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Abstract

This thesis deals with estimation of states and parameters in nonlinear and non-Gaussian
dynamic systems. Sequential Monte Carlo methods are mainlyused to this end. These
methods rely on models of the underlying system, motivatingsome developments of the
model concept. One of the main reasons for the interest in nonlinear estimation is that
problems of this kind arise naturally in many important applications. Several applications
of nonlinear estimation are studied.

The models most commonly used for estimation are based on stochastic difference
equations, referred to as state-space models. This thesis is mainly concerned with models
of this kind. However, there will be a brief digression from this, in the treatment of the
mathematically more intricate differential-algebraic equations. Here, the purpose is to
write these equations in a form suitable for statistical signal processing.

The nonlinear state estimation problem is addressed using sequential Monte Carlo
methods, commonly referred to as particle methods. When there is a linear sub-structure
inherent in the underlying model, this can be exploited by the powerful combination of
the particle filter and the Kalman filter, presented by the marginalized particle filter. This
algorithm is also known as the Rao-Blackwellized particle filter and it is thoroughly de-
rived and explained in conjunction with a rather general class of mixed linear/nonlinear
state-space models. Models of this type are often used in studying positioning and tar-
get tracking applications. This is illustrated using several examples from the automotive
and the aircraft industry. Furthermore, the computationalcomplexity of the marginalized
particle filter is analyzed.

The parameter estimation problem is addressed for a relatively general class of mixed
linear/nonlinear state-space models. The expectation maximization algorithm is used to
calculate parameter estimates from batch data. In devisingthis algorithm, the need to
solve a nonlinear smoothing problem arises, which is handled using a particle smoother.
The use of the marginalized particle filter for recursive parameter estimation is also inves-
tigated.

The applications considered are the camera positioning problem arising from aug-
mented reality and sensor fusion problems originating fromautomotive active safety sys-
tems. The use of vision measurements in the estimation problem is central to both appli-
cations. In augmented reality, the estimates of the camera’s position and orientation are
imperative in the process of overlaying computer generatedobjects onto the live video
stream. The objective in the sensor fusion problems arisingin automotive safety systems
is to provide information about the host vehicle and its surroundings, such as the posi-
tion of other vehicles and the road geometry. Information ofthis kind is crucial for many
systems, such as adaptive cruise control, collision avoidance and lane guidance.
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Sammanfattning

Denna avhandling behandlar skattning av tillstånd och parameterar i olinjära och icke-
gaussiska system. För att åstadkomma detta används huvudsakligen sekventiella Monte
Carlo-metoder. Dessa metoder förlitar sig på modeller av det underliggande systemet,
vilket motiverar vissa utvidgningar av modellkonceptet. En av de viktigaste anledningarna
till intresset för olinjär skattning är att problem av dettaslag uppstår naturligt i många
viktiga tillämpningar. Flera tillämpade olinjära skattningsproblem studeras.

De modeller som används för skattning är normalt baserade påstokastiska differen-
sekvationer, vanligtvis kallade tillståndsmodeller. Denna avhandling använder huvudsak-
ligen modeller av detta slag. Ett undantag utgörs dock av de matematiskt mer komplice-
rade differential-algebraiska ekvationerna. Målet är i detta fall att skriva om ekvationerna
på en form som lämpar sig för statistisk signalbehandling.

Det olinjära tillståndsskattningsproblemet angrips med hjälp av sekventiella Monte
Carlo-metoder, även kallade partikelmetoder. En linjär substruktur ingående i den un-
derliggande modellen kan utnyttjas av den kraftfulla kombination av partikelfiltret och
kalmanfiltret som tillhandahålls av det marginaliserade partikelfiltret. Denna algoritm går
även under namnet Rao-Blackwelliserat partikelfilter och den härleds och förklaras för en
generell klass av tillståndsmodeller bestående av såväl linjära, som olinjära ekvationer.
Modeller av denna typ används vanligen för att studera positionerings- och målföljnings-
tillämpningar. Detta illustreras med flera exempel från fordons- och flygindustrin. Vidare
analyseras även beräkningskomplexiteten för det marginaliserade partikelfiltret.

Parameterskattningsproblemet angrips för en relativt generell klass av blandade lin-
jära/olinjära tillståndsmodeller. “Expectation maximization”-algoritmen används för att
beräkna parameterskattningar från data. När denna algoritm appliceras uppstår ett olinjärt
glättningsproblem, vilket kan lösas med en partikelglättare. Användandet av det margina-
liserade partikelfiltret för rekursiv parameterskattningundersöks också.

De tillämpningar som betraktas är ett kamerapositioneringsproblem härstammande
från utökad verklighet och sensor fusionproblemet som uppstår i aktiva säkerhetssystem
för fordon. En central del i båda dessa tillämpningar är användandet av mätningar från
kamerabilder. För utökad verklighet används skattningarna av kamerans position och ori-
entering för att i realtid överlagra datorgenererade objekt i filmsekvenser. Syftet med sen-
sor fusionproblemet som uppstår i aktiva säkerhetssystem för bilar är att tillhandahålla
information om den egna bilen och dess omgivning, såsom andra fordons positioner och
vägens geometri. Information av detta slag är nödvändig förmånga system, såsom adaptiv
farthållning, automatisk kollisionsundvikning och automatisk filföljning.
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1
Introduction

THIS thesis is concerned with the problem of estimating various quantities in nonlinear
dynamic systems. The ability to handle this problem is of paramount importance in

many practical applications. In order to understand how a system, for instance, a car, an
aircraft, a spacecraft or a camera performs, we need to have access to certain important
quantities associated with the system. Typically we do not have direct access to these, im-
plying that they have to be estimated based on various noisy measurements available from
the system. Both theoretical developments and applicationoriented studies are presented.
The interplay between the theory and application provides interesting and valuable in-
sights and it prevents us from developing fallacies concerning the relative importance
of various theoretical concepts, allowing for a balanced view. Furthermore, it enables a
systematic treatment of the applications.

This first chapter illustrates the kind of problems that can be handled using the theory
developed in this thesis, by explaining two applications. The first applications stems from
the automotive industry, where the current development of active safety systems require
better use of the available sensor information. The second applications deals with the
problem of estimating the position and orientation of a camera, using information from
inertial sensors and computer vision. Mathematically speaking, the two applications are
rather similar, they both result in nonlinear estimation problems. Another common char-
acteristic is that information from several different sensors have to be merged or fused.
Problems of this kind are commonly referred to assensor fusionproblems.

A unified approach to handle the sensor fusion problem arising in automotive safety
systems is introduced in Section 1.1 and exemplified in Section 1.2. The second ap-
plication is introduced in Section 1.3. In Section 1.4 we provide a brief mathematical
background to the problem under study. The outline is provided in Section 1.5. Finally,
the chapter is concluded with a statement of the contributions in Section 1.6.

1



2 1 Introduction

1.1 Automotive Navigation – Strategy

The automotive industry is an industry in change, where the focus is currently shifting
from mechanics to electronics and software. To quantify this statement the monetary
value of the software in a car is predicted to increase from4% in 2003, to13% in 2010
(Forssell and Gustafsson, 2004). The key reason for this substantial increase is the rather
rapid development of automotive safety systems (Gustafsson, 2005). This opens up for
many interesting applications and research opportunitieswithin the field of estimation
theory.

Automotive safety systems are currently serving as a technological driver in the de-
velopment and application of estimation theory, very much in the same way that the
aerospace industry has done in the past. In fact, the automotive industry is currently
faced with several of the problems already treated by the aerospace industry, for example
collision avoidance and navigation. Hence, a lot can probably be gained in reusing results
from the latter in solving the problems currently under investigation in the former. The
development within the aerospace industry is reviewed by McGee and Schmidt (1985).
Within the next10–20 years there will most certainly be similar reviews written,treat-
ing the development within the automotive industry, indeedan early example of this is
Gustafsson (2005).

The broadest categorization of automotive safety systems is in terms ofpassiveand
active systems. Passive systems are designed to mitigate harmful effects during acci-
dents. Examples include seat belts, air bags and belt pretensioners. The aim of active
systems is to prevent accidentsbefore they occur. To mention some examples of active
systems, we have ABS (Anti-lock Braking System), ACC (Adaptive Cruise Control)
and collision avoidance. More thorough reviews of existingand future systems are given
in Eidehall (2004), Jansson (2005), Danielsson (2005), Gustafsson (2005). There is an
interesting study by Eidehall (2004), where different potential active safety systems are
profiled with respect to accident statistics, system complexity and cost.

The current situation within the automotive industry is that each control system, read
active safety system, comes with the necessary sensors. Each sensor belongs to a certain
control system and it is only used by this system. This effectively prevents other systems
from using the, potentially very useful, information delivered by the sensor. This situation
is most likely to be changed in the future, concurrently withthe introduction of more con-
trol systems in cars. A unifying feature of all control systems is that they rely on accurate
state1 information. As Gustafsson (2005) points out, it is currently more important to have
accurate state information than advanced control algorithms. Indeed, it is often sufficient
to employ simple P(I)D controllers. Hence, it is more important what information to feed
back than how the actual feedback is performed.

The natural conclusion from the discussion above is that thedata from the differ-
ent sensors should be jointly analyzed to produce the best possible estimate of the state.
The state information can then be accessed by all control systems in the cars. This idea
is briefly illustrated in Figure 1.1. This approach is employed in the applied research

1Depending on which control system we are concerned with the state is obviously different. In the example
given in the subsequent section, the state contains information about the motion of the host vehicle and the
surrounding vehicles and the road geometry.
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Figure 1.1: The most important factor enabling future automotive safety systems
is the availability of accurate information about the state. The process of obtaining
this information is to a large extent dependent on a unified treatment of the sensor
information, as illustrated in this figure. The aim of this sensor fusion approach
is to provide the best information possible for as many purposes as possible. In
Section 1.2 this strategy is exemplified using the sensors inbold font.

project, SEFS2, where we take part. Similar ideas have previously been suggested, for
instance by Streller et al. (2002). The figure does not claim to contain an exhaustive list
of possible sensors, it is merely intended as an illustration of the idea. For an introduction
to automotive sensors, see, for example, Danielsson (2005), Nwagboso (1993), Strobel
et al. (2005). In the subsequent section an explicit exampleis provided, where the idea
presented above has been employed and evaluated using authentic traffic data.

1.2 Automotive Navigation – Example

The objective of this study is to calculate estimates of the road geometry, which are impor-
tant in several advanced control systems such as lane guidance and collision avoidance.
The sensors used to accomplish this are primarily radar and camera, with appropriate im-
age processing provided by the supplier. Hence, the idea exemplified here follows from
the general framework introduced in Figure 1.1. The result,using authentic traffic data,
will illustrate the power of a model based sensor fusion approach. Here, information

2SEnsor Fusion for Safety systems(SEFS) is an applied research project, with participants from AB Volvo,
Volvo Car Corporation, Mecel, Chalmers University of Technology and Linköping University. The financial
support is provided by the Intelligent Vehicle Safety Systems (IVSS) program.
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from several sensors is used to obtain better performance, than separate use of the sensors
would allow for. The vision system delivers estimates of theroad geometry, but the qual-
ity of these estimates is not sufficient for future automotive safety systems. The idea is
to improve the quality by using information available from the motion of the surrounding
vehicles, measured using the radar, together with information from the vision system. The
key assumption is that the leading vehicles will keep followingtheir lane, and their lateral
movement can thus be used to support the otherwise difficult process of road geometry
estimation. For example, when entering a curve as in Figure 1.2 the vehicles ahead will
start moving to the right and thus there is a high probabilitythat the road is turning to

Figure 1.2: When entering a curve, all vehicles start moving in the lateral direction.
This information can be used to support the road geometry estimate.

the right. This information, obtained from radar measurements, can be used to signifi-
cantly improve the rather crude road geometry estimates from the vision system. This
idea of jointly estimating the position of the surrounding vehicles and the road parameters
has previously been successfully applied, see, e.g., Eidehall (2004), Dellaert and Thorpe
(1997), Zomotor and Franke (1997), but as will be explained in the sequel the estimates
can be further enhanced.

In the subsequent sections this problem will be posed as an estimation problem, which
can be solved using the model based estimation algorithms presented in this thesis. First
of all a dynamic model is derived. More specifically, the resulting model is a mixed
linear/nonlinear state-space model, to be described in Chapter 2. The state estimation
problem arising from models in this form can be handled usingeither the marginalized
particle filter, thoroughly derived in Paper A, or the extended Kalman filter (EKF).

1.2.1 Dynamic Model

Dynamic motion models for various objects have been extensively studied and the litera-
ture contains hundreds of papers describing different models, bearing names like constant
velocity model, constant acceleration model, coordinatedturn model, etc. The resulting
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models are all expressed in the general classes introduced in Chapter 2. There are sev-
eral surveys available, dealing with various motion models, see, e.g., Bar-Shalom and Li
(1993), Li and Jilkov (2003, 2001), Blackman and Popoli (1999).

For the present study we need models describing the motion ofthe host vehicle, the
surrounding vehicles and the road. In the host vehicle we have access to sensors mea-
suring wheel speed, yaw rate, steering wheel angle, etc. This allows for a more detailed
model of the host vehicle, than what can be devised for the surrounding vehicles. We will
make use of the model derived by Eidehall (2004). For the present discussion it is only
the lateral motion model of the surrounding vehicles which is important. Further details
concerning the model are given in the Appendix of Paper I. Theessential feature of the
model is that it is based on a curved coordinate system, whichis attached to the road. This
will enable the use of very simple models for the surroundingvehicles. The key assump-
tion introduced above, that the surrounding vehicles will keep following the same lane,
is in discrete-time expressed asyi

t+1 = yi
t + wt, wt ∼ N (0, Qlat). Here,yi denotes the

lateral position of vehiclei andwt denotes Gaussian white noise which is used to account
for model uncertainties.

1.2.2 State Estimation

The resulting nonlinear state estimation problem can be solved using either the extended
Kalman filter (Eidehall and Gustafsson, 2004) or the marginalized particle filter (Eidehall
et al., 2005). For the present study the extended Kalman filter has been employed. The
estimate of the road curvature during an exit phase of a curveis illustrated in Figure 1.3.
To facilitate comparison, the true reference signal and theraw vision measurement of the
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Figure 1.3: Comparison of estimation performance from two filters, one with a
largeQlat and one with a smallQlat. The raw measurement signal from the image
processing unit is also included. Comparing this raw visionmeasurement to the
result from the filters clearly illustrates the power of a model based sensor fusion
approach.
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curvature are included as well. The true reference signal was generated using the method
proposed by Eidehall and Gustafsson (2006). Comparing thisraw vision measurement
to the result from the filters clearly illustrates the power of a model based sensor fusion
approach. In this particular scenario there are two leadingvehicles used to support the
curvature estimates, see Figure 1.2.

From Figure 1.3 it is clear that the filter with a low value ofQlat performs much
better, than the filter with a high value ofQlat, during the curve exit. This suggests that
the filter should be tuned using a low value forQlat. However, at time4270 s, when the
road is straight, the performance of this filter deteriorates. If the recorded video is studied,
see Figure 1.4, it can be seen that this performance degradation coincides exactly with a

Figure 1.4: A snapshot from the video just after time4270 s, when the lane change
of the tracked vehicle commences.

lane change of one of the leading vehicles. Obviously, this lane change violates the key
assumption, that the leading vehicles will keep driving in the same lane. In fact, all lateral
movements, such as lane changes, performed by the leading vehicle will be interpreted as
a turn in the road by the present approach. However, the filterusing a larger value ofQlat

does not suffer from this problem. This is natural, since a higher value ofQlat corresponds
to that the model allows for larger lateral movements of the leading vehicles. On the other
hand, since this model contains more noise than necessary, the quality of the estimates is
bad due to this. This is manifested by the time delay in the estimate during the curve exit
and its overall shaky behavior. This is actually an example of the fundamental limitation
present in all linear filters; the estimation performance isa compromise between noise
attenuation and tracking ability.

Based on the discussion above it is advisable to use a low value forQlat when the key
assumption holds and a larger value forQlat when it does not hold. This can be achieved
by detecting vehicles which violate the key assumption, i.e., performs lane departures,
and adapt the model accordingly. This is further investigated in Paper I, where it is shown
to result in significantly improved road geometry estimates.
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1.3 Navigation for Augmented Reality

The following navigation application stems from the area ofaugmented reality (AR),
where the idea is to overlay virtual, computer generated objects onto an authentic scene
in real time. This can be accomplished either by displaying them in a see-through head-
mounted display or by superimposing them on the images from acamera. There are
many applications for augmented reality, ranging from broadcasting and film production,
to industrial maintenance, medicine, entertainment and games, see Figure 1.5 for some
examples. For a survey of the field, see, e.g., Azuma (1997), Azuma et al. (2001).

(a) Visualization of virtual objects in a live
broadcast. Courtesy of BBC R&D.

(b) Assistance during maintenance.
Courtesy of Fraunhofer IGD.

(c) Adding virtual graphics to sports scenes.
Courtesy of BBC R&D.

(d) Visualization of virtual recon-
structions of archaeological sites.
Courtesy of Fraunhofer IGD.

Figure 1.5: Some examples illustrating the concept of augmented reality.

One of the key enabling technologies for augmented reality is to be able to determine
the position and orientation of the camera, with high accuracy and low latency. To ac-
complish this there are several sensors which can be used, see Welch and Foxlin (2002)
for an overview. Accurate information about the position and orientation of the camera is
essential in the process of combining the real and the virtual objects. Prior work in this re-
cent research area have mainly considered the problem in an environment which has been
prepared in advance with various artificial markers, see, e.g., Thomas et al. (1997), Caarls
et al. (2003), Yokokohji et al. (2000), You and Neumann (2001). The current trend is to
shift from prepared to unprepared environments, which makes the problem much harder.
On the other hand, the costly procedure of preparing the environment with markers will no
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Figure 1.6: Schematic illustration of the approach. The sensor fusion module is
basically a recursive nonlinear state estimator, using information from the inertial
measurement unit (IMU) and the computer vision system to compute an estimate of
the position and orientation of the camera.

longer be required. Furthermore, in outdoor situations it is generally not even possible to
prepare the environment with markers. The idea is to make useof natural features, occur-
ring in the real scene, as markers. This problem of estimating the camera’s position and
orientation in an unprepared environment has previously been discussed in the literature,
see, e.g., Simon and Berger (2002), Lepetit et al. (2003), Genc et al. (2002), You et al.
(1999), Klein and Drummond (2003). Furthermore, the work byDavison (2003), Davi-
son et al. (2004) is interesting in this context. Despite allthe current research within the
area, the objective of estimating the position and orientation of a camera in an unprepared
environment still presents a challenging problem.

The problem introduced above can in fact be cast as a nonlinear state estimation prob-
lem. This work is performed within a consortium, called MATRIS (2005)3, where the
objective is to solve this estimation problem in an unprepared environment, using the
information available in the camera images and the accelerations and angular velocities
delivered by an inertial measurement unit (IMU). A schematic illustration of the approach
is given in Figure 1.6. The IMU, which is attached to the camera, provides measurements
of the acceleration and the angular velocity of the camera. The accelerometers and the gy-
roscopes used to obtain these measurements are of MEMS type,implying small, low cost
sensors. However, these sensors are only reliable on a shorttime scale, due to an inherent
drift. This drift is compensated for using information fromthe computer vision system,

3Markerless real-time Tracking for Augmented Reality Image Synthesis (MATRIS) is the name of a sixth
framework research program, funded by the European Union (EU), contract number: IST-002013. It is an
interdisciplinary applied research project with the following partners; Fraunhofer IGD, BBC R&D, Christian-
Albrechts University, Xsens Technologies B.V. and Linköping University.
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which consists of a 3D scene model and real time feature extraction. The 3D model is
generated off-line using images of the scene or existing CADmodels (Koch et al., 2005).
It contains positions of various natural markers, which arethen detected in the images
using feature extraction techniques. This allows the computer vision system to deliver the
3D coordinates of a natural marker, together with the corresponding coordinates for this
marker in the present image. This information is then used together with the informa-
tion from the IMU in order to compute an estimate of the position and orientation of the
camera. This computation is performed in the sensor fusion block in Figure 1.6. Hence,
sensor fusion is interpreted as the process of forming an appropriate nonlinear state esti-
mation problem, which can be solved in real time, using the available sensor information
as efficient as possible. For further details regarding thisapproach, see Paper G and Hol
(2005).

The simultaneous use of information present in images and information from inertial
sensors is currently under investigation within many branches of science and there exists
a vast amount of interesting application areas. In the previous section it was illustrated
that this is a sub-problem arising in the development of automotive safety systems. A use-
ful prototype for investigating this problem has been developed in the MATRIS project,
see Figure 1.7. By using the data from this prototype together with the simultaneous lo-

Figure 1.7: This is a prototype developed in the MATRIS project. It consists of a
camera, an IMU and a low-power digital signal processor, used for pre-processing
of the sensor signals. Courtesy of Xsens Technologies B.V.

calization and mapping (SLAM) ideas of Davison (2003) it should be possible to derive
rather good estimates. Furthermore, the presence of the inertial information will probably
allow for the use of simple image processing. Perhaps very simple point-of-interest (POI)
detectors such as the Harris detector, introduced by Harrisand Stephens (1988), can be
used. Another interesting observation elaborated upon by Huster (2003) is that the vision
measurements can be interpreted as bearing measurements. This opens up for reuse of
the research performed on the bearings-only problem, see, e.g., Karlsson and Gustafsson
(2005) for an introduction to this problem using radar, sonar and infrared measurements.
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1.4 Mathematical Background

In the previous sections two applications were introduced,both resulting in asensor fu-
sionproblem, where the objective is to utilize existing and affordable sensors to extract as
much information as possible. The framework for nonlinear state estimation discussed in
this thesis provides a systematic approach to handle sensorfusion problems. This thesis
will, to a large extent, make use of a probabilistic framework in dealing with estimation
problems of this kind. Theexpressive powerof probability density functions opens up for
a rather systematic treatment of the estimation problem, where the main ideas can be con-
veyed, without getting lost in tedious matrix calculations. More specifically, we will make
extensive use of the theory originating from the work of the English Reverend Thomas
Bayes, published two years after his death in Bayes (1763). The distinguishing feature of
the Bayesian theory is that all unknown variables are considered to be random variables.
In the classical theory, represented by Fisher (1912, 1922)and his method ofmaximum
likelihood the parameters to be estimated are treated as unknown constants. In the liter-
ature there is a lively debate, concerning the two viewpoints, represented by Bayes and
Fisher, which has been going on for almost a century now. Somegood entry points into
this debate are provided by Box and Tiao (1992), Edwards (1992), Spall (1988), Robert
(2001). We will adopt a rather pragmatic viewpoint, implying that the focus is on using
the best approach for each problem, without getting too involved in the philosophical dis-
cussions inherent in the debate mentioned above. The Bayesian theory is extensively used
in discussing the state estimation theory. On the other hand, Fisher’s method of maximum
likelihood is employed in solving certain system identification problems. The probabilis-
tic framework for solving estimation problems is indeed very powerful. However, despite
this, it is still fruitful to consider the estimation problem as a deterministic problem of
minimizing errors. In fact, the two approaches are not as farapart as one might first think.

The estimation problems are handled usingmodel basedmethods. The systems under
study are dynamic, implying that the models will mostly be ofdynamic nature as well.
More specifically, the models are primarily constituted by stochastic difference equations.
The most commonly used model is the nonlinear state-space model and various special
cases thereof. The nonlinear state-space model consists ofa system of nonlinear differ-
ence equations according to

xt+1 = f(xt, ut, θ) + wt, (System model) (1.1a)

yt = h(xt, ut, θ) + et, (Measurement model) (1.1b)

wherext denotes the state variable,ut denotes the known input signal,θ denotes the static
parameters,yt denotes the measurements,wt andet denote the process and measurement
noise, respectively. Thesystem model(1.1a) describes the evolution of the state variables
over time, whereas themeasurement model(1.1b) explains how the measurements relate
to the state variables. The dynamic model must describe the essential properties of the
underlying system, but it must also be simple enough to make sure that it can be used
to devise an efficient estimation algorithm. In tackling thenonlinear state estimation
problem it is imperative to have a good model of the system at hand, probably more
important than in the linear case. If the model does not provide an adequate description
of the underlying system, it is impossible to derive an appropriate estimation algorithm.
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It is, surprisingly enough, possible to derive expressionsfor the complete solution to
the nonlinear state estimation problem. However, there is asevere limitation inherent
in these expressions, they involve multidimensional integrals which only permit closed-
form solutions in certain special cases. The most importantspecial case occurs when
all equations are linear and the noise terms are Gaussian in (1.1). The solution is in
this case provided by theKalman filter introduced by Kalman (1960). In the nonlinear,
non-Gaussian case approximate techniques have to be employed. A common idea is to
approximate the nonlinear model by a linear model and then use the Kalman filter for this
linearized model, resulting in the extended Kalman filter. There are many applications
where this renders acceptable performance, but there are also cases where the resulting
state estimates diverge. Furthermore, conceptually it is not a satisfactory solution, since in
a way it is solving the wrong problem. A solution, which is conceptually more appealing
can be obtained by keeping the nonlinear model and trying to approximate the optimal
solution. The reason is that the effort is now spent on tryingto solve the correct problem.
There is a class of methods, referred to assequential Monte Carlo methods, available for
doing this. A popular member of this class is the particle filter, introduced by Gordon
et al. (1993). An attractive feature with these methods is, as was noted above, that they
providean approximate solution to the correct problem, rather thanan optimal solution
to the wrong problem. The sequential Monte Carlo methods constitute an important part
of this thesis. They will be employed both for the nonlinear state estimation problem and
the nonlinear system identification problem.

1.5 Outline

There are two parts in this thesis. The objective of the first part is to give a unified view of
the research reported in this thesis. This is accomplished by explaining how the different
publications in Part II relate to each other and to the existing theory.

1.5.1 Outline of Part I

This thesis is concerned with estimation methods that employ dynamic models of the
underlying system in order to calculate the estimates. In order to be able to use these
methods there is of course a need for appropriate mathematical models. This motivates
the discussion on various model classes in Chapter 2. A rather general account of the
state estimation theory is given in Chapter 3. The sequential Monte Carlo methods are
then reviewed in Chapter 4. The nonlinear system identification problem is treated in
Chapter 5, where special attention is devoted to the use of the expectation maximization
algorithm. Finally, Chapter 6 provide concluding remarks consisting of conclusions and
some ideas for future research.

1.5.2 Outline of Part II

This part consists of a collection of edited papers, introduced below. Besides a short
summary of the paper, a paragraph briefly explaining the background and the contribution
is provided. The background is concerned with how the research came about, whereas the
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contribution part states the contribution of the present author. In Table 1.1 the papers are
grouped according to the nature of their main content.

Table 1.1: Grouping of the papers according to the nature of their main content.

Content Paper
Theory, state estimation A, B, C, D
Theory, system identification E, F
Applications G, H, I

Paper A: Marginalized Particle Filters for Mixed Linear/Nonlinear
State-Space Models

Schön, T., Gustafsson, F., and Nordlund, P.-J. (2005). Marginalized particle
filters for mixed linear/nonlinear state-space models.IEEE Transactions on
Signal Processing, 53(7):2279–2289.

Summary: The particle filter offers a general numerical tool to approximate the filtering
density function for the state in nonlinear and non-Gaussian filtering problems. While the
particle filter is fairly easy to implement and tune, its maindrawback is that it is quite
computer intensive, with the computational complexity increasing quickly with the state
dimension. One remedy to this problem is to marginalize out the states appearing linearly
in the dynamics. The result is that one Kalman filter is associated with each particle.
The main contribution in this paper is to derive the details for the marginalized particle
filter for a general nonlinear state-space model. Several important special cases occurring
in typical signal processing applications are also discussed. The marginalized particle
filter is applied to an integrated navigation system for aircraft. It is demonstrated that the
complete high-dimensional system can be based on a particlefilter using marginalization
for all but three states. Excellent performance on real flight data is reported.

Background and contribution: The results from Nordlund (2002) have been extended
and improved. The author of this thesis wrote the major part of this paper. The example,
where the theory is applied using authentic flight data, is the result of the Master’s thesis
by Frykman (2003), which the authors jointly supervised.

Paper B: Complexity Analysis of the Marginalized Particle Filter

Karlsson, R., Schön, T., and Gustafsson, F. (2005). Complexity analysis of
the marginalized particle filter.IEEE Transactions on Signal Processing,
53(11):4408–4411.

Summary: In this paper the computational complexity of the marginalized particle filter,
introduced in Paper A, is analyzed and a general method to perform this analysis is given.
The key is the introduction of the equivalent flop measure. Inan extensive Monte Carlo
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simulation different computational aspects are studied and compared with the derived
theoretical results.

Background and contribution: Several applications of the marginalized particle filter
are discussed in Paper H. During this work the need for a thorough theoretical investiga-
tion of the computational complexity of the algorithm was identified, motivating the work
reported in this paper. This investigation was carried out in close co-operation with Dr.
Rickard Karlsson.

Paper C: A Modeling and Filtering Framework for Linear
Differential-Algebraic Equations

Schön, T., Gerdin, M., Glad, T., and Gustafsson, F. (2003a).A modeling and
filtering framework for linear differential-algebraic equations. InProceedings
of the 42nd Conference on Decision and Control, Maui, Hawaii, USA.

Summary: General approaches to modeling, for instance using object-oriented software,
lead to differential-algebraic equations (DAE). For stateestimation using observed system
inputs and outputs in a stochastic framework similar to Kalman filtering, we need to
augment the DAE with stochastic disturbances, “process noise”, whose covariance matrix
becomes the tuning parameter. In this paper we determine thesubspace of possible causal
disturbances based on the linear DAE model. This subspace determines all degrees of
freedom in the filter design, and a Kalman filter algorithm is given.

Background and contribution: This paper is the result of work conducted in close co-
operation with Markus Gerdin. It provided a start for introducing stochastic processes in
differential-algebraic equations. The results have recently been refined by Gerdin et al.
(2005a). Finally, a paper presenting the resulting framework for system identification and
state estimation in linear differential-algebraic equations has been submitted to Automat-
ica (Gerdin et al., 2005b).

Paper D: A Note on State Estimation as a Convex Optimization
Problem

Schön, T., Gustafsson, F., and Hansson, A. (2003b). A note onstate estima-
tion as a convex optimization problem. InProceedings of the IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing, volume 6,
pages 61–64, Hong Kong.

Summary: We investigate the formulation of the state estimation problem as a convex
optimization problem. The Kalman filter computes the maximum a posteriori (MAP)
estimate of the state for linear state-space models with Gaussian noise. We interpret the
Kalman filter as the solution to a convex optimization problem, and show that the MAP
state estimator can be generalized to any noise with log-concave density function and any
combination of linear equality and convex inequality constraints on the state.

Background: This work started as a project in a graduate course in convex optimization
held by Dr. Anders Hansson. My thesis advisor Professor Fredrik Gustafsson came up
with the idea when he served as opponent for the thesis by Andersson (2002).
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Paper E: Particle Filters for System Identification of State-Space
Models Linear in Either Parameters or States

Schön, T. and Gustafsson, F. (2003). Particle filters for system identification
of state-space models linear in either parameters or states. In Proceedings
of the 13th IFAC Symposium on System Identification, pages 1287–1292,
Rotterdam, The Netherlands. Invited paper.

Summary: The potential use of the marginalized particle filter for nonlinear system iden-
tification is investigated. Algorithms for systems which are linear in either the parameters
or the states are derived. In these cases, marginalization applies to the linear part, which
firstly significantly widens the scope of the particle filter to more complex systems, and
secondly decreases the variance in the linear parameters/states for fixed filter complex-
ity. This second property is illustrated in an example of a chaotic model. The particular
case of freely parameterized linear state-space models, common in subspace identification
approaches, is bilinear in states and parameters, and thus both cases above are satisfied.

Background and contribution: At the ERNSI (European Research Network System
Identification) workshop held in Le Croisic, France in 2002 someone mentioned that it
would be interesting to investigate if the particle filter can be useful for the system identi-
fication problem. This comment, together with the invited session on particle filters held
at the 13th IFAC Symposium on System Identification, in Rotterdam, the Netherlands,
served as catalysts for the work presented in this paper.

Paper F: Maximum Likelihood Nonlinear System Estimation

Schön, T. B., Wills, A., and Ninness, B. (2006b). Maximum likelihood non-
linear system estimation. InProceedings of the 14th IFAC Symposium on
System Identification, Newcastle, Australia. Accepted for publication.

Summary: This paper is concerned with the parameter estimation of a relatively gen-
eral class of nonlinear dynamic systems. A Maximum Likelihood (ML) framework is
employed in the interests of statistical efficiency, and it is illustrated how an Expectation
Maximization (EM) algorithm may be used to compute these ML estimates. An essen-
tial ingredient is the employment of particle smoothing methods to compute required
conditional expectations via a sequential Monte Carlo approach. A simulation example
demonstrates the efficacy of these techniques.

Background and contribution: This work is a result of the author’s visit to the Univer-
sity of Newcastle in Newcastle, Australia during the periodFebruary – May, 2005. It was
conducted in close co-operation with Dr. Adrian Wills and Dr. Brett Ninness, both having
extensive experience in using the EM algorithm for system identification, whereas the
author of this thesis has been working with sequential MonteCarlo methods. We agreed
on that it would be interesting to try and combine those ideasin order to tackle a certain
class of nonlinear system identification problems.
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Paper G: Integrated Navigation of Cameras for Augmented Reality

Schön, T. B. and Gustafsson, F. (2005). Integrated navigation of cameras for
augmented reality. InProceedings of the 16th IFAC world Congress, Prague,
Czech Republic.

Summary: In augmented reality, the position and orientation of a camera must be esti-
mated very accurately. This paper proposes a filtering approach, similar to integrated nav-
igation in aircraft, which is based on inertial measurements as primary sensor on which
dead-reckoning can be based. Features extracted from the image are used as support-
ing information to stabilize the dead-reckoning. The imagefeatures are considered to be
sensor signals in a Kalman filter framework.

Background and contribution: This paper is a result of the MATRIS (2005) project,
which is an applied interdisciplinary research project. The contents is influenced by the
many interesting discussion held during the project meetings around Europe.

Paper H: The Marginalized Particle Filter in Practice

Schön, T. B., Karlsson, R., and Gustafsson, F. (2006a). The marginalized
particle filter in practice. InProceedings of IEEE Aerospace Conference,
Big Sky, MT, USA. Invited paper, accepted for publication.

Summary: This paper is a suitable primer on the marginalized particlefilter, which is
a powerful combination of the particle filter and the Kalman filter. It can be used when
the underlying model contains a linear sub-structure, subject to Gaussian noise. This
paper will illustrate several positioning and target tracking applications, solved using the
marginalized particle filter.

Background and contribution: In this paper we have tried to provide a unified inventory
of applications solved using the marginalized particle filter. The author of this thesis has
been involved in the theoretical background, the computational complexity part and the
applications concerned with aircraft terrain-aided positioning, automotive target tracking
and radar target tracking.

Paper I: Lane Departure Detection for Improved Road Geometry
Estimation

Schön, T. B., Eidehall, A., and Gustafsson, F. (2005). Lane departure detec-
tion for improved road geometry estimation. Technical Report LiTH-ISY-R-
2714, Department of Electrical Engineering, Linköping University, Sweden.
Submitted to the IEEE Intelligent Vehicle Symposium, Tokyo, Japan.

Summary: An essential part of future collision avoidance systems is to be able to predict
road curvature. This can be based on vision data, but the lateral movement of leading
vehicles can also be used to support road geometry estimation. This paper presents a
method for detecting lane departures, including lane changes, of leading vehicles. This
information is used to adapt the dynamic models used in the estimation algorithm in order
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to accommodate for the fact that a lane departure is in progress. The goal is to improve
the accuracy of the road geometry estimates, which is affected by the motion of leading
vehicles. The significantly improved performance is demonstrated using sensor data from
authentic traffic environments.

Background and contribution: The idea for this paper was conceived during one of the
authors frequent visits to Göteborg. The work was performedin close co-operation with
Andreas Eidehall.

Publication of related interest, but not included in this thesis:

Gerdin, M., Schön, T. B., Glad, T., Gustafsson, F., and Ljung, L. (2005b).
On parameter and state estimation for linear differential-algebraic equations.
Submitted to Automatica,

Eidehall, A., Schön, T. B., and Gustafsson, F. (2005). The marginalized par-
ticle filter for automotive tracking applications. InProceedings of the IEEE
Intelligent Vehicle Symposium, pages 369–374, Las Vegas, USA,

Schön, T. (2003).On Computational Methods for Nonlinear Estimation. Li-
centiate Thesis No 1047, Department of Electrical Engineering, Linköping
University, Sweden.

1.6 Contributions

The main contributions are briefly presented below. Since the title of this thesis isEsti-
mation of Nonlinear Dynamic Systems – Theory and Applications the contributions are
naturally grouped after theory and applications.

Theory

• The derivation of the marginalized particle filter for a rather general mixed lin-
ear/nonlinear state-space model. This is presented in Paper A together with a thor-
ough explanation of the algorithm.

• The analysis of the computational complexity of the marginalized particle filter,
presented in Paper B.

• A new approach to incorporate white noise in linear differential-algebraic equations
is presented in Paper C. This provided the start for a framework allowing for state
estimation and system identification in this type of models.

• Two algorithms are introduced to handle the system identification problem occur-
ring in a class of nonlinear state-space models, with affine parameter dependence.
In Paper E the marginalized particle filter is employed and inPaper F an algorithm
based on a combination of the expectation maximization algorithm and a particle
smoothing algorithm is derived.
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Applications

• The idea of using feature displacements to obtain information from vision measure-
ments is introduced in Paper G.

• Several applications of the marginalized particle filter are discussed in Paper H.

• A new approach to estimate road geometry, based on change detection, is presented
in Paper I.
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Part I

Topics in Nonlinear Estimation
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2
Models of Dynamic Systems

THE estimation theory discussed in this thesis is model based. Hence, the need for an
appropriate model is imperative. By appropriate we mean a model that is well suited

for its intended purpose. In other words, when a model is developed it must always be
kept in mind what it should be used for. The model must describe the essential proper-
ties of the underlying system, but it should also be simple enough to make sure that it
can be used to devise an efficient estimation algorithm. If the underlying model is not
appropriate it does not matter how good the estimation algorithm is. Hence, a reliable
model is essential to obtain good estimates. When we refer to amodel, we mean a system
of equations describing the evolution of the states and the measurements associated with
the application. Other models are for instance impulse responses, transfer functions and
Volterra series.

The purpose of this chapter is to provide a hierarchical classification of the most com-
mon model classes used here, starting with a rather general formulation. In deriving
models for a specific application the need for solid background knowledge of the appli-
cation should not be underestimated. Several examples of application driven models are
given in the papers in Part II. These models are all instancesof the general model classes
described in this chapter.

The most general model class considered is thestochastic differential-algebraic equa-
tions (SDAE), briefly introduced in Section 2.1. However, most of the models currently
used within the signal processing and automatic control communities are state-space mod-
els, which form an important special case of the SDAE model. In Section 2.2 we prepare
for the state-space model, which is introduced in Section 2.3. Finally, Section 2.4 con-
cludes the chapter with a discussion on how to include white noise into linear differential-
algebraic equations.

21
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2.1 Introduction

The current demand for modularity and more complex models have favored the approach
based onobject-oriented modeling, where the model is obtained by connecting simple
sub-models, typically available from model libraries. Examples of modeling tools of this
kind are Modelica, Dymola and Omola (Fritzson, 2004, Tiller, 2001, Mattsson et al.,
1998). The modeling software will then collect all the equations involved and construct
a resulting model, which involves both differential and algebraic equations. A general
formulation of such a model is given by

F (ż(t), z(t), ũ(t), θ, t) = 0, (2.1)

where the dot denotes differentiation w.r.t. time,z denotes the internal variable vector,ũ
denotes the external signals,θ denotes a time-invariant parameter vector andt denotes
time. Finally, the dynamics are described by the possibly nonlinear functionF , which
is a differential-algebraic equation(DAE)1. This introductory discussion is held using
continuous-time models, since that is typically where we have to start, due to the fact that
most physical phenomena are continuous. However, discrete-time models can be derived
from the continuous-time models. In (2.1) there are two important types of external sig-
nalsũ, which have to be treated separately. The first type is constituted byknown input
signals, denoted byu. Typical examples include control signals or measured disturbances.
The second type isunmeasuredinputs, denoted byw. These signals are typically used to
model unknown disturbances, which are described using stochastic processes.

A DAE that contains external variables described by stochastic processes will be re-
ferred to as a stochastic differential-algebraic equation. There will always be elements
of uncertainty in the models, implying that we have to be ableto handle SDAEs. As
of today there is no general theory available on how to do this. However, several spe-
cial cases have been extensively studied. In Brenan et al. (1996) and Ascher and Petzold
(1998) there is a thorough discussion on deterministic differential-algebraic equations.
There has also been some work on stochastic differential-algebraic equations (see, e.g.,
Winkler, 2003, Schein and Denk, 1998, Penski, 2000, Römischand Winkler, 2003), but
there is still a lot that remains to be done within this field. An intrinsic property of the
differential-algebraic equation is that it may hide implicit differentiations of the external
signalsũ. This poses a serious problem ifũ is described by white noise, because the
derivative of white noise is not a well-defined mathematicalobject. It is thus far from ob-
vious how stochastic processes should be included in this type of equation. In Section 2.4
and Paper C a proposition is given for how to properly incorporate white noise in linear
stochastic differential-algebraic equations.

Besides the model for how the system behaves, there is also a need for a model de-
scribing how the noisy measurements are related to the internal variables, i.e., a measure-
ment model. Since we cannot measure infinitely often, the measurements are obtained at
discrete time instances according to (in the sequel it is assumed that the sampling time is
1 for notational convenience)

H(y(tk), z(tk), u(tk), e(tk), θ, tk) = 0, (2.2)

1Other common names for the model class described by (2.1) are implicit systems, descriptor systems, semi-
state systems, singular systems, generalized systems, and differential equations on a manifold (Campbell, 1990).
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wherey ∈ Rny denotes the measurement,e ∈ Rne denotes the measurement noise,tk
denotes the discrete time index, andH denotes a possibly nonlinear function describing
how the measurements are obtained. The measurement equation stated in (2.2) is implicit,
as opposed to the more specific explicit measurement equation

y(tk) = h(z(tk), u(tk), e(tk), θ, tk), (2.3)

which is the most common type. However, there are applications implying implicit mea-
surement equations. Examples of this involve positioning systems relying on map in-
formation, see, e.g., Gustafsson et al. (2002), Bergman (1999), Hall (2000), Svenzén
(2002). Furthermore, measurement equations derived from information in images are
sometimes in the form (2.2), which is exemplified in Paper G. By collecting (2.1) and (2.2)
a rather general model class can be formulated, the stochastic differential-algebraic equa-
tion model.

Model 1 (Stochastic Differential-Algebraic Equation (SDAE) model)

The nonlinear stochastic differential-algebraic equation model is given by

F (ż(t), z(t), u(t), w(t), θ, t) = 0, (2.4a)

H(y(tk), z(tk), u(t), e(tk), θ, tk) = 0, (2.4b)

wherew(t) ande(tk) are stochastic processes.

For a mathematically stricter definition the theory of stochastic differential equations and
Itô calculus can be used (Jazwinski, 1970, Øksendal, 2000).However, the definition used
here will serve our purposes. As mentioned above the theory on how to handle this quite
general stochastic DAE model is far from mature. Several special cases of Model 1 have
been extensively studied. The rest of this chapter is devoted to describing some of the
most important discrete-time special cases. In fact, most of the models used in the signal
processing and the automatic control communities can be considered to be special cases
of the rather general formulation in terms of differential-algebraic equations given above.
There are of course many different ways to carry out such a classification. We have chosen
a classification that we believe serves our purpose best.

An important special case of Model 1 arises whenż(t) can be explicitly solved for,

ż(t) = f(z(t), u(t), w(t), θ, t). (2.5)

The resulting model is then governed byordinary differential equations(ODE), rather
than by differential-algebraic equations. This model is commonly referred to as the
continuous-timestate-space model. To conform with the existing literature the internal
variable is referred to as thestate variablein this special case. Several nonlinear model
classes are reviewed by Pearson (1999).

2.2 Preparing for State-Space Models

The discussion is this section is heavily inspired by probability theory. The objective is
to provide a transition from the rather general SDAE models discussed in the previous
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section to the state-space models introduced in the subsequent section. Note that only
discrete-time models are considered and that the possible existence of known input signals
ut is suppressed for brevity.

Thesystem modelis the dynamic model describing the evolution of the state variables
over time. A fundamental property ascribed to the system model is the Markov property.

Definition 2.1 (Markov property). A discrete-time stochastic process{xt} is said to
possess the Markov property if

p(xt+1|x1, . . . , xt) = p(xt+1|xt). (2.6)

In words this means that the realization of the process at time t contains all information
about the past, which is necessary in order to calculate the future behavior of the process.
Hence, if the present realization of the process is known, the future is independent of the
past. This property is sometimes referred to as thegeneralized causality principle, the
future can be predicted from knowledge of the present (Jazwinski, 1970). The system
model can thus be described as

xt+1 ∼ pθ(xt+1|x1, . . . , xt) = pθ(xt+1|xt), (2.7)

where we have made use of the Markov property. The notationpθ(x) is used describe
a family of probability density functions, parameterized by θ. The probability density
functionpθ(xt+1|xt) describes the evolution of the state variable over time. In general it
can be non-Gaussian and include nonlinearities. The initial state is assumed to belong to a
probability density functionpθ(x0), commonly referred to as theprior. Furthermore, the
system model can be parameterized by the static parameterθ, as indicated in (2.7). If the
parameters are unknown, they have to be estimated before themodel can be used for its
intended purpose. The task of finding these parameters basedon the available measure-
ments is known as thesystem identificationproblem, which is introduced in Chapter 5.
Furthermore, various aspects of the system identification problem are discussed in Paper E
and Paper F.

The state process{xt} is an unobserved (hidden) Markov process. Information about
this process is indirectly obtained from measurements (observations)yt according to the
measurement model,

yt ∼ pθ(yt|xt). (2.8)

The observation process{yt} is assumed to be conditionally independent of the state
process{xt}, i.e.,

pθ(yt|x1, . . . , xN ) = pθ(yt|xt), ∀t, 1 ≤ t ≤ N. (2.9)

Furthermore, the observations are assumed to be mutually independent over time,

pθ(yt, . . . , yN |xt, . . . , xN ) =

N∏

i=t

pθ(yi|xt, . . . , xN )

=

N∏

i=t

pθ(yi|xi), ∀t, 1 ≤ t ≤ N. (2.10)
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where (2.9) is used to obtain the last equality. In certain tasks, such as convergence
proofs, more advanced tools from measure theory (Chung, 1974, Billingsly, 1995) might
be needed. This implies that the model has to be defined withina measure theoretic
framework. We will not be concerned with measure theory in this thesis, but the interested
reader can consult, e.g., Crisan (2001), Crisan and Doucet (2002) for discussions of this
kind. The above discussion is summarized by Model 2, referred to as thehidden Markov
model (HMM) (Doucet et al., 2000a).

Model 2 (Hidden Markov Model (HMM))

The hidden Markov model is defined by

xt+1 ∼ pθ(xt+1|xt), (2.11a)

yt ∼ pθ(yt|xt), (2.11b)

whereθ is used to denote a static parameter.

This model is rather general and in most applications it is sufficient to use one of its
special cases. The natural first step in making the class morerestrictive is to assume
explicit expressions for both the system model and the measurement model, resulting in
the state-space model.

2.3 State-Space Models

A state-space model is a model where the relationship between the input signal, the output
signal and the noises is provided by a system of first-order differential (or difference)
equations. The state vectorxt contain all information there is to know about the system
up to and including timet, which is needed to determine the future behavior of the system,
given the input. Furthermore, state-space models constitute a very important special case
of Model 1, widely studied within the areas of signal processing and systems and control
theory. The rest of this section is concerned with various important state-space models,
starting with the most general.

2.3.1 Nonlinear State-Space Models

The aim of this section is to provide an introduction to nonlinear, non-Gaussian state-
space models. It will also be illustrated that the resultingmodel is indeed a discrete-time
special case of Model 1. The assumption of explicit expressions for both the system model
and measurement model in (2.11) result in

xt+1 = f(xt, wt, θ, t), (2.12a)

yt = h(xt, et, θ, t), (2.12b)

wherewt andet are independent random variables, commonly referred to as theprocess
noiseand themeasurement noise, respectively. The functionsf andh in (2.12) describe
the evolution of the state variables and the measurements over time. The model is usually
restricted even further by assuming that the noise processes enter additively.
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Model 3 (Nonlinear state-space model with additive noise)

The nonlinear, discrete-time state-space model with additive noise is given by

xt+1 = f(xt, θ, t) + wt, (2.13a)

yt = h(xt, θ, t) + et, (2.13b)

wherewt andet are assumed to be mutually independent noise processes.

Model 3 can be put in the form of Model 2 by the following observation,

pθ (xt+1|xt) = pwt
(xt+1 − f(xt, θ, t)), (2.14a)

pθ (yt|xt) = pet
(yt − h(xt, θ, t)). (2.14b)

There are theorems available describing how to obtain similar relations when the noise
does not enter additively as in (2.13). For further details on this topic, see Gut (1995),
Jazwinski (1970).

The assumption that the observations are mutually independent over time (2.10) trans-
lates to mutual independence of the measurement noiseet over time,

pθ(yt, . . . , yN |xt, . . . , xN ) =

N∏

i=t

pθ(yi|xi) =

N∏

i=t

pei
(yi − h(xi, θ, i)). (2.15)

Furthermore, using conditioning and the Markov property wehave

pθ(xt, . . . , xN ) =

N−1∏

i=t

pθ(xi+1|xi) =

N−1∏

i=t

pwi
(xi+1 − f(xi, θ, i)). (2.16)

Hence, the process noisewt should also be mutually independent over time. The above
discussion does in fact explain how the previous assumptions translate to the use of white
noise in Model 3. We could just as well have started from the white noise assumption in
Model 3 and motivated the assumptions from this. In the literature the exact definition
of white noise differs. Papoulis (1991) refers towhite noiseas a process{wt}, which is
uncorrelated,

E
{
(wt − E {wt})(ws − E {ws})T

}
= 0, t 6= s. (2.17)

A stricter definition is given by Söderström (1994), where independence is required. This
is referred to asstrictly white noise by Papoulis (1991). Furthermore, it is mostly assumed
that the mean value of a white noise sequence is zero. We give the following definition.

Definition 2.2 (White noise). A discrete-time stochastic process{wt} is said to be white
if it is independent over time, that is

p(wt, ws) = p(wt)p(ws), t 6= s. (2.18)
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In discussing linear and Gaussian systems it is sufficient torequire the process to be uncor-
related according to (2.17), since it is only the two first moments that matter. However, in
discussing nonlinear, non-Gaussian systems higher order moments have to be accounted
for as well, motivating the independence requirement. Definition 2.2 implies that all the
entities of the process{wt} are mutually independent. Hence, there is no information
about the future realizations of the white noise process present in the past realizations,
implying that white noise is totally unpredictable. The useof white noise can also be
motivated from a users perspective. When all systematic information about the studied
system has been incorporated in the model equations, there will always remain some ran-
dom effects which cannot be accounted for. The fact that white noise is totally random,
without temporal correlation, implies that it provides a good model for these effects.

In studying the nonlinear system identification problem we will consider a further
special case of Model 3. It is a nonlinear state-space model,where the dependence on the
static parameters is affine in nature.

Model 4 (Nonlinear state-space model with affine parameters)
A nonlinear state-space model, with affine parameter dependence is defined as

xt+1 = f1(xt, ut, t)θ + f2(xt, ut, t) + wt, (2.19a)

yt = h1(xt, ut, t)θ + h2(xt, ut, t) + et, (2.19b)

wherewt ∼ N (0, Qt) andet ∼ N (0, Rt) are white noise sequences.

Note that, since this model class will be used for system identification, the known input
signalsut are explicitly included. A key observation worth mentioning is that, condi-
tioned on the nonlinear statesxt this is a rather simple model, where the parameters can
be solved for using standard linear regression techniques.This observation is utilized in
Paper F. The idea of using conditioning in order to obtain simpler models naturally brings
us over to the next section dealing with mixed linear/nonlinear state-space models.

2.3.2 Mixed Linear/Nonlinear State-Space Models

It is a very ambitious endeavor to solve the estimation problems arising when the under-
lying model is nonlinear. We have tried to approach this problem by studying certain
tractable sub-classes of the general nonlinear state-space model. An important part of
the thesis is in fact the derivation and application of estimation algorithms especially de-
vised to exploit linear sub-structures inherent in the underlying models. When such a
sub-structure is present it is instructive to partition thestate variable according to

xt =

(
xl

t

xn
t

)
, (2.20)

wherexl
t denotes the linear state variables andxn

t denotes the nonlinear state variables.
Models allowing for the partitioning (2.20) will be referred to asmixed linear/nonlinear
state-space models. When there is a linear sub-structure present in the model we can
take advantage of this in deriving algorithms to solve various estimation problems. The
most general mixed linear/nonlinear state-space model discussed in this thesis is summa-
rized in Model 5. Note that the possible dependence on unknown static parametersθ has
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been suppressed for brevity. For a more thorough discussionregarding this model, see
Paper A.

Model 5 (Mixed linear/nonlinear state-space model)

The mixed linear/nonlinear state-space model is given by

xn
t+1 = fn(xn

t , t)+An(xn
t , t)xl

t+Gn(xn
t , t)wn

t , (2.21a)

xl
t+1 = f l(xn

t , t) +Al(xn
t , t)xl

t +Gl(xn
t , t)wl

t, (2.21b)

yt = h(xn
t , t) +C(xn

t , t)xl
t +et, (2.21c)

where the process noise is assumed white and Gaussian distributed with

wt =

(
wl

t

wn
t

)
∼ N (0, Qt), Qt =

(
Ql

t Qln
t

(Qln
t )T Qn

t

)
. (2.22a)

The measurement noise is assumed white and Gaussian distributedet ∼ N (0, Rt). Fur-
thermore,xl

0 is Gaussian distributedxl
0 ∼ N (x̄0, P̄0). The density ofxn

0 can be arbitrary,
but it is assumed known.

Conditioned on the nonlinear states, the model described above is linear2. This can be
used in deriving estimation algorithms for models of this type. An interesting algorithm
for this is themarginalized particle filteror the Rao-Blackwellized particle filter (Doucet
et al., 2000a). It is briefly introduced in Section 4.4 and thoroughly treated in Paper A.
Model 5 is quite general and in most applications it is sufficient to consider a special case
of it. A quite common and important special case is when the dynamics is linear and the
measurement equation is nonlinear.

Model 6 (Model 5 with linear dynamics and nonlinear measurements)

A common special case of Model 5 occurs when the dynamics is linear and the measure-
ments are nonlinear.

xn
t+1 = An

n,tx
n
t + An

l,tx
l
t + Gn

t wn
t , (2.23a)

xl
t+1 = Al

n,tx
n
t + Al

l,tx
l
t + Gl

tw
l
t, (2.23b)

yt = h(xn
t , t) + et, (2.23c)

wherewn
t ∼ N (0, Qn

t ) andwl
t ∼ N (0, Ql

t). The distribution foret can be arbitrary, but
it is assumed known.

In positioning and target tracking applications models of this type are quite commonly
used. Several examples of this are given in Paper H and the references therein. For more
information concerning various modeling issues, see, e.g., Gustafsson et al. (2002), Bar-
Shalom and Li (1993), Li and Jilkov (2001, 2003).

2Strictly speaking the model is affine, due to the possible presence of the termf l.
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2.3.3 Linear State-Space Models

The most important special case of Model 3 is probably the linear (f andh are linear
functions) state-space model, subject to Gaussian noise. The reason for this is probably
the fundamental work of Kalman in the 1960s on the predictionand linear quadratic
control, based on this model.

Model 7 (Linear state-space model with Gaussian noise)

The discrete-time linear state-space model, subject to Gaussian noise is given by

xt+1 = At(θ)xt + wt, (2.24a)

yt = Ct(θ)xt + et, (2.24b)

wherewt ∼ N (0, Qt(θ)), et ∼ N (0, Rt(θ)), andE
{
wte

T
t

}
= 0.

In Model 7 above,δts is the Kronecker delta function, which is0 whenevert 6= s, and
1, whent = s. It is important to note that Model 7 is a bit more general thanit seems at
a first glance. The reason is that if we have colored noise processes or a non-zero cross-
correlation betweenwt andet the model can be rewritten in the form (2.24). For details,
see Kailath et al. (2000).

The theory concerning linear state-space models is by now quite mature. For the de-
tails concerning linear system theory two good references are Rugh (1996) and Kailath
(1980). For the linear state estimation problem Kailath et al. (2000) is the standard ref-
erence. The parameter estimation problem is thoroughly treated in Ljung (1999), Söder-
ström and Stoica (1989).

2.4 Linear Differential-Algebraic Equations

In the thesis, Model 3 and some of its special cases are used extensively. However, we
will also discuss possible extensions in terms of differential-algebraic equations. The first
obstacle to overcome is to solve the problem of introducing stochastic processes into this
type of model. This is not as simple as it is with state-space models. In this section
the problem is briefly described and in Paper C a detailed proposal for how to solve this
problem is provided. These results have recently been refined and sharpened, see Gerdin
et al. (2005a,b). Thelinear stochastic differential-algebraic equationis defined in Model 8
below.

Model 8 (Linear stochastic differential-algebraic equation model)

The linear stochastic differential-algebraic equation model is given by

E(θ)ż(t) + F (θ)z(t) = Bw(θ)w(t), (2.25a)

y(tk) = C(θ)z(tk) + e(tk), (2.25b)

whereE(θ) might be singular andw(t) ande(tk) are white Gaussian noises.

The reason for incorporating white noise in linear DAEs is that it opens up for using
the standard methods of statistical signal processing. More specifically, it allows for a
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systematic treatment of the two problems of estimating the internal variablesz(t) and
static parametersθ. The system identification problem is thoroughly treated inGerdin
(2004) and Gerdin et al. (2005b) and estimation of the internal variables is discussed in
Paper C and Gerdin et al. (2005b). In the discrete-time case much has already been done,
see, e.g., Dai (1987, 1989), Darouach et al. (1993), Deng andLiu (1999), Nikoukhah et al.
(1998, 1999). However, models obtained from object-oriented modeling languages are
mostly in continuous-time, further motivating the need to be able to introduce stochastic
processes in continuous-time DAE models.

The problem of introducing stochastic processes in linear differential-algebraic equa-
tions boils down to making sure that the implicit differentiation ofw that may be hidden
in the equations does not lead to intractable mathematical objects, such as differentiated
white noise. In order to understand this it is instructive torewrite the equations in the
standard form provided by Theorem 2.1.

Theorem 2.1 (Standard form for Model 8)
Suppose that there exists a scalarλ such thatλE + F is invertible. Then there exist
nonsingular matricesP andQ such that the transformation

PEQQ−1ż(t) + PFQQ−1z(t) = PBww(t), (2.26)

allows us to write(2.25)as
(

I 0
0 N

)(
ẋ1(t)
ẋ2(t)

)
+

(
−A 0
0 I

)(
x1(t)
x2(t)

)
=

(
G1

G2

)
w(t), (2.27)

whereN is a matrix of nilpotencyk, i.e.,Nk = 0 for somek. (Q is used as a variable
substitution,x(t) = Q−1z(t) andP is multiplied from the left in(2.25a).)

Proof: Kronecker’s canonical form (see Kailath, 1980, Gantmacher, 1959) provides a
proof for the existence of this standard form. For a detailedproof see Gerdin (2004).

It is worth noting that although this standard form always exists it can indeed be
numerically hard to find the transformation matricesP andQ. However, using the ideas
from Varga (1992) this problem can be handled, see, e.g., Gerdin (2004), Gerdin et al.
(2005b) for details regarding these numerical issues. If (2.25) is rewritten according

ẋ1(t) = Ax1(t) + G1w(t), (2.28a)

x2(t) =

k−1∑

i=0

(−N)iG2
diw(t)

dti
, (2.28b)

it can be seen that white noise is prevented from being differentiated if

NG2 = 0. (2.29)

In Paper C this is utilized to derive conditions on the model class that imply that white
noise is not differentiated.



3
Nonlinear State Estimation

RECURSIVE nonlinear state estimation theory is the topic of the present chapter. As
previously mentioned, the state estimation problem is addressed mainly within a

probabilistic framework. More specifically, the approach is heavily influenced by the
Bayesian view of estimation. This implies that the completesolution to the estimation
problem is provided by the probability density functionp(xt|Ys). This density function
contains all available information about the state variable. Depending on the relation
betweent ands in p(xt|Ys) three different estimation problems are obtained

• Thefiltering problem,t = s.

• Thepredictionproblem,t > s.

• Thesmoothingproblem,t < s.

This chapter will illustrate how the expressive power of theprobability density functions
opens up for a rather systematic treatment of the three problems mentioned above. When
a representation forp(xt|Ys) is obtained it can be used to estimate the expected value of
any functiong of the state variables,I(g(xt)) according to

I(g(xt)) , Ep(xt|Ys) {g(xt)} =

∫

Rnx

g(xt)p(xt|Ys) dxt. (3.1)

The chapter starts with a brief history of the estimation problem in Section 3.1. In Sec-
tion 3.2 the general solutions to the filtering, prediction and smoothing problems are
derived, in terms of probability density functions. The discussion then continues with
Section 3.3, where several of the most common estimates (3.1) are introduced. The state
estimation problem arising from nonlinear systems is discussed in Section 3.4. The com-
mon special case of linear models, subject to Gaussian noiseis then treated in Section 3.5.
Change detection can be used to adapt the models according tochanges in the underlying

31
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system, with better state estimates as result. This is the topic of Section 3.6. Finally,
the chapter is concluded with Section 3.7, where we provide adeterministic view of the
estimation problem and illustrate how this together with convex optimization techniques
can be used to handle constraints present in the problem.

3.1 Brief History of the State Estimation Problem

The aim of this section is to provide a short historic accountof the estimation problem.
We will merely skim the surface of this fascinating topic, but we will try to provide ade-
quate references for further studies. Some general references are Spall (1988), Jazwinski
(1970), Sorenson (1970), Mendel and Gieseking (1971).

The first attempts to systematically approach the estimation problem, as it is known
today, were taken by Gauss and Legendre in studying astronomical problems during the
late 18th and the early 19th century. More specifically, theytried to estimate the positions
of planets and comets using telescopic measurements. Gaussmade use of the method of
least-squares for the first time in 1795 at the age of18. However, it was not until 1809 that
he published his results in his bookTheoria Motus Corporum Celestium(Gauss, 1809). A
few years earlier, in 1805 Legendre had independently invented and published the method
in his bookNouvelles méthodes pour la determination des orbites des comètes. This gave
rise to a big dispute between Gauss and Legendre, concerningwho was the inventor of the
least-squares method (Sorenson, 1970). A thorough discussion of the early contributions
to estimation theory is provided by Seal (1967) and Sorenson(1970).

The next major development in the study of the estimation problem came in the 1940s,
with the filtering work of Wiener (1949) and Kolmogorov. Theyboth studied the problem
of extracting an interesting signal in a signal-plus-noisesetting and independently solved
the problem, using a linear minimum mean-square technique.The solution is based on the
rather restrictive assumptions of access to an infinite amount of data and that all involved
signals can be described as stationary stochastic processes. During the 1940s and the
1950s much research was directed towards trying to relax those assumptions and extend
the Wiener – Kolmogorov filtering theory. The breakthrough came with the Kalman filter,
introduced by Kalman (1960)1. It changed the conventional formulation of the estimation
problem and in doing so it moved the research into a completely new direction, away
from the theory of stationary stochastic processes. The keyingredient in this turn was the
Kalman filter’s inherent access to the powerful state-spacetheory, that had recently been
developed within the automatic control community. The important connection between
the estimation problem and the state-space theory had now been established.

The Kalman filter allows us to drop the assumptions of stationary signals and ac-
cess to an infinite amount of data. Furthermore, Kalman’s state-space approach naturally
lends itself to multivariable problems, whereas the Wiener– Kolmogorov theory and other
frequency domain techniques bump into severe problems whenthe extension to the mul-
tivariable case is considered.

During the 1960s, 1970s and the 1980s many suggestions wheregiven on how to

1In the late 1800s, the Danish astronomer T. N. Thiele developed a recursive procedure, for determining the
distance from Copenhagen to Lund. Interestingly enough hissolution was a special case of the Kalman filter
(Spall, 1988). A modern discussion of Thiele’s work is provided by Lauritzen (1981) and Hald (1981).
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extend the Kalman filtering theory to handle more general estimation problems. In 1993
the particle filter was first introduced by Gordon et al. (1993). It provides a systematic
procedure for solving the nonlinear, non-Gaussian estimation problem. As Kailath (1974)
points out the Kalman filter was the new idea that allowed the field to move in a new,
fruitful direction after the Wiener – Kolmogorov theory. Perhaps we can think of the
particle filter along the same line, as a new, fruitful direction allowing us to tackle even
harder estimation problems.

3.2 Conceptual Solution

This section is concerned with the problem of calculating the probability density functions
relevant in solving the estimation problem. The discussionwill be rather general using
Model 2 defined in Section 2.3.1, briefly summarized in (3.2) for convenience

xt+1 ∼ p(xt+1|xt), (3.2a)

yt ∼ p(yt|xt). (3.2b)

In the development that follows Bayes’ theorem and the Markov property will be instru-
mental. The Markov property was previously defined in Definition 2.1. Using the two
stochastic variablesx andy, Bayes’ theorem for probability density functions is givenby

p(x|y) =
p(y|x)p(x)

p(y)
=

p(y, x)

p(y)
. (3.3)

Consider the filtering density,

p(xt|Yt) = p(xt|yt, Yt−1) =
p(yt|xt, Yt−1)p(xt|Yt−1)

p(yt|Yt−1)

=
p(yt|xt)p(xt|Yt−1)

p(yt|Yt−1)
, (3.4)

wherep(yt|Yt−1) can be calculated according to

p(yt|Yt−1) =

∫

Rnx

p(yt, xt|Yt−1) dxt =

∫

Rnx

p(yt|xt, Yt−1)p(xt|Yt−1) dxt

=

∫

Rnx

p(yt|xt)p(xt|Yt−1) dxt. (3.5)

Furthermore, in order to derive the expression for the one step ahead prediction density
p(xt+1|Yt) the following equation is integrated w.r.t.xt,

p(xt+1, xt|Yt) = p(xt+1|xt, Yt)p(xt|Yt) = p(xt+1|xt)p(xt|Yt), (3.6)

resulting in the following expression

p(xt+1|Yt) =

∫

Rnx

p(xt+1|xt)p(xt|Yt) dxt. (3.7)
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This equation is commonly referred to as theChapman–Kolmogorovequation (Jazwinski,
1970). It is straightforward to generalize this idea to obtain an expression for thek-step
ahead prediction density. Rather than integratingp(xt+1, xt|Yt) w.r.t. xt we integrate
p(xt+k, . . . , xt|Yt) w.r.t. Xt:t+k−1 = {xi}t+k−1

i=t . Hence,

p(xt+k|Yt) =

∫

Rknx

p(xt+k, . . . , xt|Yt) dxt:t+k−1

=

∫

Rknx

k∏

i=1

p(xt+i|xt+i−1)p(xt|Yt) dxt:t+k−1. (3.8)

In deriving suitable expressions for the smoothing densityseveral alternatives exist. Let
us first derive an expression for the marginal smoothing density p(xt|YN ) by observing
that

p(xt|YN ) =

∫

Rnx

p(xt, xt+1|YN ) dxt+1, (3.9)

where

p(xt, xt+1|YN ) = p(xt|xt+1, YN )p(xt+1|YN ). (3.10)

Furthermore,

p(xt|xt+1, YN ) = p(xt|xt+1, Yt, Yt+1:N )

=
p(Yt+1:N |xt, xt+1, Yt)p(xt|xt+1, Yt)

p(Yt+1:N |xt+1, Yt)
= p(xt|xt+1, Yt), (3.11)

where the last equality follows from the fact that givenxt+1, there is no further informa-
tion aboutYt+1:N available inxt. Using this result the smoothing density (3.9) can be
written according to

p(xt|YN ) =

∫

Rnx

p(xt|xt+1, Yt)p(xt+1|YN ) dxt+1

=

∫

Rnx

p(xt+1|xt, Yt)p(xt|Yt)

p(xt+1|Yt)
p(xt+1|YN ) dxt+1

= p(xt|Yt)

∫

Rnx

p(xt+1|xt)p(xt+1|YN )

p(xt+1|Yt)
dxt+1. (3.12)

Another useful expression for the smoothing density is referred to as thetwo-filter for-
mula. See Kitagawa (1994), Bresler (1986) for a detailed treatment of this formula.

Similar derivations to the ones given above can be found for instance in Ho and Lee
(1964), Jazwinski (1970), Kitagawa (1991). For future reference the main results are
collected in Theorem 3.1.
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Theorem 3.1
If the dynamic model is given by(3.2) the filter densityp(xt|Yt), the one step ahead
densityp(xt+1|Yt), and the marginal smoothing densityp(xt|YN ) are given by

p(xt|Yt) =
p(yt|xt)p(xt|Yt−1)

p(yt|Yt−1)
, (3.13a)

p(xt+1|Yt) =

∫

Rnx

p(xt+1|xt)p(xt|Yt) dxt, (3.13b)

p(xt|YN ) = p(xt|Yt)

∫

Rnx

p(xt+1|xt)p(xt+1|YN )

p(xt+1|Yt)
dxt+1, (3.13c)

where

p(yt|Yt−1) =

∫

Rnx

p(yt|xt)p(xt|Yt−1) dxt. (3.13d)

Given the complexity of the problem it is actually quite remarkable that we are able
to derive a result as the one given in Theorem 3.1 above. However, there is a severe prob-
lem with this solution, the multidimensional integrals involved only permit an analytical
solution in a few special cases. The most important special case is when the dynamic
model is linear and the involved stochastic variables are normal, which has been exten-
sively discussed in the literature over the last decades. This is due to the fact that the
mathematics involved is tractable, but most importantly ithinges on the fact that there
are a vast amount of real world applications where this special case has been successfully
applied. However, most applications would perform better if the nonlinear estimation
problem could be properly solved. This would also allow us totackle more complicated
applications, which do not lend themselves to linear algorithms.

3.3 Point Estimates

The task of finding a point estimate can, in abstract terms, becast as a problem of finding
a transformationmt, which makes use of the information in the measurements and the
known input signals to produce estimates of the states of interest.

mt : Us × Ys → Rnx (3.14)

All information available in the measurements has been processed and inferred into the
density functionp(xt|Ys). This density function can then be used to derive various point
estimates, which is normally what the used would expect fromthe estimation algorithm.
Typically, the application does not need the entire probability density function. Instead
it needs to know how the values of the various states evolve over time and it also need a
quality assessment of these values. It is reasonable to claim that an estimate is useless, if
we do not know how good it is. Since a probabilistic frameworkis employed, this opens
up for using the tools available in probability theory and statistics for assessing the quality
of estimates, such as covariances, confidence regions, tests, etc.
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This section is concerned with some of the most common mappings (3.14) present in
the literature. Most of the estimates are indeed based on approximations of the probability
density functionsp(xt|Ys), but the estimates can also be based on deterministic consid-
erations. This approach to estimation is discussed in Section 3.7. For more information
about various estimates, see, e.g., Kailath et al. (2000), Jazwinski (1970), Kay (1993),
Anderson and Moore (1979).

From a probabilistic point of view a rather appealing point estimate is provided by
choosing the value that minimizes the variance of the estimation error, referred to as the
minimum variance(MV) estimate

x̂MV , arg min
x̂

E
{
‖x − x̂‖2 ∣∣y

}
(3.15)

where‖x‖2 = xT x. It is in fact possible to derive an explicit expression for this estimate.

E
{
‖x̂ − x‖2 ∣∣y

}
= E

{
(x − x̂)

T
(x − x̂)

∣∣y
}

= E
{
xT x

∣∣y
}
− 2x̂T E {x|y} + x̂T x̂

= ‖x̂ − E {x|y}‖2
+ E

{
‖x‖2|y

}
− ‖E {x|y}‖2 (3.16)

The two last terms in (3.16) are independent ofx̂ and (3.16) is clearly minimized by

x̂MV = E {x|y} =

∫
xp(x|y) dx. (3.17)

The above calculation explains the name,minimum mean square error(MMSE), which
is commonly used as an alternative name for the estimate (3.17).

Another point estimate which suggests itself, within the probabilistic framework, is
the most probable outcome,

x̂MAP , arg max
x

p(x|y) = arg max
x

p(y|x)p(x), (3.18)

which is referred to as themaximum a posteriori(MAP) estimate. In the second equal-
ity of (3.18) Bayes’ theorem is employed, together with the fact that the maximization
is performed overx. The prior density functionp(x) in (3.18) is within the classical
school assumed completely uninformative, giving rise to the maximum likelihood(ML)
estimate,

x̂ML , arg max
x

p(y|x). (3.19)

The method of maximum likelihood was introduced by Fisher (1912, 1922). The max-
imum likelihood method is used extensively in the study of a certain class of nonlinear
system identification problems, see Paper F.

3.4 Nonlinear Systems

Most of the problems encountered in practice are of a nonlinear nature, which implies
that we have to be able to solve estimation problems in the context of nonlinear systems.
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The nonlinear systems theory is, as opposed to its linear counterpart, far from mature.
However, there is a flurry of results readily available, see,e.g., the monographs by Khalil
(2002) and Isidori (1989). When it comes to nonlinear estimation theory the book by
Jazwinski (1970) is still very interesting reading.

There is a wealth of representations available when it comesto nonlinear systems.
However, the most common representation, at least when it comes to solving estimation
problems is given by Model 3, repeated here for convenience

xt+1 = f(xt, t) + wt, wt ∼ N (0, Qt), (3.20a)

yt = h(xt, t) + et, et ∼ N (0, Rt). (3.20b)

In discussing the implications of Theorem 3.1 we observed that, in general, there does not
exist any analytical solution to the nonlinear recursive estimation problem. This implies
that we are forced to approximations of some kind in order to approach this problem. The
approximations suggested in literature this far, can roughly be divided into two different
classes, local and global. This distinction has previouslybeen discussed, for instance by
Sorenson (1974) and Kulhavý (1996). The local approach approximates (3.20) using a
locally valid linear, Gaussian model. This is then used in conjunction with the Kalman
filter to obtain the estimates. The idea underpinning the global approach is indeed more
appealing. It makes use of the nonlinear model and tries to approximate the solution pro-
vided in Theorem 3.1. Hence, it is a matter of either approximating the model and using
the linear, Gaussian estimator or using the correct model and approximate the optimal so-
lution. Despite the fact that there are a lot of different nonlinear estimators available, the
local approach is still the most commonly used nonlinear estimator when it comes to ap-
plications. This approach is explained in more detail in thesubsequent section. However,
in recent years the sequential Monte Carlo methods have emerged as interesting global
approaches, gaining more and more ground, both when it comesto theory and when it
comes to applications.

3.4.1 Local Approximations

The idea employed in local methods is to approximate the nonlinear model by a linear,
Gaussian model. This model is only valid locally, but the Kalman filter can readily be
applied. The first approach along those lines was to linearize the model along a nominal
trajectory, resulting in thelinearized Kalman filter(Kailath et al., 2000). An improvement
to this was suggested by S. F. Schmidtet.al.They suggested that the linearization should
be performed around the current estimate, rather than around a nominal trajectory. The
result is theextended Kalman filter(or more appropriately the Schmidt EKF) (Smith
et al., 1962, Schmidt, 1966). To the best of the authors knowledge the paper by Smith
et al. (1962) describes the first practical application of the (extended) Kalman filter. More
specifically, the local approximation is obtained by linearizing the nonlinear model (3.20)
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by applying a first-order Taylor expansion around the current estimate,

f(xt, t) ≈ f(x̂t|t, t) +
∂f(x, t)

∂x

∣∣∣∣
x=x̂t|t

(xt − x̂t|t), (3.21a)

h(xt, t) ≈ h(x̂t|t−1, t) +
∂h(x, t)

∂x

∣∣∣∣
x=x̂t|t−1

(xt − x̂t|t−1). (3.21b)

Using this approximation in (3.20) gives

xt+1 = f(x̂t|t, t) − Ftx̂t|t + Ftxt + wt, (3.22a)

yt = h(x̂t|t−1, t) − Htx̂t|t−1 + Htxt + et, (3.22b)

where

Ft ,
∂f(x, t)

∂x

∣∣∣∣
x=x̂t|t

, Ht ,
∂h(x, t)

∂x

∣∣∣∣
x=x̂t|t−1

. (3.23)

The approximate model given in (3.22) is a linear, Gaussian model inxt, which implies
that the Kalman filter given in Corollary 3.1 can be applied. The result is the extended
Kalman filter, given in Algorithm 3.1.

Algorithm 3.1 (Extended Kalman Filter (EKF))
Consider Model 3, repeated in(3.20). An approximate sub-optimal estimate for the filter
density functionp(xt|Yt), obtained by linearization, is recursively given according to

p̂(xt|Yt) = N (x | x̂t|t, Pt|t), (3.24a)

p̂(xt+1|Yt) = N (x | x̂t+1|t, Pt+1|t), (3.24b)

where

x̂t|t = x̂t|t−1 + Kt

(
yt − h(x̂t|t−1, t)

)
, (3.25a)

Pt|t = Pt|t−1 − KtHtPt|t−1, (3.25b)

x̂t+1|t = f(x̂t|t, t), (3.25c)

Pt+1|t = FtPt|tF
T
t + Qt, (3.25d)

Kt = Pt|t−1H
T
t (HtPt|t−1H

T
t + Rt)

−1, (3.25e)

with initial valuesx̂1|0 = x̄1 andP1|0 = Π̄1. Furthermore,Ft andHt are defined by

Ft =
∂f(x, t)

∂x

∣∣∣∣
xt=x̂t|t

, Ht =
∂h(x, t)

∂x

∣∣∣∣
xt=x̂t|t−1

. (3.26)

For a more thorough treatment of the EKF the reader is referred to Jazwinski (1970),
Anderson and Moore (1979), Kailath et al. (2000). An application focused discussion
is given in Sorenson (1985). One of the problems inherent in the EKF is that it might
diverge. The literature contains several more or lessad hocmethods trying to counteract
this phenomenon and to further enhance the general performance of the EKF. To mention
a few examples we have, theiterated EKFtreated by Kailath et al. (2000) and higher-
order Taylor expansions discussed by Bar-Shalom and Fortmann (1988) and Gustafsson
(2000).
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3.4.2 Global Approximations

The solution to the nonlinear recursive estimation problemis given by Theorem 3.1. This
fact is neglected by methods based on local model approximations. However, if we choose
to use this theorem the nonlinear models derived from the underlying physics can be used
and rather than approximating the models, the optimal solution is approximated using
numerical methods. Over the years several different methods for performing this approx-
imation have appeared. These methods are of two different kinds, either the probability
density functions of interest are parameterized by a finite number of parameters, which
are updated according to Theorem 3.1 or the integrals in Theorem 3.1 are handled using
numerical integration. Here, only a few of the most important global approximations are
mentioned. For more references on this topic see, e.g., Kulhavý (1996), Bergman (1999),
Sorenson (1974).

One of the first approaches using an approximation based on a finite set of parameters
is theGaussian sumapproach by Sorenson and Alspach (1971), Alspach and Sorenson
(1972), where the filtering density is approximated using a sum of Gaussian densities
according to

p(xt|Yt) ≈
N∑

i=1

q
(i)
t N

(
x | x̂(i)

t|t , P
(i)
t|t

)
,

N∑

i=1

q
(i)
t = 1, q

(i)
t ≥ 0, ∀i. (3.27)

Another approximation is provided by thepoint-mass filteroriginally suggested by Bucy
and Senne (1971) which, as the name reveals, approximates the filtering density by a set
of points on a predefined grid,

p(xt|Yt) ≈
N∑

i=1

q
(i)
t δ

(
xt − x

(i)
t

)
,

N∑

i=1

q
(i)
t = 1, q

(i)
t ≥ 0, ∀i. (3.28)

This idea has been refined and generalized over the years using for instance piecewise
constant approximations and spline interpolations. The point-mass filter is thoroughly
treated in Bergman (1999), Bergman et al. (1999), where it isalso applied to the aircraft
navigation problem. Another approach which recently has appeared is theunscented
Kalman filter(UKF), which is based on the unscented transform, discussedin Julier et al.
(2000), Julier and Uhlmann (2004). The basic idea here is to use a set of grid points in
the state-space, chosen by the unscented transform.

There is another family of algorithms which makes use of multiple models in order to
derive an estimate. They use a set of models describing various behaviors of the underly-
ing system. This approach is common in target tracking applications, where different ma-
neuvers of the tracked vehicle constitutes the different models. Examples of algorithms of
this type are theinteracting multiple model(IMM) and thegeneralized pseudo-Bayesian
(GPB) approaches, which are thoroughly described by Bar-Shalom and Li (1993), with
the target tracking application in mind. Yet another algorithm within this family is the
range parameterized extended Kalman filter(RPEKF) (Peach, 1995, Arulampalam and
Ristic, 2000), which is described and applied to a bearings-only tracking application by
Karlsson (2005).

Another approach, which can be interpreted as an extension of the point-mass filter is
provided by thesequential Monte Carlo methods, referred to as theparticle filter(Gordon
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et al., 1993, Kitagawa, 1996, Doucet et al., 2001a) in the filtering case. In these algorithms
the probability density function is also approximated by a set of grid points. However, the
grid is not chosen deterministically, as is the case in point-mass filters. Due to its relevance
for the present thesis the sequential Monte Carlo methods are discussed in more detail in
Chapter 4. It is worth mentioning that there is a vast amount of literature dealing with
different combinations and variations of the approaches discussed above.

3.5 Linear Systems

The classic special case when it comes to estimation, and systems theory in general, is
constituted by linear systems subject to Gaussian noise processes. The theory concerned
with linear systems is by now rather mature, see, e.g., Rugh (1996), Kailath (1980) for a
general treatment without stochastic processes. The linear dynamic model was introduced
as Model 7 in Section 2.3.3, but the equations, including a known input signalut, are
repeated here for convenience,

xt+1 = Atxt + Btut + wt, wt ∼ N (0, Qt), (3.29a)

yt = Ctxt + Dtut + et, et ∼ N (0, Rt). (3.29b)

A solid treatment of the linear estimation problem is given by Kailath et al. (2000), the
fundamental innovation process is extensively used. In understanding linear estimation it
is advantageous to appeal to the geometrical intuition, which is possible due to the fact
that linear estimation can be interpreted as projections inHilbert spaces. There exist a vast
amount of literature dealing with the linear estimation problem, and the Kalman filter in
particular, see, e.g., Kailath et al. (2000), Kay (1993), Jazwinski (1970), Anderson and
Moore (1979), Sorenson (1985), Gustafsson (2000), West andHarrison (1997), Harvey
(1989), Bryson and Ho (1975).

An important property of the linear model (3.29) is that all density functions involved
are Gaussian. This is due to the fact that a linear transformation of a Gaussian random
variable will result in a new Gaussian random variable. Furthermore, a Gaussian den-
sity function is completely parameterized by two parameters, the first and second order
moments, i.e., the mean and the covariance. This implies that if it is assumed that the
underlying model is given by (3.29) the recursions in Theorem 3.1 can be recast as recur-
sive relations for the mean values and the covariances of theinvolved probability density
functions. In Section 3.5.1 this is illustrated for the filtering and the prediction densities,
which will result in an important corollary to Theorem 3.1. Asecond corollary is given
in Section 3.5.2, where the smoothing problem is considered.

3.5.1 Filtering and Prediction

The special case obtained by assuming a linear, Gaussian model (3.29) allows for an
explicit solution to the expressions given in Theorem 3.1. The filtering and one-step
ahead prediction solutions are given by the Kalman filter, first derived by Kalman (1960)
and Kalman and Bucy (1961). Before stating the theorem the notation x̂t|s is introduced,
which denotes the estimate of the statex at timet using the information available in the
measurements up to and including times. In other words,̂xt|s = E {xt|Ys}.
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Corollary 3.1 (Kalman filter)
Consider(3.29)and assume that the initial state is distributed asx0 ∼ N (x̄0, P̄0). Then,
the estimates for the filtering density function and the one step ahead prediction density
function are both normal, according to

p̂(xt|Yt) = N (x | x̂t|t, Pt|t), (3.30a)

p̂(xt+1|Yt) = N (x | x̂t+1|t, Pt+1|t)), (3.30b)

where

x̂t|t = x̂t|t−1 + Kt(yt − Ctx̂t|t−1 − Dtut), (3.31a)

Pt|t = Pt|t−1 − KtCtPt|t−1, (3.31b)

x̂t+1|t = Atx̂t|t + Btut, (3.31c)

Pt+1|t = AtPt|tA
T
t + Qt, (3.31d)

Kt = Pt|t−1C
T
t (CtPt|t−1C

T
t + Rt)

−1, (3.31e)

with initial valuesx̂0|−1 = x̄0 andP0|−1 = P̄0.

Proof: There are many different ways in which this result can be proved. In Appendix A
a proof based on the results of Theorem 3.1 is provided. More specifically, the rele-
vant expressions from Theorem 3.1 are simplified using the imposed linear, Gaussian
model (3.29). These calculations can also be found in Ho and Lee (1964), Nordlund
(2002). For alternative proofs, see, e.g., Kailath et al. (2000), Anderson and Moore (1979),
Gustafsson (2000). An interesting proof is given by Rao (2000), where the Kalman filter
is obtained as the recursive solution to a weighted least-squares problem.

The intuition for the Kalman filter is helped by thinking in terms of time updates
and measurement updates. Themeasurement updateis given in (3.31a) – (3.31b) and
the name derives from the fact that these are the equations where the information in the
present measurementyt is incorporated into the estimate. In (3.31a) this implies that the
state estimate is adjusted as a weighted average of the previous estimate and the new in-
formation available inyt. The uncertainty is reduced in (3.31b) as a direct consequence of
the fact that new information has been added. Furthermore, the time updatecorresponds
to a prediction, implying an increased uncertainty (3.31d). Due to the fact that the process
noisewt, by definition, cannot be predicted the state evolution is obtained simply by using
the deterministic part of the dynamic model, as in (3.31c).

An important, if not the most important, factor in making theKalman filter so funda-
mental is its applicability. The first application of the Kalman filter is probably the one
discussed by Smith et al. (1962). Furthermore, a good and indeed interesting account
of the history concerning the development of the Kalman filter as an engineering tool is
given by McGee and Schmidt (1985). The aerospace industry has since the 1960s made
extensive use of the Kalman filter. In Chapter 1 it was mentioned that the same trend is
currently appearing in the automotive industry, due to the need for more advanced driver
assistance functions. Since its first application the Kalman filter has been successively
applied within many different branches of science. There are by now several applica-
tion oriented texts dealing with the Kalman filter, see, e.g., Bar-Shalom and Li (1993),
Bar-Shalom and Fortmann (1988), Brown and Hwang (1997), Sorenson (1985).
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The linear observer theory developed by Luenberger (1966, 1971) can be considered
to be a deterministic version of the Kalman filter. In the linear observer theory it ispostu-
lated that the best way to construct the state estimate is to use thefollowing structure for
the estimator

x̂t+1 = Atx̂t + Btut + Kt(yt − Ctx̂t − Dtut). (3.32)

It is here important to observe a subtle, but important difference between the observer
theory and the Kalman filter theory. In the former the structure (3.32) of the estimator
is postulated, whereas in the latter this structure is a consequence of more elaborate as-
sumptions and calculations, see Theorem 3.1 and Corollary 3.1. These assumptions stems
from the fact that we made use of a probabilistic approach2 in deriving the Kalman filter,
where the errors are modeled as well, not just the deterministic dynamics. Furthermore,
this implies that the gain matrixKt is optimally3 calculated in the Kalman filter, whereas
in the observerKt has to be calculated “by hand” as a compromise between speed of
reconstruction and sensitivity to disturbances. From a more practical point of view one
might say that this compromise has been conveniently parameterized in terms of the de-
sign variables, which serve as tuning knobs in finding the best gain matrix for a particular
problem.

There are several applications where it is required to calculate k-step ahead predic-
tions, k > 1. For the general case thek-step ahead prediction is given by (3.8) and
if a linear, Gaussian model (3.29) is imposed it is Gaussian.It is calculated simply by
iterating (3.31c) and (3.31d)k times.

In applying the Kalman filter it is important to realize that the computations are im-
plemented with finite-precision arithmetics, which gives rise to round-off errors. This
implies that the covariance matrices might end up non-symmetric and/or indefinite. The
solution to the first problem is simply to propagate only halfthe matrix (the elements on
and below, or over, the main diagonal). The solution to the second problem is to use a
square-root factorization of the covariance matrix. Hence, rather than propagating the full
covariance matrix, we only propagate a square-root factor.See Kailath et al. (2000) for
more details regarding this topic.

3.5.2 Smoothing

The linear filtering and prediction problems were first solved by Kalman (1960) and
Kalman and Bucy (1961). It was not until a few years later thatthe linear smoothing
problem was first solved, see Rauch (1963), Rauch et al. (1965), Bryson and Frazier
(1963), Mayne (1966), Fraser and Potter (1969) for several different approaches. We will
in this section only be concerned with the fixed-interval smoothing problem. The reason
is threefold. First, this is the most common case in applications. Second, in the smooth-
ing application studied in this thesis we are confronted with the fixed-interval smoothing

2In Section 3.7.1 we will use a completely deterministic approach to the estimation problem and discuss the
differences and similarities between a deterministic and stochastic approach in more detail.

3The word optimal is a dangerous one. It is important to always keep in mind what is meant by optimal. The
estimates are optimal in the sense that they constitute the optimal solution to the posed optimization problem.
Hence, it is imperative that the optimization problem is wisely formulated, otherwise the optimal solution might
note be so optimal after all.
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problem4. Third, the solutions of the fixed-lag and the fixed-point smoothing problems
follow from the solution of the fixed-interval problem (Kailath et al., 2000).

The various approaches mentioned above for solving the smoothing problem all use
different arguments and as a result they produce quite different algorithms. However,
since the algorithms all solve the same problem they will give the same result, which
in turn implies that there must exist a close relationship between the various algorithms,
enabling a unified treatment. It is the fundamentalinnovation processthat makes such
a unifying treatment possible, this was first recognized by Kailath and Frost (1968). A
more recent discussion based on the innovation process is given in Kailath et al. (2000).
Some other interesting references treating the smoothing problem are the survey papers by
Meditch (1973) and Kailath (1975), and the monograph by Weinert (2001). The second
corollary to Theorem 3.1 will be the linear smoothing equations (commonly referred to as
the Rauch-Tung-Striebel (RTS) formulas introduced by Rauch et al. (1965)) given below.

Corollary 3.2 (Linear smoother)
Consider(3.29)and assume that the initial state is distributed asx0 ∼ N (x̄0, P̄0). Then,
the estimate for the smoothed density function is given by

p̂(xt|YN ) = N (x | x̂t|N , Pt|N ), (3.33a)

where

x̂t|N = x̂t|t + St(x̂t+1|N − x̂t+1|t), (3.33b)

Pt|N = Pt|t + St(Pt+1|N − Pt+1|t)S
T
t , (3.33c)

St = Pt|tA
T
t P−1

t+1|t, (3.33d)

wherex̂t+1|t, x̂t|t, Pt+1|t andPt|t are given by the Kalman filter. The initial state for the
smoother is provided by the Kalman filter (x̂N |N andPN |N ).

Proof: See Kailath et al. (2000), Rauch et al. (1965).

In order to obtain a numerically robust implementation of the solution to the smoothing
problem we have to resort to square-root factorizations. A detailed treatment of such
factorizations is given by Gibson (2003).

In extending the results to the nonlinear, non-Gaussian case it is probably a good
idea to start from the general and indeed rather powerful expressions provided by the
probability density functions. This will be the topic of Section 4.5. More importantly,
that section will also discuss how the calculations can be performed in practice and in
Paper F a successful application of the nonlinear smoothingalgorithm is provided.

3.6 Improved Estimation Using Change Detection

Change detection is a well established research area concerned with the problem of de-
tecting a change in the underlying system, see, e.g., Gustafsson (2000), Basseville and

4In Paper F a nonlinear fixed-interval smoothing problem has tobe solved. It arises as a sub-problem when
the EM algorithm is employed to solve a certain class of nonlinear system identification problems.
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Nikiforov (1993), Kay (1998). This change might be due to a component failure or a
change in the surrounding environment. Typically, the models employed in deriving vari-
ous estimates cannot cope with all situations that might arise, but different models can be
derived for the different situations. In automotive targettracking applications it is com-
mon to derive the model of the tracked vehicles based on the assumption that they stay in
their own lanes. This assumption is valid most of the time, but when the tracked vehicles
depart from their lanes the model is no longer correct. Hence, an interesting idea is to
make use of change detection ideas to detect the lane departures and use a model that
describes this motion better during the lane departure. This will improve the estimates,
since a more accurate model is used. The idea is illustrated in Figure 3.1, where the de-

-ut

-yt

Estimation
Algorithm

-Estimate

-εt
Detector -Alarm

6

Figure 3.1: The estimation algorithm delivers residualsεt, which are used in the
detector to decide whether or not a change has occurred. If a change is detected this
information is fed back for use in the estimation algorithm.

tector informs the estimation algorithm that a change has taken place. This information
is then used in the estimation algorithm by switching to the model which best describes
the current situation. The change detector typically consists of adistance measureand
a stopping rule, see Figure 3.2. The distance measure is used to assess whether a change

-εt Distance
Measure

-st Averaging -gt Thresholding -Alarm

Stopping rule

Figure 3.2: The components of the change detector are a distance measureand a
stopping rule, where the latter consists of an averaging anda thresholding procedure.

has occurred or not. It is an important design variable, thatshould be chosen with the
application in mind. Common standard choices are to use the residualsst = εt or the
squared residualsst = ε2

t . The stopping rule is used to give an alarm when theauxiliary
test statisticgt exceeds a certain threshold. One of the most powerful tools for obtaining
a good stopping rule in change detection problems is provided by thecumulative sum
(CUSUM) algorithm, introduced by Page (1954).
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Algorithm 3.2 (CUSUM)

1. gt = gt−1 + st − ν.

2. If gt > h: Alarm, gt = 0 andtalarm = t.

3. If gt < 0: gt = 0 andt̂change= t.

The auxiliary test statisticgt is a cumulative sum of the distance measure, compensated
with adrift term ν. This drift term is introduced to prevent positive drifts, which otherwise
will result in false alarms. Similarly, negative drifts areprevented by settinggt = 0, when
gt < 0. The estimated change time is provided byt̂change. A change is considered detected
whengt exceeds a certain thresholdh. A rather detailed account of the CUSUM algorithm
and its application in state estimation problems is provided by Gustafsson (2000).

In Paper I we provide an application where the estimates are significantly improved
by employing the change detection ideas briefly reviewed in this section. Furthermore,
the importance of choosing an appropriate distance measureis illustrated.

3.7 Convex Optimization for State Estimation

The topic of this section is the use of convex optimization insolving state estimation
problems. Methods based on convex optimization have been extensively used within the
automatic control community in order to accommodate for thepresence of constraints,
using the method ofmodel predictive control(MPC) (Maciejowski, 2002). However, the
interest has not been that intense when it comes to the state estimation problem. Recently
this has started to change, see, e.g., Goodwin (2003), Goodwin et al. (2005), Rao (2000).

In Section 3.7.1 it is illustrated that the Kalman filter is the recursive solution to a
certain weighted least-squares problem. This optimization problem can then be used as a
basis for extending the formulation to include constraintsas well. An intuitive motivation
for this approach is that if the constraints are neglected the resulting problem is reduced
to the ordinary Kalman filter. This fact is utilized in Section 3.7.2 in order to illustrate
how certain constraints can be taken into account in solvingthe estimation problem.

3.7.1 Deterministic Approach to State Estimation

This section is devoted to a purely deterministic approach to the estimation problem.
In order to be able to convey the main message the discussion is limited to the linear
problem. Removing the probabilistic framework previouslyemployed will in this case
simply imply that the noise termswt andet in Model 7 should be regarded as errors of
unknown character. Given a set of measurementsYt and a guess of the initial statēx0, the
task is to determine the statext in such a way that it describes the obtained measurements
as well as possible. That is, we are faced with a problem of curve fitting, where we want to
minimize the errors{wi}t−1

i=0 and{ei}t
i=0, as well as the error in the initial guess,x0− x̄0.

If Gauss would have been faced with this problem some200 years ago, he would probably
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have suggested us to solve the following least-squares problem

min
Xt

‖x0 − x̄0‖2
P̄−1

0

+
∑t−1

i=0 ‖wi‖2
Q−1

i
+
∑t

i=0 ‖ei‖2
R−1

i

s.t. xi+1 = Aixi + wi, i = 0, . . . , t − 1,
yi = Cixi + ei, i = 0, . . . , t,

(3.34)

where the weight matrices{Qi}t−1
i=0, {Ri}t

i=0 andP̄0 are design parameters. This is a con-
vex optimization problem, more specifically it is aquadratic program(QP). The theory
on how to handle least-squares problems of this type is well established, see Björck (1996)
and the many references therein. The estimates obtained from (3.34) are smoothed, ex-
cept for the estimate ofxt, which is the filtered estimate, since we only use measurements
up to and including timet.

The optimization problem stated in (3.34) can also be motivated from a probabilistic
point of view by considering the problem of deriving themaximum a posterioriestimates
for the state variables

X̂t = arg max
Xt

p(Xt|Yt), (3.35)

in Model 7. The probability density functionp(Xt|Yt) is proportional top(Yt|Xt)p(Xt),
where

p(Yt|Xt) =

t∏

i=0

p(yi|xi) =

t∏

i=0

pei
(yi − Cixi), (3.36)

p(Xt) = px0
(x0 − x̄0)

t−1∏

i=0

p(xi+1|xi) = px0
(x0 − x̄0)

t−1∏

i=0

pwi
(xi+1 − Atxi),

(3.37)

according to the discussion in Section 2.3.1. Putting it alltogether we arrive at

p(Xt|Yt) = cpx0
(x0 − x̄0)

t−1∏

i=0

pwi
(xi+1 − Aixi)

t∏

i=1

pei
(yi − Cixi), (3.38)

wherec ∈ R+ derives fromp(Yt). Due to the fact that the logarithmic function is strictly
monotone we may consider maximizinglog (p(Xt|Yt)) just as well asp(Xt|Yt). This
will, together with the assumption of Gaussian noise in (3.38), give rise to the optimization
problem stated in (3.34). The difference is that the weight matrices are now given by the
inverse covariance matrices.

It can be proved (Rao, 2000) that the recursive solution to (3.34) is provided by the
Kalman filter. The Kalman filter is in other words the recursive solution to the weighted
least-squares problem (3.34). This fact will be further exploited in the subsequent section,
where it is discussed how constraints can be included in the estimation problem in order
to obtain better estimates. An interesting historical account of the relationship between
the probabilistic formulation of the Kalman filter and the corresponding deterministic
formulation is provided by Sorenson (1970).

Since we have departed from the probabilistic approach there is no way of assessing
the statistical performance of the estimates. It is interesting to note that regardless of
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how we formulate the estimation problem it will usually boildown to an optimization
problem in a purely deterministic framework. An important difference is that the proba-
bilistic framework provides a systematic means for choosing the design parameters, i.e.,
the weight matrices.

3.7.2 Constrained State Estimation

The advantage of casting the estimation problem as a convex optimization problem is
that it is straightforward to add certain constraints to theproblem. The theory on convex
optimization is by now rather mature and there is general purpose software5 available
for solving the resulting problems. In this way prior information about the state can be
utilized, e.g., that the state is always positive or that thecomponents of the state should
sum to one, which is the case if the state is a vector of probabilities. Constraints of this
type cannot be straightforwardly included in the standard Kalman filter. However, if we
use the optimization problem to which the Kalman filter is therecursive solution, i.e.,
problem (3.34), it is straightforward to include the constraints. Here, the ideas are briefly
introduced. For a more thorough treatment, see Paper D, where an example on estimating
probabilities is provided. Performing state estimation using optimization techniques has
previously been discussed using quadratic programs in for instance Rao et al. (2001),
Rao (2000), Robertson and Lee (2002). For an introduction toconstrained estimation
and its connection to model predictive control (Maciejowski, 2002), see, e.g., Goodwin
(2003), Goodwin et al. (2005). Both these problems are treated at a more technical level
by Michalska and Mayne (1995).

The main message of convex optimization is that we shouldnot differ between lin-
ear and nonlinear optimization problems, but instead between convex and non-convex
problems. The class of convex problems is much larger than that covered by linear prob-
lems, and for a convex problem any local optimum is also the global optimum. A convex
optimization problem is defined as

min
x

f0(x)

s.t. fi(x) ≤ 0, i = 0, . . . ,m,
aT

i x = bi, i = 0, . . . , n,

(3.39)

where the functionsf0, . . . , fm are convex and the equality constraints are linear. For a
thorough introduction to convex optimization, see Boyd andVandenberghe (2004). Moti-
vated by the discussion in the previous section the convex optimization filtering problem
can be defined according to Problem 1.

It is also worth stressing that it is straightforward to include other variables to be esti-
mated, such as, e.g., missing data into Problem 1. Besides including them in the variables
to be estimated there is probably also a need to provide some assumptions regarding how
they behave, which are typically implemented as constraints.

Another type of constraints that might be interesting to addto Problem 1 are those that
makes it possible to include model uncertainty. Let us assume that we are uncertain about
theA-matrix in Problem 1, one way of expressing this is to say thattheA-matrix should

5A useful and efficient software is YALMIP, developed by Löfberg (2004). It provides direct access to
several of the standard numerical solvers for optimization problems, using a powerful MATLAB interface.
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belong to a set of some kind. Depending on the properties of this set different optimization
problems are obtained. This is in the literature referred toas robust estimation. For
information about commonly used sets, the resulting optimization problems and how to
solve them, see, e.g., El Ghaoui and Lebret (1997), Boyd and Vandenberghe (2004).

Problem 1 (Convex optimization filtering)

Assume that the densitiespx0
(x0), pwi

(wi), andpei
(ei) are log-concave6. In the presence

of constraints in terms of a linear dynamic Model 7, the MAP-estimate is the solution
x̂t = xt to the following problem

max
Xt

log(px0
(x0 − x̄0)) +

t−1∑

i=0

log(pwi
(wi)) +

t∑

i=0

log(pei
(ei))

s.t. xi+1 = Aixi + wi, i = 0, . . . , t − 1,
yi = Cixi + ei, i = 0, . . . , t.

It is straightforward to add any convex constraints to this formulation, and the resulting
problem can be solved using standard software.

The main concern with the formulation of the estimation problem given in Problem 1
is that the size of the optimization problem increases with time as more and more mea-
surements are considered. This is unacceptable in practiceand we have to find a way of
bounding the number of variables. One way of doing this is to derive a recursive solution.
However, when additional constraints are included this canindeed be very hard. In Zhu
and Li (1999) a recursive solution is given for a special caseof Problem 1 with additional
constraints.

Another way of bounding the number of variables in the optimization problem is to use
moving horizon estimation(MHE) (Maciejowski, 2002, Goodwin et al., 2005), defined
in Problem 2. This is basically the same idea underpinning model predictive control, i.e.,
the state is estimated using a fixed size, moving window of data. A special case of this is
the windowed least-squares approach discussed by Gustafsson (2000).

Problem 2 (Moving Horizon Estimation (MHE))

Assume that the densitiespwi
(wi) andpei

(ei) are log-concave. In the presence of con-
straints in terms of a linear dynamic model, the MHE-estimate is the solution̂xt = xt to
the following problem

max
Xt−L:t

F (xt−L) +
t−1∑

i=t−L

log(pwi
(wi)) +

t∑

i=t−L+1

log(pei
(ei))

s.t. xi+1 = Aixi + wi, i = t − L, . . . , t − 1,
yi = Cixi + ei, i = t − L + 1, . . . , t,

whereF (xt−L) contains information about the past.

6A functionf : R
n → R is log-concaveif f(x) > 0 for all x in the domain off andlog(f) is a concave

function (Boyd and Vandenberghe, 2004).
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The problem is now reduced to solving a convex optimization problem with a fixed num-
ber of variables once every time a new measurement arrives. However, it is important to
understand that the approach using MHE is, in general, sub-optimal, since the influence
of the past measurements is not necessarily taken care of correctly inF (xt−L).

The formulation used in Problem 2 can probably be useful alsofor change detection
and fault diagnosis. See Gustafsson (2001) for a similar idea using the Kalman filter over
a sliding window of fixed size. In an extension to nonlinear systems a solution might be
based on ideas similar to the innovation whiteness test of the filter bank approach dis-
cussed in Gustafsson (2000, Chapters8 and9). Furthermore, Problem 2 can be extended
to the nonlinear estimation problem, by using the nonlinearModel 3 instead of the linear
Model 7. The resulting problem is much harder, since it is a non-convex optimization
problem. Several useful entry points into the literature onmoving horizon estimation for
nonlinear systems are given in Rao et al. (2001), Rao (2000).
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4
Sequential Monte Carlo Methods

SEQUENTIAL Monte Carlo methods, orparticle methods, deal with the problem of
recursively estimating the probability density functionp(xt|Ys). According to the

Bayesian viewp(xt|Ys) contains all statistical information available about the state vari-
ablext, based on the information in the measurementsYs. This probability density func-
tion can then be used to form various state estimates according to

I (g(xt)) , E {g(xt)|Ys} =

∫

Rnx

g(xt)p(xt|Ys) dxt. (4.1)

The key ideaunderlying the sequential Monte Carlo methods is to represent the proba-
bility density function by a set of samples (also referred toas particles, hence the name
particle methods) and its associated weights. The density functionp(xt|Ys) is approxi-
mated with an empirical density function,

p(xt|Ys) ≈
M∑

i=1

q̃
(i)
t δ

(
xt − x

(i)
t|s

)
,

M∑

i=1

q̃
(i)
t = 1, q̃

(i)
t ≥ 0, ∀i, (4.2)

whereδ( · ) is the Dirac delta function and̃q(i)
t denotes the weight associated with particle

x
(i)
t|s. In obtaining this approximation we have to be able to generate random numbers from

complicated distributions. The approximation (4.2) can also be obtained using stochastic
integration ideas, see, e.g., Geweke (1996), Bergman (1999) for such, slightly different,
approaches. Even though theory states that the approximations (4.2) derived using se-
quential Monte Carlo methods are independent of state dimension, it matters in practice.
Problems due to high dimensional state variables prevents the use of the sequential Monte
Carlo methods. However, if there is a linear sub-structure available in the model equations
the marginalized particle filter can be employed. It is important to note that the problem of
generating random numbers from complicated distributionshas previously been assessed
in anon-recursivesetting using theMarkov chain Monte Carlo methods(MCMC).
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In Section 4.1 we will make the unrealistic assumption that we can indeed generate
samples from the target density. The objective of this section is to illustrate the idea
and to motivate Section 4.2, which is concerned with variousideas on how to handle
the fact that we cannot generate samples directly from the target density. Three differ-
ent solutions to this problem are illustrated. One of these is called importance sampling
resampling and this approach is used to derive the particle filter in Section 4.3. In Sec-
tion 4.4 the marginalized particle filter is introduced. It can be employed when there is a
linear, Gaussian sub-structure available in the model equations. The solution to the non-
linear smoothing problem, using particle methods, is discussed in Section 4.5. Finally,
the chapter concludes with Section 4.6 on how to obtain various estimates using (4.1).

4.1 Perfect Sampling

This section is concerned with the problem of calculating estimates (4.1) based on the
assumption that we have access toM independent and identically distributed (i.i.d.) sam-
ples,{x(i)}M

i=1 from the target densityt(x). This assumption is unrealistic from a prac-
tical point of view. Nevertheless, it will allow us to illustrate the key idea underlying the
sequential Monte Carlo methods. Using the samples{x(i)}M

i=1 an empirical estimate of
the density functiont(x) can be formed according to

t̂M (x) =

M∑

i=1

1

M
δ
(
x − x(i)

)
. (4.3)

Using this empirical density an estimate ofI(g(x)) is obtained as

ÎM (g(x)) =

∫
g(x)t̂M (x) dx =

M∑

i=1

1

M
g(x(i)). (4.4)

This estimate is unbiased and according to thestrong law of large numberswe have that

lim
M→∞

ÎM (g(x))
a.s.−→ I(g(x)), (4.5)

where
a.s.−→ denotes almost sure (a.s.) convergence (Doucet et al., 2001a). If we assume

that σ2 = I(g2(x)) − I2(g(x)) < ∞ the central limit theoremcan be applied, which
gives

lim
M→∞

√
M
(
ÎM (g(x)) − I(g(x))

)
d−→ N

(
0, σ2

)
, (4.6)

where
d−→ denotes convergence in distribution (Doucet et al., 2001a). Hence, using a

large number of samples,{x(i)}M
i=1, we can easily estimate any quantityI(g(x)), accord-

ing to (4.4).
The assumption underlying the above discussion is that it ispossible to obtain i.i.d.

samples fromt(x). However, in practice this assumption is very seldom valid.In order
to use the ideas sketched above we need to be able to generate random numbers from
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complicated distributions. There has been extensive research performed regarding this
problem and there are several different methods that can be used to tackle the problem.

Markov chain Monte Carlo methods are used to generate samples from probability
distributions (Robert and Casella, 1999, Gilks et al., 1996). The basic idea is to generate
random numbers by simulating a Markov chain, which have the target density as limit
distribution. The problem with MCMC methods is that they areinherently iterative, im-
plying that their use in solving recursive estimation problems is limited. Since we are
mainly concerned with the problem of recursive estimation we have to use alternative
methods. However, in the sections to come we will see that similar ideas can be used
to tackle the recursive problem. In the subsequent section some of the most popular se-
quential Monte Carlo methods will be reviewed inspired by the framework introduced by
Tanizaki (2001).

4.2 Random Number Generation

The problem under consideration in this section is to generate samples from some known
probability density function, referred to as thetarget densityt(x). However, since we
cannot generate samples fromt(x) directly, the idea is to employ an alternate density
that is simple to draw samples from, referred to as thesampling densitys(x). The only
restriction imposed ons(x) is that its support should include the support oft(x)1. When
a samplēx ∼ s(x) is drawn the probability that it was in fact generated from the target
density can be calculated. This probability can then be usedto decide whether̄x should
be considered to be a sample fromt(x) or not. This probability is referred to as the
acceptance probability, and it is typically expressed as a function ofq(x̄), defined by the
following relationship,

t(x̄) ∝ q(x̄)s(x̄). (4.7)

Depending on the exact details of how the acceptance probability is computed different
methods are obtained. The three most common methods are briefly explained below. For
a more detailed explanation, see, e.g., Robert and Casella (1999), Gilks et al. (1996),
Tanizaki (2001). A comparison of the three methods is provided by Liu (1996).

4.2.1 Sampling Importance Resampling

Sampling importance resampling (SIR) is an extension of an idea referred to asimpor-
tance sampling. Hence, we will start our brief exposition on SIR by explaining the im-
portance sampling algorithm. In discussing this algorithmthe sampling densitys(x) is
typically referred to as theimportance function. To understand the idea behind importance
sampling, note that integrals in the form (4.1) can be rewritten

I(g(x)) =

∫

Rnx

g(x)
t(x)

s(x)
s(x) dxt. (4.8)

1The support ofs(x) includes the support oft(x) if ∀x ∈ R
nx , t(x) > 0 ⇒ s(x) > 0.
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Based on the discussion in Section 4.1 it is now straightforward to obtain an estimate of
I(g(x)) by generatingM ≫ 1 samples{x(i)}M

i=1 from s(x) and forming

ÎM (g(x)) =
1

M

M∑

i=1

q(x(i))g(x(i)), (4.9)

where

q(x(i)) =
t(x(i))

s(x(i))
, i = 1, . . . ,M, (4.10)

are referred to as theimportance weights. In most state estimation applications of the
importance sampling procedure the normalizing factor in the target density is unknown.
This implies that the importance weights are only known up tothis normalizing factor,
which can be resolved by normalizing the importance weights,

q̃(x(i)) =
q(x(i))

∑M
j=1 q(x(j))

, i = 1, . . . ,M, (4.11)

whereq(x(i)) is defined in (4.10). This normalization will for finiteM introduce a bias
in the estimate. However, from the strong law of large numbers the estimate is asymptot-
ically unbiased. Details regarding this and other theoretical issues relating to the impor-
tance sampling algorithm are discussed by Geweke (1989). Wehave now motivated the
following approximation of the target density

t̂M (x) =

M∑

i=1

q̃(x(i))δ
(
x − x(i)

)
. (4.12)

The importance weights contains information about how probable it is that the corre-
sponding sample was generated from the target density. Hence, the importance weights
can be used as acceptance probabilities, which allows us to generate approximately inde-
pendent samples{x̃(i)}M

i=1 from the target density function. The approximationt̂M (x)
given in (4.12) is defined using a finite number of samples{x(i)}M

i=1. This implies that
the process of generating the samples from the target density function is limited to these
samples. More specifically this is realized byresamplingamong the samples according
to

Pr
(
x̃(i) = x(j)

)
= q̃(x(j)), i = 1, . . . ,M. (4.13)

The SIR idea was first introduced by Rubin (1988). In Algorithm 4.1 the above discussion
is summarized by describing how to approximately generateM samples from the target
density.

The sampling importance resampling algorithm is closely related to thebootstrappro-
cedure, introduced by Efron (1979). This relation is discussed in Smith and Gelfand
(1992), where an interpretation of Algorithm 4.1 is provided in terms of a weighted boot-
strap resampling procedure. It is worthwhile to note that the resampling step (4.16) is the
key step when it comes to estimating density functions recursively over time. This was
first realized by Gordon et al. (1993) and it will be describedin detail in Section 4.3.
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Algorithm 4.1 (Sampling Importance Resampling (SIR))

1. GenerateM independent samples{x(i)}M
i=1 from s(x) and compute the importance

weights

q(x(i)) = t(x(i))/s(x(i)), i = 1, . . . ,M. (4.14)

The acceptance probabilities are now obtained by normalization

q̃(x(i)) = q(x(i))/

M∑

j=1

q(x(j)), i = 1, . . . ,M. (4.15)

2. Generate a new set of samples{y(i)}M
i=1 by resampling according to

Pr
(
x̃(i) = x(j)

)
= q̃(x(j)), i = 1, . . . ,M. (4.16)

4.2.2 Acceptance – Rejection Sampling

A problem inherent in the SIR algorithm is that the produced samples are only approxi-
mately distributed as the target density. This problem is not encountered by acceptance –
rejection sampling, which will produce samples that are exactly distributed according to
the target density. However, this algorithms suffers from several other drawbacks.

If there exists a constantL > 0 such that

t(x) ≤ Ls(x), ∀x, (4.17)

then Algorithm 4.2 can be used to generateM samples from the target density. A more
detailed account of this algorithm is provided by Robert andCasella (1999).

Algorithm 4.2 (Acceptance – rejection sampling)

1. Generate a random number,x̃ ∼ s(x) and computeq(x̃) = t(x̃)
Ls(x̃) .

2. Acceptx̃ as a sample fromt(x) with probabilityq(x̃), i.e.,Pr
(
x(i) = x̃

)
= q(x̃).

If x̃ is not accepted go back to step1.

3. Repeat step1 and2 for i = 1, . . . ,M .

This is the most efficient sampling method in the sense that the generated samples are mu-
tually independent,exactdraws fromt(x). However, as mentioned above, the algorithm
suffers from some major limitations. First of all we have to find an upper bound,L, which
can be quite hard. Furthermore, once this upper bound has been found it can be proved
(Andrieu et al., 2001) thatPr (x̃ accepted) = 1/L, which typically is a very small num-
ber. This implies that from a practical point of view the algorithm is not very useful, since
on averageL ≫ 1 random numbers have to be generated in order to obtain one sample
that is accepted. It is clear that we want anL which is as small as possible, motivating
the choice,L = supx t(x)/s(x). Another, related issue is that there is no upper bound
on the number of iterations required, we can only state that on averageML iterations are
needed. This should be compared with the SIR algorithm, which just needM iterations.
When it comes to real time applications this will of course be amajor problem.
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4.2.3 Metropolis – Hastings Independence Sampling

The Metropolis – Hastings algorithm is a quite general algorithm for computing estimates
using the MCMC method. It was introduced by Hastings (1970),as a generalization of
the algorithm proposed by Metropolis et al. (1953). An introduction to the Metropolis –
Hastings algorithm is provided by Chib and Greenberg (1995). The idea of the algorithm
is borrowed from acceptance – rejection sampling, in that the generated samples are either
accepted or rejected. However, when a sample is rejected thecurrent value is used as
a sample from the target density. The Metropolis – Hastingsindependencesampling
algorithm, which is a special case of the Metropolis – Hastings algorithm, is given in
Algorithm 4.3. For a more detailed account of MCMC methods inrelation to sequential
Monte Carlo methods, see, e.g., Andrieu et al. (2001), Bergman (1999).

Algorithm 4.3 (Metropolis – Hastings independence sampling)

1. Initialize withx(−L) = x̄ and seti = −L + 1.

2. Generatẽx ∼ s(z) and compute the acceptance probability

q = min

(
t(x̃)s(x(i−1))

t(x(i−1))s(x̃)
, 1

)
(4.18)

3. Setx(i) = x̃ with probabilityq. Otherwise setx(i) = x(i−1).

4. Repeat step2 and3 for i = −L + 2, . . . ,M .

The initialL samples belongs to theburn-in phase of the algorithm and they are automat-
ically rejected. The reason is that the simulation has to reach its stationary phase before
the samples can be considered to originate from the stationary, i.e., the target, distribution.
A rather detailed analysis of Algorithm 4.3 is provided by Liu (1996).

4.3 Particle Filter

Let us consider the filtering problem, where the target density is given by the filtering
density,t(xt) = p(xt|Yt). In order to use the idea outlined in the previous section it is
necessary to choose an appropriate sampling densitys(xt) and a corresponding accep-
tance probability. This is in fact quite simple, since from Bayes’ theorem and the Markov
property we have

p(xt|Yt) = p(xt|yt, Yt−1) =
p(yt|xt)p(xt|Yt−1)

p(yt|Yt−1)
∝ p(yt|xt)p(xt|Yt−1), (4.19)

which suggests the following choices

p(xt|Yt)︸ ︷︷ ︸
t(xt)

∝ p(yt|xt)︸ ︷︷ ︸
q(xt)

p(xt|Yt−1)︸ ︷︷ ︸
s(xt)

. (4.20)

The resemblance with (4.7) is obvious. Hence, we can employ the algorithms discussed
in Section 4.2 to obtain samples from the target density. This provides a rather gen-
eral framework for discussing particle filtering algorithms. The particle filter is typically
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derived completely within an importance sampling framework, see, e.g., Doucet et al.
(2000a), Liu and Chen (1998), Arulampalam et al. (2002), Schön (2003) for derivations
of this kind. However, it is interesting, at least from a conceptual point of view, to note
that we could just as well have used acceptance – rejection sampling, Metropolis – Hast-
ings independence sampling or some other method to generaterandom numbers in order
to obtain alternative particle filtering algorithms. The use of acceptance – rejection sam-
pling is discussed by Bølviken et al. (2001) and Hürzeler andKünsch (1998). Based
on the appealing properties of the sampling importance resampling idea we will choose
to employ this principle in deriving the particle filter. This implies that the acceptance
probabilities{q̃(i)}M

i=1 are calculated according to

q̃
(i)
t =

q
(
x

(i)
t|t−1

)

∑M
j=1 q

(
x

(j)
t|t−1

) =
p
(
yt|x(i)

t|t−1

)

∑M
j=1 p

(
yt|x(j)

t|t−1

) , (4.21)

wherex
(i)
t|t−1 ∼ p(xt|Yt−1). These predicted particles{x(i)

t|t−1}M
i=1 are generated from

the underlying dynamic model and the filtered particles fromthe previous time instance
{x(i)

t−1|t−1}M
i=1. The details behind this can be understood from the following calculation,

which is a result of using the time update (3.13b) in Theorem 3.1.

s(xt) = p(xt|Yt−1) =

∫
p(xt|xt−1)p(xt−1|Yt−1) dxt−1

≈
∫

p(xt|xt−1)
M∑

i=1

1

M
δ
(
xt−1 − x

(i)
t−1|t−1

)
dxt−1

=

M∑

i=1

1

M

∫
p(xt|xt−1)δ

(
xt−1 − x

(i)
t−1|t−1

)
dxt−1

=
M∑

i=1

1

M
p
(
xt|x(i)

t−1|t−1

)
. (4.22)

Hence, the predicted particles are obtained simply by passing the filtered particles through
the system dynamics.

According to (4.21) the acceptance probabilitiesq̃
(i)
t depends on the likelihood func-

tion p(yt|xt|t−1). This makes sense, since the likelihood reveals how likelythe obtained
measurement is, given the present state. The better a certain particle explains the re-
ceived measurement, the higher the probability that this particle was in fact drawn from
the true density. Following Algorithm 4.1, a new set of particles{x(i)

t|t}M
i=1 approximat-

ing p(xt|Yt) is generated by resampling with replacement among the predicted particles,
belonging to the sampling density

Pr
(
x

(i)
t|t = x

(j)
t|t−1

)
= q̃

(j)
t , i = 1, . . . ,M. (4.23)

If this procedure is recursively repeated over time the following approximation

p(xt|Yt) ≈
M∑

i=1

1

M
δ
(
xt − x

(i)
t|t

)
(4.24)
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is obtained and we have in fact derived theparticle filter algorithm, which is given in
Algorithm 4.4. It was first introduced by Gordon et al. (1993). Later it was indepen-
dently rediscovered by Kitagawa (1996) and Isard and Blake (1998). Some early ideas
relating to the particle filter are given in Metropolis and Ulam (1949), Hammersley and
Morton (1954), Akashi and Kumamoto (1977), Handschin and Mayne (1969), Handschin
(1970).

Algorithm 4.4 (Particle filter)

1. Initialize the particles,{x(i)
0|−1}M

i=1 ∼ px0
(x0) and sett := 0.

2. Measurement update: calculate importance weights{q(i)
t }M

i=1 according to

q
(i)
t = p

(
yt|x(i)

t|t−1

)
, i = 1, . . . ,M, (4.25)

and normalizẽq(i)
t = q

(i)
t /

∑M
j=1 q

(j)
t .

3. Resampling: drawM particles, with replacement, according to

Pr
(
x

(i)
t|t = x

(j)
t|t−1

)
= q̃

(j)
t , i = 1, . . . ,M. (4.26)

4. Time update: predict new particles according to

x
(i)
t+1|t ∼ p

(
xt+1|t|x(i)

t|t

)
, i = 1, . . . ,M. (4.27)

5. Sett := t + 1 and iterate from step2.

First, the particle filter is initialized by drawing samplesfrom the prior density function
px0

(x0). In the measurement update the new measurement is used to assign a probabil-
ity, represented by the normalized importance weight, to each particle. This probability
is calculated using the likelihood function, which describes how likely it was to obtain
the measurement given the information available in the particle. The normalized impor-
tance weights and the corresponding particles constitute an approximation of the filtering
density. The resampling step will then return particles which are equally probable.The
time update is just a matter of predicting new particles according to the system model.
Furthermore, these predicted particles form the starting point for another iteration of the
algorithm. There are several books available on the subjectof particle filtering, see Doucet
et al. (2001a), Ristic et al. (2004), Liu (2001).

4.3.1 Resampling Algorithms

The resampling step consists of drawing a new set of particles{x(i)
t|t}M

i=1 with replacement

from the old particles{x(i)
t|t−1}M

i=1, in such a way that the probability of drawingx(i)
t|t−1 is

given byq̃
(i)
t according to

Pr
(
x

(i)
t|t = x

(j)
t|t−1

)
= q̃

(j)
t , i = 1, . . . ,M. (4.28)
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Figure 4.1: Illustrating the resampling step in the particle filter. Thenew set of parti-
cles is obtained by first generatingM sorted uniformly distributed random numbers,
three of which are shown by the dashed lines in the figure. These are then associated
with a particle guided by the cumulative sum of the normalized importance weights.
In the figure particle number 2 is chosen once and particle number 4 is chosen twice.

One way of achieving this is to use so calledsimple random resampling, illustrated in
Figure 4.1. Here, the idea is to select the new particles by comparing an ordered set of
uniformly distributed random numbersU(0, 1) to the cumulative sum of the normalized
importance weights. The resampling step can indeed be realized according to the idea
sketched in Figure 4.1, but there are more efficient algorithms available. The efficiency
is here determined by the resampling quality and the computational complexity. The re-
sampling quality is important for the overall quality of theestimate. Furthermore, a con-
siderable amount of the total computational complexity in aparticle filter implementation
stems from the resampling step. This clearly motivates the search for good resampling
algorithms.

There are several resampling algorithms proposed in the literature. Thesimple ran-
dom resamplingalgorithm was explained above. For further elaboration regarding this
algorithm, see Bergman (1999), Doucet et al. (2000a). Furthermore, there isstratified
sampling(Kitagawa, 1996, Liu and Chen, 1998),systematic sampling(Kitagawa, 1996,
Arulampalam et al., 2002) andresidual sampling(Liu and Chen, 1998). These algorithms
are discussed and analyzed in detail by Hol (2004). The result of this study is that the
systematic resampling, given in Algorithm 4.5 is most appropriate. This is in accordance
with the results reported by Arulampalam et al. (2002).

Despite the various embellishments of the resampling step we cannot escape the fact
that it will introduce a dependence among the different particles. This is due to the fact
that particles having large weights will be selected many times, since we are resampling
from a discrete probability density function, rather than from a continuous. In the particle
filtering literature this problem is commonly referred to assample impoverishment. The-
oretically this is also a problem, since this dependence makes convergence results harder
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to obtain. There are several more or lessad hocideas for how to cope with this problem.
One such idea is referred to asroughening (Gordon et al., 1993) orjittering (Fearnhead,
1998). The idea is to introduce an additional noise to make the particles differ more from
each other. Another idea, aiming at reducing the sample impoverishment problem, is to
resample from continuous approximations of the discrete probability density function.
This is referred to as theregularized particle filter(RPF) (Musso et al., 2001).

Algorithm 4.5 (Systematic sampling)

1. GenerateM ordered numbers according to

uk =
(k − 1) + ũ

M
, ũ ∼ U(0, 1). (4.29)

2. The resampled particles are obtained by producingni copies of particlex(i), where

ni = the number ofuk ∈
(

i−1∑

s=1

q̃
(s)
t ,

i∑

s=1

q̃
(s)
t

]
. (4.30)

4.3.2 Algorithm Modifications

The particle filter given in Algorithm 4.4 is rather simple, without loosing any of the
main components. In the literature there is an abundance of various alternative particle
filtering algorithms. However, the underlying idea of all these algorithms is captured in
Algorithm 4.4.

The essential resampling step leads to the problem of sampleimpoverishment, moti-
vating the work considered with improving this part of the algorithm. An obvious idea,
is to refrain from resampling at each time step. This is further discussed by Bergman
(1999), where the effective sample size is used as a measure of the degeneracy of the
particles. Another particle filtering algorithm devised toenhance the resampling step is
the regularized particle filter mentioned above.

The importance of choosing a good importance function is stressed by several au-
thors, see, e.g., Arulampalam et al. (2002). The importancefunctionp(xt+1|xt) used in
Algorithm 4.4 has an obvious defect in the sense that the state-space is explored without
direct knowledge of the measurementyt. The idea of incorporating this information in
the importance function is explored in theauxiliary particle filter(APF) introduced by
Pitt and Shephard (1999).

The idea of approximating the probability density functionwith a Gaussian or a Gaus-
sian sum was first introduced by Sorenson (1970) and Alspach and Sorenson (1972), see
Section 3.4.2. This idea has recently been used within a particle filtering framework. The
Gaussian particle filter(GPF), introduced by Kotecha and Djuric (2003a) approximates
the filtering and predictive density functions with Gaussian densities. Furthermore, the
Gaussian sum particle filter(GSPF) is similar, save the fact that the approximations are
performed using a sum of Gaussian densities (Kotecha and Djuric, 2003b).
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4.3.3 Implementation

The purpose of this section is to make the particle filter moreaccessible to those who have
still not used it. Having read this section the reader will beable to implement a particle
filter from scratch within five minutes. Before the implementation is given there are a
few steps in Algorithm 4.4 that are probably worth commenting. In step2 the importance
weightsq

(i)
t are calculated using the likelihood function, which according to (2.14b) is

given by

p(yt|xt) = pet
(yt − h(xt, t)). (4.31)

Furthermore, in step4, the task is to generate samplesx
(i)
t+1|t from p(xt+1|t|x(i)

t|t). This

can be realized by first generating a sample of the process noise,w(i)
t ∼ pwt

(wt). The
predicted particles are then given by

x
(i)
t+1|t = f(x

(i)
t|t , t) + w

(i)
t . (4.32)

We are now ready to give the MATLAB -implementation for Algorithm 4.4 using Model 3,
with Gaussian noise. The resampling is implemented using Algorithm 4.5.

Code 1 (M ATLAB -code for Algorithm 4.4 using Model 3)

function [xhat] = PF(f,h,pe,Q,P0,M,y)
n = size(P0,2);
x = sqrtm(P0)*randn(n,M); % 1. Initialize particles
for t = 1:100

e = repmat(y(t),1,M) - h(x); % 2. Calculate weights
q = feval(pe,e); % The likelihood function
q = q/sum(q); % Normalize importance weights
xhat(t) = sum(repmat(q,n,1).*x,2);
ind = resampling(q); % 3. Resampling
x = x(:,ind); % The new particles
x = feval(f,x,t)+sqrtm(Q)*randn(n,M); % 4. Time update

end

function [i] = resampling(q)
qc = cumsum(q); M=length(q);
u = ([0:M-1]+rand(1))/M;
i = zeros(1,M); k = 1;
for j = 1:M

while (qc(k)<u(j))
k = k + 1;

end
i(j) = k;

end;
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The three first input arguments to thePF function are the model equationsf, h and the
likelihood functionpe, which are defined asinline-objects or m-files. The other input
arguments are the covariance matrix for the stateQ, initial state covariance matrixP0, the
number of particlesM and finally the measurementsy. The use of Code 1 is exemplified
below.

Example 4.1: State estimation using the particle filter
The purpose of this example is to show the particle filter in action in an easily accessible
manner. The particle filter will be applied to estimate the states in the following system,

xt+1 =
xt

2
+

25xt

1 + x2
t

+ 8 cos(1.2t) + wt, (4.33a)

yt =
x2

t

20
+ et, (4.33b)

wherex0 ∼ N (0, 5), wt and et are mutually independent white Gaussian noise se-
quences,wt ∼ N (0, 10) andet ∼ N (0, 1). This is a discrete-time nonlinear time-varying
system with additive noise, i.e., Model 3 previously definedin Section 2.3.1. This sys-
tem has been analyzed in many papers, see, e.g., Gordon et al.(1993), Kitagawa (1996),
Doucet (1998), Arulampalam et al. (2002).

The first step is to define the model, the parameters to use withit, and the design
parameters for the particle filter. Once this is done the system is simulated and finally the
measurements from this simulation are used in the particle filter to obtain the estimate of
the states. The MATLAB -code for this is given below.

M = 1000; % Number of particles
P0 = 5; % Initial noise covariance
Q = 10; % Process noise covariance
R = 1; % Measurement noise covariance
pe = inline(’1/(2*pi*1)^(1/2)*exp(-(x.^2)/(2*1))’);
f = inline(’x./2+25*x./(1+x.^2)+8*cos(1.2*t)’,’x’,’t’);
h = inline(’(x.^2)/20’);

x(1) = sqrtm(P0)*randn(1); % Initial state value
y(1) = feval(h,x(1)) + sqrtm(R)*randn(1);
for t = 2:100 % Simulate the system

x(t) = feval(f,x(t-1),t-1) + sqrtm(Q)*randn(1);
y(t) = feval(h,x(t)) + sqrtm(R)*randn(1);

end
xTrue = x;

xhat = PF(f,h,pe,Q,P0,M,y);
plot(1:100,xhat,’b--’,1:100,xTrue,’r’);
xlabel(’Time’);

Executing this code gives the result shown in Figure 4.2. SeeArulampalam et al. (2002)
for a detailed simulation study illustrating various different particle filter algorithms.
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Figure 4.2: The solid line corresponds to the true state and the dashed line stems
from the estimate provided by the particle filter given in Algorithm 4.4. The under-
lying system is given in (4.33).

The implementation given in this section is very simple, since its purpose is to as
clearly as possible illustrate the particle filter. There isa toolbox available, implemented
by Rosén (2005), which allows for more advanced particle filtering applications.

4.4 Marginalized Particle Filter

In mathematics, and science in general for that matter, it isoften advantageous to exploit
certain structures present in the problem under investigation. Sequential Monte Carlo
methods are not an exception. If there is a linear, Gaussian sub-structure available in the
model equations this can be used to obtain estimates with lower, or at least not larger,
variance (Doucet et al., 2000a, 1999, Chen and Liu, 2000). The reason is that the corre-
sponding linear states can be optimally estimated using theKalman filter. Applications
implying a high dimension of the state variable will effectively prevent the use of the par-
ticle filter. However, if there is a linear sub-structure available the marginalized particle
filter can be used. Let us assume that there is a linear sub-structure available in the model,
the state vector can then be partitioned according to

xt =

(
xl

t

xn
t

)
, (4.34)

wherexl
t andxn

t are used to denote the linear and the nonlinear state variables, respec-
tively. A rather general model class containing a linear sub-structure was defined in
Model 5, Section 2.3.2. The basic idea underlying the marginalized particle filter is to
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split p(xl
t,X

n
t |Yt) according to

p(xl
t,X

n
t |Yt) = p(xl

t|Xn
t , Yt)p(Xn

t |Yt). (4.35)

This allows us to use the Kalman filter to optimally estimate the probability density func-
tion for the linear variablesp(xl

t|Xn
t , Yt), if the noise is Gaussian. The probability density

function for the nonlinear state variablesp(Xn
t |Yt) is estimated using the particle filter.

Using the state partition (4.34) it is possible to write (4.1), with s = t, according to

I(g(xl
t,Xt)) =

1

p(Yt)

∫ (∫
g(xl

t,X
n
t )p(Yt|xl

t,X
n
t )p(xl

t|Xn
t ) dxl

t

)
p(Xn

t ) dXn
t

=

∫
m(Xn

t )p(Xn
t ) dXn

t∫
p(Yt|Xn

t )p(Xn
t ) dXn

t

, (4.36)

where

m(Xn
t ) ,

∫
g(xl

t,X
n
t )p(Yt|xl

t,X
n
t )p(xl

t|Xn
t ) dxl

t. (4.37)

Hence, we have analytically marginalized the linear state variables. This motivates the
namemarginalizationfor the procedure of using both the Kalman filter and the particle
filter. Another name commonly used in the literature isRao-Blackwellization(Casella
and Robert, 1996, Doucet et al., 2000a). The idea of using a filter consisting of a Kalman
filter for the linear state variables and a particle filter forthe nonlinear state variables
is certainly not new. It has previously been discussed in theliterature, see, e.g., Doucet
et al. (2000a, 2001b), Chen and Liu (2000), Nordlund (2002),Andrieu and Doucet (2002).
Our contribution is the derivation of the marginalized particle filter for the rather general
mixed linear/nonlinear state-space model defined as Model 5. This derivation is given in
Paper A. The resulting algorithm is schematically given in Algorithm 4.6.

Algorithm 4.6 (Marginalized particle filter)

1. Initialization: Initialize the particles and set initial values for the linear state vari-
ables, to be used in the Kalman filter.

2. Particle filter measurement update: evaluate the importance weights and normalize.

3. Resample with replacement.

4. Particle filter time update and Kalman filter

(a) Kalman filter measurement update.

(b) Particle filter time update: Predict new particles.

(c) Kalman filter time update.

5. Iterate from step2.

The only difference from the standard particle filter (Algorithm 4.1) is in step4, where
two additional steps are introduced. These two steps correspond to the efficient estimation
of the linear state variables using the Kalman filter.
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If the standard particle filter is used for all states the dimension of the space in which
the particles live will benxt

= dimxt, whereas if the marginalized particle filter is
used the corresponding dimension will benxn

t
= dim xn

t . Intuitively, sincedimxn
t <

dim xt more particles have to be used to obtain good estimates if theparticle filter is
used, than if the marginalized particle filter is used. This and further issues relating to the
computational complexity of the marginalized particle filter are investigated in Paper B
and Karlsson et al. (2004).

The marginalized particle filter has been successfully usedin several applications,
for instance in automotive target tracking (Eidehall et al., 2005), automotive positioning
(Svenzén, 2002), aircraft navigation (Nordlund, 2002), underwater navigation (Karlsson
and Gustafsson, 2003), communications (Chen et al., 2000, Wang et al., 2002), nonlinear
system identification (Paper E, Li et al., 2003, Daly et al., 2005) and audio source separa-
tion (Andrieu and Godsill, 2000). Furthermore, in Paper H the marginalized particle filter
is described from a practitioners point of view, using several applications.

4.5 Particle Smoother

The aim of this section is to derive an estimate of the smoothing densityp(xt|YN ) for
a fixedN and for all times,1 ≤ t ≤ N , when the underlying model is nonlinear and
non-Gaussian. This is indeed a very hard problem. However, the framework discussed
in Section 4.2 can be employed and will in fact provide a systematic approach to the
problem. In scanning the literature it is interesting, and perhaps a bit surprising, to note
that although the particle filter theory is quite well established not much work has been in-
vested in the particle smoothing theory. Hence, this is probably a fruitful area for research
during the coming years. The related Markov chain Monte Carlo methods are interest-
ing alternatives in tackling this problem, see, e.g., Geweke and Tanizaki (1999) for some
work in this direction.

4.5.1 A Particle Smoothing Algorithm

In tackling the smoothing problem the target density is chosen as (Tanizaki, 2001)

t(xt+1, xt) = p(xt+1, xt|YN ). (4.38)

Similarly to what was discussed in the Section 4.3 on particle filters, we have to find
a suitable sampling density and the corresponding acceptance probabilities to solve the
smoothing problem. First, note that

p(xt+1, xt|YN ) = p(xt|xt+1, YN )p(xt+1|YN ), (4.39)

where

p(xt|xt+1, YN ) = p(xt|xt+1, Yt, Yt+1:N ) =
p(Yt+1:N |xt, xt+1, Yt)p(xt|xt+1, Yt)

p(Yt+1:N |xt+1, Yt)

= p(xt|xt+1, Yt) =
p(xt+1|xt)p(xt|Yt)

p(xt+1|Yt)
. (4.40)



66 4 Sequential Monte Carlo Methods

Inserting (4.40) into (4.39) gives

p(xt+1, xt|YN )︸ ︷︷ ︸
t(xt+1,xt)

=
p(xt+1|xt)

p(xt+1|Yt)︸ ︷︷ ︸
q(xt+1,xt)

p(xt|Yt)p(xt+1|YN )︸ ︷︷ ︸
s(xt+1,xt)

(4.41)

At time t the sampling density can be used to generate samples. In order to find the
acceptance probabilities{q̃(i)}M

i=1 we have to calculate

q̃(xt+1, xt) =
p(xt+1|xt)

p(xt+1|Yt)
, (4.42)

wherep(xt+1|xt) is implied by the underlying model andp(xt+1|Yt) can be approxi-
mated using the result from the particle filter,

p(xt+1|Yt) =

∫
p(xt+1|xt)p(xt|Yt) dxt =

∫
p(xt+1|xt)

M∑

i=1

1

M
δ
(
xt − x

(i)
t|t

)
dxt

≈
M∑

i=1

1

M
p
(
xt+1|x(i)

t|t

)
. (4.43)

The particles can now be resampled according to the acceptance probabilities{q̃(i)}M
i=1

in order to generate samples fromp(xt+1, xt|YN ). The above discussion is summarized
in Algorithm 4.7, which was first introduced by Tanizaki (2001).

Algorithm 4.7 ( Particle smoother)

1. Run the particle filter (Algorithm 4.4) and store the filtered particles{x(i)
t|t}M

i=1, t =
1, . . . , N .

2. Initialize the smoothed particles and importance weights at timeN according to
{x(i)

N |N = x
(i)
N |N , q̃

(i)
N |N = 1/M}M

i=1 and sett := t − 1.

3. Calculate weights{q(i)
t|N}M

i=1 according to

q
(i)
t|N =

p
(
x

(i)
t+1|N |x(i)

t|t

)

∑M
j=1 p

(
x

(i)
t+1|N |x(j)

t|t

) (4.44)

and normalizẽq(i)
t|N = q

(i)
t|N/

∑M
j=1 q

(j)
t|N .

4. Resample the smoothed particles according to

Pr
((

x
(i)
t+1|N , x

(i)
t|N

)
=
(
x

(j)
t+1|N , x

(j)
t|t

))
= q̃

(j)
t|N . (4.45)

5. Sett := t − 1 and iterate from step3.

This algorithm will be employed to handle the nonlinear smoothing problem that arises in
using expectation maximization algorithm for nonlinear system identification. The idea
is briefly sketched in Section 5.3.2 and the details are givenin Paper F.
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4.5.2 Alternative Particle Smoothing Algorithm

The algorithm just derived belongs to a set of smoothing algorithms commonly referred
to asforward-backward smoothingalgorithms. The name stems from the fact that we first
perform a forward (filtering) pass to obtain an approximation of p(xt|Yt). We then issue
a backwards pass to obtain an approximation of the smoothed densityp(xt|YN ) based on
the information from the forward pass and (3.13c), repeatedhere for convenience,

p(xt|YN ) = p(xt|Yt)

∫

Rnx

p(xt+1|xt)p(xt+1|YN )

p(xt+1|Yt)
dxt+1. (4.46)

This approach has also be elaborated upon by Doucet et al. (2000a), Hürzeler and Künsch
(1998) and Künsch (2001).

Another set of smoothing algorithms are based on thetwo-filter formula, previously
mentioned in Section 3.2. This formula describes how the marginal smoothing density
can be computed by combining the output from two independentfilters, according to

p(xt|YN ) ∝ p(xt|Yt−1)p(Yt:N |xt). (4.47)

The details for deriving a particle smoother based on this idea is provided in Kitagawa
(1996). Tanizaki’s (2001) reinterpretation of the algorithm provided by Kitagawa (1996)
allows us to fit this algorithm into the framework provided inSection 4.2.

The approaches discussed this far are concerned with the problem of estimating the
marginal smoothing densityp(xt|YN ). We can also try to approximate thejoint smooth-
ing densityp(XN |YN ). An algorithm for this is proposed in Doucet et al. (2000b), Godsill
et al. (2004). The idea is to factorp(XN |YN ) according to

p(XN |YN ) = p(xN |YN )

N−1∏

t=1

p(xt|Xt+1:N , YN ). (4.48)

Using the Markov property inherent in the state-space modelwe have

p(xt|Xt+1:N , YN ) = p(xt|xt+1, Yt)

=
p(xt|Yt)p(xt+1|xt)

p(xt+1|Yt)
∝ p(xt|Yt)p(xt+1|xt). (4.49)

Hence, it is possible to approximatep(XN |YN ) based on thep(xt|Yt) andp(xt+1|xt).
For details regarding the resulting algorithm, see Godsillet al. (2004). Some further
embellishments to this algorithm are given in Fong et al. (2002), Fong and Godsill (2001),
where it is discussed how marginalization can be used to derive a smoothing algorithm
that exploits certain structural properties of the model.

4.6 Obtaining the Estimates

From the discussion above it is hopefully clear how to obtainestimates of probability
density functionsp(xt|Ys). For instance, whens = t this corresponds to the filtering den-
sity, which is approximated using the particle filter. Typically, we are interested in some
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particular property of the underlying state variable, suchas for instance a point estimate
and its associated quality, provided by the covariance. Thepresent section will describe
how these estimates can be obtained using the approximated densities. The approach can
readily be extended to other interesting features of the underlying state variable.

An minimum mean square error estimate of the mean value of thecurrent state is
obtained by insertingg(xt) = xt in (4.1), resulting in

Ep(xt|Ys) {xt} =

∫
xtp(xt|Ys) dxt. (4.50)

Using the following estimate of the probability density function,

p̂M (xt|Ys) =

M∑

i=1

q̃
(i)
t δ

(
xt − x

(i)
t|s

)
, (4.51)

results in

x̂t|s =

∫
xtp̂M (xt|Ys) dxt =

∫
xt

M∑

i=1

q̃
(i)
t δ

(
xt − x

(i)
t|s

)
dxt =

M∑

i=1

q̃
(i)
t x

(i)
t|s. (4.52)

Similarly, an estimate of the covariance ofx̂t|t is obtained using

g(xt) = (xt − x̂t|s)(xt − x̂t|s)
T (4.53)

in (4.1), which after some calculations results in

P̂t|s =

M∑

i=1

q̃
(i)
t

(
x

(i)
t|s − x̂t|s

)(
x

(i)
t|s − x̂t|s

)T

. (4.54)

From the two expressions (4.52) and (4.54) it is clear how theestimates are affected by the
information in the normalized importance weightsq̃

(i)
t . The more likely a certain particle

is, the more it influences the estimate, which is a quite reasonable fact.



5
Nonlinear System Identification

SYSTEM identification deals with the problem of estimating mathematical models of
dynamic systems using measurements of the inputs to and the outputs from the sys-

tem. The difference to state estimation theory is that the object to be estimated is static,
which slightly changes the problem. However, both problemsrely on the same theoreti-
cal basis. Similarly to the state estimation problem the system identification problem has
its roots in the work of Gauss (1809) and Fisher (1912). Much of the early work was
conducted within the fields of statistics, econometrics andtime series analysis. It is the
paper by Åström and Bohlin (1965) that is used to mark the start of system identification
as a separate field of science. The motivation came from the field of automatic control,
where new powerful model based control strategies demandedsolid mathematical models
of the underlying systems. An interesting historical account of the system identification
problem is given by Deistler (2002). The development of the subject within the automatic
control community during the past 40 years is reviewed by Gevers (2003).

In Section 5.1 an overview of the system identification problem is provided. This
is followed by Section 5.2, where different methods for the model estimation process are
discussed. More specifically, it is shown that the expectation maximization algorithm pro-
vides a systematic procedure for separating one hard estimation problem into two simpler
problems, which is useful for system identification. Finally, in Section 5.3 the expectation
maximization algorithm and particle methods are used to solve certain nonlinear system
identification problems.

5.1 System Identification Problem

The system identification problem concerns estimation of static parameters present in
dynamic models. This is accomplished using the informationavailable in measured input
and output signals from the underlying system. The system identification problem is

69
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commonly split into the following sub-problems:

• Experiment design and data collection. This involves the selection of which
variables to measure, when the measurements should be performed and how to
manipulate the input signals. The objective of experiment design is to obtain data
that provides as much information as possible about the parameters to be estimated.

• Model class selection.The problem of finding a suitable model class is the most
important and probably the most difficult choice in solving an identification prob-
lem. Within the field of system identification a first, rather coarse, partition of
models is constituted byblack boxandgray box models. In a black box model
the equations and parameters do not have any physical relevance, they are simply
adjusted to describe the data set as well as possible. The gray box model, on the
other hand, is based on knowledge of the underlying system. Typically the model
equations are known, but there are unknown parameters that have to be identified.
Intuition and prior familiarity with the underlying systemare very useful in choos-
ing a suitable model class. This is true also when it comes to black box models.

• Model estimation. The objective is to determine the best model in the model class,
using the information available in the observed data set. This is the part of the
system identification problem that is considered in this thesis.

• Model validation. When the three steps discussed above have been performed we
have derived a model. However, an important question still remains to be answered;
Is the model good enough for its intended purpose? The answerto this question is
obtained using model validation techniques. If the model fails the model valida-
tion some of the choices made in the previous steps have to be revised and a new
model should be estimated. After a few iterations we have hopefully arrived at an
acceptable model.

This is a very brief overview of the problems studied within the field of system iden-
tification, a more detailed account is provided in the monographs by Ljung (1999) and
Söderström and Stoica (1989). There are also presentationssolely concerned with the
nonlinear system identification problem, see, e.g., Nelles(2001), Pearson (1999). The
recent survey paper by Ljung (2006) provides an inventory ofthe nonlinear system iden-
tification problem.

5.2 Model Estimation

Depending on how the information present in the input signals UN = {ui}N
i=1 and the

output signalsYN = {yi}N
i=1 is inferred on the parametersθ, different estimation methods

are obtained. There are many different approaches to this problem and in Section 5.2.1
a very brief overview of some of the most important estimation methods is provided. In
Section 5.2.2 we give a more detailed account of the expectation maximization algorithm,
which is a potentially underestimated estimation method within the field of system iden-
tification.
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5.2.1 Overview

Some of the most common methods used to estimate models are the prediction error
method(Ljung, 1999, Söderström and Stoica, 1989), thesubspace method(Van Over-
schee and De Moor, 1996) and thecorrelation and spectral analysis methods(Ljung,
1999). Several of these methods, and the tools to analyze their performance have their
roots in, or at least strong connections to, the area of mathematical statistics.

The maximum likelihood method, which is a special case of the prediction error
method, is quite commonly used in solving the system identification problem. It was
introduced by Fisher (1912, 1922) and it is based on the rather natural idea that the pa-
rameters should be chosen in such a way that the observed measurements areas likely as
possible. More specifically, the following optimization problem is addressed

θ̂(YN ) = arg max
θ

pθ(YN ), (5.1)

where (recall thatXN denotes the state variables of the underlying state-space model)

pθ(YN ) =

∫

RNnx

pθ(XN , YN ) dXN =

∫

RNnx

pθ(YN |XN )pθ(XN ) dXN

=

∫

RNnx

N∏

t=1

pθ(yt|xt)

N∏

t=1

pθ(xt|xt−1) dXN . (5.2)

Alternatively,pθ(YN ) can be written as

pθ(YN ) =

N∏

t=1

pθ(yt|Yt−1). (5.3)

It is often convenient to study the log-likelihood

L(θ) = log pθ(YN ), (5.4)

rather than the likelihood. In order to obtain an explicit optimization problem, that can
be solved, we have to specify which model class we intend to use. In this thesis we only
consider state-space models in the context of system identification. However, due to the
need for more general models provided by differential-algebraic equations there has been
some work on extending the system identification theory to handle parameter estimation
in these models as well. See Gerdin (2004), Gerdin et al. (2005b) for some work in this
direction.

It is interesting to see how the maximum likelihood method relates to the popular
prediction error method, where the estimate is obtained as the solution to the following
optimization problem

θ̂N = arg min
θ

VN (θ, YN , UN ), (5.5a)

VN (θ, YN , UN ) =
1

N

N∑

t=1

l (ε(t, θ)). (5.5b)
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Here,ε(t, θ) = yt − ŷt denotes the prediction error andl( · ) is a suitably chosen positive
(norm) function. If it is chosen as

l(ε(t, θ)) = − log pθ(yt|Yt−1), (5.6)

the maximum likelihood method is obtained. Hence, the prediction error method is more
general than the maximum likelihood method. The use of othernorms is discussed by
Ljung (1999). Once the objective function has been chosen in(5.5) the optimization has
to be performed. This is often a non-convex optimization problem, which typically is
tackled using some gradient-based search algorithm, such as Newton’s method or one of
its variants1 (Dennis and Schnabel, 1983). The iterations for the parameter estimates are
typically in the following form,

θ̂i+1
N = θ̂

(i)
N + µ

(i)
N

(
R

(i)
N

)−1
(

d

d θ
VN (θ, YN , UN )

)
, (5.7)

whereµ
(i)
N is a scaling factor that denotes the step length andR

(i)
N is a matrix that modifies

the search direction. An alternative, gradient-free, solution to the maximum likelihood
problem is provided by the expectation maximization algorithm, briefly introduced in the
subsequent section.

5.2.2 Expectation Maximization Algorithm

The expectation maximization(EM) algorithm, introduced2 by Dempster et al. (1977),
presents an iterative approach for obtaining maximum likelihood estimates (5.1). Within
the area of applied statistics it is widely recognized for its robustness. The strategy under-
lying the EM algorithm is to separate a difficult maximum likelihood problem into two
linked problems, each of which is easier to solve than the original problem. The prob-
lems are separated usingmarginalization. It is interesting to note that this is the same
underlying mechanism as in the marginalized particle filter, discussed in Section 4.4.

Thekey ideain the EM algorithm is to consider an extension to (5.1),

θ̂(XN , YN ) = arg max
θ

pθ(XN , YN ). (5.8)

Here, an extra data setXN , commonly referred to as theincomplete dataor themiss-
ing data, has been introduced. Its choice is the essential design variable in devising an
EM algorithm and it should be chosen in such a way that solving(5.8) is simple ifXN

were known. It is worth stressing that if the missing data is chosen unwisely this might
very well lead to a harder problem than what we had to begin with. The connection
between (5.1) and (5.8) is provided by Bayes’ theorem,

log pθ(YN ) = log pθ(XN , YN ) − log pθ(XN |YN ). (5.9)

1There are some special cases (FIR, ARX model structures), which give rise to a standard least-squares
problem. This can of course be solved explicitly, without using an iterative approach.

2The EM algorithm was discovered independently by differentresearchers, see, e.g., Baum et al. (1970).
However, it was Dempster et al. (1977) who provided the first systematic treatment of the ideas and introduced
the nameExpectation Maximizationalgorithm.
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The problem separation is now obtained by marginalizing (5.9) w.r.t. the missing data.
Note thatθ′ is used to denote the result from the previous iteration of the algorithm.
Since the left-hand side of (5.9) is independent ofXN it is unaffected by the marginaliza-
tion. More specifically, the marginalization is carried into effect by integrating (5.9) over
pθ=θ′(XN |YN ). Note thatpθ(XN |YN ) denotes a family of density functions, parame-
terized byθ, whereaspθ=θ′(XN |YN ) denotes a specific member of this family, the one
obtained usingθ = θ′.

L(θ) = log pθ(YN ) =

∫
log pθ(XN , YN )pθ=θ′(XN |YN ) dXN

−
∫

log pθ(XN |YN )pθ=θ′(XN |YN ) dXN

= Eθ′ {log pθ(XN , YN )|YN}︸ ︷︷ ︸
Q(θ,θ′)

−Eθ′ {log pθ(XN |YN )|YN}︸ ︷︷ ︸
V(θ,θ′)

, (5.10)

whereEθ′{ · |YN} denotes the expected value w.r.t.pθ=θ′(XN |YN ). If the log-likelihood
functionL is evaluated at two consecutive parameter valuesθ andθ′ the difference can
be written as

L(θ) − L(θ′) =
(
Q(θ, θ′) −Q(θ′, θ′)

)
+
(
V(θ′, θ′) − V(θ, θ′)

)
, (5.11)

where we have made use of the definitions in (5.10). Consider the second term in (5.11),

V(θ′, θ′) − V(θ, θ′) =

∫
log

pθ′(XN |YN )

pθ(XN |YN )
pθ′(XN |YN ) dXN

= Epθ′ (XN |YN )

{
− log

pθ(XN |YN )

pθ′(XN |YN )

}
. (5.12)

It is interesting to note thatV(θ′, θ′)−V(θ, θ′) is in fact theKullback-Leibler information,
which is commonly used as a measure of the agreement between two probability density
functions (Kullback and Leibler, 1951). Since the negativelogarithm is a convex function,
Jensen’s inequality3 can be used

Epθ′ (XN |YN )

{
− log

pθ(XN |YN )

pθ′(XN |YN )

}
≥ − log Epθ′ (XN |YN )

{
pθ(XN |YN )

pθ′(XN |YN )

}

= − log

∫
pθ(XN |YN ) dXN = 0, (5.13)

which effectively establishes thatV(θ′, θ′)−V(θ, θ′) ≥ 0 and therefore choosing aθ that
satisfiesQ(θ, θ′) ≥ Q(θ′, θ′) implies thatL(θ) ≥ L(θ′). That is, values ofθ that increase
Q(θ, θ′) beyond its value atθ′ also increase the underlying likelihood function of interest.
This implies the expectation maximization algorithm stated in Algorithm 5.1.

To summarize, the EM algorithm provides a systematic procedure for separating one
hard problem into two simpler connected problems, using marginalization. Given the

3Jensen’s inequality (Durrett, 1996) states that iff is a convex function then

E{f(x)} ≥ f (E{x})
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Algorithm 5.1 (Expectation Maximization (EM))

Given an initial estimateθ0, iterate the following until convergence.

E: Q(θ, θk) = Eθk
{log pθ(XN , YN )|YN}

M: θk+1 = arg max
θ

Q(θ, θk)

many applications of the EM algorithm, within several otherfields, it is surprising to see
how little attention this algorithm has attracted within the areas of system identification
and automatic control. A good entry point into the literature regarding various applica-
tions of the EM algorithm is Moon (1996) and the references therein. An early applica-
tion, within the area of system identification, is given by Isaksson (1993). However, it is
only recently that a thorough investigation of its use has been initiated. A rather detailed
account of using the EM algorithm for estimating multivariable linear time-invariant state-
space models is given by Gibson and Ninness (2005) and Gibson(2003). These results
have been extended to bilinear system identification in Gibson et al. (2005). Further-
more, in Paper F we further extend the results to identify theparameters in the nonlinear
Model 4, defined in Section 2.3.2. In an effort to make the EM algorithm available for
solving system identification problems a toolbox has been developed by Ninness et al.
(2005).

5.3 Approaches Based on Particle Methods

The problems addressed within the field of system identification exist in many other fields
of science as well. This section is concerned with some new ideas on how to tackle
a certain class of nonlinear system identification problemsusing particle methods and
the EM algorithm. Hence, we will try to illustrate some new ideas based on methods
extensively used in other communities for similar problems.

There is a recent survey paper by Andrieu et al. (2004), whichprovides an overview
of the use of sequential Monte Carlo, or particle, methods insystem identification, change
detection and automatic control. The use of the expectationmaximization within the field
of system identification has been reviewed above. When the parameter estimation prob-
lem is investigated using particle methods we have implicitly made use of the Bayesian
approach. This approach has previously been employed to handle the system identifi-
cation problem, see, e.g., McGhee and Walford (1968), Kramer and Sorenson (1988),
Peterka (1981, 1979).

The two ideas briefly introduced in the subsequent sections are concerned with the
following class of nonlinear systems

(
xt+1

yt

)
=

(
f1(xt, ut, t)
h1(xt, ut, t)

)
θ +

(
f2(xt, ut, t)
h2(xt, ut, t)

)
+

(
wt

et

)
, (5.14)

previously introduced as Model 4 in Section 2.3.1.
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5.3.1 Marginalized Particle Filter

The strategy employed in this first approach is rather well-known. The idea is to augment
the states with the parameters into a new state vector (Åström and Eykhoff, 1971, Ljung
and Söderström, 1983)

zt =

(
xt

θ

)
. (5.15)

By assuming a random walk variation for the parameters, the system identification prob-
lem can now be cast as a nonlinear state estimation problem, which opens up for possible
use of all algorithms available for this problem. The resulting dynamic model is

xt+1 = f1(xt, ut, t)θt + f2(xt, ut, t) + wt, (5.16a)

θt+1 = θt + wθ
t , (5.16b)

yt = h1(xt, ut, t)θ + h2(xt, ut, t) + et, (5.16c)

which is a special case of Model 5, implying that the marginalized particle filter applies.
Hence, this algorithm can be used to obtain a solution to the problem of identifying the
parameters in model (5.14). The details of the approach are given in Paper E. A similar
approach was independently proposed by Li et al. (2003), Andrieu and Godsill (2000) and
it has also been employed by Daly et al. (2005). This idea has previously been explored
by Ljung (1979), save the fact that the resulting state estimation problem was handled
using the extended Kalman filter. The work by Kitagawa (1998)is also interesting in this
context, where the parameters are estimated using a smoother rather than a filter.

5.3.2 Expectation Maximization and the Particle Smoother

The second approach is based on the expectation maximization algorithm, previously
introduced in Section 5.2.2. Consider model (5.14), if the state variablesxt where known
the problem of estimating the parametersθ would be rather simple. It is a standard linear
regression problem. In agreement with previous applications of the EM algorithm for
parameter estimation (Gibson and Ninness, 2005), the missing data is defined to be the
state sequence,XN , {x1, . . . , xN}. When this choice has been made, the next step is
the calculation ofQ(θ, θk), defined in (5.10). This requires computation of the expected
value of functions of the statext, conditional onYN . It is this calculation that constitutes
the main difference between addressing the nonlinear and the linear problem using the
EM algorithm. In the linear case, the expectations are calculated using a linear smoother.
However, in the present context, we are faced with a nonlinear smoothing problem. This
problem will be handled using the particle smoother given inAlgorithm 4.7.

A detailed account of this approach is given in Paper F, wherewe also provide a
simulation. This simulation indicates that the approach seems to be (perhaps) surprisingly
robust to attraction to local minima. The mechanisms underlying this robustness are not
yet fully understood and it is indeed a very interesting topic for future research.



76 5 Nonlinear System Identification

5.3.3 Discussion

There is an important difference between the two approachesdiscussed above. It concerns
the way in which the data is processed. The solution using themarginalized particle filter
is, as the name reveals, a filtering solution, which is suitable for an on-line solution. The
EM-based solution is on the other hand a smoothing solution,suitable only for the off-
line situation. There is of course nothing that prevents theuse of the on-line approach in
addressing the off-line problem. However, it will restricthow the algorithm is allowed to
access the data. The algorithm is only allowed to process thedata sequentially, further
implying that the data can only be accessed once. For the linear case this would not be a
problem, but in the nonlinear case this poses a major limitation in the process of extracting
all useful information from the measurements. The algorithm based on the EM algorithm
and the particle smoother is, on the other hand, allowed to process the data as many
times as is necessary, which allows the algorithm to analyzethat data more adequate,
with better estimates as a result. It should also be stressedthat the first approach actually
tackles a harder problem than the second approach, namely the on-line nonlinear system
identification problem.

The interesting thing about the employment of the EM algorithm is that the need for
particle methods arise naturally. This should be contrasted to the approach based on the
marginalized particle filter, where the use of particle methods is more forced. It does not
arise as a result of using standard parameter estimation methods, but rather as a result of
considering another problem.



6
Concluding Remarks

IN this first part we have presented a framework for the researchreported in this thesis.
The aim has been to explain how the papers in Part II relate to each other and to the

existing theory. In Section 6.1 the conclusions are given. There are many interesting ideas
for future research, some of which are discussed in Section 6.2.

6.1 Conclusion

The work presented in this thesis has to a large extent dealt with state and parameters es-
timation problems arising from the mixed linear/nonlinearstate-space model, introduced
as Model 5. In Paper A it is explained how the marginalized particle filter can be used to
solve the problem of estimating the state in this model. Several important special cases of
the general model class are also discussed. In any practicalapplication of the algorithm
it is important to understand its computational complexity. Paper B provides a system-
atic analysis of the computational complexity of the marginalized particle filter, using the
equivalent flop measure. The marginalized particle filter isdiscussed from a practitioners
point of view in Paper H. This is accomplished by treating various positioning and target
tracking applications. Furthermore, in Paper E it is discussed how to use the marginalized
particle filter to solve certain system identification problems.

The system identification problem is also discussed in PaperF, where it is described
how to estimate the parameters in a nonlinear state-space model, with affine parameter
dependence. The approach is based on a maximum likelihood framework, where the
resulting problem is solved using the expectation maximization algorithm and a particle
smoothing method. The latter is used to calculate the nonlinear conditional expectations
required by the expectation maximization algorithm.

All estimation algorithms discussed in this thesis are model based, stressing the need
for a good model. In Paper C we propose an idea on how to incorporate white noise in
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differential-algebraic equations, enabling the use of stochastic signal processing to solve
various estimation problems. The main reason for studying models of this type is that they
occur as a natural description from object-oriented modeling software. It is not uncom-
mon that the model contains constraints. An approach, basedon convex optimization, to
handle this is presented in Paper D.

In Paper I a new approach for road geometry estimation, basedon change detection
methods, is given. The significantly improved performance is demonstrated using sensor
data from authentic traffic environments. The problem of estimating the position and
orientation of a camera is addressed in Paper G. The proposedapproach is to support
the inertial measurements using vision measurements, where the latter are incorporated
in terms of feature displacements.

6.2 Future Research

The combination of the expectation maximization algorithmand the particle smoother
deserves more attention. A systematic investigation of thehypothesis that the expectation
maximization algorithm is robust towards getting trapped in local minima would probably
yield interesting results. Gradient-based algorithms areprone to getting trapped in local
minima, simply due to the fact that they are designed to search for minima. However, the
expectation maximization algorithm is not gradient-based, there are other mechanisms
guiding the search for the best estimate. We will try to applythe idea to problems of
larger size in order to get a better understanding for its applicability.

The last observation in the previous paragraph naturally leads to the next topic for fu-
ture research. It would be interesting to investigate how the various model classed intro-
duced in Chapter 2 relate to other commonly used model classes. This would effectively
provide a mapping between various model classes and appropriate estimation algorithms.

The combination of information from vision measurements with information from
other sensors, such as radar and IMU is discussed in Chapter 1. The present approach is
based on vision measurements, which are in factestimatesfrom computer vision systems.
Hence, in effect, two estimation problems are solved sequentially. It would be interesting
to investigate if a solution to the joint estimation problemcan improve the quality of the
estimates.

The idea of combining measurements from an IMU with vision measurements has
been considered by many researchers. The approach used in this thesis is based on prob-
abilistic ideas. However, the problem can equally well be approached using results from
the nonlinear observer theory, see, e.g., Rehbinder (2001). There is probably a lot to be
gained in trying to merge the ideas from these two branches ofscience in order to de-
rive better algorithms for nonlinear state estimation/observation. There are for instance
standard forms available in the nonlinear observer theory,which can prove to be useful
in combination with, for instance, particle filter ideas. Togive a concrete example of
this we mention the possible use of the nonlinear transformations, discussed by Hou and
Pugh (1999), to transform a nonlinear state-space model into a mixed linear/nonlinear
state-space model. The state in this transformed model can then be estimated using the
marginalized particle filter.
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Appendix, Proof of Corollary 3.1

We will now set out to prove the Kalman filter simply by studying the general solution
provided in Theorem 3.1 when the state is assumed to evolve according to a model based
on linear transformation subject to Gaussian noise (definedin Model 7). This will be
performed using the principle of induction. According to the assumptionsp(x1|Y0) is
normal,p(x1|Y0) = N (x | x̄1, P̄1). Assume thatp(xt|Yt−1) = N (x | x̂t|t−1, Pt|t−1).
The information in a new measurement can now be inferred on the state estimate us-
ing (3.13a),

p(xt|Yt) =
1

p(yt|Yt−1)(2π)(nx+ny)/2
√

det Rt det Pt|t−1

·

e
− 1

2

“

(yt−Ctxt−Dtut)
T R−1

t (yt−Ctxt−Dtut)+(xt−x̂t|t−1)
T P−1

t|t−1
(xt−x̂t|t−1)

”

, (A.1)

where (using marginalization)

p(yt|Yt−1) =

∫

Rnx

1

(2π)(nx+ny)/2
√

det Rt det Pt|t−1

·

e
− 1

2

“

(yt−Ctxt−Dtut)
T R−1

t (yt−Ctxt−Dtut)+(xt−x̂t|t−1)
T P−1

t|t−1
(xt−x̂t|t−1)

”

dxt. (A.2)

In order to be able to carry out the integration above we have to isolate the integration
variable,xt. To accomplish this we will perform a change of variables,

x̃t|t−1 = xt − x̂t|t−1, (A.3a)

ǫt = yt − Ctx̂t|t−1 − Dtut. (A.3b)
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The exponent in (A.2) can in terms of the new variable (A.3) bewritten as

x̃T
t|t−1P

−1
t|t−1x̃t|t−1 + (ǫt − Ctx̃t|t−1)

T R−1
t (ǫt − Ctx̃t|t−1) =

(
x̃t|t−1

ǫt

)T (
P−1

t|t−1 + CtR
−1
t Ct −CT

t R−1
t

−R−1
t Ct R−1

t

)(
x̃t|t−1

ǫt

)
. (A.4)

If we can write the center matrix in (A.4) as a block diagonal matrix we have in fact
isolated the integration variable, sinceǫt is independent ofxt. This can be accomplished
using a block diagonal factorization (see Kailath et al., 2000, App. A) according to,
(

P−1
t|t−1 + CtR

−1
t Ct −CT

t R−1
t

−R−1
t Ct R−1

t

)
=

(
I −Kt

0 I

)T (
P−1

t|t 0

0 S−1
t

)(
I −Kt

0 I

)
,

(A.5)

where (note thatS−1
t is a Schur complement)

Kt = (P−1
t|t−1 + CT

t R−1
t Ct)

−1CT
t R−1

t , (A.6a)

P−1
t|t = P−1

t|t−1 + CT
t R−1

t Ct, (A.6b)

S−1
t = R−1

t − R−1
t Ct(P

−1
t|t−1 + CT

t R−1
t Ct)

−1CT
t R−1

t . (A.6c)

The matrix inversion lemma1 allows us to rewrite (A.6) according to

Kt = Pt|t−1C
T
t (Rt + CtPt|t−1C

T
t )−1, (A.7a)

Pt|t = Pt|t−1 − Pt|t−1C
T
t (Rt + CtPt|t−1C

T
t )−1CtPt|t−1, (A.7b)

St = CtPt|t−1C
T
t + Rt. (A.7c)

Using the factorization (A.5) in (A.4) gives
(

x̃t|t−1 − Ktǫt

ǫt

)T (
Pt|t 0
0 S−1

t

)(
x̃t|t−1 − Ktǫt

ǫt

)

= (x̃t|t−1 − Ktǫt)
T P−1

t|t (x̃t|t−1 − Ktǫt) + ǫT
t S−1

t ǫt. (A.8)

The determinants in (A.2) can be written

1

det Rt det Pt|t−1
= detR−1

t det P−1
t|t−1 = det

(
P−1

t|t−1 0

0 R−1
t

)
. (A.9)

Since the determinant of a triangular matrix with unit diagonal equals one we can multi-
ply (A.9) with any such matrix without changing the value of the expression. For exam-
ple (A.9) can be written as

det

((
I −Kt

0 I

)−T (
I 0

−Ct I

)T (
P−1

t|t−1 0

0 R−1
t

)(
I 0

−Ct I

)(
I −Kt

0 I

)−1
)

,

(A.10)

1The matrix inversion lemma states that (Kailath et al., 2000)

(A − BCD)−1 = A−1 − A−1D(C−1 + DA−1B)−1DA−1
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which allows us to use the block triangular factorization (A.5) to write the determinant as

1

detRt det Pt|t−1
= det

(
P−1

t|t 0

0 S−1
t

)
=

1

det Pt|t det St
. (A.11)

Inserting (A.8) and (A.11) into (A.2) we obtain

p(yt|Yt−1) =
1

(2π)ny/2
√

det St

e−
1
2 ǫT

t S−1
t ǫt , (A.12)

after marginalization w.r.t.xt. This expression can now be used in (A.1), which results in

p(xt|Yt) =
1

(2π)nx/2
√

det Pt|t

e
− 1

2 (xt−x̂t|t)
T P−1

t|t
(xt−x̂t|t), (A.13)

where

x̂t|t = x̂t|t−1 + Kt(yt − Ctx̂t|t−1 − Dtut). (A.14)

The time update (3.13b) can be written

p(xt+1|Yt) =

∫

Rnx

1

(2π)nx/2
√

det Qt det Pt|t

·

e
− 1

2

“

(xt+1−Atxt−Btut)
T Q−1

t (xt+1−Atxt−Btut)+(xt−x̂t|t)
T P−1

t|t
(xt−x̂t|t)

”

dxt. (A.15)

This integration can be carried out if the integration variable,xt, is isolated. This can be
accomplished by a change of variables,

x̃t|t = xt − x̂t|t, (A.16a)

x̃t+1|t = xt+1 − x̂t+1|t, wherex̂t+1|t = Atx̂t|t + Btut. (A.16b)

Using the triangular block factorization that was used in (A.5) gives the following expres-
sion for the exponent of (A.15),

x̃T
t|tP

−1
t|t x̃t|t + (x̃t+1|t − Atx̃t|t)

T Q−1
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t 0
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)
, (A.17)

where

Mt = Pt|t − Pt|tAt(Qt + AtPt|tA
T
t )−1AtPt|t, (A.18a)

Pt+1|t = AtPt|tA
T
t + Qt, (A.18b)

Lt = Pt|tA
T
t (Qt + AtPt|tA

T
t )−1. (A.18c)

The integration (A.15) can now be performed, resulting in

p(xt+1|Yt) =
1

(2π)nx/2
√

det Pt+1|t

e
− 1

2 x̃T
t+1|tP

−1
t+1|t

x̃t+1|t . (A.19)

The expressions (A.7a), (A.7b), (A.14), (A.16b) and (A.18b) constitute the Kalman filter
and hence the proof is complete.
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Abstract

The particle filter offers a numerical tool to approximate the filtering den-
sity function for the state in nonlinear and non-Gaussian filtering problems.
While the particle filter is fairly easy to implement and tune,its main draw-
back is that it is quite computer intensive, with the computational complex-
ity increasing quickly with the state dimension. One remedyto this is to
marginalize out the states appearing linearly in the dynamics. The result is
that one Kalman filter is associated with each particle. The main contribu-
tion in this paper is the derivation of the details for the marginalized particle
filter for a general nonlinear state-space model. Several important special
cases occurring in typical signal processing applicationsare also discussed.
The marginalized particle filter is applied to an integratednavigation system
for aircraft. It is demonstrated that the complete high-dimensional system
can be based on a particle filter using marginalization for all but three states.
Excellent performance on real flight data is reported.

Keywords: Kalman filter, marginalization, navigation systems, nonlinear
systems, particle filter, state estimation.
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1 Introduction

THE nonlinear non-Gaussian filtering problem considered here consists of recursively
computing the filter probability density function of the state vector in a general

discrete-time state-space model, given the observed measurements. Such a general model
can be formulated as

xt+1 = f(xt, wt), (1a)

yt = h(xt, et). (1b)

Here,yt is the measurement at timet, xt is the state variable,wt is the process noise,et

is the measurement noise, andf, h are two arbitrary nonlinear functions. The two noise
densitiespwt

andpet
are independent and are assumed to be known.

The filter densityp(xt|Yt), whereYt = {yi}t
i=0, is given by the following general

measurement recursion:

p(xt|Yt) =
p(yt|xt)p(xt|Yt−1)

p(yt|Yt−1)
, (2a)

p(yt|Yt−1) =

∫
p(yt|xt)p(xt|Yt−1) dxt, (2b)

and the following time recursion:

p(xt+1|Yt) =

∫
p(xt+1|xt)p(xt|Yt) dxt, (2c)

initiated byp(x0|Y−1) = p(x0) (Jazwinski, 1970). For linear Gaussian models, the inte-
grals can be solved analytically with a finite dimensional representation. This leads to the
Kalman filter recursions, where the mean and the covariance matrix of the state are propa-
gated (Anderson and Moore, 1979). More generally, no finite dimensional representation
of the filter density exists. Thus, several numerical approximations of the integrals (2)
have been proposed. A recent important contribution is to use simulation based methods
from mathematical statistics, sequential Monte Carlo methods, commonly referred to as
particle filters (Doucet et al., 2001a, 2000, Gordon et al., 1993).

Integrated navigation is used as a motivation and application example. Briefly, the
integrated navigation system in the Swedish fighter aircraft Gripen consists of an inertial
navigation system (INS), a terrain-aided positioning (TAP) system and an integration fil-
ter. This filter fuses the information from INS with the information from TAP. For a more
thorough description of this system, see Nordlund (2002), Palmqvist (1997). TAP is cur-
rently based on a point-mass filter as presented in Bergman etal. (1999), where it is also
demonstrated that the performance is quite good, close to the Cramér-Rao lower bound.
Field tests conducted by the Swedish air force have confirmedthe good precision. Alter-
natives based on the extended Kalman filter have been investigated by Bergman (1999),
but have been shown to be inferior particularly in the transient phase (the EKF requires
the gradient of the terrain profile, which is unambiguous only very locally). The point-
mass filter, as described in Bergman et al. (1999), is likely to be changed to a marginalized
particle filter in the future for Gripen.
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TAP and INS are the primary sensors. Secondary sensors (GPS and so on) are used
only when available and reliable. The current terrain-aided positioning filter has three
states (horizontal position and heading), while the integrated navigation system estimates
the accelerometer and gyroscope errors and some other states. The integration filter is
currently based on a Kalman filter with27 states, taking INS and TAP as primary input
signals.

The Kalman filter which is used for integrated navigation requires Gaussian variables.
However, TAP gives a multi-modal un-symmetric distribution in the Kalman filter mea-
surement equation and it has to be approximated with a Gaussian distribution before being
used in the Kalman filter. This results in severe performancedegradation in many cases,
and is a common cause for filter divergence and system reinitialization.

The appealing new strategy is to merge the two state vectors into one, and solve inte-
grated navigation and terrain-aided positioning in one filter. This filter should include all
27 states, which effectively would prevent application of theparticle filter. However, the
state equation is almost linear, and only three states enterthe measurement equation non-
linearly, namely horizontal position and heading. Once linearization (and the use of EKF)
is absolutely ruled out, marginalization would be the only way to overcome the computa-
tional complexity. More generally, as soon as there is a linear sub-structure available in
the general model (1) this can be utilized in order to obtain better estimates and possibly
reduce the computational demand. The basic idea is to partition the state vector as

xt =

(
xl

t

xn
t

)
, (3)

wherexl
t denotes the state variable with conditionally linear dynamics andxn

t denotes
the nonlinear state variable (Doucet et al., 2001b, Nordlund, 2002). Using Bayes’ the-
orem we can then marginalize out the linear state variables from (1) and estimate them
using the Kalman filter (Kalman, 1960), which is the optimal filter for this case. The non-
linear state variables are estimated using the particle filter. This technique is sometimes
referred to as Rao-Blackwellization (Doucet et al., 2001b). The idea has been around for
quite some time, see, e.g., Doucet et al. (2000), Casella andRobert (1996), Chen and Liu
(2000), Andrieu and Doucet (2002), Doucet et al. (2001b), Liu (2001). The contribution
of this article is the derivation of the details for a generalnonlinear state-space model
with a linear sub-structure. Models of this type are common and important in engineering
applications, e.g., positioning, target tracking and collision avoidance (Gustafsson et al.,
2002, Bar-Shalom and Li, 1993). The marginalized particle filter has been successfully
used in several applications, for instance, in aircraft navigation (Nordlund, 2002), under-
water navigation (Karlsson and Gustafsson, 2003), communications (Chen et al., 2000,
Wang et al., 2002), nonlinear system identification (Li et al., 2003, Schön and Gustafs-
son, 2003), and audio source separation (Andrieu and Godsill, 2000).

Section 2 explains the idea behind using marginalization inconjunction with general
linear/nonlinear state-space models. Three nested modelsare used in order to make the
presentation easy to follow. Some important special cases and generalizations of the noise
assumptions are discussed in Section 3. To illustrate the use of the marginalized particle
filter, a synthetic example is given in Section 4. Finally, the application example is given
in Section 5, and the conclusions are stated in Section 6.
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2 Marginalization

The variance of the estimates obtained from the standard particle filter can be decreased by
exploiting linear sub-structures in the model. The corresponding variables are marginal-
ized out and estimated using an optimal linear filter. This isthe main idea behind the
marginalized particle filter. The goal of this section is to explain how the marginalized
particle filter works by using three nested models. The models are nested in the sense that
the first model is included in the second, which in turn is included in the third. The rea-
son for presenting it in this fashion is to facilitate readerunderstanding, by incrementally
extending the standard particle filter.

2.1 Standard Particle Filter

The particle filter is used to get an approximation of the filter densityp(xt|Yt) in the
general model (1). This approximation can then be used to obtain an estimate of some
inference functiong( · ) according to

I(g(xt)) = Ep(xt|Yt) (g(xt)) =

∫
g(xt)p(xt|Yt) dxt. (4)

In the following, the particle filter, as it was introduced byGordon et al. (1993), will
be referred to as the standard particle filter. For a thoroughintroduction to the standard
particle filter, see, e.g., Doucet et al. (2001a, 2000). The marginalized and the standard
particle filter are closely related. The marginalized particle filter is given in Algorithm A.1
and neglecting steps4(a) and4(c) results in the standard particle filter algorithm.

Algorithm A.1 (Marginalized particle filter)

1. Initialization: Fori = 1, . . . , N , initialize the particles,xn,(i)
0|−1 ∼ pxn

0
(xn

0 ) and set

{xl,(i)
0|−1, P

(i)
0|−1} = {x̄l

0, P̄0}.

2. Particle filter measurement update: Fori = 1, . . . , N , evaluate the importance
weightsq(i)

t = p(yt|Xn,(i)
t , Yt−1) and normalize

q̃
(i)
t =

q
(i)
t

P

N
j=1 q

(j)
t

.

3. Resampling: ResampleN particles with replacement,

Pr
(
x

n,(i)
t|t = x

n,(j)
t|t−1

)
= q̃

(j)
t .

4. Particle filter time update and Kalman filter:

(a) Kalman filter measurement update:
Model 1: (10),
Model 2: (10),
Model 3: (22).

(b) Particle filter time update (prediction): Fori = 1, . . . , N , predict new particles,

x
n,(i)
t+1|t ∼ p(xn

t+1|t|X
n,(i)
t , Yt).
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(c) Kalman filter time update:
Model 1: (11),
Model 2: (17),
Model 3: (23).

5. Sett := t + 1 and iterate from step2.

The particle filter algorithm A.1 is quite general and several improvements are available
in the literature. It is quite common to introduce artificialnoise in step3 in order to coun-
teract the degeneracy problem. Depending on the context various importance functions
can be used in step4(b). In Doucet et al. (2001a) several refinements to the particlefilter
algorithm are discussed.

2.2 Diagonal Model

The explanation of how the marginalized particle filter works is started by considering the
following model.

Model 1 (Diagonal model)

xn
t+1 = fn

t (xn
t ) +wn

t , (5a)

xl
t+1 = Al

t(x
n
t )xl

t +wl
t, (5b)

yt = ht(x
n
t ) +Ct(x

n
t )xl

t +et. (5c)

The gaps in the equations above are placed there intentionally, in order to make the com-
parison to the general model(18) easier. The state noise is assumed white and Gaussian
distributed according to

wt =

(
wl

t

wn
t

)
∼ N (0, Qt), Qt =

(
Ql

t 0
0 Qn

t

)
. (6a)

The measurement noise is assumed white and Gaussian distributed according to

et ∼ N (0, Rt). (6b)

Furthermore,xl
0 is Gaussian,

xl
0 ∼ N (x̄0, P̄0). (6c)

The density ofxn
0 can be arbitrary, but it is assumed known. TheAl andC matrices are

arbitrary.

Model 1 is calleddiagonal modeldue to the diagonal structure of the state equation (5a)
and (5b). The aim of recursively estimating the filter density p(xt|Yt) can be accom-
plished using the standard particle filter. However, conditioned on the nonlinear state
variablexn

t there is a linear sub-structure in (5), given by (5b). This fact can be used to
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obtain better estimates of the linear states. Analyticallymarginalizing out the linear state
variables fromp(xt|Yt) gives (Xn

t = {xn
i }t

i=0)

p(xl
t,X

n
t |Yt) = p(xl

t|Xn
t , Yt)︸ ︷︷ ︸

Optimal KF

p(Xn
t |Yt)︸ ︷︷ ︸
PF

, (7)

wherep(xl
t|Xn

t , Yt) is analytically tractable. It is given by the Kalman filter (KF), see
Lemma A.1 below for the details. Furthermore,p(Xn

t |Yt) can be estimated using the
particle filter (PF). If the same number of particles are usedin the standard particle filter
and the marginalized particle filter, the latter will, intuitively, provide better estimates.
The reason for this is that the dimension ofp(xn

t |Yt) is smaller than the dimension of
p(xl

t, x
n
t |Yt), implying that the particles occupy a lower dimensional space. Another rea-

son is that optimal algorithms are used in order to estimate the linear state variables. Let
Îs
N (g(xt)) denote the estimate of (4) using the standard particle filterwith N particles.

When the marginalized particle filter is used the corresponding estimate is denoted by
Îm
N (g(xt)). Under certain assumptions the following central limit theorem holds,

√
N
(
Îs
N (g(xt)) − I (g(xt))

)
=⇒ N

(
0, σ2

s

)
, N → ∞, (8a)

√
N
(
Îm
N (g(xt)) − I (g(xt))

)
=⇒ N

(
0, σ2

m

)
, N → ∞, (8b)

whereσ2
s ≥ σ2

m. A formal proof of (8) is provided in Doucet et al. (2001b, 1999). For the
sake of notational brevity the dependence ofxn

t in At, Ct, andht are suppressed below.

Lemma A.1
Given Model 1, the conditional probability density functions forxl

t|t andxl
t+1|t are given

by

p
(
xl

t|Xn
t , Yt

)
= N

(
xl

t | x̂l
t|t, Pt|t

)
, (9a)

p
(
xl

t+1|Xn
t+1, Yt

)
= N

(
xl

t+1 | x̂l
t+1|t, Pt+1|t

)
, (9b)

where

x̂l
t|t = x̂l

t|t−1 + Kt

(
yt − ht − Ctx̂

l
t|t−1

)
, (10a)

Pt|t = Pt|t−1 − KtCtPt|t−1, (10b)

St = CtPt|t−1C
T
t + Rt, (10c)

Kt = Pt|t−1C
T
t S−1

t , (10d)

and

x̂l
t+1|t = Al

tx̂
l
t|t, (11a)

Pt+1|t = Al
tPt|t(A

l
t)

T + Ql
t. (11b)

The recursions are initiated witĥxl
0|−1 = x̄0 andP0|−1 = P̄0.
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Proof: We use straightforward application of the Kalman filter (Kalman, 1960, Kailath
et al., 2000).

The second densityp(Xn
t |Yt) in (7) will be approximated using the standard particle

filter. Bayes’ theorem and the Markov property inherent in the state-space model can be
used to writep(Xn

t |Yt) as

p(Xn
t |Yt) =

p(yt|Xn
t , Yt−1)p(xn

t |Xn
t−1, Yt−1)

p(yt|Yt−1)
p(Xn

t−1|Yt−1), (12)

where an approximation ofp(Xn
t−1|Yt−1) is provided by the previous iteration of the par-

ticle filter. In order to perform the update (12) analytical expressions forp(yt|Xn
t , Yt−1)

andp(xn
t |Xn

t−1, Yt−1) are needed. They are provided by the following lemma.

Lemma A.2
For Model 1,p(yt|Xn

t , Yt−1) andp(xn
t+1|Xn

t , Yt) are given by

p (yt|Xn
t , Yt−1) = N

(
yt |ht + Ctx̂

l
t|t−1, CtPt|t−1C

T
t + Rt

)
, (13a)

p
(
xn

t+1|Xn
t , Yt

)
= N

(
xn

t+1 | fn
t , Qn

t

)
. (13b)

Proof: We utilize basic facts about conditionally linear models; see, e.g., Harvey (1989),
Schön (2003).

The linear system (5b) – (5c) can now be formed for each particle {xn,(i)
t }N

i=1 and
the linear states can be estimated using the Kalman filter. This requires one Kalman filter
associated with each particle. The overall algorithm for estimating the states in Model 1
is given in Algorithm A.1. From this algorithm, it should be clear that the only differ-
ence from the standard particle filter is that the time update(prediction) stage has been
changed. In the standard particle filter, the prediction stage is given solely by step4(b) in
Algorithm A.1. Step4(a) is referred to as themeasurement updatein the Kalman filter
Kailath et al. (2000). Furthermore, the prediction of the nonlinear state variableŝxn

t+1|t

is obtained in step4(b). According to (5a) the prediction of the nonlinear state variables
does not contain any information about the linear state variables. This implies that̂xn

t+1|t

cannot be used to improve the quality of the estimates of the linear state variables. How-
ever, if Model 1 is generalized by imposing a dependence between the linear and the
nonlinear state variables in (5a) the prediction of the nonlinear state variables can be used
to improve the estimates of the linear state variables. In the subsequent section, it will be
elaborated on how this affects the state estimation.

2.3 Triangular Model

Model 1 is now extended by including the termAn
t (xn

t )xl
t in the nonlinear state equation.

This results in atriangular model, defined below.
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Model 2 (Triangular model)

xn
t+1 = fn

t (xn
t )+An

t (xn
t )xl

t+wn
t , (14a)

xl
t+1 = Al

t(x
n
t )xl

t +wl
t, (14b)

yt = ht(x
n
t ) +Ct(x

n
t )xl

t +et, (14c)

with the same assumptions as in Model 1.

Now, from (14a), it is clear that̂xn
t+1|t does indeed contain information about the linear

state variables. This implies that there will be information about the linear state variable
xl

t in the prediction of the nonlinear state variablex̂n
t+1|t. To understand how this affects

the derivation, it is assumed that step4(b) in Algorithm A.1 has just been completed.
This means that the predictionŝxn

t+1|t are available, and the model can be written (the
information in the measurementyt has already been used in step4(a))

xl
t+1 = Al

tx
l
t + wl

t, (15a)

zt = An
t xl

t + wn
t , (15b)

where

zt = xn
t+1 − fn

t . (15c)

It is possible to interpretzt as a measurement andwn
t as the corresponding measurement

noise. Since (15) is a linear state-space model with Gaussian noise, the optimal state
estimate is given by the Kalman filter according to

x̂l∗
t|t = x̂l

t|t + Lt

(
zt − An

t x̂l
t|t

)
, (16a)

P ∗
t|t = Pt|t − LtNtL

T
t , (16b)

Lt = Pt|t(A
n
t )T N−1

t , (16c)

Nt = An
t Pt|t(A

n
t )T + Qn

t , (16d)

where “∗” has been used to distinguish this second measurement update from the first
one. Furthermore,̂xl

t|t andPt|t are given by (10a) and (10b), respectively. The final step
is to merge this second measurement update with the time update to obtain the predicted
states. This results in

x̂l
t+1|t = Al

tx̂
l
t|t + Lt

(
zt − An

t x̂l
t|t

)
, (17a)

Pt+1|t = Al
tPt|t(A

l
t)

T + Ql
t − LtNtL

T
t , (17b)

Lt = Al
tPt|t(A

n
t )T N−1

t , (17c)

Nt = An
t Pt|t(A

n
t )T + Qn

t . (17d)

For a formal proof of this, see the Appendix. To make Algorithm A.1 valid for the more
general Model 2, the time update equation in the Kalman filter(11) has to be replaced
by (17).
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The second measurement update is called measurement updatedue to the fact that
the mathematical structure is the same as a measurement update in the Kalman filter.
However, strictly speaking, it is not really a measurement update, since there does not
exist any new measurement. It is better to think of this second update as a correction to
the real measurement update using the information in the prediction of the nonlinear state
variables.

2.4 General Case

In the previous two sections, the mechanisms underlying themarginalized particle filter
have been illustrated. It is now time to apply the marginalized particle filter to the most
general model.

Model 3 (General model)

xn
t+1 = fn

t (xn
t )+An

t (xn
t )xl

t+Gn
t (xn

t )wn
t , (18a)

xl
t+1 = f l

t(x
n
t ) +Al

t(x
n
t )xl

t +Gl
t(x

n
t )wl

t, (18b)

yt = ht(x
n
t ) +Ct(x

n
t )xl

t +et, (18c)

where the state noise is assumed white and Gaussian distributed with

wt =

(
wl

t

wn
t

)
∼ N (0, Qt), Qt =

(
Ql

t Qln
t

(Qln
t )T Qn

t

)
. (19a)

The measurement noise is assumed white and Gaussian distributed according to

et ∼ N (0, Rt). (19b)

Furthermore,xl
0 is Gaussian

xl
0 ∼ N (x̄0, P̄0). (19c)

The density ofxn
0 can be arbitrary, but it is assumed known.

In certain cases, some of the assumptions can be relaxed. This will be discussed in the
subsequent section. Before moving on it is worthwhile to explain how models used in
some applications of marginalization relate to Model 3. In Karlsson et al. (2003), the
marginalized particle filter was applied to underwater navigation using a model corre-
sponding to (18), save the fact thatGn

t = I,Gl
t = I, f l

t = 0, An
t = 0. In Gustafsson

et al. (2002), a model corresponding to linear state equations and a nonlinear measure-
ment equation is applied to various problems, such as car positioning, terrain navigation,
and target tracking. Due to its relevance, this model will bediscussed in more detail in
Section 3. Another special case of Model 3 has been applied toproblems in communi-
cation theory in Chen et al. (2000), Wang et al. (2002). The model used there is linear.
However, depending on an indicator variable the model changes. Hence, this indicator
variable can be thought of as the nonlinear state variable inModel 3. A good and detailed
explanation of how to use the marginalized particle filter for this case can be found in
Doucet et al. (2001b). They refer to the model as a jump Markovlinear system.
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Analogously to what has been done in (7), the filtering distributionp(xt|Yt) is split
according to

p
(
xl

t,X
n
t |Yt

)
= p

(
xl

t|Xn
t , Yt

)
p (Xn

t |Yt) . (20)

The linear state variables are estimated using the Kalman filter in a slightly more general
setting than which was previously discussed. However, it isstill the same three steps that
are executed in order to estimate the linear state variables. The first step is a measurement
update using the information available inyt. The second step is a measurement update
using the information available in̂xn

t+1|t, and finally, there is a time update. The following
theorem explains how the linear state variables are estimated.

Theorem A.1
Using Model 3 the conditional probability density functions forxl

t andxl
t+1 are given by

p
(
xl

t|Xn
t , Yt

)
= N

(
xl

t | x̂l
t|t, Pt|t

)
, (21a)

p
(
xl

t+1|Xn
t+1, Yt

)
= N

(
xl

t+1 | x̂l
t+1|t, Pt+1|t

)
, (21b)

where

x̂l
t|t = x̂l

t|t−1 + Kt

(
yt − ht − Ctx̂

l
t|t−1

)
, (22a)

Pt|t = Pt|t−1 − KtMtK
T
t , (22b)

Mt = CtPt|t−1C
T
t + Rt, (22c)

Kt = Pt|t−1C
T
t M−1

t , (22d)

and

x̂l
t+1|t = Āl

tx̂
l
t|t + Gl

t(Q
ln
t )T (Gn

t Qn
t )−1zt + f l

t + Lt

(
zt − An

t x̂l
t|t

)
, (23a)

Pt+1|t = Āl
tPt|t(Ā

l
t)

T + Gl
tQ̄

l
t(G

l
t)

T − LtNtL
T
t , (23b)

Nt = An
t Pt|t(A

n
t )T + Gn

t Qn
t (Gn

t )T , (23c)

Lt = Āl
tPt|t(A

n
t )T N−1

t , (23d)

where

zt = xn
t+1 − fn

t , (24a)

Āl
t = Al

t − Gl
t(Q

ln
t )T (Gn

t Qn
t )−1An

t , (24b)

Q̄l
t = Ql

t − (Qln
t )T (Qn

t )−1Qln
t . (24c)

Proof: See the Appendix.

It is worth noting that if the cross-covarianceQln
t between the two noise sourceswn

t

andwl
t is zero, thenĀl

t = Al
t andQ̄l

t = Ql
t. The first densityp(xl

t|Xn
t , Yt) on the right-

hand side in (20) is now taken care of. In order for the estimation to work the second
densityp(Xn

t |Yt) in (20) is taken care of according to (12). The analytical expressions
for p(yt|Xn

t , Yt−1) andp(xn
t |Xn

t−1, Yt−1) are provided by the following theorem.
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Theorem A.2
For Model 3,p(yt|Xn

t , Yt−1) andp(xn
t+1|Xn

t , Yt) are given by

p (yt|Xn
t , Yt−1) = N

(
yt |ht + Ctx̂

l
t|t−1, CtPt|t−1C

T
t + Rt

)
, (25a)

p
(
xn

t+1|Xn
t , Yt

)
= N

(
xn

t+1 | fn
t + An

t x̂l
t|t, A

n
t Pt|t(A

n
t )T + Gn

t Qn
t (Gn

t )T
)

. (25b)

Proof: For the basic facts about conditionally linear models, see Harvey (1989). The
details for this particular case can be found in Schön (2003).

The details for estimating the states in Model 3 have now beenderived, and the com-
plete algorithm is Algorithm A.1. As pointed out before, theonly difference between
this algorithm and the standard particle filtering algorithm is that the prediction stage is
different. If steps4(a) and4(c) are removed from Algorithm A.1, the standard particle
filter algorithm is obtained.

In this paper, the most basic form of the particle filter has been used. Several more
refined variants exist, which in certain applications can give better performance. How-
ever, since the aim of this paper is to communicate the idea ofmarginalization in a gen-
eral linear/nonlinear state-space model, the standard particle filter has been used. It is
straightforward to adjust the algorithm given in this paperto accommodate, e.g., the aux-
iliary particle filter (Pitt and Shephard, 1999) and the Gaussian particle filter (Kotecha
and Djuric, 2003a,b). Several ideas are also given in the papers collected in Doucet et al.
(2001a).

The estimates as expected means of the linear state variables and their covariances are
given by Nordlund (2002)

x̂l
t|t =

N∑

i=1

q̃
(i)
t x̂

l,(i)
t|t , (26a)

P̂t|t =

N∑

i=1

q̃
(i)
t

(
P

(i)
t|t +

(
x̂

l,(i)
t|t − x̂l

t|t

)(
x̂

l,(i)
t|t − x̂l

t|t

)T
)

, (26b)

whereq̃
(i)
t are the normalized importance weights, provided by step2 in Algorithm A.1.

3 Important Special Cases and Extensions

Model 3 is quite general indeed and in most applications, special cases of it are used. This
fact, together with some extensions, will be the topic of this section.

The special cases are just reductions of the general resultspresented in the previous
section. However, they still deserve some attention in order to highlight some impor-
tant mechanisms. It is worth mentioning that linear sub-structures can enter the model
more implicitly as well, for example, by modeling colored noise and by sensor offsets
and trends. These modeling issues are treated in several introductory texts on Kalman fil-
tering, see, e.g., (Gustafsson, 2000, Section 8.2.4). In the subsequent section, some noise
modeling aspects are discussed. This is followed by a discussion of a model with linear
state equations and a nonlinear measurement equation.
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3.1 Generalized Noise Assumptions

The Gaussian noise assumption can be relaxed in two special cases. First, if the measure-
ment equation (18c) does not depend on the linear state variablesxl

t, i.e.,Ct(x
n
t ) = 0,

the measurement noise can be arbitrarily distributed. In this case (18c) does not contain
any information about the linear state variables, and hence, cannot be used in the Kalman
filter. It is solely used in the particle filter part of the algorithm, which can handle all
probability density functions.

Second, ifAn
t (xn

t ) = 0 in (18a), the nonlinear state equation will be independent of
the linear states and, hence, cannot be used in the Kalman filter. This means that the state
noisewn

t can be arbitrarily distributed.
The noise covariances can depend on the nonlinear state variables, i.e.,Rt = Rt(x

n
t )

andQt = Qt(x
n
t ). This is useful for instance in terrain navigation, where the nonlinear

state variable includes information about the position. Using the horizontal position and a
geographic information system (GIS) on board the aircraft,noise covariances depending
on the characteristics of the terrain at the current horizontal position can be motivated.
We will elaborate on this issue in Section 5.

3.2 Important Model Class

A quite important special case of Model 3 is a model with linear state equations and a
nonlinear measurement equation. In Model 4 below, such a model is defined.

Model 4

xn
t+1 = An

n,tx
n
t +An

l,tx
l
t+Gn

t wn
t , (27a)

xl
t+1 = Al

n,tx
n
t +Al

l,tx
l
t+Gl

tw
l
t, (27b)

yt = ht(x
n
t ) +et, (27c)

with wn
t ∼ N (0, Qn

t ) andwl
t ∼ N (0, Ql

t). The distribution foret can be arbitrary, but it
is assumed known.

The measurement equation (27c) does not contain any information about the linear state
variablexl

t. Hence, as far as the Kalman filter is concerned, (27c) cannotbe used in
estimating the linear states. Instead all information fromthe measurements enter the
Kalman filter implicitly via the second measurement update using the nonlinear state
equation (27a) and the prediction of the nonlinear statex̂n

t+1|t, as a measurement. This
means that in Algorithm A.1, step4(a) can be left out. In this case, the second measure-
ment update is much more than just a correction to the first measurement update. It is the
only way in which the information inyt enters the algorithm.

Model 4 is given special attention as several important state estimation problems can
be modeled in this way. Examples include positioning, target tracking and collision
avoidance (Gustafsson et al., 2002, Bar-Shalom and Li, 1993). For more information
on practical matters concerning modeling issues, see, e.g., Li and Jilkov (2001, 2003),
Bar-Shalom and Li (1993), Nordlund (2002). In the applications mentioned above, the
nonlinear state variablexn

t usually corresponds to the position, whereas the linear state
variablexl

t corresponds to velocity, acceleration, and bias terms.
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If Model 4 is compared to Model 3, it can be seen that the matricesAn
t , Al

t, G
n
t , and

Gl
t are independent ofxn

t in Model 4, which implies that

P
(i)
t|t = Pt|t, ∀ i = 1, . . . , N. (28)

This follows from (23b) – (23d) in Theorem A.1. According to (28) only one instead of
N Riccati recursions is needed, which leads to a substantial reduction in computational
complexity. This is, of course, very important in real-timeimplementations. A further
study of the computational complexity of the marginalized particle filter can be found in
Karlsson et al. (2004).

If the dynamics in (18a) – (18b) are almost linear, it can be linearized to obtain a
model described by (27a) – (27b). Then, the extended Kalman filter can be used instead
of the Kalman filter. As is explained in Li and Jilkov (2003, 2001) it is common that the
system model is almost linear, whereas the measurement model is severely nonlinear. In
these cases, use the particle filter for the severe nonlinearities and the extended Kalman
filter for the mild nonlinearities.

4 Illustrating Example

In order to make things as simple as possible, the following two dimensional model will
be used:

xt+1 =

(
1 T
0 1

)
xt + wt, (29a)

yt = h(zt) + et, (29b)

where the state vector isxt =
(
zt żt

)T
. Hence, the state consists of a physical variable

and its derivative. Models of this kind are very common in applications. One example
is bearings-only tracking, where the objective is to estimate the angle and angular veloc-
ity and the nonlinear measurement depends on the antenna diagram. Another common
application is state estimation in a DC-motor, where the angular position is assumed to
be measured nonlinearly. As a final application terrain navigation in one dimension is
mentioned, where the measurement is given by a map. A more realistic terrain navigation
example is discussed in Section 5.

Model (29) is linear inżt and nonlinear inzt. The state vector can thus be partitioned

asxt =
(
xn

t xl
t

)T
, which implies that (29) can be written as

xn
t+1 = xn

t + Txl
t + wn

t , (30a)

xl
t+1 = xl

t + wl
t, (30b)

yt = ht(x
n
t ) + et, (30c)

This corresponds to the triangular model given in Model 2. Hence, the Kalman filter for
the linear state variable is given by (22) – (24), where the nonlinear state is provided by
the particle filter. The estimate of the linear state variable is given by (23a), which for this
example, is

x̂l
t+1|t = (1 − ltT )x̂l

t|t + ltT
xn

t+1 − xn
t

T
, (31)
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where

nt = T 2pt|t + qn
t , lt =

T

nt
pt|t. (32)

Intuitively, (31) makes sense, since the velocity estimateis given as a weighted average
of the current velocity and the estimated momentary velocity, where the weights are com-
puted from the Kalman filter quantities. In cases where (29a)is motivated by Newton’s
force law the unknown force is modeled as a disturbance, andqn

t = 0. This implies
that (31) is reduced to

x̂l
t+1|t =

xn
t+1 − xn

t

T
. (33)

Again, this can intuitively be understood, since, because it is conditioned on the knowl-
edge of the nonlinear state variable, (30a) can be written as

xl
t =

xn
t+1 − xn

t

T
. (34)

Thus, (30b) does not add any information for the Kalman filtersincexl
t is a deterministic

function of the known nonlinear state variable.

5 Integrated Aircraft Navigation

As was explained in the introduction, the integrated navigation system in the Swedish
fighter aircraft Gripen consists of an inertial navigation system (INS), a terrain-aided po-
sitioning (TAP) system, and an integration filter. This filter fuses the information from
INS with the information from TAP; see Figure 1. The currently used integration filter is

TAP-

INS

Integration
filter

-

-yt

-

Σ

6

-��
��

Figure 1: The integrated navigation system consists of an inertial navigation sys-
tem (INS), a terrain-aided positioning (TAP) system and an integration filter. The
integration filter fuse the information from INS with the information from TAP.

likely to be changed to a marginalized particle filter in the future for Gripen; see Figure 2.
A first step in this direction was taken in Gustafsson et al. (2002), where a six-dimensional
model was used for integrated navigation. In six dimensions, the particle filter is possi-
ble to use, but better performance can be obtained. As demonstrated in Gustafsson et al.
(2002), 4000 particles in the marginalized filter outperforms 60000 particles in the stan-
dard particle filter.
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Figure 2: Using the marginalized particle filter for navigation. The terrain infor-
mation is now incorporated directly in the marginalized particle filter. The radar
altimeter delivers the hight measurementyt.

The feasibility study presented here applies marginalization to a more realistic nine-
dimensional sub-model of the total integrated navigation system. Already here, the di-
mensionality has proven to be too large for the particle filter to be applied directly. The
example contains all ingredients of the total system, and the principle is scalable to the full
27-dimensional state vector. The model can be simulated and evaluated in a controlled
fashion; see Nordlund (2002) for more details. In the subsequent sections, the results
from field trials are presented.

5.1 Dynamic Model

In order to apply the marginalized particle filter to the navigation problem a dynamic
model of the aircraft is needed. In this paper the overall structure of this model is dis-
cussed. For details, see Nordlund (2002) and the referencestherein. The errors in the
states are estimated instead of the absolute states. The reason is that the dynamics of the
errors are typically much slower than the dynamics of the absolute states. The model has
the following structure:

xn
t+1 = An

n,tx
n
t + An

l,tx
l
t + Gn

t wn
t , (35a)

xl
t+1 = Al

n,tx
n
t + Al

l,tx
l
t + Gl

tw
l
t, (35b)

yt = h

((
Lt

lt

)
+ xn

t

)
+ et. (35c)

There are seven linear states, and two nonlinear states. Thelinear states consist of two
velocity states and three states for the aircraft in terms ofheading, roll, and pitch. Finally,
there are two states for the accelerometer bias. The nonlinear states correspond to the error
in the horizontal position, which is expressed in latitudeLt and longitudelt.

The total dimension of the state vector is thus nine, which istoo large to be handled
by the particle filter. The highly nonlinear nature of measurement equation (35c), due
to the terrain elevation database, implies that an extendedKalman filter cannot be used.
However, the model described by (35) clearly fits into the framework of the marginalized
particle filter.

The measurement noise in (35c) deserves some special attention. The radar altimeter,
which is used to measure the ground clearance, interprets any echo as the ground. This
is a problem when flying over trees. The tree tops will be interpreted as the ground, with
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a false measurement as a result. One simple, but effective, solution to this problem is to
model the measurement noise as

pet
(et) = πN (et |m1, σ1) + (1 − π)N (et |m2, σ2), (36)

whereπ is the probability of obtaining an echo from the ground, and(1 − π) is the
probability of obtaining an echo from the tree tops. The probability density function (36)
is shown in Figure 3. Experiments have shown that this, in spite of its simplicity, is a quite

0

Figure 3: A typical histogram of the error in the data from the radar altimeter. The
first peak corresponds to the error in the ground reading, andthe second peak corre-
sponds to the error in the readings from the tree tops.

accurate model (Dahlgren, 1998). Furthermore,m1, m2, σ1, σ2, andπ in (36) can be
allowed to depend on the current horizontal positionLt, lt. In this way, information from
the terrain elevation database can be inferred on the measurement noise in the model.
Using this information, it is possible to model whether the aircraft is flying over open
water or over a forest.

5.2 Result

The flight that has been used is shown in Figure 4. This is a fairly tough flight for the
algorithm, in the sense that during some intervals data are missing, and sometimes, the
radar altimeter readings become unreliable. This happens at high altitudes and during
sharp turns (large roll angle), respectively. In order to get a fair understanding of the
algorithm’s performance,100 Monte Carlo simulations with the same data have been
performed, where only the noise realizations have been changed from one simulation to
the other. Many parameters have to be chosen, but only the number of particles used
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Figure 4: The flight path used for testing the algorithm. The flight pathis clockwise,
and the dark regions in the figure are open water.

are commented here (see Frykman (2003) for more details). InFigure 5, a plot of the
error in horizontal position as a function of time is presented for different number of
particles. The true position is provided by the differential GPS (DGPS). From this figure,
it is obvious that the estimate improves as more particles are used. This is natural since
the theory states that the densities are approximated better the more particles used. The
difference in performance is mainly during the transient, where it can be motivated to use
more particles. By increasing the number of particles the convergence time is significantly
reduced, and a better estimate is obtained. This is true up to5000 particles. Hence,5000
particles where used in this study. The algorithm can be further improved, and in Frykman
(2003), several suggestions are given.

The conclusion from this study is that the marginalized particle filter performs well
and provides an interesting and powerful alternative to methods currently used in inte-
grated aircraft navigation systems.
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Figure 5: The horizontal position error as a function of time units fordifferent
numbers of particles. The marginalized particle filter given in Algorithm A.1 has
been used.

6 Conclusion

The marginalization techniques have systematically been applied to general nonlinear
and non-Gaussian state-space models, with linear sub-structures. This has been done in
several steps, where each step implies a certain modification of the standard particle filter.
The first step was to associate one Kalman filter with each particle. These Kalman filters
were used to estimate the linear states. The second step was to use the prediction of the
nonlinear state as an additional measurement. This was usedto obtain better estimates
of the linear state variables. The complete details for the marginalized particle filter were
derived for a general nonlinear and non-Gaussian state-space model. Several important
special cases were also described. Conditions implying that all the Kalman filters will
obey the same Riccati recursion were given.

Finally, a terrain navigation application with real data from the Swedish fighter aircraft
Gripen was presented. The particle filter is not a feasible algorithm for the full nine-
state model since a huge number of particles would be needed.However, since only two
states (the aircrafts horizontal position) appear nonlinearly in the measurement equation,
a special case of the general marginalization algorithm canbe applied. A very good result
can be obtained with only 5000 particles, which is readily possible to implement in the
computer currently used in the aircraft.
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Appendix

A Proof for Theorem A.1

The proof of (16) and (17) is provided as a special case of the proof below.

Proof: For the sake of notational brevity, the dependence onxn
t in (18) is suppressed in

this proof. Write (18) as

xl
t+1 = f l

t + Al
tx

l
t + Gl

tw
l
t, (37a)

z1
t = An

t xl
t + Gn

t wn
t , (37b)

z2
t = Ctx

l
t + et, (37c)

wherez1
t andz2

t are defined as

z1
t = xn

t+1 − fn
t , (37d)

z2
t = yt − ht. (37e)

Inspection of the above equations gives thatz1
t andz2

t can both be thought of as mea-
surements, since mathematically (37b) and (37c) possess the structure of measurement
equations. The fact that there is a cross-correlation between the two noise processeswl

t

andwn
t , sinceQln

t 6= 0 in (19a), has to be taken care of. This can be accomplished using
the Gram–Schmidt procedure to de-correlate the noise (Gustafsson, 2000, Kailath et al.,
2000). Instead ofwl

t, the following can be used

w̄l
t = wl

t − E
{
wl

t(w
n
t )T

} (
E
{
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t (wn
t )T

})−1
wn

t = wl
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t (Qn
t )−1wn

t , (38)

resulting inE
{
w̄l

t(w
n
t )T

}
= 0 and

Q̄l
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{
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t(w̄
l
t)

T
}

= Ql
t − Qln

t (Qn
t )−1Qln

t . (39)

Using (37b) and (38), (37a) can be rewritten according to (Gn
t is assumed invertible. The

case of a non-invertibleGn
t is treated in Bergman (1999))

xl
t+1 = Al

tx
l
t + Gl

t

(
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t + Qln
t (Qn
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= Āl
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t Qn
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t , (40)

where

Āl
t = Al

t − Gl
tQ

ln
t (Gn

t Qn
t )−1An

t . (41)
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The de-correlated system is

xl
t+1 = f l

t + Āl
tx

l
t + Gl

tQ
ln
t (Gn

t Qn
t )−1z1

t + Gl
tw̄

l
t, (42a)

z1
t = An

t xl
t + Gn

t wn
t , (42b)

z2
t = Ctx

l
t + et, (42c)

which is a linear system with Gaussian noise. Moreover, from(37d) and (37e), it can
be seen thatZ1

t andZ2
t are known ifXn

t+1 andYt are known. The actual proof, using
induction, of the theorem can now be started. At time zero,p(xl

0|Xn
0 , Y−1) = p(xl

0|xn
0 ) =

N (xl
0 | x̄l

0, P̄0). Now, assume thatp(xl
t|Xn

t , Yt−1) is Gaussian at an arbitrary time,t.
The recursions are divided into three parts. First, the information available in the ac-

tual measurementyt, i.e.,z2
t is used. Once the measurement update has been performed

the estimateŝxl
t|t andPt|t are available. These can now be used to calculate the predic-

tions of the nonlinear statêxn
t+1|t. These predictions will provide new information about

the system. Second, this new information is incorporated byperforming a second mea-
surement update using the artificial measurementz1

t . Finally, a time update, using the
result from the second step, is performed.
Part 1: Assume that bothp(xl

t|Xn
t , Yt−1) = N (xl

t | x̂l
t|t−1, Pt|t−1) andz2

t are available.

This means thatp(xl
t|Xn

t , Yt) can be computed as

p
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=
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(
xl

t|Xn
t , Yt−1

)
∫

p
(
yt|xn

t , xl
t

)
p
(
xl

t|Xn
t , Yt−1

)
dxl

t

. (43)

Using the fact that the measurement noise and, thereby,p(yt|xn
t , xl

t) is Gaussian and the
Kalman filter it can be seen thatp(xl

t|Xn
t , Yt) = N (xl

t | x̂l
t|t, Pt|t), where

x̂l
t|t = x̂l

t|t−1 + Kt

(
z2
t − Ctx̂

l
t|t−1

)
, (44a)

Pt|t = Pt|t−1 − KtMtK
T
t , (44b)

Kt = Pt|t−1C
T
t M−1

t , (44c)

Mt = CtPt|t−1C
T
t + Rt. (44d)

Part 2: At this stage,z1
t becomes available. Use

p
(
xl

t|Xn
t+1, Yt

)
=

p
(
xn

t+1|xn
t , xl

t

)
p
(
xl

t|Xn
t , Yt

)
∫

p
(
xn

t+1|xn
t , xl

t

)
p
(
xl

t|Xn
t , Yt

)
dxl

t

(45)

analogously to part1 p(xl
t|Xn

t+1, Yt) = N (xl
t | x̂l∗

t|t, P
∗
t|t,), where

x̂l∗
t|t = x̂l

t|t + Lt

(
z1
t − An

t x̂l
t|t

)
, (46a)

P ∗
t|t = Pt|t − LtN

∗
t LT

t , (46b)

Lt = Pt|t(A
n
t )T (N∗

t )−1, (46c)

N∗
t = An

t Pt|t(A
n
t )T + Gn

t Qn
t (Gn

t )T . (46d)
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Part 3: The final part is the time update, i.e., to compute

p
(
xl

t+1|Xn
t+1, Yt

)
=

∫
p
(
xl

t+1|xn
t+1, x

n
t , xl

t

)
p
(
xl

t|Xn
t+1, Yt

)
dxl

t. (47)

Since the state noise is Gaussian, this corresponds to the time update handled by the
Kalman filter. Hence,p(xl

t+1|Xn
t+1, Yt) = N (xl

t+1 | x̂l
t+1|t, Pt+1|t), where

x̂l
t+1|t = Āl

tx̂
l
t|t + Gl

t

(
Qln

t

)T
(Gn

t Qn
t )

−1
z1
t + f l

t + Lt

(
z1
t − An

t x̂l
t|t

)
, (48a)

Pt+1|t = Āl
tPt|t

(
Āl

t

)T
+ Gl

tQ̄
l
t

(
Gl

t

)T − LtNtL
T
t , (48b)

Lt = Āl
tPt|t (An

t )
T

N−1
t , (48c)

Nt = An
t Pt|t (An

t )
T

+ Gn
t Qn

t (Gn
t )

T
. (48d)
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Abstract

In this paper, the computational complexity of the marginalized particle filter
is analyzed and a general method to perform this analysis is given. The key is
the introduction of theequivalent flopmeasure. In an extensive Monte Carlo
simulation, different computational aspects are studied and compared with
the derived theoretical results.

Keywords: Complexity analysis, equivalent flop, Kalman filter, marginal-
ized particle filter, nonlinear estimation.

1 Introduction

IN particle filter (PF) applications, knowledge of the computational complexity is often
of paramount importance. In this paper the computational complexity issues that arise

in the use of themarginalized particle filter(MPF), also called the Rao-Blackwellized
particle filter are studied. The MPF is a clever combination of the standard PF (Gordon
et al., 1993), and theKalman filter (KF) (Kalman, 1960), which can be used when the
model contains a linear sub-structure, subject to Gaussiannoise. It is a well-known fact
that in some cases it is possible to obtain better estimates,i.e., estimates with reduced
variance, using the MPF instead of using the standard PF (Doucet et al., 2001b). By now,
quite a lot has been written about the MPF, see, e.g., Doucet et al. (2000, 2001a), Chen
and Liu (2000), Andrieu and Doucet (2002), Andrieu and Godsill (2000), Schön et al.
(2005). However, to the best of the author’s knowledge, nothing has yet been written
about complexity issues. In this paper, expressions for thecomplexity C(p, k,N) are
derived, wherep andk represent the state dimensions from the PF and the KF, respectively
and,N denotes the number of particles. A general method to analyzethe computational
complexity of the MPF will be provided. The method is illustrated using a common
tracking model, but can be applied to a much broader class of models. For more details
of the proposed method, see Karlsson et al. (2004).
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2 Marginalized Particle Filter

Many nonlinear estimation problems can be handled using theparticle filter. A general
state-space model

xt+1 = f(xt, wt), (1a)

yt = h(xt, et), (1b)

has both nonlinear dynamicsf and nonlinear measurementsh. The noise processeswt

and et have known probability density functions. If the state-space model contains a
linear-Gaussian sub-structure, this can be exploited to obtain better estimates using the
MPF. In this paper, the case with linear-Gaussian dynamics,

xt+1 = Atxt + wt, wt ∈ N (0, Qt), (2a)

yt = h(xn
t ) + Ctx

l
t + et, (2b)

is discussed. In this context, the state variablext ∈ Rm is

xt =

(
xn

t

xl
t

)
, (3)

wherexl
t ∈ Rl denotes the linear states andxn

t ∈ Rn denotes the nonlinear states.
Furthermore,Xn

t = {xn
i }t

i=0 andYt = {yi}t
i=0. Using Bayes’ theorem,

p
(
xl

t,X
n
t |Yt

)
= p

(
xl

t|Xn
t , Yt

)
p (Xn

t |Yt) , (4)

wherep(Xn
t |Yt) is given by the PF andxl

t|Xn
t is linear-Gaussian, i.e.,p(xl

t|Xn
t , Yt) is

given by the KF. This marginalization idea is certainly not new (Doucet et al., 2000,
Casella and Robert, 1996, Doucet et al., 2001b, Chen and Liu,2000, Andrieu and Doucet,
2002, Doucet et al., 2001b, Schön et al., 2005, Nordlund, 2002). The state vectorxt can
be partitioned into two parts,xp

t ∈ Rp andxk
t ∈ Rk, which are estimated using the

PF and the KF respectively. Furthermore,p ∈ [n, n + l], k ∈ [0, l] and for the general
partitioning casep − n states can be selected froml possibilities.

It is interesting to consider which states to put in the nonlinear and the linear partition,
respectively. Two relevant aspects with respect to this partitioning are how it will affect
the computational complexity and the estimation performance. This will be discussed
using the following model:

xp
t+1 = Ap

t x
p
t + Ak

t xk
t + wp

t , wp
t ∼ N (0, Qp

t ), (5a)

xk
t+1 = F p

t xp
t + F k

t xk
t + wk

t , wk
t ∼ N (0, Qk

t ), (5b)

yt = ht(x
p
t ) + Ctx

k
t + et, et ∼ N (0, Rt), (5c)

where the noise is assumed to be independent. This is no restriction, since the case of
dependent noise can be reduced to the case of independent noise using a Gram–Schmidt
procedure (Kailath et al., 2000). In Algorithm B.1, the MPF is summarized for the model
given in (5) (withCt = 0, for the sake of brevity). For a detailed derivation (including the
caseCt 6= 0), the reader is referred to Schön et al. (2005).
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Algorithm B.1 (Marginalized Particle Filter (MPF), Ct = 0)

1. Initialization: Fori = 1, . . . , N , initialize the particles,xp,(i)
0|−1 ∼ pxp

0
(xp

0) and set

{xk,(i)
0|−1, P

(i)
0|−1} = {x̄k

0 , P̄0}. Sett := 0.

2. Particle filter measurement update: Fori = 1, . . . , N , evaluate the importance

weightsq
(i)
t = p

(
yt|Xp,(i)

t , Yt−1

)
= N

(
yt |h(x

p,(i)
t ), Rt

)
and normalizẽq(i)

t =

q
(i)
t /

∑N
j=1 q

(j)
t .

3. Resampling: ResampleN particles with replacement according to,

Pr
(
x

p,(i)
t|t = x

p,(j)
t|t−1

)
= q̃

(j)
t . (6)

4. Particle filter time update and Kalman filter update

(a) Kalman filter measurement update,

x̂
k,(i)
t|t = x̂

k,(i)
t|t−1, Pt|t = Pt|t−1. (7)

(b) Particle filter time update (prediction): Fori = 1, . . . , N ,

x
p,(i)
t+1|t ∼ p

(
xp

t+1|t|X
p,(i)
t , Yt

)
, (8)

where

p
(
x

p,(i)
t+1 |X

p,(i)
t , Yt

)
= N

(
x

p,(i)
t+1 |Atx

p,(i)
t + Ak

t x̂
k,(i)
t|t , Ak

t Pt|t

(
Ak

t

)T
+ Qp

t

)
.

(9)

(c) Kalman filter time update,

x̂
k,(i)
t+1|t = F k

t x̂
k,(i)
t|t + F p

t x
p,(i)
t + Lt

(
x

p,(i)
t+1|t − Ap

t x
p,(i)
t − Ak

t x̂
k,(i)
t|t

)
, (10a)

Pt+1|t = F k
t Pt|t

(
F k

t

)T
+ Qk

t − LtMtL
T
t , (10b)

Mt = Ak
t Pt|t

(
Ak

t

)T
+ Qp

t , (10c)

Lt = F k
t Pt|t

(
Ak

t

)T
M−1

t , (10d)

5. Sett := t + 1 and iterate from step2.

3 Complexity Analysis

In this section the computational complexity of the MPF is discussed from a theoretical
point of view, by giving the number offloating-point operations(flops) used in the algo-
rithm. A flop is here defined as one addition, subtraction, multiplication, or division of
two floating-point numbers. However, problems occur when the flop count is compared
to the actual computation time. This is due to the fact that issues such as cache boundaries
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and locality of reference will significantly influence the computation time (Boyd and Van-
denberghe, 2004). Moreover, there are certain steps in the algorithm that cannot easily be
measured in flops, for instance the cost of generating a random number and the cost of
evaluating a nonlinear function. Despite these drawbacks,it is still possible to analyze the
complexity using the computer to measure the absolute time that the different steps re-
quire. These can then be compared to the theoretical result obtained from counting flops.
In the PF, the computational complexity of the resampling step is proportional to the num-
ber of particles and the amount of time for generating randomnumbers is proportional to
the number of random numbers required. The proportionalitycoefficients are related to
reflect the flop complexity instead of the time complexity forease of comparison with
parts that only depend on matrix and vector operations. Thiswill be referred to as the
equivalent flop(EF) complexity.

Definition B.1. The equivalent flop (EF) complexity for an operation is defined as the
number of flops that results in the same computational time asthe operation.

3.1 Nonlinear Measurements

In this section, the caseCt = 0 in (5c) is discussed. The total complexity of Algorithm B.1
is given for each code line in Table 1. For instance, the first instructionPt|t(A

k
t )T corre-

sponds to multiplyingPt|t ∈ Rk×k with (Ak
t )T ∈ Rk×p, which requirespk2 multiplica-

tions and(k − 1)kp additions (Golub and Van Loan, 1996). The total EF complexity is
given by

C(p, k,N) ≈ 4pk2 + 8kp2 +
4

3
p3 + 5k3 − 5kp + 2p2

+ (6kp + 4p2 + 2k2 + p − k + pc3 + c1 + c2)N. (11)

As shown above, the coefficientc1 has been used for the calculation of the Gaussian
likelihood, c2 for the resampling andc3 for the random number complexity. Note that,
whenCt = 0 the same covariance matrix is used for all Kalman filters, which reduces the
computational complexity.

The analysis provided above is general and the main steps, which will be discussed in
the subsequent section are as follows:

1. Estimate the time for one flop using linear regression.

2. Estimate the time for likelihood calculation, resampling and random number gen-
eration.

3. Relate all times using the EF measure.

4. Calculate the overall complexityC(p, k,N).

By requiringC(p + k, 0, NPF) = C(p, k,N(k)), whereNPF corresponds to the number
of particles used in the standard PFN(k) can be solved for. This gives the number of
particlesN(k) that can be used in the MPF in order to obtain the same computational
complexity as if the standard particle filter had been used for all states. In Figure 1 the
ratio N(k)/NPF is plotted for systems withm = 3, . . . , 9 states. Hence, using Figure 1
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Table 1: The EF complexity for the PF (upper) and KF time update (lower) in Al-
gorithm B.1 († represents the casek > 0, ‡ represent operations not from matrix
multiplications and additions, such as resampling, randomnumber generation, etc.).

Instruction Mult. Add. Other‡

PA := Pt|t(A
k
t )T pk2 (k − 1)kp

M := Ak
t PA + Q

p
t kp2 (k − 1)p2 + p2 †

T1 := chol(M) p3

3
+ 2p2

T2 := randn(p, N) pNc3
w := T1 ∗ T2 p2N (p − 1)pN

T3 := Apxp p2N (p − 1)pN

T4 := Akxk pkN (k − 1)pN †

x̂
p

t+1|t
:= T3 + T4 + w 2pN

invM := M−1 p3

L := F k
t PAinvM k2p + kp2 k2p + p2k − 2kp

T5 := F k
t Pt|t(F

k
t )T 2k3 2(k − 1)k2

T6 := LtMtL
T
t 2kp2 2(p − 1)pk

P := T5 + Qk
t − T6 2k2

T7 := F kxk k2N (k − 1)kN

T8 := F pxp kpN (p − 1)kN

T9 := x̂
p

t+1|t
− T3 − T4 2pN

x̂k
t+1|t

:= T7 + T8 + LT9 kpN (p + 1)kN

it is possible to directly find out how much there is to gain in using the MPF from a
computational complexity point of view. The figure also shows that the computational
complexity is always reduced when the MPF can be used insteadof the standard PF.
Furthermore, it is well-known that the quality of the estimates will improve or remain the
same when the MPF is used (Doucet et al., 2001b).

3.2 Mixed Nonlinear/Linear Measurements

It is now assumed thatCt 6= 0 in (5c), which implies that the Riccati recursions have
to be evaluated for each particle. This results in a significant increase in the computa-
tional complexity. Hence, different covariance matrices have to be used for each Kalman
filter, implying that (11) has to be modified. For details, seeKarlsson et al. (2004), but
approximately the complexity is given by

C(p, k,N) ≈ (6kp + 4p2 + 2k2 + p − k + pc3 + c1 + c2

+ 4pk2 + 8kp2 +
4

3
p3 + 5k3 − 5kp + 2p2 + k3)N. (12)

The problem with the increased complexity in (12) might be reduced simply by moving
one or more linear states fromxk

t to xp
t . In Figure 2 the ratioN(k)/NPF is plotted for

systems withm = 3, . . . , 9 states. For systems with few states, the MPF is more efficient
than the standard PF. However, for systems with more states,where most of the states
are marginalized the standard PF becomes more efficient thanthe MPF. The reason is the
increased complexity in the Kalman filters due to the increased dimension in the Riccati
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Figure 1: RatioN(k)/NPF for systems withm = 3, . . . , 9 states andCt = 0, n = 2
is shown. It is apparent the MPF can use more particles for a given computational
complexity, when compared to the standard PF.

recursions. For example, according to Figure 2, a system with nine states, where seven
are marginalized,N(k) < NPF .

4 Target Tracking Example

The general method for analyzing the computational complexity presented in the previous
section is illustrated using a common tracking model. The problem of estimating the
position and velocity of an aircraft is studied using

xt+1 =





1 0 T 0 T 2/2 0
0 1 0 T 0 T 2/2
0 0 1 0 T 0
0 0 0 1 0 T
0 0 0 0 1 0
0 0 0 0 0 1




xt + wt, (13a)

yt =





√
p2

x + p2
y

arctan
(

py

px

)



+ et, (13b)

whereQ = Cov(w) = diag(1 1 1 1 0.01 0.01), R = Cov(e) = diag(100 10−6), and the
state vector isxt = (px py vx vy ax ay)T , i.e., position, velocity and acceleration. The
measurement equation gives the range and azimuth from the radar system.
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Figure 2: RatioN(k)/NPF for systems withm = 3, . . . , 9 states andCt 6= 0, n = 2
is shown. For systems with high state dimension and many marginalized states the
standard PF can use more particles than the MPF.

In the subsequent section, a numerical study of the computational complexity is given,
where the theoretical expressions previously derived are validated. Furthermore, the MPF
will be analyzed in an extensiveMonte Carlo(MC) simulation using the model described
in (13). The main purpose of this simulation is to illustratethe implications of the results
derived in this paper. In the simulations, one state trajectory with different noise realiza-
tions have been used. The purpose of the simulations presented here is to show that using
marginalization the computational complexity is significantly reduced and the quality of
the estimates is improved.

4.1 Numerical Complexity Analysis

The model (13) has two nonlinear state variables and four linear state variables, imply-
ing k ∈ [0, 4], p ∈ [2, 6]. Two cases are now studied, the full PF, where all states are
estimated using the PF and the completely marginalized PF, where all linear states are
marginalized out and estimated using the KF. Requiring the same computational com-
plexity, i.e.,C(6, 0, NPF ) = C(2, 4, NMPF ), gives

NPF =

(
1 − 4c3 + 56

c1 + c2 + 6c3 + 150

)

︸ ︷︷ ︸
<1

NMPF. (14)
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From (14), it is clear that for a given computational complexity more particles can be used
in the MPF than in the standard PF. Expression (14) is a specific instance of what has been
plotted in Figure 1, where the curve corresponds tom = 6, k = 4. In order to quantify
this statement, numerical values for the three constantsc1, c2 andc3 are needed. They
are estimated by analyzing the actual computational time consumed by various parts of
the MPF algorithm. It was fairly easy to measure the time usedfor likelihood calculation,
resampling, and random number generation as a function of the number of particles. The
problem is to relate them to the time consumed for a single flop. For simpler hardware
implementations, one flop would have a constant execution time. However, in order to
do this on a normal desktop computer running MATLAB , the EF estimation has to be
considered, since flop count does not entirely reflect the actual computational time. This
is due to memory caching, pipelining, efficient computational routines which are problem
size dependent, and memory swapping. For the tracking example from (13) the estimated
coefficients arec1 = 445, c2 = 487, andc3 = 125 (on a Sun Blade 100 with640 MB
memory).

By comparing the EF complexity given by (11) to the actual computational time mea-
sured in MATLAB , it is clear that the predictions of the computational complexity based
on theoretical considerations are quite good indeed. The result is given in Figure 3. The
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Figure 3: Using a constant number of particles the times predicted from the theo-
retical results are shown by the dashed line. The solid line corresponds to the actual
time measured usingMATLAB . If a certain state variable is estimated using the PF
this is indicated with aP , and if the KF is used this is indicated using aK.

small error is mainly due to the fact that it is quite hard to predict the time used for matrix
operations, as previously discussed.
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4.2 Simulation – Constant Time

Using a constant time the number of particles that can be usedis computed. The study
is performed by first running the full PF and measure the time consumed by the algo-
rithm. An MC simulation, usingN = 2000 particles, is performed in order to obtain
a stable estimate of the time consumed by the algorithm. To avoid intervention from
the operating system, the minimum value is chosen. The time is then used as the target
function for the different partitions in the MPF. To find the number of particles needed,

Table 2: Results from the constant time simulation.

PPPPPP PPKKPP PPPPKK PPKKKK
N 2000 2029 1974 2574
RMSE pos 7.10 5.81 5.76 5.60
RMSE vel 3.62 3.27 3.28 3.21
RMSE acc 0.52 0.47 0.45 0.44
Time 0.59 0.58 0.57 0.60

a search method is implemented and MC simulations are used toget a stable estimate.
In Table 2, the number of particles (N ), the root mean square error(RMSE) and sim-
ulation times are shown for the different marginalization cases. RMSE is defined as(

1
Tf

∑Tf

i=1
1

NMC

∑NMC

j=1 ‖xTRUE
i − x̂

(j)
i ‖2

2

)1/2

, whereTf is the number of time samples

andNMC = 100 is the number of MC simulations used. From Table 2, it is clearthat
the different MPFs can use more particles for a given time, which is in perfect correspon-
dence with the theoretical result given in (14). From the study, it is also concluded that the
RMSE is decreasing when marginalization is used. This is also in accordance with theory,
which states that the variance should decrease or remain unchanged when marginaliza-
tion is used (Doucet et al., 2001b). Furthermore, Table 2 verifies the theoretical results
presented in Figure 1. From this figure it is also clear that the complete marginalization
(m = 6, k = 4) givesN(k)/N0 = 1.44. Hence, the theoretically predicted number of
particles is2000 × 1.44 = 2880. This is in quite good agreement with the result reported
in table 2,2574.

4.3 Simulation – Constant Velocity RMSE

In this section, we study what happens if a constant velocityRMSE is used. First, the
velocity RMSE for the full PF is found using an MC simulation.This value is then used
as a target function in the search for the number of particlesneeded by the different MPFs.
Table 3 clearly indicates that the MPF can obtain the same RMSE using fewer particles.
The result is that using full marginalization only requires14% of the computational re-
sources as compared to the standard PF in this example.
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Table 3: Results using a constant velocity RMSE.

PPPPPP PPKKPP PPPPKK PPKKKK
N 2393 864 943 264
RMSE pos 7.07 6.98 7.12 7.27
RMSE vel 3.58 3.60 3.65 3.61
RMSE acc 0.50 0.51 0.49 0.48
Time 0.73 0.26 0.28 0.10

5 Conclusion

The contribution in this paper is a systematic approach to analyze the marginalized par-
ticle filter from a computational complexity point of view. The method is general and
can be applied to a large class of problems. To illustrate theidea, a common target track-
ing problem is analyzed in detail. The complexity analysis is performed theoretically by
counting the number of flops and using the equivalent flop measure to account for com-
plex algorithmic parts such as random number generation andresampling. In an extensive
Monte Carlo simulation, different performance aspects areshown, and the theoretical re-
sults are illustrated and validated.
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Abstract

General approaches to modeling, for instance using object-oriented software,
lead to differential-algebraic equations (DAE). As the name reveals, it is a
combination of differential and algebraic equations. For state estimation us-
ing observed system inputs and outputs in a stochastic framework similar to
Kalman filtering, we need to augment the DAE with stochastic disturbances
(“process noise”), whose covariance matrix becomes the tuning parameter.
We will determine the subspace of possible disturbances based on the linear
DAE model. This subspace determines all degrees of freedom in the filter
design, and a Kalman filter algorithm is given. We illustratethe design on a
system with two interconnected rotating masses.

Keywords: Differential-algebraic equations, implicit systems, singular sys-
tems, descriptor systems, white noise, noise, discretization, Kalman filter.

1 Introduction

IN recent years so-called object-oriented modeling softwarehas increased in popular-
ity. Examples of such software are Omola, Dymola, the SimMechanics toolbox for

MATLAB , and Modelica (Mattsson et al., 1998, Tiller, 2001). Such modeling software
makes it possible to model physical systems by connecting sub-models in a way which
parallels the physical construction and without having to manually manipulate any equa-
tions. The available software usually gives the user the possibility to simulate the system,
and perhaps also to extract a structured model in an automatic way. This model generally
becomes a differential-algebraic equation (DAE), which inthe linear case can be written

Eẋ(t) + Fx(t) = Buu(t), (1a)

145
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wherex(t) is the internal variable vector,u(t) is the system input vector andE,F,Bu

are matrices of appropriate dimensions. We assume thatE is singular, otherwise we get
an ordinary differential equation (ODE) by simply multiplying with E−1 from the left,
and the standard Kalman filtering theory applies. Hence, when E is singular we obtain
a differential-algebraic equation and the reason for the singularity is often that purely
algebraic equations are present. Other common names for themodel structure (1a) are,
e.g., implicit systems, descriptor systems, semi-state systems, generalized systems, and
differential equations on a manifold (Campbell, 1990).

We have the possibility to place sensors in the system to get ameasurement equation

y(t) = Cx(t) + e(t), (1b)

wherey(t) is the measurement ande(t) the sensor noise. An important special case we
will discuss separately is for computer controlled systems, where the measurementsy[k]
are available at the sampling timest = kTs,

Eẋ(t) + Fx(t) = Buu(t), (2a)

y[kTs] = Cx(kTs) + e[kTs]. (2b)

The estimation problem is to estimatex(t) from y[kTs]. There are two reasons why we
have to introduce process noise to (2a):

• There are unmodeled dynamics and disturbances acting on thesystem, that can only
be included in the model as an unknown stochastic term.

• There is a practical need for tuning the filter in order to makea trade-off between
tracking ability and sensor noise attenuation. This is in the Kalman filter accom-
plished by keeping the sensor noise covariance matrix constant and tuning the pro-
cess noise covariance matrix, or the other way around. Often, it is easier to describe
the sensor noise in a stochastic setting, and then it is more natural to tune the process
noise.

With process noise, the model (1) becomes

Eẋ(t) + Fx(t) = Buu(t) + Bww(t), (3a)

y(t) = Cx(t) + e(t). (3b)

The problem is to determine where in the system disturbancescan occur. To fit the op-
timal filtering and Kalman filtering framework,w(t) should be white noise. As will be
demonstrated, adding white noise to all equations can lead to derivatives of white noise
affecting internal variables of the system directly. This will be referred to as a noncausal
system, with a physical interpretation of infinite forces, currents etc. Therefore, we will
derive a basis for the subspace of all possible disturbances, that leads to causal systems.
This basis is taken asBw in (3), and the process noise covariance matrixQ = Cov{w(t)}
is used as the design variable to rotate and scale this basis.This is a new way of defining
the process noise as far as we know. The problem itself, however, is addressed in Camp-
bell (1990), where it is suggested to use band limited noise to avoid these problems. The
idea is that the derivative of such noise exists, but the drawback is that the Kalman filter
will become sub-optimal.
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A system with the same structure as (3) but in discrete time will be referred to as
a discrete-time descriptor system. Such systems may also benoncausal, but are easier
to handle since the noncausality here means dependence on future values of the noise
or the input. An application for such systems is discrete-time state-space systems with
constraints. For an example see Schön et al. (2003). In the discrete-time case much work
has already been done, for example on Kalman filtering see, e.g., Dai (1987), Deng and
Liu (1999), Nikoukhah et al. (1998, 1999), Darouach et al. (1993), Dai (1989a). In the
continuous-time case much less work has been done on statistical methods. However,
some attempts to introduce white noise in the continuous case has been done as well, see,
e.g., Schein and Denk (1998), Winkler (2003).

2 Derivation of the Process Noise Subspace

We will omit the deterministic input in this derivation for notational convenience, so
the continuous-time linear invariant differential-algebraic equations considered has the
form (4). The reader is referred to Gerdin et al. (2003) for details on how the noncausality
with respect to the input signalu(t) can be handled.

Eẋ(t) + Fx(t) = Bw(t), (4a)

y(t) = Cx(t) + e(t). (4b)

TheE, F , andC matrices in (4) are constant matrices. For the purpose of this discussion
we will assume thatw ande are continuous-time white noises. (See Åström (1970) for a
thorough treatment of continuous-time white noise). Ifdet(Es+F ) is not identically zero
as a function ofs ∈ R, (4) can always be transformed into thestandard form(6) (Bre-
nan et al., 1996). Note that ifdet(Es + F ) is identically zero, thenx(t) is not uniquely
determined byw(t) and the initial valuex(0). This can be realized by Laplace trans-
forming (4). Therefore it is a reasonable assumption thatdet(Es + F ) is not identically
zero.

2.1 Time Domain Derivation

First, a transformation to the standard form is needed. Thisis done by finding a suitable
change of variablesx = Qz and a matrixP to multiply (4a) from the left. BothP andQ
are nonsingular matrices. By doing this we get

PEQż(t) + PFQz(t) = PBw(t), (5)

which for suitably chosenP - andQ-matrices can be written in the following standard
form:

(
I 0
0 N

)(
ż1(t)
ż2(t)

)
+

(
−A 0
0 I

)(
z1(t)
z2(t)

)
=

(
G1

G2

)
w(t), (6)

where theN -matrix is nilpotent, i.e., Nk = 0 for somek. The matricesP andQ can
be calculated using, e.g., ideas from Varga (1992) involving the generalized real Schur
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form and the generalized Sylvester equation. We can also write (6) on the form (7) (Dai,
1989b, Ljung and Glad, 2003).

ż1(t) = Az1(t) + G1w(t), (7a)

z2(t) =

k−1∑

i=0

(−N)iG2
diw(t)

dti
. (7b)

From a theoretical point of viewG1 can be chosen arbitrarily, since it describes how white
noise should enter an ordinary differential equation. However, constraints onG1 can of
course be imposed by the physics of the system that is modeled. When it comes toG2,
the situation is different, here we have to find a suitable parameterization. The problem
is now that white noise cannot be differentiated, so we proceed to find a condition on the
B-matrix in (4a) under which there does not occur any derivatives in (7b), i.e.,N iG2 = 0
for all i ≥ 1. This is equivalent to thatNG2 = 0. The result is given in the following
theorem.

Theorem C.1
The condition to avoid differentiation of white noise is equivalent to requiring that

B ∈ R(M), (8)

whereM is a matrix derived from the standard form (6) (see the proof for details on how
M is derived).

The expressionB ∈ R(M) means thatB is in therangeof M , that is the columns of
B are linear combinations of the columns of M.

Proof: Let then × n matrixN in (6) have the singular value decomposition (SVD)

N = UDV T . (9)

Since it is nilpotent it is also singular, som diagonal elements inD are zero. Partition
V = (V1, V2), whereV2 contains the lastm columns ofV having zero singular values.
ThenNV2 = 0, and we can writeG2 = V2T , whereT is an arbitrarym × m matrix,
which parameterizes all matricesG2 that satisfiesNG2 = 0.

According to (5) and (6) we have

B = P−1

(
G1

G2

)
. (10)

If we now letP−1 = (R1, R2) , we can write (10) as

B = P−1

(
G1

G2

)
=
(
R1 R2

)( G1

V2T

)
= (R1 R2V2)︸ ︷︷ ︸

M

(
G1

T

)
, (11)

where bothG1 andT can be chosen arbitrarily. This calculation gives that

B ∈ R(M), (12)

is a condition for avoiding differentiation of the white noise signalw(t).
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The B-matrices satisfying (12) will thus allow us to incorporatewhite noise with-
out having a problem with differentiation of white noise. The design parameters to be
specified areG1 andT , defined in the proof above. Also note that the requirement that
white noise should not be differentiated is related to the concept ofimpulse controllability
discussed in Dai (1989b).

2.2 Frequency Domain Derivation

The same condition on the noise can be derived in the frequency domain, as shown in
this section. Throughout the section, we need some conceptsfrom the theory of matrix
fraction descriptions (MFD). We start by defining therow degreeof a polynomial matrix
and the concept of arow reducedMFD according to Rugh (1996).

Definition C.1. Theith row degree of a polynomial matrixP (s), written asri[P ], is the
degree of the highest degree polynomial in theith row of P (s).

Definition C.2. If the polynomial matrixP (s) is square and nonsingular, then it is called
row reduced if

deg(det P (s)) = r1[P ] + · · · + rn[P ]. (13)

We will use the following theorem from Kailath (1980):

Theorem C.2
If D(s) is row reduced, thenD−1(s)N(s) is proper if and only if each row ofN(s) has
degree less than or equal the degree of the corresponding rowof D(s), i.e., ri[N ] ≤
ri[D], i = 1, . . . , n.

To utilize the results we need to write (4a) as a matrix fraction description. A MFD of (4a)
is

X(s) = (Es + F )−1BW (s). (14)

According to Rugh (1996) a matrix fraction description can be converted to row reduced
form by pre-multiplication of a unimodular1 matrix U(s). That is,D(s) is row reduced
in the MFD

X(s) = D−1(s)N(s)W (s), (15)

whereD(s) = U(s)(Es+F ) andN(s) = U(s)B for a certain unimodular matrixU(s).
Now, Theorem C.2 shows that the transfer function of the system is proper if the highest
degree of the polynomials in each row inN(s) is lower than or equal to the highest degree
of the polynomials in the corresponding row ofD(s). This gives a condition onB in the
following way:

Writing U(s) as

U(s) =

m∑

i=0

Uis
i (16)

1A polynomial matrix is called unimodular if its determinant is a nonzero real number (Kailath, 1980).
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and writing thejth row of Ui asUij , shows that the condition

UijB = 0 i > rj [D], j = 1, . . . , n (17)

guarantees that the transfer function of the system is proper.
Conversely, assume that (17) does not hold. Then some row degree of N(s) is higher

than the corresponding row degree of D(s), so the transfer function is then according to
Theorem C.2 not proper.

This discussion proves the following theorem.

Theorem C.3
The transfer function of the system (4) is proper if and only if

UijB = 0 i > rj [D], j = 1, . . . , n. (18)

Note that the criterion discussed in this section requires that the MFD is transformed
to row reduced form, and an algorithm for finding this transformation is provided in Rugh
(1996).

We have now proved two theorems, one using time domain methods and one using
frequency domain methods, that gives conditions which are equivalent to that no white
noise is differentiated in (4). This means that these two conditions are equivalent as well.
The frequency domain method is good in the sense that we do nothave to compute the
standard form (6). However, if we want to discretize the equations it is worthwhile to
compute the standard form. Once this is done the celebrated Kalman filter can be used
to estimate the internal variablesx(t). In the subsequent section we will discuss the
discretization and the estimation problems.

3 Filtering

3.1 Discretization

If the noise enters the system according to aB-matrix satisfying Theorem C.1 or C.3 the
original system (4) can be written as

ż1(t) = Az1(t) + G1w(t), (19a)

z2(t) = G2w(t), (19b)

y(t) = CQz(t) + e(t), (19c)

wherex = Qz. Furthermorew(t) and e(t) are both assumed to be Gaussian white
noise signals with covariancesR1 andR2 respectively, and zero cross-covariance (the
case of nonzero cross-covariance can be handled as well, theonly difference is that the
expressions are more involved).

System (19) can be discretized using standard techniques from linear systems theory
(Rugh, 1996). If we assume thatw(t) remains constant during one sample interval2 (here
it is assumed that sampling interval is one to simplify the notation),

w(t) = w[k], k ≤ t < (k + 1), (20)

2See, e.g., Gustafsson (2000) for a discussion on other possible assumptions on the stochastic processw(t)
when it comes to discretization.
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we obtain

z1[k + 1] = Ãz1[k] + G̃1w[k], (21a)

z2[k] = G2w[k], (21b)

y[k] = CQz[k] + e[k], (21c)

where

Ã = eA, G̃1 =

1∫

0

eAτdτG1. (22)

Hence (21) and (22) constitutes a discrete-time model of (4).

3.2 Kalman Filter

In order to apply the Kalman filter to the discrete-time model(21) we start out by rewrit-
ing (21c) as

y[k] = CQz[k] + e[k] =
(
C̃1C̃2

)(z1[k]
z2[k]

)
+ e[k] = C̃1z1[k] + C̃2z2[k] + e[k]

= C̃1z1[k] + C̃2G2w[k] + e[k]︸ ︷︷ ︸
ẽ[k]

. (23)

Combining (21a) and (23) we obtain

z1[k + 1] = Ãz1[k] + G̃1w[k], (24a)

y[k] = C̃1z1[k] + ẽ[k]. (24b)

Note that the measurement noiseẽ[k] and the process noisew[k] are correlated. Now, the
Kalman filter can be applied to (24) in order to estimate the internal variablesz1[k] and
the process noisew[k]. Finally an estimate of the internal variablesz2[k] can be found
using the estimated process noise, sincez2[k] = G2w[k], according to (21b). Finally the
internal variables,x[k], are obtained byx[k] = Q−1z[k]. For details on the Kalman filter
see Glad and Ljung (2000).

4 Example

In this example we will treat a system composed of two rotating masses as shown in
Figure 1. The two rotating parts are described by the torquesM1, M2, M3, andM4 and
the angular velocitiesz1 andz2. The equations describing this system are

J1ż1 = M1 + M2, (25a)

J2ż2 = M3 + M4, (25b)

M2 = −M3, (25c)

z1 = z2. (25d)
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M1
M2 M3

M4
z1

z2

Figure 1: Two interconnected rotating masses.

Written on the form (4) these equations are





J1 0 0 0
0 J2 0 0
0 0 0 0
0 0 0 0



 ẋ +





0 0 −1 0
0 0 0 −1
0 0 1 1
1 −1 0 0



x =





1 0
0 1
0 0
0 0





(
M1

M4

)
, (26)

wherex = (z1, z2, M2, M3)
T . Note that the matrix in front oḟx is singular, hence (26)

is a differential-algebraic equation. Using the followingtransformation matricesP andQ

P =





1 1 1 0
0 0 0 1
0 0 1 0
J2

J1+J2
− J1

J1+J2

J2

J1+J2
0



 , Q =





1
J1+J2

J2

J1+J2
0 0

1
J1+J2

− J1

J1+J2
0 0

0 0 1 −1
0 0 0 1



 ,

(27)

the equations can be written in the standard form (6):





1 0 0 0
0 0 0 0
0 0 0 0
0 J1J2

J1+J2
0 0



 ż +





0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



 z =





1 1
0 0
0 0
J2

J1+J2
− J1

J1+J2





(
M1

M4

)
. (28)

Now to the important part, if we want to incorporate noise into the differential-algebraic
equation (26), by addingBw to (26), whichB-matrices are allowed?

To answer this question Theorem C.1 can be consulted. We begin by calculating the
matricesR1, R2 andV2 from (27) and (28). We have that

N =




0 0 0
0 0 0

J1J2

J1+J2
0 0



 ⇒ V2 =




0 0
1 0
0 1



 , (29)

and

P−1 =





J1

J1+J2
0 −1 1

J2

J1+J2
0 0 −1

0 0 1 0
0 1 0 0



 ⇒ R1 =





J1

J1+J2
J2

J1+J2

0
0



 , R2 =





0 −1 1
0 0 −1
0 1 0
1 0 0



 .

(30)
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We can now calculate theM matrix:

M =
(
R1 R2V2

)
=





J1

J1+J2
−1 1

J2

J1+J2
0 −1

0 1 0
0 0 0



 . (31)

As the requirement was thatB ∈ R(M) this simply means that we cannot directly add
white noise to (25d) (ifJ1 > 0 andJ2 > 0). This result makes physical sense, as a step
change in the angular velocity would require an infinite torque.

The same condition onB can also be calculated in the frequency domain using The-
orem C.3. Transforming the system to row reduced form gives that

U(s) =





− 1
J1

− 1
J2

0 s

0 1 0 0
0 0 1 0
0 0 0 1



 =





− 1
J1

− 1
J2

0 0

0 1 0 0
0 0 1 0
0 0 0 1





︸ ︷︷ ︸
U0

+





0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0





︸ ︷︷ ︸
U1

s (32)

and that

D(s) =





0 0 1
J1

− 1
J2

0 J2s 0 −1
0 0 1 1
1 −1 0 0



 , (33)

with notation from section 2.2.
This gives that the row degrees ofD(s) arer1[D] = 0, r2[D] = 1, r3[D] = 0, and

r4[D] = 0. Theorem C.3 thus gives that the transfer function is properif and only if

(
0 0 0 1
0 0 0 0

)
B = 0. (34)

What (34) says is that the last row ofB must be zero, which is the same conclusion as
was reached using the time domain method, Theorem C.1.

5 Discrete-Time Linear Descriptor Systems

The discrete linear time invariant descriptor system is an equation on the form

Ex[k + 1] + Fx[k] = Bw[k], (35a)

y[k] = Cx[k] + e[k], (35b)

whereE, F , andC are constant matrices andw[k] ande[k] are white noise sequences,
i.e., sequences of independent and identically distributed random variables. For this case
it is possible to make the same transformation as for a continuous differential-algebraic
equation ifdet(Ez + F ) is not identically zero as a function ofz ∈ R (Section 2) since
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the structure is similar. Similarly to the continuous-timecase,x[k] will not be uniquely
determined byw(k) if det(Ez + F ) is identically zero. A certain transformation

PEQx[k + 1] + PFQx[k] = PBw[k], (36)

with nonsingular matricesP andQ will thus give us the form
(

I 0
0 N

)(
z1[k + 1]
z2[k + 1]

)
+

(
−A 0
0 I

)(
z1[k]
z2[k]

)
=

(
G1

G2

)
w[k]. (37)

As in the continuous-time case, we can write (37) in the form

z1[k + 1] = Az1[k] + G1w[k], (38a)

z2[k] =

n−1∑

i=0

(−N)iG2w[k + i]. (38b)

The system (35) is thus well defined for allB-matrices, since no derivatives occur in this
case. However,z2[k] will depend on future values of the noise. To avoid this, the noise
sequence can be time shifted. If we letw̃[k] = w[k+n−1] we can rewrite (38) according
to

z1[k + 1] = Az1[k] + G1w̃[k − n + 1], (39a)

z2[k] =

0∑

i=−n+1

(−N)iG2w̃[k + i], (39b)

which can be transformed to a normal state-space description. This state-space description
can then be used to implement a Kalman filter, which is discussed in Dai (1987). Other
approaches to Kalman filtering of discrete-time linear descriptor systems are discussed in,
Deng and Liu (1999), Nikoukhah et al. (1998, 1999), Darouachet al. (1993), Dai (1989a).

The sequencesw[k] andw̃[k] will have the same statistical properties since they both
are white noise sequences.

It can be also be noted that the same requirement that was put on B in the continuous-
time case may also be used in the discrete-time case. This would then guarantee that the
system would not depend on future noise values and the noise sequence would not have
to be time shifted.

5.1 Frequency Domain

The ideas of time shifting the noise might become clearer if they are treated in the fre-
quency domain. If we transform (35) to the frequency domain we get

X(z) = (Ez + F )−1B︸ ︷︷ ︸
H(z)

W (z). (40)

The only difference from a transfer function for a state-space system is that hereH(z) is
noncausal in the general case. If we rewrite (40) as

X(z) = H(z)z−T

︸ ︷︷ ︸
H̃(z)

zT W (z)︸ ︷︷ ︸
W̃ (z)

, (41)
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thenW̃ (z) will be a time shifted version ofW (z) and H̃(z) will be a causal transfer
function if T is large enough.

6 Conclusion

We have in this paper proposed a framework for modeling and filtering of systems com-
posed of linear differential-algebraic equations. The main reason for studying these sys-
tems is that they occur as the natural description deliveredfrom object-oriented modeling
software. At the core of this problem we find the question of how to incorporate stochas-
tics into linear differential-algebraic equations. This has been solved in this paper in the
case where white noise is used. The result was presented as two equivalent theorems, one
in the time domain and one in the frequency domain. The resulting model fits into the
optimal filtering framework and standard methods such as theKalman filter applies. An
example was also given, which showed that the conditions derived for how the noise can
enter the system gives requirements which are physically motivated.
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Abstract

The Kalman filter computes the maximum a posteriori (MAP) estimate of
the states for linear state-space models with Gaussian noise. We interpret
the Kalman filter as the solution to a convex optimization problem, and show
that we can generalize the MAP state estimator to any noise with log-concave
density function and any combination of linear equality andconvex inequal-
ity constraints on the states. We illustrate the principle on a hidden Markov
model, where the state vector contains probabilities that are positive and sum
to one.

Keywords: State estimation, Kalman filter, convex optimization, hidden
Markov models, linear regression.

1 Introduction

STATE estimation in stochastic linear models is an important problem in many model
based approaches in signal processing and automatic control applications, where the

Kalman filter is the standard method. However, if we have prior information of some
kind it is often impossible to incorporate this in the Kalmanfilter framework. We will
in this paper show how we can use prior information by considering the optimization
problem that the Kalman filter solves. A similar treatment can be found in Robertson and
Lee (2002), however they only consider quadratic problems,whereas we will consider a
larger class of convex problems.

2 Convex Optimization

In this section we will give a very brief introduction to convex optimization, see also Boyd
and Vandenberghe (2001).
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The main message in convex optimization is that one shouldnot differ between linear
and nonlinear optimization problems, but instead between convex and non-convex prob-
lems. This is due to the fact that the class of convex problemsis much larger than that
covered by linear problems, and we know that for a convex problem any local optimum
is also a global optimum. Moreover, there exist efficient algorithms for solving convex
optimization problems. A convex optimization problem is defined as

min
x

f0(x)

s.t. fi(x) ≤ 0, i = 0, . . . ,m,
aT

i x = bi, i = 0, . . . , n,

(1)

where the functionsf0, . . . , fm are convex and the equality constraints are linear. We
will in the following sections try to identify some estimation problems that can be cast as
convex optimization problems.

3 Notation and Background

Maximum a posteriori (MAP) estimation (Jazwinski, 1970) isabout finding an estima-
tor of a stochastic variablez that maximizes the conditional densityp(z|y), given the
observationy (y ∈ Rny andz ∈ Rnz ). Thus, the MAP problem is

max
z

log(p(z|y)). (2)

In the sequel, the measurement vectorsyi from time0 to timet will be denotedy0:t, and
similarly z0:t denotes all unknowns including the initial values. The operatorz(j)

i extracts
the jth element from the vectorzi.

The assumptions commonly used in the literature are that theelements in thez vectors
are spatially and temporally independent (white noise) andGaussian distributed. We will
insist on the independence assumption, but not on the assumption of Gaussian densities,
giving us the following form oflog(p(z)) (suppressing the dependence ony)

log (p(z0:t)) = log

(
t∏

i=0

pzi
(zi)

)
=

t∑

i=0

log (pzi
(zi)). (3)

Depending on the distribution, the objective function in (1) can be explicitly written as in
Table 1, see also Boyd and Vandenberghe (2001).

4 Convex Optimization Estimation

In this section we will discuss the estimation problem in thepresence of constraints. In
Table 1 the objective functions are given for several log-concave1 densities. Constraints
arise in the derivation of some of these probability densityfunctions (PDF), but constraints

1A functionf : Rn → R is log-concaveif f(x) > 0 for all x in the domain off , andlog(f) is a concave
function (Boyd and Vandenberghe, 2001).
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Table 1: Objective functions in (1) for different normalized (zero mean and unit
covariance) probability density functions.

PDF Objective function Extra constraints
Gaussian

∑t
i=0 ‖zi‖2

Exponential
∑t

i=0

∑nz

j=1 z
(j)
i − 1 z ≥ 0

Laplacian
∑t

i=0

∑nz

j=1 |z
(j)
i |

Uniform constant −
√

3 ≤ z ≤
√

3

also arise from prior information of some kind, e.g., a modelassumption. This will be
discussed in Section 6.

Assume we want to estimate(xT , zT )T , wherez has a certain known distribution,
and thatx andz are related through the constraints

A

(
x
z

)
= b, (4)

If we now want to use (2) we are faced with the problem of findingthe joint distribution
of x andz, which can be quite tedious.

Problem 1 (Convex optimization estimation)
Assume thatp(z) is a known log-concave probability density function. Then,the MAP-
estimate for(xT , zT )T , wherex andz are related via (4) is given by

max
x,z

log(pz(z))

s.t. A

(
x
z

)
= b.

(5)

Remark: Any linear equalities and convex inequalities may be added to this formulation,
and standard software applies.

This approach to estimation is presented in Boyd and Vandenberghe (2001). The
standard estimation problem is to interpretx as the parameters conditioned on the mea-
surementsx|y, and thenz is just a nuisance parameter. The standard approach, not often
written explicitly, is to marginalize the nuisance parameters to get

p(x|y) =

∫
p(x|y, z)p(z|y) dz, (6)

where the constraints are used explicitly. This works fine ina range of applications, and
the solution most often has a quite simple form. In the general case, we can formulate the
problem below.

5 Linear Regression Example

As an example of estimation, consider a linear regression problem in matrix form

Y = ΦT θ + E. (7)
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InterpretE ↔ z as a Gaussian nuisance parameter with varianceσ2, the regression pa-
rameterθ ↔ x as the parameter andY,Φ ↔ y as the observations. The well-known result
from marginalization is that

θ ∈ N
(
(ΦΦT )−1ΦY, σ2(ΦΦT )−1

)
. (8)

Alternatively, we can pose the problem as

max
θ, E

log(pE(E))

s.t.
(
ΦT 1

)( θ
E

)
= Y.

(9)

If this regression model happens to be an ARX model of a transfer function

G(eiω) =

∑
l b

(l)e−iωl

1 +
∑

l a
(l)e−iωl

, (10)

in system identification, we useθ = (aT , bT )T . Now, we can simply add constraints such
as bounded DC gainL ≤ G(0) ≤ U , or more generally, any lower and upper bound on
the transfer function

L(ω) ≤
∑

l b
(l)e−iωl

1 +
∑

l a
(l)e−iωl

≤ U(ω), (11)

which is easily rewritten in the standard form. Similarly, any other interval for any other
frequency of the transfer function can be bounded.

6 Convex Optimization Filtering

In Section 4 we talked about constraints in general. We will in this section discuss a spe-
cial type of constraints, namely the ones that appear in describing the dynamic behavior
of a model. In order to obtain convex problems we will use linear models of the dynamics.
The following model

Ext+1 = Axt + Bwt + Ket, (12a)

yt = Cxt + Det, (12b)

together with a density for the initial statepx0
andpet

(et), pwt
(wt) will constitute our

model. WithE = I, K = 0 we have the standard state-space model, and withE = I,
B = 0, D = I we have the so calledinnovation form. If theE-matrix in (12a) is invertible
we can rewrite the equation in a state-space model. Otherwise we have what is commonly
referred to as adescriptor model(Luenberger, 1977).

To put state filtering in the general estimation form as in Problem 1, let

z =
(
xT

0 wT
0:t−1 eT

0:t

)T
, (13)
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and interpretx asx1:t|y1:t. To rewrite the conditional density more explicitly, use the
independence assumption and (3), which gives

log(p(x0, w0:t−1, e0:t)) = log(px0
(x0)) +

t−1∑

i=0

log(pwi
(wi)) +

t∑

i=0

log(pei
(ei)). (14)

Using Bayes’ theorem ,p(z|y) = p(y|z)p(z)/p(y) and the fact that

p(xt) = px0
(x0)

t−1∏

i=0

pwi
(wi), (15a)

p(yt|xt) =
t∏

i=0

pei
(ei), (15b)

we obtain the following objective function

p(x0, w0:t−1, e0:t) =

t∏

i=0

pei
(ei)px0

(x0)

t−1∏

i=0

pwi
(wi). (16)

Conditioned onz in (13), the states in (12) are uniquely defined by a deterministic map-
ping x = f(z), which implies thatp(x|z) = f(z) contains nothing stochastic. That is,
the MAP-estimate ofx andz are simply related bŷxMAP = f(ẑMAP ). Similarly, the
joint MAP-estimatex, z in the convex optimization formulation is given by maximizing
p(z), sincep(z, x) = p(x|z)p(z) = f(z)p(z) by Bayes’ theorem. Hence, we have now
justified the following general convex filtering problem.

Problem 2 (Convex optimization filtering)

Assume that the probability density functionspx0
(x0), pwi

(wi), and pei
(ei) are log-

concave. In the presence of constraints in terms of a dynamicmodel (12) the MAP-
estimate is the solution̂xt = xt to the following problem

max
x0:t,z

log(px0
(x0)) +

t−1∑

i=0

log(pwi
(wi)) +

t∑

i=0

log(pei
(ei))

s.t. Eixi+1 = Aixi + Biwi + Kiei, i = 0, . . . , t − 1,
yi = Cixi + Diei, i = 0, . . . , t.

Remark: Any linear equalities and convex inequalities may be added to this formulation,
and standard software applies.

As is evident from Problem 2 we see that we are free to use different densities for
the different disturbancespx0

(x0), pwi
(wi), andpei

(ei). It is here also worth noting that
the recursive solution to Problem 2 under the assumptions ofGaussian densities and a
nonsingularE-matrix is the celebrated Kalman filter. This has been known for a long
time, see, e.g., Sorenson (1970), Kailath (1974) for nice historical accounts of this fact,
and for a proof see Rao (2000). It is also worthwhile noting that Problem 2 under the
assumption of Gaussian disturbances is a weighted least-squares problem. To see this
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combine 2 and the Gaussian case in Table 1, where the weights are the inverse of the
covariance matrices. This provides a deterministic interpretation of the problem that the
Kalman filter solves. For more on the similarities and differences between deterministic
and stochastic filtering, see, e.g., Kailath et al. (2000). We also see that if we solve
Problem 2 we will not only obtain the filtered estimatex̂t|t, but also all the smoothed
estimates,̂xi|t, i = 0, . . . , t − 1.

So why should we solve the estimation problem via 2, which demands more compu-
tations, instead of via the Kalman filter? There are two reasons. The first reason is that we
can handle all log-concave density functions, not just the Gaussian. The second reason
is that we can add any prior information, in convex form, to problem 2. That is we can
add linear equality constraints and convex inequality constraints, and still find the optimal
estimate. We will see an illustration of this in the example in the subsequent section.

7 HMM Example

There are mainly two filtering problems, where there exist finite-dimensional recursive
optimal filters, and in particular a finite-dimensional MAP-estimator. One is, as already
mentioned, linear state-space models with Gaussian noise.Here the Kalman filter is op-
timal in ML, MAP and minimum variance senses. For non-Gaussian noises, the Kalman
filter computes the linear state estimate with minimum variance, but it is no longer the
MAP or ML estimator.

The other case ishidden Markov models(HMM). Interestingly, it has been pointed
out (Andersson, 2002) that the HMM can be written as a state-space model. That is, the
Kalman filter computes the best possible linear estimate of the Markov state. This fact
makes it possible to compare conceptually different approaches on the same example!

A hidden Markov model is defined by a discrete variableξ ∈ (1, 2, . . . , n) with a
known transition probability matrixA, whereA(i,j) = Pr(ξt = i|ξt−1 = j), that is, given
thatξ = j at timet − 1, the probability thatξ = i at timet is A(i,j). We will assume an
observation processν ∈ (1, 2, . . . ,m), where Pr(ν = i|ξ = j) = C(i,j). The filter for
computing the a posteriori probabilities can be expressed as the recursion

π
(i)
t = p(ξt = i) =

∑n
j=1

∑
π

(j)
t−1A

(i,j)C(νt,j)

∑n
j=1

∑
π

(j)
t−1C

(νt,j)
. (17a)

The MAP-estimate iŝξt = arg max
i

π
(i)
t . Now, the HMM can be written as the state-

space model

xt+1 = Axt + wt, (18a)

yt = Cxt + et, (18b)

wherex
(i)
t = Pr(ξt = i) andy

(i)
t = Pr(νt = i). This is the state-space form (12) with

B = D = E = I,K = 0) where the disturbances are zero-mean white noises, and the
stationary covariance matrices can be shown to be

Q = Cov{wt} = diag(π) − Adiag(π)AT , (19a)

R = Cov{et} = diag(Cπ) − Cdiag(π)CT , (19b)
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whereπ is the stationary solution to (in vector form)

π = lim
t→∞

Atπ0, where π0 > 0. (20)

Since the statesx we are estimating in a HMM are probabilities we have the following
prior information on the states

2∑

i=1

x(i) = 1, and x(i) ≥ 0, i = 1, 2. (21)

In the standard Kalman filter it is impossible to incorporatethis prior information about
the states, however in Problem 2 it is straightforward. We will now examine four different
filters using an increasing amount of prior information (in1-3 we have approximatedwt

andet in (18) as Gaussian with zero-mean and covariances (19)):

1. The Kalman filter.

2. The convex optimization filter with constraint
∑

i x
(i)
t = 1. This case can al-

ternatively be computed by the Kalman filter usingP0 = p0

(
1 1
1 1

)
and any

∑
i x

(i)
0 = 1, or by using the fictitious measurementy0 = (1, 1, . . . , 1)x0 = 1

with zero measurement noise. Note, however, that the Ricatti equation will be sin-
gular here, which may imply certain numerical difficulties.A more theoretically
sound alternative is given in Andersson (2002).

3. The convex optimization filter with constraint (21).

4. The optimal filter (17).

Table 2: RMSE values for the different filters.

1. Kalman filter 0.585
2. 2 withx1 + x2 = 1 0.573
3. 2 withx1 + x2 = 1 andx ≥ 0 0.566
4. Optimal filter 0.403

The numerical example is taken from Andersson (2002), where

A = C =

(
0.9 0.1
0.1 0.9

)
. (22)

In Table 2, the root mean square error (RMSE) is given for these four cases and in Fig-
ure 1 the states are shown. From this table it is obvious that we can obtain better estimates
by using more information in this case. Of course, the convexoptimization filters cannot
compare to the performance of the optimal filter. However, the point is to show the flex-
ibility of the approach, and the problem of consideration can be generalized with more
constraints or a more complicated measurement relation, such that the optimal filter does
no longer exist.
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Figure 1: The true state is marked by◦, and the measured states by×. The
dashed/solid line is the estimate from filter 3, respective 4.

8 Conclusion

We have formulated the state estimation problem in a convex optimization framework. In
this way, well-known numerical efficient algorithms can be used to compute the MAP-
estimate of the state vector, without any problems with local minima. Compared to the
Kalman filter, the advantage is that any log-concave noise densities can be used and any
linear equality or convex inequality constraints may be included, while the main draw-
back is that no recursive convex optimization algorithm is yet available, which makes the
approach computer intensive.
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Abstract

The potential use of the marginalized particle filter for nonlinear system iden-
tification is investigated. The particle filter itself offers a general tool for es-
timating unknown parameters in nonlinear models of moderate complexity,
and the basic trick is to model the parameters as a random walk(so called
roughening noise) with decaying variance. We derive algorithms for sys-
tems which are linear in either the parameters or the states,but generally
not in both. In these cases, marginalization applies to the linear part, which
firstly significantly widens the scope of the particle filter to more complex
systems, and secondly decreases the variance in the linear parameters/states
for fixed filter complexity. This second property is illustrated in an example
of a chaotic model. The particular case of freely parameterized linear state-
space models, common in subspace identification approaches, is bilinear in
states and parameters, and thus both cases above are satisfied. One can then
choose which one to marginalize.

Keywords: System identification, nonlinear estimation, recursive estima-
tion, particle filters, Kalman filters, Bayesian estimation, marginalization,
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1 Introduction

IN this contribution, the particle filter (Gordon et al., 1993,Doucet et al., 2001a) is
applied to some classical system identification problems (Ljung, 1999) based on time-

varying parametric state-space models

zt+1 = ft(zt, θ) + wz
t , (1a)

yt = ht(zt, θ) + et, (1b)

wherez ∈ Rnz is the state variable,θ ∈ Rnθ is the parameter vector, andy ∈ Rny is the
output variable. The additive noise terms are assumed to be independent and identically
distributed (i.i.d.).

First, we briefly review the problem formulation given in theaccompanying paper
by Gustafsson and Hriljac (2003). By augmenting the state vector with the parameters,
xt = (zT

t , θT
t )T , and assuming a random walk parameter variation (of which constant

parameters is a special case), we get
(

zt+1

θt+1

)
=

(
ft(zt, θt)

θt

)
+

(
wz

t + vz
t

wθ
t + vθ

t

)
, (2a)

yt = ht(zt, θt) + et, (2b)

where the noises are physical state noisewz
t , state roughening noisevz

t , parameter random
walk for time-varying parameterswθ

t and parameter roughening noisevθ
t . The roughening

noise is instrumental in the particle filter to get good performance, and is a second level
design parameter. For system identification,wθ

t = 0 andvθ
t has a variance decaying to

zero, which yields converging parameter estimates. The particle filter recursively approx-
imates the filter density functionp(xt|Yt), whereYt , {yi}t

i=0, and the approximation
converges to the true filter density when the number of particles tends to infinity. The only
problem is that the practical limit for “infinity” depends onthe dimension ofxt, that is,
the sum of number of parametersθt and states,zt.

Now, if there is linear substructure available in the model this can be exploited using
marginalization. Conceptually, marginalization means that the linear states are marginal-
ized out. We can then apply optimal filters for the linear states and the particle filter is
only applied to the truly nonlinear states. In this way, the samples in the particle filter
will live in a lower dimensional space. Hence, we will intuitively obtainmore accurate
estimatesfor a given number of samples, since we use the optimal filtersfor a part of
the state vector. Alternatively, we can apply the particle filter onmore complex models.
These are the practical implications of our contribution.

We will in this contribution consider the two following special cases of (1a):

1. The model is affine in the parameters and possibly nonlinear in the states,

f(zt, θt) = fz
t (zt) + At(zt)θt, (3a)

h(zt, θt) = ht(zt) + Ct(zt)θt. (3b)

2. The model is affine in the states and possibly nonlinear in the parameters,

f(zt, θt) = fθ
t (θt) + At(θ)zt, (4a)

h(zt, θt) = ht(θt) + Ct(θ)zt. (4b)
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In the subsequent two sections we will introduce the particle filter and the marginalization
technique used for variance reduction. In Section 4 the models under consideration are in-
troduced and we discuss the connections to subspace identification. Section 5 is devoted to
applying the marginalized particle filter to nonlinear system identification problem posed
by a chaotic system. Finally, the conclusions are given in Section 6.

2 Particle Filter

We here briefly present the theory and main algorithm. For a more intuitive presentation,
see the accompanying paper, Gustafsson and Hriljac (2003).

2.1 Recursive Bayesian Estimation

Consider systems that are described by the generic state-space model (2). The optimal
Bayesian filter in this case is given below. For further details, consult Doucet et al.
(2001a), Jazwinski (1970).

Denote the observations at timet by Yt , {yi}t
i=0. The Bayesian solution to com-

pute the filter density,p(xt|Yt), of the state vector, given past observations, is given by
Jazwinski (1970)

p(xt+1|Yt) =

∫
p(xt+1|xt)p(xt|Yt) dxt, (5a)

p(xt|Yt) =
p(yt|xt)p(xt|Yt−1)

p(yt|Yt−1)
. (5b)

For expressions onp(xt+1|xt) andp(yt|xt) in (5) we use the known probability densities
pet

(x) andpvt+wt
(x), with all noises assumed independent,

p(xt+1|xt) = pvt+wt
(xt+1 − f(xt)) , (6a)

p(yt|xt) = pet
(yt − h(xt)) . (6b)

2.2 Implementation

A numerical approximation to (5) is given by

p(xt|Yt) ≈
N∑

i=1

q̃
(i)
t δ

(
xt − x

(i)
t

)
, (7)

whereδ( · ) is Dirac’s delta function. The particlesx(i)
t and the corresponding weights

q̃
(i)
t represent a sampled version of the filter densityp(xt|Yt), and intuitively, the more

samples the better approximation (Doucet et al., 2001a).

2.3 Algorithm

The discussion in the previous section is summarized in the algorithm below. This is
the algorithm presented by Gordon et al. (1993) under the name, Bayesian bootstrap fil-
ter. The particle filter can be interpreted as a simulation-based method, i.e.,N possible
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state trajectories{x(i)
t }N

i=1 are simulated. Based on the measurements each trajectory

is assigned a weight̃q(i)
t representing the probability of that trajectory being the correct

one.

Algorithm E.1 (Particle filter)

1. Initialization: Fori = 1, . . . , N , initialize the particles,x(i)
0|−1 ∼ px0

(x0).

2. Measurement update: Fori = 1, . . . , N , evaluate the importance weightsq
(i)
t =

p(yt|x(i)
t|t−1) and normalizẽq(i)

t =
q
(i)
t

P

N
j=1 q

(j)
t

.

3. Resample with replacementN particles according to

Pr
(
x

(i)
t|t = x

(j)
t|t−1

)
= q̃

(j)
t . (8)

4. Time update: Fori = 1, . . . , N , predict new particles according to

x
(i)
t+1|t ∼ p

(
xt+1|t|x(i)

t|t

)
. (9)

5. Sett := t + 1 and iterate from step2.

3 Marginalization for Variance Reduction

Consider the case where the model is linear in some of the states. Then the Kalman
filter can be used to estimate the linear states, denotedxl

t, and the particle filter can be
used to estimate the nonlinear states, denotedxn

t . To separate the problem of estimating
p(xl

t, x
n
t |Yt) into one linear and one nonlinear problem, Bayes’ theorem isused

p(xl
t,X

n
t |Yt) = p(xl

t|Xn
t , Yt)p(Xn

t |Yt). (10)

Here the densityp(xl
t|Xn

t , Yt) is given by the Kalman filter and the particle filter is used
to estimatep(Xn

t |Yt). This means that the particles live in a lower-dimensional space,
and it can indeed be proven (Doucet et al., 2001b, Nordlund, 2002) that the variance
of any function of the state and parameter is decreased or remains constant when using
marginalization for a given number of particles. This technique of marginalizing out the
linear state is also referred to as Rao-Blackwellization (Doucet et al., 2001b).

Let the entity we want to estimate for some inference function g( · ) be given by

I(g(xt)) = Ep(xt|Yt){g(xt)} =

∫
g(xt)p(xt|Yt)dxt. (11)

Furthermore, let the estimate of (11) usingN particles and the standard particle filter be
denoted bŷIs

N (g(xt)). When the marginalized particle filter is used the same estimate is
denoted bŷIm

N (g(xt)). Then there is a central limit theorem stating that for largeN we
have

Îs
N (g(xt)) ≈ N (xt | I(g(xt)), Rs(N)), (12a)

Îm
N (g(xt)) ≈ N (xt | I(g(xt)), Rm(N)), (12b)
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where

Rs(N) ≥ Rm(N). (13)

For details concerning this result, see, e.g., Doucet et al.(1999, 2001b), Nordlund (2002).
Asymptotically as the number of particles tend to infinity there is nothing to gain in

using marginalization, since then the particle filter will provide a perfect description of
p(xl

t, x
n
t |Yt). However, since we only can use a finite number of particles itis certainly

useful to marginalize and use the optimal filter, i.e., the Kalman filter, for the linear states.
For details concerning the marginalized particle filter, see, e.g., Chen and Liu (2000),
Doucet et al. (2001b), Nordlund (2002).

4 Models

In this section it will be shown how the particle filter can be used to estimate the nonlinear
states and the Kalman filter to estimate the linear states, using the marginalization tech-
nique discussed above. All noise terms associated with the linear states are here assumed
to be Gaussian, which means that the optimal estimator for the linear states/parameters
is given by the Kalman filter. For the details concerning the Kalman filter equations,
the state transition densities, and the likelihood functions in Algorithms E.2 and E.3 the
reader is referred to Nordlund (2002). First there will be a discussion on models that are
linear in the states and nonlinear in the parameters. This isfollowed by the reversed case,
i.e., linear in the parameters and nonlinear in the states.

4.1 State-Space Models Linear in the States

A state-space model linear in the states and possibly nonlinear in the parameters is written
as

zt+1 = fz
t (θt) + At(θt)zt + wz

t , (14a)

θt+1 = θt + vθ
t , (14b)

yt = ht(θt) + Ct(θt)zt + et, (14c)

wherevθ
t ∼ N (0, Qv,θ

t ) andwz
t ∼ N (0, Qw,z

t )1. Note that we can let the roughening
noisevz

t be zero when using marginalization. The filter density will here be separated
using Bayes’ theorem according to

p(zt,Θt|Yt) = p(zt|Θt, Yt)p(Θt|Yt). (15)

Note that we here consider the parameter trajectoryΘt, but only the last state vectorzt.
The first density on the right hand side in (15) is given by the Kalman filter, while the
second one is approximated by the particle filter. That is, werandomize particles in the
parameter space according to our prior, and then each particle trajectory will be associated
with one Kalman filter. The exact algorithm is given below.

1The noise on the nonlinear part, herevθ
t , can in fact have an arbitrary distribution. Similarly, The pdf

pθ0
(θ0) does not have any restrictions, since it is only used in the particle filter, the same goes forpet (et) if

C = 0 in (14c). However, we leave these generalizations as a remarkand assume Gaussian distributions.
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Algorithm E.2 (Particle filter for linear states)

1. Initialization: Fori = 1, . . . , N , initialize the particles,θ(i)
0|−1 ∼ pθ0

(θ0) and set

{z(i)
0|−1, P

(i)
0|−1} = {z̄0, P̄0}.

2. Particle filter measurement update: LetC
(i)
t = Ct(θ

(i)
t|t−1) andh

(i)
t = h(θ

(i)
t|t−1).

For i = 1, . . . , N , evaluate the importance weights

q
(i)
t = p

(
yt|Θ(i)

t , Yt−1

)
= N

(
yt |ht + C

(i)
t z

(i)
t|t−1, C

(i)
t P

(i)
t|t−1(C

(i)
t )T + Rt

)
,

and normalizẽq(i) =
q
(i)
t

P

N
j=1 q

(j)
t

.

3. Resample with replacementN particles according to,Pr
(
θ
(i)
t|t = θ

(j)
t|t−1

)
= q̃

(j)
t .

4. Particle filter time update and Kalman filter

(a) Kalman filter measurement update: Leth
(i)
t = ht(θ

(i)
t|t ), C

(i)
t = Ct(θ

(i)
t|t ).

z
(i)
t|t = z

(i)
t|t−1 + K

(i)
t

(
yt − h

(i)
t − C

(i)
t z

(i)
t|t−1

)
, (16a)

P
(i)
t|t = P

(i)
t|t−1 − K

(i)
t M

(i)
t

(
K

(i)
t

)T

, (16b)

M
(i)
t = C

(i)
t P

(i)
t|t−1

(
C

(i)
t

)T

+ Rt, (16c)

K
(i)
t = P

(i)
t|t−1

(
C

(i)
t

)T (
M

(i)
t

)−1

. (16d)

(b) Particle filter time update: Fori = 1, . . . , N , predict new particles,

θ
(i)
t+1|t ∼ p

(
θt+1|t|Θ(i)

t , Yt

)
= N

(
θt+1 | θ(i)

t|t , Q
v,θ
t

)
.

(c) Kalman filter time update: LetA(i)
t = At(θ

(i)
t+1|t) andf

z,(i)
t = fz

t (θ
(i)
t+1|t).

z
(i)
t+1|t = A

(i)
t z

(i)
t|t + f

z,(i)
t , (17a)

P
(i)
t+1|t = A

(i)
t P

(i)
t|t

(
A

(i)
t

)T

+ Qw,z
t . (17b)

5. Sett := t + 1 and iterate from step2.

Comparing the algorithms E.1 and E.2 we see that the differences are in the prediction
step, which now consists of a Kalman filter update stage (split into step4(a) and4(c))
besides the prediction of the nonlinear states.

In some cases the same Riccati recursion can be used for all the particles, and hence
a lot of computations can be saved. This occurs when the matricesAt andCt in (14) are
independent ofθt. In this caseP (i)

t|t = Pt|t for all i = 1, . . . , N and hence the covariance
only has to be updated once for eacht. More on this can be found in Gustafsson et al.
(2002).



4 Models 177

4.2 State-Space Models Linear in the Parameters

A state-space model that is linear in the parameters can be written as

zt+1 = fz
t (zt) + At(zt)θt + wz

t , (18a)

θt+1 = θt + vθ
t , (18b)

yt = hz
t (zt) + Ct(zt)θt + et. (18c)

In this case the filter density will be split the other way around, compared to the previous
section, i.e.,

p(Zt, θt|Yt) = p(θt|Zt, Yt)p(Zt|Yt). (19)

The last density is approximated by the particle filter, while the first one can be solved by
a Kalman filter for a parameter estimation problem in a linearregression framework. The
corresponding algorithm will thus be

Algorithm E.3 (Particle filter for linear parameters)

1. Initialization: Fori = 1, . . . , N , initialize the particles,z(i)
0|−1 ∼ pz0

(z0) and set

{θ(i)
0|−1, P

(i)
0|−1} = {θ̄0, P̄0}.

2. Particle filter measurement update: Leth
(i)
t = ht(z

(i)
t|t−1), C

(i)
t = Ct(z

(i)
t|t−1). For

i = 1, . . . , N , evaluate the importance weights

q
(i)
t = p

(
yt|Z(i)

t , Yt−1

)
= N

(
yt |h(i)

t + C
(i)
t θt|t−1, C

(i)
t P

(i)
t|t−1(C

(i)
t )T + Rt

)
,

and normalizẽq(i) = q
(i)
t /

∑N
j=1 q

(j)
t .

3. Resample with replacementN particles according to,Pr
(
z
(i)
t|t = z

(j)
t|t−1

)
= q̃

(j)
t .

4. Particle filter time update and Kalman filter

(a) Kalman filter measurement update: Leth
(i)
t = ht(z

(i)
t|t ), C

(i)
t = Ct(z

(i)
t|t ).

θ
(i)
t|t = θ

(i)
t|t−1 + K

(i)
t

(
yt − h

(i)
t − C

(i)
t θ

(i)
t|t−1

)
, (20a)

P
(i)
t|t = P

(i)
t|t−1 − K

(i)
t M

(i)
t

(
K

(i)
t

)T

, (20b)

M
(i)
t = C

(i)
t P

(i)
t|t−1

(
C

(i)
t

)T

+ Rt, (20c)

K
(i)
t = P

(i)
t|t−1

(
C

(i)
t

)T (
M

(i)
t

)−1

. (20d)

(b) Particle filter time update: Letfz,(i)
t = fz

t (z
(i)
t+1|t) andA

(i)
t = At(z

(i)
t+1|t). For

i = 1, . . . , N , predict new particles,

z
(i)
t+1|t ∼ p

(
zt+1|t|Z(i)

t , Yt

)

= N
(
zt+1 | fz,(i)

t + A
(i)
t θ

(i)
t|t , A

(i)
t P

(i)
t|t (A

(i)
t )T + Qw,z

t

)
.
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(c) Kalman filter time update: Letfz,(i)
t = fz

t (z
(i)
t+1|t) andA

(i)
t = At(z

(i)
t+1|t).

θ
(i)
t+1|t = θ

(i)
t|t + L

(i)
t

(
z
(i)
t+1|t − f

z,(i)
t − A

(i)
t θ

(i)
t|t

)
, (21a)

P
(i)
t+1|t = P

(i)
t|t + Qv,θ

t − L
(i)
t N

(i)
t

(
L

(i)
t

)T

, (21b)

N
(i)
t = A

(i)
t P

(i)
t|t

(
A

(i)
t

)T

+ Qw,z
t , (21c)

L
(i)
t = P

(i)
t|t

(
A

(i)
t

)T (
N

(i)
t

)−1

. (21d)

5. Sett := t + 1 and iterate from step2.

The measurements used in the Kalman filter are thus the “normal” measurementsyt and
the predicted state trajectoryzt+1|t, i.e., the samples from the particle filter. Step4(c)
in the current algorithm contains a measurement update, using the prediction (since this
contains information aboutθt) from the particle filter, and a time update. An interesting
special case of the two different model types discussed above is when we consider “the
intersection” of the two types, i.e., a model that is bilinear in the stateszt and in the
parametersθt.

A particular case of interest is a general state-space modelin innovation form

zt+1 = A(θt)zt + K(θt)et, (22a)

yt = C(θt)zt + et, (22b)

where the parameters enter linearly inA, K, andC. The filter density will here be split
according to (19). One popular approach here is so called subspace identification (Van
Overschee and De Moor, 1996). This class of algorithms usually perform very well and
provides consistent estimates. One limitation is that it ishard to give the density function
for the parameters, even in the Gaussian case, and this is perhaps where the particle filter
can help. This case is mentioned to show the relation to classical system identification
problems.

Assume, to avoid ambiguities in the state coordinates, an observer canonical form and
scalar output, whereC = (1, 0, . . . 0) and that all parameters inA andK are unknown.
Then, given the state trajectory and measurement, we have from (22) the linear regression
zt+1 = Azt + K(yt − (1, 0, . . . 0)zt). This regression problem has to be solved for each
particlez

(i)
t , i = 1, . . . , N .

In the case where there are more states to be estimated than parameters, i.e.,dim zt >
dim θ it is better to split the densityp(Zt, θt|Yt) in (19) the other way around, i.e., as
in (15). This time, a Kalman filter estimating the stateszt for each particleθ(i)

t is needed.
In this way the dimension of the state estimated by the particle filter is kept as low as
possible. An example where this situation typically occursis in gray box identification
(Ljung, 1999).
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5 Chaos Example

The ideas presented in this paper will be illustrated using the following chaotic model

zt+1 = (1 − zt)ztθ + wt, (23a)

yt = zt + et, (23b)

wherezt is the state variable,yt is the measurement,θ is the unknown parameter,wt is the
process noise, andet is the measurement noise. Both these noise densities are Gaussian
distributed. The aim is to recursively estimate both the state zt and the parameterθ. This
model is linear in the time-invariant parameterθ and nonlinear in the statezt. This fits
our framework, according to Section 4.2 and hence AlgorithmE.3 can be applied. This
problem has also been studied in Gustafsson and Hriljac (2003), where the particle filter
was directly applied to the augmented statext = (zt, θt)

T . Model (23) can be written in
the form (18), i.e.,

zt+1 = At(zt)θt + wz
t + vz

t , (24a)

θt+1 = θt + vθ
t , (24b)

yt = ht(zt) + et, (24c)

whereAt(zt) = (1 − zt)zt andht(zt) = zt. The two noisesvz
t ∼ N (0, Qv,z

t ) and
vθ

t ∼ N (0, Qv,θ
t ) are roughening noises. Furthermore,et ∼ N (0, Rt).

In the simulations, two different particle filters were used, the standard particle filter,
Algorithm E.1, applied to the augmented state vectorxt and the marginalized particle
filter according to Algorithm E.3. The true value ofθ is 3.92, and the initial guess is
θ0|−1 ∼ N (3.83, 0.04). The initial state isz0 ∼ N (0, 1). We do not use any process

noise, however we have roughening noisesQv,z
0 = Qv,θ

0 = 10−2, which is decreased at
each time step, according to Gustafsson and Hriljac (2003).The measurement noise has
varianceRt = 10−5, and we have used200 Monte Carlo simulations. In Figure 1 the
filtered estimates ofθ are shown using these two algorithms for150, 1000, and10000
particles respectively. In order to make the difference more apparent the Root Mean
Square Error (RMSE) is plotted in Figure 2 as a function of thenumber of particles used
in the simulations. Note that the RMSE values are calculatedfrom time50. In that way
the transient effects are not included in the RMSE values. According to (13) the estimates
should be better or the same when we use the marginalized particle filter. From Figure 2
we can see that this is indeed the case. It is only the estimateof the linear partθ that
is improved, this is also consistent with the theory, see, e.g., Nordlund (2002) for the
theoretical details. That this is true in the simulations isapparent by Figure 2, from which
it is clear that the estimate of the linear part (top) clearlyis better using the marginalized
particle filter. The estimate of the nonlinear partzt has the same quality. If we could use
an infinite number of particles the results using the standard and the marginalized particle
filter would have been the same, since then the particle filterwould be able to provide an
arbitrarily good estimate ofp(xt|Yt). We can see indications of this fact in the top plot in
Figure 2, since the more particles that are used the closer the estimates get to each other.
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Figure 1: Estimates ofθ using the standard (dashed) and the marginalized (solid)
particle filters. The trueθ is shown using a solid line. Top plot –150 particles,
middle –1000 particles, bottom –10000 particles.
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Figure 2: RMSE values for̂θ (top) andẑt (bottom) as a function of the number of
particles used. Notice that a log-scale has been used in the plots, and that a dashed
line has been used for the standard particle filter and a solidline for the marginalized
particle filter.
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6 Conclusion

The potential use of particle filtering for identification ofunknown parameters in non-
linear systems was explained in the accompanying paper, Gustafsson and Hriljac (2003).
Here, we have proposed the use of marginalized particle filters. More specifically, we
studied the cases where the model is either linear in the states and nonlinear in the param-
eters, or nonlinear in the states and linear in the parameters. The algorithms were given
for these two cases. It is straightforward to give the algorithm for an arbitrary mix of lin-
ear and nonlinear states and parameters. The advantage of marginalization is that one can
apply the filter to larger problems with more states and parameters, or that fewer particles
and thus less filter complexity is needed for a given performance. Finally an example was
given, which illustrates the improvement in estimation performance compared to using a
standard particle filter.
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Abstract

This paper is concerned with the parameter estimation of a relatively general
class of nonlinear dynamic systems. A Maximum Likelihood (ML) frame-
work is employed in the interests of statistical efficiency,and it is illustrated
how an Expectation Maximization (EM) algorithm may be used to compute
these ML estimates. An essential ingredient is the employment of so-called
particle smoothing methods to compute required conditional expectations via
a Monte Carlo approach. A simulation example demonstrates the efficacy of
these techniques.

Keywords: Nonlinear systems, system identification, maximum likelihood,
expectation maximisation algorithm, particle smoother.

1 Introduction

THE significance but difficulty of estimating parameterizations of nonlinear system
classes is widely recognised (Ljung, 2003, Ljung and Vicino, 2005). This has led

to approaches that focus on specific system classes such as those described by Volterra
kernel (Bendat, 1990), neural network (Narendra and Parthasarathy, 1990), nonlinear AR-
MAX (NARMAX) (Leontaritis and Billings, 1985), and Hammerstein – Wiener (Rangan
et al., 1995) structures.
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The paper here considers the estimation of a certain class ofnonlinear systems that
can be represented in state-space form whereby state and measurement noise enter addi-
tively and the parameter dependence is affine. To estimate this nonlinear model structure
parameterization, a Maximum Likelihood (ML) criterion will be employed, principally in
recognition of the general statistical efficiency of such anapproach. Of course, the use of
an ML approach (for example, with regard to linear dynamic systems) is common, and
it is customary to employ a gradient-based search techniquesuch as a damped Gauss –
Newton method to actually compute the estimates (Ljung, 1999, Söderström and Stoica,
1989). This requires the computation of a cost Jacobian which typically necessitates im-
plementing one filter, derived (in the linear case) from a Kalman filter, for each parameter
that is to be estimated.

An alternative, recently explored in Gibson et al. (2005) inthe context of bilinear
systems is to employ the expectation maximisation algorithm (Dempster et al., 1977)
for the computation of ML estimates. Unlike gradient-basedsearch, which is applicable
to maximisation of any differentiable cost function, EM methods are only applicable to
maximisation of likelihood functions. However, the dividend of this specialization is that
they do not require computation of gradients, and are well recognised as being particularly
robust against attraction to local minima (Gibson and Ninness, 2005).

Given these recommendations, this paper develops and demonstrates an EM-based ap-
proach to nonlinear system identification. This will require the computation of smoothed
state estimates that, in the linear case, could be found by standard linear smoothing meth-
ods (Gibson et al., 2005). In the fairly general nonlinear context considered in this work
we propose a particle-based approach whereby approximations of the required smoothed
state estimates are approximated by Monte Carlo based empirical averages (Doucet et al.,
2001).

It is important to acknowledge that there has been previous work related to this ap-
proach. In Andrieu et al. (2004), the possibility of incorporating the parameters into the
state vector and employing particlefiltering methods was discussed, but dismissed as un-
tenable. Balancing this, the contributions Kitagawa (1998), Schön and Gustafsson (2003)
provide evidence to question this conclusion.

Additionally, the work Doucet and Tadić (2003), Andrieu et al. (2004) has consid-
ered employing particle filters to compute the Jacobians necessary for a gradient-based
approach. Finally, the contribution Andrieu et al. (2004) has also considered using the
EM algorithm in conjunction with particle-based methods. However, by employing im-
proved particle smoothing methods and by more careful numerical implementation of a
key “maximisation” step, the present work is able to report significantly improved perfor-
mance.

2 Problem Formulation

This paper is concerned with the following model class, which is affinely parameterized
in the (unknown) parameterϑ ∈ Rnϑ :

(
xt+1

yt

)

︸ ︷︷ ︸
zt

=

(
f1(xt, ut, t)
h1(xt, ut, t)

)

︸ ︷︷ ︸
αt

ϑ +

(
f2(xt, ut, t)
h2(xt, ut, t)

)

︸ ︷︷ ︸
βt

+

(
wt

et

)
.

︸ ︷︷ ︸
ηt

(1)
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Heref1, f2, h1 andh2 are arbitrary (possibly time-varying) nonlinear functions,xt ∈ Rn

is the underlying system state,ut ∈ Rm, yt ∈ Rp are respectively (observed) multi-
dimensional inputs and outputs. The initial statex1 and noise termswt andet are assumed
to be realizations from Gaussian stochastic processes given by,

x1 ∼ N (µ, P1), ηt ∼ N (0,Π). (2)

In light of this, the model structure (1) is completely described by the parameter vectorθ
defined as

θT ,

(
ϑT vec{Π}T vec{P1}T

µT
)

. (3)

With regard to this model structure, this paper will be solely concerned with a parameter
estimatêθ of θ derived via the ML criterion

θ̂(YN ) = arg max
θ

pθ(YN ), (4)

whereYN , {y1, . . . , yN} is anN point record of observed measurements andpθ(YN )
is then the joint probability density function ofYN implied by the model structure (1) and
a parameter valueθ.

In the linear, time invariant and Gaussian case, a (possiblysteady state) Kalman Fil-
ter can be used to compute this cost (and required Jacobians for gradient-based search).
Here, algorithms are developed to extend this principle to the more general nonlinear
model class (1). In doing so, it is recognized that, especially in the nonlinear case, it
is generally hard to compute (4) since it may well represent anon-convex optimization
problem. To address this issue, a central contribution of this work is the employment of
the EM algorithm.

3 Expectation Maximization Algorithm

The Expectation Maximization (EM) algorithm introduced inDempster et al. (1977)
presents a non gradient-based approach for iteratively obtaining maximum likelihood es-
timates (4). Within areas of applied statistics, it is widely recognized for its robustness.
The key idea underlying it is the consideration of an extension to (4); viz.

θ̂(XN , YN ) = arg max
θ

pθ(XN , YN ). (5)

Here, an extra data setXN , commonly referred to as theincomplete dataor themissing
data has been introduced. Its choice is an essential design variable, which if possible
should be made so that the solution of (5) is straightforward.

The link between the two problems (4) and (5) is provided by the definition of condi-
tional probability which implies

log pθ(YN ) = log pθ(XN , YN ) − log pθ(XN |YN ). (6)
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Taking expectations of both sides of this equation which areconditional on the observa-
tionsYN and with respect to underlying density specified byθ being set at a valueθ = θ′

will leave the left hand side unaltered, and hence deliver

L(θ) = Eθ′{log pθ(XN , YN )|YN}︸ ︷︷ ︸
Q(θ,θ′)

−Eθ′{log pθ(XN |YN )|YN}︸ ︷︷ ︸
V(θ,θ′)

. (7)

Since the logarithm is concave, Jensen’s inequality establishes thatV(θ, θ′) ≤ V(θ′, θ′)
and therefore choosingθ that satisfiesQ(θ, θ′) ≥ Q(θ′, θ′) implies thatL(θ) ≥ L(θ′).
That is, values ofθ that increaseQ(θ, θ′) beyond its value atθ′ also increase the underly-
ing log-likelihood function of interest. This implies the Expectation Maximization (EM)
algorithm.

Algorithm F.1 (Expectation maximization (EM))

Given an initial estimateθ0, iterate the following until convergence.

E: Q(θ, θk) = Eθk
{log pθ(XN , YN )|YN}

M: θk+1 = arg max
θ

Q(θ, θk)

4 EM for Parameter Estimation

In agreement with previous applications of EM for parameterestimation (see discussion
in Gibson et al. (2005)) we define the missing dataXN to equal the state sequenceXN ,

{x1, . . . , xN+1}. With this choice in place, the next step in applying the EM algorithm
involves computation ofQ(θ, θk) which may be achieved via the following Lemma.

Lemma F.1
With regard to system(1) and the above choice for missing dataXN , the functionQ can
be expressed as

−2Q(θ, θk) = N log detΠ + Tr
(
Π−1Φ(ϑ)

)
+ log detP1 + Tr

(
P−1

1 Ψ(µ)
)

+ c, (8)

wherec is a constant and withlt , zt − βt,

Ψ(µ) , Eθk

{
(x1 − µ)(x1 − µ)T |YN

}
, (9a)

Φ(ϑ) ,

N∑

t=1

Eθk

{
(lt − αtϑ)(lt − αtϑ)T |YN

}
. (9b)

An essential point is that bothΦ andΨ require the computation of expectations condi-
tional onYN . In the case of linear systems this can be achieved by employing a linear
smoother (often called a Kalman Smoother). In the nonlinearcase considered in this
paper, this approach is not suitable, and alternate means for computing smoothed state
estimates are required. This topic is addressed in Section 5.

In the meantime, supposing that it is possible to compute these expectations, then the
second step of the EM algorithm involves maximization ofQ with respect toθ, which is
the subject of the following Lemma.
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Lemma F.2
The functionQ(θ, θk) is maximized overθ by making the following choices

ϑ = Σ−1Γ, (10a)

µ = Eθk
{x1|YN} , (10b)

Π = Φ
(
Σ−1Γ

)
, (10c)

P1 = Ψ(Eθk
{x1|YN}) , (10d)

where as beforelt , zt − βt and

Σ ,

N∑

t=1

Eθk

{
αT

t αt|YN

}
, (10e)

Γ ,

N∑

t=1

Eθk

{
αT

t lt|YN

}
. (10f)

With these definitions in place, the EM algorithm for parameter estimation can be ex-
pressed in more detail as follows.

Algorithm F.2 (Expectation maximization for parameter estimation)

Given an initial parameter vectorθ0, iterate the following steps until convergence is
achieved.

1. CalculateΣ, Γ andEθk
{x1|YN} thenϑk andµk.

2. CalculateΦ(ϑk) andΨ(µk) thenΠk andP1k
.

5 Monte Carlo Based Smoothing

In this section we examine numerical solutions of nonlinearsmoothing problems that em-
ploy recursive Monte Carlo techniques. In relation to this,it is worth noting that while
very significant effort has been directed towards nonlinearfiltering via this sort of ap-
proach (particle filters), very little has been done when it comes to solving the nonlinear
smoothing problem. See, e.g., Godsill et al. (2004), Kitagawa (1996), Tanizaki (2001) for
some work in this direction.

After careful evaluation, this paper will employ the methods developed in Tanizaki
(2001), where thekey distinguishing idearelative to the other work mentioned above is
the consideration of propagating approximations ofp(xt+1, xt|YN ) rather thanp(xt|YN ).
In order to explain the ideas, the paper begins by addressingthe general problem of ran-
dom number generation with respect to a given, possibly complicated distribution.

5.1 Random Sampling

Consider the problem of generating random numbers distributed according to sometarget
densityt(x) which potentially is rather complex. One way of doing this would be to em-
ploy an alternate density that is simple to draw from, says(x), referred to as thesampling
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density, and then calculate the probability that the sample was in fact generated from the
target density. That is, a samplex(i) ∼ s(x) is drawn, and then the following ratio is
calculated

a
(
x(i)
)
∝ t

(
x(i)
)

s
(
x(i)
) , (11)

which indicates how probable it is thatx(i) is in fact generated from the target density
t(x).

The probability of acceptingx(i) as a sample fromt(x) is referred to as theaccep-
tance probability, and typically it is computed via consideration ofa(x(i)). This is the
case, for example, for all of the so-called “acceptance – rejection sampling”, “impor-
tance sampling/resampling” and “Metropolis – Hastings independence sampling” meth-
ods (Tanizaki, 2001). Here, as will be detailed presently, importance resampling will be
employed.

5.2 Monte Carlo Based Filtering

In the case of filtering, the target density referred to abovebecomest(xt) = p(xt|Yt), and
it is then necessary to also choose an appropriate sampling densitys( · ) and acceptance
probability. This is in fact quite simple, since from Bayes’theorem and the Markov
property

p(xt|Yt) = p(xt|yt, Yt−1) =
p(yt|xt)p(xt|Yt−1)

p(yt|Yt−1)
∝ p(yt|xt)p(xt|Yt−1), (12)

which suggests, sincet(x) ∝ a(x)s(x), the following choices

p(xt|Yt)︸ ︷︷ ︸
t(xt)

∝ p(yt|xt)︸ ︷︷ ︸
a(xt)

p(xt|Yt−1)︸ ︷︷ ︸
s(xt)

. (13)

Via the principle of importance resampling the acceptance probabilities,{ã(i)}M
i=1, are

calculated according to

ã(i) =
a
(
x

(i)
t|t−1

)

∑M
j=1 a

(
x

(j)
t|t−1

) =
p
(
yt|x(i)

t|t−1

)

∑M
j=1 p

(
yt|x(j)

t|t−1

) , (14)

wherex
(i)
t|t−1 ∼ p(xt|Yt−1). That is, the acceptance probabilitiesã(i) depend upon com-

putation ofp(yt|xt|t−1). Via the assumption of additive noiseet, the model (1) makes this
straightforward to obtain.

The algorithm then proceeds by obtaining samples fromp(xt|Yt) by resampling the
particles{x(i)

t|t−1}M
i=1 from the sampling density,p(xt|Yt−1), according to the correspond-

ing acceptance probabilities,{ã(i)}M
i=1. If this procedure is recursively repeated over time

the following approximation

p(xt|Yt) ≈
M∑

i=1

1

M
δ
(
xt − x

(i)
t|t

)
(15)
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is obtained, and we have in fact derived theparticle filter algorithm, which is given in
Algorithm F.3. It was first introduced in Gordon et al. (1993).

Algorithm F.3 (Particle filter)

1. Initialize the particles,{x(i)
0|−1}M

i=1 ∼ px0
(x0). Sett := 0.

2. Calculate importance weights{q(i)
t }M

i=1 according to

q
(i)
t = p

(
yt|x(i)

t|t−1

)
(16)

and normalizẽq(i)
t = q

(i)
t /

∑M
j=1 q

(j)
t .

3. ResampleN particles, with replacement, according to

Pr
(
x

(i)
t|t = x

(j)
t|t−1

)
= q̃

(j)
t . (17)

4. Fori = 1, . . . ,M , predict new particles according to

x
(i)
t+1|t ∼ p

(
xt+1|t|x(i)

t|t

)
. (18)

5. Sett := t + 1 and iterate from step2.

5.3 Particle Smoother

In solving the smoothing problem the target density becomes

t(xt+1, xt) = p(xt+1, xt|YN ). (19)

Similarly to what was discussed in the previous section we have to find a suitable sampling
density and the corresponding acceptance probabilities tosolve the smoothing problem.
Again, using Bayes’ theorem we have

p(xt+1, xt|YN ) = p(xt|xt+1, YN )p(xt+1|YN ), (20)

where

p(xt|xt+1, YN ) = p(xt|xt+1, Yt, Yt+1:N ) =
p(Yt+1:N |xt, xt+1, Yt)p(xt|xt+1, Yt)

p(Yt+1:N |xt+1, Yt)

= p(xt|xt+1, Yt) =
p(xt+1|xt)p(xt|Yt)

p(xt+1|Yt)
. (21)

Inserting (21) into (20) gives

p(xt+1, xt|YN )︸ ︷︷ ︸
t(xt+1,xt)

=
p(xt+1|xt)

p(xt+1|Yt)︸ ︷︷ ︸
a(xt+1,xt)

p(xt|Yt)p(xt+1|YN ).︸ ︷︷ ︸
s(xt+1,xt)

(22)
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At time t the sampling density can be used to generate samples. In order to find the
acceptance probabilities{a(i)}M

i=1 we have to calculate

a(xt+1, xt) =
p(xt+1|xt)

p(xt+1|Yt)
, (23)

wherep(xt+1|xt) is calculated using the model (1), andp(xt+1|Yt) can be approximated
according to

p(xt+1|Yt) =

∫
p(xt+1|xt)p(xt|Yt)dxt ≈

M∑

j=1

1

M
p
(
xt+1|x(j)

t|t

)
,

where (15) has been used. The particles can now be resampled according to the nor-
malized acceptance probabilities{ã(i)}M

i=1 to generate samples fromp(xt+1, xt|YN ).
The above discussion can be summarized in the following algorithm (first introduced
in Tanizaki (2001)),

Algorithm F.4 (Particle smoother)

1. Run the particle filter (Algorithm F.3) and store the filtered particles,{x(i)
t|t}M

i=1,
t = 1, . . . , N . Sett := N .

2. Initialize the smoothed particles and importance weights at timeN according to
{x(i)

N |N = x
(i)
N |N , q̃

(i)
N |N = 1/M}M

i=1 and sett := t − 1.

3. Calculate weights{q(i)
t|N}M

i=1 according to

q
(i)
t|N =

p
(
x

(i)
t+1|N |x(i)

t|t

)

∑M
j=1 p

(
x

(i)
t+1|N |x(j)

t|t

) (24)

and normalizẽq(i)
t|N = q

(i)
t|N/

∑M
j=1 q

(j)
t|N .

4. Resample the smoothed particles according to

Pr
((

x
(i)
t+1|N , x

(i)
t|N

)
=
(
x

(j)
t+1|N , x

(j)
t|t

))
= q̃

(j)
t|N . (25)

5. Sett := t − 1 and iterate from step3.

5.4 Using a Particle Smoother with EM

In Lemmas F.1 and F.2 we require the computation of various expectations that are condi-
tional on the dataYN . In the following lemma we provide explicit formulations ofthese
expectations in terms of smoothed particles as calculated in Algorithm F.4.
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Lemma F.3
Using the smoothed state particles as calculated in Algorithm F.4 we have the following
approximations

Eθk

{
αT

t αt|YN

}
≈ 1

M

M∑

i=1

(
α

(i)
t

)T (
α

(i)
t

)
, (26a)

Eθk

{
αT

t lt|YN

}
≈ 1

M

M∑

i=1

(
α

(i)
t

)T (
l
(i)
t

)
, (26b)

Eθk
{x1|YN} ≈ 1

M

M∑

i=1

x
(i)
1|N . (26c)

Similarly,

Eθk

{
(x1 − µ)(x1 − µ)T |YN

}
≈ 1

M

M∑

i=1

(
x

(i)
1|N − µ

)(
x

(i)
1|N − µ

)T

, (26d)

Eθk

{
(lt − αtϑ)(lt − αtϑ)T |YN

}
≈ 1

M

M∑

i=1

(
l
(i)
t − α

(i)
t ϑ
)(

l
(i)
t − α

(i)
t ϑ
)T

. (26e)

wherel
(i)
t andα

(i)
t are simply the respective functions evaluated at theith particlex

(i)
t|N .

6 Simulation Example

This section profiles the performance of the EM-based estimation methods just presented
by way of considering the following nonlinear system.

xt+1 = axt + b
xt

1 + x2
t

+ c cos(1.2t) + wt, (27a)

yt = dx2
t + et, (27b)

wherea = 0.5, b = 25, c = 8, d = 0.05, wt ∼ N (0, 10−2) andet ∼ N (0, 10−2). In
terms of the structure in (1) we make the following associations

αt =

(
xt

xt

1+x2
t

cos(1.2t) 0

0 0 0 x2
t

)
, (28a)

βt = 0, (28b)

ϑT =
(
a b c d

)
. (28c)

This system has been extensively studied in the context ofstateestimation (Gordon et al.,
1993, Kitagawa, 1996, 1998, Doucet et al., 2000, Godsill et al., 2004). However, it has
not been the subject of great attention from theparameterestimation viewpoint of this
paper.

As is well recognized (Ljung, 2003), a particularly important aspect of nonlinear sys-
tem estimation is the difficulty of finding appropriate initial parameter values with which
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to initialize an iterative search. To address this issue, and in so doing illustrate the inher-
ent robustness of the EM-based approach presented here, each of the200 simulation runs
was initialized at a randomly chosen initial estimateθ̂0 which itself was formed using
perturbations from the true values.

Using N = 1000 data samples, and despite only using a very modest number of
M = 50 particles in the smoothing calculations, the empirical estimation results shown
in Figure 1 are encouraging. In particular, note that despite quite widely varying initial-

Figure 1: Parameter estimates for each of the200 simulation runs as they evolve
over 1000 iterations of the EM method. The true parameter values area = 0.5,
b = 25, c = 8 andd = 0.05.

izations, convergence to the true parameters occurred in most cases. Further simulations
were conducted withM = 100 and higher number of particles, but without any sig-
nificant performance benefit. This suggests a robustness of the EM-based approach to
inaccuracies in computation in the E-step.

In relation to this, note that the method requiresO(NM2) floating point operations
per iteration. The computational load is sensitive to the number of particles chosen, but
scales well with increasing observed data length. To provide a reference point for these
scaling comments, each simulation required to present the Monte Carlo presentation in
Figure 1 completed within3 minutes on a Pentium IV running at3GHz.

By way of comparison, alternative methods, including Newton-based gradient search
were also tried, but proved very unsuccessful. To explore the reason behind this, and also
to emphasize the surprising robustness to initial startingpoint just presented, consider
the simpler estimation problem which involves estimating only ϑ = (a, b)T with c andd
fixed to their true values, and with the additive noisewt andet set to zero. The former is
done so that the cost surface implied by the likelihood can bevisualized, and the latter is
considered so that attention is focused solely on how the nonlinear dynamics affects the
difficulty of the estimation problem.
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The resulting mean square error (the dominating component of the likelihood compu-
tation) cost surface is shown in Figure 2. Clearly, it is veryfar from convex. Note that
the very irregular cost function, even if due to finite precision effects and not intrinsic, is
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Figure 2: Surface plot of the MSE versus parametersa andb only.

still an obstacle to gradient based methods but not, as will be illustrated, to an EM-based
approach. The perhaps surprising complexity from such a simple example underlines the
particular difficulties of nonlinear system estimation.

The MSE cost function associated with the present problem contains quite a few local
minima. It is therefore not surprising that gradient-basedsearch was found to perform so
poorly on the preceding example. To emphasize this, Figure 3shows a contour plot of the
the MSE cost function. Clearly, and as suggested in the previous figure, there seems to
be a large number of local minima, any of which may attract gradient-based approaches.
Indeed, the black lines shown in that diagram are Gauss – Newton gradient-based search
trajectories for25 different starting points, and all become locked in local minima. By
way of contrast, Figure 4 shows the estimate trajectories ofthe EM-based algorithm of this
paper. Note that from the same starting points, all cases converge to the global maximum.

7 Conclusion

This paper has explored an approach to nonlinear dynamic system estimation whose key
distinguishing features include the use of EM-based methods as opposed to more tradi-
tional gradient-based search, a fairly general model structure, the use of Monte Carlo
based particle methods for the computation of required smoothed state estimates, and a
capacity for simply encompassing multivariable problems.

By way of example, the resulting approach has been demonstrated to be (perhaps) sur-
prisingly robust to attraction to local minima, even in cases where the underlying cost is
extremely “irregular” and non-convex. Further work is required to understand the mecha-
nisms underlying this robustness, and to test the ideas on more substantial problem sizes.
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Figure 3: Contour plot of MSE cost for the case of identifying parameters a and
b only, together with Gauss – Newton gradient-based search estimate trajectories
overlaid. Note that, presumably due to the very large numberof local minima, no
trajectories converge to the global minimum.
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Figure 4: Same as previous plot, but with EM-based estimate trajectories for 25
different starting points. Note that all converge to the global minimum.
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Abstract

In augmented reality, the position and orientation of a camera must be esti-
mated very accurately. This paper proposes a filtering approach, similar to
integrated navigation in aircraft, which is based on inertial measurements as
primary sensor on which dead-reckoning can be based, and features in the
image as supporting information to stabilize the dead-reckoning. The image
features are considered to be sensor signals in a Kalman filter framework.

Keywords: Sensor fusion, Kalman filter, inertial navigation, augmented re-
ality, computer vision, feature extraction.

1 Introduction

THE idea in augmented reality(AR) is to add synthetic background and objects to
streaming video images in real-time, while allowing the camera to move. One of

the major technical challenges to achieve this is to determine the camera’s position and
orientation in 3D with very high accuracy and low latency. Typical applications of such a
system includes studio recordings with synthetic scenes (Thomas et al., 1997) and virtual
reconstruction of historical buildings (Vlahakis et al., 2002).

Prior work in this recent research area focuses on image processing algorithms, where
the streaming image is the primary information source (Davison, 2003). This requires
quite a lot of features in each image, and has lead to a development of markerbased
systems, where bar-coded markers are installed in the studio (Thomas et al., 1997). Later
work has tried to avoid artificial markers, by including other information like accelerations
and angular velocities from inertial sensors (You et al., 1999, You and Neumann, 2001).

When it comes to using vision in AR two fundamentally different strategies have been
used:

201
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• The environment is prepared in advance using artificial markers, which impose a
significant additional cost to these systems. Examples of this kind of system can be
found in Caarls et al. (2003), Yokokohji et al. (2000), Thomas et al. (1997).

• Markerless systems, which use natural features occurring in the real scene as mark-
ers. The approach presented in this paper will utilize this strategy. The need for this
kind of systems is motivated in Azuma et al. (1999). A common characteristic of
these systems is that they use some kind of model of the scene.Some attempts to
create such a system are given in You et al. (1999), Klein and Drummond (2003).

In this contribution, the reverse approach is applied. An inertial measurement unit (IMU)
with three degrees of freedom accelerometers and gyroscopes is used as the primary
source of information. Dead-reckoning gives a position andorientation relative to the
initial camera location. This estimate will quite soon drift away and become completely
useless, unless it is supported with secondary sensors, which in this case are provided by
the images.

Our approach mimics the navigation systems in aircraft (Nordlund, 2002, Schön et al.,
2005). There are obviously many similarities of aircraft navigation and our approach
to augmented reality: the aircraft and camera have the same state vector, navigation is
based on dead-reckoning IMU sensor signals, and both have tobe supported by secondary
information. For aircraft, infrastructure based positions from instrument landing systems
or satellite positioning systems can be used. In military applications terrain navigation
systems can be employed (Bergman et al., 1999). In this paper, features in the image are
used as secondary sensors in two different ways:

• Feature displacement: An observed movement of a distinct feature in the image can
be directly related to a movement in the camera, which will beshown to correspond
to a one-dimensional measurement equation for each featuredisplacement.

• Recognition of known 3D-objects: Certain characteristic features in the scene are
stored in a scene model prior to filtering. When such a feature is observed in the
image, two degrees of freedom of the camera position can be determined.

A possible third direction is to use the homography (Hartleyand Zisserman, 2003). How-
ever, this is not elaborated on within this paper. This idea has previously been discussed,
see, e.g., Diel et al. (2005), Vidal et al. (2001).

By using the IMU as primary sensor, it is not necessary that all six degrees of freedom
are present in the features in every image. This is the main advantage in the approach of
fusing information from the inertial sensors with the information from the vision sensor.

2 Dynamic Motion Model

The dynamic state equations for the camera consist of a set ofnonlinear differential equa-
tions describing how the camera pose is related to the readings from the accelerometers
and the gyroscopes according to

ẋ(t) = f(x(t), u(t), t), (1)
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where the state vectorx(t) consists of positioncf , velocityvf (vf = ċf ) and orientation
(represented using unit quaternions)q(q = qcf ), i.e.,x = (cT

f , vT
f , qT )T , where

cf =




cx

cy

cz



 , vf =




vx

vy

vz



 , q =





q0

q1

q2

q3



 . (2)

Regarding the notation,cf is used to describe the position of the camera center (point
C in Figure 1) expressed in theF -system. Furthermore, the accelerometer,ac, and the
gyroscope,ωc, readings are considered to be input variables,u, i.e.,

u =

(
ac

ωc

)
. (3)

In the subsequent sections the relevant coordinate systemsare defined and the nonlinear
functionf( · ) in (1) will be derived.

2.1 Geometry and Co-ordinate Systems

The following three coordinate systems are used:

1. Fixed (F): This is considered to be an inertial system (the rotation of the earth is
ignored), which is fixed to earth. The navigation will be performed in this system.
Furthermore, the scene model is given in this system.

2. Camera (C): This coordinate system is attached to the camera and hence itis mov-
ing with the camera. Its origin is located in the camera center.

3. Image (I): The image is projected into this coordinate system, which islocated in
the camera center.

These three coordinate systems are illustrated in Figure 1.Furthermore, a fourth coor-
dinate system, the sensor system, is used. This is the coordinate system in which the
inertial measurements are obtained. It is not discussed in this paper, which implies that a
somewhat unrealistic assumption is used, namely that the inertial sensors are placed in the
camera center. However, everything discussed in this papercan rather straightforwardly
be adapted to the fact that the sensor coordinate system is present as well.

2.2 Position

The position of the camera is given by the position of the camera center (pointC in
Figure 1). The accelerometers measures the inertial forcesw.r.t. an inertial system (the
F -system in this work). Hence, the accelerometers will measure the difference between
the acceleration of the camera,af , and the gravity vector,gf . However, since the ac-
celerometers are attached to the camera (strapdown inertial system) the measurements
will be resolved in the camera coordinate system, accordingto

ac = Rcf (af − gf ) , (4)
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Figure 1: Illustration of the different coordinate systems and how they are related.
PointC is the position of the camera (optical center) and pointS is the position of a
certain static feature in the real scene.

whereRcf is a rotation matrix which rotates vectors from theF -system to theC-system.
Notice that the accelerometer measurement can be modeled asa measurement signal (Re-
hbinder and Hu, 2004),y = ac, or as an input signal,u = ac, (common in the aircraft
industry). In this work the accelerometer signal is modeledas an input signal, in order
to avoid additional states. However, by including the acceleration and the angular veloc-
ity in the state vector the acceleration and angular velocity can be modeled by shaping
the process noises for these states. The dynamic motion model is according to Newton’s
second law a double integration of the measured acceleration:

ċf = vf , (5a)

v̇f = Rfcac + gf . (5b)

By assuming that the input signal is piecewise constant it isstraightforward to derive a
discrete-time version of (5).

2.3 Orientation

Finding a suitable representation for the orientation of a rigid body in 3D is a more in-
tricate problem than one might first guess. In Section 2.2 rotation matrices (commonly
referred to as Direction Cosine Matrices (DCM)) were used todescribe rotations. These
matrices belong to a group called SO(3), defined by

SO(3) = {R ∈ R3×3 : RRT = I,det R = +1}. (6)

The name SO stands forspecial, orthogonal, due to the constraints (6) (Murray et al.,
1994). Hence, the most natural description to use is DCM. However, this description has
some problems, since it requires six parameters and since itis hard to enforce the orthog-
onality condition. It has been shown that five is the minimum number of parameters that
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have to be used in order to parameterize the rotation group insuch a way that a global de-
scription, without singular points is obtained (Hopf, 1940, Stuelpnagel, 1964). However,
the dynamics for this parameterization is quite complicated, which implies that it is not
used. Using four parameters, unit quaternions1, to describe the orientation provides the
best alternative, since it is a representation that is nonsingular and the dynamics is linear
(bilinear if the angular velocity is modeled as a state variable) in the states. The downside
is that the unit constraint has to be maintained and that the parameterization is non-global.
However, this non-global property will not be a problem in practice. Another commonly
used parameterization is the Euler angles. The advantage ofthis parameterization is that
it only requires three parameters, but the dynamics is nonlinear and it is a singular, non-
global representation. According to the authors the best trade-off for parameterizing the
rotation group is provided by the unit quaternion. Hence, all computations are performed
using unit quaternions. However, when the orientation is presented to the user Euler an-
gles are used, since this parameterization is the easiest tointerpret and visualize.

A good account of the twelve most common rotation parameterizations is given in
Shuster (1993). Furthermore, Shoemake (1985) provides some good intuition regarding
the unit quaternions. The dynamic equation for the quaternions is

q̇(t) =
1

2
Ω(ω)q(t), (7)

where

Ω(ω) =





0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0



 . (8)

The quaternion has to be normalized, i.e.,

qT (t)q(t) = 1, (9)

in order to represent an orientation. By invoking the assumption that the angular velocity
is constant between the sampling instants the rotation vector θ can be defined as

θ = ωtTs, (10)

and under this assumption it can be shown that the solution to(7) is

qt+1 = A(θ)qt, (11)

whereA(θ) can be shown to be

A(θ) = cos (‖θ‖/2) I4 +
sin (‖θ‖/2)

‖θ‖ Ω(θ). (12)

Care has to be taken when estimating the orientation, since the set of all rotations, SO(3)
is not a vector space, but rather a manifold, due to the constraint (6). Using quaternions
this is handled simply by normalizing the estimate. However, the best would of course be
if an estimator could be derived that delivered estimates, which inherently existed on the
manifold. The problem is that the resulting problem is non-convex.

1Another name for the unit quaternion is Euler-Rodrigues symmetric parameters, or Euler symmetric param-
eters (Shuster, 1993).
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3 Using Vision as a Sensor

In order to be able to incorporate the information availablein the image sequence into the
estimation problem measurement equations

yt = h(xt, et, t), (13)

have to be derived. These equations should describe the relationship between the state
variablex and the information available in the images. In the subsequent sections two
different approaches on how to derive these equations are discussed. Since a single image
contains large amounts of information the most essential information has to be efficiently
recovered. The approach using in this work is to extract features from the images. In the
computer vision literature animage featureis any structural feature that can be extracted
from the image. The idea of using inertial sensors and features extracted from the images
have previously been exploited, e.g., in Rehbinder and Ghosh (2003), Jiang et al. (2004).

3.1 Camera Model

A camera is a device that provides two dimensional projections of a three dimensional
real scene. The camera model describes this projection in mathematical terms. Hence,
the camera model is most essential in forming the measurement equations. The camera
model used in this work is thepinhole model (Hartley and Zisserman, 2003),

(xi, yi)
T = (fx/z, fy/z)T , (14)

where(xi, yi)
T are the coordinates for the feature in the image coordinate system, see

Figure 1. Furthermore,(x, y, z)T is the corresponding position in the real scene andf
is the focal length. The model (14) is simply a way to state that two objects lying on the
same ray will be projected onto the same point in the image plane. This model is used
due to its simplicity. However, all equations derived in this paper can be extended to more
advanced camera models including parameters for optical distortion etc. For more details
on different camera models, see Hartley and Zisserman (2003).

3.2 Two Dimensional Feature Displacements

The goal of this section is to derive a measurement equation using the fact that an ob-
served movement of a static feature in the image can be directly related to a movement
of the camera. This measurement equation can then be used within the Kalman filtering
framework. The derivation starts with the simple fact that,

r = r ⇔ 0 = r + xex + yex + zez, (15)

where ther-vector, defined in Figure 1, has been expressed in two different coordinate
systems, the rotatingC-system and the fixed feature system. Differentiating (15) w.r.t.
time gives

0 = ṙ + ẋex + ẏey + żez + xėx + yėy + zėz. (16)
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From Figure 1;̇r = ṗ− ṡ = ṗ, which together with the fact thatxėx +yėy +zėz = ω×r

gives

ẋ = −zωy + yωz − vx, (17a)

ẏ = −xωz + zωx − vy, (17b)

ż = −yωx + xωy − vz, (17c)

wherev = ṗ. Differentiating (14) gives

ẋi = f
ẋz − xż

z2
, (18a)

ẏi = f
ẏz − yż

z2
. (18b)

Inserting (14) and (17) in (18) gives

ẋi =
xiyi

f
ωx − f

(
1 +

x2
i

f2

)
ωy + yiωz

︸ ︷︷ ︸
ẋi,R

+
−fvx + xivz

z︸ ︷︷ ︸
ẋi,T

, (19a)

ẏi = f

(
1 +

y2
i

f2

)
ωx − xiyi

f
ωy − xiωz

︸ ︷︷ ︸
ẏi,R

+
−fvy + yivz

z︸ ︷︷ ︸
ẏi,T

, (19b)

where the velocity has been split into one rotational part (indicated with subscriptR), and
one translational part (indicated with subscriptT ). It is impossible to use (19) to gain
perfect information about the present position and orientation of the camera, which has
previously been discussed in You et al. (1999), Matthies et al. (1988), Longuet-Higgins
and Prazdny (1980). However, in combination with the other sensors these equations will
help in the task of finding the position and orientation of thecamera. Gyroscopes provide
measurements of the angular velocityω and hence the rotational terms in (19) can be
considered to be known (with a certain degree of uncertainty).

The measurements are the projection of the features in the image plane, i.e.,

yj =

(
xj

i

yj
i

)
+ ej

t , j = 1, . . . , N, (20)

whereN is the number of features, ande the measurement noise. However, since (19) is
used the measurement equations will be implicit, i.e., the measurement equations will not
be in the form (13), but rather in the following form:

0 = h(yt, yt−1, xt, et, t). (21)

There is one problem with the derived measurement equations, the depth information
z of the feature is still present. This problem can be tackled in numerous ways. The
first idea that comes to mind is to extend the state vector withthe depth stateszi, i =
1, . . . , N . In Davison (2003) an algorithm similar to the particle filter is used to estimate
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the depths. Alternatively, the depths can be thought of asnuisancevariables which should
be eliminated. Substitutingz from (19a) into (19b) gives

ẏi − ẏi,R

ẋi − ẋi,R
=

−fvy + yivz

−fvx + xivz
, (22)

which is the resulting one-dimensional measurement equation. It is straightforward to
rewrite (22) on the form (21), using the Euler approximationfor the differential operator,
according to

αt (−fvx,t + xi,tvz,t) = −fvy,t + xi,tvz,t, (23)

where

αt =

(
yi,t − yi,t−1

Ts
− ẏi,R

)/(xi,t − xi,t−1

Ts
− ẋi,R

)
.

Finally (23) can be written
(
−fαt f (αtxi,t − yi,t)

)
︸ ︷︷ ︸

Ct

vf = 0. (24)

This is the resulting measurement equation for two dimensional feature displacement.

3.3 Three Dimensional Features and Model

The vision system delivers a list ofN feature coordinates in the image plane,{xj
i , y

j
i }N

j=1

and the corresponding positions,{sj = (sj,x, sj,y, sj,z)}N
j=1, in the real scene. This

position is obtained from a three dimensional model of the world in which the camera
is moving. This model is generated off-line. Intuitively, this information should provide
valuable information for estimating the camera pose. Using(14) and Figure 1 gives

(xi, yi)
T = (frc,x/rc,z, frc,y/rc,z)

T , (25)

whererc is the vector from the camera center to the current feature. Figure 1 also reveals
that

rc = Rcf (cf − sf ) . (26)

The resulting measurement equation is found by using the idea from the previous section,
i.e., writing the measurement equation in the implicit form(21). This results in

0 =

(
rc,zxi − frc,x

rc,zyi − frc,y

)
+ e, (27)

which simply corresponds to multiplying (25) withrc,z. Similar ideas have been pre-
sented in, e.g., Davison (2003). The difference is that in this work an off-line model of
the real scene is used in combination with information from inertial sensors . Hence, the
costly procedure of preparing the environment with artificial markers is not necessary.
Furthermore, the information from the inertial sensors is obtained at a higher frequency
than the vision measurements and will be especially helpfulduring fast maneuvers.
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4 Illustration

In order to evaluate the ideas proposed in this paper a virtual environment, briefly de-
scribed in this section, is used. More specifically a three dimensional model of a car is
used. Figure 2 provides two images from the video sequence. The car is standing still
and the camera is moving around the car in such a way that the camera is always facing
the car. Since the true position and orientation of the camera is known, the acceleration
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Figure 2: Two images from the video stream used to obtain the vision measure-
ments. Furthermore, several 2D features have been indicated in the images. The
camera has been rotated10◦ from the upper to the lower image.

and angular velocity can be calculated. Using this the inertial measurements can be sim-
ulated, simply by adding the proper noise to the true accelerations and angular velocities.
Furthermore, the 3D model of the car provides an image sequence from which features
can be extracted. These features will constitute the visionmeasurements, which will be
included in the estimation problem using the ideas discussed in Section 3.

The next step is to use authentic inertial and vision measurements, which will be pro-
vided by our partners at BBC R&D in London. They have a positioning system installed
in their studio (referred to as free-D (Thomas et al., 1997)), providing the true pose, which
can be used to assess the estimation performance. The authors are currently working to-
gether with Xsens (2005) on using the idea presented in Section 3.3. The preliminary
results looks promising.
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5 Conclusion

This paper propose a filtering approach for estimating the position and orientation of a
camera in three dimensions. The underlying idea of supporting inertial sensors using
additional sensors has previously been successfully used for instance within the aircraft
industry. The difference is that in this work vision is used,instead of for instance terrain
elevation databases, to support the dead-reckoning of the inertial sensor information. Fur-
thermore, two different strategies regarding the process of incorporating vision measure-
ments in the Kalman filtering framework were discussed. Finally, some brief illustrations
on how to evaluate these ideas were given.
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Abstract

The marginalized particle filter is a powerful combination of the particle fil-
ter and the Kalman filter, which can be used when the underlying model
contains a linear sub-structure, subject to Gaussian noise. This paper will il-
lustrate several positioning and target tracking applications, solved using the
marginalized particle filter. Furthermore, we analyze several properties of
practical importance, such as its computational complexity and how to cope
with quantization effects.

Keywords: Nonlinear state estimation, marginalized particle filter,position-
ing applications, target tracking applications.

1 Introduction

M ANY problems in for instance positioning and target tracking can be cast as nonlin-
ear state estimation problems, where the uncertainty in theprocess model and/or in

the measurement model may be non-Gaussian. Such a general model can be formulated
according to

xt+1 = f(xt, ut) + wt, (1a)

yt = h(xt) + et, (1b)

with state variablext ∈ Rm, input signalut and measurementsYt = {yi}t
i=1, with

known probability density functions for the process noisepw(w) and the measurement
noisepe(e). Hence, traditional estimation methods based on theKalman filter (KF)
(Kalman, 1960, Kailath et al., 2000), or linearized versionthereof, do not always pro-
vide good performance. Over the past 40 years there has been several suggestions on how
to tackle the problem of estimating the states in (1). An appealing solution is provided
by theparticle filter (PF) (Gordon et al., 1993, Doucet et al., 2001a, Ristic et al., 2004),
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which allows for a systematic treatment of both nonlinearities and non-Gaussian noise.
However, due to the inherent computational complexity of the particle filter, real-time is-
sues arise in many applications when the sampling rate is high. If the model includes a
sub-structure with linear equations, subject to Gaussian noise, it is often possible to per-
form the estimation more efficiently. Here, this method is referred to as themarginalized
particle filter (MPF), it is also known as the Rao-Blackwellized particle filter, see ,for
instance, Doucet et al. (2000, 2001a), Chen and Liu (2000), Andrieu and Doucet (2002),
Andrieu and Godsill (2000), Schön et al. (2005). The MPF is a clever combination of
the standard particle filter and the Kalman filter. It is a wellknown fact that in some
cases it is possible to obtain better estimates, i.e., estimates with reduced variance, using
the marginalized particle filter instead of using the standard particle filter (Doucet et al.,
2001b).

The aim of this paper is to explain how the marginalized particle filter works in prac-
tice. We will try to achieve this by considering several applications where we have suc-
cessfully applied the MPF. Since we cannot cover all the details in this paper references
to more detailed descriptions are provided. Furthermore, the algorithm’s computational
complexity and the presence of quantization effects are analyzed, due to their importance
in practical applications. To summarize, the analysis and applications covered are

Theory and analysis:

• Background theory
• Complexity analysis
• Quantization effects

Positioning applications:

• Underwater terrain-aided positioning
• Aircraft terrain-aided positioning
• Automotive map-aided positioning

Target tracking applications:

• Automotive target tracking
• Bearings-only target tracking
• Radar target tracking

There are certainly more applications of the marginalized particle filter reported in the
literature. Just to mention a few, there are communication applications (Chen et al., 2000,
Wang et al., 2002), nonlinear system identification (Schön and Gustafsson, 2003, Li et al.,
2003, Daly et al., 2005), GPS navigation (Giremus and Tourneret, 2005) and audio source
separation (Andrieu and Godsill, 2000).

The paper is organized as follows. In Section 2, the background theory and MPF
algorithm are briefly introduced. The algorithm performance, computational complex-
ity and ability to handle quantization effects are analyzedin Section 3. In Section 4,
the applications are introduced and the structure of the underlying models is reviewed.
The positioning and target tracking application are described in more detail in Section 5
and Section 6, respectively. Finally, Section 7 provides a concluding discussion of some
lessons learned in using the marginalized particle filter.
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2 Marginalized Particle Filter

The aim of recursively estimating the filtering densityp(xt|Yt) can be accomplished using
the standard particle filter. However, if there is a linear sub-structure, subject to Gaussian
noise, present in the model this can be exploited to obtain better estimates and possibly
reduce the computational demand as well. This is the motivation underlying the marginal-
ized particle filter.

2.1 Representation

The task of nonlinear filtering can be split into two parts: representation of the filtering
probability density function and propagation of this density during the time and measure-
ment update stages. Figure 1 illustrate different representations of the filtering density for
a two-dimensional example. Theextended Kalman filter(EKF) (Anderson and Moore,
1979, Kailath et al., 2000), can be interpreted as using one Gaussian distribution for repre-
sentation and the propagation is performed according to a linearized model. TheGaussian
sum filter(Anderson and Moore, 1979, Sorenson and Alspach, 1971) extends the EKF to
be able to represent multi-modal distributions, still withan approximate propagation.
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Figure 1: True probability density function and different approximate representa-
tions, in order of appearance, Gaussian, Gaussian sum, point-masses (grid-based
approximation), particle samples and waterfall view that corresponds to the MPF.

Figure 1(d)–(f) illustrates numerical approaches where the exact nonlinear relations
present in the model are used for propagation. Thepoint-mass filter(grid-based approxi-
mation) (Bergman, 1999) employ a regular grid, where the grid weight is proportional to
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the posterior. Theparticle filter(PF), (Gordon et al., 1993) represents the posterior by a
stochastic grid in form of a set of samples, where all particles (samples) have the same
weight. Finally, themarginalized particle filter(MPF) uses a stochastic grid for some of
the states, and Gaussian distributions for the rest. That is, the MPF can be interpreted as
a particle representation for a subspace of the state dimension, where each particle has an
associated Gaussian distribution for the remaining state dimensions. This is thewaterfall
view in Figure 1(f). It will be demonstrated that an exact nonlinear propagation is still
possible if there is a linear sub-structure in the model. An important model class has the
property that the (co-)variance is the same for all particles, which simplifies computations
significantly.

2.2 Model

Consider a state vectorxt, which can be partitioned according to

xt =

(
xl

t

xn
t

)
, (2)

wherexl
t denotes the linear states andxn

t denotes the nonlinear states, in the dynamics
and measurement relation. A rather general model with the properties discussed above is
given by

xn
t+1 = fn

t (xn
t )+An

t (xn
t )xl

t+Gn
t (xn

t )wn
t , (3a)

xl
t+1 = f l

t(x
n
t ) +Al

t(x
n
t )xl

t +Gl
t(x

n
t )wl

t, (3b)

yt = ht(x
n
t ) +Ct(x

n
t )xl

t +et, (3c)

where the state noise is assumed white and Gaussian distributed with

wt =

(
wl

t

wn
t

)
∼ N (0, Qt), Qt =

(
Ql

t Qln
t

(Qln
t )T Qn

t

)
. (3d)

The measurement noise is assumed white and Gaussian distributed according to

et ∼ N (0, Rt). (3e)

Furthermore,xl
0 is Gaussian,

xl
0 ∼ N (x̄0, P̄0). (3f)

Finally, the density ofxn
0 can be arbitrary, but it is assumed known. More specifically,

conditioned on the nonlinear state variables there is a linear sub-structure, subject to Gaus-
sian noise available in (3), given by (3b).

2.3 Algorithm

Bayesian estimation methods, such as the particle filter, provide estimates of the filtering
density functionp(xt|Yt). By employing the fact

p(xl
t,X

n
t |Yt) = p(xl

t|Xn
t , Yt)p(Xn

t |Yt), (4)
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we can put the problem in a description suitable for the MPF framework, i.e., to analyt-
ically marginalize out the linear state variables fromp(xt|Yt). Note thatp(xl

t|Xn
t , Yt) is

analytically tractable, sinceXn
t is given. Hence, the underlying model is linear, Gaus-

sian, and the pdf can be computed from the Kalman filter. Furthermore, an estimate of
p(Xn

t |Yt) is provided by the particle filter. These two algorithms can then be combined
into a single algorithm, the marginalized particle filter. Another name for this technique
is the Rao-Blackwellized particle filter, and it has been known for quite some time, see,
e.g., Doucet et al. (2000), Casella and Robert (1996), Doucet et al. (2001b), Chen and Liu
(2000), Andrieu and Doucet (2002), Doucet et al. (2001b), Schön et al. (2005), Nordlund
(2002). If the same numbers of particles are used in the standard particle filer and the
marginalized particle filter, the latter will provide estimates of better or at least the same
quality. Intuitively this makes sense, since the dimensionof p(xn

t |Yt) is smaller than
the dimension ofp(xt|Yt), implying that the particles occupy a lower dimensional space.
Furthermore, the optimal algorithm is used to estimate the linear state variables. For a
detailed discussion regarding the improved accuracy of theestimates, see, e.g., Doucet
et al. (1999, 2001b).

The marginalized particle filter for estimating the states in a dynamic model in the
form (3) is provided in Algorithm H.1.

Algorithm H.1 (Marginalized particle filter)

1. Initialization: Fori = 1, . . . , N , initialize the particles,xn,(i)
0|−1 ∼ pxn

0
(xn

0 ) and set

{xl,(i)
0|−1, P

(i)
0|−1} = {x̄l

0, P̄0}. Sett := 0.

2. Particle filter measurement update: Fori = 1, . . . , N , evaluate the importance
weights

q
(i)
t = p

(
yt|Xn,(i)

t , Yt−1

)
, (5)

and normalizẽq(i)
t = q

(i)
t /

∑N
j=1 q

(j)
t .

3. ResampleN particles, with replacement,

Pr
(
x

n,(i)
t|t = x

n,(j)
t|t−1

)
= q̃

(j)
t .

4. Particle filter time update and Kalman filter:

(a) Kalman filter measurement update:

x̂l
t|t = x̂l

t|t−1 + Kt

(
yt − ht − Ctx̂

l
t|t−1

)
, (6a)

Pt|t = Pt|t−1 − KtMtK
T
t , (6b)

Mt = CtPt|t−1C
T
t + Rt, (6c)

Kt = Pt|t−1C
T
t M−1

t . (6d)

(b) Particle filter time update (prediction): Fori = 1, . . . , N , predict new particles,

x
n,(i)
t+1|t ∼ p

(
xn

t+1|t|X
n,(i)
t , Yt

)
.
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(c) Kalman filter time update:

x̂l
t+1|t = Āl

tx̂
l
t|t + Gl

t(Q
ln
t )T (Gn

t Qn
t )−1zt + f l

t + Lt

(
zt − An

t x̂l
t|t

)
, (7a)

Pt+1|t = Āl
tPt|t(Ā

l
t)

T + Gl
tQ̄

l
t(G

l
t)

T − LtNtL
T
t , (7b)

Nt = An
t Pt|t(A

n
t )T + Gn

t Qn
t (Gn

t )T , (7c)

Lt = Āl
tPt|t(A

n
t )T N−1

t , (7d)

where

zt = xn
t+1 − fn

t , (8a)

Āl
t = Al

t − Gl
t(Q

ln
t )T (Gn

t Qn
t )−1An

t , (8b)

Q̄l
t = Ql

t − (Qln
t )T (Qn

t )−1Qln
t . (8c)

5. Sett := t + 1 and iterate from step 2.

Since the focus of the present paper is on the practical aspects of Algorithm H.1, we will
merely provide the intuition for this algorithm here. For a detailed derivation, see Schön
et al. (2005). From this algorithm, it should be clear that the only difference from the
standard particle filter is that the time update (prediction) stage has been changed. In the
standard particle filter, the prediction stage is given solely by step4(b) in Algorithm H.1.

Let us now briefly discuss step4 in Algorithm H.1. Step4(a) is a standard Kalman
filter measurement, update using the information availablein the measurementyt. Once
this has been performed the new estimates of the linear states can be used to obtain a
prediction of the nonlinear statexn

t+1|t. This is performed in Step4(b). Now, consider
model (3) conditioned on the nonlinear state variable. The conditioning implies that (3a)
can be thought of as a measurement equation. This is used in step4(c) together with a
time update of the linear state estimates.

The estimates, as expected means, of the state variables andtheir covariances are
given below.

x̂n
t|t =

N∑

i=1

q̃
(i)
t x̂

n,(i)
t|t , (9a)

P̂n
t|t =

N∑

i=1

q̃
(i)
t

((
x̂

n,(i)
t|t − x̂n

t|t

)(
x̂

n,(i)
t|t − x̂n

t|t

)T
)

, (9b)

x̂l
t|t =

N∑

i=1

q̃
(i)
t x̂

l,(i)
t|t , (9c)

P̂ l
t|t =

N∑

i=1

q̃
(i)
t

(
P

(i)
t|t +

(
x̂

l,(i)
t|t − x̂l

t|t

)(
x̂

l,(i)
t|t − x̂l

t|t

)T
)

, (9d)

where{q̃(i)
t }N

i=1 are the normalized importance weights, provided by step2 in Algo-
rithm H.1.
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3 Analysis

In this section, several properties important in the practical application of the marginal-
ized particle filter are analyzed. First, the variance reduction inherent using the Rao-
Blackwellization idea is explained. Second, the computational burden of MPF is analyzed
in detail. Finally, quantization effects in the measurement relation are described.

3.1 Variance Reduction

The variance of a function or estimatorg(U, V ), depending on two random variables,U
andV can be written as

Var {g(U, V )} = Var {E{g(U, V )|V }} + E {Var{g(U, V )|V }} , (10)

Hence, in principle, the conditional inequality

Var
{
E{g(xl

t,X
n
t )|Xn

t }
}
≤ Var

{
g(xl

t,X
n
t )
}

, (11)

can be employed. This is sometimes referred to as Rao-Blackwellization, see, e.g., Robert
and Casella (1999). This is the basic part that improves performance using the marginal-
ization idea. In the MPF setup,U andV are represented by the linear and nonlinear
states.

3.2 Computational Complexity

In discussing the use of the MPF it is sometimes better to partition the state vector into
one part that is estimated using the particle filterxp

t ∈ Rp and one part that is estimated
using the Kalman filterxk

t ∈ Rk. Obviously all the nonlinear statesxn
t are included inxp

t .
However, we could also choose to include some of the linear states there as well. Under
the assumption of linear dynamics, this notation allows us to write (3) according to

xp
t+1 = Ap

t x
p
t + Ak

t xk
t + wp

t , wp
t ∼ N (0, Qp

t ), (12a)

xk
t+1 = F p

t xp
t + F k

t xk
t + wk

t , wk
t ∼ N (0, Qk

t ), (12b)

yt = ht(x
p
t ) + Ctx

k
t + et, et ∼ N (0, Rt). (12c)

First, the caseCt = 0 is discussed. For instance, the first instructionPt|t(A
k
t )T corre-

sponds to multiplyingPt|t ∈ Rk×k with (Ak
t )T ∈ Rk×p, which requirespk2 multipli-

cations and(k − 1)kp additions (Golub and Van Loan, 1996). The totalequivalent flop
(EF)1 complexity is derived by Karlsson et al. (2005),

C(p, k,N) ≈ 4pk2 + 8kp2 +
4

3
p3 + 5k3 − 5kp + 2p2

+ (6kp + 4p2 + 2k2 + p − k + pc3 + c1 + c2)N. (13)

Here, the coefficientc1 has been used for the calculation of the Gaussian likelihood, c2

for the resampling andc3 for the random number complexity. Note that, whenCt = 0

1The EF complexity for an operation is defined as the number of flops that result in the same computational
time as the operation.
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the same covariance matrix is used for all Kalman filters, which significantly reduce the
computational complexity.

By requiringC(p + k, 0, NPF) = C(p, k,N(k)), whereNPF corresponds to the num-
ber of particles used in the standard particle filter we can solve for N(k). This gives
the number of particlesN(k) that can be used by the MPF in order to obtain the same
computational complexity as if the standard particle filterhad been used for all states. In
Figure 2 the ratioN(k)/NPF is plotted for systems withm = 3, . . . , 9 states. Hence, using
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Figure 2: RatioN(k)/NPF for systems withm = 3, . . . , 9 states andCt = 0, n = 2
is shown. It is apparent the MPF can use more particles for a given computational
complexity, when compared to the standard PF.

Figure 2 it is possible to directly find out how much there is togain in using the MPF from
a computational complexity point of view. The figure also shows that the computational
complexity is always reduced when the MPF can be used insteadof the standard particle
filter. Furthermore, as previously mentioned, the quality of the estimates will improve or
remain the same when the MPF is used (Doucet et al., 2001b).

Second, ifCt 6= 0, the Riccati recursions have to be evaluated separately foreach par-
ticle. This results in a significantly increased computational complexity. Hence, different
covariance matrices have to be used for each Kalman filter, implying that (13) has to be
modified. Approximately the complexity is given by Karlssonet al. (2005),

C(p, k,N) ≈ (6kp + 4p2 + 2k2 + p − k + pc3 + c1 + c2

+ 4pk2 + 8kp2 +
4

3
p3 + 5k3 − 5kp + 2p2 + k3)N. (14)

In Figure 3 the ratioN(k)/NPF is plotted for systems withm = 3, . . . , 9 states. For
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Figure 3: RatioN(k)/NPF for systems withm = 3, . . . , 9 states andCt 6= 0, n = 2
is shown. For systems with high state dimension and many marginalized states the
standard PF can use more particles than the MPF.

systems with few states the MPF is more efficient than the standard particle filter. How-
ever, for systems with more states, where most of the states are marginalized the standard
particle filter becomes more efficient than the MPF. This is due to the Riccati recursions
mentioned above.

3.3 Quantization Effects

When implementing filters or estimators in hardware, the calculations can usually be
performed with sufficient precision. However, the sensor ormeasurement relation may
not always have sufficient resolution. This is referred as measurement quantization, and
is a common problem in for instance telecommunication, where the channel bandwidth is
limited. To be able to use limited communication resources,severe quantization may be
needed. Also for large sensor networks applications, many very simple and cheap sensors
with large quantization effects are used. Furthermore, many sensors or signal processing
devices are naturally quantized, for instance range measurements in a pulsed radar or
pixelized information from a vision system.

Here we will discuss quantization using a multi-level uniform quantization. Consider
the problem of estimatingx from the quantized measurementsy = Qm (x + e). The uni-
form quantization discussed here is implemented as themidriser quantizer, as described



224 Paper H The Marginalized Particle Filter in Practice

in Lipshitz et al. (1992). If not saturated it is given as

Qm (z) = ∆
⌊ z

∆

⌋
+

∆

2
. (15)

Here,Qm ( · ) denotes the nonlinear quantization mapping withm levels, all with equal
quantization height∆. The ⌊ · ⌋ operator rounds downwards to the nearest integer. To
keep a unified notation with the sign quantizationQ1 (z) = sign(z), the midriser con-
vention will be used, soy ∈ {−m∆ + ∆

2 , . . . , (m − 1)∆ + ∆
2 }, with ∆ = 2−b, usingb

bits,2m = 2b levels and2b − 1 thresholds. The sign quantization corresponds tob = 1,
m = 1 and∆ = 2 in this notation.

In Karlsson and Gustafsson (2005b), this static problem is analyzed using themax-
imum likelihood (ML) estimator. The performance is also investigated usingthe Fisher
information orCramér-Rao lower bound(CRLB). The resulting likelihood function can
also be used in the particle filter, allowing for a statistically correct treatment of mea-
surement quantization effects in dynamic systems. If the model is in accordance with the
requirement of the MPF algorithm, it is possible to handle the nonlinearity introduced
by the quantization in the measurement equation in the MPF. In Karlsson and Gustafs-
son (2005b) different quantizers are studied. Below, only the simplest sign quantizer,
yt = Q1 (xt + et), et ∼ N (0, σ2), is discussed. The probability function fory can be
calculated using

p(y = −1|x) = Pr(x + e < 0) = Pr(e < −x) =

−x∫

−∞

1√
2πσ

exp−
t2

2σ2 dt (16)

=

−x/σ∫

−∞

1√
2π

exp−
t2

2 dt
△

= Φ(−x/σ) . (17)

Similarly,

p(y = +1|x) = Pr(x + e ≥ 0) = 1 − Φ(−x/σ) . (18)

Hence, the discrete likelihood needed in the PF/MPF, in (5),can be written as

p(y|x) = Φ (−x/σ) δ(y + 1) + (1 − Φ(−x/σ)) δ(y − 1), (19)

where

δ(i) =

{
1, i = 0,

0, i 6= 0.
(20)

The calculated likelihood can be used in the PF/MPF to incorporate the quantization effect
in a statistically correct way. Similar for multi-level quantization.

Example H.1: Filtering – sign quantizer
Consider the following scalar system with a sign quantizer

xt+1 = Ftxt + wt, x0 = 0, (21a)

yt = Q1 (xt + et), (21b)
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where

Ft = 0.95, Varwt = 0.102, Var et = 0.582. (22)

In Figure 4 the RMSE for the KF and the PF are presented using 200 Monte Carlo sim-
ulations. The measurement noise in the KF was adjusted in thefilter to handle the quan-
tization by adding an extra variance of∆2/12. The PF used the correct sign quantized
likelihood using 1000 particles. The theoretical Cramér-Rao lower bound is also given in
Figure 4. For details, see Karlsson and Gustafsson (2005b).
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Figure 4: RMSE for the PF and KF for a linear Gaussian system with a sign quan-
tizer in the measurement relation, compared to the Cramér-Rao lower bound.

Note that for the example presented only one state was used, hence no marginalization was
applied. If the problem is formulated with linear, Gaussiandynamics and quantization in
the measurement, these nonlinear states can be handled by the PF and the rest by the KF
in the MPF framework.

4 Introducing the Applications

As discussed in the previous section, the different estimation methods handle nonlineari-
ties in different ways. In the applications studied in this paper a framework consisting of
linear, Gaussian system dynamics and nonlinear measurements is considered. Basically,
two different areas are studied: GPS-freepositioning, where the aim is to estimate the
own platform’s position andtarget tracking, where the state of an unknown, observed tar-
get is estimated from measurements. These applications also represent typical examples
where sensor fusion techniques are important. The MPF provides an efficient way to in-
corporate both linear and nonlinear measurement relations. Both results from simulated
data and experimental data are presented. More precisely, the studied applications are:
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Positioning applications:

• Underwater terrain-aided positioning:Depth information from a geographical in-
formation system (GIS) database is used together with sonardepth measurements
to improve positioning. A demonstrator system has been developed in co-operation
with Saab Underwater Systems.

• Aircraft terrain-aided positioning:A height GIS database is used together with
radar height measurements to improve the position, compared to only inertial navi-
gation system (INS) measurements. A demonstrator system has been developed by
Saab Aerospace.

• Automotive map-aided positioning:Utilizing wheel speed sensors from the ABS
and information from a street-map database, car positioning independent of GPS is
possible. This is available as a commercial product from NIRA Dynamics.

Target tracking applications:

• Automotive target tracking:Intelligent automotive systems require information
about the host vehicle and its surroundings (road geometry and the position of
surrounding vehicles). Using vision and radar measurements, the corresponding
estimation problem is addressed. A demonstrator vehicle has been developed in
co-operation with Volvo Car Corporation.

• Bearings-only target tracking:When passive sensors, such as an infrared (IR) sen-
sor are used, we can only measure the direction, bearing, to the unknown target.
However, by appropriate maneuvering, the range and range rate can be estimated.
This is studied in an air-to-sea application, i.e., an aircraft tracking a ship.

• Radar target tracking:A radar sensor measures at least range and direction (az-
imuth, elevation) to the target. In this particular application the computational as-
pects of the MPF are studied in detail.

The dynamic models employed in the applications all have a linear motion model and
a nonlinear measurement model. By partitioning the state vector xt into two parts, one
for the linear state variablesxl

t and one for the nonlinear state variablesxn
t the model

fits the MPF framework perfectly. For example, consider Cartesian position coordinates
(X,Y,Z) and introduce the state vectorxt = (Xt, Yt, Zt, Ẋt, Ẏt, Żt)

T , with position
and velocity states. In target tracking the relative distance between the target and the
observation platform is often used as state. Furthermore, the first-order derivatives of this
distance, relative velocity, are included in the state vector. The resulting motion model is
given by

xt+1 = Ftxt + Gtwt, (23a)

where

Ft =

(
I3 TI3

O3 I3

)
, Gt =

(
T 2

2 I3

TI3

)
, (23b)
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Here, I3 denotes the3 × 3 unity matrix andO3 denotes the3 × 3 null matrix. The
measurement relation is in the sequel treated as a nonlinearrelation of the state, subject
to additive measurement noise,

yt = h(xn
t ) + et. (23c)

It can for instance represent range and bearing measurementfrom a radar, height or depth
measurements for terrain navigation applications. In all these situations it is a function of
the position states. For the example above,xn

t = (Xt, Yt, Zt)
T andxl

t = (Ẋt, Ẏt, Żt)
T .

Another common state variable is the heading or course.
For a more thorough discussion regarding models for positioning, navigation, and

tracking applications within the present setting, see Gustafsson et al. (2002). Interesting
to note is also that common phenomena such as bias or scale-factor estimation can often
be introduced in the linear, Gaussian sub-system. Hence, the MPF provides an efficient
way to handle such problems.

5 Positioning Applications

This section is concerned with position estimation, where information from geographi-
cal information systems is used together with differentdistance measurement equipment
(DME). First, an underwater positioning method based on sonar depth measurements is
presented. Second, the same idea is employed to solve the aircraft positioning problem
using height measurements from a radar altimeter. Finally,the automotive positioning
problem is briefly presented.

5.1 Underwater Terrain-aided Positioning

In this section we describe anunderwaterpositioning method based DME information
from sonar depth readings and a comparison with a depth database to find the position of
the host vessel. It is based on the preliminary studies in Karlsson et al. (2003), Karlsson
and Gustafsson (2003), together with Karlsson and Gustafsson (2005a).

Using a sonar sensor and adifferential GPS(DGPS), an underwater depth map was
constructed, illustrated in Figure 5, together with the platform at depthdt = 0 and with
sonar depth measurementsrt. After the data for map generation was collected, an inde-
pendent test run in the map region was performed, in order to collect measurements to test
the PF/MPF map-aided positioning system. In Karlsson and Gustafsson (2003) a coordi-
nated turn model extended with bias terms was used. In order to apply the MPF a Taylor
expansion was calculated, enabling for a model approximately in the correct form. The
estimation performance reported for the MPF was similar to the PF, but to a much smaller
computational burden. In order to fit the linear, Gaussian dynamics framework, we will
only consider the model from Karlsson and Gustafsson (2005a). The number of particles
used initially wasN = 50000, but quickly reduced toN = 10000, when the particle
cloud had most of its particles clustered around the true position. The result is presented
in Figure 6, where the parametric CRLB is calculated using anextended Kalman filter,
evaluated around the true trajectory.
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Figure 6: The position RMSE from the PF (solid line) using the experimental test
data together with the parametric CRLB (dashed line) as the EKF solution around
the true trajectory. The nominal speed is between0.9 − 1.5 m/s. Note that only one
experimental test run was available for the RMSE calculation.

5.2 Aircraft Terrain-Aided Positioning

The Swedish fighter aircraft Gripen is equipped with an accurate radar altimeter as DME
sensor and a terrain elevation database, similar to the discussion in the previous section.
These measurements are used together with aninertial navigation system(INS) in order
to solve the aircraft positioning problem. This problem haspreviously been studied, see,
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e.g., Bergman (1999), Svensson (1999), Ahlström and Calais(2000). The overall structure
of the model used in this application is in the form (12), withthe following measurement
equation,

yt = h

((
Xt

Yt

)
+ xn

t

)
+ et, (24)

whereXt andYt denotes the error in latitude and longitude respectively. The feasibility
study performed used a sub-model with nine states. This sub-model contains all ingredi-
ents of the total system and the principle is scalable to the full model with27 states. For
details regarding the model we refer to Nordlund (2002) and the references therein.

The measurement equation (24) is highly nonlinear, due to the use of the terrain eleva-
tion database. This implies that the EKF cannot be used. Furthermore, the high dimension
of the problem prevents the use of the particle filter. However, the model structure fits per-
fectly into the marginalized particle filter framework. This approach has been evaluated
using authentic flight data with promising results, see Figure 7 where we provide a plot of
the error in horizontal position for a different number of particles. From this plot it is clear
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Figure 7: Horizontal position error as a function of time units for different numbers
of particles. Note that the scale has been normalized for confidentiality reasons.

that the main difference in performance is in the transient phase, in the stationary phase
the performance is less sensitive to the number of particlesused. Hence, the idea of using
more particles in the transient phase suggests itself. Thisidea was used, for the same
reason, in the previous section as well. For a more detailed account on these experiments,
see Frykman (2003), Schön et al. (2005), Nordlund (2002).
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5.3 Automotive Map-Aided Positioning

The idea is to use the information available from the wheel speed sensors together with
digital map information to estimate the position of the car,without the need for GPS
information. The resulting problem is nonlinear and fits into the framework provided by
the particle filter and the marginalized particle filter. Forfurther details on this approach,
see, e.g., Forssell et al. (2002), Hall (2000), Svenzén (2002).

6 Target Tracking Applications

In this section three target tracking applications are studied. First, an automotive target
tracking problem is discussed. This is followed by a bearings-only estimation problem.
Finally, a radar target tracking application highlight different computational aspects of the
marginalized particle filter.

6.1 Automotive Target Tracking

This application deals with the problem of estimating the vehicle surroundings (road ge-
ometry and the position of other vehicles), which is required by advanced automotive
safety systems, such as adaptive cruise control, collisionavoidance and lane guidance.
For a thorough treatment of this application, see Eidehall et al. (2005).

The main difference between tracking in automotive applications and tracking in other
applications, such as air traffic control or naval tracking,is that in automotive tracking
it can be assumed that the motion of the tracked objects, witha certain probability, is
constrained to the road. In order to be able to use and benefit from this fact we make
use of a curved coordinate system which is attached to and follows the road (Eidehall,
2004). The measurements are provided by a vision system and aradar system. The vision
system provides measurements of the road curvature, the yawangle and the distance to the
right and left lane markings. Furthermore, the radar provides range measurements to the
surrounding vehicles. The final model, thoroughly derived in Eidehall (2004), Eidehall
et al. (2005) is in the form (12), which opens up for using the marginalized particle filter.
The nonlinear part of the measurement equation for a given targeti is

yt = h(Xi
t , Y

i
t ) + et, (25)

whereh( · ) described the geometric transformation from a curved, road-aligned coordi-
nate system to a Cartesian coordinate system, in which the measurements are registered.
For details, see Eidehall et al. (2005). In evaluating the estimation performance we study
the estimate of the road curvature. It is crucial to several automotive applications, such as
adaptive cruise control systems, collision warning or any system that relies on assigning
leading vehicles to the correct lane. For a leading vehicle100 m in front of the host ve-
hicle, a small curvature error of, say0.5 · 10−3 m−1 will result in an error of2.5 m in the
lateral direction (Eidehall et al., 2005). This is enough toassign the leading vehicle to the
wrong lane.

The data set used was collected in the northern parts of Sweden during winter. This
implies that the visibility is low, which in turn implies that the measurements from the
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Figure 8: The absolute curvature error. Here, we have indicated the level
0.5 · 10−3 m−1, which is used as a motivating example in the text. For errorsabove
this level, leading vehicles at a distance of100 m are likely to be assigned to the
wrong lane.

vision system definitely have to be supported by the radar measurements to obtain a solid
overall estimate. In Figure 8 we provide the absolute curvature estimation error using
the MPF and the EKF. Furthermore, the raw vision measurementof the curvature is also
included. From Figure 8 it is clear that both filters improve the quality of the curvature
estimate substantially. However, the performance of the MPF is only slightly better than
the EKF. Hence, in this particular setting is might be hard tomotivate using the MPF, due
to its higher computational complexity. If we were to use more advanced measurement
equations, such as those based on map information the MPF might be the only option.

6.2 Bearings-Only Target Tracking

In this section, an air-to-sea bearings-only application is studied. Assume that the ship
(target) and the aircraft (tracking platform) are described by the same type of linear dy-
namics as in Section 4 for the position and the velocity, savefor the fact the relative quan-
tities have been used as states. For bearings-only applications the measurement relation
for the azimuth angleϕ and elevation angleθ is given as

yt = h(xt) + et =

(
ϕt

θt

)
+ et =




arctan (Yt/Xt)

arctan

(
−Zt√
X2

t +Y 2
t

)


+ et, (26)

whereXt, Yt, andZt denote the Cartesian components of the relative position.
In a simulation study the range estimation problem using an infrared (IR) sensor is

considered. The PF and MPF are compared to a bank of EKFs, using therange parame-
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Figure 9: The position for the aircraft (◦) and the target ship (×) together with the
marginalized position pdf using the particle filter with terrain induced constraints at
t =1 s. The particle cloud and the future trajectory of the aircraft are also shown.

terized extended Kalman filter(RPEKF) method, (Peach, 1995, Arulampalam and Ristic,
2000). The relative distance and the aircraft trajectory are illustrated in Figure 9. The tar-
get model used in the simulations assumes a small constant velocity. The terrain database
has a resolution of50 m. In Figure 9 the scenario is presented together with the marginal
position densities in each direction,p(X) andp(Y ), for time t =1 s, using terrain con-
straints. In Figure 10 the position RMSE is presented for thePF and the MPF with and
without the map constraints, and for the RPEKF. Obviously the incorporation of con-
straints improves the performance. The different particlefilters have basically the same
performance for this scenario. For details regarding the simulation study, see Karlsson
and Gustafsson (2005c), where similar bearings-only applications are described in detail,
both for simulated data and for experimental data. For instance, experimental data from a
passive sonar system on a torpedo is used for bearings-only tracking.

6.3 Radar Target Tracking

In this section, the radar target tracking application fromKarlsson et al. (2005) is high-
lighted. The general method for analyzing the computational complexity presented in
Karlsson et al. (2005) and briefly reviewed in Section 3.2, isillustrated using a common
target tracking model. The problem of estimating the position and velocity of an aircraft
is studied using the dynamics from Section 4, and the following measurement equation,
which gives the range and azimuth from the radar system,

yt = h(xt) + et =

( √
X2

t + Y 2
t

arctan (Yt/Xt)

)
+ et, (27)

whereCov{w} = diag(1 1 1 1 0.01 0.01),Cov{e} = diag(100 · 10−6) and the state
vector isxt = (X Y Ẋ Ẏ Ẍ Ÿ )T , i.e., position, velocity and acceleration.
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Figure 10: Position RMSE(t) for air-to-sea passive ranging using 100 Monte Carlo
simulations.

The model has two nonlinear state variables and four linear state variables. Two cases
are now studied, the full PF, where all states are estimated using the PF and the completely
marginalized PF, where all linear states are marginalized out and estimated using the KF.
If we want to compare the two approaches under the assumptionthat they use the same
computational resources, i.e.,C(6, 0, NPF ) = C(2, 4, NMPF ), we obtain

NPF =

(
1 − 4c3 + 56

c1 + c2 + 6c3 + 150

)

︸ ︷︷ ︸
<1

NMPF. (28)

From (28) it is clear that for a given computational complexity more particles can be
used in the MPF than in the standard PF. This is verified experimentally in Karlsson et al.
(2005).

Using a constant computational complexity the number of particles that can be used
is computed. The study is performed by first running the full PF and measure the time
consumed by the algorithm. An Monte Carlo simulation, usingN = 2000 particles, is
performed in order to obtain a stable estimate of the time consumed by the algorithm. In
Table 6.3 the number of particles (N ), the total RMSE from100 Monte Carlo simulations,
and the simulation times are shown for the different marginalization cases. From Table 6.3
it is clear that the different MPFs can use more particles fora given time, which is in
perfect correspondence with the theoretical result given in (28).

Let us now discuss what happens if a constant velocity RMSE isused. First the
velocity RMSE for the full PF is found using an Monte Carlo simulation. This value
is then used as a target function in the search for the number of particles needed by the
different MPFs. Table 2 clearly indicates that the MPF can obtain the same RMSE using
fewer particles. The result is that using full marginalization only requires14% of the
computational resources as compared to the standard PF in this example.



234 Paper H The Marginalized Particle Filter in Practice

Table 1: Results from the simulation, using a constant computational complexity. If
a certain state variable is estimated using the PF this is indicated with a P and if the
KF is used this is indicated with a K.

PPPPPP PPKKPP PPPPKK PPKKKK
N 2000 2029 1974 2574
RMSE pos 7.10 5.81 5.76 5.60
RMSE vel 3.62 3.27 3.28 3.21
RMSE acc 0.52 0.47 0.45 0.44
Time 0.59 0.58 0.57 0.60

Table 2: Results using a constant velocity RMSE.

PPPPPP PPKKPP PPPPKK PPKKKK
N 2393 864 943 264
RMSE pos 7.07 6.98 7.12 7.27
RMSE vel 3.58 3.60 3.65 3.61
RMSE acc 0.50 0.51 0.49 0.48
Time 0.73 0.26 0.28 0.10

7 Concluding Discussion

In this paper several positioning and target tracking applications are solved using the
marginalized particle filter. In the framework employed thedynamic motion models are
linear, subject to Gaussian noise and the measurement models are nonlinear. This impor-
tant special case of the general MPF allows for an efficient implementation.

The computational complexity of the MPF algorithm is thoroughly analyzed for a
radar application, but because of the similarities in the studied models in the applications,
these results are approximately valid for them as well. The radar application also illus-
trates another important property of the MPF, namely that the quality of the estimates is
enhanced compared to the standard particle filter.

Another unifying feature among the various applications isthat they all use measure-
ments from various different sources, implying that we are indeed solving thesensor fu-
sion problem using the MPF. Terrain-aided positioning problemsare quite hard to handle
using methods based on linearization, due to the fact that itis very hard to obtain a good
linear description of the map database, used to form the measurement equations. Hence,
the MPF is a very powerful tool for these applications. We sawthat the computational
complexity can be reduced substantially by decreasing the number of particles when the
stationary phase is reached. This is a common idea, employedin all the applications,
since more computational resources should be used in the transient phase.

Common for the measurement relation is that nonlinearitiesand non-Gaussian noise
is handled in a statistically optimal way, by the particle filter. Particularly, if the measure-
ment relation is subject to severe quantization this is important to handle. Quantization
arises naturally in many applications, but typically in sensor networks where sensor fu-
sion is applied based on information from a large number of very cheap sensors, this can
be a major issue.
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Abstract

An essential part of future collision avoidance systems is to be able to predict
road curvature. This can be based on vision data, but the lateral movement
of leading vehicles can also be used to support road geometryestimation.
This paper presents a method for detecting lane departures,including lane
changes, of leading vehicles. This information is used to adapt the dynamic
models used in the estimation algorithm in order to accommodate for the fact
that a lane departure is in progress. The goal is to improve the accuracy of the
road geometry estimates, which is affected by the motion of leading vehicles.
The significantly improved performance is demonstrated using sensor data
from authentic traffic environments.

Keywords: Automotive tracking, change detection, state estimation,Kalman
filter, CUSUM algorithm.

1 Introduction

THIS paper is concerned with the problem of simultaneously estimating the position
of surrounding vehicles and the road geometry. The positionof the surrounding ve-

hicles is measured using a vision system and a radar, whereasthe shape of the road is
measured using vision only. It has been shown that integrating the tracking of other vehi-
cles with the tracking of the road geometry parameters can give better performance than
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treating these problems separately (General, 2000, Dellaert and Thorpe, 1997, Eidehall
and Gustafsson, 2004, Zomotor and Franke, 1997). A fundamental assumption is that
leading vehicles will keep following their lane, and their lateral movement can thus be
used to support the otherwise difficult process of road geometry estimation. For example,
when entering a curve as in Figure 1 it can be seen that the vehicles ahead all start moving
to the right and thus there is a high probability that the roadis turning to the right. This
information can be used to significantly improve the rather crude road geometry estimates
provided by the vision system. The assumption introduced above can mathematically be

Figure 1: When entering a curve, all vehicles start moving in the lateral direction.
This information can be used to support the road geometry estimate.

represented aṡyi = 0, whereyi is the lateral position of vehiclei. Note thatyi is the
position in relation to the lane, not the position in global Cartesian coordinates or coor-
dinates attached to the host vehicle. In order to efficientlyhandle this, a road aligned,
curved coordinate system is employed. It is important to note that the assumption of zero
lateral velocity of the leading vehicles does not hold when they depart from the lane. This
is typically accounted for in the model by adding white noiseto the equation. The amount
of noise, parameterized by the covariance matrixQlat, that should be used is a compro-
mise. On the one hand it needs to be small enough for the lateral movement of the tracked
vehicles to in fact improve the road prediction. On the otherhand, it needs to be large
enough so that a lane departure of a leading vehicle is not misinterpreted as a curve entry.
This exemplifies the fundamental compromise present in all recursive estimation prob-
lems, the trade-off between noise attenuation and trackingaccuracy. This compromise
is illustrated in Figure 2, where the estimated road curvature, one of the road geometry
parameters, using two different filters is plotted; one filter with a high value ofQlat and
one filter with a low. For reasons of comparison, the true values for the road curvature
which is obtained using the method proposed in Eidehall and Gustafsson (2006) and the
raw measurements from the vision system are also included. It is interesting to compare
the raw vision measurements to the result from the filter. This clearly illustrates the power
of a model based sensor fusion approach.
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Figure 2: Comparison of estimation performance from two filters, one with a large
Qlat and one with a smallQlat. The raw measurement signal from the image pro-
cessing unit and the reference signal are also included. Comparing the raw vision
measurement to the result from the filters clearly illustrates the power of a model
based sensor fusion approach.

In Figure 2, an exit phase of a curve where the curvature suddenly drops from about
1.8 · 10−3 m−1 to zero can be seen. In this particular scenario there are twoleading
vehicles that can support the curvature estimate, see Figure 1. It can be seen that the
filter with a low value ofQlat performs much better during the curve exit and this is
how we would really like to tune our filter. However, at a laterstage the performance of
this filter deteriorates. If the recorded video is studied, see Figure 3, it can be seen that
this performance degradation coincides exactly with a lanechange of one of the leading
vehicles. The filter with a higher value ofQlat does not suffer from this problem, but on
the other hand it has a time delay in the estimate during the curve exit.

The aim of this paper is to detect lane departures of the leading vehicles and adapt the
models accordingly, in order to obtain an improved road geometry estimate. When the
lane departures have been detected, the compromise discussed above can systematically
be resolved. This is accomplished by using a smallQlat when the assumptioṅyi = 0 is
valid and only increaseQlat during lane departure maneuvers.

Detection of lane departures and other model changes in automotive tracking has pre-
viously been studied, for example in Kaempchen et al. (2004), Weiss et al. (2004), where
Interacting Multiple Models (IMM) (Bar-Shalom and Li, 1993) are used. However, their
purpose is to improve the position estimates of the surrounding objects, rather than the
road geometry parameters. Another approach is presented inYen et al. (2004), where a
neural network is used to detect lateral movement in a visionbased system. The method
we propose is different and based on the standardcumulative sum(CUSUM) algorithm
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Figure 3: A snapshot from the video just after time4270 s, where the lane change
of the tracked vehicle commences.

(Page, 1954, Gustafsson, 2000), which is augmented with a module for correcting the
error caused by using the wrong model during the detection phase, before the CUSUM
algorithm alarms.

The paper is structured as follows. First, the dynamic modeland the estimation al-
gorithm are briefly reviewed in Section 2. This is followed bya discussion on how to
detect lane departures of leading vehicles and how this information can be used to obtain
better estimates. In Section 4 it is discussed how the error caused by using the wrong
model during the detection phase can be corrected. Finally,we provide a discussion on
alternative methods in Section 5 and state our conclusion inSection 6.

2 Estimation Problem

The dynamic model is based on a curved, road-aligned coordinate system, defined in Fig-
ure 4, wherex is the longitudinal position along the road andy is the lateral position
perpendicular tox. For example, this means that ifyi is the lateral position of objecti,
thenyi = 0 simply means that objecti is at the center of our own lane, irrespective of
road shape. For the lateral dynamics, a constant position model is used, i.e.,̇yi = 0, and
for the longitudinal dynamics a constant velocity model is used. Other states in the model
are lane widthW , host vehicle lateral positionyoff , host vehicle heading angle relative
to the laneΨrel, road curvature parameterc0, which is defined as the inverse road radius
and finally the road clothoid parameterc1, i.e., the curvature change rate. The vision sys-
tem delivers estimates ofW , yoff , Ψrel andc0, which are used as measurements in our
estimation problem. Furthermore, the radar provides measurements of the relative posi-
tion of objects resolved in the coordinate system(x̃, ỹ), attached to the host vehicle. The
dynamic model is discussed in more detail in the Appendix andthe resulting estimation
problem and its solution is treated in Eidehall (2004), Eidehall and Gustafsson (2004),
Eidehall et al. (2005). Tuning of the process and measurement noise will not be discussed
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Figure 4: The surrounding vehicles are conveniently modeled and tracked using a
curved, road-aligned coordinate system(x, y).

in detail, except for the process noise ofyi. The discrete-time dynamic model describing
the evolution ofyi over time is given by

yi
t+1 = yi

t + wi
t, (1)

wherewi
t is zero mean white Gaussian noise, with varianceQlat. In applying an Extended

Kalman Filter (EKF), the tuning parameterQlat describes to what degree it is believed
that vehicles will keep driving at the same lateral positionin relation to the lane.

3 Detecting Lane Departures

The approach employed for improving the road geometry estimates based on detecting
lane departures is illustrated in Figure 5. This is a standard approach within the area of
change detection, which is a well established research area, see, e.g., Gustafsson (2000),
Basseville and Nikiforov (1993), Kay (1998). The aim of the detector in Figure 5 is to
detect lane departures based on the information available in the residualsεt = yt − ŷt

from the estimation algorithm. When a lane departure is detected this is indicated by
an alarm from the detector, which is used to temporarily change model for the vehicle
performing the lane departure. This implies that the estimation algorithm can provide a
better estimate, simply due to the fact that a more accurate model is used. This section
is concerned with devising the detection algorithm illustrated with the detection box in
Figure 5. The estimation algorithm used in the present studies is based on the extended
Kalman filter (Eidehall, 2004, Eidehall and Gustafsson, 2004). The basic components of
a change detection algorithm are illustrated in Figure 6.
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Figure 5: The estimation algorithm delivers residualsεt, which are used in the de-
tector to decide whether a change has occurred or not. If a change is detected this
information is fed back for use in the estimation algorithm.Note that in this appli-
cation, one detector for each tracked vehicle is needed.

3.1 Distance Measure

The distance measure is used to assess whether a change has occurred or not. It is an
important design variable, that should be chosen with the application in mind. Com-
mon standard choices are to use the residualsst = εt or the squared residualsst = ε2

t .
However, in the present application this would provide poordetection performance. The
reason is that the residuals only contain angular information. This would imply that the
distance measure implicitly depend on the longitudinal distance to the leading vehicle,
whereas for detecting lane departures we are only interested in lateral distances. If the
longitudinal distance to the leading vehicle is small, a small change of its lateral position
would lead to a large angular change. If the same change of lateral position would be
observed for a vehicle further away, the angular change would be smaller. Hence, we
need a distance measure that is invariant to the distance to the leading vehicle. The most
natural choice in this respect is provided by lateral displacement of the leading vehicle,
approximately given by

st = |εtrt|, (2)

wherert denotes the distance to the leading vehicle, available fromthe estimation algo-
rithm, primarily based on the radar measurements. The reason for using|εtrt| and not just
εtrt in (2) is that we want to be able to detect both left and right lateral displacements,
using a one-sided test.

-εt Distance
Measure

-st Averaging -gt Thresholding -Alarm

Stopping rule

Figure 6: The components of the detector are a distance measure, and a stopping
rule, where the latter consists of an averaging and a thresholding procedure.
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3.2 Stopping Rule

The stopping rule is used to give an alarm when an auxiliary test statisticgt exceeds a
certain threshold. One of the most powerful tools for obtaining a good stopping rule

in change detection problems is provided by theCUSUM algorithm, introduced by Page
(1954).

Algorithm I.1 (CUSUM)

1. gt = gt−1 + st − ν.

2. If gt > h: Alarm, gt = 0 andtalarm = t.

3. If gt < 0: gt = 0 andt̂change= t.

A rather detailed account of the CUSUM algorithm and its application in state estimation
problems is provided in Gustafsson (2000). However, for thediscussion to come we
point out that the detection delay is the time delay between the actual event, in this case
the start of a lane change manoeuvre, and the detection. In the CUSUM algorithm the
detection delay is the time it takes forgt to reach the thresholdh, i.e.,talarm− t̂change. This
means that when an alarm is triggered, the actual event took place a certain time ago. We
will get back to this fact in Section 4, where it is used to further enhance the estimation
performance.

3.3 Application and Result

When the CUSUM algorithm gives an alarm this is fed back to the estimation algorithm,
where an increasedQlat is employed for the vehicle performing the lane departure. Since
this model better describes the lane departure it will result in better estimates, which also
is clear from Figure 7. This lane departure model is employedduring an appropriate time,
corresponding to a typical lane change. After this we switchback to the original model.

The idea outlined above has been tested using35 minutes of authentic traffic data.
The detection performance is detailed in Table 1. For the present application a missed

Table 1: Detection performance, based on35 minutes of authentic traffic data.

Type Number
Correct detections 35
Missed detections 3
False detections 27

detection is much worse than false detection. A missed detection clearly degrades the es-
timation performance substantially, see Figure 7, whereasa false detection merely implies
a slight performance degradation, since more noise than necessary is used in the model.
It is interesting, and perhaps not too surprising, to note that most of the false detections
are due to sharp road turns. If these could be isolated, most of the false detections could
probably be eliminated. However, since the false detections do not significantly degrade
the performance this has not been investigated further.
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Figure 7: Illustrating how the estimation performance is improved using lane depar-
ture detection. This is the same data using in Figure 2, but the estimates from the
filter based on change detection is also included.

4 Further enhancement

In this section, we introduce a way of correcting for the error that is caused due to the fact
that the wrong model is used during the detection phase. The idea is to store old mea-
surementsyt, input signalsut, estimateŝxt|t and covariance matricesPt|t in a memory.
We propose arefiltering scheme, that on detection at timetalarm, the filter is rerun with
the correct model between timest̂changeandtalarm in order to correct for the error that is
caused by using the wrong model. The estimate at timetalarm is then replaced with the
estimate that is obtained using the correct model. A schematic illustration of this idea is
given in Figure 8.

-ut

-yt

Estimation
Algorithm

-x̂t|t−1

-
Pt|t−1

-εt
Detector -Alarm

�

6

Memory
-
-

? ?
6 6x̂t|t Pt|t

Figure 8: The change from Figure 5 is that a memory block has been included. The
memory block stores the recent history of the measurements,input signals, estimates
and their covariance.
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In our application, this means thatQlat is increased at timêtchangeand then kept high
according to the previous section so that the total time equals the time of a typical lane
change. A result of this is typically a jump in the estimate atthe detection times. Two
detailed examples of the behavior of the enhanced algorithmare illustrated in Figure 9
and Figure 10. The performance for a five minute data set is shown in Figure 11. From
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Figure 9: The behavior of the the three approaches when the lane changeis detected.
The filter with no detection scheme deteriorates, the filter with detection converges
when switching to the correct model, and the enhanced detection algorithm jumps to
the value it would have had if it had used the correct model from the beginning of
the lane change.

this figure it is interesting to note that in the last turn, around time4500 s, there is a time
delay in the filter which is not present in any of the other turns. This is due to the fact
that there are no vehicles to support the estimate and thus the curve can only be detected
robustly once we have entered it ourselves.

5 Alternative methods

The paper by Weiss et al. (2004) discuss the use of a filter based on interacting multiple
models (IMM) for detecting lane changes. The goal of their work is to improve the po-
sition estimates of surrounding vehicles, rather than roadgeometry. Of course, the same
approach could be used in an integrated road geometry and object tracking model as the
one proposed in this paper in order to also improve road geometry estimation.

In an IMM approach, two or more models are run simultaneouslyand they are each
given a probability, of being the “correct model”, based on their residuals. The final
estimate is then formed as a weighted average, using the probabilities as weights. We
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Figure 10: Same plots as in Figure 9 but for a different time interval.

believe that the methods we propose here, based on the CUSUM algorithm, have several
advantages. Firstly, a lane change is a distinct event, so either one or the other model is
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Figure 11: This figure shows the curvature estimate for a five minute dataset col-
lected in an authentic traffic environment, compared to the true curvature value. The
vertical lines indicates detection of lane changes. It is interesting to note that in the
last turn, around time4500 s, there is a time delay in the filter which is not present
in any of the other turns. This is due to the fact that there areno vehicles to support
the estimate and thus the turn can only be detected robustly once we have entered it.
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valid, not something in between. This means that conceptually, it is preferable to switch
models completely rather than averaging two models. Secondly, the CUSUM algorithm
provides a clear indication that something has happened, rather than a continuous change
in probabilities and this indication can be used to take appropriate countermeasures. For
example, this is necessary for initiating the refiltering scheme presented in Section 4.

Another idea that could be interesting to investigate is to use a two-sided test. In
the proposed method, the absolute value of the residuals wasused in combination with a
one-sided test. An alternative could be to use the signed residuals and a two-sided test,
which might eliminate some of the false alarms. The reason isthat an alarm could be
triggered by a driver who is "wobbling" in the lane but actually not changing lanes. On
the other hand, it could be argued that we would benefit from detecting any kind of lateral
movement, not just lateral movement related to a lane change.

6 Conclusion

By detecting behavior that deviates from the model in a tracking system, we can rely
more on the model when it in fact is accurate. In the present application, this means that
the road geometry estimate, which is supported by the motionof surrounding vehicles,
can be significantly improved. A CUSUM algorithm is used, which has the advantage of
giving a distinct alarm when a change has occurred. It is alsoconcluded that the method
of correcting for the error that was caused by using the wrongmodel during the detection
phase does give further improvements of the estimation accuracy.
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Appendix – Dynamic Model

In this appendix the underlying dynamic model that is used throughout the paper is dis-
cussed in more detail. The derivation is performed in continuous-time. The discrete-time
dynamics are obtained using the standard sampling formula (Rugh, 1996), under the as-
sumption of piecewise constant input signals.

System Model

The coordinatesx andy denote the position in the curved coordinate system, which is
attached to the road according to Figure 4. The longitudinalcoordinatex is relative,
i.e., x is the longitudinal distance between the host vehicle and the tracked object. The
motion model for the surrounding vehicles is greatly simplified in using the curved, rather
than a Cartesian coordinate system. For example, it allows us to use the equatioṅyi =
0, to model the assumption that the surrounding vehicles willfollow their own lanes.
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In the longitudinal direction̈xi = −a cos(Ψrel) will be used, wherea is the measured
acceleration of the host vehicle, if available. If there areno measurements of the host
vehicle’s acceleration it is simply modeled as a random walk. Hence, we typically have
the following motion model:

ẋi = vi, (3a)

v̇i = −a cos(Ψrel), (3b)

ẏi = 0, (3c)

wherevi is the longitudinal relative velocity of vehiclei, i.e., the time derivative ofxi. It
is affected by the host vehicle acceleration since it is therelativevelocity that is modeled.
For the road geometry parameters we first clarify thatΨrel is the angle between the host
vehicle and the lane, see Figure 4, whereasΨabs is the angle to some fix reference. A
relationship between the two can be obtained by differentiating Ψrel w.r.t. time,

Ψrel = Ψabs+ γ ⇒ (4a)

Ψ̇rel = Ψ̇abs+ γ̇ = Ψ̇abs+
v

r
= Ψ̇abs+ c0v, (4b)

wherer is the current road radius,v the velocity andγ denotes the angle between the lane
and some fix reference.̇Ψabs is typically measured using a yaw rate sensor. Furthermore,

ẏoff = sin(Ψrel)v ≈ Ψrelv. (5)

UsingẆ = 0 and ċ1 = 0 continuous-time motion equations for the road model can be
written

Ẇ = 0, (6a)

ċ0 = vc1, (6b)

ċ1 = 0, (6c)

and for the motion of host vehicle we have

ẏoff = vΨrel, (7a)

Ψ̇rel = vc0 + Ψ̇abs. (7b)

To account for uncertainties in the model we add zero mean white Gaussian noise to the
corresponding discrete-time equations. The covariance matrices areQroad, Qhost andQobj

for the road, host and object states, respectively. Note that Qlat, defined in Section 1 is the
diagonal component ofQobj corresponding to (3c), the lateral movement of the tracked
vehicles.

Measurement Model

The measurements for the host vehicle areΨm
rel, cm

0 , Lm andRm, where the two latter
are the distances to the left and right lane marking, see Figure 4. Superscriptm is used
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to denote measured quantities. The (relative) position(x̃m, ỹm) of the surrounding ve-
hicles is measured using radar. Note that the radar deliversmeasurements resolved in the
Cartesian coordinate system, which is attached to the vehicle. The resulting measurement
model is,

Lm = W/2 − yoff , (8a)

Rm = −W/2 − yoff , (8b)

Ψm
rel = Ψrel, (8c)

cm
0 = c0, (8d)

(
x̃i,m

ỹi,m

)
=

R(−Ψrel)

c0

(
(1 + c0y

i) sin(c0x
i)

(1 + c0y
i) cos(c0x

i) − 1 − c0yoff

)
, (8e)

whereR(−Ψrel) is a rotational matrix performing clockwise rotation ofΨrel radians. Fur-
thermore, zero mean white Gaussian measurement noise is added to (8). The covariance
matrices areRhost andRobj for the host/road and object states, respectively.
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Notation

Note that all vectors are column vectors. In general, lower case letters are used to denote
vector valued and scalar variables and upper case letters are used for matrix valued vari-
ables. However, there might be exceptions from these general rules due to conventions.
The same symbol can be used for different purposes. The principal notation is listed
below, any deviations from this is explained in the text.

Symbols and Operators

xt State vector
yt Measurement signal
ut Known input signal
xl

t Linear state variable
xn

t Nonlinear state variable
xp

t State variable estimated using the particle filter
xk

t State variable estimated using the Kalman filter
et Measurement noise
wt Process noise
ϑ Parameter vector
θ Parameter vector
Pt Covariance matrix
Qt Covariance matrix for the process noisewt

Rt Covariance matrix for the measurement noiseet

YN Measurements up to timeN , {y1, y2, . . . , yN}
N Length of the observed data set
x̄0 Initial value for the statex

255
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P̄0 Initial value for the covarianceP
x̂ Estimator or estimate ofx, determined by the context
x̂t|t Estimate ofx at timet, given the information available at time

t, i.e., the filtered estimate
x̂t+k|t Estimate ofx at timet + k, given the information available at

time t. k < 0 means smoothed estimate, andk > 0 means
predicted estimate

εt Residual vector, innovations
f( · ) Equations for the system model
h( · ) Equations for the measurement model
Ft Linearized state update matrix
Ht Linearized measurement relation matrix
Kt Kalman gain
N (m,P ) Normal (Gaussian) distribution with mean valuem and covari-

ance matrixP
N (x |m,P ) Normal (Gaussian) probability density function with mean

valuem and covariance matrixP
Φ(x) Normal (Gaussian) distribution function
U(a, b) Uniform distribution over the interval[a, b]
q Unit quaternion
cf Position of the camera center, expressed in the F-system
vt Velocity of the camera center, expressed in the F-system
Rcf Rotation matrix, expressing rotation from the F-system to the

C-system
ω Angular velocity
In Unit matrix of dimensionn
0n Null matrix of dimensionn
M Number of particles
t(x) Target probability density function
s(x) Sampling probability density function

x
(i)
t|s Particlei

q
(i)
t Importance weighti

q̃
(i)
t Normalized importance weighti

δ( · ) Dirac delta function
δkl Kronecker delta function
px(x) Probability density function ofx
p(x) Short form of above
px,y(x, y) Joint probability density function ofx andy
p(x, y) Short form of above
px|y(x|y) Conditional probability density function ofx giveny
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p(x|y) Short form of above
pθ(YN ) Family of probability density functions, indexed by the param-

eterθ
p̂M ( · ) Probability density function approximated usingM samples
L Length of the sliding window
t Time
Ts Sample time
ν Drift term in the CUSUM algorithm
VN (θ, YN , UN ) Criterion function to be minimized
L( · ) Log-likelihood function
l( · ) Likelihood function
g( · ) Inference function
G(eiω) Transfer function
W Lane width
Qlat Covariance matrix for the noise added to the lateral position of

a vehicle
yoff Host vehicle lateral position
Ψrel Host vehicle heading angle relative to the lane
c0 Road curvature parameter
c1 Road clothoid parameter
Rn The set of real numbers inn dimensions
R+ The set of positive real numbers
ri[P ] Theith row degree of a polynomial matrixP (s)
diag(a) A diagonal matrix witha as diagonal entry
ẋ Time derivative ofx
R(B) Range of the matrixB
, Equal by definition
∼ Denotes “is distributed according to”
∝ Proportional to
∈ Belongs to
∀ For all
a.s.−→ Almost sure convergence
d−→ Convergence in distribution

arg min
x

f(x) The value ofx that minimizesf(x)

Pr(x ≤ K) Probability that the random variablex is less thanK
det A Determinant of matrixA
dim A Dimension of matrixA
Tr A Trace of matrixA
AT Transpose of matrixA
A−1 Inverse of matrixA
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⌊ · ⌋ Rounding downwards to nearest integer
sign(x) Sign function
Cov{x} Covariance matrix of the random variablex
E{x} Expectation of the random variablex
E{x|y} Conditional expectation of the random variablex, given that

the random variabley = y
Eθk

{xt|YN} Expected value w.r.t.pθ=θ′(XN |YN )
Var{x} Variance of the random variablex
min Minimize
max Maximize
‖x‖2

A Weighted vector norm,‖x‖2
A = xT Ax

| · | Absolute value

Abbreviations and Acronyms

a.s. almost sure
flops Floating-Point Operations
i.i.d. independent identically distributed
pdf probability density function
s.t. subject to
w.r.t. with respect to
ABS Anti-lock Braking System
ACC Adaptive Cruise Control
APF Auxiliary Particle Filter
AR Augmented Reality
ARMAX AutoRegressive Moving Average with eXternal input
ARX AutoRegressive with eXternal input
CUSUM CUmulative SUM
DAE Differential-Algebraic Equation
DCM Direction Cosine Matrix
DGPS Differential GPS
DME Distance Measuring Equipment
EKF Extended Kalman Filter
EF Equivalent Flop
EM Expectation Maximization
FIR Finite Impulse Response
GIS Geographic Information System
GPB Generalized Pseudo-Bayesian
GPS Global Positioning System
GS Gaussian Sum
GPF Gaussian Particle Filter
GSPF Gaussian Sum Particle Filter
HMM Hidden Markov Model
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IMM Interacting Multiple Model
IMU Inertial Measurement Unit
INS Inertial Navigation Systems
IR Infrared
IS Importance Sampling
KF Kalman Filter
LMI Linear Matrix Inequality
LS Least-Squares
MAP Maximum A Posteriori
MC Monte Carlo
MCMC Markov Chain Monte Carlo
MEMS MicroElectronic Mechanical Systems
MFD Matrix Fraction Description
MHE Moving Horizon Estimation
ML Maximum Likelihood
MMS Minimum Mean Square
MMSE Minimum Mean Square Error
MPC Model Predictive Control
MPF Marginalized Particle Filter
MSE Mean Square Error
MV Minimum Variance
NARMAX Nonlinear ARMAX
ODE Ordinary Differential Equation
PF Particle Filter
POI Point-of-interest
QP Quadratic Program
RLS Recursive Least Squares
RMSE Root Mean Square Error
RPEKF Range Parameterized Extended Kalman Filter
RPF Regularized Particle Filter
RTS Rauch-Tung-Striebel
SDAE Stochastic Differential-Algebraic Equation
SIR Sampling Importance Resampling
SIS Sequential Importance Sampling
SLAM Simultaneous Localization and Mapping
SO Special Orthogonal
SVD Singular Value Decomposition
TAP Terrain Aided Positioning
UKF Unscented Kalman Filter
WLS Windowed Least Squares
YALMIP Yet Another LMI Parser
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acceleration, 8, 201, 203, 209, 252
accelerometer, 8, 202–204
acceptance – rejection sampling, 55–57, 190
acceptance probability, 53, 190
active safety system, 2
adaptive cruise control, 2, 230
aircraft navigation,seenavigation system
aircraft positioning,seepositioning appli-

cations
alarm, 44, 245, 247, 251
angular velocity, 8, 201, 204, 207
anti-lock braking system, 2
artificial marker, 7, 201, 202, 208
ARX model, 162
augmented reality, 201
automotive positioning,seepositioning ap-

plications
automotive safety system, 2
automotive sensors, 3
automotive target tracking,seetarget track-

ing applications
auxiliary test statistic,seechange detection
auxiliary particle filter,seeparticle filter
azimuth, 136, 231, 232

band limited noise, 146
Bayes’ theorem, 33, 111, 132, 163, 174,

175, 190, 191

Bayesian bootstrap, 173
bearing, 226
bearings-only target tracking,seetarget

tracking applications
bias estimation, 227
bilinear model, 178, 186
black box system identification,seesystem

identification
bootstrap, 54
burn-in, 56

camera, 7, 201, 206
camera center, 203, 208
model, 206
pinhole model, 206

Cartesian coordinate system, 226, 230
central limit theorem, 52, 110, 174
change detection, 43, 49, 245

auxiliary test statistic, 44, 247
averaging, 44, 246
distance measure, 44, 246
stopping rule, 44, 246, 247
thresholding, 44, 246

chaotic model, 179
Chapman–Kolmogorov equation, 34
collision avoidance, 2, 3, 107, 116, 230,

241
colored noise, 115

261
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computer controlled system, 146
concave function, 160
conditionally linear, 107, 111
constrained state estimation,seestate esti-

mation
constraints, 45, 47, 160
continuous-time white noise, 147
convex optimization, 45, 47, 159, 160
convex optimization estimation, 161
convex optimization filtering, 48, 162, 163
coordinate system, 203
coordinated turn model, 4, 227
correlated noise, 123
Cramér-Rao, 106, 224
cross-covariance, 114, 150
cumulative sum (CUSUM), 44, 45, 243
curve fitting, 45
curved coordinate system, 5, 230, 242, 244,

251

damped Gauss – Newton, 186
dead-reckoning, 201, 202
depth, 207
depth database, 227
descriptor system, 22, 146, 147, 153, 162
detection, 6, 247
diagonal model, 109
differential GPS, 121, 227
differential-algebraic equation, 22, 145, 152

example, 151
linear, 29, 145
standard form, 30, 147, 152
stochastic, 23, 29, 145

Dirac delta function, 51
Direction Cosine Matrix, 204
distance measure,seechange detection
distance measurement equipment, 227
disturbance, 146
drift term, 45
Dymola,seeobject-oriented modeling

effective sample size, 60
empirical density function, 51, 52
equivalent flop, 12, 77, 131, 134, 221
Euler angles, 205
Euler approximation, 208

Euler symmetric parameters, 205
Euler-Rodrigues parameters, 205
expectation maximization, 72, 185–188

system identification, 75
experiment design, 70
extended Kalman filter,seeKalman filter
external signal, 22

fault diagnosis, 49
feature, 8, 202, 206
feature displacement, 202, 206, 208
feature extraction, 9, 206
feedback, 2
fictitious measurement, 165
filter banks, 49
fixed-interval smoothing,seesmoothing
fixed-lag smoothing,seesmoothing
fixed-point smoothing,seesmoothing
floating-point operations, 133
focal length, 206
forward-backward smoothing, 67
free-D system, 209

Gauss – Newton, 195
Gaussian particle filter,seeparticle filter
Gaussian sum, 39, 217
Gaussian sum particle filter,seeparticle fil-

ter
generalized causality principle, 24
generalized pseudo-Bayesian, 39
generalized real Schur form, 148
generalized Sylvester equation, 148
generalized system, 22, 146
geographic information system, 116, 226,

227
global maximum, 195
global optimum, 47, 160
Gram–Schmidt procedure, 123, 132
gravity, 203
gray box identification,seesystem identifi-

cation
gyroscope, 8, 202, 203, 207

Hammerstein – Wiener structure, 185
heading, 119
hidden Markov model, 25, 159, 164
Hilbert space, 40
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homography, 202

image feature, 206, 209
image plane, 206, 208
image processing, 3, 201
implicit measurement, 23, 207
implicit system, 22, 146
importance function, 53, 60
importance sampling, 53, 57, 190
importance weight, 54, 58
impulse controllability, 149
impulse response, 21
incomplete data, 72, 187
inertial forces, 203
inertial measurement unit, 8, 202
inertial navigation system, 106, 118, 226,

228
inertial sensor, 201, 203, 206, 208
inertial system, 203
inference function, 174
infrared, 226, 231
initial parameter, 193
innovation form, 162, 178
innovation process, 40, 43
instrument landing system, 202
integrated aircraft navigation, 118
integrated navigation, 201
interacting multiple model, 39, 243, 249
internal variable, 22, 146, 150
Itô calculus, 23
iterated EKF, 38

Jacobian, 186
Jensen’s inequality, 73, 188
jittering, 60
jump Markov linear system, 113

Kalman filter, 11, 41, 63, 64, 150, 174, 186
descriptor system, 154
differential-algebraic equation, 151
extended, 4, 5, 11, 37, 38, 75, 106,

117, 217, 245
linearized, 37
unscented, 39

Kronecker canonical form, 30
Kronecker delta function, 29
Kullback-Leibler information, 73

lane guidance, 3, 230
Laplace transform, 147
latitude, 229
law of large numbers, 52
least-squares, 32, 46

weighted, 41, 45, 163
windowed, 48

likelihood function, 57, 186, 224
limit distribution, 53
linear regression, 75, 161, 177, 178
linear state-space model,seestate-space

model
linear sub-structure, 27, 51, 63, 107, 115,

122, 131, 215, 217
linearized Kalman filter,seeKalman filter
local minima, 75, 166, 186, 195
local optimum, 47, 160
log-concave, 48, 159, 160, 163, 164
log-likelihood, 71, 73, 188
longitude, 229

manifold, 205
map information, 23
marginalization, 64, 72, 107, 108, 162, 172,

174
marginalize, 161
marginalized particle filter, 4, 5, 28, 63, 64,

72, 75, 105, 108, 131, 171, 174,
215, 217, 219

complexity analysis, 131, 133, 221
quantization, 223

markerbased, 201
markerless, 202
Markov chain Monte Carlo method, 51, 53,

65
Markov property, 24, 33, 111, 190
matrix fraction description, 149
maximum a posteriori, 36, 46, 159, 160
maximum likelihood, 10, 36, 71, 185–187,

224
measure theory, 25
measurement model, 10, 22, 24, 252
measurement noise, 10, 25
measurement update, 41
Metropolis – Hastings algorithm, 56
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Metropolis – Hastings independence
sampling, 56, 190

midriser quantizer, 223
minimum mean square error, 36
minimum variance, 36
missing data, 47
missing data, 72, 75, 187, 188
mixed linear/nonlinear state-space

model,seestate-space model
model, 21
model predictive control, 45, 47, 48
model uncertainty, 47
Modelica,seeobject-oriented modeling
motion model, 5, 202, 226, 251
moving horizon estimation, 48

NARMAX, 185
navigation system, 202

aircraft, 105, 107, 202
augmented reality, 7, 201
automotive, 2, 3
underwater, 107

neural network, 185
Newton’s second law, 204
nilpotent matrix, 30, 147
non-convex, 47, 49, 72, 160, 187, 205
noncausal system, 146
nonlinear smoothing, 189
nonlinear state estimation,see

state estimation
nonlinear state-space model,see

state-space model
nonlinear system identification,see

system identification
nuisance variable, 161, 208

object-oriented modeling, 22, 145
Dymola, 22, 145
Modelica, 22, 145
Omola, 22, 145
SimMechanics, 145

observer, 42
observer canonical form, 178
Omola,seeobject-oriented modeling
optical distortion, 206
ordinary differential equation, 23, 146, 148

orientation, 7, 204, 205

parameter estimation,seesystem identifi-
cation

particle smoother, 192
particle filter, 11, 40, 56, 58, 64, 105, 108,

171, 173, 174, 186, 189, 191, 207,
218

algorithm modifications, 60
auxiliary, 60, 115
Gaussian, 60, 115
Gaussian sum, 60
implementation, 61
regularized, 60
resample, 58, 62
system identification, 74, 75, 171

particle methods,seesequential Monte
Carlo methods

particle smoother, 65, 66, 75, 185, 191
passive safety system, 2
perfect sampling, 52
pinhole model, 206
pitch, 119
point estimate, 35, 68
point-mass filter, 39, 106, 217
polynomial matrix, 149

row degree, 149
row reduced, 149

pose, 208
positioning, 23, 107
positioning applications, 116, 225–227

aircraft, 226, 228
automotive, 226, 230
underwater, 226, 227

prediction error method, 71
prior, 24, 36
prior information, 159, 164
process noise, 10, 25
proper, 150

quadratic program, 46, 47
quantization, 223

radar, 4, 136, 223, 226, 230, 232, 241, 244,
253

radar altimeter, 119, 228
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radar target tracking,seetarget tracking ap-
plications

random number generation, 53, 189
random walk, 75, 171, 172
range, 136
range parameterized extended Kalman fil-

ter, 39, 231
Rao-Blackwellization, 64, 107, 174
Rao-Blackwellized particle filter,see

marginalized particle filter
Rauch-Tung-Striebel formulas, 43
refiltering, 248
regularized particle filter,seeparticle filter
resample, 54, 58
residual, 245
residual sampling, 59
Riccati recursion, 117, 135, 165, 176, 222
rigid body, 204
road geometry, 3, 4, 6, 226, 230, 241
road model, 252
robust estimation, 48
roll, 119
root mean square error, 139
rotating masses, 151
rotation parameterization, 205
rotation group, 205
rotation matrix, 204
roughening noise, 60, 171, 172, 175, 179

sample impoverishment, 59
sampling density, 53, 190
sampling importance resampling, 53, 55
scene model, 9, 202
see-through head-mounted display, 7
semi-state system, 22, 146
sensor fusion, 1, 3, 6, 9, 10, 225, 234, 242
sensor network, 223
sensor offset, 115
sequential Monte Carlo method, 11, 39, 51,

74
SimMechanics,seeobject-oriented model-

ing
simple random resampling, 59
singular system, 22
singular value decomposition, 148
smoothing, 42, 65, 188

fixed-interval smoothing, 42
fixed-lag smoothing, 43
fixed-point smoothing, 43

sonar, 226, 227
spline, 39
square-root factorization, 42, 43
state augmentation, 75, 172
state estimation, 31, 159

change detection, 43, 245
constrained, 47, 159, 160
convex optimization, 45, 159
deterministic, 45
linear, 40
nonlinear, 8, 10, 31, 36, 75
smoothing, 42, 65, 164, 186, 189

state-space model, 23, 25, 175
linear, 29, 164
mixed linear/nonlinear, 4, 27, 64, 105
nonlinear, 10, 25, 105

steering wheel angle, 5
stochastic integration, 51
stopping rule,seechange detection
stratified sampling, 59
strictly white noise, 26
subspace identification,seesystem identi-

fication
system identification, 24, 69, 162, 188

bilinear, 74
black box, 70
differential-algebraic equation, 71
expectation maximization, 72, 74, 75,

185, 189
experiment design, 70
gray box, 70, 178
marginalized particle filter, 75, 171
nonlinear, 11, 69, 171, 185, 186
particle filter, 171
particle methods, 74
subspace, 178
subspace method, 71, 171
validation, 70

system model, 10, 24, 251
systematic sampling, 59, 60

target density, 53, 189
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target tracking applications, 107, 116, 136,
225, 226, 230

automotive, 226, 230
bearings-only, 117, 226, 231
radar, 136, 226, 232

Taylor expansion, 38, 227
terrain elevation database, 119, 210, 228,

229
terrain navigation, 116
terrain-aided positioning, 106, 118
time update, 41
transfer function, 21, 149, 162

causal, 155
proper, 149, 150

transition probability, 164
triangular model, 111, 117
two-filter formula, 34, 67

underwater depth map, 227
underwater positioning,seepositioning ap-

plications
unimodular matrix, 149
unit quaternion, 203, 205
unmodeled dynamics, 146
unscented Kalman filter,seeKalman filter

validation, 70
variance reduction, 174, 221
vector space, 205
vision, 4, 5, 8, 206, 223, 226, 230, 241, 244
Volterra series, 21, 185

weight matrix, 46
weighted bootstrap, 54
weighted least-squares,seeleast-squares
wheel speed, 5, 226, 230
white noise, 26, 146, 148, 160
whiteness test, 49
Wiener – Kolmogorov filtering theory, 32
windowed least-squares,seeleast-squares

yaw rate, 5
yaw rate sensor, 252
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