep ahead prediction is given by (3.8) and
if a linear, Gaussian model (3.29) is imposed it is Gausslars calculated simply by
iterating (3.31c) and (3.31d)times.

In applying the Kalman filter it is important to realize thaetcomputations are im-
plemented with finite-precision arithmetics, which givéserto round-off errors. This
implies that the covariance matrices might end up non-sytmecrend/or indefinite. The
solution to the first problem is simply to propagate only ith# matrix (the elements on
and below, or over, the main diagonal). The solution to tlemisd problem is to use a
square-root factorization of the covariance matrix. Henather than propagating the full
covariance matrix, we only propagate a square-root fa8ee Kailath et al. (2000) for
more details regarding this topic.

3.5.2 Smoothing

The linear filtering and prediction problems were first sdh®y Kalman (1960) and
Kalman and Bucy (1961). It was not until a few years later thatlinear smoothing
problem was first solved, see Rauch (1963), Rauch et al. j1®8$son and Frazier
(1963), Mayne (1966), Fraser and Potter (1969) for sevéffateint approaches. We will
in this section only be concerned with the fixed-interval sthing problem. The reason
is threefold. First, this is the most common case in apptioat Second, in the smooth-
ing application studied in this thesis we are confrontedhilie fixed-interval smoothing

2In Section 3.7.1 we will use a completely deterministic appho@ the estimation problem and discuss the
differences and similarities between a deterministic anchststic approach in more detail.

3The word optimal is a dangerous one. It is important to alwagp ke mind what is meant by optimal. The
estimates are optimal in the sense that they constitute thmalolution to the posed optimization problem.
Hence, it is imperative that the optimization problem is widefrmulated, otherwise the optimal solution might
note be so optimal after all.
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problent. Third, the solutions of the fixed-lag and the fixed-point sthing problems
follow from the solution of the fixed-interval problem (Kath et al., 2000).

The various approaches mentioned above for solving the timgoproblem all use
different arguments and as a result they produce quiterdiftealgorithms. However,
since the algorithms all solve the same problem they wiledglve same result, which
in turn implies that there must exist a close relationshigveen the various algorithms,
enabling a unified treatment. It is the fundamentadovation processhat makes such
a unifying treatment possible, this was first recognized lyld&h and Frost (1968). A
more recent discussion based on the innovation procesegen gi Kailath et al. (2000).
Some other interesting references treating the smoothoiggm are the survey papers by
Meditch (1973) and Kailath (1975), and the monograph by \a&i2001). The second
corollary to Theorem 3.1 will be the linear smoothing eqoragi (commonly referred to as
the Rauch-Tung-Striebel (RTS) formulas introduced by Raital. (1965)) given below.

Corollary 3.2 (Linear smoother) B
Consider(3.29)and assume that the initial state is distributedw@as~ N(zq, Py). Then,
the estimate for the smoothed density function is given by

P(@e|Yn) = N(2 | 24w, Pyyn), (3.33a)
where
Tyn = T + St(Beyr v — Teaape), (3.33b)
Pyn = Py + Se(Pepain — Pry1e) ST (3.33c)
St = PinAf P (3.33d)

wherez; 1|;, 4¢, Pry1)¢ and Py, are given by the Kalman filter. The initial state for the
smoother is provided by the Kalman filtéirg x and Py ).

Proof: See Kailath et al. (2000), Rauch et al. (1965). O

In order to obtain a numerically robust implementation @& folution to the smoothing
problem we have to resort to square-root factorizations. efaited treatment of such
factorizations is given by Gibson (2003).

In extending the results to the nonlinear, non-Gaussiag itas probably a good
idea to start from the general and indeed rather powerfutesgions provided by the
probability density functions. This will be the topic of Siew 4.5. More importantly,
that section will also discuss how the calculations can bépaed in practice and in
Paper F a successful application of the nonlinear smootdgngyithm is provided.

3.6 Improved Estimation Using Change Detection

Change detection is a well established research area c@uteith the problem of de-
tecting a change in the underlying system, see, e.g., Ggstaf(2000), Basseville and

4In Paper F a nonlinear fixed-interval smoothing problem hdmetsolved. It arises as a sub-problem when
the EM algorithm is employed to solve a certain class of nealirsystem identification problems.
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Nikiforov (1993), Kay (1998). This change might be due to anponent failure or a
change in the surrounding environment. Typically, the nidmployed in deriving vari-
ous estimates cannot cope with all situations that migkeakiut different models can be
derived for the different situations. In automotive tartgatking applications it is com-
mon to derive the model of the tracked vehicles based on thevgstion that they stay in
their own lanes. This assumption is valid most of the time wthen the tracked vehicles
depart from their lanes the model is no longer correct. Heanenteresting idea is to
make use of change detection ideas to detect the lane degsaemnd use a model that
describes this motion better during the lane departures Will improve the estimates,
since a more accurate model is used. The idea is illustratedgure 3.1, where the de-

n Estimate
Estimation Ty Detect Alarm‘
uy Algorithm etector

Figure 3.1: The estimation algorithm delivers residuals which are used in the
detector to decide whether or not a change has occurred hHsge is detected this
information is fed back for use in the estimation algorithm.

tector informs the estimation algorithm that a change hiesntglace. This information

is then used in the estimation algorithm by switching to tredet which best describes
the current situation. The change detector typically insif adistance measurend

a stopping rulesee Figure 3.2. The distance measure is used to asses&ndhetiange

I

|
€t Distance |5t |
Measure |
|

|

|

|

Figure 3.2: The components of the change detector are a distance measlige
stopping rule, where the latter consists of an averagingaahcesholding procedure.

has occurred or not. It is an important design variable, shauld be chosen with the
application in mind. Common standard choices are to useesidualss; = ¢; or the
squared residuals = 2. The stopping rule is used to give an alarm whenabgiliary
test statistiay; exceeds a certain threshold. One of the most powerful toolsltaining
a good stopping rule in change detection problems is pravitlethe cumulative sum
(CUSUM) algorithm, introduced by Page (1954).
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Algorithm 3.2 (CUSUM)

1. gt = gi—1 +5; — V.
2. If g, > h: Alarm, g, = 0 andt garm = t.
3. Ifg;<0:9,=0 andfcnange: t.

The auxiliary test statistig, is a cumulative sum of the distance measure, compensated
with adrift termv. This drift term is introduced to prevent positive driftdyieh otherwise
will result in false alarms. Similarly, negative drifts greevented by setting. = 0, when
gr < 0. The estimated change time is providedt];mnge A change is considered detected
wheng; exceeds a certain threshdldA rather detailed account of the CUSUM algorithm
and its application in state estimation problems is pravidg Gustafsson (2000).

In Paper | we provide an application where the estimatesignifisantly improved
by employing the change detection ideas briefly reviewedhis section. Furthermore,
the importance of choosing an appropriate distance meéasilitestrated.

3.7 Convex Optimization for State Estimation

The topic of this section is the use of convex optimizatiors@iving state estimation
problems. Methods based on convex optimization have betengxely used within the
automatic control community in order to accommodate forphesence of constraints,
using the method ahodel predictive controfMPC) (Maciejowski, 2002). However, the
interest has not been that intense when it comes to the stateatéion problem. Recently
this has started to change, see, e.g., Goodwin (2003), Goadwl. (2005), Rao (2000).

In Section 3.7.1 it is illustrated that the Kalman filter i® trecursive solution to a
certain weighted least-squares problem. This optimingti@blem can then be used as a
basis for extending the formulation to include constraagsvell. An intuitive motivation
for this approach is that if the constraints are neglected¢isulting problem is reduced
to the ordinary Kalman filter. This fact is utilized in Secti8.7.2 in order to illustrate
how certain constraints can be taken into account in soltfisgstimation problem.

3.7.1 Deterministic Approach to State Estimation

This section is devoted to a purely deterministic approacthé estimation problem.

In order to be able to convey the main message the discussiimited to the linear
problem. Removing the probabilistic framework previousiyiployed will in this case
simply imply that the noise terms, ande; in Model 7 should be regarded as errors of
unknown character. Given a set of measurem&nénd a guess of the initial statg, the

task is to determine the statgin such a way that it describes the obtained measurements
as well as possible. That is, we are faced with a problem ofiitting, where we want to
minimize the errorgw; }!_; and{e;}!_,, as well as the error in the initial guess,— zo.

If Gauss would have been faced with this problem sa@fiieyears ago, he would probably
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have suggested us to solve the following least-squaresgmmob

. _ t—1 2 t 2
H)l(ltn H$0 - xO”?s(;l + Ei:o Hwi”Q;l + Zi:o ||ei||R;1
s.t. Ti+1 — All'z + Wi, 1= 07 NN 7t - ]., (334)
yi = Cizi+ey, i=0,...,t,

where the weight matrice®); }:=}, { R, }_, and P, are design parameters. This is a con-
vex optimization problem, more specifically it isqaadratic prograntQP). The theory
on how to handle least-squares problems of this type is widbéished, see Bjorck (1996)
and the many references therein. The estimates obtained(8@4) are smoothed, ex-
cept for the estimate af;, which is the filtered estimate, since we only use measurtamen
up to and including time.

The optimization problem stated in (3.34) can also be mtat/&rom a probabilistic
point of view by considering the problem of deriving thiximum a posteriorestimates
for the state variables

X, = arg max p(X:|Yy), (3.35)
Xt

in Model 7. The probability density functign X;|Y;) is proportional top(Yz| X:)p(X:),
where

t
p(Ya| Xy) = H (yilzi) Hpel yi — Cizy), (3.36)
i=0
-1 =1
P(Xe) = pay (20 — To) [ [ p(@isa]2:) = pag (w0 — Zo) [ [ pw, (i1 — Avs),
i=0 i=0
(3.37)

according to the discussion in Section 2.3.1. Putting itagether we arrive at

t—1 t

P(Xi|Y) = cpay (x0 — Zo) pr,: (Tit1 — Asz;) pr (yi — Cizy), (3.38)

1=0 =1

wherec € R™* derives fromp(Y;). Due to the fact that the logarithmic function is strictly
monotone we may consider maximizithgg (p(X;|Y:)) just as well ap(X;|Y:). This
will, together with the assumption of Gaussian noise in&R.8ive rise to the optimization
problem stated in (3.34). The difference is that the weigatrives are now given by the
inverse covariance matrices.

It can be proved (Rao, 2000) that the recursive solution 84(3is provided by the
Kalman filter. The Kalman filter is in other words the recuessolution to the weighted
least-squares problem (3.34). This fact will be furthereited in the subsequent section,
where it is discussed how constraints can be included ingtimation problem in order
to obtain better estimates. An interesting historical actf the relationship between
the probabilistic formulation of the Kalman filter and therresponding deterministic
formulation is provided by Sorenson (1970).

Since we have departed from the probabilistic approactetiseno way of assessing
the statistical performance of the estimates. It is intergso note that regardless of
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how we formulate the estimation problem it will usually bdidwn to an optimization
problem in a purely deterministic framework. An importaiftetence is that the proba-
bilistic framework provides a systematic means for chapsire design parameters, i.e.,
the weight matrices.

3.7.2 Constrained State Estimation

The advantage of casting the estimation problem as a corpxiaation problem is
that it is straightforward to add certain constraints toptheblem. The theory on convex
optimization is by now rather mature and there is generap@ae software available
for solving the resulting problems. In this way prior infation about the state can be
utilized, e.qg., that the state is always positive or thatdbponents of the state should
sum to one, which is the case if the state is a vector of préibabi Constraints of this
type cannot be straightforwardly included in the standaathi@n filter. However, if we
use the optimization problem to which the Kalman filter is theursive solution, i.e.,
problem (3.34), it is straightforward to include the coasits. Here, the ideas are briefly
introduced. For a more thorough treatment, see Paper D gvamegxample on estimating
probabilities is provided. Performing state estimatioimg®ptimization techniques has
previously been discussed using quadratic programs innitaince Rao et al. (2001),
Rao (2000), Robertson and Lee (2002). For an introductiototestrained estimation
and its connection to model predictive control (Maciejoiv&02), see, e.g., Goodwin
(2003), Goodwin et al. (2005). Both these problems aredteat a more technical level
by Michalska and Mayne (1995).

The main message of convex optimization is that we shaolddiffer between lin-
ear and nonlinear optimization problems, but instead betwenvex and non-convex
problems. The class of convex problems is much larger thatrcthvered by linear prob-
lems, and for a convex problem any local optimum is also tbealoptimum. A convex
optimization problem is defined as

min  fo(z
x

st. filr) < 0, 1=0,...,m, (3.39)
afz = b, 1=0,...,n,
where the functiondy, .. ., f,, are convex and the equality constraints are linear. For a

thorough introduction to convex optimization, see Boyd ®¥addenberghe (2004). Moti-
vated by the discussion in the previous section the converaation filtering problem
can be defined according to Problem 1.

It is also worth stressing that it is straightforward to imd# other variables to be esti-
mated, such as, e.g., missing data into Problem 1. Besidesling them in the variables
to be estimated there is probably also a need to provide sesugmptions regarding how
they behave, which are typically implemented as consgaint

Another type of constraints that might be interesting totd@roblem 1 are those that
makes it possible to include model uncertainty. Let us asstinat we are uncertain about
the A-matrix in Problem 1, one way of expressing this is to say thatd-matrix should

5A useful and efficient software is YALMIP, developed by L6fgg2004). It provides direct access to
several of the standard numerical solvers for optimizati@blems, using a powerful MrLAB interface.
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belong to a set of some kind. Depending on the propertieso$ét different optimization
problems are obtained. This is in the literature referredd@obust estimation For
information about commonly used sets, the resulting ogttivn problems and how to
solve them, see, e.g., El Ghaoui and Lebret (1997), Boyd andi&berghe (2004).

Problem 1 (Convex optimization filtering)

Assume that the densitigs, (o), p, (w;), andp., (e;) are log-concave In the presence
of constraints in terms of a linear dynamic Model 7, the MAdBiraate is the solution
I+ = x to the following problem

t—1 t
max  10g(pa, (w0 — o)) + z; log(pu, (w:)) + z; log(pe, (e:))
1= 1=
s.t. Tiv1 = Az +w;, 1=0,...,t—1,
yi = Ciz;+ e, 1=0,...,t.

It is straightforward to add any convex constraints to tbisrfulation, and the resulting
problem can be solved using standard software.

The main concern with the formulation of the estimation fpeabgiven in Problem 1
is that the size of the optimization problem increases wittetas more and more mea-
surements are considered. This is unacceptable in prasitteve have to find a way of
bounding the number of variables. One way of doing this istive a recursive solution.
However, when additional constraints are included thisindeed be very hard. In Zhu
and Li (1999) a recursive solution is given for a special adderoblem 1 with additional
constraints.

Another way of bounding the number of variables in the optation problem is to use
moving horizon estimatioMHE) (Maciejowski, 2002, Goodwin et al., 2005), defined
in Problem 2. This is basically the same idea underpinningehpredictive control, i.e.,
the state is estimated using a fixed size, moving window a&f.datspecial case of this is
the windowed least-squares approach discussed by Gustd&300).

Problem 2 (Moving Horizon Estimation (MHE))

Assume that the densities,, (w;) andp., (e;) are log-concave. In the presence of con-
straints in terms of a linear dynamic model, the MHE-estanatthe solutiori:; = x, to
the following problem

t

max Flr)+ Y loglu(w)) + 3 loa(pe,(cr)

Xeora i=t—L i=t—L+1
s.t. Tiv1 = Ay +w;, t=t—L,...,t—1,
yi = Cizi+e, i=t—L+1,...,t,

whereF (z,_1,) contains information about the past.

6A function f : R™ — R is log-concavef f(x) > 0 for all z in the domain off andlog( f) is a concave
function (Boyd and Vandenberghe, 2004).
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The problem is now reduced to solving a convex optimizatimbfem with a fixed num-
ber of variables once every time a new measurement arrivewetr, it is important to
understand that the approach using MHE is, in general, ptiral, since the influence
of the past measurements is not necessarily taken careretdgrin F'(x;_1,).

The formulation used in Problem 2 can probably be useful falschange detection
and fault diagnosis. See Gustafsson (2001) for a similar icking the Kalman filter over
a sliding window of fixed size. In an extension to nonlineasteyns a solution might be
based on ideas similar to the innovation whiteness testefilter bank approach dis-
cussed in Gustafsson (2000, Chapteesd9). Furthermore, Problem 2 can be extended
to the nonlinear estimation problem, by using the nonlindadel 3 instead of the linear
Model 7. The resulting problem is much harder, since it is a-convex optimization
problem. Several useful entry points into the literatureraving horizon estimation for
nonlinear systems are given in Rao et al. (2001), Rao (2000).
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Sequential Monte Carlo Methods

QUENTIAL Monte Carlo methods, oparticle methodsdeal with the problem of

recursively estimating the probability density functipfx,|Ys). According to the
Bayesian viewp(z:|Y;) contains all statistical information available about tteesvari-
ablex;, based on the information in the measureméntsThis probability density func-
tion can then be used to form various state estimates accprali

I(g(xy) £ E{g(xn)|¥s} = / o(w)p(z|Ys) dey. @.1)
Rn e

The key ideaunderlying the sequential Monte Carlo methods is to remtethe proba-
bility density function by a set of samples (also referred$garticles, hence the name
particle methods) and its associated weights. The densitytibnp(z:|Ys) is approxi-
mated with an empirical density function,

M M
pa) =Y @ (w—-al)),  Ya’=1  @’zovi (42
=1

i=1

whered( - ) is the Dirac delta function anif“ denotes the weight associated with particle

azi‘li In obtaining this approximation we have to be able to ggegemdom numbers from
complicated distributions. The approximation (4.2) casodle obtained using stochastic
integration ideas, see, e.g., Geweke (1996), Bergman [888uch, slightly different,
approaches. Even though theory states that the approgimsat#.2) derived using se-
guential Monte Carlo methods are independent of state dienit matters in practice.
Problems due to high dimensional state variables previeatsge of the sequential Monte
Carlo methods. However, if there is a linear sub-structuadable in the model equations
the marginalized particle filter can be employed. It is imigot to note that the problem of
generating random numbers from complicated distributf@sspreviously been assessed
in a non-recursivesetting using thé/arkov chain Monte Carlo method8CMC).

51
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In Section 4.1 we will make the unrealistic assumption thatoan indeed generate
samples from the target density. The objective of this eacis$ to illustrate the idea
and to motivate Section 4.2, which is concerned with varioleas on how to handle
the fact that we cannot generate samples directly from tigettalensity. Three differ-
ent solutions to this problem are illustrated. One of thesgalled importance sampling
resampling and this approach is used to derive the partltde iin Section 4.3. In Sec-
tion 4.4 the marginalized particle filter is introduced. dndoe employed when there is a
linear, Gaussian sub-structure available in the modeltemng The solution to the non-
linear smoothing problem, using particle methods, is dised in Section 4.5. Finally,
the chapter concludes with Section 4.6 on how to obtain varestimates using (4.1).

4.1 Perfect Sampling

This section is concerned with the problem of calculatingestes (4.1) based on the
assumption that we have accesdfdndependent and identically distributed (i.i.d.) sam-
ples,{z()}M, from the target density(x). This assumption is unrealistic from a prac-
tical point of view. Nevertheless, it will allow us to illustte the key idea underlying the
sequential Monte Carlo methods. Using the sampl€8 } 2, an empirical estimate of
the density functior(x) can be formed according to

Mo _
b (@) = Y 770 (:v - x@)). (4.3)

i=1

Using this empirical density an estimateldfy(x)) is obtained as

M
. . 1 .
D 9(o) = [ gt (@)do =" 7o(a) (4.
=1
This estimate is unbiased and according togtreng law of large numberse have that
Jim Tar(g(x)) =5 I(g(x), (4.5)

where 225 denotes almost sure (a.s.) convergence (Doucet et al.ap0Gwve assume
thato? = I(g%*(z)) — I*(g(x)) < oo the central limit theorentan be applied, which
gives

tim VA (D(g(2) ~ I(g(x)) ) < N (0.0%). (4.6)

M — o0

where - denotes convergence in distribution (Doucet et al., 200H®nce, using a
large number of sample§z(")} M, we can easily estimate any quantity(x)), accord-
ing to (4.4).

The assumption underlying the above discussion is thatpbssible to obtain i.i.d.
samples front(z). However, in practice this assumption is very seldom vdliidorder
to use the ideas sketched above we need to be able to geramdtenr numbers from
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complicated distributions. There has been extensive relsegerformed regarding this
problem and there are several different methods that casdxbto tackle the problem.

Markov chain Monte Carlo methods are used to generate sarfipl@ probability
distributions (Robert and Casella, 1999, Gilks et al., 2998e basic idea is to generate
random numbers by simulating a Markov chain, which have déinget density as limit
distribution. The problem with MCMC methods is that they enteerently iterative, im-
plying that their use in solving recursive estimation pesbs is limited. Since we are
mainly concerned with the problem of recursive estimatianlvave to use alternative
methods. However, in the sections to come we will see thailagindeas can be used
to tackle the recursive problem. In the subsequent sectiore ©f the most popular se-
quential Monte Carlo methods will be reviewed inspired by fitamework introduced by
Tanizaki (2001).

4.2 Random Number Generation

The problem under consideration in this section is to geaesamples from some known
probability density function, referred to as therget densityt(x). However, since we
cannot generate samples fratfx) directly, the idea is to employ an alternate density
that is simple to draw samples from, referred to asshmpling densitys(x). The only
restriction imposed oR(z) is that its support should include the support@f)®. When

a samplet ~ s(x) is drawn the probability that it was in fact generated from thrget
density can be calculated. This probability can then be tselécide whether should

be considered to be a sample frafx) or not. This probability is referred to as the
acceptance probabilitand it is typically expressed as a functiongof), defined by the
following relationship,

t(z) x q(7)s(T). 4.7)

Depending on the exact details of how the acceptance pildigabicomputed different
methods are obtained. The three most common methods afly bxplained below. For
a more detailed explanation, see, e.g., Robert and Cad889), Gilks et al. (1996),
Tanizaki (2001). A comparison of the three methods is predidy Liu (1996).

4.2.1 Sampling Importance Resampling

Sampling importance resampling (SIR) is an extension ofdaa ireferred to agnpor-
tance samplingHence, we will start our brief exposition on SIR by explagpithe im-
portance sampling algorithm. In discussing this algoritive sampling densitg(z) is
typically referred to as thiznportance functionTo understand the idea behind importance
sampling, note that integrals in the form (4.1) can be reemit

I(g(x)) = / 0(2) 2 s(2) de. (4.8)

1The support of(z) includes the support afz) if Vo € R™=, t(z) > 0 = s(x) > 0.
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Based on the discussion in Section 4.1 it is now straighodwo obtain an estimate of
I(g(x)) by generatingy/ > 1 samples{z(")}, from s(x) and forming

1 .
hlg@) = 57 3 a@)ge ), @9

where

(1)
_E) oy
3(,7;(1))

are referred to as thienportance weightsIn most state estimation applications of the
importance sampling procedure the normalizing factor entdrget density is unknown.
This implies that the importance weights are only known ughie normalizing factor,
which can be resolved by normalizing the importance weights

g(z)
Zﬁﬂﬂﬂﬂf

whereq(z()) is defined in (4.10). This normalization will for finit&/ introduce a bias

in the estimate. However, from the strong law of large nuraltiee estimate is asymptot-
ically unbiased. Details regarding this and other thecatissues relating to the impor-
tance sampling algorithm are discussed by Geweke (1989)ha¥e now motivated the
following approximation of the target density

q(z") M (4.10)

)

Gz = i=1,...,M, (4.11)

M
ty(x) = Z G(z()s (:c - x(i)) . (4.12)

=1
The importance weights contains information about how @bt it is that the corre-
sponding sample was generated from the target density. eJléme importance weights
can be used as acceptance probabilities, which allows usrtergte approximately inde-
pendent sample§i(¥} M, from the target density function. The approximation(z)
given in (4.12) is defined using a finite number of samgdle$)} M . This implies that
the process of generating the samples from the target gidosittion is limited to these
samples. More specifically this is realized l®samplingamong the samples according
to

H(ﬂ”:zw):qumx i=1,..., M. (4.13)

The SIR idea was first introduced by Rubin (1988). In Algarith.1 the above discussion
is summarized by describing how to approximately genekétsamples from the target
density.

The sampling importance resampling algorithm is closdbteg to thebootstrappro-
cedure, introduced by Efron (1979). This relation is diseasin Smith and Gelfand
(1992), where an interpretation of Algorithm 4.1 is proxdde terms of a weighted boot-
strap resampling procedure. It is worthwhile to note thatrdsampling step (4.16) is the
key step when it comes to estimating density functions s#ely over time. This was
first realized by Gordon et al. (1993) and it will be descrilbedetail in Section 4.3.
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Algorithm 4.1 (Sampling Importance Resampling (SIR))

1. Generatd/ independent samplds )} | from s(x) and compute the importance
weights

g(@D) = t(@D)/s(zD),  i=1,..., M. (4.14)

The acceptance probabilities are now obtained by norntaliza
§(2?) = q@®)/ 3 qaD),  i=1,...,M. (4.15)
j=1

2. Generate a new set of samplg$§’ } M, by resampling according to

H(ﬂ“:xm):q@m% i=1,...,M. (4.16)

4.2.2 Acceptance — Rejection Sampling

A problem inherent in the SIR algorithm is that the producachgles are only approxi-
mately distributed as the target density. This problem tsengountered by acceptance —
rejection sampling, which will produce samples that arecéyalistributed according to
the target density. However, this algorithms suffers fravesal other drawbacks.

If there exists a constaiit > 0 such that

t(zr) < Ls(z), V=, (4.17)

then Algorithm 4.2 can be used to generafesamples from the target density. A more
detailed account of this algorithm is provided by Robert @adella (1999).

Algorithm 4.2 (Acceptance — rejection sampling)

1. Generate a random number,- s(x) and computg(z) = Lfig)

2. Accepti as a sample from(z) with probabilityq(z), i.e., Pr (29 = &) = ¢(%).
If Z is not accepted go back to step
3. Repeat stepand?2 fori =1,..., M.

This is the most efficient sampling method in the sense tleegéimerated samples are mu-
tually independentexactdraws fromt(x). However, as mentioned above, the algorithm
suffers from some major limitations. First of all we have talfan upper bound,, which
can be quite hard. Furthermore, once this upper bound hasfbeed it can be proved
(Andrieu et al., 2001) thakr (z acceptedl = 1/L, which typically is a very small num-
ber. This implies that from a practical point of view the aitfum is not very useful, since
on averagd. > 1 random numbers have to be generated in order to obtain ongesam
that is accepted. It is clear that we want &anvhich is as small as possible, motivating
the choice,. = sup, t(z)/s(x). Another, related issue is that there is no upper bound
on the number of iterations required, we can only state thaverage\/ L iterations are
needed. This should be compared with the SIR algorithm, lwjuist needV/ iterations.
When it comes to real time applications this will of course lmeagor problem.
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4.2.3 Metropolis — Hastings Independence Sampling

The Metropolis — Hastings algorithm is a quite general atbor for computing estimates
using the MCMC method. It was introduced by Hastings (19@8)a generalization of
the algorithm proposed by Metropolis et al. (1953). An idtrotion to the Metropolis —
Hastings algorithm is provided by Chib and Greenberg (198B¢ idea of the algorithm
is borrowed from acceptance — rejection sampling, in treggmerated samples are either
accepted or rejected. However, when a sample is rejectedutinent value is used as
a sample from the target density. The Metropolis — Hastingependencaampling
algorithm, which is a special case of the Metropolis — Hagialgorithm, is given in
Algorithm 4.3. For a more detailed account of MCMC methodseiation to sequential
Monte Carlo methods, see, e.g., Andrieu et al. (2001), Barg(h999).

Algorithm 4.3 (Metropolis — Hastings independence sampliny

1. Initialize withz(~") = z and sef = —L + 1.
2. Generate ~ s(z) and compute the acceptance probability

_ (t(&)s(z(D)

3. SetzY) = i with probabilityq. Otherwise set() = z(i=1),
4. Repeatstepand3 fori = —-L+2,..., M.

The initial L samples belongs to th®irn-inphase of the algorithm and they are automat-
ically rejected. The reason is that the simulation has tolréts stationary phase before
the samples can be considered to originate from the stayidre, the target, distribution.

A rather detailed analysis of Algorithm 4.3 is provided by (1996).

4.3 Particle Filter

Let us consider the filtering problem, where the target dgrisigiven by the filtering
density,t(x;) = p(x¢|Y;). In order to use the idea outlined in the previous sectios it i
necessary to choose an appropriate sampling des&ify and a corresponding accep-
tance probability. This is in fact quite simple, since fromy@s’ theorem and the Markov
property we have

P(ye|ze)p(ze|Yio1)
p(ytIYt—ﬁ

which suggests the following choices

p(x4|Y2) = p(xelys, Yio1) = o< p(yelze)p(xe| Y1),  (4.19)

p(@e]Yy) o< p(yelae) pla Y1) . (4.20)
—_—— —
t(xy) q(x¢) s(x¢)

The resemblance with (4.7) is obvious. Hence, we can empi@wlgorithms discussed
in Section 4.2 to obtain samples from the target density.s pinovides a rather gen-
eral framework for discussing particle filtering algoritanThe particle filter is typically
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derived completely within an importance sampling framewaee, e.g., Doucet et al.
(2000a), Liu and Chen (1998), Arulampalam et al. (2002),6802003) for derivations
of this kind. However, it is interesting, at least from a cepiual point of view, to note
that we could just as well have used acceptance — rejectioplsay, Metropolis — Hast-
ings independence sampling or some other method to germraretem numbers in order
to obtain alternative particle filtering algorithms. Thewd acceptance — rejection sam-
pling is discussed by Bglviken et al. (2001) and Hirzeler Kiidsch (1998). Based
on the appealing properties of the sampling importancenpbag idea we will choose
to employ this principle in deriving the particle filter. Bhimplies that the acceptance
probabilities{3® } M, are calculated according to

o _ q(xirt)fl) - p(ytlngt)fl) 4.21)

t T M ( M j ’
27 1‘1( t|]f) 1) Zj:lp(yt|x§|7t)—1>

wherexflf) 1 ~ p(z¢|Y;—1). These predicted partlcle{sc“ |}, are generated from

the underlylng dynamic model and the filtered pamcles ftbe previous time instance

{xt 1t—1 M . The details behind this can be understood from the follgvemiculation,
which is a result of using the time update (3.13b) in Theoreln 3

s(ze) = plae|Yioy) = / Pl )p(Ee-1]Yios) dpy

/ (@t|ze—1) Z (a:t 1_x£)1‘t 1) dzpy
= Z % /p(37t|l’t—1)(5 (l‘t—l - :cii_)l‘t_1> dzs_1
Z*P (il't|1't 1|t— 1) (4.22)

Hence, the predicted particles are obtained simply by pgske filtered particles through
the system dynamics.

According to (4.21) the acceptance probabilitfé”% depends on the likelihood func-
tion p(y:|x¢;—1). This makes sense, since the likelihood reveals how like#yobtained
measurement is, given the present state. The better arcesddicle explains the re-
ceived measurement, the higher the probability that thisgbawas in fact drawn from
the true density. Following Algorithm 4.1, a new set of paets {xi@}i]‘il approximat-
ing p(x:|Y:) is generated by resampling with replacement among thegieztparticles,
belonging to the sampling density

Pr(all) =alll ) =a?, i=1...M (4.23)
If this procedure is recursively repeated over time theofeihg approximation
M 1 ,
pladlY) = Y =26 (w0 - af])) (4.24)

i=1
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is obtained and we have in fact derived tbarticle filter algorithm, which is given in

Algorithm 4.4. It was first introduced by Gordon et al. (1993)ater it was indepen-
dently rediscovered by Kitagawa (1996) and Isard and BlaR9g§). Some early ideas
relating to the particle filter are given in Metropolis andabil (1949), Hammersley and
Morton (1954), Akashi and Kumamoto (1977), Handschin angiég1969), Handschin
(1970).

Algorithm 4.4 (Particle filter)

1. Initialize the partlcles{gco| UM~ pay(20) and set := 0.

2. Measurement update: calculate importance Wel{gjﬂ%} 1, according to

¢ —p (ytlxi\?_l) . i=1,..., M, (4.25)

and normallzelt =q @ / Zj 1 qgj)-

3. Resampling: draw/ particles, with replacement, according to

Pr(af) =2 ) =d?.  i=1l... (4.26)
4. Time update: predict new particles according to

2D~ (xt+1‘t|x§|it)) S i=1,..., M. (4.27)

5. Sett :=t + 1 and iterate from step.

First, the particle filter is initialized by drawing sampliesm the prior density function
Do (To). In the measurement update the new measurement is useddo agsobabil-
ity, represented by the normalized importance weight, themarticle. This probability
is calculated using the likelihood function, which desesthow likely it was to obtain
the measurement given the information available in thegartThe normalized impor-
tance weights and the corresponding particles constituspproximation of the filtering
density. The resampling step will then return particleschhare equally probable.The
time update is just a matter of predicting new particles ediog to the system model.
Furthermore, these predicted particles form the startaigtgor another iteration of the
algorithm. There are several books available on the subfearticle filtering, see Doucet
et al. (2001a), Ristic et al. (2004), Liu (2001).

4.3.1 Resampling Algorithms

The resampling step conS|sts of drawing a new set of passt{oiie1 “, with replacement

from the old partcheL{x in such a way that the probability of drawwzé't 1

tlt—1 z 1’
given by according to

Pr( () _ ) ),gfm, i=1,...,M. (4.28)

Lyt tlt—1
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Particle index

Figure 4.1: lllustrating the resampling step in the particle filter. Tteav set of parti-
cles is obtained by first generating sorted uniformly distributed random numbers,
three of which are shown by the dashed lines in the figure. daesthen associated
with a particle guided by the cumulative sum of the normalizeportance weights.
In the figure particle number 2 is chosen once and particlebaudhis chosen twice.

One way of achieving this is to use so callgithple random resamplingllustrated in
Figure 4.1. Here, the idea is to select the new particles Inypesing an ordered set of
uniformly distributed random numbet#(0, 1) to the cumulative sum of the normalized
importance weights. The resampling step can indeed bezeglaticcording to the idea
sketched in Figure 4.1, but there are more efficient algmstlavailable. The efficiency
is here determined by the resampling quality and the contipn& complexity. The re-
sampling quality is important for the overall quality of tastimate. Furthermore, a con-
siderable amount of the total computational complexity jagicle filter implementation
stems from the resampling step. This clearly motivates #aech for good resampling
algorithms.

There are several resampling algorithms proposed in theatitre. Thesimple ran-
dom resamplinglgorithm was explained above. For further elaboratiorardigg this
algorithm, see Bergman (1999), Doucet et al. (2000a). Eurtbre, there istratified
sampling(Kitagawa, 1996, Liu and Chen, 1998ystematic samplingKitagawa, 1996,
Arulampalam et al., 2002) an@sidual samplingLiu and Chen, 1998). These algorithms
are discussed and analyzed in detail by Hol (2004). Thetre$tihis study is that the
systematic resampling, given in Algorithm 4.5 is most appiette. This is in accordance
with the results reported by Arulampalam et al. (2002).

Despite the various embellishments of the resampling seepamnot escape the fact
that it will introduce a dependence among the differentiplag. This is due to the fact
that particles having large weights will be selected mames, since we are resampling
from a discrete probability density function, rather theonf a continuous. In the particle
filtering literature this problem is commonly referred tosanple impoverishmenthe-
oretically this is also a problem, since this dependenceesaknvergence results harder
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to obtain. There are several more or lasshocideas for how to cope with this problem.
One such idea is referred to emughening (Gordon et al., 1993) gittering (Fearnhead,
1998). The idea is to introduce an additional noise to ma&g#rticles differ more from
each other. Another idea, aiming at reducing the sample wemEshment problem, is to
resample from continuous approximations of the discretdaility density function.
This is referred to as theegularized patrticle filte(RPF) (Musso et al., 2001).

Algorithm 4.5 (Systematic sampling)

1. Generatéd! ordered numbers according to

(k—1)+a

i i~ U(0,1). (4.29)

Uk =

2. The resampled particles are obtained by produgingppies of particle:(), where

i—1 7
n; = the number ofy, € <Z i, th(s)] : (4.30)

s=1 s=1

4.3.2 Algorithm Modifications

The particle filter given in Algorithm 4.4 is rather simplejtiout loosing any of the

main components. In the literature there is an abundancarajus alternative particle
filtering algorithms. However, the underlying idea of alé#ie algorithms is captured in
Algorithm 4.4,

The essential resampling step leads to the problem of sampleverishment, moti-
vating the work considered with improving this part of thgaithm. An obvious idea,
is to refrain from resampling at each time step. This is frttiscussed by Bergman
(1999), where the effective sample size is used as a meaktine degeneracy of the
particles. Another particle filtering algorithm devisedeishance the resampling step is
the regularized particle filter mentioned above.

The importance of choosing a good importance function issstd by several au-
thors, see, e.g., Arulampalam et al. (2002). The importéumoetion p(z;41|x;) used in
Algorithm 4.4 has an obvious defect in the sense that the-sfadce is explored without
direct knowledge of the measuremept The idea of incorporating this information in
the importance function is explored in tlaexiliary particle filter(APF) introduced by
Pitt and Shephard (1999).

The idea of approximating the probability density functwith a Gaussian or a Gaus-
sian sum was first introduced by Sorenson (1970) and AlspadiSarenson (1972), see
Section 3.4.2. This idea has recently been used within &feafiltering framework. The
Gaussian patrticle filte(GPF), introduced by Kotecha and Djuric (2003a) approx@sat
the filtering and predictive density functions with Gaussikensities. Furthermore, the
Gaussian sum particle filtd'zSPF) is similar, save the fact that the approximations are
performed using a sum of Gaussian densities (Kotecha amitPA003Db).
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4.3.3 Implementation

The purpose of this section is to make the particle filter na@eessible to those who have
still not used it. Having read this section the reader willdisée to implement a particle
filter from scratch within five minutes. Before the implenegitn is given there are a
few steps in Algorithm 4.4 that are probably worth commegntiim step2 the importance
WeightSqF) are calculated using the likelihood function, which aca@ogdo (2.14b) is
given by

P(ye|we) = pe, (yr — h(w,1)). (4.31)

¢ from pz,pe|)). This

can be realized by first generating a sample of the procese,mdf) ~ pu, (wy). The
predicted particles are then given by

Furthermore, in step, the task is to generate samplet(ég

@ = @)+ w?, (4.32)

Tevrpe = T Ty

We are now ready to give the MLAB -implementation for Algorithm 4.4 using Model 3,
with Gaussian noise. The resampling is implemented usiggi#thm 4.5.

Code 1 (M ATLAB -code for Algorithm 4.4 using Model 3)

function [xhat] = PF(f, h, pe, Q PO, MYy)

n = size(PO, 2);

X = sqrtm(PO)*randn(n,M; % 1. Initialize particles
for t = 1:100

e = repmat(y(t),1,M - h(x); %2. Calculate weights

g = feval (pe, e); % The |ikelihood function

g = g/sun(q); % Normal i ze inportance wei ghts

xhat (t) = sum(repmat(q, n,1).*x, 2);

ind = resanpling(q); % 3. Resanpling

x = x(:,ind); % The new particles

x = feval (f,x,t)+sqgrtm Q*randn(n,M; % 4. Tine update
end

function [i] = resanpling(q)

qc = cunsun(q); Mel engt h( Q) ;
u=([0:M1]+rand(1))/M
i = zeros(1,M; k = 1;
for j = 1:M

while (qc(k)<u(j))

k = k + 1;
end
i(j) =k

end;
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The three first input arguments to tR€ function are the model equatiohs h and the
likelihood functionpe, which are defined asnl i ne-objects or m-files. The other input
arguments are the covariance matrix for the sfaiaitial state covariance matrir0, the
number of particledland finally the measuremenys The use of Code 1 is exemplified
below.

—— Example 4.1: State estimation using the particle filter
The purpose of this example is to show the particle filter ittoadn an easily acceSS|bIe
manner. The particle filter will be applied to estimate ttatest in the following system,

T 25x
Tip = Et + T ;% + 8cos(1.2t) + wy, (4.33a)
22
Y = % + e, (4.33b)

wherezy ~ N(0,5), w, ande; are mutually independent white Gaussian noise se-
quencesyw; ~ A (0,10) ande; ~ A (0,1). This is a discrete-time nonlinear time-varying
system with additive noise, i.e., Model 3 previously defiire@ection 2.3.1. This sys-
tem has been analyzed in many papers, see, e.g., Gordor{¥98), Kitagawa (1996),
Doucet (1998), Arulampalam et al. (2002).

The first step is to define the model, the parameters to useityidimd the design
parameters for the particle filter. Once this is done theesyss simulated and finally the
measurements from this simulation are used in the partitée o obtain the estimate of
the states. The MrLAB -code for this is given below.

M = 1000; % Nunber of particles

PO = 5; % Initial noise covariance

Q = 10; % Process noi se covari ance

R = 1, % Measur enment noi se covari ance
pe = inline(’ 1/ (2*pi*1)~(1/2)*exp(-(X. "2)/(2*1)) );

f = inline(’x./2+25*x./(1+x."2)+8*cos(1l.2*t)’ )

h =inline(’ (x.72)/20");

x(1) = sqrtm PO)*randn(1l); %lnitial state val ue

y(1) = feval (h,x(1)) + sgrtm Ry *randn(1);

for t = 2:100 % Si nul ate the system
x(t) = feval (f,x(t-1),t-1) + sgrtm( Q *randn(1);
y(t) = feval (h,x(t)) + sgrtm R)*randn(1);

end

xTrue = X;

xhat = PF(f, h, pe, Q PO, My);
pl ot (1: 100, xhat, " b--",1: 100, xTrue, ' r’);
xl abel (" Time');

Executing this code gives the result shown in Figure 4.2. ampalam et al. (2002)

for a detailed simulation study illustrating various difat particle filter algorithms.
| |
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Figure 4.2: The solid line corresponds to the true state and the dashedtéems
from the estimate provided by the patrticle filter given in &ighm 4.4. The under-
lying system is given in (4.33).

The implementation given in this section is very simplecsiiits purpose is to as
clearly as possible illustrate the particle filter. Thera i®olbox available, implemented
by Rosén (2005), which allows for more advanced particlerfilg applications.

4.4 Marginalized Particle Filter

In mathematics, and science in general for that mattergiftén advantageous to exploit
certain structures present in the problem under invesigatSequential Monte Carlo
methods are not an exception. If there is a linear, Gaussiassucture available in the
model equations this can be used to obtain estimates witar|aw at least not larger,
variance (Doucet et al., 2000a, 1999, Chen and Liu, 2000¢. réhason is that the corre-
sponding linear states can be optimally estimated usind<#tman filter. Applications
implying a high dimension of the state variable will effeelly prevent the use of the par-
ticle filter. However, if there is a linear sub-structure italsle the marginalized particle
filter can be used. Let us assume that there is a linear suttste available in the model,
the state vector can then be partitioned according to

l
= <§t> : (4.34)
t

wherez! andz} are used to denote the linear and the nonlinear state vesiatelspec-
tively. A rather general model class containing a linear-subcture was defined in
Model 5, Section 2.3.2. The basic idea underlying the maitgied particle filter is to
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split p(z%, X7*|Y;) according to
pla, X7 [Ye) = plag| X', Yo)p(X]'[Y5). (4.35)

This allows us to use the Kalman filter to optimally estiméte probability density func-
tion for the linear variables(z.| X7, Y;), if the noise is Gaussian. The probability density
function for the nonlinear state variablpEX;"|Y;) is estimated using the particle filter.
Using the state partition (4.34) it is possible to write J4with s = ¢, according to

1
Tolal Xi)) = / ( [ et X0t X)) dxi) p(X7) dX}
[ m(XP)p(X) dXp
= N e (4.36)
fp(Yt|Xt )p(Xt )dXt
where
m(X7) & / glad, XP)p(Vilal, X1)p(ah| X7 dat. (4.37)

Hence, we have analytically marginalized the linear stargables. This motivates the
namemarginalizationfor the procedure of using both the Kalman filter and the plarti
filter. Another name commonly used in the literatureRigo-Blackwellization(Casella
and Robert, 1996, Doucet et al., 2000a). The idea of usintea €ibnsisting of a Kalman
filter for the linear state variables and a particle filter fioe nonlinear state variables
is certainly not new. It has previously been discussed iritemature, see, e.g., Doucet
etal. (20004, 2001b), Chen and Liu (2000), Nordlund (208&%rieu and Doucet (2002).
Our contribution is the derivation of the marginalized aetfilter for the rather general
mixed linear/nonlinear state-space model defined as Madehis derivation is given in
Paper A. The resulting algorithm is schematically given lggkithm 4.6.

Algorithm 4.6 (Marginalized patrticle filter)

1. Initialization: Initialize the particles and set initizalues for the linear state vari-
ables, to be used in the Kalman filter.

2. Particle filter measurement update: evaluate the impecetaveights and normalize.
3. Resample with replacement.
4. Particle filter time update and Kalman filter

(a) Kalman filter measurement update.
(b) Particle filter time update: Predict new particles.
(c) Kalman filter time update.

5. lIterate from step.

The only difference from the standard particle filter (Aligom 4.1) is in stept, where
two additional steps are introduced. These two steps qunekto the efficient estimation
of the linear state variables using the Kalman filter.
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If the standard patrticle filter is used for all states the disien of the space in which
the particles live will ben,, = dimz;, whereas if the marginalized particle filter is
used the corresponding dimension will bg, = dimz7. Intuitively, sincedim z}' <
dim x; more particles have to be used to obtain good estimates ipdntcle filter is
used, than if the marginalized particle filter is used. Tinid further issues relating to the
computational complexity of the marginalized particlecfilare investigated in Paper B
and Karlsson et al. (2004).

The marginalized particle filter has been successfully usezkveral applications,
for instance in automotive target tracking (Eidehall et 2005), automotive positioning
(Svenzén, 2002), aircraft navigation (Nordlund, 2002demvater navigation (Karlsson
and Gustafsson, 2003), communications (Chen et al., 2088¢g\st al., 2002), nonlinear
system identification (Paper E, Li et al., 2003, Daly et &0%) and audio source separa-
tion (Andrieu and Godsill, 2000). Furthermore, in Paper élitarginalized particle filter
is described from a practitioners point of view, using selapplications.

45 Particle Smoother

The aim of this section is to derive an estimate of the smagthliensityp(x;|Yx) for

a fixed N and for all times,1 < ¢t < N, when the underlying model is nonlinear and
non-Gaussian. This is indeed a very hard problem. Howekerframework discussed
in Section 4.2 can be employed and will in fact provide a sysitic approach to the
problem. In scanning the literature it is interesting, aedhaps a bit surprising, to note
that although the particle filter theory is quite well esisiidd not much work has been in-
vested in the particle smoothing theory. Hence, this is abbpa fruitful area for research
during the coming years. The related Markov chain Monte cCaréthods are interest-
ing alternatives in tackling this problem, see, e.g., Genakd Tanizaki (1999) for some
work in this direction.

4.5.1 A Particle Smoothing Algorithm
In tackling the smoothing problem the target density is encss (Tanizaki, 2001)

Hxigr, ) = p(Tig1, | YN). (4.38)

Similarly to what was discussed in the Section 4.3 on partiitlers, we have to find
a suitable sampling density and the corresponding acoepfamobabilities to solve the
smoothing problem. First, note that

p($t+1, $t|YN) = p(l't|33t+17 YN)p(IEt+1 |YN)7 (4.39)
where

P(Yig1:n|Te, egr, Ye) (2|41, Y2)
p(Yepr:n|Ti41,Y7)
p(zep1]oe)p(aeYe) . (4.40)
p(rey1]Yy)

p(xt|Ti1, YN) = p(@e|Teg1, Yy, Yigr:n) =

= p(x¢|2i41,Ys) =
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Inserting (4.40) into (4.39) gives

plxigq|e
plevr ¥y = 2 by, (Vi) (4.41)
————— p(@41|Y2)
t(xgy1,20) g s(T41,24)
Q($t+17$t)

At time ¢ the sampling density can be used to generate samples. Intordied the
acceptance probabilitigsj”) } £, we have to calculate

p(ze1lze) (4.42)

q(x Ty) =
(@1, 2:) p(xe1]Ye)’

wherep(xs11]x) is implied by the underlying model anez;;|Y;) can be approxi-
mated using the result from the particle filter,

M
: . i
p(zea|Yy) = /P(It+1|xt)p(xt|yt)d$t = /P(It+1|17t) > 70 («'Et - zg@) dat

Mo _
R~ Z s (xt+1|;v£‘lg> (4.43)
i=1

The particles can now be resampled according to the acaaptaobabilities{g" } M,
in order to generate samples frgrtw,, 1, z:|Yx). The above discussion is summarized
in Algorithm 4.7, which was first introduced by Tanizaki (200

Algorithm 4.7 (Particle smoother)

1. Run the patrticle filter (Algorithm 4.4) and store the flﬁélparticleqngz M, t=
1,...,N.

2. Initialize the smoothed particles and importance weidgdtttime N according to
{erN = gi)IN’ql(\lle =1/M}M, andset :=t — 1.

3. Calculate Welghtgqt| N}M , according to
(@) (@)
i) p (“Tt:l\Nmtrt)
t|IN M (i
2j=1P (xt+1|N|xf|t)

and normallzejth = qth/ZJ L qtle
4. Resample the smoothed particles according to

Pr ((xgl\N’xE\?V) = (xz(fi)1|N7x1(€|jt))) = dﬁf}v (4.45)

5. Sett :=t — 1 and iterate from step.

(4.44)

This algorithm will be employed to handle the nonlinear sthow problem that arises in
using expectation maximization algorithm for nonlineastsyn identification. The idea
is briefly sketched in Section 5.3.2 and the details are givétaper F.
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4.5.2 Alternative Particle Smoothing Algorithm

The algorithm just derived belongs to a set of smoothingrélyos commonly referred

to asforward-backward smoothinglgorithms. The name stems from the fact that we first
perform a forward (filtering) pass to obtain an approximatbp(z;|Y;). We then issue

a backwards pass to obtain an approximation of the smootesitgp(z,|Yy ) based on
the information from the forward pass and (3.13c), repehézd for convenience,

p(ze1]ze)p(ze41[YN)
Vi) = plafy) [ PRI g (4.46)
R"w

This approach has also be elaborated upon by Doucet et @D&2MHrzeler and Kiinsch
(1998) and Kiinsch (2001).

Another set of smoothing algorithms are based ontth@filter formulg previously
mentioned in Section 3.2. This formula describes how thegmal smoothing density
can be computed by combining the output from two indepenfilézrss, according to

p(ze|Yn) o< p(@e|Yi1)p(Yen|ze)- (4.47)

The details for deriving a particle smoother based on thesiid provided in Kitagawa
(1996). Tanizaki's (2001) reinterpretation of the algamit provided by Kitagawa (1996)
allows us to fit this algorithm into the framework providedSaction 4.2.

The approaches discussed this far are concerned with tideprof estimating the
marginal smoothing density(x;|Yx). We can also try to approximate tf@nt smooth-
ing densityp(X v |Yx ). An algorithm for this is proposed in Doucet et al. (2000)d&ill
et al. (2004). The idea is to factp(X v |Yn ) according to

N—-1

p(Xn[Yn) = plan|Yn) ] pled Xesin, Yo). (4.48)
t=1

Using the Markov property inherent in the state-space maddiave

p(x| X1, YN) = p(@e| 241, Yr)

— p(xt;[';)(/;ii(j;;)lm) o p(e|Ye)p(@iq1|e). (4.49)

Hence, it is possible to approximaiéX v |Yy) based on the(z,|Y:) andp(ziyq|xy).
For details regarding the resulting algorithm, see Godtilal. (2004). Some further
embellishments to this algorithm are given in Fong et al0@pFong and Godsill (2001),
where it is discussed how marginalization can be used toe@arsmoothing algorithm
that exploits certain structural properties of the model.

4.6 Obtaining the Estimates

From the discussion above it is hopefully clear how to obtstimates of probability
density functiong (. |Y;). For instance, when = ¢ this corresponds to the filtering den-
sity, which is approximated using the particle filter. Tygllg, we are interested in some
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particular property of the underlying state variable, sasHor instance a point estimate
and its associated quality, provided by the covariance. prasent section will describe
how these estimates can be obtained using the approximatsitids. The approach can
readily be extended to other interesting features of theryidg state variable.

An minimum mean square error estimate of the mean value ofuhent state is
obtained by inserting(z;) = x in (4.1), resulting in

Ep(a:t\Ys) {iﬂt} = /l’tp(l’t|Ys) dxy. (4.50)

Using the following estimate of the probability density tion,

i (@]Y2) Zq; (2 =i, (4.51)

results in

. M
Ty = /ItﬁM(xth) day = / Tt th(l)ts (It - I ) day = Zq( g E|i (4.52)
=1
Similarly, an estimate of the covarianceof; is obtained using

9(xe) = (24 — Byps) (Tt — By15) T (4.53)

in (4.1), which after some calculations results in

R Mo , , T
DL A CHE AR N CHE AR (4.54)
=1

1=

From the two expressions (4.52) and (4.54) it is clear hovettienates are affected by the

information in the normalized importance weigkjfé). The more likely a certain particle
is, the more it influences the estimate, which is a quite measie fact.



Nonlinear System Identification

YSTEM identification deals with the problem of estimating mathtoad models of
dynamic systems using measurements of the inputs to anditpets from the sys-
tem. The difference to state estimation theory is that theablio be estimated is static,
which slightly changes the problem. However, both probleehg on the same theoreti-
cal basis. Similarly to the state estimation problem théesysdentification problem has
its roots in the work of Gauss (1809) and Fisher (1912). Mukcthe early work was
conducted within the fields of statistics, econometrics tme series analysis. It is the
paper by Astrdm and Bohlin (1965) that is used to mark the efasystem identification
as a separate field of science. The motivation came from tliedfeautomatic control,
where new powerful model based control strategies demasalebtimathematical models
of the underlying systems. An interesting historical actaf the system identification
problem is given by Deistler (2002). The development of thigesct within the automatic
control community during the past 40 years is reviewed byeBe(2003).

In Section 5.1 an overview of the system identification peablis provided. This
is followed by Section 5.2, where different methods for theded estimation process are
discussed. More specifically, it is shown that the expemtatiaximization algorithm pro-
vides a systematic procedure for separating one hard ggimgaoblem into two simpler
problems, which is useful for system identification. Fipalh Section 5.3 the expectation
maximization algorithm and particle methods are used teesoértain nonlinear system
identification problems.

5.1 System ldentification Problem
The system identification problem concerns estimation aficsparameters present in
dynamic models. This is accomplished using the informadivailable in measured input

and output signals from the underlying system. The systemtification problem is
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commonly split into the following sub-problems:

e Experiment design and data collection. This involves the selection of which
variables to measure, when the measurements should bemedand how to
manipulate the input signals. The objective of experimesigh is to obtain data
that provides as much information as possible about thevpeteas to be estimated.

e Model class selection.The problem of finding a suitable model class is the most
important and probably the most difficult choice in solvingidentification prob-
lem. Within the field of system identification a first, ratheracse, partition of
models is constituted bklack boxand gray box models. In a black box model
the equations and parameters do not have any physical nelevtihey are simply
adjusted to describe the data set as well as possible. Thebgramodel, on the
other hand, is based on knowledge of the underlying systemicdlly the model
equations are known, but there are unknown parametersdkiatth be identified.
Intuition and prior familiarity with the underlying systeane very useful in choos-
ing a suitable model class. This is true also when it comesattkibbox models.

e Model estimation. The objective is to determine the best model in the modesclas
using the information available in the observed data setis Ehthe part of the
system identification problem that is considered in thisithe

e Model validation. When the three steps discussed above have been performed we

have derived a model. However, an important question stitlains to be answered;
Is the model good enough for its intended purpose? The arsviis question is
obtained using model validation techniques. If the modis the model valida-
tion some of the choices made in the previous steps have tevised and a new
model should be estimated. After a few iterations we havesfudly arrived at an
acceptable model.

This is a very brief overview of the problems studied withire ffield of system iden-

tification, a more detailed account is provided in the moapgs by Ljung (1999) and

Soderstrom and Stoica (1989). There are also presentaaely concerned with the

nonlinear system identification problem, see, e.g., NéB&91), Pearson (1999). The
recent survey paper by Ljung (2006) provides an inventopefonlinear system iden-
tification problem.

5.2 Model Estimation

Depending on how the information present in the input sighal = {u;}, and the
output signal&’y = {y;}¥, isinferred on the parametefsdifferent estimation methods
are obtained. There are many different approaches to thislgm and in Section 5.2.1
a very brief overview of some of the most important estimatizethods is provided. In
Section 5.2.2 we give a more detailed account of the expewtataximization algorithm,
which is a potentially underestimated estimation methadtiiwithe field of system iden-
tification.
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5.2.1 Overview

Some of the most common methods used to estimate models epetiiction error
method(Ljung, 1999, Stderstrom and Stoica, 1989), siwspace methofWan Over-
schee and De Moor, 1996) and therrelation and spectral analysis methddging,
1999). Several of these methods, and the tools to analyrepiagormance have their
roots in, or at least strong connections to, the area of madlieal statistics.

The maximum likelihood methgdwhich is a special case of the prediction error
method, is quite commonly used in solving the system ideatifbin problem. It was
introduced by Fisher (1912, 1922) and it is based on the ratéeiral idea that the pa-
rameters should be chosen in such a way that the observedreeents aras likely as
possible More specifically, the following optimization problem iddressed

O(Yn) = arg max po(Yn), (5.1)
where (recall thaf  denotes the state variables of the underlying state-spadelin

po(Ya) = / po(Xn, Ya) dXy = / po(Yn| X )po(Xn) dXn

RNng RNng
N N
= / H yt‘xt H xt|$t 1 dXN (52)
RNna t=1 t=1

Alternatively,py (Y ) can be written as

N
po(Yn) = [ [ po(welYi-)- (5.3)
t=1

It is often convenient to study the log-likelihood

L(0) =logps(Yn), (5.4)

rather than the likelihood. In order to obtain an explicitiopzation problem, that can
be solved, we have to specify which model class we intendeo insthis thesis we only
consider state-space models in the context of system fabatitbn. However, due to the
need for more general models provided by differential{aige equations there has been
some work on extending the system identification theory tulleparameter estimation
in these models as well. See Gerdin (2004), Gerdin et al. 5@0f@r some work in this
direction.

It is interesting to see how the maximum likelihood metholadtes to the popular
prediction error method, where the estimate is obtaineth@salution to the following
optimization problem

Oy = arg min Vy(0,Yn,Un), (5.5a)

N
Vn(0,Yn,Un) = Z (5.5b)
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Here,z(t,6) = y+ — §: denotes the prediction error af(d ) is a suitably chosen positive
(norm) function. If it is chosen as

U(e(t,0)) = —log po(ye|Yi-1), (5.6)

the maximum likelihood method is obtained. Hence, the pteui error method is more
general than the maximum likelihood method. The use of atleems is discussed by
Ljung (1999). Once the objective function has been choséb.s) the optimization has
to be performed. This is often a non-convex optimizationbfgm, which typically is
tackled using some gradient-based search algorithm, sublewton’s method or one of
its variantd (Dennis and Schnabel, 1983). The iterations for the pammnestimates are
typically in the following form,

5i 3G i g\t d
=i ) () (o), 5.7)

Whereug\’,) is a scaling factor that denotes the step Iengthla}jhis a matrix that modifies
the search direction. An alternative, gradient-free, hmtuto the maximum likelihood
problem is provided by the expectation maximization alidponi, briefly introduced in the
subsequent section.

5.2.2 Expectation Maximization Algorithm

The expectation maximizatiofEM) algorithm, introducetiby Dempster et al. (1977),
presents an iterative approach for obtaining maximumihikeld estimates (5.1). Within
the area of applied statistics it is widely recognized ferdbustness. The strategy under-
lying the EM algorithm is to separate a difficult maximum likeod problem into two
linked problems, each of which is easier to solve than thgimal problem. The prob-
lems are separated usimgarginalization It is interesting to note that this is the same
underlying mechanism as in the marginalized particle fillexcussed in Section 4.4.
Thekey ideain the EM algorithm is to consider an extension to (5.1),

0(Xn,Yy) = arggnax po(Xn,YN). (5.8)

Here, an extra data séfy, commonly referred to as thecomplete datar the miss-
ing data has been introduced. Its choice is the essential desigablain devising an
EM algorithm and it should be chosen in such a way that sol&ng) is simple ifX y
were known. It is worth stressing that if the missing datahissen unwisely this might
very well lead to a harder problem than what we had to begih.withe connection
between (5.1) and (5.8) is provided by Bayes’ theorem,

logpe(Yn) = log pe(Xn, Yn) —logpe(Xn|YN). (5.9)

1There are some special cases (FIR, ARX model structures) hvgiie rise to a standard least-squares
problem. This can of course be solved explicitly, withoungsan iterative approach.

2The EM algorithm was discovered independently by diffemasearchers, see, e.g., Baum et al. (1970).
However, it was Dempster et al. (1977) who provided the firstesyatic treatment of the ideas and introduced
the nameExpectation Maximizatiomlgorithm.
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The problem separation is now obtained by marginalizin§)(8.r.t. the missing data.
Note that¢’ is used to denote the result from the previous iteration efalyorithm.
Since the left-hand side of (5.9) is independenXgf it is unaffected by the marginaliza-
tion. More specifically, the marginalization is carriedamffect by integrating (5.9) over
po—o(Xn|Yn). Note thatpy(Xn|Yn) denotes a family of density functions, parame-
terized by#, whereagy—¢ (X n|Y) denotes a specific member of this family, the one
obtained using = ¢'.

L(0) = logpe(Yn) = /logpe(XN»YN)pQ:G’(XND/N)dXN

—/10gpa(XN|YN)p9:9/(XN|YN)dXN

= Eo {logpo(Xn, YN)| YN} — Eg {log po(Xn|YN)| YN}, (5.10)
Q(0,6") V(6,07

whereEy { - |Yy} denotes the expected value wpd.o (X n|Yy). If the log-likelihood
function L is evaluated at two consecutive parameter vatuasd ¢’ the difference can
be written as

L(e) - L(9/> = (Q(ev 91) - Q(9/7 91)) + (V(9/7 91) - V(ea 9/>)a (511)
where we have made use of the definitions in (5.10). Condigesecond term in (5.11),

por (Xn|Yn)

(XnlYN)dX
pe(XN|YN)p9( w[Yiv) dXn
po(Xn|YN) }

= Ep, (xnivw) {_ o8 (XY

Itis interesting to note that(0’, 0’) —V (0, 0’) is in fact theKullback-Leibler information
which is commonly used as a measure of the agreement betwegarabability density
functions (Kullback and Leibler, 1951). Since the negalgarithm is a convex function,
Jensen’s inequalifycan be used

po(Xn|YN) } {pe(XN|YN) }
E _jog PEANIIN) L joep SN
Do (XleN){ gpe/(XN|YN) g por (XN |YN) pg;(XN‘YN)

——log [ po(XxlY)dXn =0, (513

V(©',0")—Vv(0,0") = /log

(5.12)

which effectively establishes that6’, ') — V(6,6") > 0 and therefore choosingfethat
satisfiesQ(6,0") > Q(#',0") implies thatL(¢) > L(#). Thatis, values of that increase
Q(6,0") beyond its value &’ also increase the underlying likelihood function of intre
This implies the expectation maximization algorithm siateAlgorithm 5.1.

To summarize, the EM algorithm provides a systematic proetbr separating one
hard problem into two simpler connected problems, usinggmalization. Given the

3Jensen’s inequality (Durrett, 1996) states thati§ a convex function then

E{f(z)} = f (E{z})
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Algorithm 5.1 (Expectation Maximization (EM))

Given an initial estimatéy, iterate the following until convergence.
E: Q(0,0;) = Eg, {log po(Xn,YN)|YN}
M: Op+1 = arg;nax Q(0,64)

many applications of the EM algorithm, within several otfields, it is surprising to see
how little attention this algorithm has attracted withire threas of system identification
and automatic control. A good entry point into the literatoegarding various applica-
tions of the EM algorithm is Moon (1996) and the referencesdim. An early applica-
tion, within the area of system identification, is given bgksson (1993). However, it is
only recently that a thorough investigation of its use hamlaitiated. A rather detailed
account of using the EM algorithm for estimating multivatalinear time-invariant state-
space models is given by Gibson and Ninness (2005) and G{26@3). These results
have been extended to bilinear system identification in @ilet al. (2005). Further-
more, in Paper F we further extend the results to identifyprameters in the nonlinear
Model 4, defined in Section 2.3.2. In an effort to make the Efbdathm available for
solving system identification problems a toolbox has beemldped by Ninness et al.
(2005).

5.3 Approaches Based on Particle Methods

The problems addressed within the field of system identifinaxist in many other fields
of science as well. This section is concerned with some neasicbn how to tackle
a certain class of nonlinear system identification probleisiag particle methods and
the EM algorithm. Hence, we will try to illustrate some neveas based on methods
extensively used in other communities for similar problems

There is a recent survey paper by Andrieu et al. (2004), whickides an overview
of the use of sequential Monte Carlo, or particle, methody#tem identification, change
detection and automatic control. The use of the expectatimximization within the field
of system identification has been reviewed above. When thapeer estimation prob-
lem is investigated using particle methods we have impficitade use of the Bayesian
approach. This approach has previously been employed tdiéhéime system identifi-
cation problem, see, e.g., McGhee and Walford (1968), Kraand Sorenson (1988),
Peterka (1981, 1979).

The two ideas briefly introduced in the subsequent sectiomg@ncerned with the
following class of nonlinear systems

Tt o f (iﬁt,ut,t) f (xtaut,t) w,
( yf) - (hi(xuut,t)) o <h§(mt,ut,t)) + (et) ; (5.14)

previously introduced as Model 4 in Section 2.3.1.
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5.3.1 Marginalized Particle Filter

The strategy employed in this first approach is rather wetivkn. The idea is to augment
the states with the parameters into a new state vector (Rsarid Eykhoff, 1971, Ljung
and Soderstrém, 1983)

2 = @t) , (5.15)

By assuming a random walk variation for the parameters, \thtem identification prob-
lem can now be cast as a nonlinear state estimation problaiohwpens up for possible
use of all algorithms available for this problem. The rasgldynamic model is

Tip1 = fl (l’t, Ut t)et + f2($t, U, t) -+ Wy, (516&)
Orp1 = 0y + wl, (5.16b)
Yt = ha(wg, us, 1)0 + ha(wg, ug, ) + ey, (5.16¢)

which is a special case of Model 5, implying that the margaeal particle filter applies.
Hence, this algorithm can be used to obtain a solution to tbblem of identifying the

parameters in model (5.14). The details of the approachieea ¢n Paper E. A similar

approach was independently proposed by Li et al. (2003)ridndnd Godsill (2000) and
it has also been employed by Daly et al. (2005). This idea hagqusly been explored
by Ljung (1979), save the fact that the resulting state egton problem was handled
using the extended Kalman filter. The work by Kitagawa (199&Jso interesting in this
context, where the parameters are estimated using a smoather than a filter.

5.3.2 Expectation Maximization and the Particle Smoother

The second approach is based on the expectation maxinmzalgorithm, previously
introduced in Section 5.2.2. Consider model (5.14), if tta¢esvariables:; where known
the problem of estimating the parameténrsould be rather simple. It is a standard linear
regression problem. In agreement with previous applioatiof the EM algorithm for
parameter estimation (Gibson and Ninness, 2005), the mgiskta is defined to be the
state sequence&ly = {z1,...,2x}. When this choice has been made, the next step is
the calculation 0fQ(6, 0;), defined in (5.10). This requires computation of the exmkcte
value of functions of the state, conditional onYy. It is this calculation that constitutes
the main difference between addressing the nonlinear antirtbar problem using the
EM algorithm. In the linear case, the expectations are tatled using a linear smoother.
However, in the present context, we are faced with a nonliseeothing problem. This
problem will be handled using the particle smoother giveAlgorithm 4.7.

A detailed account of this approach is given in Paper F, winealso provide a
simulation. This simulation indicates that the approa@mnseto be (perhaps) surprisingly
robust to attraction to local minima. The mechanisms uydeglthis robustness are not
yet fully understood and it is indeed a very interestingadpr future research.
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5.3.3 Discussion

There is an important difference between the two approatiseassed above. It concerns
the way in which the data is processed. The solution usingidrginalized particle filter
is, as the name reveals, a filtering solution, which is sletédr an on-line solution. The
EM-based solution is on the other hand a smoothing solusioitable only for the off-
line situation. There is of course nothing that preventsuges of the on-line approach in
addressing the off-line problem. However, it will restiicw the algorithm is allowed to
access the data. The algorithm is only allowed to processdkte sequentially, further
implying that the data can only be accessed once. For tharloase this would not be a
problem, but in the nonlinear case this poses a major lifaitah the process of extracting
all useful information from the measurements. The algoritiased on the EM algorithm
and the particle smoother is, on the other hand, allowed dogss the data as many
times as is necessary, which allows the algorithm to analyae data more adequate,
with better estimates as a result. It should also be strahaethe first approach actually
tackles a harder problem than the second approach, naneetnthine nonlinear system
identification problem.

The interesting thing about the employment of the EM alaniis that the need for
particle methods arise naturally. This should be contdasiehe approach based on the
marginalized particle filter, where the use of particle methis more forced. It does not
arise as a result of using standard parameter estimatidmohgtbut rather as a result of
considering another problem.



Concluding Remarks

N this first part we have presented a framework for the resaaqmbrted in this thesis.
The aim has been to explain how the papers in Part |l relata¢h ether and to the
existing theory. In Section 6.1 the conclusions are givdrer& are many interesting ideas
for future research, some of which are discussed in Sectin 6

6.1 Conclusion

The work presented in this thesis has to a large extent déalistate and parameters es-
timation problems arising from the mixed linear/nonlinstate-space model, introduced
as Model 5. In Paper A it is explained how the marginalizedigarfilter can be used to
solve the problem of estimating the state in this model. &dumportant special cases of
the general model class are also discussed. In any praappétation of the algorithm
it is important to understand its computational complex®Paper B provides a system-
atic analysis of the computational complexity of the maatjzed particle filter, using the
equivalent flop measure. The marginalized particle filtelissussed from a practitioners
point of view in Paper H. This is accomplished by treatingaas positioning and target
tracking applications. Furthermore, in Paper E it is disedshow to use the marginalized
particle filter to solve certain system identification perhb.

The system identification problem is also discussed in Papehere it is described
how to estimate the parameters in a nonlinear state-spadelymwith affine parameter
dependence. The approach is based on a maximum likeliheodetwork, where the
resulting problem is solved using the expectation maxitiomaalgorithm and a particle
smoothing method. The latter is used to calculate the neaticonditional expectations
required by the expectation maximization algorithm.

All estimation algorithms discussed in this thesis are rhbdsed, stressing the need
for a good model. In Paper C we propose an idea on how to incatgavhite noise in

1
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differential-algebraic equations, enabling the use oftsastic signal processing to solve
various estimation problems. The main reason for studyiodets of this type is that they
occur as a natural description from object-oriented modesioftware. It is not uncom-
mon that the model contains constraints. An approach, basednvex optimization, to
handle this is presented in Paper D.

In Paper | a new approach for road geometry estimation, basedhange detection
methods, is given. The significantly improved performarscgeémonstrated using sensor
data from authentic traffic environments. The problem oinesting the position and
orientation of a camera is addressed in Paper G. The propg®dach is to support
the inertial measurements using vision measurements,eviherlatter are incorporated
in terms of feature displacements.

6.2 Future Research

The combination of the expectation maximization algoritand the particle smoother
deserves more attention. A systematic investigation ohyfpethesis that the expectation
maximization algorithm is robust towards getting trappebbcal minima would probably
yield interesting results. Gradient-based algorithmspao@e to getting trapped in local
minima, simply due to the fact that they are designed to sgaraninima. However, the
expectation maximization algorithm is not gradient-bagdbdre are other mechanisms
guiding the search for the best estimate. We will try to agply idea to problems of
larger size in order to get a better understanding for itdicgdmlity.

The last observation in the previous paragraph naturadigdeo the next topic for fu-
ture research. It would be interesting to investigate hawrious model classed intro-
duced in Chapter 2 relate to other commonly used model da3sgs would effectively
provide a mapping between various model classes and ajgepstimation algorithms.

The combination of information from vision measurementghvimformation from
other sensors, such as radar and IMU is discussed in Chapidrelpresent approach is
based on vision measurements, which are inéatitmatedrom computer vision systems.
Hence, in effect, two estimation problems are solved setiplbn It would be interesting
to investigate if a solution to the joint estimation probleam improve the quality of the
estimates.

The idea of combining measurements from an IMU with visiorasugements has
been considered by many researchers. The approach usesl timetsis is based on prob-
abilistic ideas. However, the problem can equally well bprapched using results from
the nonlinear observer theory, see, e.g., Rehbinder (2001gre is probably a lot to be
gained in trying to merge the ideas from these two branchesiehce in order to de-
rive better algorithms for nonlinear state estimationéstation. There are for instance
standard forms available in the nonlinear observer themnjch can prove to be useful
in combination with, for instance, particle filter ideas. give a concrete example of
this we mention the possible use of the nonlinear transfooms, discussed by Hou and
Pugh (1999), to transform a nonlinear state-space modelanixed linear/nonlinear
state-space model. The state in this transformed modelheamlie estimated using the
marginalized particle filter.



Appendix, Proof of Corollary 3.1

We will now set out to prove the Kalman filter simply by studyithe general solution
provided in Theorem 3.1 when the state is assumed to evob@ding to a model based
on linear transformation subject to Gaussian noise (definédodel 7). This will be
performed using the principle of induction. According t@ thssumptiong(z1|Yy) is
normal, p(z1]Yy) = N (z|Z1, Pr). Assume thap(z|Y;—1) = N(x|Zy—1, Pije—1).
The information in a new measurement can now be inferred ersthte estimate us-
ing (3.13a),

1

Pyl Yomr) (2) e ¥ 72, [let Ry et Py

87% ((yt*CtIt*DtUt)TRt_l(yt*Ctl’t*Dtut)+(It*f@t\tfl)TPt_‘tl,l(Uﬂt*ft,\tfl)) (A 1)

9

p(:]Yy) =

where (using marginalization)

1
(27)(n=tny)/2 | /det Ry det Py .

6_% ((yt_ctmt_Dt“t)TR:1(yt_ctl't_Dt7it)+(1't_-’it\t—l)TP7

L (ze—3
”til(. t t\t—l)) dl’t. (A2)

p(yeYi-1) = /

R"z
In order to be able to carry out the integration above we havsdlate the integration
variable,z;. To accomplish this we will perform a change of variables,

Tyjp—1 = Ty — Tyj—1, (A.3a)
€r = yr — CieZyp—1 — Dyuy. (A.3b)
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The exponent in (A.2) can in terms of the new variable (A.3\oié¢ten as
fatflptﬁl,lfftn—l + (et — Ctjt\t—l)TR;I(et — Ciyp—1) =
~ T — - _ -
Ti|t—1 Pt‘tlfl + Cth 1Ct 7CtTRt ' Tt|t—1 (A 4)
€t —R;7'C, R;! €t ' '

If we can write the center matrix in (A.4) as a block diagonatrix we have in fact
isolated the integration variable, singes independent af,. This can be accomplished
using a block diagonal factorization (see Kailath et alQ@pp. A) according to,

Pl + GBI G —CTRTY _ (1 —KN\" (P 0\ (I —K,
_R;lct R;l 0 I 0 5;1 0 I )

(A.5)
where (note tha$, * is a Schur complement)
Ky = (P, +CIR7IC)TIC R, (A.6a)
P =P, +CIRIC, (A.6b)
Syt =Ry = RGP + CFRTIC)TICE R (A.6C)
The matrix inversion lemniaallows us to rewrite (A.6) according to
Ky = Pyy_1C] (R + Cy Py, CF) 7, (A7)
Pyy = Pyp—1 — Pt\tflc;sr(Rt + CtPt\t—lctT)_lctPt\tfla (A.7b)
Sy = CyPyy—1Cf + Ry. (A.7¢)
Using the factorization (A.5) in (A.4) gives
Typp1 — Kiér ! Py 0 Typp1 — Kier
€t 0 St_l €
= (i‘t\tfl — Kth)TPtlitl(ii't‘tfl — Ktﬁt) + etTS;let. (A8)
The determinants in (A.2) can be written
1 Pt 0
— = detR; 'det P, , =det [ *It~! . A9
det Rydet Py, 0 SO e = < 0 R (A9)

Since the determinant of a triangular matrix with unit diagloequals one we can multi-
ply (A.9) with any such matrix without changing the value loé texpression. For exam-
ple (A.9) can be written as

dtI—Kt*TIOTPﬂ‘j_lo I 0\ /(I —K\ '
“\\o 1 —C, 1 o grY)\-c 1)\o 1 ’

(A.10)

1The matrix inversion lemma states that (Kailath et al., 2000)
(A-BCD)"'=A"'—-A"'D(C '+ DAT'B)"!'DA!
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which allows us to use the block triangular factorizationX)to write the determinant as

1 P00 1
— —det( "t = . All
det Rydet Py ( 0 Stl) det Py, det 5, (A.11)
Inserting (A.8) and (A.11) into (A.2) we obtain
1 1T o
,EefSt 16,5’ (A12)

Yiol) = o7 o
Pultior) = e

after marginalization w.r.tz;. This expression can now be used in (A.1), which results in

1 — Lz —2 Yz —2
p(l’t‘Yt) _ e 5 (e t|t)TPm( ¢ t\t)7 (A.13)

(2m)ne/2, /det Py,

where
Typp = Type—1 + Kie(ye — Coy—1 — Diuy). (A.14)
The time update (3.13b) can be written

1
Y;) = .
p(@e11]Y2) / (2m)n=/2 /7detQtdeth
Rz

6_% ((%4—1—Atmt—Bt"t)TQfl(ﬂ%-H—Atﬂft,—Btut)+(ﬂct—§?t\t)TP,,T,,l(xt—it\t))

dr;.  (A.15)

This integration can be carried out if the integration Valeax,, is isolated. This can be
accomplished by a change of variables,

Ty = T — Loy (A.16a)
Typ1e = Tep1 — Tyqape,  Wheredy = Ay + Biug. (A.16b)

Using the triangular block factorization that was used irbjAgives the following expres-
sion for the exponent of (A.15),

T 1= - ~ NTA—1/= -
Ty Py Toe + (Tppage — Aege)” Qp (Tgaye — Aelyye)

(V6 A6 B e
jt+1|t 0 I 0 Pt:-1|t 0 I i’t+1|t ’ ’

where
My = Py, — Py Ar(Qr + APy AT) 1 Ay Py, (A.18a)
Py = Atpt\tAtT + Qr, (A.18b)
Ly = Pt|tA?(Qt + AtPt“A?)_l. (A.18¢)

The integration (A.15) can now be performed, resulting in
1 _%}T

1.
A ‘t+1|tPt,+1\t‘/I:t+1‘t_ A.19
p@ea]Y?) (2m)n=/2 /det Pt+1\t6 A

The expressions (A.7a), (A.7b), (A.14), (A.16b) and (A.18bnstitute the Kalman filter
and hence the proof is complete. O
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Abstract

The particle filter offers a numerical tool to approximate fiitering den-
sity function for the state in nonlinear and non-Gaussideriilg problems.
While the particle filter is fairly easy to implement and tuite,main draw-
back is that it is quite computer intensive, with the compateal complex-
ity increasing quickly with the state dimension. One reméalyhis is to
marginalize out the states appearing linearly in the dynamihe result is
that one Kalman filter is associated with each particle. Thémontribu-
tion in this paper is the derivation of the details for the giaalized particle
filter for a general nonlinear state-space model. Severpbitant special
cases occurring in typical signal processing applicatemesalso discussed.
The marginalized particle filter is applied to an integratesligation system
for aircraft. It is demonstrated that the complete high-atisional system
can be based on a patrticle filter using marginalization fidotithree states.
Excellent performance on real flight data is reported.

Keywords: Kalman filter, marginalization, navigation systems, noaér
systems, particle filter, state estimation.

105



106 Paper A Marginalized Particle Filters for Mixed Linear/Nonlinear State-Spéadels

1 Introduction

THE nonlinear non-Gaussian filtering problem considered hensists of recursively
computing the filter probability density function of the tetavector in a general
discrete-time state-space model, given the observed megasnts. Such a general model
can be formulated as

T = fzg,wy), (1a)
Yt = h(ﬁt, €t). (lb)

Here,y, is the measurement at timex, is the state variabley, is the process noise;
is the measurement noise, afich are two arbitrary nonlinear functions. The two noise
densitiep,,, andp., are independent and are assumed to be known.

The filter densityp(z:|Y;), whereY; = {y;}!_,, is given by the following general
measurement recursion:

p(ye|ze)p(@e| Y1)
xYy) = 2a
P = e #2
plYies) = [ pluleop(enYior) dor (20)
and the following time recursion:
p(ri1|Yy) = /P(l't+1\l‘t)]9($t|yi)d$t, (2¢c)

initiated byp(zo|Y-1) = p(xo) (Jazwinski, 1970). For linear Gaussian models, the inte-
grals can be solved analytically with a finite dimensiongresentation. This leads to the
Kalman filter recursions, where the mean and the covariamtexof the state are propa-
gated (Anderson and Moore, 1979). More generally, no firniteedsional representation
of the filter density exists. Thus, several numerical apjnations of the integrals (2)
have been proposed. A recent important contribution is éosirsulation based methods
from mathematical statistics, sequential Monte Carlo iw@sh commonly referred to as
particle filters (Doucet et al., 2001a, 2000, Gordon et 893).

Integrated navigation is used as a motivation and applicagxample. Briefly, the
integrated navigation system in the Swedish fighter ait@afpen consists of an inertial
navigation system (INS), a terrain-aided positioning (JAfstem and an integration fil-
ter. This filter fuses the information from INS with the infoation from TAP. For a more
thorough description of this system, see Nordlund (2002mgvist (1997). TAP is cur-
rently based on a point-mass filter as presented in Bergmain (@999), where it is also
demonstrated that the performance is quite good, closest€thmér-Rao lower bound.
Field tests conducted by the Swedish air force have confitiredood precision. Alter-
natives based on the extended Kalman filter have been igagsti by Bergman (1999),
but have been shown to be inferior particularly in the transphase (the EKF requires
the gradient of the terrain profile, which is unambiguousyom@ry locally). The point-
mass filter, as described in Bergman et al. (1999), is likelyet changed to a marginalized
particle filter in the future for Gripen.
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TAP and INS are the primary sensors. Secondary sensors (@P$oaon) are used
only when available and reliable. The current terrain-digesitioning filter has three
states (horizontal position and heading), while the irdesgt navigation system estimates
the accelerometer and gyroscope errors and some othes. stte integration filter is
currently based on a Kalman filter witY states, taking INS and TAP as primary input
signals.

The Kalman filter which is used for integrated navigatioruiees Gaussian variables.
However, TAP gives a multi-modal un-symmetric distribatio the Kalman filter mea-
surement equation and it has to be approximated with a Gaudsstribution before being
used in the Kalman filter. This results in severe performateggadation in many cases,
and is a common cause for filter divergence and system adindtion.

The appealing new strategy is to merge the two state vecttwr®ne, and solve inte-
grated navigation and terrain-aided positioning in onerfilThis filter should include all
27 states, which effectively would prevent application of gaaticle filter. However, the
state equation is almost linear, and only three states #m@eneasurement equation non-
linearly, namely horizontal position and heading. Oncedirzation (and the use of EKF)
is absolutely ruled out, marginalization would be the oniyvio overcome the computa-
tional complexity. More generally, as soon as there is aalirseib-structure available in
the general model (1) this can be utilized in order to obt&iter estimates and possibly
reduce the computational demand. The basic idea is toipartite state vector as

(%)

wherez! denotes the state variable with conditionally linear dyisnandz? denotes
the nonlinear state variable (Doucet et al., 2001b, Nodll@®02). Using Bayes’ the-
orem we can then marginalize out the linear state variabtea {1) and estimate them
using the Kalman filter (Kalman, 1960), which is the optimiéfifor this case. The non-
linear state variables are estimated using the particts.fithis technique is sometimes
referred to as Rao-Blackwellization (Doucet et al., 200Tihe idea has been around for
quite some time, see, e.g., Doucet et al. (2000), Casell&abdrt (1996), Chen and Liu
(2000), Andrieu and Doucet (2002), Doucet et al. (2001h),(2i001). The contribution
of this article is the derivation of the details for a generahlinear state-space model
with a linear sub-structure. Models of this type are commuhienportant in engineering
applications, e.g., positioning, target tracking andisimh avoidance (Gustafsson et al.,
2002, Bar-Shalom and Li, 1993). The marginalized partidterfhas been successfully
used in several applications, for instance, in aircrafigetion (Nordlund, 2002), under-
water navigation (Karlsson and Gustafsson, 2003), comeations (Chen et al., 2000,
Wang et al., 2002), nonlinear system identification (Li et 2003, Schén and Gustafs-
son, 2003), and audio source separation (Andrieu and Gade31l0).

Section 2 explains the idea behind using marginalizatiaroimjunction with general
linear/nonlinear state-space models. Three nested madelssed in order to make the
presentation easy to follow. Some important special casggeneralizations of the noise
assumptions are discussed in Section 3. To illustrate th@the marginalized particle
filter, a synthetic example is given in Section 4. Finallg #pplication example is given
in Section 5, and the conclusions are stated in Section 6.
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2 Marginalization

The variance of the estimates obtained from the standatidledilter can be decreased by
exploiting linear sub-structures in the model. The coroesling variables are marginal-
ized out and estimated using an optimal linear filter. Thithes main idea behind the
marginalized particle filter. The goal of this section is i@lkain how the marginalized
particle filter works by using three nested models. The nwald nested in the sense that
the first model is included in the second, which in turn isuded in the third. The rea-
son for presenting it in this fashion is to facilitate readederstanding, by incrementally
extending the standard patrticle filter.

2.1 Standard Particle Filter

The particle filter is used to get an approximation of the ffitensity p(x+|Y:) in the
general model (1). This approximation can then be used taimlin estimate of some
inference functiory( - ) according to

(g(@0)) = Epioys) (9(e0)) = / o(wp(z|Ys) da. )

In the following, the particle filter, as it was introduced @prdon et al. (1993), will
be referred to as the standard particle filter. For a thorantgbduction to the standard
particle filter, see, e.g., Doucet et al. (2001a, 2000). Thegmalized and the standard
particle filter are closely related. The marginalized éetfilter is given in Algorithm A.1
and neglecting step§a) and4(c) results in the standard particle filter algorithm.

Algorithm A.1 (Marginalized patrticle filter)

1. Initialization: Fori = 1,..., N, initialize the particles;vgl’fi ~ pgn(7g) and set
1,(3 i _ ',
{xor\(i)p P(E\le} = {.%‘6, PO}'
2. Particle filter measurement update: koe 1,..., N, evaluate the importance

weightsg'” = p(y,| X" Y;_1) and normalize
(i (i)
Qt() = Z;:thf,”'
3. Resampling: Resamplé particles with replacement,
Pr (Tn,u) _ Tn,m) oy

¢ Lilt—1

4. Particle filter time update and Kalman filter:

(a) Kalman filter measurement update:
Model 1: (10),
Model 2: (10),
Model 3: (22).

(b) Particle filter time update (prediction): Foe 1,..., N, predict new particles,

x?+(12\)t ~ p($?+1\t|X?7(l)v Yi).
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(c) Kalman filter time update:
Model 1: (11),
Model 2: (17),
Model 3: (23).

5. Sett :=t + 1 and iterate from step.

The particle filter algorithm A.1 is quite general and selargprovements are available
in the literature. It is quite common to introduce artifiaialise in ste3 in order to coun-
teract the degeneracy problem. Depending on the conteixtugimportance functions
can be used in stef{b). In Doucet et al. (2001a) several refinements to the pafiltde
algorithm are discussed.

2.2 Diagonal Model

The explanation of how the marginalized particle filter woikstarted by considering the
following model.

Model 1 (Diagonal model)

xiyy = fi(a}) +wi', (5a)
Tpyy = Af (2]} +wy, (5b)
ye = hy(a}) +Ci(a})zh +ep. (5¢)

The gaps in the equations above are placed there interificinadrder to make the com-
parison to the general mod€l8) easier. The state noise is assumed white and Gaussian
distributed according to

w = (Z’f) ~N(0.Qr) Q= (c(z)i é)?) . (62)
The measurement noise is assumed white and Gaussianutstréccording to
er ~ N0, Ry). (6b)
Furthermorey!, is Gaussian,
zh ~ N (Zo, Py). (6¢)

The density ofc can be arbitrary, but it is assumed known. ThteandC matrices are
arbitrary.

Model 1 is calleddiagonal modetiue to the diagonal structure of the state equation (5a)
and (5b). The aim of recursively estimating the filter dengitz;|Y;) can be accom-
plished using the standard particle filter. However, coodéd on the nonlinear state
variablez} there is a linear sub-structure in (5), given by (5b). Thid faan be used to
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obtain better estimates of the linear states. Analytiaalrginalizing out the linear state
variables fronp(z;|Y;) gives (X;* = {«7"}!_,)

plag, X['Y:) = play] X7, V) p(X]'|Yy), (7)
ﬁ_/w_/
Optimal KF PF

wherep(z!| X7, Y;) is analytically tractable. It is given by the Kalman filterRK see
Lemma A.1 below for the details. Furthermoyg,X*|Y;) can be estimated using the
particle filter (PF). If the same number of particles are usdtie standard particle filter
and the marginalized particle filter, the latter will, irttuély, provide better estimates.
The reason for this is that the dimensionygf:}'|Y;) is smaller than the dimension of
p(x!, 27|Y;), implying that the particles occupy a lower dimensionakgpanother rea-
son is that optimal algorithms are used in order to estintadimear state variables. Let
f;;,(g(xt)) denote the estimate of (4) using the standard particle filtdr V' particles.
When the marginalized patrticle filter is used the correspup@istimate is denoted by
f}\’,‘(g(xt)). Under certain assumptions the following central limitdream holds,

VN (I (g(a)) = I (g(z))) = N (0,02), N —ox, (8a)
VN (I3 (9(@0) = T (9(@)) = N (0,0%) N = o0, (8b)

wheres? > o2,. A formal proof of (8) is provided in Doucet et al. (2001b, 899For the
sake of notational brevity the dependence:piin A;, C,, andh, are suppressed below.

LemmaA.1
Given Model 1, the conditional probability density funum‘orxt‘t andxtﬂ‘t are given

by

p (x| X7, Y,) = N (ffi | jihmptlt) ; (9a)
p (Ii+1|Xf+17Yt) =N (Ifs+1 |£i+1|t7pt+1|t> ) (9b)
where
S Al A1
Ty = Ty + K (yt —hy — Ct$t|t_1> , (10a)
Pt\t = Pt\t—l - KtCtPt\t—h (10b)
Sy = CyPyy—1Cf + Ry, (10c)
K, = Py, CF S (10d)
and
Fpap = Ay (11a)
Py = ALPy(ADT + QL. (11b)

The recursions are initiated wnthm L =Toand Py, = =
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Proof: We use straightforward application of the Kalman filter (fdah, 1960, Kailath
et al., 2000). O]

The second density(X*|Y;) in (7) will be approximated using the standard particle
filter. Bayes’ theorem and the Markov property inherent m state-space model can be
used to writep(X[*|Y;) as

P(yt‘thvyt—ﬂp(Ime_l,Yt—l)
p(yeYi-1)
where an approximation @i X;* ;|Y;_1) is provided by the previous iteration of the par-

ticle filter. In order to perform the update (12) analyticapeessions fop(y:| X", Y;—1)
andp(z}| X} 1, Y:—1) are needed. They are provided by the following lemma.

p(X{'Y:) =

(X Yi), (12)

LemmaA.2
For Model 1,p(y:| X{*,Y;—1) andp(z}, | X}, Y:) are given by

p(ye| X', Yem) = NV (Z/t | h + Cigyy_y, CePrp 1 O + Rt) ; (13a)

p (e | X7 Ye) = N (22 | 1 QF) - (13b)
Proof: We utilize basic facts about conditionally linear modeée se.g., Harvey (1989),
Schoén (2003). O

The linear system (5b) — (5c) can now be formed for each war{ir:f’(l)}f\’:l and
the linear states can be estimated using the Kalman filtés.réquires one Kalman filter
associated with each particle. The overall algorithm feingsting the states in Model 1
is given in Algorithm A.1. From this algorithm, it should bé&ar that the only differ-
ence from the standard particle filter is that the time up@atediction) stage has been
changed. In the standard particle filter, the predictiogesia given solely by stefb) in
Algorithm A.1. Stepd(a) is referred to as theneasurement update the Kalman filter
Kailath et al. (2000). Furthermore, the prediction of thalirear state variableﬁfﬂlt

is obtained in steg(b). According to (5a) the prediction of the nonlinear statealzles
does not contain any information about the linear stateatsées. This implies that}', , ,
cannot be used to improve the quality of the estimates ofitleau state variables. How-
ever, if Model 1 is generalized by imposing a dependence dmtvihe linear and the
nonlinear state variables in (5a) the prediction of the imear state variables can be used
to improve the estimates of the linear state variables. drsttbsequent section, it will be

elaborated on how this affects the state estimation.

2.3 Triangular Model

Model 1 is now extended by including the terdit (+7)z! in the nonlinear state equation.
This results in @riangular modeldefined below.
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Model 2 (Triangular model)

wpy = [P (@) +AL (2] z -+, (14a)
fo_l = Ai (x?)xi —|—wi, (14b)
= hy(x?) +Cy(x?)zl +ey, (14c)

with the same assumptions as in Model 1.

Now, from (14a), it is clear that}, , , does indeed contain information about the linear
state variables. This implies that there will be informatabout the linear state variable
z} in the prediction of the nonlinear state variablg , ,. To understand how this affects
the derivation, it is assumed that stéf) in Algorithm A.1 has just been completed.
This means that the predictions, , , are available, and the model can be written (the
information in the measuremept has already been used in stip))

iy = Ay +wy, (15a)
= Azl 4wl (15b)

where
=iy — fi (15¢)

Itis possible to interpret; as a measurement and’ as the corresponding measurement
noise. Since (15) is a linear state-space model with Gausse, the optimal state
estimate is given by the Kalman filter according to

#lr = &Y, + Ly ( A7 xtlt) (16a)
t\t = Pt\t - LtNtLt ’ (16b)
L, = Pt\t(A?)TNtila (16¢)
Ny = AP P (AY)" +QF, (16d)

where %" has been used to distinguish this second measurementeufrdat the first
one. Furthermore;;t‘t and P, are given by (10a) and (10b), respectively. The final step
is to merge this second measurement update with the timdeifmabtain the predicted
states. This results in

£i+1\t = Afsi}lqt + Ly <Zt A} Cﬂt“> (17a)
Pry1je = AjPyu (A" + Qf — LiNL{ | (17b)
Ly = AiPtn(A?)TN;l» (17c)
N; = AP Py (A" + Qy- (17d)

For a formal proof of this, see the Appendix. To make AlgaritA.1 valid for the more
general Model 2, the time update equation in the Kalman f{lt&) has to be replaced
by (17).
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The second measurement update is called measurement wjogate the fact that
the mathematical structure is the same as a measuremerieupdhe Kalman filter.
However, strictly speaking, it is not really a measuremadate, since there does not
exist any new measurement. It is better to think of this sdagrdate as a correction to
the real measurement update using the information in thaigiien of the nonlinear state
variables.

2.4 General Case

In the previous two sections, the mechanisms underlyingrtheginalized particle filter
have been illustrated. It is now time to apply the margiraliparticle filter to the most
general model.

Model 3 (General model)
$t+1 fi'(xy )—&—A"(a:?)xi—&—G"(x?)wZ", (18a)
Tt+1 flap) + AL (2} x) +Gi(] ), (18b)
yr = he(xp) +C(a} )a:t +ey, (18c)

where the state noise is assumed white and Gaussian disttiith

w = (wi) ~N(0,Q). Q= ( &, 9 ) . (192)
Wy (@) Q4
The measurement noise is assumed white and Gaussianutistréccording to
er ~ N(0, Ry). (19hb)
Furthermorey!, is Gaussian
zhy ~ N (Zo, P). (19¢c)

The density ofci; can be arbitrary, but it is assumed known.

In certain cases, some of the assumptions can be relaxed.wllhbe discussed in the
subsequent section. Before moving on it is worthwhile tol&xphow models used in
some applications of marginalization relate to Model 3. larlkson et al. (2003), the
marginalized particle filter was applied to underwater gation using a model corre-
sponding to (18), save the fact thaf = I,G! = I, f! = 0, A7 = 0. In Gustafsson
et al. (2002), a model corresponding to linear state equai@md a nonlinear measure-
ment equation is applied to various problems, such as caigusg, terrain navigation,
and target tracking. Due to its relevance, this model wildizeussed in more detail in
Section 3. Another special case of Model 3 has been applipdotdlems in communi-
cation theory in Chen et al. (2000), Wang et al. (2002). Thelehased there is linear.
However, depending on an indicator variable the model changlence, this indicator
variable can be thought of as the nonlinear state variaboidel 3. A good and detailed
explanation of how to use the marginalized particle filtertfas case can be found in
Doucet et al. (2001b). They refer to the model as a jump Malikear system.
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Analogously to what has been done in (7), the filtering distion p(z:|Y;) is split
according to

p(h, XP1Y2) = p (23| X7, Y2) p (XP(Y)- (20)

The linear state variables are estimated using the Kalnten fil a slightly more general
setting than which was previously discussed. However stiisthe same three steps that
are executed in order to estimate the linear state variablesfirst step is a measurement
update using the information availablejpn The second step is a measurement update
using the information available ifff+1|t, and finally, there is a time update. The following
theorem explains how the linear state variables are esianat

Theorem A.1
Using Model 3 the conditional probability density functsdior = andgaft+1 are given by
p (mi+1|Xf+1, Yt) =N (l'i+1 |§:i+1|t7 Pt+1|t> ) (21Db)
where
Fyy = B + K (yt —h — th%fsn_l) ; (22a)
Py, = Pyy—1 — KeM K] (22b)
M, = Ctpt\t—lctT + Ry, (22c)
Ky = Py Cf MY, (22d)
and
B = ALl + GHQT(GrQN T w + S+ L (20— ATdly, ), (233)
Poirje = APy (AT + GLQUGHT — LeN: L (23b)
Ny = AP Py (A" + GPQR(GH)T, (23c)
Ly = APy, (A7) N, (23d)
where
2t = ‘r?Jrl - ftnv (24a~)
Ay = Ay - GuMT(GrRy) T A, (24b)
Q=@ — (@M@ Q" (24c)
Proof: See the Appendix. O

It is worth noting that if the cross-covarianGg™ between the two noise sourceg
andw! is zero, thendl = Al and@Q! = Q!. The first density(z}| X[, ;) on the right-
hand side in (20) is now taken care of. In order for the esionato work the second
densityp(X;'|Yz) in (20) is taken care of according to (12). The analyticalrezpions
for p(y:| X7, Y:—1) andp(z}| X" 1, Y:—1) are provided by the following theorem.
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Theorem A.2
For Model 3,p(y:| X{*, Y;—1) andp(z}, | X}, Y;) are given by

P (el Xy, Y1) = N (yt |he + Ciyy_y, CoPip—1 CF + Rt) ; (25a)
P (et | X7 Ye) = N (i | S+ ATaly, AT P(AT)T + GEQI(GE)T) . (250)

Proof: For the basic facts about conditionally linear models, seevéy (1989). The
details for this particular case can be found in Schén (2003) O

The details for estimating the states in Model 3 have now loeered, and the com-
plete algorithm is Algorithm A.1. As pointed out before, thely difference between
this algorithm and the standard particle filtering algaritls that the prediction stage is
different. If stepsi(a) and4(c) are removed from Algorithm A.1, the standard particle
filter algorithm is obtained.

In this paper, the most basic form of the particle filter hasrbesed. Several more
refined variants exist, which in certain applications care gietter performance. How-
ever, since the aim of this paper is to communicate the ideaas§inalization in a gen-
eral linear/nonlinear state-space model, the standatitigafilter has been used. It is
straightforward to adjust the algorithm given in this pajgeaccommodate, e.g., the aux-
iliary particle filter (Pitt and Shephard, 1999) and the Gaass particle filter (Kotecha
and Djuric, 2003a,b). Several ideas are also given in thensagllected in Doucet et al.
(2001a).

The estimates as expected means of the linear state varaiietheir covariances are
given by Nordlund (2002)

N

iy = aqa?, (26a)
i=1
) () (00 L(i) ’

~ ~(i i A1 Al AL (2 Al

Py = th (Pt|t + (xtlt — a:t‘t) (xtlt — a:t‘t) ), (26b)
=1

whereqﬁi) are the normalized importance weights, provided by 8tepAlgorithm A.1.

3 Important Special Cases and Extensions

Model 3 is quite general indeed and in most applications;iapeases of it are used. This
fact, together with some extensions, will be the topic of #@ction.

The special cases are just reductions of the general rggekgnted in the previous
section. However, they still deserve some attention in rotdéighlight some impor-
tant mechanisms. It is worth mentioning that linear subedtires can enter the model
more implicitly as well, for example, by modeling coloredis®and by sensor offsets
and trends. These modeling issues are treated in severauictory texts on Kalman fil-
tering, see, e.g., (Gustafsson, 2000, Section 8.2.4) elsubsequent section, some noise
modeling aspects are discussed. This is followed by a dismu®f a model with linear
state equations and a nonlinear measurement equation.
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3.1 Generalized Noise Assumptions

The Gaussian noise assumption can be relaxed in two spasid cFirst, if the measure-
ment equation (18c) does not depend on the linear stateblesiel, i.e., C;(z7) = 0,
the measurement noise can be arbitrarily distributed. iB1dase (18c) does not contain
any information about the linear state variables, and hesaz@ot be used in the Kalman
filter. It is solely used in the particle filter part of the afdgbm, which can handle all
probability density functions.

Second, ifA}(z}") = 0 in (18a), the nonlinear state equation will be independént o
the linear states and, hence, cannot be used in the Kalmam Tilis means that the state
noisew;’ can be arbitrarily distributed.

The noise covariances can depend on the nonlinear statblesji.e. R, = R:(z})
and@: = Q:(z}). This is useful for instance in terrain navigation, where tionlinear
state variable includes information about the positioning/she horizontal position and a
geographic information system (GIS) on board the aircrafise covariances depending
on the characteristics of the terrain at the current hotedgoosition can be motivated.
We will elaborate on this issue in Section 5.

3.2 Important Model Class

A quite important special case of Model 3 is a model with linsi@te equations and a
nonlinear measurement equation. In Model 4 below, such sehiedefined.

Model 4
T = An Ty + AL tmt +Giwy, (27a)
g1 = Apgap +AL Gl (27b)
yr = he(x}) +ei, (27¢)

with w} ~ N(0,QF) andw! ~ N'(0,Q'). The distribution for, can be arbitrary, but it
is assumed known.

The measurement equation (27¢) does not contain any infanmabout the linear state
variablez!. Hence, as far as the Kalman filter is concerned, (27c) cabeatsed in
estimating the linear states. Instead all information friive measurements enter the
Kalman filter implicitly via the second measurement updateag the nonlinear state
equation (27a) and the prediction of the nonlinear st@;q|t, as a measurement. This
means that in Algorithm A.1, stef{a) can be left out. In this case, the second measure-
ment update is much more than just a correction to the firssoreanent update. It is the
only way in which the information iy, enters the algorithm.

Model 4 is given special attention as several importanestatimation problems can
be modeled in this way. Examples include positioning, tatgecking and collision
avoidance (Gustafsson et al., 2002, Bar-Shalom and Li, Y1988r more information
on practical matters concerning modeling issues, seg,le.gnd Jilkov (2001, 2003),
Bar-Shalom and Li (1993), Nordlund (2002). In the applicas mentioned above, the
nonlinear state variable}’ usually corresponds to the position, whereas the linete sta
variablex! corresponds to velocity, acceleration, and bias terms.
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If Model 4 is compared to Model 3, it can be seen that the medri®, AL, G7, and
G' are independent af? in Model 4, which implies that

Ptﬂ? =Py, Vi=1,...,N. (28)

This follows from (23b) — (23d) in Theorem A.1. According 28] only one instead of
N Riccati recursions is needed, which leads to a substaetiiction in computational
complexity. This is, of course, very important in real-tinneplementations. A further
study of the computational complexity of the marginalizedticle filter can be found in
Karlsson et al. (2004).

If the dynamics in (18a) — (18b) are almost linear, it can bedrized to obtain a
model described by (27a) — (27b). Then, the extended Kalntan ¢an be used instead
of the Kalman filter. As is explained in Li and Jilkov (2003, it is common that the
system model is almost linear, whereas the measurement mscdverely nonlinear. In
these cases, use the particle filter for the severe noniiiesaand the extended Kalman
filter for the mild nonlinearities.

4 lllustrating Example

In order to make things as simple as possible, the followivigdimensional model will
be used:

1 T
Ti41 = (O 1) Ty + Wi, (29a)
ye = h(z) + e, (29b)

where the state vector is = (zt zt)T. Hence, the state consists of a physical variable
and its derivative. Models of this kind are very common inlaggtions. One example
is bearings-only tracking, where the objective is to estanthe angle and angular veloc-
ity and the nonlinear measurement depends on the antengiameia Another common
application is state estimation in a DC-motor, where theutargposition is assumed to
be measured nonlinearly. As a final application terrain getion in one dimension is
mentioned, where the measurement is given by a map. A mdistiegerrain navigation
example is discussed in Section 5.

Model (29) is linear in¢; and nonlinear in;. The state vector can thus be partitioned

asz, = (z xi)T, which implies that (29) can be written as

27y =+ Tah + uf, (30a)
why, =)+ ), (30b)
yr = he(z}) + e, (30c)

This corresponds to the triangular model given in Model 2né¢és the Kalman filter for
the linear state variable is given by (22) — (24), where thdinear state is provided by
the particle filter. The estimate of the linear state vagadlgiven by (23a), which for this
example, is

Ty —

# iy = (1= LT)&y, + LT T

(31



118 Paper A Marginalized Particle Filters for Mixed Linear/Nonlinear State-Spéadels

where

n T
ng = T2pt\t + G, lh = P (32)
t

Intuitively, (31) makes sense, since the velocity estiniagiven as a weighted average
of the current velocity and the estimated momentary velpaibhere the weights are com-
puted from the Kalman filter quantities. In cases where (29a)otivated by Newton’s
force law the unknown force is modeled as a disturbance,géine= 0. This implies
that (31) is reduced to

R xt  —xl
Bpyay = " (33)

Again, this can intuitively be understood, since, becatigedonditioned on the knowl-
edge of the nonlinear state variable, (30a) can be written as
n n
1 Ty — Ty
=" 34
2! = (34)
Thus, (30b) does not add any information for the Kalman fétecex! is a deterministic
function of the known nonlinear state variable.

5 Integrated Aircraft Navigation

As was explained in the introduction, the integrated naiegasystem in the Swedish
fighter aircraft Gripen consists of an inertial navigatigstem (INS), a terrain-aided po-
sitioning (TAP) system, and an integration filter. This filfases the information from
INS with the information from TAP; see Figure 1. The currgntsed integration filter is

INS D)

Integration

Yt TAP filter

Figure 1: The integrated navigation system consists of an inertigiga#ion sys-
tem (INS), a terrain-aided positioning (TAP) system andraegration filter. The
integration filter fuse the information from INS with the amfmation from TAP.

likely to be changed to a marginalized particle filter in thufe for Gripen; see Figure 2.
Afirst step in this direction was taken in Gustafsson et &0, where a six-dimensional
model was used for integrated navigation. In six dimensitmes particle filter is possi-

ble to use, but better performance can be obtained. As deématetsin Gustafsson et al.
(2002), 4000 particles in the marginalized filter outparfer60000 particles in the stan-
dard particle filter.
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INS D)

Marginalized
Yt particle filter

Figure 2: Using the marginalized particle filter for navigation. Tlegr&in infor-
mation is now incorporated directly in the marginalizedtjoée filter. The radar
altimeter delivers the hight measurement

The feasibility study presented here applies marginatingb a more realistic nine-
dimensional sub-model of the total integrated navigatigstesn. Already here, the di-
mensionality has proven to be too large for the particlerftibebe applied directly. The
example contains all ingredients of the total system, aagthnciple is scalable to the full
27-dimensional state vector. The model can be simulated aaldated in a controlled
fashion; see Nordlund (2002) for more details. In the subsegsections, the results
from field trials are presented.

5.1 Dynamic Model

In order to apply the marginalized particle filter to the mtion problem a dynamic
model of the aircraft is needed. In this paper the overalicstire of this model is dis-
cussed. For details, see Nordlund (2002) and the refergheesin. The errors in the
states are estimated instead of the absolute states. T8wrisathat the dynamics of the
errors are typically much slower than the dynamics of thekibs states. The model has
the following structure:

ri = Ap ) + A}ftmi + Gjwy, (35a)

ah, = AL 2 + Al 2l + Gl (35b)

v =h ((if) + :c’;f) + e;. (35¢)

There are seven linear states, and two nonlinear stateslingae states consist of two
velocity states and three states for the aircraft in ternfieafling, roll, and pitch. Finally,
there are two states for the accelerometer bias. The nanlat&tes correspond to the error
in the horizontal position, which is expressed in latitddeand longitudé;,.

The total dimension of the state vector is thus nine, whididslarge to be handled
by the particle filter. The highly nonlinear nature of measnent equation (35c), due
to the terrain elevation database, implies that an exteKaééaan filter cannot be used.
However, the model described by (35) clearly fits into theneavork of the marginalized
particle filter.

The measurement noise in (35c) deserves some special@itefthe radar altimeter,
which is used to measure the ground clearance, interprgtedr as the ground. This
is a problem when flying over trees. The tree tops will be prieted as the ground, with
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a false measurement as a result. One simple, but effectilrgjan to this problem is to
model the measurement noise as

De, (er) = TN (et |my,01) + (1 — m)N (et | ma, o2), (36)

where 7 is the probability of obtaining an echo from the ground, &hd- ) is the
probability of obtaining an echo from the tree tops. The piwlity density function (36)
is shown in Figure 3. Experiments have shown that this, iregyiits simplicity, is a quite

0

Figure 3: A typical histogram of the error in the data from the radainadter. The
first peak corresponds to the error in the ground readingttamdecond peak corre-
sponds to the error in the readings from the tree tops.

accurate model (Dahlgren, 1998). Furthermorg, ms, o1, o2, andx in (36) can be
allowed to depend on the current horizontal positigni;. In this way, information from
the terrain elevation database can be inferred on the nmeasuat noise in the model.
Using this information, it is possible to model whether theraft is flying over open
water or over a forest.

5.2 Result

The flight that has been used is shown in Figure 4. This is & faiugh flight for the
algorithm, in the sense that during some intervals data asimg, and sometimes, the
radar altimeter readings become unreliable. This happehgh altitudes and during
sharp turns (large roll angle), respectively. In order tb @éair understanding of the
algorithm’s performance]l00 Monte Carlo simulations with the same data have been
performed, where only the noise realizations have beenggthffom one simulation to
the other. Many parameters have to be chosen, but only théewai particles used
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Figure 4: The flight path used for testing the algorithm. The flight pattiockwise,
and the dark regions in the figure are open water.

are commented here (see Frykman (2003) for more detailslrigre 5, a plot of the
error in horizontal position as a function of time is presehtor different number of
particles. The true position is provided by the differei8&S (DGPS). From this figure,
it is obvious that the estimate improves as more particlesiaed. This is natural since
the theory states that the densities are approximated lblettenore particles used. The
difference in performance is mainly during the transieriere it can be motivated to use
more particles. By increasing the number of particles tmyeence time is significantly
reduced, and a better estimate is obtained. This is true 8p@0 particles. Henc&000
particles where used in this study. The algorithm can baéuitmproved, and in Frykman
(2003), several suggestions are given.

The conclusion from this study is that the marginalizediplarffilter performs well
and provides an interesting and powerful alternative tohwds currently used in inte-
grated aircraft navigation systems.
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1 : :
—— 1200 particles
- - -2500 particles
0.8} - 5000 particles |
----10000 particles
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Figure 5: The horizontal position error as a function of time units ifferent
numbers of particles. The marginalized patrticle filter givie Algorithm A.1 has
been used.

6 Conclusion

The marginalization techniques have systematically bemlied to general nonlinear
and non-Gaussian state-space models, with linear subkstes. This has been done in
several steps, where each step implies a certain modificatithe standard particle filter.
The first step was to associate one Kalman filter with eachicpariThese Kalman filters
were used to estimate the linear states. The second stemwas the prediction of the
nonlinear state as an additional measurement. This wastassutain better estimates
of the linear state variables. The complete details for theginalized particle filter were
derived for a general nonlinear and non-Gaussian statespadel. Several important
special cases were also described. Conditions implyingathshe Kalman filters will
obey the same Riccati recursion were given.

Finally, a terrain navigation application with real datarfrthe Swedish fighter aircraft
Gripen was presented. The particle filter is not a feasilderahm for the full nine-
state model since a huge number of particles would be neétiegever, since only two
states (the aircrafts horizontal position) appear noalilyein the measurement equation,
a special case of the general marginalization algorithnbesapplied. A very good result
can be obtained with only 5000 particles, which is readilggible to implement in the
computer currently used in the aircraft.
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Appendix
A Proof for Theorem A.1
The proof of (16) and (17) is provided as a special case of tbef fpelow.

Proof: For the sake of notational brevity, the dependencejbin (18) is suppressed in
this proof. Write (18) as

zt+1 ff JF G, wta (37a)
Ztl = Aj xt G?wt ) (37b)
= Ctxi + €, (370)

wherez; andz? are defined as

5 = xi — I (37d)
2=y —he (37e)

Inspection of the above equations gives thatnd 27 can both be thought of as mea-
surements, since mathematically (37b) and (37c) possesstitiicture of measurement
equations. The fact that there is a cross-correlation stviee two noise processes
andw}, since@!™ # 0 in (19a), has to be taken care of. This can be accomplished usi
the Gram—-Schmidt procedure to de-correlate the noise &&ssin, 2000, Kailath et al.,
2000). Instead ofv, the following can be used

— n n n -1 n n ny\— n
wylt :wi—E{wi(wt )T} (E{wt (wy )T}) Wy zwi— ff (QF) 1wt7 (38)
resulting inE {w} (wy)*} = 0 and

=E{wj(w})"} = Q| — QI"(Q}) Q" (39)

Using (37b) and (38), (37a) can be rewritten according=p is assumed invertible. The
case of a non-invertibl&’} is treated in Bergman (1999))

zp = At + Gy (of + Q" (QF) NG Tz — Atay)) + f1
:Aizt+Giwt+Gi t (G?Q?)ilztlJrffa (40)

where

Al = A} - GLQM(GrQY) AL (41)
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The de-correlated system is

zp = fi + Al + GLOM(GEQY) 2 + Gl (42a)
= Azl + GTw?, (42b)
Zt2 = Ctl'i + €4, (42C)

which is a linear system with Gaussian noise. Moreover, f(8id) and (37¢), it can
be seen thaZ} and Z} are known ifX}, , andY; are known. The actual proof, using
induction, of the theorem can now be started. Attime zgfe}| X7, Y_1) = p(x}|2f) =
N (2} | 2}, Py). Now, assume that(z}| X", Y;_,) is Gaussian at an arbitrary timee,

The recursions are divided into three parts. First, thermé&dion available in the ac-
tual measurement,, i.e., 2?7 is used. Once the measurement update has been performed
the estrmateéi‘t and P, are available. These can now be used to calculate the predic-
tions of the nonlinear stat#]’ , ,. These predictions will provide new information about
the system. Second, this new information is incorporategdsjorming a second mea-
surement update using the artificial measuremgntFinally, a time update, using the
result from the second step, is performed.

Part 1: Assume that botp(z}| X7, Y; 1) = N (! \xt‘t - Pri—1) andz} are available.
This means that(z!| X, Y;) can be computed as

) o p (yt|f?7$i>p (xHth)}/t—l)

l n
p (x| X', Yy = .
(el X0 Y0) = T al) p (@l X7 Vi) dal

(43)

Using the fact that the measurement noise and, thepgbyz?, ') is Gaussian and the
Kalman filter it can be seen thatz;| X', Y:) = N (x4 | &4, Pyy;), where

a:t‘t = xt‘t 1+ Ky (zt Ct:vt“ 1) (44a)
Pt\t = Pt\t 1 KtMtK > (44b)
K; = Pt\t—lct M (44c)
M; = CyPyy—1Cf + Ry. (44d)

Part 2: At this stage;; becomes available. Use

p (mt—r-l"rt 7$t) ($t|X )

x| X3, Y, (45)
( S ) Ip (xt+1 Ty 7$t) (xt‘X{L7Yt) du
analogously to part p(z}| X7, ,,Y:) = N(z} | 2 ”i’(t, Pji.), where
alr, = 2L, + Ly (zt A”:%tlt) (46a)
Pji, = Py, — LiN{ LT, (46b)
Ly = P (A} (NS, (46c)

N = APPy (AT + GrQY(GI)T. (46d)
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Part 3: The final part is the time update, i.e., to compute

(e [ X00.Y0) = [0 ety atod) (X0, Y drd @D

Since the state noise is Gaussian, this corresponds tonigeupdate handled by the
Kalman filter. Hencep(xy, 1| X7 1, Y:) = N (241 |27, ;> Prya), Where

B = Al + GHQM T GrOD T A 4 S+ L (o - Avaly). (48a)
Py = APy, (AY" 4+ GLQL (G — LN LT, (48b)
Ly = AP, (AP N7, (48c)
Ny = A7 Py (A7) + Gy (G))" (48d)
O
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Abstract

In this paper, the computational complexity of the mardeeal particle filter

is analyzed and a general method to perform this analysiges gThe key is
the introduction of thequivalent flopmeasure. In an extensive Monte Carlo
simulation, different computational aspects are studigdi @mpared with
the derived theoretical results.

Keywords: Complexity analysis, equivalent flop, Kalman filter, maajin
ized particle filter, nonlinear estimation.

1 Introduction

I N particle filter (PF) applications, knowledge of the compiotzal complexity is often

of paramount importance. In this paper the computationaldexity issues that arise
in the use of thenarginalized particle filte(MPF), also called the Rao-Blackwellized
particle filter are studied. The MPF is a clever combinatibthe standard PF (Gordon
et al., 1993), and th&alman filter (KF) (Kalman, 1960), which can be used when the
model contains a linear sub-structure, subject to Gaussige. It is a well-known fact
that in some cases it is possible to obtain better estimagesgstimates with reduced
variance, using the MPF instead of using the standard PFa@at al., 2001b). By now,
quite a lot has been written about the MPF, see, e.g., Dottt €000, 2001a), Chen
and Liu (2000), Andrieu and Doucet (2002), Andrieu and Gb@&000), Schon et al.
(2005). However, to the best of the author's knowledge, ingtlhas yet been written
about complexity issues. In this paper, expressions forctmplexity C(p, k, N) are
derived, wherg andk represent the state dimensions from the PF and the KF, riasggc
and, N denotes the number of particles. A general method to anéhgzeomputational
complexity of the MPF will be provided. The method is illustd using a common
tracking model, but can be applied to a much broader classodfia. For more details
of the proposed method, see Karlsson et al. (2004).
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2 Marginalized Particle Filter

Many nonlinear estimation problems can be handled usingantcle filter. A general
state-space model

i1 = f@e, we), (1a)
yr = h(zt,e), (1b)

has both nonlinear dynamigsand nonlinear measuremerits The noise processes
and e; have known probability density functions. If the stateepanodel contains a
linear-Gaussian sub-structure, this can be exploited taimlbetter estimates using the
MPF. In this paper, the case with linear-Gaussian dynamics,

Top1 = Ay + wy, w € N(0,Qy), (29)
yr = h(x}) + C’txi + ey, (2b)

is discussed. In this context, the state variahle R™ is

o= (%) ©

wherez! € R! denotes the linear states anfl € R" denotes the nonlinear states.
Furthermore X|* = {z7'}!_, andY; = {y;}!_,. Using Bayes’ theorem,

p (2}, X['Y)) = p (2| X7, Y;) p (X][V2), (4)

wherep(X['|Y;) is given by the PF and!|X[ is linear-Gaussian, i.ep(zl| X}, Y;) is
given by the KF. This marginalization idea is certainly netn(Doucet et al., 2000,
Casella and Robert, 1996, Doucet et al., 2001b, Chen an@0@f), Andrieu and Doucet,
2002, Doucet et al., 2001b, Schén et al., 2005, Nordlund2R0bhe state vectar; can
be partitioned into two parts;} € R? andzf € RF, which are estimated using the
PF and the KF respectively. Furthermopec [n,n + 1], k € [0,!] and for the general
partitioning case — n states can be selected frdmossibilities.

Itis interesting to consider which states to put in the noedir and the linear partition,
respectively. Two relevant aspects with respect to thiitmaring are how it will affect
the computational complexity and the estimation perforceanThis will be discussed
using the following model:

rh = APaP 4 ARk 4 wb, w! ~ N(0,QF), (5a)
x,’f“ = FPal + FFal + wl, wi~ N(0,QF), (5b)
Yt = hf(xf) + Cfmf + €y, €t ~ N(07 Rt)7 (SC)

where the noise is assumed to be independent. This is nactiesty since the case of
dependent noise can be reduced to the case of independsatusing a Gram—Schmidt
procedure (Kailath et al., 2000). In Algorithm B.1, the MRFsummarized for the model
givenin (5) (withC; = 0, for the sake of brevity). For a detailed derivation (inéhglthe
caseC; # 0), the reader is referred to Schon et al. (2005).
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Algorithm B.1 (Marginalized Patrticle Filter (MPF), C; = 0)

1. Initialization: Fori = 1,..., N, initialize the particlesxf)’l’(_i)1 ~ per (25) and set
(oo, Py} = {xO,Po} Sett := 0.
2. Particle fllter measurement update: kFoe 1,...,N, evaluate the importance
weightsq\” = p (yt|Xf’(l),Yt_1) = (yf | h(z} G )) Rt> and normalize” =
% N j
g/ ¥

3. Resampling: Resampl€ particles with replacement according to,

Pr (xrn(i) R NC) ) _ qt(y)' (6)

t[t t)t—1

4. Particle filter time update and Kalman filter update
(a) Kalman filter measurement update,

Ak() ik() Pt\t:Pt\t—L (7)

Tyt tjt—1°

(b) Particle filter time update (prediction): Foe 1, ..., N,
(1) p,(1)
lfﬁ\t p( t+1|t|X ' Yt) (8)
where
3 5 1 c N\T
p (ch_’H)|Xp K Y) N (xt-u | Apy @ + A? flt( ) AfPt\t (A?) + Qf) .
9)

(c) Kalman filter time update,

0 _ Fhg k()+F£’xf’(“+Lt (I%(i) fAfxf’() Ak s k()>7 (10a)

t+1)t t\t t+1|t t t|t
Py = FEPy, (FF)" + QF — LMy LT, (10b)
M, = AbPy, (AF)" + QP (10¢)
L= FFpy, (A% MY, (10d)

5. Sett :=t + 1 and iterate from step.

3 Complexity Analysis

In this section the computational complexity of the MPF iscdissed from a theoretical
point of view, by giving the number dfoating-point operationéflops) used in the algo-
rithm. A flop is here defined as one addition, subtraction tiplidation, or division of
two floating-point numbers. However, problems occur whenflbp count is compared
to the actual computation time. This is due to the fact tlsatés such as cache boundaries
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and locality of reference will significantly influence thengputation time (Boyd and Van-
denberghe, 2004). Moreover, there are certain steps ifdbdathm that cannot easily be
measured in flops, for instance the cost of generating a mnmdonber and the cost of
evaluating a nonlinear function. Despite these drawbatissstill possible to analyze the
complexity using the computer to measure the absolute tiraethe different steps re-
quire. These can then be compared to the theoretical résiained from counting flops.
In the PF, the computational complexity of the resamplileg $ proportional to the num-
ber of particles and the amount of time for generating randambers is proportional to
the number of random numbers required. The proportionatigfficients are related to
reflect the flop complexity instead of the time complexity é&arse of comparison with
parts that only depend on matrix and vector operations. Wilie referred to as the
equivalent flop(EF) complexity.

Definition B.1. The equivalent flop (EF) complexity for an operation is dediias the
number of flops that results in the same computational tintbeasperation.

3.1 Nonlinear Measurements

In this section, the casé, = 0in (5c¢) is discussed. The total complexity of Algorithm B.1
is given for each code line in Table 1. For instance, the ﬁirsin'iJctionPﬂt(A,’f)T corre-
sponds to multiplying?;, € R*** with (A})T € R¥*?, which requiregpk? multiplica-
tions and(k — 1)kp additions (Golub and Van Loan, 1996). The total EF compyeisit
given by

4 . .
C(p, k, N) ~ 4pk? + 8kp* + gp5 + 5k% — 5kp + 2p°
+ (6kp +4p* + 2k* +p — k + pe3 + ¢1 + c2)N. (11)

As shown above, the coefficient has been used for the calculation of the Gaussian
likelihood, ¢, for the resampling ands for the random number complexity. Note that,
when(C; = 0 the same covariance matrix is used for all Kalman filterscWwiheduces the
computational complexity.

The analysis provided above is general and the main stepsh wiill be discussed in
the subsequent section are as follows:

1. Estimate the time for one flop using linear regression.

2. Estimate the time for likelihood calculation, resamglamd random number gen-
eration.

3. Relate all times using the EF measure.
4. Calculate the overall complexi§(p, k, N).

By requiringC(p + k,0, Nee) = C(p, k, N(k)), where N, corresponds to the number
of particles used in the standard RRk) can be solved for. This gives the number of
particlesN (k) that can be used in the MPF in order to obtain the same coniqueét
complexity as if the standard patrticle filter had been usedlicstates. In Figure 1 the
ratio N (k) /Ne is plotted for systems withn = 3,...,9 states. Hence, using Figure 1
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Table 1: The EF complexity for the PF (upper) and KF time update (IgvreAl-
gorithm B.1 ( represents the cage> 0, i represent operations not from matrix
multiplications and additions, such as resampling, randamber generation, etc.).

Instruction Mult. Add. Other?
Py = Py (AR)T pk? (k—1)kp

M = AfPa + Q7 kp? (k—1)p2+p*1

T1 := chol(M) % +2p?
T := randn(p, N) pNcs
w:="T *Th p2N (p— 1)pN

Ts := APgP 2N (p—1)pN

Ty := Akgk pkN (k—1)pN T

ifH‘t =T34+ Ty +w 2pN

NN = M-I pS
L:= FfPainvy E2p + kp? | k2p + p2k — 2kp

Ts := FF P (FB)T 2k3 2(k — 1)k?

Te := L My LT 2kp? 2(p — 1)pk
P:=Ts+QF —Ts 2k2

Ty = Fkgk KN (k —1)kN

Ty := FPaP kpN (p— kN

Ty := :?:f+1|t7T37T4 2pN

ﬁfﬂ‘t =Ty +Tg + LTy | kpN (p+1)EN

it is possible to directly find out how much there is to gain sing the MPF from a
computational complexity point of view. The figure also skaivat the computational
complexity is always reduced when the MPF can be used insit#itk standard PF.
Furthermore, it is well-known that the quality of the esttesawill improve or remain the
same when the MPF is used (Doucet et al., 2001b).

3.2 Mixed Nonlinear/Linear Measurements

It is now assumed that; # 0 in (5c), which implies that the Riccati recursions have
to be evaluated for each particle. This results in a sigmifitacrease in the computa-
tional complexity. Hence, different covariance matricasénto be used for each Kalman
filter, implying that (11) has to be modified. For details, &&lsson et al. (2004), but
approximately the complexity is given by

C(p,k,N) ~ (6kp + 4p® +2k* + p — k 4+ pc3 + ¢ + co

4
+ 4pk? + 8kp® + §p3 + 5k% — 5kp + 2p® + k3)N. (12)

The problem with the increased complexity in (12) might beueed simply by moving
one or more linear states fronf to 2%. In Figure 2 the ratiaV(k)/Npp is plotted for
systems withm = 3, ..., 9 states. For systems with few states, the MPF is more efficient
than the standard PF. However, for systems with more statesie most of the states
are marginalized the standard PF becomes more efficienttibaWlPF. The reason is the
increased complexity in the Kalman filters due to the inaedadimension in the Riccati
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Figure 1: RatioN (k) /N for systems withm = 3,...,9 states and’; = 0,n = 2
is shown. It is apparent the MPF can use more particles fovengiomputational
complexity, when compared to the standard PF.

recursions. For example, according to Figure 2, a systeim niite states, where seven
are marginalizedN (k) < Npp.

4 Target Tracking Example

The general method for analyzing the computational conitylexesented in the previous
section is illustrated using a common tracking model. Thebj@m of estimating the
position and velocity of an aircraft is studied using

1 07T 0 722 0
2

01 0 T 0 T2
0010 T 0
TH1=1g 9 0 1 o0 T |TttTe (132)
0000 1 0
0000 0 1

\/ Pz + P}
Y = |+ e (13b)

arctan (%)

where@ = Cov(w) = diag(1 111 0.01 0.01), R = Cov(e) = diag(100 10~°), and the
state vector isc, = (py py vy vy ay ay)T, i.e., position, velocity and acceleration. The
measurement equation gives the range and azimuth fromdhe sgstem.
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0.9 4

Clp + k,0, Neg) = C(p, k, N (k))
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Figure 2: RatioN (k) /N for systems withn = 3, ...,9 states and’; # 0,n = 2
is shown. For systems with high state dimension and manyinaized states the
standard PF can use more patrticles than the MPF.

In the subsequent section, a numerical study of the compngitomplexity is given,
where the theoretical expressions previously derived aidated. Furthermore, the MPF
will be analyzed in an extensividonte Carlo(MC) simulation using the model described
in (13). The main purpose of this simulation is to illustréie implications of the results
derived in this paper. In the simulations, one state trajgatith different noise realiza-
tions have been used. The purpose of the simulations peskkate is to show that using
marginalization the computational complexity is signifitg reduced and the quality of
the estimates is improved.

4.1 Numerical Complexity Analysis

The model (13) has two nonlinear state variables and foealirstate variables, imply-

ing k € [0,4], p € [2,6]. Two cases are now studied, the full PF, where all states are

estimated using the PF and the completely marginalized BErevall linear states are
marginalized out and estimated using the KF. Requiring #mescomputational com-
plexity, i.e.,C(6,0, Npr) = C(2,4, Nypr), gives

4cs + 56
Nee=(1-— Nype- 14
°r ( 1+ ¢ + b + 150> mer (14)

<1
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From (14), itis clear that for a given computational comijemore particles can be used
in the MPF than in the standard PF. Expression (14) is a spétifiance of what has been
plotted in Figure 1, where the curve correspondsite= 6, £ = 4. In order to quantify
this statement, numerical values for the three consiants andcs are needed. They
are estimated by analyzing the actual computational tinmswmed by various parts of
the MPF algorithm. It was fairly easy to measure the time dieelikelihood calculation,
resampling, and random number generation as a functioreafumber of particles. The
problem is to relate them to the time consumed for a single flegy simpler hardware
implementations, one flop would have a constant execution.tiHowever, in order to
do this on a normal desktop computer runnings™WAB, the EF estimation has to be
considered, since flop count does not entirely reflect theshcomputational time. This
is due to memory caching, pipelining, efficient computagiooutines which are problem
size dependent, and memory swapping. For the tracking degfnom (13) the estimated
coefficients are;; = 445, ¢, = 487, andcz = 125 (on a Sun Blade 100 witd40 MB
memory).

By comparing the EF complexity given by (11) to the actual patational time mea-
sured in MATLAB, it is clear that the predictions of the computational caerjty based
on theoretical considerations are quite good indeed. Tédtris given in Figure 3. The

0.2 T T T T
= PPKKKK
<~ 01 i
o
Q
0 . . . .
0 2000 4000 6000 8000 10000
__ 02 . . . :
< |PPPPKK ==
[a\]
5"; 0.1
Q
0 2000 4000 6000 8000 10000
— 0.2 T T T T
= |pPPPPP =
g 0.1f 1
Q

0 2000 40](\)70 6000 8000 10000

Figure 3: Using a constant number of particles the times predicteat fitte theo-
retical results are shown by the dashed line. The solid kimeesponds to the actual
time measured using|ATLAB . If a certain state variable is estimated using the PF
this is indicated with &, and if the KF is used this is indicated usinga

small error is mainly due to the fact that it is quite hard tedict the time used for matrix
operations, as previously discussed.
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4.2 Simulation — Constant Time

Using a constant time the number of particles that can be isseaimputed. The study
is performed by first running the full PF and measure the timesamed by the algo-
rithm. An MC simulation, usingV = 2000 particles, is performed in order to obtain
a stable estimate of the time consumed by the algorithm. W®idantervention from
the operating system, the minimum value is chosen. The tntleein used as the target
function for the different partitions in the MPF. To find thember of particles needed,

Table 2: Results from the constant time simulation.

PPPPPP| PPKKPP | PPPPKK | PPKKKK
N 2000 2029 1974 2574
RMSE pos 7.10 5.81 5.76 5.60
RMSE vel 3.62 3.27 3.28 3.21
RMSE acc 0.52 0.47 0.45 0.44
Time 0.59 0.58 0.57 0.60

a search method is implemented and MC simulations are usgeltta stable estimate.
In Table 2, the number of particleV{, the root mean square errdRMSE) and sim-
ulation times are shown for the different marginalizati@ses. RMSE is defined as

. 1/2
Tif S N Zjﬁic |JTRVE — £9)||2 / , whereT is the number of time samples
and Ny, = 100 is the number of MC simulations used. From Table 2, it is ctbat
the different MPFs can use more particles for a given timeéckvis in perfect correspon-
dence with the theoretical result given in (14). From thelgtit is also concluded that the
RMSE is decreasing when marginalization is used. This @sialaccordance with theory,
which states that the variance should decrease or remalmanged when marginaliza-
tion is used (Doucet et al., 2001b). Furthermore, Table Higsrthe theoretical results
presented in Figure 1. From this figure it is also clear thatabmplete marginalization
(m = 6,k = 4) givesN(k)/No = 1.44. Hence, the theoretically predicted number of
particles is2000 x 1.44 = 2880. This is in quite good agreement with the result reported
in table 2,2574.

4.3 Simulation — Constant Velocity RMSE

In this section, we study what happens if a constant vel®®MSE is used. First, the
velocity RMSE for the full PF is found using an MC simulatiofhis value is then used
as atarget function in the search for the number of partiéesled by the different MPFs.
Table 3 clearly indicates that the MPF can obtain the same RMsg fewer particles.
The result is that using full marginalization only requife®6 of the computational re-
sources as compared to the standard PF in this example.
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Table 3: Results using a constant velocity RMSE.

PPPPPP| PPKKPP | PPPPKK | PPKKKK
N 2393 864 943 264
RMSE pos| 7.07 6.98 7.12 7.27
RMSE vel 3.58 3.60 3.65 3.61
RMSE acc 0.50 0.51 0.49 0.48
Time 0.73 0.26 0.28 0.10

5 Conclusion

The contribution in this paper is a systematic approach #&dyae the marginalized par-
ticle filter from a computational complexity point of view.h& method is general and
can be applied to a large class of problems. To illustratédis@ a common target track-
ing problem is analyzed in detail. The complexity analysipeérformed theoretically by
counting the number of flops and using the equivalent flop mrea® account for com-

plex algorithmic parts such as random number generatiomessaanpling. In an extensive
Monte Carlo simulation, different performance aspectsamvn, and the theoretical re-
sults are illustrated and validated.
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Abstract

General approaches to modeling, for instance using objéetted software,
lead to differential-algebraic equations (DAE). As the earaveals, it is a
combination of differential and algebraic equations. Ratesestimation us-
ing observed system inputs and outputs in a stochastic Wwankesimilar to
Kalman filtering, we need to augment the DAE with stochasstudbances
(“process noise”), whose covariance matrix becomes thiedusarameter.
We will determine the subspace of possible disturbancesdoas the linear
DAE model. This subspace determines all degrees of freedatimei filter
design, and a Kalman filter algorithm is given. We illustrétte design on a
system with two interconnected rotating masses.

Keywords: Differential-algebraic equations, implicit systems,ggifar sys-
tems, descriptor systems, white noise, noise, discraiizatalman filter.

1 Introduction

I N recent years so-called object-oriented modeling softkaeincreased in popular-
ity. Examples of such software are Omola, Dymola, the Sinthedcs toolbox for
MATLAB, and Modelica (Mattsson et al., 1998, Tiller, 2001). Suchdelimg software
makes it possible to model physical systems by connectibgrsadels in a way which
parallels the physical construction and without having smoally manipulate any equa-
tions. The available software usually gives the user theipiity to simulate the system,
and perhaps also to extract a structured model in an automayi. This model generally
becomes a differential-algebraic equation (DAE), whicthia linear case can be written

Ei(t) + Fa(t) = Byu(t), (1a)

145
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wherex(t) is the internal variable vector(t) is the system input vector and, F, B,
are matrices of appropriate dimensions. We assumeHhatsingular, otherwise we get
an ordinary differential equation (ODE) by simply multiplg with £~ from the left,
and the standard Kalman filtering theory applies. Hence nwhés singular we obtain
a differential-algebraic equation and the reason for thgudarity is often that purely
algebraic equations are present. Other common names fondldel structure (1a) are,
e.g., implicit systems, descriptor systems, semi-staséegys, generalized systems, and
differential equations on a manifold (Campbell, 1990).

We have the possibility to place sensors in the system to getasurement equation

y(t) = Cx(t) + e(t), (1b)

wherey(t) is the measurement ardt) the sensor noise. An important special case we
will discuss separately is for computer controlled systenfgere the measurementg|
are available at the sampling times- k77,

Ei(t) + Fx(t) = Byu(t), (2a)

The estimation problem is to estimatét) from y[kT]. There are two reasons why we
have to introduce process noise to (2a):

e There are unmodeled dynamics and disturbances acting sgdtem, that can only
be included in the model as an unknown stochastic term.

e There is a practical need for tuning the filter in order to makeade-off between
tracking ability and sensor noise attenuation. This is & Klalman filter accom-
plished by keeping the sensor noise covariance matrix anhand tuning the pro-
cess noise covariance matrix, or the other way around. Qftisreasier to describe
the sensor noise in a stochastic setting, and then it is nadueal to tune the process
noise.

With process noise, the model (1) becomes

Ei(t) + Fz(t) = Byu(t) + Byw(t), (3a)
y(t) = Cx(t) + e(t). (3b)

The problem is to determine where in the system disturbac&eoccur. To fit the op-
timal filtering and Kalman filtering frameworky(¢) should be white noise. As will be
demonstrated, adding white noise to all equations can eaeéivatives of white noise
affecting internal variables of the system directly. Thi#l tae referred to as a noncausal
system, with a physical interpretation of infinite forcegtrents etc. Therefore, we will
derive a basis for the subspace of all possible disturbaticassleads to causal systems.
This basis is taken a8, in (3), and the process noise covariance mafrix Cov{w(t)}

is used as the design variable to rotate and scale this Fdsssis a new way of defining
the process noise as far as we know. The problem itself, henvisvaddressed in Camp-
bell (1990), where it is suggested to use band limited naisoid these problems. The
idea is that the derivative of such noise exists, but the deak is that the Kalman filter
will become sub-optimal.
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A system with the same structure as (3) but in discrete tinlebsireferred to as
a discrete-time descriptor system. Such systems may alsomeusal, but are easier
to handle since the noncausality here means dependenceune fialues of the noise
or the input. An application for such systems is discrateetistate-space systems with
constraints. For an example see Schon et al. (2003). In soeadé-time case much work
has already been done, for example on Kalman filtering sge,®ai (1987), Deng and
Liu (1999), Nikoukhah et al. (1998, 1999), Darouach et a89Q), Dai (1989a). In the
continuous-time case much less work has been done onisttistethods. However,
some attempts to introduce white noise in the continuous lecas been done as well, see,
e.g., Schein and Denk (1998), Winkler (2003).

2 Derivation of the Process Noise Subspace

We will omit the deterministic input in this derivation forotational convenience, so
the continuous-time linear invariant differential-algaie equations considered has the
form (4). The reader is referred to Gerdin et al. (2003) faadgon how the noncausality
with respect to the input signal¢) can be handled.

Eix(t) + Fx(t) = Bw(t), (4a)
y(t) = Cx(t) + e(t). (4b)

The E, F', andC matrices in (4) are constant matrices. For the purpose sflibtussion
we will assume thaty ande are continuous-time white noises. (See Astrém (1970) for a
thorough treatment of continuous-time white noisejleif( E's+ F') is not identically zero

as a function ok € R, (4) can always be transformed into te&andard forn(6) (Bre-

nan et al., 1996). Note thatdfet(E's + F') is identically zero, ther:(¢) is not uniquely
determined byw(t) and the initial valuer(0). This can be realized by Laplace trans-
forming (4). Therefore it is a reasonable assumption deatE's + F') is not identically
zero.

2.1 Time Domain Derivation

First, a transformation to the standard form is needed. iShdene by finding a suitable
change of variables = QQz and a matrixP to multiply (4a) from the left. Both? and@
are nonsingular matrices. By doing this we get

PEQ3(t) + PFQz(t) = PBw(t), (5)

which for suitably choser- and Q-matrices can be written in the following standard

form:
I 0 21(t) —A 0 Zl(t) o G1
(o N) (22(15)) g ( 0 1) aw) = \e) vl ©
where theN-matrix is nilpotent i.e., N* = 0 for somek. The matricesP and (@ can
be calculated using, e.g., ideas from Varga (1992) invghthre generalized real Schur
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form and the generalized Sylvester equation. We can alde Y&) on the form (7) (Dai,
1989b, Ljung and Glad, 2003).

1 (t) = AZl (t) + G1U)(t), (7a)
k—1 »

o) =Y (~N)G Y dtl@. (7b)
=0

From a theoretical point of viedr; can be chosen arbitrarily, since it describes how white
noise should enter an ordinary differential equation. H@weconstraints o7, can of
course be imposed by the physics of the system that is madéléen it comes tdro,

the situation is different, here we have to find a suitablepeterization. The problem
is now that white noise cannot be differentiated, so we mdde find a condition on the
B-matrix in (4a) under which there does not occur any defieatin (7b), i.e. N'Gy = 0

for all ¢ > 1. This is equivalent to thaVG, = 0. The result is given in the following
theorem.

Theorem C.1
The condition to avoid differentiation of white noise is iralent to requiring that

B e R(M), 8)

whereM is a matrix derived from the standard form (6) (see the proofietails on how
M is derived).

The expressio®? € R(M) means thaB is in therangeof M, that is the columns of
B are linear combinations of the columns of M.

Proof: Letthen x n matrix N in (6) have the singular value decompaosition (SVD)
N=UDVT. (9)

Since it is nilpotent it is also singular, 3o diagonal elements i are zero. Partition
V = (W1, Va), whereV; contains the lasin columns ofl” having zero singular values.
Then NV, = 0, and we can write7, = V5T, whereT' is an arbitrarym x m matrix,
which parameterizes all matricés that satisfiesVGy = 0.

According to (5) and (6) we have

_ 1 (Gh
B=P <G2 . (20)
If we now letP~! = (R, Ry), we can write (10) as
_ Gl Gl Gl
B=P ' (G2> = (Rl RQ) (%T) = (Rl R2V2) <T) ’ (11)

M
where bothz; andT" can be chosen arbitrarily. This calculation gives that
B e R(M), (12)

is a condition for avoiding differentiation of the white seisignalu(t). O
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The B-matrices satisfying (12) will thus allow us to incorporathite noise with-
out having a problem with differentiation of white noise. eTesign parameters to be
specified arez, and7’, defined in the proof above. Also note that the requiremeatt th
white noise should not be differentiated is related to thecept ofimpulse controllability
discussed in Dai (1989b).

2.2 Frequency Domain Derivation

The same condition on the noise can be derived in the frequégmimain, as shown in
this section. Throughout the section, we need some contreptsthe theory of matrix
fraction descriptions (MFD). We start by defining tieev degreeof a polynomial matrix
and the concept of eow reducedVIiFD according to Rugh (1996).

Definition C.1. Thei'" row degree of a polynomial matrik(s), written as-;[P], is the
degree of the highest degree polynomial initfierow of P(s).

Definition C.2. If the polynomial matrixP(s) is square and nonsingular, then itis called
row reduced if

deg(det P(s)) = r[P]+ -+ + ra[P]. (13)
We will use the following theorem from Kailath (1980):

Theorem C.2

If D(s) is row reduced, thed~*(s)N(s) is proper if and only if each row oV (s) has
degree less than or equal the degree of the correspondingofoi®(s), i.e., r;[N] <
r;[D],i=1,...,n.

To utilize the results we need to write (4a) as a matrix faactescription. A MFD of (4a)
is

X(s) = (Es+ F)"'BW(s). (14)

According to Rugh (1996) a matrix fraction description cancbnverted to row reduced
form by pre-multiplication of a unimodulamatrix U (s). That is,D(s) is row reduced
in the MFD

X(s) =D (s)N(s)W(s), (15)

whereD(s) = U(s)(Es+ F)andN(s) = U(s)B for a certain unimodular matri&/ (s).
Now, Theorem C.2 shows that the transfer function of theesyss proper if the highest
degree of the polynomials in each rowlfs) is lower than or equal to the highest degree
of the polynomials in the corresponding rowDfs). This gives a condition o3 in the
following way:

Writing U (s) as

U(s) = > Uss' (16)

=0

1A polynomial matrix is called unimodular if its determinant is@anzero real number (Kailath, 1980).
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and writing thej*" row of U; asU;;, shows that the condition
UiljBZO Z'>’I“]‘[D}7 j=1...,n (17)

guarantees that the transfer function of the system is prope

Conversely, assume that (17) does not hold. Then some roreeled N(s) is higher
than the corresponding row degree of D(s), so the transfatifan is then according to
Theorem C.2 not proper.

This discussion proves the following theorem.

Theorem C.3
The transfer function of the system (4) is proper if and ohly i

UijBZO i>7'j[D], j=1...,n. (18)

Note that the criterion discussed in this section requitasthe MFD is transformed
to row reduced form, and an algorithm for finding this tramsfation is provided in Rugh
(1996).

We have now proved two theorems, one using time domain mstaod one using
frequency domain methods, that gives conditions which gtevalent to that no white
noise is differentiated in (4). This means that these twalitmmns are equivalent as well.
The frequency domain method is good in the sense that we dbavetto compute the
standard form (6). However, if we want to discretize the ¢igua it is worthwhile to
compute the standard form. Once this is done the celebraaémd filter can be used
to estimate the internal variablegt). In the subsequent section we will discuss the
discretization and the estimation problems.

3 Filtering

3.1 Discretization

If the noise enters the system according tB-matrix satisfying Theorem C.1 or C.3 the
original system (4) can be written as

1 (t) = AZl (t) + Gl’LU(t), (193)
2o(t) = Gaw(t), (19b)
y(t) = CQz(t) + e(t), (19¢c)

wherexz = Qz. Furthermorew(t) ande(t) are both assumed to be Gaussian white
noise signals with covariancd®, and R, respectively, and zero cross-covariance (the
case of nonzero cross-covariance can be handled as wetinthalifference is that the
expressions are more involved).

System (19) can be discretized using standard techniqoeslinear systems theory
(Rugh, 1996). If we assume thatt) remains constant during one sample intetyakre
it is assumed that sampling interval is one to simplify th&ation),

w(t) = wlk], E<t<(k+1), (20)

2See, e.g., Gustafsson (2000) for a discussion on othertpi@ssisumptions on the stochastic proaegs)
when it comes to discretization.
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we obtain
2k + 1] = Az [k] + Gyw(k], (21a)
ylk] = CQz[k] + e[k], (21c)
where
1
A=e, G = / eATdrG. (22)

0

Hence (21) and (22) constitutes a discrete-time model of (4)

3.2 Kalman Filter

In order to apply the Kalman filter to the discrete-time md@dl) we start out by rewrit-
ing (21c) as

22[k]

ylk] = CQz[k] + e[k] = (6'16'2) (Zl[k]) +elk] = C~'1Z1 (k] + 6'222[143] + elk]
+elk]. (23)

= 0121 [k] + égGQW[k]

&lk

Combining (21a) and (23) we obtain

21k 4+ 1] = Az [k] + Grw[k], (24a)
y[k] = Crz:1[k] + é[k]. (24Db)

Note that the measurement noig] and the process noiseé k| are correlated. Now, the
Kalman filter can be applied to (24) in order to estimate theriral variables; [k] and
the process noise[k]. Finally an estimate of the internal variablegk] can be found
using the estimated process noise, singdé] = Gowlk], according to (21b). Finally the
internal variablesy[k], are obtained by [k] = Q~'z[k]. For details on the Kalman filter
see Glad and Ljung (2000).

4 Example

In this example we will treat a system composed of two rotatimsses as shown in
Figure 1. The two rotating parts are described by the torguéigsM-, M3, andM, and
the angular velocities; andz,;. The equations describing this system are

J1z1 = My + M27 (253)
Jazo = M3 + My, (25b)
M2 = _M37 (250)

Z1 = Z9. (25d)
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Mlq izl ]\/{2 ,,,,,,, ]\/{3 i22 nNM
Tl )l T

Figure 1: Two interconnected rotating masses.

Written on the form (4) these equations are

Ji 0 00 0 0 -1 0 10

0 H 0ol (oo o =] fo 1]/

00 00| o o 1 1[" |oo (M4)’ (26)
0 0 0 0 1 -1 0 0 00

wherex = (21, 22, Mo, Mg)T. Note that the matrix in front of is singular, hence (26)
is a differential-algebraic equation. Using the followingnsformation matrice® and@

1 J.
Lo N (T
. . — 0 0
P=1 0 oo @=L )
J- J J-
J1-:J2 _J1+1J2 Jl-‘:Jz 0 0 0 0 1
(27)
the equations can be written in the standard form (6):
1 0 0 0 0 0 0O 1 1
0 0 0 0 01 0 0 _ 0 0 My
0 0 0o0|* oo 1 o]*T| o0 0 (M4>' (28)
J1 J: J. J
0 -]11+32 00 0001 -71+2JQ _-71+1-72

Now to the important part, if we want to incorporate noiseitite differential-algebraic
equation (26), by addingw to (26), whichB-matrices are allowed?

To answer this question Theorem C.1 can be consulted. Wa bggialculating the
matricesRy, Ry andV; from (27) and (28). We have that

0 0 0 0 0
N = 0 00 = V=1 0], (29)
J1 J:
J11+32 00 0 1
and
J J
Jli.fg 8 _01 11 JliJz 8 —01 11
pl=| i+ - = R, =| JitJ Ry = B
0 0 1 0 ! o ] T lo 1 o
0 1 0 0 0 1 0 0
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We can now calculate th& matrix:

-71{:-]2 -1 1

M= 2 0 -1
= (R1 RoVa) = 16 10 (31)

0 0 0

As the requirement was th#&t € R(M) this simply means that we cannot directly add
white noise to (25d) (if/; > 0 andJ> > 0). This result makes physical sense, as a step
change in the angular velocity would require an infinite terq

The same condition of can also be calculated in the frequency domain using The-
orem C.3. Transforming the system to row reduced form givas t

1

FELN (FEN e
1 o0 1 oo | o0 100
US)>=1 6 o 10l 0o o 1 0|lt|oo0o0 o] G
0 0 0 1 0 0 0 1 0O 0 0 O
Uo Ul
and that
0 0 4 -5
_OJQSO*l
1 -1 0 0

with notation from section 2.2.
This gives that the row degrees bX(s) arer,[D] = 0, ro[D] = 1, r3[D] = 0, and
r4[D] = 0. Theorem C.3 thus gives that the transfer function is prderd only if

00 0 1
(0 0 0 0)30. (34)

What (34) says is that the last row &f must be zero, which is the same conclusion as
was reached using the time domain method, Theorem C.1.

5 Discrete-Time Linear Descriptor Systems
The discrete linear time invariant descriptor system isguagon on the form

Exlk + 1] + Fa[k] = Buwlk, (35a)
y[k] = Cx[k] + e[k], (35b)

whereE, F, andC are constant matrices angk| ande[k] are white noise sequences,
i.e., sequences of independent and identically distribtaedom variables. For this case
it is possible to make the same transformation as for a cootis differential-algebraic
equation ifdet(Ez + F) is not identically zero as a function efe R (Section 2) since



154 Paper C A Modeling and Filtering Framework . ..

the structure is similar. Similarly to the continuous-ticese [k will not be uniquely
determined byw(k) if det(Ez + F) is identically zero. A certain transformation

PEQz[k + 1] + PFQux[k] = PBwlk], (36)
with nonsingular matrice® and(@ will thus give us the form
I 0\ (z1]k+1] —A 0\ (=1[k]\ (G
(o ») GG D EE) - (@) e

As in the continuous-time case, we can write (37) in the form

n—1
2kl =Y (=N)'Gawlk +1]. (38b)
=0

The system (35) is thus well defined for &ltmatrices, since no derivatives occur in this
case. However;,[k] will depend on future values of the noise. To avoid this, thise
sequence can be time shifted. If wedgk] = w[k +n — 1] we can rewrite (38) according
to

Zﬂk-‘rl] :Azl[k]—FGﬂI][k‘—’rL"FlL (3961)
0
nkl= Y (=N)'Gyblk + 1], (39h)
i=—n+1

which can be transformed to a normal state-space descrifftus state-space description
can then be used to implement a Kalman filter, which is dismligs Dai (1987). Other
approaches to Kalman filtering of discrete-time linear dpsar systems are discussed in,
Deng and Liu (1999), Nikoukhah et al. (1998, 1999), Darowgtdi. (1993), Dai (1989a).

The sequences|k] andw[k] will have the same statistical properties since they both
are white noise sequences.

It can be also be noted that the same requirement that was @itrothe continuous-
time case may also be used in the discrete-time case. ThiswWen guarantee that the
system would not depend on future noise values and the neigeace would not have
to be time shifted.

5.1 Frequency Domain

The ideas of time shifting the noise might become cleardrndf/tare treated in the fre-
quency domain. If we transform (35) to the frequency domasgrget

X(2) = (Ez+F)"'BW(z). (40)
H(z)

The only difference from a transfer function for a stateegpsystem is that he® (z) is
noncausal in the general case. If we rewrite (40) as

X(2) = H(2)z~ T 2TW(2), (41)
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then W (z) will be a time shifted version of¥’(z) and H(z) will be a causal transfer
function if 7" is large enough.

6 Conclusion

We have in this paper proposed a framework for modeling atetifig of systems com-
posed of linear differential-algebraic equations. Themraason for studying these sys-
tems is that they occur as the natural description delivired object-oriented modeling
software. At the core of this problem we find the question af h@incorporate stochas-
tics into linear differential-algebraic equations. Thasheen solved in this paper in the
case where white noise is used. The result was presente® &sg|tuvalent theorems, one
in the time domain and one in the frequency domain. The iieguthodel fits into the
optimal filtering framework and standard methods such aK#iman filter applies. An
example was also given, which showed that the conditiongsetefor how the noise can
enter the system gives requirements which are physicaltvated.
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Abstract

The Kalman filter computes the maximum a posteriori (MAP)neate of
the states for linear state-space models with Gaussiae.nde interpret
the Kalman filter as the solution to a convex optimizatioriyem, and show
that we can generalize the MAP state estimator to any noite@g-concave
density function and any combination of linear equality andvex inequal-
ity constraints on the states. We illustrate the princigleachidden Markov
model, where the state vector contains probabilities tteapasitive and sum
to one.

Keywords: State estimation, Kalman filter, convex optimization, ledd
Markov models, linear regression.

1 Introduction

TATE estimation in stochastic linear models is an important f@mmbin many model
based approaches in signal processing and automatic tapplications, where the
Kalman filter is the standard method. However, if we haverpnformation of some
kind it is often impossible to incorporate this in the Kalmfdter framework. We will
in this paper show how we can use prior information by congidethe optimization
problem that the Kalman filter solves. A similar treatment ba found in Robertson and
Lee (2002), however they only consider quadratic problemmgreas we will consider a
larger class of convex problems.

2 Convex Optimization

In this section we will give a very brief introduction to cawoptimization, see also Boyd
and Vandenberghe (2001).

159



160 Paper D A Note on State Estimation as a Convex Optimization Problem

The main message in convex optimization is that one shooddiffer between linear
and nonlinear optimization problems, but instead betwegvex and non-convex prob-
lems. This is due to the fact that the class of convex problismsuch larger than that
covered by linear problems, and we know that for a convexIpmlany local optimum
is also a global optimum. Moreover, there exist efficienpaltpms for solving convex
optimization problems. A convex optimization problem isided as

min  fo(x
xr
st. fi(z) < 0, i=0,...,m, 1)
alz = b, i=0,...,n,
where the functiongy, ..., f,, are convex and the equality constraints are linear. We

will in the following sections try to identify some estimaiti problems that can be cast as
convex optimization problems.

3 Notation and Background

Maximum a posteriori (MAP) estimation (Jazwinski, 1970gtsout finding an estima-
tor of a stochastic variable that maximizes the conditional densityz|y), given the
observatiory (y € R™ andz € R"=). Thus, the MAP problem is

max log(p(2[y)). 2

In the sequel, the measurement vectgriom time0 to time¢ will be denotedy,.;, and
similarly zq.; denotes all unknowns including the initial values. The apmrzi(” extracts
the jth element from the vector;.

The assumptions commonly used in the literature are thaiéiments in the vectors
are spatially and temporally independent (white noise)@adssian distributed. We will
insist on the independence assumption, but not on the assumgbd Gaussian densities,
giving us the following form ofog(p(z)) (suppressing the dependenceydn

i=0 1=0

Depending on the distribution, the objective function in¢&n be explicitly written as in
Table 1, see also Boyd and Vandenberghe (2001).

4 Convex Optimization Estimation
In this section we will discuss the estimation problem in pinesence of constraints. In

Table 1 the objective functions are given for several logeawé densities. Constraints
arise in the derivation of some of these probability derfsitictions (PDF), but constraints

1A function f : R™ — R is log-concavaf f(x) > 0 for all = in the domain off, andlog(f) is a concave
function (Boyd and Vandenberghe, 2001).
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Table 1: Objective functions in (1) for different normalized (zeraceam and unit
covariance) probability density functions.

PDF Obijective function Extra constraints
Gaussian  >._, ||zl

Exponential 30 (37 27 —1 2 >0
Laplacian  37i_ 3272, [+

Uniform constant —V3<2<V3

also arise from prior information of some kind, e.g., a maagdumption. This will be
discussed in Section 6.

Assume we want to estimate”, 27)7, wherez has a certain known distribution,
and thatr andz are related through the constraints

A ("j) =0, 4)

If we now want to use (2) we are faced with the problem of findimgjoint distribution
of z andz, which can be quite tedious.

Problem 1 (Convex optimization estimation)

Assume thap(z) is a known log-concave probability density function. Thtérge MAP-
estimate fofx™, 2*)T, wherex andz are related via (4) is given by

max log(p-(2))
st. A (:) =b. ®)

Remark: Any linear equalities and convex inequalities may be addékis formulation,
and standard software applies.

This approach to estimation is presented in Boyd and Varetghke (2001). The
standard estimation problem is to interpgeas the parameters conditioned on the mea-
surements|y, and there is just a nuisance parameter. The standard approach, eaot oft
written explicitly, is to marginalize the nuisance paraensto get

p(zly) = / p(zly, 2)p(ely) dz, (©)

where the constraints are used explicitly. This works fina lange of applications, and
the solution most often has a quite simple form. In the gdmase, we can formulate the
problem below.

5 Linear Regression Example

As an example of estimation, consider a linear regressiobl@m in matrix form
Y =070+ E. 7)
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InterpretE «— z as a Gaussian nuisance parameter with variarficéhe regression pa-
rameter) — x as the parameter and ® < y as the observations. The well-known result
from marginalization is that

0 e N ((@27) @Y, 0 (20T) ). (8)
Alternatively, we can pose the problem as

max  log(pe(E))

)

0 9)
st (@7 1) <E> v,
If this regression model happens to be an ARX model of a tearfgfiction
) Zl b(l)efiwl
Wy = = 10
G(e ) 1+ Zl a)e—iwl’ ( )

in system identification, we uge= (a®, 7). Now, we can simply add constraints such
as bounded DC gaifh < G(0) < U, or more generally, any lower and upper bound on
the transfer function

El b(l)e—iwl
L(w) < W <U(w), (11)

which is easily rewritten in the standard form. Similarlgyaother interval for any other
frequency of the transfer function can be bounded.

6 Convex Optimization Filtering

In Section 4 we talked about constraints in general. We withis section discuss a spe-
cial type of constraints, namely the ones that appear inritsg the dynamic behavior

of a model. In order to obtain convex problems we will usedimaodels of the dynamics.

The following model

E$t+1 = A{Et + B’LUt + K€t7 (12a.)
yi = Cay + Dey, (12b)

together with a density for the initial state, andp., (e;), pw, (w;) will constitute our
model. WithE = I, K = 0 we have the standard state-space model, and &ith I,
B =0, D = I we have the so calleidnovation form If the E-matrix in (12a) is invertible
we can rewrite the equation in a state-space model. Othemashave what is commonly
referred to as @escriptor mode(Luenberger, 1977).

To put state filtering in the general estimation form as inbR¥m 1, let

T
Z:(xOT w(:f:tfl egt) ) (13)
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and interpretr asxy.+|y1... To rewrite the conditional density more explicitly, use th
independence assumption and (3), which gives

t—1 t

Log(p(0, wo.t—1, €0:1)) = 108 (pay (20)) + 3 108 (pu, () + 3 log(pe, (e:)). (14)
=0 1=0

Using Bayes’ theoremp(z|y) = p(y|z)p(z)/p(y) and the fact that

t—1

p(at) = pay (z0) [ [ Pus, (i), (15a)
1=0
t
p(yelw:) = [ [ pe: (ed), (15b)
=0

we obtain the following objective function

t t—1
(a0, wort—1, €0:t) = | [ pe (€)pay (o) [ [ P, (wi)- (16)
=0 =0

Conditioned ore in (13), the states in (12) are uniquely defined by a detestinmap-
ping z = f(z), which implies thap(z|z) = f(z) contains nothing stochastic. That is,
the MAP-estimate of: andz are simply related by A7 = f(2MAP). Similarly, the
joint MAP-estimatez, z in the convex optimization formulation is given by maxinmgi
p(z), sincep(z, z) = p(x|z)p(z) = f(z)p(z) by Bayes’ theorem. Hence, we have now
justified the following general convex filtering problem.

Problem 2 (Convex optimization filtering)

Assume that the probability density functiops,(xo), pw,(w;), andp.,(e;) are log-
concave. In the presence of constraints in terms of a dynamigel (12) the MAP-
estimate is the solutioiy, = x, to the following problem

t—1 t

max  log(pz, (20)) + Y _ log(puw, (w:)) + Y _ log(pe, (€:))

Z0:t,%

=0 =0
st.  Exiyn = Awxi+ Bw+ Kie;,  i=0,...,t—1,
yi = Cizi+ Die, i=0,...,t

Remark: Any linear equalities and convex inequalities may be addeldis formulation,
and standard software applies.

As is evident from Problem 2 we see that we are free to userdiftedensities for
the different disturbances,, (z¢), pw, (w;), andpe, (e;). It is here also worth noting that
the recursive solution to Problem 2 under the assumptiorGanfssian densities and a
nonsingularE-matrix is the celebrated Kalman filter. This has been knoamaflong
time, see, e.g., Sorenson (1970), Kailath (1974) for nistohical accounts of this fact,
and for a proof see Rao (2000). It is also worthwhile notinat tRroblem 2 under the
assumption of Gaussian disturbances is a weighted leaates problem. To see this
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combine 2 and the Gaussian case in Table 1, where the weightbainverse of the

covariance matrices. This provides a deterministic imeggtion of the problem that the
Kalman filter solves. For more on the similarities and déferes between deterministic
and stochastic filtering, see, e.g., Kailath et al. (2000)e a0 see that if we solve
Problem 2 we will not only obtain the filtered estimatg,, but also all the smoothed
estimatesg;;,7 =0,...,t — 1.

So why should we solve the estimation problem via 2, whichates more compu-
tations, instead of via the Kalman filter? There are two reas®he first reason is that we
can handle all log-concave density functions, not just ta@sSian. The second reason
is that we can add any prior information, in convex form, tolgem 2. That is we can
add linear equality constraints and convex inequality taings, and still find the optimal
estimate. We will see an illustration of this in the examplé¢hie subsequent section.

7 HMM Example

There are mainly two filtering problems, where there existdidimensional recursive
optimal filters, and in particular a finite-dimensional MABtimator. One is, as already
mentioned, linear state-space models with Gaussian nidise= the Kalman filter is op-
timal in ML, MAP and minimum variance senses. For non-Garssioises, the Kalman
filter computes the linear state estimate with minimum varé but it is no longer the
MAP or ML estimator.

The other case isidden Markov model§HMM). Interestingly, it has been pointed
out (Andersson, 2002) that the HMM can be written as a sfg@eesmodel. That is, the
Kalman filter computes the best possible linear estimatb@Markov state. This fact
makes it possible to compare conceptually different apgres on the same example!

A hidden Markov model is defined by a discrete variable (1,2,...,n) with a
known transition probability matrid, whereA*7) = Pr(¢, = i|¢,_, = j), thatis, given
that¢ = j at timet — 1, the probability that = i at timet is A(+7). We will assume an
observation process € (1,2,...,m), where P(v = i|¢ = j) = C(), The filter for
computing the a posteriori probabilities can be expressetarecursion

DY 79, A C )
SISO

The MAP-estimate ii} = argmax wt(i). Now, the HMM can be written as the state-

7D = p(g =) (17a)

space model
Ti41 = AIt + We, (183)
yr = Cxy + ey, (18b)
Whel’Exti) =Pr(& =) andygi) = Pr(v, = 4). This is the state-space form (12) with

B =D = F = 1,K = 0) where the disturbances are zero-mean white noises, and the
stationary covariance matrices can be shown to be

Q = Cov{w,;} = diag(r) — Adiag(m)AT, (19a)
R = Cov{e;} = diag(Cr) — Cdiag(m)C7, (19b)
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wherer is the stationary solution to (in vector form)
= tlim Atm, where  my > 0. (20)

Since the states we are estimating in a HMM are probabilities we have the foilm
prior information on the states

2
S e =1, and 2 >0, i=12 (21)
i=1

In the standard Kalman filter it is impossible to incorportitis prior information about
the states, however in Problem 2 it is straightforward. Weneiw examine four different
filters using an increasing amount of prior information {8 we have approximated,
ande; in (18) as Gaussian with zero-mean and covariances (19)):

1. The Kalman filter.
2. The convex optimization filter with constraidt, xgi) = 1. This case can al-

ternatively be computed by the Kalman filter usifly = pg G i) and any

> mé’) = 1, or by using the fictitious measuremept = (1,1,...,1)zp = 1
with zero measurement noise. Note, however, that the Rezgtation will be sin-
gular here, which may imply certain numerical difficultied.more theoretically
sound alternative is given in Andersson (2002).

3. The convex optimization filter with constraint (21).

4. The optimal filter (17).

Table 2: RMSE values for the different filters.

1. Kalman filter 0.585
2. 2withzy + 20 =1 0.573
3. 2withz; + 29 =1andz >0 | 0.566
4. Optimal filter 0.403

The numerical example is taken from Andersson (2002), where

0.9 0.1
A_0_<m_09' (22)

In Table 2, the root mean square error (RMSE) is given fordliear cases and in Fig-
ure 1 the states are shown. From this table it is obvious teatam obtain better estimates
by using more information in this case. Of course, the comimization filters cannot
compare to the performance of the optimal filter. Howeves,hint is to show the flex-
ibility of the approach, and the problem of consideration ba generalized with more
constraints or a more complicated measurement relatieh, that the optimal filter does
no longer exist.
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Figure 1: The true state is marked by, and the measured states By The
dashed/solid line is the estimate from filter 3, respective 4

8 Conclusion

We have formulated the state estimation problem in a congérmiation framework. In
this way, well-known numerical efficient algorithms can ts=d to compute the MAP-
estimate of the state vector, without any problems withllotiaima. Compared to the
Kalman filter, the advantage is that any log-concave noissitles can be used and any
linear equality or convex inequality constraints may bduded, while the main draw-
back is that no recursive convex optimization algorithmasavailable, which makes the
approach computer intensive.
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Abstract

The potential use of the marginalized particle filter for inogar system iden-
tification is investigated. The particle filter itself offea general tool for es-
timating unknown parameters in nonlinear models of moéecatmplexity,
and the basic trick is to model the parameters as a random (s@alkalled
roughening noise) with decaying variance. We derive algors for sys-
tems which are linear in either the parameters or the sthtesgenerally
not in both. In these cases, marginalization applies toitteat part, which
firstly significantly widens the scope of the particle filterrhore complex
systems, and secondly decreases the variance in the liaeameters/states
for fixed filter complexity. This second property is illugid in an example
of a chaotic model. The particular case of freely paramegdrlinear state-
space models, common in subspace identification approaishieiinear in
states and parameters, and thus both cases above areda@sfeecan then
choose which one to marginalize.

Keywords: System identification, nonlinear estimation, recursivénes
tion, particle filters, Kalman filters, Bayesian estimationarginalization,
Rao-Blackwellization.
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1 Introduction

I N this contribution, the particle filter (Gordon et al., 19%¥ucet et al., 2001a) is
applied to some classical system identification problemsnd@, 1999) based on time-
varying parametric state-space models

21 = fi(ze,0) + wi, (1a)
Y = he(2e,0) + ey, (1b)

wherez € R"+ is the state variablé, € R is the parameter vector, apds R™v is the
output variable. The additive noise terms are assumed todepéendent and identically
distributed (i.i.d.).

First, we briefly review the problem formulation given in thecompanying paper
by Gustafsson and Hriljac (2003). By augmenting the statéovewvith the parameters,
x; = (2], 01T, and assuming a random walk parameter variation (of whictstemt
parameters is a special case), we get

Zip1\ [ fe(ze,00) wi + v
<9t+1> B < 0y - wl +vf )’ (22)
yr = he(2e,00) + ey, (2b)

where the noises are physical state naigestate roughening noisg¢, parameter random
walk for time-varying parameters! and parameter roughening noige The roughening
noise is instrumental in the particle filter to get good perfance, and is a second level
design parameter. For system identificatiofi, = 0 andv? has a variance decaying to
zero, which yields converging parameter estimates. Thicfefilter recursively approx-
imates the filter density functiop(z;|Y;), whereY; = {y;}!_,, and the approximation
converges to the true filter density when the number of gesgtiiends to infinity. The only
problem is that the practical limit for “infinity” depends dine dimension of:;, that is,
the sum of number of parametetsand states;;.

Now, if there is linear substructure available in the modied tan be exploited using
marginalization Conceptually, marginalization means that the lineaestate marginal-
ized out. We can then apply optimal filters for the linearestadind the particle filter is
only applied to the truly nonlinear states. In this way, theples in the patrticle filter
will live in a lower dimensional space. Hence, we will intuétly obtain more accurate
estimatedor a given number of samples, since we use the optimal fiftare. part of
the state vector. Alternatively, we can apply the partidterfion more complex models
These are the practical implications of our contribution.

We will in this contribution consider the two following spatcases of (1a):

1. The model is affine in the parameters and possibly norlinghe states,

f(zt,00) = f7 (20) + Ae(20)0r, (3a)
h(Zt7 075) = ht(Zt) + C’t(zt)ﬂt. (3b)

2. The model is affine in the states and possibly nonlinedrérparameters,

F(20,600) = f2(0:) + Ar(0)z, (4a)
h(ze,0c) = he(0) + C(6) 2. (4b)
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In the subsequent two sections we will introduce the parfitter and the marginalization
technique used for variance reduction. In Section 4 the tsag&ler consideration are in-
troduced and we discuss the connections to subspace idetitifi. Section 5 is devoted to
applying the marginalized patrticle filter to nonlinear gystidentification problem posed
by a chaotic system. Finally, the conclusions are given &tiGe 6.

2 Particle Filter

We here briefly present the theory and main algorithm. For gerimuitive presentation,
see the accompanying paper, Gustafsson and Hriljac (2003).

2.1 Recursive Bayesian Estimation

Consider systems that are described by the generic state-spodel (2). The optimal
Bayesian filter in this case is given below. For further dstatonsult Doucet et al.
(2001a), Jazwinski (1970).

Denote the observations at timéy Y; = {y;}!_,. The Bayesian solution to com-
pute the filter densityp(x;|Y;), of the state vector, given past observations, is given by
Jazwinski (1970)

p(@e1|Yy) = /P($t+1|xt)P($t|Y%)dxt7 (5a)
plarlti) = PR E) (5b)

For expressions op(x¢41|z;) andp(y;|x;) in (5) we use the known probability densities
Pe, (z) andpy, 1, (z), with all noises assumed independent,

P(Te1]Tt) = Do, (Te41 — [(@1)) (6a)
p(yelee) = pe, (ye — h(zy)). (6b)
2.2 Implementation

A numerical approximation to (5) is given by
N . .
plaelve) ~ Y76 (w - af?). ™
1=1

whered(-) is Dirac’s delta function. The particleéi) and the corresponding weights

Q‘t(i) represent a sampled version of the filter density;|Y:), and intuitively, the more
samples the better approximation (Doucet et al., 2001a).

2.3 Algorithm

The discussion in the previous section is summarized in kperithm below. This is
the algorithm presented by Gordon et al. (1993) under thesnBayesian bootstrap fil-
ter. The particle filter can be interpreted as a simulation-thasethod, i.e. N possible
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state trajectorieixti)}ﬁi1 are simulated. Based on the measurements each trajectory
is assigned a Weigh}'ﬁ” representing the probability of that trajectory being tberect
one.

Algorithm E.1 (Particle filter)

(i

1. Initialization: Fori = 1, ..., N, initialize the particlesr()ill ~ Py (T0)-
2. Measurement update: For= 1,..., N, evaluate the importance Weigh;g) =
i (i @)
p(yt|x£|t)71) and normallz@t( ) = ngt R
j=19t

3. Resample with replacemeNt particles according to

Pr (mg‘zz = mﬁ‘jt),l) = éjt(j). (8)
4. Time update: For=1,..., N, predict new particles according to

2y~ v (wesaplal])) (©)

5. Sett :=t + 1 and iterate from step.

3 Marginalization for Variance Reduction

Consider the case where the model is linear in some of thesstathen the Kalman
filter can be used to estimate the linear states, dendtednd the particle filter can be
used to estimate the nonlinear states, denofedlo separate the problem of estimating
p(z}, 27'Y;) into one linear and one nonlinear problem, Bayes’ theorensésl

pay, X['Y1) = p(at| X[, Yo)p(X['|Yy). (10)

Here the density(x!| X", Y;) is given by the Kalman filter and the particle filter is used
to estimatep(X*|Y;). This means that the particles live in a lower-dimensiopaice,
and it can indeed be proven (Doucet et al., 2001b, Nordluf@2pthat the variance
of any function of the state and parameter is decreased ainensonstant when using
marginalization for a given number of particles. This tegle of marginalizing out the
linear state is also referred to as Rao-Blackwellizatiooy&et et al., 2001b).

Let the entity we want to estimate for some inference fumcio ) be given by

1(9(20)) = By {90} = / o (we|Ys)da. (11)

Furthermore, let the estimate of (11) usiivgparticles and the standard particle filter be
denoted by} (g(z;)). When the marginalized particle filter is used the same egtia
denoted byl (g(z,;)). Then there is a central limit theorem stating that for lageve
have

Iy (g(xe) = N | 1(g(x0)), Rs(N)), (122)
I3 (g(0) = N (e | H(g(@1)), R (N)), (12b)
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where
Ry(N) = Ry (N). (13)

For details concerning this result, see, e.g., Doucet €999, 2001b), Nordlund (2002).

Asymptotically as the number of particles tend to infiniteith is nothing to gain in
using marginalization, since then the particle filter wilbpide a perfect description of
p(z}, 27|Y;). However, since we only can use a finite number of particlesdertainly
useful to marginalize and use the optimal filter, i.e., thénkan filter, for the linear states.
For details concerning the marginalized particle filteg,se.g., Chen and Liu (2000),
Doucet et al. (2001b), Nordlund (2002).

4 Models

In this section it will be shown how the particle filter can ksd to estimate the nonlinear
states and the Kalman filter to estimate the linear statésy tise marginalization tech-
nigue discussed above. All noise terms associated withrtearl states are here assumed
to be Gaussian, which means that the optimal estimator ®&lfitlear states/parameters
is given by the Kalman filter. For the details concerning trednikan filter equations,
the state transition densities, and the likelihood fumgion Algorithms E.2 and E.3 the
reader is referred to Nordlund (2002). First there will baészdssion on models that are
linear in the states and nonlinear in the parameters. Thidlasved by the reversed case,
i.e., linear in the parameters and nonlinear in the states.

4.1 State-Space Models Linear in the States

A state-space model linear in the states and possibly reatlin the parameters is written
as

Zep1 = f{(0r) + Ag(0r) 2 + wy, (14a)
01 =0, + 07, (14b)
yr = he(0;) + Ci(0) 2 + ey, (14c)

wherev! ~ N(0,Q!%) andwi ~ N(0,Q"*)L. Note that we can let the roughening
noisev; be zero when using marginalization. The filter density wélérbe separated
using Bayes’ theorem according to

P(2e, ©¢]Y:) = p(2|O¢, Yi)p(O4]Y2). (15)

Note that we here consider the parameter trajecirybut only the last state vectoy.
The first density on the right hand side in (15) is given by tranian filter, while the
second one is approximated by the particle filter. That isramelomize particles in the
parameter space according to our prior, and then eachlpdrtfectory will be associated
with one Kalman filter. The exact algorithm is given below.

1The noise on the nonlinear part, h&rﬁ can in fact have an arbitrary distribution. Similarly, Thef p
Pa, (Bo) does not have any restrictions, since it is only used in tiggtefilter, the same goes for, (et) if
C = 0in (14c). However, we leave these generalizations as a reamatkassume Gaussian distributions.
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Algorithm E.2 (Particle filter for linear states)

1. Initialization: Fori = 1,..., N, initialize the partlcle300| 1 ~ pe,(0o) and set
(a5 Py = {zo,Po}.

2. Particle filter measurement update: Eéf) = ct(at(;t 1
Fori=1,..., N, evaluate the importance weights

qt(i)=p(ytl@§i),Yt_1>= (ytIthC(Z a Py ()T +Rt),

(4)

and normalizg) = .
=1

) andhi” = n(6y],_)).

3. Resample with replacemeNt particles according t@;r (Ht‘ . aﬁft 1) = c’jt(j ),

4. Particle filter time update and Kalman filter
(a) Kalman filter measurement update: hé?f = ht(ﬁ( )) C( D= C’f(e( ))

|t/ t|t
A = A+ KO (w- - =) ), (162)
Pt(\t)*Ptﬁt) ) K()M()<K()) ’ (16b)
M =cPpf) (c“)) + R, (16c)
K =P (C(”) (Mf“)_l. (16d)
(b) Particle filter time update: For=1,..., N, predict new particles,

00~ p (00110.Y,) = N (6041161, Q7).
(c) Kalman filter time update: Let!" = A, (6" 1) andf; R () +1| ) )

A= AP+ 17O, (a7a)
T
@ _ 40 pl) (4W) w0,z
P, = AP (A7) + Q. (17b)

5. Sett :=t + 1 and iterate from step.

Comparing the algorithms E.1 and E.2 we see that the difte®are in the prediction
step, which now consists of a Kalman filter update staget(syb step4(a) and4(c))
besides the prediction of the nonlinear states.

In some cases the same Riccati recursion can be used foe gdhtticles, and hence
a lot of computations can be saved. This occurs when thearatti, andC; in (14) are

independent of;. In this casePt(‘t) = Py, foralli =1,..., N and hence the covariance

only has to be updated once for eachMore on this can be found in Gustafsson et al.
(2002).
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4.2 State-Space Models Linear in the Parameters

A state-space model that is linear in the parameters canittemas

zp1 = [ (1) + Au(z0)0 + wy, (18a)
Or41 = 0; + v}, (18b)
Yr = hi(zt) + Ci(2)0; + ey (18c)

In this case the filter density will be split the other way arducompared to the previous
section, i.e.,

P(Zs, 04|Y:) = p(0t] Zt, Yi)p(Z4|Y2). (19)

The last density is approximated by the particle filter, eliile first one can be solved by
a Kalman filter for a parameter estimation problem in a limegression framework. The
corresponding algorithm will thus be

Algorithm E.3 (Particle filter for linear parameters)

1. Initialization: Fori = 1,...,N, initialize the particles,z(()?l1 ~ ., (20) and set
{90‘ 10 0(‘1) 1} = {éOaPO}'

2. Particle filter measurement update: bét) = hf( N f 1) C() Ot( 2 f 1) For
1=1,..., N, evaluate the importance weights

qt(i) =p (yt|Zt(i)a Yiﬂ) =N (yt | hgi) + Ct(i)gt\t—la C( )Pt(ft 1(0( )) + Rt),

and normalizg™ = ¢;” / S| ¢

3. Resample with replacement particles according t@r ( 20 ) G,

et T Fet-1) T @

4. Particle filter time update and Kalman filter
(a) Kalman filter measurement update: hé’f? = hi(z EI t) ) C(” Ct(z(i)).

tlt
o)) =0, + K" (yt n —cell) 1) (20a)
Pt(\zt) = Pt(lt) 1 K(l) t(i) (Kt(i))Ty (20b)
]V[t(i) = C(l)Pt(\t 1 (C( ) + Ry, (20c)
KO =P (o) () (20d)
(b) Particle filter time update: Lei""") = f7 (= t(7+1\t) andA®) = A,( t+1\t) For

i=1,..., N, predict new partlcles

Zt(i)llt ~p (216l 27,72

=N (2o | 170 + AP0, AP P (AT + Q).
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(c) Kalman filter time update: Let”"™ = f7( f( +)1‘ 2 andA\) = A,(z t(l)u L)

@ _ p@) (4) A9

9t+1|t 9t|t +Ly ( Pei1lt ft 9t|t) (21a)
@ _ pl) O N@ (@)

P = Pt|t +Qy" - L (Lt ) ; (21b)
N = AP P ( A(z)) +Ov7, (21c)

A\ —1

L = pj) (4f >) (M) (21d)

5. Sett :=t + 1 and iterate from step.

The measurements used in the Kalman filter are thus the “domeasurementg; and
the predicted state trajectory.q,, i.e., the samples from the particle filter. Stéf)

in the current algorithm contains a measurement updateg tke prediction (since this
contains information about) from the particle filter, and a time update. An interesting
special case of the two different model types discussedealsowhen we consider “the
intersection” of the two types, i.e., a model that is bilingathe states:;; and in the
parametersg;.

A particular case of interest is a general state-space niod@iovation form

Zip1 = A(0y) 2 + K(0y)ey, (22a)
ye = C(01) 2 + e, (22b)

where the parameters enter linearlydn K, andC. The filter density will here be split
according to (19). One popular approach here is so callespaugle identification (Van
Overschee and De Moor, 1996). This class of algorithms lspafform very well and

provides consistent estimates. One limitation is thatfiaisd to give the density function
for the parameters, even in the Gaussian case, and thishiagsewhere the particle filter
can help. This case is mentioned to show the relation toicklssystem identification
problems.

Assume, to avoid ambiguities in the state coordinates, aarobr canonical form and
scalar output, wher€’ = (1,0,...0) and that all parameters id4 and K" are unknown.
Then, given the state trajectory and measurement, we hawe(#2) the linear regression
241 = Azt + K(y: — (1,0,...0)z). This regression problem has to be solved for each
partlclezt i=1,...,N.

In the case where there are more states to be estimated tfaamatars, i.e dim z; >
dim @ it is better to split the density(Z;, 6;|Y;) in (19) the other way around, i.e., as

in (15). This time, a Kalman filter estimating the statge$or each particle‘)t(” is needed.
In this way the dimension of the state estimated by the parfilter is kept as low as
possible. An example where this situation typically ocdars gray box identification
(Ljung, 1999).
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5 Chaos Example
The ideas presented in this paper will be illustrated udiegollowing chaotic model

Zip1 = (1 = z) 20 + wy, (23a)
Yt = 2t + ey, (23b)

wherez, is the state variabley is the measuremert,is the unknown parametaeu, is the
process noise, ang is the measurement noise. Both these noise densities assi@au
distributed. The aim is to recursively estimate both théestaand the parameté:. This
model is linear in the time-invariant parameteand nonlinear in the statg. This fits
our framework, according to Section 4.2 and hence Algorith@ican be applied. This
problem has also been studied in Gustafsson and Hriljac3[2@there the particle filter
was directly applied to the augmented state= (z;, 6;)”. Model (23) can be written in
the form (18), i.e.,

Zt41 = At (Zt)at + ’LUtZ -+ Uf, (248.)
Orir = 0y + 00, (24b)
yr = he(z) + ey, (24c)

where A;(z;) = (1 — z)2z andhy(z;) = 2. The two noises? ~ N (0, Q;**) and
v? ~ N(0, QV") are roughening noises. Furthermarg~ A (0, Ry).

In the simulations, two different particle filters were ustge standard particle filter,
Algorithm E.1, applied to the augmented state veatpand the marginalized particle
filter according to Algorithm E.3. The true value 6fis 3.92, and the initial guess is

-1 ~ N(3.83,0.04). The initial state iszo ~ N(0,1). We do not use any process

noise, however we have roughening noi€ds® = Q4% = 102, which is decreased at

each time step, according to Gustafsson and Hriljac (2008%. measurement noise has
varianceR, = 107, and we have use200 Monte Carlo simulations. In Figure 1 the
filtered estimates of are shown using these two algorithms 1&0, 1000, and 10000
particles respectively. In order to make the difference enapparent the Root Mean
Square Error (RMSE) is plotted in Figure 2 as a function ofrthmber of particles used
in the simulations. Note that the RMSE values are calculatad time 50. In that way
the transient effects are not included in the RMSE valuesoAting to (13) the estimates
should be better or the same when we use the marginalizadleditter. From Figure 2
we can see that this is indeed the case. It is only the estiofatee linear part) that

is improved, this is also consistent with the theory, seg.,, &lordlund (2002) for the
theoretical details. That this is true in the simulationspparent by Figure 2, from which
it is clear that the estimate of the linear part (top) cle&lgetter using the marginalized
particle filter. The estimate of the nonlinear parthas the same quality. If we could use
an infinite number of particles the results using the stathedad the marginalized particle
filter would have been the same, since then the particle filtedd be able to provide an
arbitrarily good estimate qf(z;|Y;). We can see indications of this fact in the top plot in
Figure 2, since the more particles that are used the closersimates get to each other.
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Figure 1: Estimates of) using the standard (dashed) and the marginalized (solid)
particle filters. The trué is shown using a solid line. Top plot 0 particles,
middle —1000 particles, bottom +0000 particles.
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Figure 2: RMSE values fol (top) andz; (bottom) as a function of the number of
particles used. Notice that a log-scale has been used indte and that a dashed
line has been used for the standard particle filter and a Bodidor the marginalized

particle filter.
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6 Conclusion

The potential use of particle filtering for identification @fknown parameters in non-
linear systems was explained in the accompanying papetatsasn and Hriljac (2003).
Here, we have proposed the use of marginalized particlesfilt®ore specifically, we
studied the cases where the model is either linear in thesssatd nonlinear in the param-
eters, or nonlinear in the states and linear in the parametdre algorithms were given
for these two cases. It is straightforward to give the atbamifor an arbitrary mix of lin-
ear and nonlinear states and parameters. The advantagegifiafiaation is that one can
apply the filter to larger problems with more states and patams, or that fewer particles
and thus less filter complexity is needed for a given perfoceakFinally an example was
given, which illustrates the improvement in estimationfpenance compared to using a
standard patrticle filter.
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Abstract

This paper is concerned with the parameter estimation daévely general
class of nonlinear dynamic systems. A Maximum Likelihood_|Mrame-
work is employed in the interests of statistical efficieranyd it is illustrated
how an Expectation Maximization (EM) algorithm may be usedampute
these ML estimates. An essential ingredient is the employmoiso-called
particle smoothing methods to compute required conditiexgectations via
a Monte Carlo approach. A simulation example demonstraesfficacy of
these techniques.

Keywords: Nonlinear systems, system identification, maximum likedit,
expectation maximisation algorithm, particle smoother.

1 Introduction

THE significance but difficulty of estimating parameterizasoof nonlinear system
classes is widely recognised (Ljung, 2003, Ljung and Vici2@05). This has led
to approaches that focus on specific system classes suchsasdbscribed by Volterra
kernel (Bendat, 1990), neural network (Narendra and Psaitiathy, 1990), nonlinear AR-
MAX (NARMAX) (Leontaritis and Billings, 1985), and Hammeesn — Wiener (Rangan
et al., 1995) structures.

185
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The paper here considers the estimation of a certain clagerdinear systems that
can be represented in state-space form whereby state arsdimaeent noise enter addi-
tively and the parameter dependence is affine. To estimiatadhnlinear model structure
parameterization, a Maximum Likelihood (ML) criterion Wile employed, principally in
recognition of the general statistical efficiency of suctapproach. Of course, the use of
an ML approach (for example, with regard to linear dynamistems) is common, and
it is customary to employ a gradient-based search techrigole as a damped Gauss —
Newton method to actually compute the estimates (Ljung919$&derstrom and Stoica,
1989). This requires the computation of a cost Jacobianiwtyjgically necessitates im-
plementing one filter, derived (in the linear case) from ania filter, for each parameter
that is to be estimated.

An alternative, recently explored in Gibson et al. (2005})He context of bilinear
systems is to employ the expectation maximisation algarifPempster et al., 1977)
for the computation of ML estimates. Unlike gradient-basedrch, which is applicable
to maximisation of any differentiable cost function, EM imeds are only applicable to
maximisation of likelihood functions. However, the diviaeof this specialization is that
they do not require computation of gradients, and are wetigaised as being particularly
robust against attraction to local minima (Gibson and Nasn&005).

Given these recommendations, this paper develops and démats an EM-based ap-
proach to nonlinear system identification. This will reguine computation of smoothed
state estimates that, in the linear case, could be foundhloglatd linear smoothing meth-
ods (Gibson et al., 2005). In the fairly general nonlineartert considered in this work
we propose a particle-based approach whereby approxinsaticthe required smoothed
state estimates are approximated by Monte Carlo basedieaipiverages (Doucet et al.,
2001).

It is important to acknowledge that there has been previauk welated to this ap-
proach. In Andrieu et al. (2004), the possibility of incorgting the parameters into the
state vector and employing partidi#tering methods was discussed, but dismissed as un-
tenable. Balancing this, the contributions Kitagawa ()998hon and Gustafsson (2003)
provide evidence to question this conclusion.

Additionally, the work Doucet and Tatli(2003), Andrieu et al. (2004) has consid-
ered employing particle filters to compute the Jacobiangsssry for a gradient-based
approach. Finally, the contribution Andrieu et al. (20045 talso considered using the
EM algorithm in conjunction with particle-based methodowéver, by employing im-
proved particle smoothing methods and by more careful nizadémplementation of a
key “maximisation” step, the present work is able to repigmiicantly improved perfor-
mance.

2 Problem Formulation

This paper is concerned with the following model class, Whgcaffinely parameterized
in the (unknown) parameter € R™?:

Tt _ f(mhuat) f(l’,u,t) w
< yfl> - (hlxt,ui,t)) v (hi@l«it)) * <> ' @
—— ——

Zt [o Bt nt
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Heref1, f2, h1 andhs are arbitrary (possibly time-varying) nonlinear functon, € R"

is the underlying system state; € R™, y. € RP are respectively (observed) multi-
dimensional inputs and outputs. The initial stateand noise terms, ande, are assumed
to be realizations from Gaussian stochastic processes bive

x1 ~N(u, Pr), ne~N(0,1I). 2)

In light of this, the model structure (1) is completely déised by the parameter vectér
defined as

GTé(ﬁT vec{Il}" vec{P;}" MT). (3)

With regard to this model structure, this paper will be sptIncerned with a parameter
estimate) of 0 derived via the ML criterion

o~

0(Yn) = argénax po(Yn), 4)

whereYy = {y1,...,yn} is anN point record of observed measurements gsid’y)
is then the joint probability density function &ty implied by the model structure (1) and
a parameter value.

In the linear, time invariant and Gaussian case, a (posstbldy state) Kalman Fil-
ter can be used to compute this cost (and required Jacolmagsadient-based search).
Here, algorithms are developed to extend this principlehtorhore general nonlinear
model class (1). In doing so, it is recognized that, esplgcialthe nonlinear case, it
is generally hard to compute (4) since it may well represembraconvex optimization
problem. To address this issue, a central contributionisfwlork is the employment of
the EM algorithm.

3 Expectation Maximization Algorithm

The Expectation Maximization (EM) algorithm introduced Drempster et al. (1977)

presents a non gradient-based approach for iterativeirdbgy maximum likelihood es-

timates (4). Within areas of applied statistics, it is widetcognized for its robustness.
The key idea underlying it is the consideration of an extams$d (4); viz.

~

0(Xn,YN) = argénax po(Xn,YN). (5)

Here, an extra data sé&fy, commonly referred to as thecomplete datar the missing
datahas been introduced. Its choice is an essential designblariehich if possible
should be made so that the solution of (5) is straightforward

The link between the two problems (4) and (5) is provided leydéfinition of condi-
tional probability which implies

logpg(Yn) = log pe(Xn, Yn) —logpe(Xn|YnN). (6)
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Taking expectations of both sides of this equation whichcaraitional on the observa-
tionsY,y and with respect to underlying density specifiedbtyeing set at a valug = ¢’
will leave the left hand side unaltered, and hence deliver
L(0) = Eg {logpe(Xn, YN)|[YN} — Eg {log pe(Xn|YN)|[Yn } - (7
Q(6,6) V(6,6")

Since the logarithm is concave, Jensen’s inequality ested thad’(9,0") < V(0',0")
and therefore choosingthat satisfie(6,6’) > Q(¢#’,0") implies thatL(9) > L(6").
That is, values ofl that increas&(6, 6’) beyond its value &’ also increase the underly-
ing log-likelihood function of interest. This implies thexectation Maximization (EM)
algorithm.

Algorithm F.1 (Expectation maximization (EM))

Given an initial estimatéy, iterate the following until convergence.
E: Q(0,0r) = Eg, {logpo(Xn,YN)|YN}
M: Op+1 = arg;nax Q(0,064)

4 EM for Parameter Estimation

In agreement with previous applications of EM for paramestimation (see discussion
in Gibson et al. (2005)) we define the missing dita to equal the state sequenke; £
{z1,...,xn41}. With this choice in place, the next step in applying the Elgoaithm
involves computation 0@ (6, 6;.) which may be achieved via the following Lemma.

Lemma F.1
With regard to syster(lL) and the above choice for missing datay;, the function@ can
be expressed as

—29(0,0x) = NlogdetII + Tr (II"'®(9)) + logdet P, + Tr (P} "¥(p)) +¢, (8)

wherec is a constant and with, = z, — 3,

V() £ Eg, {(z1 — p) (@1 — )" [Yn}, (9a)
N
W) £ By, {(l — )l — ar9) Y} (9b)

An essential point is that both and ¥ require the computation of expectations condi-
tional onYy. In the case of linear systems this can be achieved by enmg@yiinear
smoother (often called a Kalman Smoother). In the nonlirmese considered in this
paper, this approach is not suitable, and alternate mearfoputing smoothed state
estimates are required. This topic is addressed in Section 5

In the meantime, supposing that it is possible to computeetie@pectations, then the
second step of the EM algorithm involves maximizatior@ivith respect t@, which is
the subject of the following Lemma.



5 Monte Carlo Based Smoothing 189

LemmaF.2
The functionQ(0, 0, ) is maximized ovefl by making the following choices

9 =x7T, (10a)
= Eq, {z1]Yn}, (10b)
II=o(27'T), (10c)
Py =¥ (Eg, {21]Yn}), (10d)

where as beforg £ z, — 3, and

N

S 2 Eo, {af u|Yn}, (10e)
t=1
N

L2 By, {of L[YN}. (10f)
t=1

With these definitions in place, the EM algorithm for parasnedstimation can be ex-
pressed in more detail as follows.

Algorithm F.2 (Expectation maximization for parameter estimation)

Given an initial parameter vectdk, iterate the following steps until convergence is
achieved.

1. Calculates, T andEy, {x1|Yn} thend, andpy,.
2. Calculateb (V) and¥ () thenll), andP;, .

5 Monte Carlo Based Smoothing

In this section we examine numerical solutions of nonlirsaoothing problems that em-
ploy recursive Monte Carlo techniques. In relation to titi$s worth noting that while
very significant effort has been directed towards nonlirfé@ring via this sort of ap-
proach (particle filters), very little has been done wherihes to solving the nonlinear
smoothing problem. See, e.g., Godsill et al. (2004), Kineegfl 996), Tanizaki (2001) for
some work in this direction.

After careful evaluation, this paper will employ the metbatkveloped in Tanizaki
(2001), where theey distinguishing ideaelative to the other work mentioned above is
the consideration of propagating approximations(@f; 1, z:|Yx) rather tham(z:|Yy).

In order to explain the ideas, the paper begins by addresisengeneral problem of ran-
dom number generation with respect to a given, possibly ¢ioatpd distribution.

5.1 Random Sampling

Consider the problem of generating random numbers diséribaiccording to somgarget
densityt(x) which potentially is rather complex. One way of doing thisulebbe to em-
ploy an alternate density that is simple to draw from, @), referred to as theampling
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density and then calculate the probability that the sample wasdhdaenerated from the
target density. That is, a sampté’) ~ s(z) is drawn, and then the following ratio is
calculated

a (m(w) . zizig (11)

which indicates how probable it is that?) is in fact generated from the target density
t(x).

The probability of accepting(”) as a sample from(x) is referred to as thaccep-
tance probabilityand typically it is computed via considerationafz(¥)). This is the
case, for example, for all of the so-called “acceptance ecti&n sampling”, “impor-
tance sampling/resampling” and “Metropolis — Hastingepehdence sampling” meth-
ods (Tanizaki, 2001). Here, as will be detailed presenthpartance resampling will be
employed.

5.2 Monte Carlo Based Filtering

In the case of filtering, the target density referred to alli@mes(z;) = p(x|Y;), and
it is then necessary to also choose an appropriate samm@imgjtyls( - ) and acceptance
probability. This is in fact quite simple, since from Bayakeorem and the Markov

property

pelwe)p(@e|Ye-1)
p(ye|Yi-1)

which suggests, sinaéz) « a(x)s(z), the following choices
p(@e|Y1) o< plyelee) plae] Y1) - (13)
—_— =
(@) a(wt) s(ze)

P($t|Yt) ($t|yt,Yt 1)

P(ye|we)p(e| Y1), (12)

Via the principle of importance resampling the acceptamobabilities, {a(V}M ,, are
calculated according to

o) (le$,)
alx T
at = ]\/I< tt_(l‘? - J\]; & t‘t_(l') ’ (14)
> =@ (xtftq) > =P (yt‘mt\]tﬂ)
i)

Whel’Emilt_l ~ p(z4]Y;—1). That s, the acceptance probabilitié® depend upon com-
putation ofp(y;|x,,—1). Via the assumption of additive noisg the model (1) makes this
straightforward to obtain.

The algorithm then proceeds by obtaining samples fpém|Y;) by resampling the

partlcles{xtlt Y, fromthe sampling density(x+|Y:—1), according to the correspond-

ing acceptance probabllltle{a;( . If this procedure is recursively repeated over time
the following approximation

M:

1
p(x|Yy) =~ (:Lt - Lifz) (15)

=1
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is obtained, and we have in fact derived theticle filter algorithm, which is given in
Algorithm F.3. It was first introduced in Gordon et al. (1993)

Algorithm F.3 (Patrticle filter)

1. Initialize the part/cles{x0| U~ pag (20). Sett := 0.

2. Calculate importance weights\” }M | according to
o =p (wlel) ) (16)

and normalizq?t(i) () WM =1 28
3. ResampleV particles, with replacement, according to

Pr(af) =l ) =, (17)
4. Fori =1,..., M, predict new particles according to
xiﬁl‘t ~p (xt+1|t‘x§\i2> . (18)

5. Sett :=t + 1 and iterate from step.

5.3 Particle Smoother

In solving the smoothing problem the target density becomes

tHxeg1, ) = p(Teg1, 6| YN). (19)

Similarly to what was discussed in the previous section we bafind a suitable sampling
density and the corresponding acceptance probabilitisslt@ the smoothing problem.
Again, using Bayes’ theorem we have

p(wt+17 $t|YN) = p($t|$t+17 YN)P($t+1 |YN)» (20)
where

P(Yeq1:n|2e, Teg1, Yo)p(e| g1, Ye)
p(Yir1:n|2ey1, V)

p(xt|Tiq1, YN) = p(@e|Teg1, Y, Yigr:n) =

P(e1|ze)p(ze]Ye)
= p(z¢|2iy1, Ys) = . 21
plrlwe, 1) p(ri11]Ye) 1)
Inserting (21) into (20) gives
_P($t+1|$t) .
(@i, 2| YN) = NEN A p(@eYe)p(zi41|Yn)- (22)

t(wpr1,mt) — s(Teq1,2t)
a(@i41,7e)
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At time ¢ the sampling density can be used to generate samples. Intordied the
acceptance probabilitigz "}, we have to calculate

p(Te1|ze)

p(xea|Ys)’ (@3)

a(Tiq1,7t) =

wherep(z;11]z;) is calculated using the model (1), ap@r;1]Y;) can be approximated
according to

M
1 .
para¥) = [ plavaledplad¥de = 3 1op (sealel)).

Jj=1

where (15) has been used. The particles can now be resanymediing to the nor-
malized acceptance probab|lltle{a(Z M| to generate samples frop(z;, 1, z|Yy).
The above discussion can be summarlzed in the followingridigo (first introduced
in Tanizaki (2001)),

Algorithm F.4 (Particle smoother)

1. Run the partlcle filter (Algorithm F.3) and store the fﬂérpartlcles{rilf) M,
t=1,...,N. Sett := N.

2. Initialize the smoothed particles and importance weidgdittime N according to
{leN gi)IN’qJ(\lle =1/M}M, andset :=t — 1.

3. Calculate W€Ight$qt| N}M , according to

()
i p mt+1\N|xt|t)
2j=1p (It+1|N|xt|t)
and normallzqle = qle/ZJ 1 qle
4. Resample the smoothed particles according to
() @\ _ (.. @\ _ ~()
Pr ((xt+1\N’xﬂN> = (th&-1|N7 t|jf)) = qt|JN' (25)

5. Sett :=t — 1 and iterate from step.

5.4 Using a Particle Smoother with EM

In Lemmas F.1 and F.2 we require the computation of variops&ations that are condi-
tional on the datd’y. In the following lemma we provide explicit formulations thfese
expectations in terms of smoothed particles as calculatédgiorithm F.4.
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LemmaF.3
Using the smoothed state particles as calculated in Algarit.4 we have the following
approximations

Eo, {alay|Vy} ~ Mf:( )T( ) (26a)
Eo, {aTl[Yn} ~ — Z(a”)T( ) (26b)

X
Eg, {z1|Yn} =~ Z (26¢)

Similarly,
Eo, {(@1 = )= |YN}~MAZ( “u) () (2ea)

. . . T
B, {(ls — cu)(ls — 0u®)T [V } ~ (zﬁ” o 19) (zf)faﬁ’)ﬁ) . (26e)

M

i Mg )

wherel!” anda!” are simply the respective functions evaluated atithparticle xiﬁv

6 Simulation Example

This section profiles the performance of the EM-based etitmanethods just presented
by way of considering the following nonlinear system.

Tip1 = ax, + b1 Lt 5 + ccos(1.2t) + wy, (273)
Tt
Y = da? + ey, (27b)

wherea = 0.5, b = 25, ¢ = 8, d = 0.05, w; ~ N(0,1072) ande; ~ N'(0,1072). In
terms of the structure in (1) we make the following assoorei

s cos(1.2
a, = (-rt T+a? cos(1.2t) 02> ’ (28a)
0 0 0 a3
Br =0, (28b)
=@ b ¢ d). (28c)

This system has been extensively studied in the contextadéestimation (Gordon et al.,
1993, Kitagawa, 1996, 1998, Doucet et al., 2000, Godsill.e2a04). However, it has
not been the subject of great attention from gaameteestimation viewpoint of this
paper.

As is well recognized (Ljung, 2003), a particularly impartaspect of nonlinear sys-
tem estimation is the difficulty of finding appropriate initparameter values with which
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to initialize an iterative search. To address this issud,iarso doing illustrate the inher-
ent robustness of the EM-based approach presented heleyfahe200 simulation runs
was initialized at a randomly chosen initial estimatewhich itself was formed using
perturbations from the true values.

Using N = 1000 data samples, and despite only using a very modest number of
M = 50 particles in the smoothing calculations, the empiricainestion results shown
in Figure 1 are encouraging. In particular, note that despiiite widely varying initial-

(=)
o
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Parameter a
Parameter b

d
n

5
200 400 600 800 1000 200 400 600 800 1000

0.06 Sl

Parameter ¢
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e
=]
B

0.02
200 400 600 800 1000 200 400 600 800 1000

Figure 1: Parameter estimates for each of #® simulation runs as they evolve
over 1000 iterations of the EM method. The true parameter valuesiare 0.5,
b= 25,c =8 andd = 0.05.

izations, convergence to the true parameters occurred & cases. Further simulations

were conducted with/ = 100 and higher number of particles, but without any sig-
nificant performance benefit. This suggests a robustnedsedEM-based approach to

inaccuracies in computation in the E-step.

In relation to this, note that the method requi@gN M ?) floating point operations
per iteration. The computational load is sensitive to theber of particles chosen, but
scales well with increasing observed data length. To peowideference point for these
scaling comments, each simulation required to present thietd/iCarlo presentation in
Figure 1 completed withi minutes on a Pentium IV running 3GHz.

By way of comparison, alternative methods, including Newtased gradient search
were also tried, but proved very unsuccessful. To explazee¢hson behind this, and also
to emphasize the surprising robustness to initial stanioigt just presented, consider
the simpler estimation problem which involves estimatingya) = (a, b)” with c andd
fixed to their true values, and with the additive noigseande, set to zero. The former is
done so that the cost surface implied by the likelihood cavisgalized, and the latter is
considered so that attention is focused solely on how thémear dynamics affects the
difficulty of the estimation problem.
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The resulting mean square error (the dominating comporfehedikelihood compu-
tation) cost surface is shown in Figure 2. Clearly, it is vEayfrom convex. Note that
the very irregular cost function, even if due to finite premiseffects and not intrinsic, is

MSE cost

Figure 2: Surface plot of the MSE versus parameteendb only.

still an obstacle to gradient based methods but not, as willlsstrated, to an EM-based
approach. The perhaps surprising complexity from such alsiexample underlines the
particular difficulties of nonlinear system estimation.

The MSE cost function associated with the present problertagts quite a few local
minima. It is therefore not surprising that gradient-basearch was found to perform so
poorly on the preceding example. To emphasize this, Figsteo@/s a contour plot of the
the MSE cost function. Clearly, and as suggested in the pus\iigure, there seems to
be a large number of local minima, any of which may attractiignat-based approaches.
Indeed, the black lines shown in that diagram are Gauss —dvegradient-based search
trajectories for25 different starting points, and all become locked in locahimia. By
way of contrast, Figure 4 shows the estimate trajectoriéssE M-based algorithm of this
paper. Note that from the same starting points, all casegecga to the global maximum.

7 Conclusion

This paper has explored an approach to nonlinear dynamierayasstimation whose key

distinguishing features include the use of EM-based mettasdopposed to more tradi-
tional gradient-based search, a fairly general model stracthe use of Monte Carlo

based particle methods for the computation of required $headlostate estimates, and a
capacity for simply encompassing multivariable problems.

By way of example, the resulting approach has been demdbedtiabe (perhaps) sur-
prisingly robust to attraction to local minima, even in cagéere the underlying cost is
extremely “irregular” and non-convex. Further work is reegd to understand the mecha-
nisms underlying this robustness, and to test the ideas oa substantial problem sizes.
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Figure 3: Contour plot of MSE cost for the case of identifying parameteand

b only, together with Gauss — Newton gradient-based seartoade trajectories
overlaid. Note that, presumably due to the very large nurobéwcal minima, no
trajectories converge to the global minimum.
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Figure 4: Same as previous plot, but with EM-based estimate trajestdor 25
different starting points. Note that all converge to thebglaminimum.
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Abstract

In augmented reality, the position and orientation of a canmeust be esti-
mated very accurately. This paper proposes a filtering a@mbr,csimilar to
integrated navigation in aircraft, which is based on irieasurements as
primary sensor on which dead-reckoning can be based, atutdésan the
image as supporting information to stabilize the deaderitlg. The image
features are considered to be sensor signals in a Kalmarfifdtaework.

Keywords: Sensor fusion, Kalman filter, inertial navigation, augneelnte-
ality, computer vision, feature extraction.

1 Introduction

THE idea in augmented realityAR) is to add synthetic background and objects to
streaming video images in real-time, while allowing the eamto move. One of
the major technical challenges to achieve this is to detegrtiie camera’s position and
orientation in 3D with very high accuracy and low latencypiBal applications of such a
system includes studio recordings with synthetic scenbsr(ias et al., 1997) and virtual
reconstruction of historical buildings (Vlahakis et aD02).

Prior work in this recent research area focuses on imagepsaoty algorithms, where
the streaming image is the primary information source (Bavj 2003). This requires
quite a lot of features in each image, and has lead to a dewelopof markerbased
systems, where bar-coded markers are installed in theosflidbmas et al., 1997). Later
work has tried to avoid artificial markers, by including athormation like accelerations
and angular velocities from inertial sensors (You et al99,%ou and Neumann, 2001).

When it comes to using vision in AR two fundamentally differetnategies have been
used:

201
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e The environment is prepared in advance using artificial erakwhich impose a
significant additional cost to these systems. Examples®kthd of system can be
found in Caarls et al. (2003), Yokokohiji et al. (2000), Thanedal. (1997).

e Markerless systems, which use natural features occumitiggireal scene as mark-
ers. The approach presented in this paper will utilize thé&tasgy. The need for this
kind of systems is motivated in Azuma et al. (1999). A commbaracteristic of
these systems is that they use some kind of model of the s&ame attempts to
create such a system are given in You et al. (1999), Klein amdgnond (2003).

In this contribution, the reverse approach is applied. Aattinl measurement unit (IMU)
with three degrees of freedom accelerometers and gyrosdspgsed as the primary
source of information. Dead-reckoning gives a position aridntation relative to the
initial camera location. This estimate will quite soon tafvay and become completely
useless, unless it is supported with secondary sensorshwhihis case are provided by
the images.

Our approach mimics the navigation systems in aircraft Nord, 2002, Schon et al.,
2005). There are obviously many similarities of aircrafvigation and our approach
to augmented reality: the aircraft and camera have the statee \@ctor, navigation is
based on dead-reckoning IMU sensor signals, and both hde=dopported by secondary
information. For aircraft, infrastructure based positidrom instrument landing systems
or satellite positioning systems can be used. In militargliaptions terrain navigation
systems can be employed (Bergman et al., 1999). In this pfmagures in the image are
used as secondary sensors in two different ways:

e Feature displacement: An observed movement of a distintiife in the image can
be directly related to a movement in the camera, which wilis@wvn to correspond
to a one-dimensional measurement equation for each fedisplacement.

e Recognition of known 3D-objects: Certain characteristiatfires in the scene are
stored in a scene model prior to filtering. When such a featugbserved in the
image, two degrees of freedom of the camera position canteenli@ed.

A possible third direction is to use the homography (Hartleg Zisserman, 2003). How-
ever, this is not elaborated on within this paper. This ides freviously been discussed,
see, e.g., Diel et al. (2005), Vidal et al. (2001).

By using the IMU as primary sensor, it is not necessary thabatiegrees of freedom
are present in the features in every image. This is the maiarddge in the approach of
fusing information from the inertial sensors with the infa@tion from the vision sensor.

2 Dynamic Motion Model

The dynamic state equations for the camera consist of a seintihear differential equa-
tions describing how the camera pose is related to the rgadiom the accelerometers
and the gyroscopes according to

(t) = f(x(t), u(t), t), )
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where the state vectar(t) consists of positiom, velocity v, (v = ¢;) and orientation
(represented using unit quaternion$) = q.y), i.e.,x = (c?, v?, q")T, where

Cx Uy ZO
1
cr=1|cy |, ve=|vy |, q= o | (2)
Cz Uz q
3

Regarding the notatior; is used to describe the position of the camera center (point
C in Figure 1) expressed in thB-system. Furthermore, the accelerometgr,and the
gyroscopew,, readings are considered to be input variablese.,

. (j;;) . 3)

In the subsequent sections the relevant coordinate systedefined and the nonlinear
function f(-) in (1) will be derived.

2.1 Geometry and Co-ordinate Systems
The following three coordinate systems are used:

1. Fixed (F): This is considered to be an inertial system (the rotatiorhefdarth is
ignored), which is fixed to earth. The navigation will be penfied in this system.
Furthermore, the scene model is given in this system.

2. Camera (C): This coordinate system is attached to the camera and hescral-
ing with the camera. Its origin is located in the camera aente

3. Image (l): The image is projected into this coordinate system, whidbdated in
the camera center.

These three coordinate systems are illustrated in Figuiieutthermore, a fourth coor-

dinate system, the sensor system, is used. This is the catedsystem in which the

inertial measurements are obtained. It is not discussddsmpaper, which implies that a

somewhat unrealistic assumption is used, namely that @réahsensors are placed in the
camera center. However, everything discussed in this pegrerather straightforwardly

be adapted to the fact that the sensor coordinate systeragsrmras well.

2.2 Position

The position of the camera is given by the position of the ganeenter (point”' in
Figure 1). The accelerometers measures the inertial favads an inertial system (the
F-system in this work). Hence, the accelerometers will mesathe difference between
the acceleration of the camera;, and the gravity vectorg;. However, since the ac-
celerometers are attached to the camera (strapdown ingysigem) the measurements
will be resolved in the camera coordinate system, accoriding

ac = Rey (ay —gy), (4)
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Figure 1: lllustration of the different coordinate systems and hoaythre related.
PointC is the position of the camera (optical center) and pBiig the position of a
certain static feature in the real scene.

whereR, s is a rotation matrix which rotates vectors from thesystem to th&’'-system.
Notice that the accelerometer measurement can be modedeti@asurement signal (Re-
hbinder and Hu, 2004}, = a., or as an input signal; = a., (common in the aircraft
industry). In this work the accelerometer signal is modelsdn input signal, in order
to avoid additional states. However, by including the am@lon and the angular veloc-
ity in the state vector the acceleration and angular vela@n be modeled by shaping
the process noises for these states. The dynamic motionl isaateeording to Newton'’s
second law a double integration of the measured acceleratio

éf =y, (5a)
i]f = Rfcac + 9. (5b)

By assuming that the input signal is piecewise constantstraghtforward to derive a
discrete-time version of (5).

2.3 Oirientation

Finding a suitable representation for the orientation afjalbody in 3D is a more in-
tricate problem than one might first guess. In Section 2.atiat matrices (commonly
referred to as Direction Cosine Matrices (DCM)) were useddscribe rotations. These
matrices belong to a group called SO(3), defined by

SO(3) ={R € R*3: RRT = I,det R = +1}. (6)

The name SO stands fapecial orthogonal due to the constraints (6) (Murray et al.,
1994). Hence, the most natural description to use is DCM. é¥aw this description has
some problems, since it requires six parameters and sirgckatd to enforce the orthog-
onality condition. It has been shown that five is the minimwmber of parameters that
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have to be used in order to parameterize the rotation grosipan a way that a global de-
scription, without singular points is obtained (Hopf, 19&buelpnagel, 1964). However,
the dynamics for this parameterization is quite complidatehich implies that it is not
used. Using four parameters, unit quaterntpis describe the orientation provides the
best alternative, since it is a representation that is mgu$ar and the dynamics is linear
(bilinear if the angular velocity is modeled as a state \@€in the states. The downside
is that the unit constraint has to be maintained and thatdhenpeterization is non-global.
However, this non-global property will not be a problem iagtice. Another commonly
used parameterization is the Euler angles. The advantatpésgiarameterization is that
it only requires three parameters, but the dynamics is neafiand it is a singular, non-
global representation. According to the authors the badetoff for parameterizing the
rotation group is provided by the unit quaternion. Hendeg@hputations are performed
using unit quaternions. However, when the orientation ésented to the user Euler an-
gles are used, since this parameterization is the easiggetpret and visualize.

A good account of the twelve most common rotation parangtgans is given in
Shuster (1993). Furthermore, Shoemake (1985) provides gmod intuition regarding
the unit quaternions. The dynamic equation for the quatesis

. 1
(1) = 52)a(t) ™)
where
0 —wy —wy —w,
w0 W,  —wy
Q (w) - Wy —w, 0 Wy . (8)
W, Wy Wy 0

The quaternion has to be normalized, i.e.,

¢" (t)a(t) =1, 9)

in order to represent an orientation. By invoking the asdionghat the angular velocity
is constant between the sampling instants the rotatiorovéatan be defined as

0 = w Ty, (20)
and under this assumption it can be shown that the soluti¢r) e
gt+1 = A(0)qt, (11)
whereA(6) can be shown to be
sin (/61/2)

A(6) = cos (16]1/2) I + Q(0). (12)

16]]
Care has to be taken when estimating the orientation, sirecedt of all rotations, SO(3)
is not a vector space, but rather a manifold, due to the ans{i6). Using quaternions
this is handled simply by normalizing the estimate. Howgtrex best would of course be
if an estimator could be derived that delivered estimatdschvinherently existed on the
manifold. The problem is that the resulting problem is nonvex.

LAnother name for the unit quaternion is Euler-Rodrigues symiogarameters, or Euler symmetric param-
eters (Shuster, 1993).
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3 Using Vision as a Sensor

In order to be able to incorporate the information availablégne image sequence into the
estimation problem measurement equations

Yy = h(xtaefmt)a (13)

have to be derived. These equations should describe th@nslaip between the state
variablez and the information available in the images. In the subseigsections two
different approaches on how to derive these equations scased. Since a single image
contains large amounts of information the most essenfiairimation has to be efficiently
recovered. The approach using in this work is to extracufeatfrom the images. In the
computer vision literature aimage featureis any structural feature that can be extracted
from the image. The idea of using inertial sensors and featextracted from the images
have previously been exploited, e.g., in Rehbinder and B(2303), Jiang et al. (2004).

3.1 Camera Model

A camera is a device that provides two dimensional projastiof a three dimensional
real scene. The camera model describes this projection fhemetical terms. Hence,
the camera model is most essential in forming the measurtesgeiations. The camera
model used in this work is thginhole model (Hartley and Zisserman, 2003),

(l‘i, yi)T = (fa:/z, fy/Z)T7 (14)

where(z;, y;)T are the coordinates for the feature in the image coordinae®, see
Figure 1. Furthermorez, , 2)7 is the corresponding position in the real scene And
is the focal length. The model (14) is simply a way to state tiva objects lying on the
same ray will be projected onto the same point in the imageepld his model is used
due to its simplicity. However, all equations derived irsthaper can be extended to more
advanced camera models including parameters for optisgdrtion etc. For more details
on different camera models, see Hartley and Zisserman 2003

3.2 Two Dimensional Feature Displacements

The goal of this section is to derive a measurement equasorg uhe fact that an ob-
served movement of a static feature in the image can be ljiretated to a movement
of the camera. This measurement equation can then be uded thieé Kalman filtering
framework. The derivation starts with the simple fact that,

r=r<0=r+uxe, +ye, + ze,, (15)

where ther-vector, defined in Figure 1, has been expressed in two diffezoordinate
systems, the rotating’-system and the fixed feature system. Differentiating (15).w
time gives

0 =1+ de, + je, + e, + zé, + yé, + zé.. (16)
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From Figure 1y = p—s = p, which together with the fact thag, +yé, +zé, = wxr
gives

T = —2wy + Yw, — Vg, (17a)
Y= —qW, + 2wy — Uy, (17b)
2= —ywy + Twy — Uz, (17¢c)

wherev = p. Differentiating (14) gives

. Tz — X2
= f o (18a)
Yz — Yz
gi = fE (18)
Inserting (14) and (17) in (18) gives
2
. T T; —fvz + 20,
fi= g wxf<1+fz)wy+yiwz+z, (192)
~—————
iR Ti,T
2 . _ ‘
gi=f (1 + ?’2) Wy — xlfyl wy — Tiw, + 7‘””; Ut (19b)
—————
Yi,R Yi, T

where the velocity has been split into one rotational padi@ated with subscripk), and
one translational part (indicated with subscript It is impossible to use (19) to gain
perfect information about the present position and orténteof the camera, which has
previously been discussed in You et al. (1999), Matthied.€11.888), Longuet-Higgins
and Prazdny (1980). However, in combination with the otlesaissrs these equations will
help in the task of finding the position and orientation of taenera. Gyroscopes provide
measurements of the angular velocityand hence the rotational terms in (19) can be
considered to be known (with a certain degree of uncertpinty

The measurements are the projection of the features in thgamlane, i.e.,

. ) »
yJ:(;)""_e'ga jzla--~7N7 (20)
Yi
whereN is the number of features, amdhe measurement noise. However, since (19) is
used the measurement equations will be implicit, i.e., teasarement equations will not
be in the form (13), but rather in the following form:

0= h(ye, ys—1,x¢, €4, 1). (21)

There is one problem with the derived measurement equattbesdepth information
z of the feature is still present. This problem can be tackiedumerous ways. The
first idea that comes to mind is to extend the state vector thighdepth states?,i =

1,..., N. In Davison (2003) an algorithm similar to the particle filig used to estimate
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the depths. Alternatively, the depths can be thought afiésancevariables which should
be eliminated. Substitutingfrom (19a) into (19b) gives

Yi —Yi,R —fuy + yiv. 22)

. . )
Ei—dir  —fue + @ivs

which is the resulting one-dimensional measurement eguatit is straightforward to
rewrite (22) on the form (21), using the Euler approximafionthe differential operator,
according to

o (—fops + @i 020) = —foys + TigUs 4, (23)

Yt — Yit-1 . Tit — Tit—1 .
Q= -7 Yi,R -7 Li,R | -
S S

Finally (23) can be written

(—fozt [ (oqmiy — y,t)) v =0. (24)

Ct

where

This is the resulting measurement equation for two dimeraifeature displacement.

3.3 Three Dimensional Features and Model

The vision system delivers a list of feature coordinates in the image pIa{uej, yf };V:I

and the corresponding position§s; = (s;.z, sj., 5;,2)} )y, in the real scene. This
position is obtained from a three dimensional model of theldvim which the camera
is moving. This model is generated off-line. Intuitivellzig information should provide

valuable information for estimating the camera pose. Ugl4d and Figure 1 gives

(xia yi)T = (fTC,z/Tc,Z7 frc,y/rc,z)Ta (25)

wherer. is the vector from the camera center to the current featugeur& 1 also reveals
that

TCZRCf (Cf—Sf). (26)

The resulting measurement equation is found by using treefrden the previous section,
i.e., writing the measurement equation in the implicit fq@t). This results in

0= (rc,zxi - f’rc,r) + e, (27)

Te,2Yi — fT(:}y

which simply corresponds to multiplying (25) with. .. Similar ideas have been pre-
sented in, e.g., Davison (2003). The difference is that iswork an off-line model of
the real scene is used in combination with information froeriial sensors . Hence, the
costly procedure of preparing the environment with araéficharkers is not necessary.
Furthermore, the information from the inertial sensorshitamed at a higher frequency
than the vision measurements and will be especially hetpftihg fast maneuvers.
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4 |llustration

In order to evaluate the ideas proposed in this paper a Vietwaronment, briefly de-
scribed in this section, is used. More specifically a threeetisional model of a car is
used. Figure 2 provides two images from the video sequenbe.cd@r is standing still
and the camera is moving around the car in such a way that thereas always facing
the car. Since the true position and orientation of the cari'eknown, the acceleration

800

Figure 2: Two images from the video stream used to obtain the visionsorea
ments. Furthermore, several 2D features have been indigatéhe images. The
camera has been rotate@f from the upper to the lower image.

and angular velocity can be calculated. Using this theimlarieasurements can be sim-
ulated, simply by adding the proper noise to the true acatters and angular velocities.
Furthermore, the 3D model of the car provides an image segueom which features
can be extracted. These features will constitute the visieasurements, which will be
included in the estimation problem using the ideas discliss8ection 3.

The next step is to use authentic inertial and vision measemnes, which will be pro-
vided by our partners at BBC R&D in London. They have a positig system installed
in their studio (referred to as free-D (Thomas et al., 1993fpviding the true pose, which
can be used to assess the estimation performance. Thesatkaurrently working to-
gether with Xsens (2005) on using the idea presented in@e8tB3. The preliminary
results looks promising.
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5 Conclusion

This paper propose a filtering approach for estimating ttsétipa and orientation of a
camera in three dimensions. The underlying idea of supmpitiertial sensors using
additional sensors has previously been successfully usdddtance within the aircraft
industry. The difference is that in this work vision is usegtstead of for instance terrain
elevation databases, to support the dead-reckoning afi¢ngdl sensor information. Fur-
thermore, two different strategies regarding the procégscorporating vision measure-
ments in the Kalman filtering framework were discussed. Ikinsome brief illustrations

on how to evaluate these ideas were given.
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Abstract

The marginalized particle filter is a powerful combinatidrilee particle fil-
ter and the Kalman filter, which can be used when the underiyiodel
contains a linear sub-structure, subject to Gaussian norge paper will il-
lustrate several positioning and target tracking appbecat solved using the
marginalized particle filter. Furthermore, we analyze ssvproperties of
practical importance, such as its computational complextitd how to cope
with quantization effects.

Keywords: Nonlinear state estimation, marginalized particle filpasition-
ing applications, target tracking applications.

1 Introduction

M ANY problems in for instance positioning and target tracking loa cast as nonlin-

ear state estimation problems, where the uncertainty ipriheess model and/or in
the measurement model may be non-Gaussian. Such a genefll cao be formulated
according to

o1 = flxg, w) + wy, (1a)
yr = h(xt) + ey, (1b)

with state variabler; € R™, input signalu; and measurements, = {y;}!_;, with
known probability density functions for the process ngisgw) and the measurement
noisep.(e). Hence, traditional estimation methods based onKhaénan filter (KF)
(Kalman, 1960, Kailath et al., 2000), or linearized versibareof, do not always pro-
vide good performance. Over the past 40 years there has beerabsuggestions on how
to tackle the problem of estimating the states in (1). An apipg solution is provided
by the particle filter(PF) (Gordon et al., 1993, Doucet et al., 2001a, Ristic ea04),
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which allows for a systematic treatment of both nonlinéssiand non-Gaussian noise.
However, due to the inherent computational complexity efghrticle filter, real-time is-
sues arise in many applications when the sampling rate is highe model includes a
sub-structure with linear equations, subject to Gaussiésenit is often possible to per-
form the estimation more efficiently. Here, this method femed to as thenarginalized
particle filter (MPF), it is also known as the Rao-Blackwellized particléefil see ,for
instance, Doucet et al. (2000, 2001a), Chen and Liu (2008)lri&u and Doucet (2002),
Andrieu and Godsill (2000), Schén et al. (2005). The MPF idemar combination of
the standard particle filter and the Kalman filter. It is a welbwn fact that in some
cases it is possible to obtain better estimates, i.e., asgwith reduced variance, using
the marginalized particle filter instead of using the stadgarticle filter (Doucet et al.,
2001b).

The aim of this paper is to explain how the marginalized pkfiilter works in prac-
tice. We will try to achieve this by considering several émdions where we have suc-
cessfully applied the MPF. Since we cannot cover all theilddtathis paper references
to more detailed descriptions are provided. Furthermde atgorithm’s computational
complexity and the presence of quantization effects arlyaed, due to their importance
in practical applications. To summarize, the analysis gdieations covered are

Theory and analysis:

e Background theory
e Complexity analysis
e Quantization effects

Positioning applications:

e Underwater terrain-aided positioning
e Aircraft terrain-aided positioning
e Automotive map-aided positioning

Target tracking applications:

e Automotive target tracking
e Bearings-only target tracking
e Radar target tracking

There are certainly more applications of the marginalizadigle filter reported in the
literature. Just to mention a few, there are communicatpplieations (Chen et al., 2000,
Wang et al., 2002), nonlinear system identification (Schith@ustafsson, 2003, Li et al.,
2003, Daly et al., 2005), GPS navigation (Giremus and Taetn2005) and audio source
separation (Andrieu and Godsill, 2000).

The paper is organized as follows. In Section 2, the backgtaheory and MPF
algorithm are briefly introduced. The algorithm performancomputational complex-
ity and ability to handle quantization effects are analyme&ection 3. In Section 4,
the applications are introduced and the structure of thetlyidg models is reviewed.
The positioning and target tracking application are désctiin more detail in Section 5
and Section 6, respectively. Finally, Section 7 providesrectuding discussion of some
lessons learned in using the marginalized particle filter.
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2 Marginalized Particle Filter

The aim of recursively estimating the filtering dengify:;|Y;) can be accomplished using
the standard particle filter. However, if there is a linedr-structure, subject to Gaussian
noise, present in the model this can be exploited to obtdiebestimates and possibly
reduce the computational demand as well. This is the mativainderlying the marginal-
ized particle filter.

2.1 Representation

The task of nonlinear filtering can be split into two partgoresentation of the filtering
probability density function and propagation of this denduring the time and measure-
ment update stages. Figure 1 illustrate different reptasens of the filtering density for
a two-dimensional example. Thextended Kalman filte(EKF) (Anderson and Moore,
1979, Kailath et al., 2000), can be interpreted as using @aes&an distribution for repre-
sentation and the propagation is performed according teeatfized model. Th€aussian
sum filter(Anderson and Moore, 1979, Sorenson and Alspach, 197 Ipéxthe EKF to
be able to represent multi-modal distributions, still watthapproximate propagation.

T2
o Bk N w a
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2 a1 o0 1 2 3 4 s

(a) True pdf. (b) Gaussian approxima- (c) Gaussian sum approxi-
tion. mation.
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(d) Grid-based approxi- (e) Particle approxima- (f) PF posterior pdf (wa-
mation. tion. terfall view).

Figure 1: True probability density function and different approxieaepresenta-
tions, in order of appearance, Gaussian, Gaussian sunt-masses (grid-based
approximation), particle samples and waterfall view tfatesponds to the MPF.

Figure 1(d)—(f) illustrates numerical approaches wheeeekact nonlinear relations
present in the model are used for propagation. pbiat-mass filte(grid-based approxi-
mation) (Bergman, 1999) employ a regular grid, where the geight is proportional to
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the posterior. Thearticle filter(PF), (Gordon et al., 1993) represents the posterior by a
stochastic grid in form of a set of samples, where all pati¢dsamples) have the same
weight. Finally, themarginalized particle filte(MPF) uses a stochastic grid for some of
the states, and Gaussian distributions for the rest. ThdteasMPF can be interpreted as

a particle representation for a subspace of the state diorgnshere each particle has an
associated Gaussian distribution for the remaining statersions. This is thevaterfall
view in Figure 1(f). It will be demonstrated that an exact nordinpropagation is still
possible if there is a linear sub-structure in the model. ®padrtant model class has the
property that the (co-)variance is the same for all pasiclhich simplifies computations
significantly.

2.2 Model

Consider a state vecteay, which can be partitioned according to

e

wherex! denotes the linear states anfl denotes the nonlinear states, in the dynamics
and measurement relation. A rather general model with tbpgpties discussed above is
given by

wfy = [ (@) +AY (a2 +GY (e w), (3a)
Thoq = fi () AL (=) 2y +G (] wy, (3b)
yr = he(ay) —|—Ct(x?)xé +ey, (3¢c)

where the state noise is assumed white and Gaussian disttitith

w= () vy @= (o G- @)
Wy (@) QY
The measurement noise is assumed white and Gaussianutistréccording to
er ~ N(0, Ry). (3e)

Furthermoreg}, is Gaussian,
z ~ N (o, Pp). (37)

Finally, the density ofcj can be arbitrary, but it is assumed known. More specifically,
conditioned on the nonlinear state variables there is afisgb-structure, subject to Gaus-
sian noise available in (3), given by (3b).

2.3 Algorithm

Bayesian estimation methods, such as the particle filtevige estimates of the filtering
density functiorp(z,|Y;). By employing the fact

plar, X7'Ye) = plai| X7, Yop(X7|Ys), (4)
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we can put the problem in a description suitable for the MRBwork, i.e., to analyt-
ically marginalize out the linear state variables frpfa;|Y;). Note thatp(zl| X7, Y;) is
analytically tractable, sinc&’;" is given. Hence, the underlying model is linear, Gaus-
sian, and the pdf can be computed from the Kalman filter. Eanlore, an estimate of
p(X7'|Y:) is provided by the particle filter. These two algorithms daentbe combined
into a single algorithm, the marginalized patrticle filtemdther name for this technique
is the Rao-Blackwellized patrticle filter, and it has beenwndor quite some time, see,
e.g., Doucet et al. (2000), Casella and Robert (1996), Diai@d. (2001b), Chen and Liu
(2000), Andrieu and Doucet (2002), Doucet et al. (2001bho8cet al. (2005), Nordlund
(2002). If the same numbers of particles are used in the atdrmhrticle filer and the
marginalized particle filter, the latter will provide esttes of better or at least the same
quality. Intuitively this makes sense, since the dimengibmp(z}|Y;:) is smaller than
the dimension op(x;|Y;), implying that the particles occupy a lower dimensionalspa
Furthermore, the optimal algorithm is used to estimate itheal state variables. For a
detailed discussion regarding the improved accuracy ot#tienates, see, e.g., Doucet
etal. (1999, 2001b).

The marginalized patrticle filter for estimating the statesidynamic model in the
form (3) is provided in Algorithm H.1.

Algorithm H.1 (Marginalized particle filter)

1. Initialization: Fori = 1,..., N, initialize the particles;r:g"(_? ~ pzp(2g) and set
{wg ), Py 1}_{3:0,P0} Sett := 0.

2. Particle filter measurement update: ko= 1,..., N, evaluate the importance
weights

) =p (ytht”’(i), Yt_l) , (5)

and normalize,” = ¢\” ) SN | g7,

3. ResampléV particles, with replacement,
Pr( (i) _ ()) ~(J)

t|t tlt—1
4. Particle filter time update and Kalman filter:
(a) Kalman filter measurement update:

By = Ty, + K (l/t —hy — th%i|t_1) ) (6a)
Pt|t = Pt|t71 - KtMthT7 (6b)
M; = CyPyy_1Cf + Ry, (6¢)
Ky = Py CY M. (6d)

(b) Particle filter time update (prediction): Fot 1, ..., N, predict new particles,
n, () n n, ()
Tipafe ~ P (xt+1\t|Xt 7Yt)'
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(c) Kalman filter time update:

It+1|t = Alzt\t + Gi( in)T(G?Q?)ilzt + ff + Ly (Zt - A?ﬁu) , (79)

Py = APy (AD" + GLQUGHT — LN, L], (7b)

Ny = AP P (AD)" + GrQH(GHT, (7¢)

Ly = APy, (AN N, (7d)
where

2 = wllﬂ - 1 (8a)

A= 45— GHQIY(GFQP) A (8b)

Qi = Qt - ( v (Q?)_le&n (8c)

5. Sett :=t + 1 and iterate from step 2.

Since the focus of the present paper is on the practical tssspgalgorithm H.1, we will
merely provide the intuition for this algorithm here. Foretalled derivation, see Schén
et al. (2005). From this algorithm, it should be clear tha timly difference from the
standard particle filter is that the time update (predigtsitage has been changed. In the
standard patrticle filter, the prediction stage is givenlgdlg step4(b) in Algorithm H.1.

Let us now briefly discuss stebin Algorithm H.1. Stepi(a) is a standard Kalman
filter measurement, update using the information availabtee measuremeny. Once
this has been performed the new estimates of the linearsstate be used to obtain a
prediction of the nonlinear state’,, ,. This is performed in Step(b). Now, consider
model (3) conditioned on the nonlinear state variable. Tdraltioning implies that (3a)
can be thought of as a measurement equation. This is useelpd(g) together with a
time update of the linear state estimates.

The estimates, as expected means, of the state variabletheindtovariances are
given below.

i, = Z IR (9a)
. T
il = th ’ (( an® — ) (e - o) ) (9b)
~ l,
Ty = Z i f\g g (9¢)

. T
Ptl|t ZN()< t|t (ji\tl) xi\t) (fiél) xi\t) >v (9d)

where {q( )}{V , are the normalized importance weights, provided by gtep Algo-
rithm H.1.
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3 Analysis

In this section, several properties important in the pcattapplication of the marginal-
ized particle filter are analyzed. First, the variance rédacinherent using the Rao-
Blackwellization idea is explained. Second, the compateti burden of MPF is analyzed
in detail. Finally, quantization effects in the measurettetation are described.

3.1 Variance Reduction

The variance of a function or estimatg(U, V'), depending on two random variablés,
andV can be written as

Var {g(U,V)} = Var {E{g(U,V)|V}} + E{Var{g(U,V)|V}}, (10)
Hence, in principle, the conditional inequality
Var {B{g(xt, X)|X{'}} < Var {g(x}, X[')}, (11)

can be employed. This is sometimes referred to as Rao-Bkltkation, see, e.g., Robert
and Casella (1999). This is the basic part that improvespeence using the marginal-
ization idea. In the MPF setuf/ and V' are represented by the linear and nonlinear
states.

3.2 Computational Complexity

In discussing the use of the MPF it is sometimes better tatjperthe state vector into
one part that is estimated using the particle filtere R? and one part that is estimated
using the Kalman filtex € R*. Obviously all the nonlinear state$ are included in?.
However, we could also choose to include some of the linegesthere as well. Under
the assumption of linear dynamics, this notation allowsousrite (3) according to

ab = Al + Afaf +wf,  wf ~N(0,Q)), (12a)
ap = FPal + Ffaf +wf,  wy ~N(0,QF), (12b)
ye = hu(a}) + Coay + e, er ~ N(0, Ry). (12c)

First, the case”; = 0 is discussed. For instance, the first instructip (Af)” corre-
sponds to multiplying?,; € R*** with (AF)T € R**?, which requirepk? multipli-

cations andk — 1)kp additions (Golub and Van Loan, 1996). The totgluivalent flop
(EF)* complexity is derived by Karlsson et al. (2005),

4
C(p.k, N) ~ 4pk? + 8kp* + gp3 + 5k3 — Bkp + 2p?
+ (6kp + 4p® +2k* +p — k + pes + ¢ + co)N. (13)

Here, the coefficient; has been used for the calculation of the Gaussian likelihood
for the resampling and; for the random number complexity. Note that, whén= 0

1The EF complexity for an operation is defined as the number of fioat result in the same computational
time as the operation.
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the same covariance matrix is used for all Kalman filters cisignificantly reduce the
computational complexity.

By requiringC(p + k,0, Nee) = C(p, k, N(k)), where N, corresponds to the num-
ber of particles used in the standard particle filter we cdwesfor N (k). This gives
the number of particledV (k) that can be used by the MPF in order to obtain the same
computational complexity as if the standard particle fihtad been used for all states. In
Figure 2 the ratiaV (k) /Ne is plotted for systems withh = 3, . .., 9 states. Hence, using

18
171 .

161 al

C(p+ k,0, Neg) = C(p, k; N(k)) mE

m=6

11- .

I I I I I I
0 1 2 3 4 5 6 7

Number of states in the Kalman filtek)(

Figure 2: RatioN (k) /N for systems withn = 3, ..., 9 states andy = 0,n = 2
is shown. It is apparent the MPF can use more particles fovengiomputational
complexity, when compared to the standard PF.

Figure 2 it is possible to directly find out how much there ig&in in using the MPF from
a computational complexity point of view. The figure alsowhkdhat the computational
complexity is always reduced when the MPF can be used instethé standard particle
filter. Furthermore, as previously mentioned, the qualftthe estimates will improve or
remain the same when the MPF is used (Doucet et al., 2001b).

Second, ifC; # 0, the Riccati recursions have to be evaluated separatedafdr par-
ticle. This results in a significantly increased computaiacomplexity. Hence, different
covariance matrices have to be used for each Kalman filt@lying that (13) has to be
modified. Approximately the complexity is given by Karlssetral. (2005),

C(p,k,N) ~ (6kp + 4p* +2k* +p — k 4+ pc3 + ¢ + co

4
+ 4pk? + 8kp® + 5pf" + 5k% — 5kp + 2p® + k) N. (14)

In Figure 3 the ratiaV(k)/Npr is plotted for systems withn = 3,...,9 states. For
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Figure 3: RatioN (k) /N for systems withn = 3, ...,9 states and’; # 0,n = 2
is shown. For systems with high state dimension and manyinaized states the
standard PF can use more patrticles than the MPF.

systems with few states the MPF is more efficient than thedstahparticle filter. How-
ever, for systems with more states, where most of the stegenarginalized the standard
particle filter becomes more efficient than the MPF. This is thuthe Riccati recursions
mentioned above.

3.3 Quantization Effects

When implementing filters or estimators in hardware, theutatons can usually be
performed with sufficient precision. However, the sensomeasurement relation may
not always have sufficient resolution. This is referred aasueement quantization, and
is a common problem in for instance telecommunication, wliee channel bandwidth is
limited. To be able to use limited communication resoursesgere quantization may be
needed. Also for large sensor networks applications, manysimple and cheap sensors
with large quantization effects are used. Furthermore ynsansors or signal processing
devices are naturally quantized, for instance range meammts in a pulsed radar or
pixelized information from a vision system.

Here we will discuss quantization using a multi-level unifioquantization. Consider
the problem of estimating from the quantized measuremepts- Q,,, (x + ¢). The uni-
form quantization discussed here is implemented asiioeiser quantizer, as described
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in Lipshitz et al. (1992). If not saturated it is given as
z A

On(z)=A| 5|+ 5 (15)
Here, Q,, (-) denotes the nonlinear quantization mapping withevels, all with equal
quantization heighi\. The | - | operator rounds downwards to the nearest integer. To
keep a unified notation with the sign quantizati@n (z) = sign(z), the midriser con-
vention will be used, sg € {—-mA + £,..., (m — 1)A + £}, with A = 2%, usingb
bits, 2m = 2° levels and2® — 1 thresholds. The sign quantization corresponds+o1,
m = 1 andA = 2 in this notation.

In Karlsson and Gustafsson (2005b), this static problemmédyaed using thenax-
imum likelihood (ML) estimator. The performance is also investigated usiregFisher
information orCramér-Rao lower boun¢CRLB). The resulting likelihood function can
also be used in the particle filter, allowing for a statidticaorrect treatment of mea-
surement quantization effects in dynamic systems. If thdehis in accordance with the
requirement of the MPF algorithm, it is possible to handle tionlinearity introduced
by the quantization in the measurement equation in the MiPRaklsson and Gustafs-
son (2005b) different quantizers are studied. Below, ohby dimplest sign quantizer,
yr = Q1 (z +e4),e; ~ N(0,0?), is discussed. The probability function fgrcan be
calculated using

p(y=—1lz) =Pr(z +e<0) =Pr(e < —z) = / \/%Oexrﬁ% e (16)
.,
= / Vol dt = & (—z/0). 17)
Similarly,
ply=+1]z) =Pr(z+e>0)=1-d(~/0). (18)

Hence, the discrete likelihood needed in the PF/MPF, ingd),be written as

p(ylz) = (—z/0)d(y+1)+ (1 — P (—z/0))d(y — 1), (19)
where
) 1, +=0,
5(i) = {07 P40 (20)

The calculated likelihood can be used in the PF/MPF to inm@e the quantization effect
in a statistically correct way. Similar for multi-level qutézation.

—— Example H.1: Filtering — sign quantizer |
Consider the following scalar system with a sign quantizer

Typ1 = Fyry + wy, xo =0, (21a)
yr = Q1 (z¢ + ), (21b)
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where
F; =0.95, Varw; =0.10%, Vare; = 0.58%, (22)

In Figure 4 the RMSE for the KF and the PF are presented usi@gvRihte Carlo sim-
ulations. The measurement noise in the KF was adjusted ffiltdreto handle the quan-
tization by adding an extra variance &f /12. The PF used the correct sign quantized
likelihood using 1000 particles. The theoretical CraméaosRower bound is also given in
Figure 4. For details, see Karlsson and Gustafsson (2005b).

0.9

0.8f

0 10 20 30 40 50

Figure 4: RMSE for the PF and KF for a linear Gaussian system with a sigamg
tizer in the measurement relation, compared to the Cramaéri®ver bound.

Note that for the example presented only one state was usedelmo marginalization was
applied. If the problem is formulated with linear, Gaussiignamics and quantization in
the measurement, these nonlinear states can be handled B¥ thnd the rest by the KF
in the MPF framework.

4 Introducing the Applications

As discussed in the previous section, the different estimahethods handle nonlineari-
ties in different ways. In the applications studied in théger a framework consisting of
linear, Gaussian system dynamics and nonlinear measutgisaronsidered. Basically,
two different areas are studied: GPS-fymesitioning where the aim is to estimate the
own platform’s position andarget trackingwhere the state of an unknown, observed tar-
get is estimated from measurements. These applicationsepsesent typical examples
where sensor fusion techniques are important. The MPF ges\én efficient way to in-
corporate both linear and nonlinear measurement relatiBoth results from simulated
data and experimental data are presented. More preciselgtudied applications are:
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Positioning applications:

e Underwater terrain-aided positionin@epth information from a geographical in-
formation system (GIS) database is used together with stepEth measurements
to improve positioning. A demonstrator system has beenldegd in co-operation
with Saab Underwater Systems.

e Aircraft terrain-aided positioningA height GIS database is used together with
radar height measurements to improve the position, cordgarenly inertial navi-
gation system (INS) measurements. A demonstrator systerbden developed by
Saab Aerospace.

e Automotive map-aided positioningJtilizing wheel speed sensors from the ABS
and information from a street-map database, car positipinidependent of GPS is
possible. This is available as a commercial product fromADRnamics.

Target tracking applications:

e Automotive target tracking:Intelligent automotive systems require information
about the host vehicle and its surroundings (road geometdytlae position of
surrounding vehicles). Using vision and radar measuresnémé corresponding
estimation problem is addressed. A demonstrator vehicdeblean developed in
co-operation with Volvo Car Corporation.

e Bearings-only target trackingVhen passive sensors, such as an infrared (IR) sen-
sor are used, we can only measure the direction, bearingetartknown target.
However, by appropriate maneuvering, the range and ranigeaa be estimated.
This is studied in an air-to-sea application, i.e., an afitdracking a ship.

e Radar target trackingA radar sensor measures at least range and direction (az-
imuth, elevation) to the target. In this particular appiica the computational as-
pects of the MPF are studied in detail.

The dynamic models employed in the applications all have@ali motion model and
a nonlinear measurement model. By partitioning the statéove;; into two parts, one
for the linear state variableg, and one for the nonlinear state variablesthe model
fits the MPF framework perfectly. For example, consider €aan position coordinates
(X,Y, Z) and introduce the state vectoy = (X,,Y;, Z;, Xy, Y:, Z:)T, with position
and velocity states. In target tracking the relative distahetween the target and the
observation platform is often used as state. Furthermioedirist-order derivatives of this
distance, relative velocity, are included in the statemecthe resulting motion model is
given by

i1 = Fyoy + Gy, (23a)

where

(Is TIs [z,
=g T e=(30). (230)
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Here, I3 denotes the x 3 unity matrix andOs denotes the3 x 3 null matrix. The
measurement relation is in the sequel treated as a nonlieksion of the state, subject
to additive measurement noise,

ye = h(z}) + e (23c)

It can for instance represent range and bearing measurémena radar, height or depth
measurements for terrain navigation applications. Inhaé situations it is a function of
the position states. For the example abave= (X,,V;, Z,)T andz! = (X,,V;, Z,)7.
Another common state variable is the heading or course.

For a more thorough discussion regarding models for pasitgy navigation, and
tracking applications within the present setting, see &asbn et al. (2002). Interesting
to note is also that common phenomena such as bias or sctabe-éstimation can often
be introduced in the linear, Gaussian sub-system. HenedyIBF provides an efficient
way to handle such problems.

5 Positioning Applications

This section is concerned with position estimation, whefermation from geographi-
cal information systems is used together with differéistance measurement equipment
(DME). First, an underwater positioning method based orasdepth measurements is
presented. Second, the same idea is employed to solve thafapositioning problem
using height measurements from a radar altimeter. Fintib/,automotive positioning
problem is briefly presented.

5.1 Underwater Terrain-aided Positioning

In this section we describe amderwatemositioning method based DME information
from sonar depth readings and a comparison with a depthaksdb find the position of
the host vessel. It is based on the preliminary studies itsKan et al. (2003), Karlsson
and Gustafsson (2003), together with Karlsson and Gusta{2)05a).

Using a sonar sensor anddéferential GPS(DGPS), an underwater depth map was
constructed, illustrated in Figure 5, together with thefplan at depthd, = 0 and with
sonar depth measuremenmis After the data for map generation was collected, an inde-
pendent test run in the map region was performed, in ordeslteat measurements to test
the PF/MPF map-aided positioning system. In Karlsson argta@sson (2003) a coordi-
nated turn model extended with bias terms was used. In codsply the MPF a Taylor
expansion was calculated, enabling for a model approxignatehe correct form. The
estimation performance reported for the MPF was similainéoRF, but to a much smaller
computational burden. In order to fit the linear, Gaussiamadyics framework, we will
only consider the model from Karlsson and Gustafsson (200%s number of particles
used initially wasN = 50000, but quickly reduced tav = 10000, when the particle
cloud had most of its particles clustered around the truéipos The result is presented
in Figure 6, where the parametric CRLB is calculated usingx@anded Kalman filter,
evaluated around the true trajectory.
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Figure 5: Underwater positioning using sonar depth measurements tind terrain
database. The sonar depthljs and the sonar indicates the relative range to the sea
floorr,. The database givész,).

0 200 400 600 800 1000
Time [s]

Figure 6: The position RMSE from the PF (solid line) using the expentaétest
data together with the parametric CRLB (dashed line) as tie &olution around
the true trajectory. The nominal speed is betweén- 1.5 m/s. Note that only one
experimental test run was available for the RMSE calcutatio

5.2 Aircraft Terrain-Aided Positioning

The Swedish fighter aircraft Gripen is equipped with an aateuradar altimeter as DME
sensor and a terrain elevation database, similar to thestigm in the previous section.
These measurements are used together withential navigation syster(iNS) in order

to solve the aircraft positioning problem. This problem pesviously been studied, see,
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e.g., Bergman (1999), Svensson (1999), Ahlstrom and C@ag®). The overall structure
of the model used in this application is in the form (12), vifike following measurement

equation,

where X; andY; denotes the error in latitude and longitude respectivelfie feasibility

study performed used a sub-model with nine states. Thisrsdel contains all ingredi-
ents of the total system and the principle is scalable touherfodel with 27 states. For
details regarding the model we refer to Nordlund (2002) &ed¢ferences therein.

The measurement equation (24) is highly nonlinear, duegto$le of the terrain eleva-
tion database. This implies that the EKF cannot be usedhé&umiore, the high dimension
of the problem prevents the use of the particle filter. Howee model structure fits per-
fectly into the marginalized particle filter framework. Shapproach has been evaluated
using authentic flight data with promising results, see féguwhere we provide a plot of
the error in horizontal position for a different number oftpdes. From this plot itis clear

1 : :
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0.8+ ~- 5000 particles |
----10000 particles

o
)

Estimation error
I~
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o
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0 0.2 0.4 0.6 0.8 1
Time units

Figure 7: Horizontal position error as a function of time units forfdfént numbers
of particles. Note that the scale has been normalized fdidmmtiality reasons.

that the main difference in performance is in the transidwisg, in the stationary phase
the performance is less sensitive to the number of particded. Hence, the idea of using
more particles in the transient phase suggests itself. idbes was used, for the same
reason, in the previous section as well. For a more detadleduat on these experiments,
see Frykman (2003), Schon et al. (2005), Nordlund (2002).
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5.3 Automotive Map-Aided Positioning

The idea is to use the information available from the wheekgpsensors together with
digital map information to estimate the position of the aaithout the need for GPS
information. The resulting problem is nonlinear and fitoitlie framework provided by
the particle filter and the marginalized particle filter. Fanther details on this approach,
see, e.g., Forssell et al. (2002), Hall (2000), SvenzénqR00

6 Target Tracking Applications

In this section three target tracking applications areistudFirst, an automotive target
tracking problem is discussed. This is followed by a beariagly estimation problem.
Finally, a radar target tracking application highlightfeient computational aspects of the
marginalized particle filter.

6.1 Automotive Target Tracking

This application deals with the problem of estimating thkiste surroundings (road ge-
ometry and the position of other vehicles), which is reqiliiby advanced automotive
safety systems, such as adaptive cruise control, collmimidance and lane guidance.
For a thorough treatment of this application, see Eidehall.€2005).

The main difference between tracking in automotive appitica and tracking in other
applications, such as air traffic control or naval trackiisgthat in automotive tracking
it can be assumed that the motion of the tracked objects, avithrtain probability, is
constrained to the road. In order to be able to use and berfit this fact we make
use of a curved coordinate system which is attached to atmM®lthe road (Eidehall,
2004). The measurements are provided by a vision systemradesystem. The vision
system provides measurements of the road curvature, tharygle and the distance to the
right and left lane markings. Furthermore, the radar presicinge measurements to the
surrounding vehicles. The final model, thoroughly derivedEidehall (2004), Eidehall
et al. (2005) is in the form (12), which opens up for using thregmalized particle filter.
The nonlinear part of the measurement equation for a givgetais

ye = h(X], YY) + ey, (25)

whereh( - ) described the geometric transformation from a curved,-ad@ghed coordi-
nate system to a Cartesian coordinate system, in which tlsumements are registered.
For details, see Eidehall et al. (2005). In evaluating thienedion performance we study
the estimate of the road curvature. Itis crucial to sevarmotive applications, such as
adaptive cruise control systems, collision warning or aystesm that relies on assigning
leading vehicles to the correct lane. For a leading veHig{em in front of the host ve-
hicle, a small curvature error of, s@ys - 10~2 m~! will result in an error oR.5 m in the
lateral direction (Eidehall et al., 2005). This is enouglassign the leading vehicle to the
wrong lane.

The data set used was collected in the northern parts of Swehaiéng winter. This
implies that the visibility is low, which in turn implies th#éhe measurements from the
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Figure 8: The absolute curvature error. Here, we have indicated thel le
0.5-10~2 m~—!, which is used as a motivating example in the text. For embos/e
this level, leading vehicles at a distancel6f m are likely to be assigned to the
wrong lane.

vision system definitely have to be supported by the radasoreanents to obtain a solid
overall estimate. In Figure 8 we provide the absolute cuireagstimation error using
the MPF and the EKF. Furthermore, the raw vision measureofahe curvature is also
included. From Figure 8 it is clear that both filters improke guality of the curvature
estimate substantially. However, the performance of thé& Ponly slightly better than
the EKF. Hence, in this particular setting is might be harthtivate using the MPF, due
to its higher computational complexity. If we were to use enadvanced measurement
equations, such as those based on map information the MRE beghe only option.

6.2 Bearings-Only Target Tracking

In this section, an air-to-sea bearings-only applicatestudied. Assume that the ship
(target) and the aircraft (tracking platform) are desatibg the same type of linear dy-

namics as in Section 4 for the position and the velocity, $avthe fact the relative quan-

tities have been used as states. For bearings-only apptisahe measurement relation
for the azimuth angle and elevation anglé is given as

arctan (Y;/Xy)
(26)

— 7

+e
arctan (| ——=t— b
VXEHY?

whereX,,Y;, andZ; denote the Cartesian components of the relative position.
In a simulation study the range estimation problem usingnénaried (IR) sensor is
considered. The PF and MPF are compared to a bank of EKFg temnange parame-

yr = h(zy) + e = ((’;Z) +e =
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Figure 9: The position for the aircraft and the target shipx() together with the
marginalized position pdf using the particle filter withrggn induced constraints at
t =1 s. The patrticle cloud and the future trajectory of the airceaé also shown.

terized extended Kalman filt§RPEKF) method, (Peach, 1995, Arulampalam and Ristic,
2000). The relative distance and the aircraft trajectogyiléustrated in Figure 9. The tar-
get model used in the simulations assumes a small constiacttye The terrain database
has a resolution 050 m. In Figure 9 the scenario is presented together with the imarg
position densities in each directiop(X) andp(Y"), for time¢ =1 s, using terrain con-
straints. In Figure 10 the position RMSE is presented forRReand the MPF with and
without the map constraints, and for the RPEKF. Obviousé ititorporation of con-
straints improves the performance. The different parfitiers have basically the same
performance for this scenario. For details regarding theukition study, see Karlsson
and Gustafsson (2005c), where similar bearings-only egiidins are described in detail,
both for simulated data and for experimental data. For nt&aexperimental data from a
passive sonar system on a torpedo is used for bearingsraukirg.

6.3 Radar Target Tracking

In this section, the radar target tracking application frigarlsson et al. (2005) is high-

lighted. The general method for analyzing the computaticoenplexity presented in

Karlsson et al. (2005) and briefly reviewed in Section 3.2ustrated using a common

target tracking model. The problem of estimating the positind velocity of an aircraft

is studied using the dynamics from Section 4, and the follgwheasurement equation,
which gives the range and azimuth from the radar system,

/32 p)
yth(ﬂft)+€t< Xi+ Y >+€t, (27)

arctan (Y;/X)

whereCov{w} = diag(1 1 1 1 0.01 0.01), Cov{e} = diag(100-10~°) and the state
vectorisz; = (X Y X Y X V)7, i.e., position, velocity and acceleration.
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Figure 10: Position RMSE(t) for air-to-sea passive ranging using 1@htd Carlo

simulations.

The model has two nonlinear state variables and four line&e sariables. Two cases
are now studied, the full PF, where all states are estimatied the PF and the completely
marginalized PF, where all linear states are marginalizend estimated using the KF.
If we want to compare the two approaches under the assunptédnhey use the same
computational resources, i.€6,0, Npr) = C(2,4, Ny pr), we obtain

4Cd+56
Nee=[1-— Nype. 28
. ( Cl+62+663+150) (28)

<1

From (28) it is clear that for a given computational compigxnore particles can be
used in the MPF than in the standard PF. This is verified exyaerially in Karlsson et al.
(2005).

Using a constant computational complexity the number ofigles that can be used
is computed. The study is performed by first running the flldhd measure the time
consumed by the algorithm. An Monte Carlo simulation, ustg= 2000 particles, is
performed in order to obtain a stable estimate of the timewoed by the algorithm. In
Table 6.3 the number of particled’, the total RMSE fron1 00 Monte Carlo simulations,
and the simulation times are shown for the different matgation cases. From Table 6.3
it is clear that the different MPFs can use more particlesafgiven time, which is in
perfect correspondence with the theoretical result ging28).

Let us now discuss what happens if a constant velocity RMSkEséxl. First the
velocity RMSE for the full PF is found using an Monte Carlo siation. This value
is then used as a target function in the search for the nunfljmarticles needed by the
different MPFs. Table 2 clearly indicates that the MPF cataiolthe same RMSE using
fewer particles. The result is that using full marginaliaatonly requiresi4% of the
computational resources as compared to the standard Pis iexéimple.
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Table 1: Results from the simulation, using a constant computaticoraplexity. If
a certain state variable is estimated using the PF this isatetl with a P and if the
KF is used this is indicated with a K.

PPPPPP| PPKKPP | PPPPKK | PPKKKK
N 2000 2029 1974 2574
RMSE pos 7.10 5.81 5.76 5.60
RMSE vel 3.62 3.27 3.28 3.21
RMSE acc 0.52 0.47 0.45 0.44
Time 0.59 0.58 0.57 0.60

Table 2: Results using a constant velocity RMSE.

PPPPPP| PPKKPP | PPPPKK | PPKKKK
N 2393 864 943 264
RMSE pos| 7.07 6.98 7.12 7.27
RMSE vel | 3.58 3.60 3.65 3.61
RMSE acc| 0.50 0.51 0.49 0.48
Time 0.73 0.26 0.28 0.10

7 Concluding Discussion

In this paper several positioning and target tracking apgibns are solved using the
marginalized particle filter. In the framework employed thy@mamic motion models are
linear, subject to Gaussian noise and the measurement srex@ehonlinear. This impor-
tant special case of the general MPF allows for an efficieptementation.

The computational complexity of the MPF algorithm is thaybly analyzed for a
radar application, but because of the similarities in thdistd models in the applications,
these results are approximately valid for them as well. Huar application also illus-
trates another important property of the MPF, namely thatality of the estimates is
enhanced compared to the standard patrticle filter.

Another unifying feature among the various applicatiorthat they all use measure-
ments from various different sources, implying that we adeed solving theensor fu-
sionproblem using the MPF. Terrain-aided positioning problamsquite hard to handle
using methods based on linearization, due to the fact thev#ry hard to obtain a good
linear description of the map database, used to form theurne@ent equations. Hence,
the MPF is a very powerful tool for these applications. We #aat the computational
complexity can be reduced substantially by decreasing tingber of particles when the
stationary phase is reached. This is a common idea, emplayalll the applications,
since more computational resources should be used in th&dra phase.

Common for the measurement relation is that nonlinearéres non-Gaussian noise
is handled in a statistically optimal way, by the particleefil Particularly, if the measure-
ment relation is subject to severe quantization this is g to handle. Quantization
arises naturally in many applications, but typically in sennetworks where sensor fu-
sion is applied based on information from a large number of ebeap sensors, this can
be a major issue.
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Abstract

An essential part of future collision avoidance systems lstable to predict
road curvature. This can be based on vision data, but thelatevement

of leading vehicles can also be used to support road georastimation.

This paper presents a method for detecting lane departn@sding lane

changes, of leading vehicles. This information is used apathe dynamic
models used in the estimation algorithm in order to acconatefbr the fact

that a lane departure is in progress. The goal is to impravathuracy of the
road geometry estimates, which is affected by the motioradihg vehicles.
The significantly improved performance is demonstratedgisensor data
from authentic traffic environments.

Keywords: Automotive tracking, change detection, state estimai@hnan
filter, CUSUM algorithm.

1 Introduction

THIS paper is concerned with the problem of simultaneously edtirg the position
of surrounding vehicles and the road geometry. The positfdhe surrounding ve-
hicles is measured using a vision system and a radar, whireahape of the road is
measured using vision only. It has been shown that integyalie tracking of other vehi-
cles with the tracking of the road geometry parameters camlggtter performance than
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treating these problems separately (General, 2000, Dedae Thorpe, 1997, Eidehall
and Gustafsson, 2004, Zomotor and Franke, 1997). A fundeassumption is that
leading vehicles will keep following their lane, and theitdral movement can thus be
used to support the otherwise difficult process of road gégnestimation. For example,
when entering a curve as in Figure 1 it can be seen that theleskihead all start moving
to the right and thus there is a high probability that the rigatdirning to the right. This
information can be used to significantly improve the ratliade road geometry estimates
provided by the vision system. The assumption introducedealsan mathematically be

Figure 1: When entering a curve, all vehicles start moving in the latdiraction.
This information can be used to support the road geometiyata.

represented ag’ = 0, wherey’ is the lateral position of vehicle Note thaty® is the
position in relation to the lane, not the position in globartésian coordinates or coor-
dinates attached to the host vehicle. In order to efficieh#gdle this, a road aligned,
curved coordinate system is employed. It is important te tio&t the assumption of zero
lateral velocity of the leading vehicles does not hold wheytdepart from the lane. This
is typically accounted for in the model by adding white ndsthe equation. The amount
of noise, parameterized by the covariance mafhiy, that should be used is a compro-
mise. On the one hand it needs to be small enough for thellatexement of the tracked
vehicles to in fact improve the road prediction. On the othend, it needs to be large
enough so that a lane departure of a leading vehicle is natt@ipreted as a curve entry.
This exemplifies the fundamental compromise present ineallinsive estimation prob-
lems, the trade-off between noise attenuation and trackiaogiracy. This compromise
is illustrated in Figure 2, where the estimated road cureatane of the road geometry
parameters, using two different filters is plotted; onefiltéth a high value ofQy; and
one filter with a low. For reasons of comparison, the true eslior the road curvature
which is obtained using the method proposed in Eidehall anst&sson (2006) and the
raw measurements from the vision system are also includéslinteresting to compare
the raw vision measurements to the result from the filters Thaarly illustrates the power
of a model based sensor fusion approach.
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Figure 2: Comparison of estimation performance from two filters, orith & large
Q1a¢ and one with a smal,.;. The raw measurement signal from the image pro-
cessing unit and the reference signal are also included. p@ong the raw vision
measurement to the result from the filters clearly illugsathe power of a model
based sensor fusion approach.

In Figure 2, an exit phase of a curve where the curvature sugldieops from about
1.8-10~3 m~! to zero can be seen. In this particular scenario there ardemding
vehicles that can support the curvature estimate, seed-iuit can be seen that the
filter with a low value of @y performs much better during the curve exit and this is
how we would really like to tune our filter. However, at a lastézige the performance of
this filter deteriorates. If the recorded video is studiexmt Bigure 3, it can be seen that
this performance degradation coincides exactly with a Erenge of one of the leading
vehicles. The filter with a higher value ¢fi5; does not suffer from this problem, but on
the other hand it has a time delay in the estimate during thescxit.

The aim of this paper is to detect lane departures of thergadthicles and adapt the
models accordingly, in order to obtain an improved road getoyrestimate. When the
lane departures have been detected, the compromise didcaissve can systematically
be resolved. This is accomplished by using a sr@all when the assumptiop;, = 0 is
valid and only increas@),; during lane departure maneuvers.

Detection of lane departures and other model changes imatitee tracking has pre-
viously been studied, for example in Kaempchen et al. (2004)ss et al. (2004), where
Interacting Multiple Models (IMM) (Bar-Shalom and Li, 1998re used. However, their
purpose is to improve the position estimates of the surrimgnobjects, rather than the
road geometry parameters. Another approach is presentéehiet al. (2004), where a
neural network is used to detect lateral movement in a visased system. The method
we propose is different and based on the standardulative sun(CUSUM) algorithm



244 Paper | Lane Departure Detection for Improved Road Geometry Estimatio

Figure 3: A snapshot from the video just after tim@70 s, where the lane change
of the tracked vehicle commences.

(Page, 1954, Gustafsson, 2000), which is augmented withaulador correcting the
error caused by using the wrong model during the detecti@s@hbefore the CUSUM
algorithm alarms.

The paper is structured as follows. First, the dynamic madel the estimation al-
gorithm are briefly reviewed in Section 2. This is followed &yiscussion on how to
detect lane departures of leading vehicles and how thisrirdtion can be used to obtain
better estimates. In Section 4 it is discussed how the emwsed by using the wrong
model during the detection phase can be corrected. Fivedlyprovide a discussion on
alternative methods in Section 5 and state our conclusi&@eation 6.

2 Estimation Problem

The dynamic model is based on a curved, road-aligned caatalgystem, defined in Fig-
ure 4, wherer is the longitudinal position along the road apds the lateral position
perpendicular ta:. For example, this means thatf is the lateral position of objeat
theny’ = 0 simply means that objedtis at the center of our own lane, irrespective of
road shape. For the lateral dynamics, a constant positiateh®used, i.ey* = 0, and

for the longitudinal dynamics a constant velocity modelssdi Other states in the model
are lane widthiV, host vehicle lateral positioges, host vehicle heading angle relative
to the lanel,, road curvature parametey, which is defined as the inverse road radius
and finally the road clothoid parametsr, i.e., the curvature change rate. The vision sys-
tem delivers estimates o1/, yoff, ¥ andcy, Which are used as measurements in our
estimation problem. Furthermore, the radar provides nreasents of the relative posi-
tion of objects resolved in the coordinate systegmy), attached to the host vehicle. The
dynamic model is discussed in more detail in the Appendixtaedesulting estimation
problem and its solution is treated in Eidehall (2004), Baleand Gustafsson (2004),
Eidehall et al. (2005). Tuning of the process and measurenwse will not be discussed
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Figure 4: The surrounding vehicles are conveniently modeled and&edhasing a
curved, road-aligned coordinate systémy).

in detail, except for the process noiseydf The discrete-time dynamic model describing
the evolution ofy’ over time is given by

y§+1 = yi + wiv (l)

wherew is zero mean white Gaussian noise, with varia@gg In applying an Extended
Kalman Filter (EKF), the tuning parameté€,; describes to what degree it is believed
that vehicles will keep driving at the same lateral positfiorelation to the lane.

3 Detecting Lane Departures

The approach employed for improving the road geometry esésbased on detecting
lane departures is illustrated in Figure 5. This is a stashdpproach within the area of
change detection, which is a well established research seeae.g., Gustafsson (2000),
Basseville and Nikiforov (1993), Kay (1998). The aim of thetettor in Figure 5 is to
detect lane departures based on the information availaltleei residuals, = v, — ¥,
from the estimation algorithm. When a lane departure is dedethis is indicated by
an alarm from the detector, which is used to temporarily geamodel for the vehicle
performing the lane departure. This implies that the edtonaalgorithm can provide a
better estimate, simply due to the fact that a more accuratdehs used. This section
is concerned with devising the detection algorithm illastd with the detection box in
Figure 5. The estimation algorithm used in the present etuidi based on the extended
Kalman filter (Eidehall, 2004, Eidehall and Gustafsson,00 he basic components of
a change detection algorithm are illustrated in Figure 6.
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Y Estimate
Estimation €t Detect Alarm
Uy Algorithm etector >

Figure 5: The estimation algorithm delivers residuals which are used in the de-
tector to decide whether a change has occurred or not. If agehis detected this
information is fed back for use in the estimation algorithNote that in this appli-
cation, one detector for each tracked vehicle is needed.

3.1 Distance Measure

The distance measure is used to assess whether a changetiasdcor not. It is an
important design variable, that should be chosen with th@iegiion in mind. Com-
mon standard choices are to use the residsals ¢, or the squared residuals = 2.
However, in the present application this would provide paetection performance. The
reason is that the residuals only contain angular infoimnatirhis would imply that the
distance measure implicitly depend on the longitudinalatise to the leading vehicle,
whereas for detecting lane departures we are only inteféstiateral distances. If the
longitudinal distance to the leading vehicle is small, alsofange of its lateral position
would lead to a large angular change. If the same changeearglgbosition would be
observed for a vehicle further away, the angular change dvbalsmaller. Hence, we
need a distance measure that is invariant to the distanbe teading vehicle. The most
natural choice in this respect is provided by lateral disphaent of the leading vehicle,
approximately given by

St = |Etrt|7 2

wherer, denotes the distance to the leading vehicle, available frenestimation algo-
rithm, primarily based on the radar measurements. Themndasasing|s;r;| and not just

ey N (2) is that we want to be able to detect both left and rigterk displacements,
using a one-sided test.

€t Distance |[St
Measure

F-—————F---

Figure 6: The components of the detector are a distance measure, dopping
rule, where the latter consists of an averaging and a thidisiggorocedure.
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3.2 Stopping Rule

The stopping rule is used to give an alarm when an auxilissy s&tisticg; exceeds a

certain threshold. One of the most powerful tools for obtajra good stopping rule
in change detection problems is provided by @&SUM algorithm introduced by Page
(1954).

Algorithm 1.1 (CUSUM)

1. gi=gt1+s —v.
2. If gy > h: Alarm, g, = 0 andt gjarm = t.
3. Ifgt < 0.. gt = 0 andt,\change: t.

A rather detailed account of the CUSUM algorithm and its aaylon in state estimation
problems is provided in Gustafsson (2000). However, fordiseussion to come we
point out that the detection delay is the time delay betwberattual event, in this case
the start of a lane change manoeuvre, and the detection.el@tSUM algorithm the
detection delay is the time it takes fgrto reach the threshold, i.e.,tzarm— z?change This
means that when an alarm is triggered, the actual event fack p certain time ago. We
will get back to this fact in Section 4, where it is used to liert enhance the estimation
performance.

3.3 Application and Result

When the CUSUM algorithm gives an alarm this is fed back to steration algorithm,
where an increase@y is employed for the vehicle performing the lane departuneces
this model better describes the lane departure it will tesuletter estimates, which also
is clear from Figure 7. This lane departure model is emplajgthg an appropriate time,
corresponding to a typical lane change. After this we swiiatk to the original model.
The idea outlined above has been tested u8hgiinutes of authentic traffic data.
The detection performance is detailed in Table 1. For thegeapplication a missed

Table 1: Detection performance, based $nminutes of authentic traffic data.

Type Number
Correct detections 35
Missed detections 3
False detections 27

detection is much worse than false detection. A missed tieteclearly degrades the es-
timation performance substantially, see Figure 7, whesdalse detection merely implies
a slight performance degradation, since more noise thagssacy is used in the model.
It is interesting, and perhaps not too surprising, to no& thost of the false detections
are due to sharp road turns. If these could be isolated, nitisé dalse detections could
probably be eliminated. However, since the false detestiimnot significantly degrade
the performance this has not been investigated further.
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Figure 7: lllustrating how the estimation performance is improveithggane depar-
ture detection. This is the same data using in Figure 2, mietimates from the
filter based on change detection is also included.

4 Further enhancement

In this section, we introduce a way of correcting for the ethat is caused due to the fact
that the wrong model is used during the detection phase. ddeeis to store old mea-
surementgy;, input signalsu,, estimatesi,, and covariance matriceg,, in a memory.
We propose aefiltering scheme, that on detection at timyg,m, the filter is rerun with
the correct model between timé,aangeandtamm in order to correct for the error that is
caused by using the wrong model. The estimate at tig, is then replaced with the
estimate that is obtained using the correct model. A schienfiastration of this idea is

given in Figure 8.

Yt Tyjp—1
Estimation gt
Ut Algorithm
Ptlt—l
Ty¢ Py
Memory

Detector

Alarm

Figure 8: The change from Figure 5 is that a memory block has been iadluthe
memory block stores the recent history of the measuremiepts;, signals, estimates
and their covariance.
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In our application, this means th@j is increased at timé:hangeand then kept high
according to the previous section so that the total time lsgba time of a typical lane
change. A result of this is typically a jump in the estimatehat detection times. Two
detailed examples of the behavior of the enhanced algordierillustrated in Figure 9
and Figure 10. The performance for a five minute data set iwsho Figure 11. From

x10°

I "
15+ — No detection H
---- Detection
—— Detection, enhanced
1r True i
05 R
B L N |
= 0 ‘\1/\v'/’:4\_-h__»x
e
3 P
z -0.5F 1
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-1.5F R
2+ 4
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Figure 9: The behavior of the the three approaches when the lane chadgiected.
The filter with no detection scheme deteriorates, the filtiéh wetection converges
when switching to the correct model, and the enhanced detegiyorithm jumps to
the value it would have had if it had used the correct modehftbe beginning of
the lane change.

this figure it is interesting to note that in the last turn,uard time4500 s, there is a time
delay in the filter which is not present in any of the other surithis is due to the fact
that there are no vehicles to support the estimate and tleusutive can only be detected
robustly once we have entered it ourselves.

5 Alternative methods

The paper by Weiss et al. (2004) discuss the use of a filtedb@sénteracting multiple
models (IMM) for detecting lane changes. The goal of theirknis to improve the po-
sition estimates of surrounding vehicles, rather than geametry. Of course, the same
approach could be used in an integrated road geometry aedtdtdacking model as the
one proposed in this paper in order to also improve road gegrastimation.

In an IMM approach, two or more models are run simultaneoasly they are each
given a probability, of being the “correct model”, based beit residuals. The final
estimate is then formed as a weighted average, using thalpitities as weights. We
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Figure 10: Same plots as in Figure 9 but for a different time interval.

believe that the methods we propose here, based on the CU8jdkitlam, have several
advantages. Firstly, a lane change is a distinct event,tserene or the other model is
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Figure 11: This figure shows the curvature estimate for a five minute slet&ol-
lected in an authentic traffic environment, compared torhe ¢urvature value. The
vertical lines indicates detection of lane changes. Ittsrgsting to note that in the
last turn, around tima500 s, there is a time delay in the filter which is not present
in any of the other turns. This is due to the fact that therenareehicles to support
the estimate and thus the turn can only be detected robustl/we have entered it.
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valid, not something in between. This means that concdptitais preferable to switch
models completely rather than averaging two models. Ségaié CUSUM algorithm
provides a clear indication that something has happentrrthan a continuous change
in probabilities and this indication can be used to take epate countermeasures. For
example, this is necessary for initiating the refilteringesme presented in Section 4.

Another idea that could be interesting to investigate isse a two-sided test. In
the proposed method, the absolute value of the residualsisegsin combination with a
one-sided test. An alternative could be to use the signeduals and a two-sided test,
which might eliminate some of the false alarms. The reasdhasan alarm could be
triggered by a driver who is "wobbling" in the lane but actyalot changing lanes. On
the other hand, it could be argued that we would benefit frotaatieg any kind of lateral
movement, not just lateral movement related to a lane change

6 Conclusion

By detecting behavior that deviates from the model in a fragksystem, we can rely

more on the model when it in fact is accurate. In the presepitcgtion, this means that
the road geometry estimate, which is supported by the mati@urrounding vehicles,

can be significantly improved. A CUSUM algorithm is used, efhhas the advantage of
giving a distinct alarm when a change has occurred. It is@®seluded that the method
of correcting for the error that was caused by using the wrondel during the detection
phase does give further improvements of the estimationracgu
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Appendix — Dynamic Model

In this appendix the underlying dynamic model that is usedubhout the paper is dis-
cussed in more detail. The derivation is performed in camtirs-time. The discrete-time

dynamics are obtained using the standard sampling fornRugl{, 1996), under the as-
sumption of piecewise constant input signals.

System Model

The coordinates: andy denote the position in the curved coordinate system, wisch
attached to the road according to Figure 4. The longitudioardinatex is relative,
i.e., z is the longitudinal distance between the host vehicle ardrdicked object. The
motion model for the surrounding vehicles is greatly siffigdi in using the curved, rather
than a Cartesian coordinate system. For example, it all@its use the equatioff =

0, to model the assumption that the surrounding vehicles fofllbw their own lanes.
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In the longitudinal directioni’ = —a cos(¥,e) will be used, where: is the measured
acceleration of the host vehicle, if available. If there abemeasurements of the host
vehicle’s acceleration it is simply modeled as a random whl&nce, we typically have
the following motion model:

it =, (39)
0" = —acos(Vre), (3b)
y' =0, (3c)

wherev’ is the longitudinal relative velocity of vehiclgi.e., the time derivative af?. It

is affected by the host vehicle acceleration since it iséativevelocity that is modeled.
For the road geometry parameters we first clarify that is the angle between the host
vehicle and the lane, see Figure 4, wher@ass is the angle to some fix reference. A
relationship between the two can be obtained by differéntial ;¢ w.r.t. time,

Ure = Wapst+v = (4a)

. . . . v .
Urel = Waps+ ¥ = Paps+ - = Waps+ cov, (4b)

wherer is the current road radius,the velocity andy denotes the angle between the lane
and some fix referencd,,sis typically measured using a yaw rate sensor. Furthermore,

yoff = Sin(\I/re|)U ~ \I/reIU- (5)

Using T = 0 andé; = 0 continuous-time motion equations for the road model can be
written

W =0, (6a)
¢p = ve, (6b)
él = 07 (6C)

and for the motion of host vehicle we have

Yoft = VWrel, (7a)
\i/rel =vcy + \i’abs- (7b)

To account for uncertainties in the model we add zero meatev@aussian noise to the
corresponding discrete-time equations. The covarian¢gaas areQoad, Qnost aNdQob;

for the road, host and object states, respectively. NoteQha defined in Section 1 is the
diagonal component af.p; corresponding to (3c), the lateral movement of the tracked
vehicles.

Measurement Model

The measurements for the host vehicle &{g, c¢{*, L™ and R™, where the two latter
are the distances to the left and right lane marking, seer&igiu Superscripin is used
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to denote measured quantities. The (relative) positigh, ™) of the surrounding ve-
hicles is measured using radar. Note that the radar delmeesurements resolved in the
Cartesian coordinate system, which is attached to the leeflibe resulting measurement
model is,

L™ = W/Q — Yoft, (8a)

R™ = —W/2 — yof, (8b)

\If'fg’] = ‘I’rela (80)

¢t = co, (8d)

(Eon) = Rk (| vyt (8e)
gim co (14 coy") cos(cox’) — 1 — coyott )’

whereR(—,g) is a rotational matrix performing clockwise rotation®f radians. Fur-
thermore, zero mean white Gaussian measurement noisedad &l@). The covariance
matrices arenost and Rop;j for the host/road and object states, respectively.
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Notation

Note that all vectors are column vectors. In general, lovasedetters are used to denote
vector valued and scalar variables and upper case leteerssad for matrix valued vari-
ables. However, there might be exceptions from these gendes due to conventions.
The same symbol can be used for different purposes. Theipaingotation is listed
below, any deviations from this is explained in the text.

Symbols and Operators

State vector

Measurement signal

Known input signal

Linear state variable

Nonlinear state variable

State variable estimated using the particle filter
State variable estimated using the Kalman filter
Measurement noise

Process noise

Parameter vector

Parameter vector

Covariance matrix

Covariance matrix for the process noisg
Covariance matrix for the measurement neise
Measurements up to tim¥, {y1,y2,...,yn}
Length of the observed data set

Initial value for the state:

255
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Py Initial value for the covarianc®

T Estimator or estimate af, determined by the context

By Estimate ofr at timet, given the information available at time
t, i.e., the filtered estimate

Ty npe Estimate ofr at timet + k, given the information available at

timet. k < 0 means smoothed estimate, and> 0 means
predicted estimate

& Residual vector, innovations

f) Equations for the system model

h(-) Equations for the measurement model

F, Linearized state update matrix

H, Linearized measurement relation matrix

K Kalman gain

N (m, P) Normal (Gaussian) distribution with mean valusand covari-

ance matrixP
N(z|m,P) Normal (Gaussian) probability density function with mean
valuem and covariance matri®

d (x) Normal (Gaussian) distribution function

U(a,d) Uniform distribution over the intervdh, b]

q Unit quaternion

cr Position of the camera center, expressed in the F-system

vt Velocity of the camera center, expressed in the F-system

R.¢ Rotation matrix, expressing rotation from the F-systemhto t
C-system

w Angular velocity

I, Unit matrix of dimensiom

0, Null matrix of dimensiom

M Number of particles

t(x) Target probability density function

s(x) Sampling probability density function

xif; Particlei

qt(” Importance weight

cjf” Normalized importance weighit

5(-) Dirac delta function

Okl Kronecker delta function

Do () Probability density function af

p(x) Short form of above

Dy (2, Y) Joint probability density function aof andy

p(x,y) Short form of above

Paly(z]y) Conditional probability density function of giveny



Notation 257

p(zly) Short form of above

po(Yn) Family of probability density functions, indexed by the gar
eterd

Par(+) Probability density function approximated usifify samples

L Length of the sliding window

t Time

T, Sample time

v Drift term in the CUSUM algorithm

VN (0,Yn,Uy) Criterion function to be minimized

L(-) Log-likelihood function

) Likelihood function

g(+) Inference function

G(e™) Transfer function

W Lane width

Qrat Covariance matrix for the noise added to the lateral pasitifo
a vehicle

Yoff Host vehicle lateral position

Wyl Host vehicle heading angle relative to the lane

Co Road curvature parameter

c1 Road clothoid parameter

R” The set of real numbers imdimensions

RT The set of positive real numbers

r;[P] Thei'" row degree of a polynomial matriR(s)

diag(a) A diagonal matrix withe as diagonal entry

& Time derivative ofr

R(B) Range of the matrix8

= Equal by definition

~ Denotes “is distributed according to”

x Proportional to

€ Belongs to

v For all

28, Almost sure convergence

LN Convergence in distribution

arg,min f(x)

Pr(z < K)
det A
dim A
Tr A

AT

A—l

The value ofr that minimizesf (x)

Probability that the random variableis less thank’
Determinant of matrix4

Dimension of matrixA

Trace of matrix4

Transpose of matrixi

Inverse of matrix4
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L]
sign(x)
Cov{z}
E{z}
E{z|y}

Eek {xt|YN}
Var{z}

min

max

ol

Rounding downwards to nearest integer
Sign function

Covariance matrix of the random variahle
Expectation of the random variabte
Conditional expectation of the random variablegiven that
the random variablg = y

Expected value w.r.ipp—p (X n|Yn)
Variance of the random variable

Minimize

Maximize

Weighted vector normj|z||4 = 27 Az
Absolute value

Abbreviations and Acronyms

a.s.
flops
ii.d.

pdf

s.t.

W.I.L.
ABS
ACC
APF
AR
ARMAX
ARX
CUSUM
DAE
DCM
DGPS
DME
EKF

EF

EM

FIR

GIS
GPB
GPS
GS
GPF
GSPF
HMM

almost sure

Floating-Point Operations
independent identically distributed
probability density function
subject to

with respect to

Anti-lock Braking System
Adaptive Cruise Control

Auxiliary Particle Filter
Augmented Reality
AutoRegressive Moving Average with eXternal input
AutoRegressive with eXternal input
CUmulative SUM
Differential-Algebraic Equation
Direction Cosine Matrix
Differential GPS

Distance Measuring Equipment
Extended Kalman Filter
Equivalent Flop

Expectation Maximization

Finite Impulse Response
Geographic Information System
Generalized Pseudo-Bayesian
Global Positioning System
Gaussian Sum

Gaussian Particle Filter

Gaussian Sum Particle Filter
Hidden Markov Model
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IMM
IMU
INS
IR

IS

KF
LMI
LS
MAP
MC
MCMC
MEMS
MFD
MHE
ML
MMS
MMSE
MPC
MPF
MSE
MV
NARMAX
ODE
PF
POI
QP
RLS
RMSE
RPEKF
RPF
RTS
SDAE
SIR
SIS
SLAM
SO
SVD
TAP
UKF
WLS
YALMIP

Interacting Multiple Model

Inertial Measurement Unit

Inertial Navigation Systems
Infrared

Importance Sampling

Kalman Filter

Linear Matrix Inequality
Least-Squares

Maximum A Posteriori

Monte Carlo

Markov Chain Monte Carlo
MicroElectronic Mechanical Systems
Matrix Fraction Description
Moving Horizon Estimation
Maximum Likelihood

Minimum Mean Square

Minimum Mean Square Error
Model Predictive Control
Marginalized Particle Filter

Mean Square Error

Minimum Variance

Nonlinear ARMAX

Ordinary Differential Equation
Particle Filter

Point-of-interest

Quadratic Program

Recursive Least Squares

Root Mean Square Error

Range Parameterized Extended Kalman Filter
Regularized Particle Filter
Rauch-Tung-Striebel

Stochastic Differential-Algebraic Equation
Sampling Importance Resampling
Sequential Importance Sampling
Simultaneous Localization and Mapping
Special Orthogonal

Singular Value Decomposition
Terrain Aided Positioning
Unscented Kalman Filter
Windowed Least Squares
Yet Another LMI Parser
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acceleration, 8, 201, 203, 209, 252
accelerometer, 8, 202—-204

Index

Bayesian bootstrap, 173
bearing, 226

acceptance —rejection sampling, 55-57, 1B8arings-only target trackingeetarget

acceptance probability, 53, 190

active safety system, 2

adaptive cruise control, 2, 230

aircraft navigationseenavigation system

aircraft positioning,seepositioning appli-
cations

alarm, 44, 245, 247, 251

angular velocity, 8, 201, 204, 207

anti-lock braking system, 2

artificial marker, 7, 201, 202, 208

ARX model, 162

augmented reality, 201

automotive positioningseepositioning ap-
plications

automotive safety system, 2

automotive sensors, 3

automotive target trackingeetarget track-
ing applications

auxiliary test statisticseechange detection

auxiliary particle filter,seeparticle filter
azimuth, 136, 231, 232

band limited noise, 146

Bayes’ theorem, 33, 111, 132, 163, 174,

175,190, 191

tracking applications

bias estimation, 227

bilinear model, 178, 186

black box system identificatiosgesystem
identification

bootstrap, 54

burn-in, 56

camera, 7, 201, 206
camera center, 203, 208
model, 206
pinhole model, 206
Cartesian coordinate system, 226, 230
central limit theorem, 52, 110, 174
change detection, 43, 49, 245
auxiliary test statistic, 44, 247
averaging, 44, 246
distance measure, 44, 246
stopping rule, 44, 246, 247
thresholding, 44, 246
chaotic model, 179
Chapman—Kolmogorov equation, 34
collision avoidance, 2, 3, 107, 116, 230,
241
colored noise, 115

261
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computer controlled system, 146 Euler symmetric parameters, 205
concave function, 160 Euler-Rodrigues parameters, 205
conditionally linear, 107, 111 expectation maximization, 72, 185-188
constrained state estimatioseestate esti- system identification, 75

mation experiment design, 70
constraints, 45, 47, 160 extended Kalman filteseeKalman filter
continuous-time white noise, 147 external signal, 22
convex optimization, 45, 47, 159, 160 ) _
convex optimization estimation, 161 fault diagnosis, 49
convex optimization filtering, 48, 162, 163eature, 8, 202, 206
coordinate system, 203 feature displacement, 202, 206, 208

feature extraction, 9, 206

coordinated turn model, 4, 227
correlated noise, 123 feedback, 2
Cramér-Rao, 106, 224 fictitious measurement, 165
cross-covariance, 114, 150 filter banks, 49 _ _
cumulative sum (CUSUM), 44, 45, 243 fixed-interval smoothingseesmoothing
curve fitting, 45 N fixed-lag smoothingseesmoothing
curved coordinate system, 5, 230, 242, 24}jXed-point smoothingseesmoothing

251 floating-point operations, 133

focal length, 206

damped Gauss — Newton, 186 forward-backward smoothing, 67

dead-reckoning, 201, 202 free-D system, 209

depth, 207 Gauss — Newton, 195

depth.database, 221 Gaussian particle filteseeparticle filter
descriptor system, 22, 146, 147, 153, 162Gaussian sum, 39, 217

detection, 6, 247
diagonal model, 109
differential GPS, 121, 227
differential-algebraic equation, 22, 145, 153

example, 151

linear, 29, 145

standard form, 30, 147, 152

Gaussian sum particle filteseeparticle fil-
ter

eneralized causality principle, 24

eneralized pseudo-Bayesian, 39

generalized real Schur form, 148

generalized Sylvester equation, 148

generalized system, 22, 146

. stochastic, ?3’ 29,145 geographic information system, 116, 226,
Dirac delta function, 51 297
Direction Cosine Matrix, 204 global maximum, 195

d@stance measureeechange_ detection global optimum, 47, 160
distance measurement equipment, 227 gram—Schmidt procedure, 123, 132

di.sturbance, 146 gravity, 203
drift term, 45 _ _ gray box identificationseesystem identifi-
Dymola, seeobject-oriented modeling cation

) ) gyroscope, 8, 202, 203, 207
effective sample size, 60

empirical density function, 51, 52 Hammerstein — Wiener structure, 185
equivalent flop, 12, 77, 131, 134, 221 heading, 119
Euler angles, 205 hidden Markov model, 25, 159, 164

Euler approximation, 208 Hilbert space, 40
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homography, 202 lane guidance, 3, 230
Laplace transform, 147

image feature, 206, 209 latitude, 229

image plane, 206, 208 law of large numbers, 52

image processing, 3, 201 least-squares, 32, 46

implicit measurement, 23, 207 weighted, 41, 45, 163

implicit system, 22, 146 windowed, 48

importance function, 53, 60 likelihood function, 57, 186, 224

importance sampling, 53, 57, 190 limit distribution. 53

:mpalrinc?c?n\?ﬁ:ggiili?‘lilség linear regression, 75, 161, 177,178

Imp Y, linear state-space modekestate-space

impulse response, 21 model

:Eg(r)trigﬂ(e;triedsatgbgz 187 linear sub-structure, 27, 51, 63, 107, 115,
’ 122,131, 215, 217

inertial measurement unit, 8, 202 éinearized Kalman filterseeKalman filter
inertial navigation system, 106, 118, 226, .
9 y local minima, 75, 166, 186, 195

228

inertial sensor, 201, 203, 206, 208 local optimum, 47, 160
inertial system, 203 log-concave, 48, 159, 160, 163, 164

inference function, 174 log-likelihood, 71, 73, 188

infrared, 226, 231 longitude, 229

initial parameter, 193

innovation form, 162, 178 manifold, 205

innovation process, 40, 43 map information, 23

instrument landing system, 202 marginalization, 64, 72, 107, 108, 162, 172,
integrated aircraft navigation, 118 174

integrated navigation, 201 marginalize, 161

interacting multiple model, 39, 243, 249 marginalized particle filter, 4, 5, 28, 63, 64,
internal variable, 22, 146, 150 72, 75, 105, 108, 131, 171, 174,
1t6 calculus, 23 215, 217, 219

iterated EKF, 38 complexity analysis, 131, 133, 221

quantization, 223
markerbased, 201
markerless, 202
Markov chain Monte Carlo method, 51, 53,

Jacobian, 186

Jensen’s inequality, 73, 188
jittering, 60

jump Markov linear system, 113

65
Kalman filter, 11, 41, 63, 64, 150, 174, 18é/larkov property, 24, 33, 111, 190
descriptor system, 154 matrix fraction description, 149

differential-algebraic equation, 151 maximum a posteriori, 36, 46, 159, 160
extended, 4, 5, 11, 37, 38, 75, 10enaximum likelihood, 10, 36, 71, 185-187,

117, 217, 245 224
linearized, 37 measure theory, 25
unscented, 39 measurement model, 10, 22, 24, 252
Kronecker canonical form, 30 measurement noise, 10, 25
Kronecker delta function, 29 measurement update, 41

Kullback-Leibler information, 73 Metropolis — Hastings algorithm, 56
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Metropolis — Hastings independence
sampling, 56, 190

midriser quantizer, 223

minimum mean square error, 36

minimum variance, 36

missing data, 47

missing data, 72, 75, 187, 188

mixed linear/nonlinear state-space
model,seestate-space model

model, 21

model predictive control, 45, 47, 48

model uncertainty, 47

Modelica,seeobject-oriented modeling

motion model, 5, 202, 226, 251

moving horizon estimation, 48

NARMAX, 185
navigation system, 202
aircraft, 105, 107, 202
augmented reality, 7, 201
automotive, 2, 3
underwater, 107
neural network, 185
Newton’s second law, 204
nilpotent matrix, 30, 147
non-convex, 47, 49, 72, 160, 187, 205
noncausal system, 146
nonlinear smoothing, 189
nonlinear state estimatiosee
state estimation
nonlinear state-space modske
state-space model
nonlinear system identificatiosee
system identification
nuisance variable, 161, 208

object-oriented modeling, 22, 145
Dymola, 22, 145
Modelica, 22, 145
Omola, 22, 145
SimMechanics, 145
observer, 42
observer canonical form, 178
Omola,seeobject-oriented modeling
optical distortion, 206

orientation, 7, 204, 205

parameter estimatiorseesystem identifi-
cation
particle smoother, 192
particle filter, 11, 40, 56, 58, 64, 105, 108,
171,173,174, 186, 189, 191, 207,
218
algorithm modifications, 60
auxiliary, 60, 115
Gaussian, 60, 115
Gaussian sum, 60
implementation, 61
regularized, 60
resample, 58, 62
system identification, 74, 75, 171
particle methodsseesequential Monte
Carlo methods
particle smoother, 65, 66, 75, 185, 191
passive safety system, 2
perfect sampling, 52
pinhole model, 206
pitch, 119
point estimate, 35, 68
point-mass filter, 39, 106, 217
polynomial matrix, 149
row degree, 149
row reduced, 149
pose, 208
positioning, 23, 107
positioning applications, 116, 225-227
aircraft, 226, 228
automotive, 226, 230
underwater, 226, 227
prediction error method, 71
prior, 24, 36
prior information, 159, 164
process noise, 10, 25
proper, 150

guadratic program, 46, 47
guantization, 223

radar, 4, 136, 223, 226, 230, 232, 241, 244,
253

ordinary differential equation, 23, 146, 148adar altimeter, 119, 228
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radar target trackingseetarget tracking ap- fixed-interval smoothing, 42
plications fixed-lag smoothing, 43
random number generation, 53, 189 fixed-point smoothing, 43
random walk, 75, 171, 172 sonar, 226, 227
range, 136 spline, 39
range parameterized extended Kalman fisquare-root factorization, 42, 43
ter, 39, 231 state augmentation, 75, 172
Rao-Blackwellization, 64, 107, 174 state estimation, 31, 159
Rao-Blackwellized particle filtesee change detection, 43, 245
marginalized particle filter constrained, 47, 159, 160
Rauch-Tung-Striebel formulas, 43 convex optimization, 45, 159
refiltering, 248 deterministic, 45
regularized particle filterseeparticle filter linear, 40
resample, 54, 58 nonlinear, 8, 10, 31, 36, 75
residual, 245 smoothing, 42, 65, 164, 186, 189
residual sampling, 59 state-space model, 23, 25, 175
Riccati recursion, 117, 135, 165, 176, 222 linear, 29, 164
rigid body, 204 mixed linear/nonlinear, 4, 27, 64, 105
road geometry, 3, 4, 6, 226, 230, 241 nonlinear, 10, 25, 105

road model, 252

robust estimation, 48

roll, 119

root mean square error, 139
rotating masses, 151

rotation parameterization, 205
rotation group, 205

steering wheel angle, 5

stochastic integration, 51

stopping rule seechange detection
stratified sampling, 59

strictly white noise, 26

subspace identificatiorseesystem identi-

fication
rotation matrix, 204 . .
. : f , 24,69, 162, 1
roughening noise, 60, 171, 172, 175, 179 SyStirirl]irI]dle:“;Zaﬂon 69, 162, 188
black box, 70

sample impoverishment, 59

sampling density, 53, 190

sampling importance resampling, 53, 55
scene model, 9, 202

see-through head-mounted display, 7
semi-state system, 22, 146

sensor fusion, 1, 3, 6, 9, 10, 225, 234, 242
sensor network, 223 ) )
sensor offset, 115 particle filter, 171

sequential Monte Carlo method, 11, 39, 51, particle methods, 74
74 subspace, 178

subspace method, 71, 171
validation, 70

differential-algebraic equation, 71

expectation maximization, 72, 74, 75,
185, 189

experiment design, 70

gray box, 70, 178

marginalized particle filter, 75, 171

nonlinear, 11, 69, 171, 185, 186

SimMechanicsseeobject-oriented model-

ing
simple random resampling, 59 system model, 10, 24, 251
singular system, 22 systematic sampling, 59, 60

singular value decomposition, 148
smoothing, 42, 65, 188 target density, 53, 189
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target tracking applications, 107, 116, 136,
225, 226, 230
automotive, 226, 230
bearings-only, 117, 226, 231
radar, 136, 226, 232
Taylor expansion, 38, 227
terrain elevation database, 119, 210, 228,
229
terrain navigation, 116
terrain-aided positioning, 106, 118
time update, 41
transfer function, 21, 149, 162
causal, 155
proper, 149, 150
transition probability, 164
triangular model, 111, 117
two-filter formula, 34, 67

underwater depth map, 227

underwater positioningseepositioning ap-
plications

unimodular matrix, 149

unit quaternion, 203, 205

unmodeled dynamics, 146

unscented Kalman filteseeKalman filter

validation, 70

variance reduction, 174, 221

vector space, 205

vision, 4, 5, 8, 206, 223, 226, 230, 241, 244
\olterra series, 21, 185

weight matrix, 46

weighted bootstrap, 54

weighted least-squaresegeleast-squares
wheel speed, 5, 226, 230

white noise, 26, 146, 148, 160
whiteness test, 49

Wiener — Kolmogorov filtering theory, 32
windowed least-squareseeleast-squares

yaw rate, 5
yaw rate sensor, 252
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