
Design and Implementation
of Efficient Algorithms

for Wireless MIMO Communication Systems

by
Sandra Roger Varea

Supervisors:
Prof. Alberto Gonzalez Salvador

Dr. Vicenç Almenar Terré

DOCTORAL THESIS

Valencia, Spain
July 2012

To Max

“No queda más remedio que jugar la partida con
las cartas que el burlón Destino te pone en las manos,
aunque éstas sean pésimas”

“There is nothing to do but to play the game
with the hand dealt by a mocking Destiny,
no matter how terrible”

El Capitán Alatriste,
Arturo Pérez Reverte

Abstract

In the last decade, one of the most significant technological developments
that led to the new broadband wireless generation is the communication
via multiple-input multiple-output (MIMO) systems. MIMO technologies
have been adopted by many wireless standards such as Long Term Evo-
lution (LTE), Wordlwide interoperability for Microwave Access (WiMAX)
and Wireless Local Area Network (WLAN). This is mainly due to their abil-
ity to increase the maximum transmission rates, together with the achieved
reliability and coverage of current wireless communications, all without the
need for additional bandwidth nor transmit power. Nevertheless, the ad-
vantages provided by MIMO systems come at the expense of a substantial
increase in the cost to deploy multiple antennas and also in the receiver
complexity, which has a major impact on the power consumption. There-
fore, the design of low-complexity receivers is an important issue which is
tackled throughout this thesis.

First, the use of MIMO channel matrix preprocessing techniques to
either decrease the computational cost of optimal sphere decoders or to
improve the performance of suboptimal linear, successive interference can-
cellation (SIC) or tree-search detectors is investigated. A detailed overview
of two widely employed preprocessing techniques, the Lenstra, Lenstra,
Lovasz (LLL) lattice-reduction (LR) algorithm and the vertical Bell-Labs
layered space-time zero forcing decision feedback equalization (VBLAST
ZF-DFE) ordering, is presented. Both the complexity and performance of
these methods are evaluated and compared. In addition, a low-complexity
implementation of the VBLAST ZF-DFE is proposed and included in the
evaluation.

Second, a low-complexity tree-search MIMO detector, called the variable-
breadth (VB) K-Best detector, is developed. The main idea of this method
is to exploit the impact of the channel matrix condition number in data
detection in order to decrease the complexity of already proposed detec-
tion schemes. In the VB K-Best method, the value of its K parameter is
varied depending on the channel matrix condition number. The proposed
approach includes a low-complexity condition number estimator stage and
a threshold selection method. The results show that the proposed scheme
has lower average complexity than a fixed K-Best detector of similar perfor-

iv Abstract

mance. In addition, a second detection scheme is proposed, which employs
the idea of condition number thresholding to avoid carrying out a lattice-
reduction stage when the channel has already good condition number. This
way, a high number of LR calls is avoided while keeping good detection per-
formance.

In the third part of this thesis, several contributions which involve the
use of LR for MIMO communications are presented. First, the combination
of LR with the K-Best algorithm is investigated and alternative implemen-
tations that outperform previous proposals are developed. An extended
LLL algorithm for LR is proposed to assist the preprocessing part of some
lattice-reduction-aided (LRA) K-Best schemes. Finally, this extended LLL
algorithm is exploited to decrease the computational cost of several LRA
precoding methods. In addition, the most employed signal precoding ap-
proaches are evaluated and compared in terms of both computational cost
and performance.

Next, the problem of efficient soft detection in MIMO bit-interleaved-
coded-modulation (MIMO-BICM) systems is addressed. An efficient fixed-
complexity demodulator for systems working with quantized reliability in-
formation is proposed. This approach reduces the complexity of previously
proposed schemes through the combination of two strategies: a novel tree-
pruning based on quantization and a clipping-based pruning. Results after
quantization reveal that a significant complexity reduction is achieved with
negligible performance degradation.

The last part of the thesis is devoted to the use of Graphic Processing
Units (GPU) for the efficient implementation of MIMO receivers. Both a
hard-output and a soft-output version of the fixed-complexity sphere de-
coder are implemented in GPU. Results show that the proposed imple-
mentations decrease the computational time required for the data detec-
tion stage in MIMO systems considerably, with respect to conventional
CPU implementation. Moreover, a fully-parallel soft-output scheme with
a GPU-aware preprocessing stage is developed. Again the execution time
of the proposed GPU implementation is compared with its execution time
on a high performance CPU, showing that the GPU outperforms the CPU.
Furthermore, the throughputs of all the algorithms are shown to be higher
than those of other recent implementations while ensuring nearly-optimal
detection performance.

Keywords: MIMO, Sphere decoding, Tree-search detection, lattice reduc-
tion, log-likelihood ratio quantization, GPU.

Resumen

En la última década, uno de los avances tecnológicos más importantes que
han hecho culminar la nueva generación de banda ancha inalámbrica es la
comunicación mediante sistemas de múltiples entradas y múltiples salidas
(MIMO). Las tecnoloǵıas MIMO han sido adoptadas por muchos estándares
inalámbricos tales como Long Term Evolution (LTE), Wordlwide inter-
operability for Microwave Access (WiMAX) y Wireless Local Area Net-
work (WLAN). Esto se debe principalmente a su capacidad de aumentar
la máxima velocidad de transmisión, junto con la fiabilidad alcanzada y la
cobertura de las comunicaciones inalámbricas actuales sin la necesidad de
ancho de banda extra ni de potencia de transmisión adicional. Sin embargo,
las ventajas proporcionadas por los sistemas MIMO se producen a expensas
de un aumento sustancial del coste de implementación de múltiples ante-
nas y de la complejidad del receptor, la cual tiene un gran impacto sobre
el consumo de enerǵıa. Por esta razón, el diseño de receptores de baja
complejidad es un tema importante que se abordará a lo largo de esta tesis.

En primer lugar, se investiga el uso de técnicas de preprocesado de la
matriz de canal MIMO bien para disminuir el coste computacional de de-
codificadores óptimos o bien para mejorar las prestaciones de detectores
subóptimos lineales, de cancelación sucesiva de interferencias (SIC) o de
búsqueda en árbol. Se presenta una descripción detallada de dos técnicas
de preprocesado ampliamente utilizadas: el método de Lenstra, Lenstra,
Lovasz (LLL) para lattice reduction (LR) y el algoritmo VBLAST ZF-DFE.
Tanto la complejidad como las prestaciones de ambos métodos se han evalu-
ado y comparado entre śı. Además, se propone una implementación de bajo
coste del algoritmo VBLAST ZF-DFE, la cual se incluye en la evaluación.

En segundo lugar, se ha desarrollado un detector MIMO basado en
búsqueda en árbol de baja complejidad, denominado detector K-Best de
amplitud variable (VB K-Best). La idea principal de este método es apro-
vechar el impacto del número de condición de la matriz de canal sobre la
detección de datos con el fin de disminuir la complejidad de los sistemas
de detección anteriormente propuestos. El valor del parámetro K se vaŕıa
dependiendo del número de condición del canal. El esquema propuesto
incluye una etapa de estimación del número de condición de baja compleji-
dad y un método de selección del umbral. Los resultados demuestran que el

vi Resumen

sistema propuesto tiene menor complejidad media que un detector K-Best
fijo de prestaciones similares. Además, se propone un segundo esquema de
detección que utiliza umbralización basada en número de condición para
evitar llevar a cabo una etapa de LR cuando el canal ya tiene un número
de condición suficientemente bueno. De esta manera, se evita un elevado
número de llamadas al algoritmo LR manteniendo buenas prestaciones.

En la tercera parte de esta tesis se presentan varias contribuciones rela-
cionadas con el uso de LR en sistemas de comunicaciones MIMO. En primer
lugar, se investiga la combinación de LR con el algoritmo K-Best y se pro-
ponen implementaciones alternativas para mejorar a las desarrolladas ante-
riormente. Se propone un algoritmo LLL extendido para apoyar a la parte
de preprocesado de algunos esquemas K-Best con LR. Por último, este al-
goritmo LLL extendido se ha explotado para reducir el coste computacional
de varios métodos de precodificación MIMO basados en LR. Además, los
algoritmos de precodificación de señal más utilizados se han evaluado y com-
parado en términos de coste computacional y prestaciones. A continuación
se aborda el problema de la detección soft eficiente en sistemas MIMO con
modulación codificada de bits entrelazados (MIMO-BICM). Se propone un
demodulador eficiente de complejidad fija para sistemas que trabajen con
información de fiabilidad cuantificada. Este esquema reduce la compleji-
dad de los algoritmos propuestos previamente a través de la combinación
de dos estrategias: un algoritmo de poda basado en cuantificación y una
poda basada en clipping. Con ello se consigue una importante reducción
de la complejidad con una degradación marginal en las prestaciones.

La última parte de la tesis se centra en el uso de unidades gráficas
de proceso (GPU) para la implementación eficiente de receptores para sis-
temas MIMO. Se han implementado en GPU algoritmos de complejidad
fija tanto con salidas hard como soft. Los resultados muestran que las
implementaciones propuestas disminuyen considerablemente el tiempo de
cómputo requerido por la etapa de detección de datos en sistemas MIMO
con respecto a la implementación convencional en CPU. Por otro lado, se
ha desarrollado un algoritmo soft totalmente paralelo con una etapa de pre-
procesado adecuada para implementación en GPU. De nuevo se compara
el tiempo de ejecución de la implementación en GPU con el tiempo de eje-
cución en una CPU de alto rendimiento, mostrando que la GPU supera a la
CPU. Además, los throughputs de todos los algoritmos demuestran ser su-
periores a los de otras implementaciones recientes al tiempo que garantizan
unas prestaciones de detección casi óptimas.

vii

Palabras Clave : MIMO, Sphere decoding, detección por búsqueda en
árbol, Lattice reduction, cuantificación de LLR, GPU.

Resum

En l’última dècada, un dels avanços tecnològics més importants que han
fet culminar la nova generació de banda ampla inalàmbrica és la comuni-
cació mitjançant sistemes de múltiples entrades i múltiples eixides (MIMO).
Les tecnologies MIMO han estat adoptades per molts estàndards sense fils
com ara Long Term Evolution (LTE), Wordlwide interoperability for Mi-
crowave Access (WiMAX) i Wireless Local Area Network (WLAN). Això
es deu principalment a la seua capacitat d’augmentar la màxima veloci-
tat de transmissió, juntament amb la fiabilitat assolida i la cobertura de
les comunicacions sense fils actuals, tot açò sense la necessitat d’ample de
banda extra ni de potència de transmisió addicional. No obstant això, els
avantatges proporcionats pels sistemes MIMO es produeixen a costa d’un
important augment dels costos d’implementació de múltiples antenes aix́ı
com de la complexitat del receptor, la qual té un gran impacte sobre el
consum energètic. Per aquesta raò, el disseny de receptors de baixa com-
plexitat és un tema important que s’abordarà al llarg d’aquesta tesi.

En primer lloc, s’investiga l’ús de tècniques de preprocessat de la ma-
triu de canal MIMO bé per disminuir el cost computacional de descodi-
ficadors òptims o bé per millorar les prestacions de detectors subòptims
lineals, de cancellació successiva d’interferències (SIC) o de recerca en ar-
bre. Es presenta una descripció detallada de dues tècniques de preprocessat
àmpliament utilitzades: el mètode de Lenstra, Lenstra, Lovasz (LLL) per a
lattice reduction (LR) i l’algorisme VBLAST ZF-DFE. Tant la complexitat
com les prestacions d’ambdós mètodes s’han avaluat i comparat. Amés, es
proposa una implementació de baix cost de l’algorisme VBLAST ZF-DFE,
la qual s’inclou en la avaluació.

En segon lloc, s’ha desenvolupat un detector MIMO basat en recerca en
arbre de baixa complexitat, denominat detector K-Best d’amplitud variable
(VB K-Best). La idea principal d’aquest mètode és aprofitar l’impacte del
nombre de condició de la matriu de canal sobre la detecció de dades per
tal de disminuir la complexitat dels sistemes de detecció anteriorment pro-
posats. El valor del paràmetre K es varia depenent del nombre de condició
del canal. L’esquema proposat inclou una etapa de estimació del nombre
de condició de baixa complexitat i un mètode de selecció del llindar. Els
resultats demostren que el sistema proposat té menor complexitat mitjana

x Resum

que un detector K-Best fix de prestacions similars. Amés, es proposa un
segon esquema de detecció que utilitza el llindar en el nombre de condició
per evitar dur a terme una etapa de LR quan el canal ja té un nombre de
condició prou bo. D’aquesta manera, s’evita un elevat nombre d’execucions
de l’algorisme LR mantenint bones prestacions.

A la tercera part d’aquesta tesi es presenten diverses contribucions rela-
cionades amb l’ús de LR en sistemes de comunicacions MIMO. En primer
lloc, s’investiga la combinació de LR amb l’algorisme K-Best i es proposen
implementacions alternatives per millorar les desenvolupades anteriorment.
Es proposa un algorisme LLL estès per donar suport a la part de prepro-
cessat d’alguns esquemes K-Best amb LR. Per últim, aquest algorisme LLL
estès s’ha explotat per reduir el cost computacional de diversos mètodes
de precodificació MIMO basats en LR. Amés, els algorismes de precodifi-
cació de senyal més utilitzats s’han avaluat i comparat en termes de cost
computacional i prestacions. A continuació s’aborda el problema de la de-
tecció soft eficient en sistemes MIMO amb modulació codificada de bits
entrellaçats (MIMO-BICM). Es proposa un demodulador eficient de com-
plexitat fixa per a sistemes que treballen amb informació de fiabilitat quan-
tificada. Aquest esquema redueix la complexitat dels algorismes proposats
prèviament mitjançant la combinació de dues estratègies: un algorisme de
poda basat en quantificació i una poda basada en clipping. Els resultats
després de quantificació revelen que s’aconsegueix una reducció important
de la complexitat amb una degradació marginal de les prestacions.

L’última part de la tesi està destinada a l’ús d’unitats gràfiques de
procés (GPU) per a la implementació eficient de receptors per a sistemes
MIMO. S’han implementat en GPU algorismes de complexitat fixa tant
amb eixides hard com soft. Els resultats mostren que les implementacions
propostes disminueixen considerablement el temps de còmput requerit per
l’etapa de detecció de dades en sistemes MIMO respecte a la implementació
convencional en CPU. D’altra banda, s’ha desenvolupat un algorisme soft
totalment parallel amb una etapa de preprocessat adequada per a imple-
mentació en GPU. De nou es compara el temps d’execució de la imple-
mentació en GPU amb el temps d’execució en una CPU d’alt rendiment,
mostrant que la GPU supera la CPU. Amés, els throughputs de tots els
algorismes demostren ser superiors als d’altres implementacions recents,
alhora que garanteixen unes prestacions de detecció quasi òptimes.

Paraules Clau : MIMO, Sphere Decoding, detecció per recerca en arbre,
Lattice reduction, quantificació de LLR, GPU.

Acknowledgements

It is a pleasure for me to thank those who made this thesis possible. First
and foremost, I offer my sincerest gratitude to my supervisors, Prof. Al-
berto Gonzalez and Dr. Vicenc Almenar, who supported me throughout
this thesis with their knowledge and advice whilst allowing me the room to
work in my own way.

I am very grateful to Prof. Mark Flanagan from the University College
Dublin for serving as a reviewer of this thesis. Special thanks also to Dr.
Alexandre Graell i Amat from the Chalmers University of Technology and
to Dr. Miguel Gonzalez Lopez from the Universidade da Coruña for also
serving as reviewers of this thesis and for acting as members of the com-
mittee. All of them provided me with very useful comments that definitely
helped to improve the final manuscript. I thank Prof. Javier Rodriguez
Fonollosa for also being a member of the committee.

I would like to thank Prof. Gerald Matz, who hosted me at the Institute
of Telecommunications of the Vienna University of Technology during some
months. I really appreciate the opportunity he gave me to work within his
team. A special mention goes to Dr. Clemens Novak for all his technical
advice and to Arrate Alonso for making me spend a wonderful time in
Vienna.

I owe my deepest gratitude to Prof. Antonio M. Vidal for his generous
advice regarding many computational complexity aspects and for sharing
with me his wide mathematical knowledge every time that I needed it.

I would like to show my gratitude to all the people at the Universi-
tat Politècnica de València that shared my daily work at the Institute of
Telecommunications and Multimedia Applications (iTEAM). In particular,
I would like to thank Prof. Jose J. Lopez, Dr. Gema Piñero, Dr. Maŕıa de
Diego, Dr. Miguel Ferrer, Dr. Paco Martinez and Dr. Victor M. Garcia.
Thanks also to my current and former colleagues at the iTEAM: Emanuel
Aguilera, Amparo Mart́ı, Fernando Domene, Luis Maciá, Jorge Lorente,

xii Acknowledgements

Carla Ramiro, Laura Fuster, Ana Torres, Pedro Zuccarello, Sergio Tejero
and Eliseo Villanueva for all the good moments spent together while work-
ing at the lab. Also, thanks to my Master’s classmates Maria Cabanes and
Nuria Ortigosa.

Special thanks go to Jose A. Belloch for more than a decade of friendship
and of continuous collaboration. I cannot forget to thank also my colleague
and close friend David Gozalvez for all his daily support at the iTEAM and
for his help regarding my professional future.

I wish also to thank the Spanish Ministry of Science and Innovation for
the received financial support under the FPU program.

Thanks to my dear friends Inma, Vero, Patri, Pili, Soraya, Marta,
Pamela, Lućıa and Laura for being always by my side and for making
me smile even in my worse days.

I would like to acknowledge the help and encouragement given by my
parents, Jose and Mica, and my sister Miriam. A big hug to my grandmas
Mica and Gloria and to the rest of my family.

Last, but not least, I would like to express my sincere gratitude to Max,
who offered me unconditional love and support throughout the course of
this thesis. Without you, going through this would have been even harder.
Thank you for showing me always the bright side of life. I love you.

Sandra Roger
July 2012

Contents

Abstract iii

Resumen v

Resum ix

Acknowledgements xi

List of symbols xxiii

Abbreviations and Acronyms xxv

1 Introduction 1
1.1 Introduction . 3
1.2 Motivation and Scope . 8
1.3 Key Contributions . 11
1.4 Organization of the Thesis 13

2 Preliminaries and State of the Art 17
2.1 Multiple-Input Multiple-Output Systems 19

2.1.1 The BLAST System 19
2.1.2 Capacity of the MIMO Channel 23
2.1.3 Maximum-Likelihood Detection 24

2.2 Linear and Successive Interference Cancellation Detectors . 26
2.2.1 Matched Filter Detector 26
2.2.2 Zero-Forcing and Minimum Mean Square Error De-

tectors . 26
2.2.3 Successive Interference Cancellation Detectors 27
2.2.4 Reordered Detection 28
2.2.5 Performance Comparison 29

2.3 Tree-Search-Based Detection/Sphere Decoding 31
2.3.1 Sphere Decoding Fundamentals 31
2.3.2 Fincke-Pohst and Schnorr-Euchner Enumerations . . 37
2.3.3 K-Best Sphere Decoder 39

2.3.4 Automatic Sphere Decoder 41
2.3.5 Fixed-Complexity Sphere Decoder 42

2.4 MIMO-Bit-Interleaved Coded-Modulation Systems 45
2.4.1 System Model and Log-Likelihood-Ratios 45
2.4.2 Tree-Search-Based Soft Demodulation 47

2.5 Multiuser MIMO-OFDM Communication Systems 48
2.5.1 System Model . 48
2.5.2 Vector Perturbation Precoding 50
2.5.3 Zero-Forcing Precoding 51
2.5.4 Tomlinson-Harashima Precoding 51
2.5.5 Lattice-Reduction-Aided Precoding 52

2.6 Conclusion . 53

3 MIMO Preprocessing Techniques 55
3.1 Introduction . 57
3.2 VBLAST ZF-DFE Ordering 59

3.2.1 Algorithm Description 59
3.2.2 Complexity Analysis 60
3.2.3 Low-Complexity Implementation 61
3.2.4 Performance Evaluation 64

3.3 Lattice-Reduction Algorithms 64
3.3.1 LLL and Seysen’s Algorithms 66
3.3.2 Complexity Analysis 69
3.3.3 Performance Evaluation 71

3.4 Complexity and Performance Comparison 72
3.5 Conclusion . 76

4 Efficient Hard-Output Detection 79
4.1 Introduction . 82
4.2 Variable-Breadth K-Best Detector 83
4.3 Channel Matrix Condition Number Estimator 86

4.3.1 The Power Method to Estimate σmax. 87
4.3.2 Estimator of σ−1

min. 88
4.3.3 Joint Estimator of κ(H). 88

4.4 Threshold Selection . 89
4.5 LRA K-Best Detector Based on Condition Number 92
4.6 Results . 95

4.6.1 VB K-Best Detector 95
4.6.2 LRA K-Best Based on Condition Number 100

xv

4.7 Conclusion . 103

5 Efficient Lattice-Reduction-Aided Algorithms 105
5.1 Introduction . 107
5.2 LRA-SIC K-Best detection 109
5.3 LRA K-Best Detector . 112

5.3.1 Boundary Calculation of the Transformed Lattice Points114
5.3.2 Extended LLL Algorithm 115
5.3.3 Performance Evaluation 117
5.3.4 Computational Cost Analysis 118

5.4 Complexity Reduction Using Boundaries 120
5.4.1 LRA K-Best with Candidate Limitation 120
5.4.2 Dynamic-K and Dynamic-N LRA K-Best Detectors 122

5.5 Relationship among the proposed hard-output
schemes . 127

5.6 Multiuser Precoding using the Extended LLL Method . . . 129
5.6.1 Lattice-Reduction-Aided Precoding 130
5.6.2 Enhanced Lattice-Reduction-Aided Precoding 130
5.6.3 Lattice-Reduction-Aided Tomlinson-Harashima Pre-

coding . 131
5.6.4 Performance Comparison 132
5.6.5 Computational Cost Analysis and Comparison . . . 134

5.7 Conclusion . 139

6 Efficient Soft-Output Detection 141
6.1 Introduction . 143
6.2 System model . 145
6.3 Soft-output Fixed-complexity Detection 148
6.4 Proposed SFSD with quantized outputs 150

6.4.1 Quantization-based Pruning 151
6.4.2 Clipping-based Pruning 151

6.5 Results . 152
6.6 Conclusion . 156

7 GPU Implementation of MIMO Detectors 159
7.1 Introduction . 162
7.2 GPU and CUDA . 163

7.2.1 CUDA Programming Model 163
7.2.2 GPU Architecture 167

7.3 Algorithms Selected for GPU Implementation 168
7.3.1 FSD versus K-Best 168
7.3.2 Proposed Soft-Output Detection Scheme 169

7.4 Implementation of MIMO Detection Algorithms in CUDA . 172
7.4.1 Hard-Output FSD 173
7.4.2 Soft-Output FSD . 175
7.4.3 Fully-Parallel SFSD 178

7.5 Results . 180
7.5.1 Configuration Parameters and Performance Measures 180
7.5.2 Hard-Output FSD 182
7.5.3 Soft-Output FSD . 185
7.5.4 Fully-Parallel SFSD 190

7.6 Conclusion . 195

8 Conclusions 197
8.1 Summary . 199
8.2 Further Work . 201
8.3 List of Publications . 203

Bibliography 208

List of Figures

1.1 MIMO systems evolution. 4

2.1 Spatial multiplexing MIMO system with nT transmitting an-
tennas and nR receiving antennas. 20

2.2 Most employed M -QAM constellations. 21
2.3 Classification of MIMO detection algorithms. 25
2.4 Bit Error Rate of the classical detectors in a 4 × 4 MIMO

system with 16-QAM. 30
2.5 Decoding sphere of radius D for limiting the candidate lattice

points in a 2 × 2 MIMO system using a BPSK constellation. 32
2.6 Decoding tree associated to the decoding sphere of Fig. 2.5. 33
2.7 Decoding tree where a depth-first strategy is followed. . . . 35
2.8 Decoding tree where a breadth-first strategy is followed. . . 35
2.9 Comparison between the number of candidate points inside

spheres of radius D1 and D2. 36
2.10 Decoding tree for a 3 × 3 MIMO system with a BPSK con-

stellation which follows a Fincke-Pohst search strategy. . . . 38
2.11 Decoding tree of the K-Best algorithm. 39
2.12 Bit Error Rate of the K-Best detector for different values of

K in a 4 × 4 MIMO system with 16-QAM symbols. 40
2.13 Decoding tree of the ASD algorithm. 41
2.14 Decoding tree of the FSD algorithm for a 4×4 MIMO system

with QPSK symbols. 43
2.15 BER achieved by the FSD in a 4 × 4 MIMO system using

QPSK, 16-QAM and 64-QAM compared to ML performance. 44
2.16 Block diagram of a MIMO-BICM system. 46
2.17 Multiuser MIMO-OFDM communication system from a BS

with N antennas to K single-antenna users. 49
2.18 Block diagram of the transmitter of a multiuser MIMO-

OFDM system with N antennas, K users and Nc subcarriers. 50
2.19 Block diagram of the Tomlinson-Harashima precoding. . . . 51

xviii LIST OF FIGURES

3.1 BER curves of the K-Best detector with two different values
of K (3 and 5) in a 4×4 MIMO system using 16-QAM, both
compared to the same algorithms after VBLAST ZF-DFE
preprocessing. 65

3.2 Comparison between traditional detection and LR-aided de-
tection . 66

3.3 BER curves of the K-Best detector with two different values
of K (3 and 5) in a 4×4 MIMO system using 16-QAM, both
compared to the same algorithms when the LLL preprocess-
ing is applied. 73

3.4 Number of flops for the VBLAST ZF-DFE, LLL and fixed
complexity LLL with Y = 5 methods. 74

3.5 BER curves of the K-Best detector with K = 3 without
preprocessing and when the LLL, fcLLL and VBLAST-DFE
preprocessing algorithms are applied, in a 4 × 4 MIMO sys-
tem using 16-QAM. 75

4.1 BER of different MIMO detectors with a 16-QAM constel-
lation in a 4 × 4 MIMO channel and a SNR of 20 dB, as a
function of the channel matrix condition number κ(H). . . 85

4.2 Flow diagram of the VB K-Best detector with threshold se-
lection and channel matrix condition number estimation. . . 86

4.3 Error of our proposed estimator compared with the error of
the Power Method for computing the whole condition num-
ber: (a) Relative, (b) Absolute. 90

4.4 Probability density function of the condition number of a
4× 4 channel matrix with Gaussian entries, before and after
the LLL-reduction. 93

4.5 Average reduction ratio vs initial condition number for Gaus-
sian 4 × 4 channel matrices. 94

4.6 Flow diagram of a LRA K-Best Detector based on condition
number with channel condition number estimation. 95

4.7 BER curves of the proposed VB K-Best detector with two
different thresholds on a 4×4 MIMO system using 16-QAM,
working with either the exact or estimated 2-norm condition
number, all compared to conventional 2-Best, 12-Best and
ML detectors. 96

LIST OF FIGURES xix

4.8 BER curves of the proposed VB K-Best detector with two
different thresholds on a 4 × 4 MIMO using 16-QAM, both
compared to the conventional K-Best detectors with equiv-
alent complexity (3-Best and 5-Best) and to the ML detector. 98

4.9 BER curves of the proposed VB K-Best detector with two
different thresholds on a 4 × 4 MIMO using 64-QAM, all
compared to conventional 2-Best, 14-Best and ML detectors. 99

4.10 BER curves of the LRA K-Best detector based on condition
number with two different thresholds on a 4×4 MIMO using
16-QAM, both compared to conventional 2-Best and 2-Best
with LLL detectors. 101

4.11 BER curves of the proposed LRA K-Best detector on a 4×4
MIMO using 16-QAM, in the two cases of performing the
lattice reduction with LLL or Seysen. 102

5.1 (a) Initial lattice points and (b) transformed lattice points. 109
5.2 LRA-SIC K-Best detector. 111
5.3 Block diagram of a MIMO-BLAST system model including

the proposed LRA K-Best detector. 113
5.4 Proposed LRA K-Best detector 113
5.5 Transformed lattice points and boundaries of the transformed

lattice. 114
5.6 BER curves of the proposed LRA K-Best detector with two

different values of K (3 and 5) on a 4×4 MIMO system using
16-QAM, both compared to conventional 3-Best, 5-Best and
optimal detectors. 117

5.7 Representation of the order in which candidate points are
explored in the LRA-SIC K-Best scheme and in the LRA-
CL scheme. 121

5.8 BER curves of the proposed LRA K-Best schemes (LRA-CL
and Dyn-K) on a 4× 4 MIMO system using 16-QAM, com-
pared to conventional 3-Best, LRA 3-Best and ML detectors. 126

5.9 Relationship among all the hard-output strategies proposed
in Chapters 4 and 5. 129

5.10 Block diagram of the Lattice-Reduction-Aided precoding. . 131
5.11 Block diagram of the Enhanced Lattice-Reduction-Aided pre-

coding. 132

xx LIST OF FIGURES

5.12 Block diagram of the Lattice-Reduction-Aided Tomlinson-
Harashima precoding. 133

5.13 BER curves of the five precoding algorithms under study in
a system with N = 4 transmitter antennas and K = 4 users
using QPSK symbols. 133

5.14 Total number of arithmetic operations of the five precoding
algorithms under study for a system with N = 4. (a) Lch =
5. (b) Lch = 20. 138

6.1 MIMO-BICM block diagram with parallel concatenated con-
volutional encoding and turbo decoding. 146

6.2 MIMO-BICM receiver: (a) Using soft detection and LLR
quantization, (b) Using soft detection with quantized out-
puts. 147

6.3 Decoding trees of the SFSD algorithm for a 4 × 4 MIMO
system with QPSK symbols and Niter = 2: (a) Hard-output
stage and (b) Soft-output extension. 149

6.4 BER curves for different SFSD schemes and for max-log de-
modulation, all with a rate-1/2 turbo code in a 4×4 MIMO-
BICM system using 16-QAM. 153

6.5 Average number of nodes visited by the different SFSD schemes
in a 4 × 4 MIMO-BICM system using 16-QAM. 154

6.6 Average list size of the different SFSD schemes under study
in a 4 × 4 MIMO-BICM system using 16-QAM symbols. . . 155

7.1 Interconnection between host and device in the programming
model. 164

7.2 CUDA programming model. 165
7.3 Position of threads inside a unidimensional grid with 3 blocks

and 5 threads per block. 166
7.4 Decoding trees of the FPFSD algorithm for a 4 × 4 MIMO

system with QPSK symbols. 171
7.5 Grid and block distributions considered for the preprocessing

kernel of the hard- and soft-output FSD implementations. . 172
7.6 Block diagram of the proposed FSD GPU implementation

including the number of threads which execute each kernel
for each subcarrier. 173

LIST OF FIGURES xxi

7.7 Block diagram of the proposed SFSD GPU implementation
including the number of threads which execute each kernel
for each subcarrier. 177

7.8 Block diagram of the proposed FPFSD GPU implementation
including the number of threads which execute each kernel
for each subcarrier. 178

7.9 Speedup for the hard-output FSD with different constella-
tions and number of subcarriers: (a) 2 × 2 MIMO system
and (b) 4 × 4 MIMO system. 184

7.10 Speedup for the soft-output FSD with different constella-
tions and number of subcarriers: (a) 2 × 2 MIMO system
and (b) 4 × 4 MIMO system. 188

7.11 Speedup of the FPFSD for different constellations and num-
ber of subcarriers in a MIMO system of size: (a) 2 × 2 and
(b) 4 × 4. 193

List of symbols

X Matrix
x Vector
x Scalar
Xi,j i, j component of matrix X
Xi,: i-th row of matrix X
X:,i i-th column of matrix X
Xi:j,k:l Elements from i-th to j-th row and from k-th to l-th column of X
Tr(X) Trace of matrix X
xi i-th component of vector x
(·)T Transpose
(·)∗ Complex conjugation
(·)H Conjugate transpose
(·)+ Moore-Penrose pseudoinverse
(·)-1 Matrix inversion
IN×N Identity matrix of size N × N
| · | Absolute value
‖ · ‖p �p norm
‖ · ‖F Frobenius norm
P (A) Marginal probability of A
P (A|B) Conditional probability of A, given B
�{.} Real part of a complex number
�{.} Imaginary part of a complex number
max Maximum of a set
min Minimum of a set
arg max Argument of the maximum of a set
arg min Argument of the minimum of a set
log Natural logarithm
Q{·} Quantization (slicing) operation
O(·) Denotes an asymptotic complexity order of ·

Abbreviations and Acronyms

a.k.a. also known as
ASD Automatic Sphere Decoder
AWGN Additive White Gaussian Noise
BER Bit error rate
BICM Bit-interleaved coded-modulation
BLAST Bell Labs Layered Space-Time
BPSK Binary phase shift keying
BS Base station
CSI Channel State Information
CUDA Compute unified device architecture
DFE Decision feedback equalizer
DSP Digital signal processor
e.g. for example (from the latin exempli gratia)
fcLLL Fixed-complexity Lenstra, Lenstra, Lovasz algorithm
FE Full expansion
FPGA Field Programmable Gate Array
FP-SD Fincke-Pohst Sphere Decoder
FPFSD Fully-parallel Fixed-complexity Sphere Decoder
FSD Fixed-complexity Sphere Decoder
GPU Graphic processing unit
LDPC Low-Density Parity-Check
i.e. that is (from the latin id est)
i.i.d. Independently, identically distributed
LLL Lenstra, Lenstra, Lovasz algorithm
LLR Log-likelihood ratio
LR Lattice reduction
LRA Lattice-reduction-aided
LSD List Sphere Decoder
LTE Long Term Evolution
MAP Maximum-a-posteriori
MF Matched filter
MIMO Multiple-input multiple-output
MISO Multiple-input single-output

xxvi Abbreviations and Acronyms

ML Maximum-likelihood
MMSE Minimum mean squared error
MU Multiuser
OFDM Orthogonal frequency division multiplexing
OSIC Ordered successive interference cancellation
pdf Probability density function
PED Partial Euclidean distance
PM Power method
QAM Quadrature amplitude modulation
QPSK Quadrature phase shift keying
RTS Repeated tree search
SD Sphere decoder
SDMA Space-Division Multiple Access
SE Single expansion
SE-SD Schnorr-Euchner Sphere Decoder
SFSD Soft-output Fixed-complexity Sphere Decoder
SIC Successive interference cancellation
SISO Single-input single-output
SIMO Single-input multiple-output
SINR Signal to interference plus noise ratio
SM Stream Multiprocessor
SNR Signal to noise ratio
STS Single tree search
THP Tomlinson-Harashima Precoding
VB Variable breadth
V-BLAST Vertical Bell Labs Layered Space-Time
WiMAX Worldwide Interoperability for Microwave Access
WLAN Wireless Local Area Network
ZF Zero forcing

Introduction 1

Introduction 1
1.1 Introduction

In the last decade, one of the most significant technological developments
that led to the new broadband wireless generation is the communication
via multiple-input multiple-output (MIMO) systems [1]. The popularity of
MIMO technologies is not limited to the research world but it has also im-
pacted wireless communication industry dramatically, proof of that is the
adoption of MIMO techniques by many existing wireless standards such
as Long Term Evolution (LTE), Wordlwide interoperability for Microwave
Access (WiMAX) and Wireless Local Area Network (WLAN). The recent
attention attracted by MIMO systems is mainly due to their ability to
increase the maximum transmission rates, together with the achieved relia-
bility and coverage of current wireless communications without the need for
additional bandwidth nor transmit power. This is indeed a huge advantage,
since spectrum resources are very scarce and expensive. Moreover, keeping
the transmit power as low as possible is a crucial factor in the battery life
of wireless communication devices. Due to all these reasons, MIMO is a
current field of active international research.

4 Introduction

(a) SISO system (b) SIMO/MISO system

(c) MIMO system (d) MU-MIMO system

n
T

n
T

n
T

n
R

n
R

n
R

Figure 1.1. MIMO systems evolution.

MIMO systems appeared as the evolution of single-input single-output
(SISO) systems (see Fig. 1.1(a)), i.e. those using only a single transmitting
and a single receiving antenna. SISO systems capacity is only limited by the
signal-to-noise ratio (SNR) of the system. The first step towards MIMO was
to employ several antennas at either the transmitter or at the receiver side
such as the single-input multiple-output (SIMO) and multiple-input single-
output (MISO) systems shown in Fig. 1.1(b). Smart antennas, which use
arrays of antennas, are examples of the latter and improve performance in
terms of coverage, capacity or quality of the radio link. To this end, by using
beamforming and/or spatial diversity techniques, a logarithmic increase in
spectral efficiency can be achieved. Finally, point-to-point or single-user
MIMO (SU-MIMO) systems, i.e. those employing multiple antennas at the
transmitter and receiver side simultaneously, appeared with the basic aim
of exploiting the spatial dimension as well as the temporal dimension [2].
A general example of a MIMO system is shown in Fig. 1.1(c).

The vision for current generation cellular networks includes data rates
approaching 100 Mbps for highly mobile users and up to 1 Gbps for low
mobile or stationary users [3], which calls for high spectral efficiency. There-

1.1. Introduction 5

fore, despite the use of MIMO systems was traditionally intended for point-
to-point communication, multiuser MIMO (MU-MIMO) technology is ex-
pected to play a key role in this context. MU-MIMO systems are those
where there is a communication between a base station (BS) and multiple
users, all of them using more than one antenna, as shown by Fig. 1.1(d).
There are two different challenges in MU-MIMO scenarios: uplink (where
multiple users transmit simultaneously to a single BS) and downlink (where
the BS transmits to multiple independent users). The uplink challenge is
addressed using array processing and multiuser detection techniques by the
base station in order to separate the signals transmitted by the users. The
downlink challenge is somewhat different, it is similar to that of the point-
to-point MIMO scenario except for the fact that the receiver antennas are
distributed among different independent users. This creates a challenge in
detecting the received symbols since joint detection requires each user to
have the symbol received from all the receiver antennas of all the users.
Almost all the proposed techniques intended to address the MU-MIMO
downlink challenge process the data symbols at the transmitter itself, that
is, using precoding.

The benefits of MIMO technology that help achieve significant perfor-
mance improvements are array gain, spatial diversity gain, spatial multi-
plexing gain and interference reduction [2]. These benefits are described
below.

• Array gain is an increase in the average SNR at the receiver that re-
sults from a coherent combining effect of the received wireless signals.
Array gain improves the coverage and range of wireless networks by
improving their resistance to noise. The coherent combining of sig-
nals may be carried out through spatial processing at the receiving
antennas and/or spatial pre-processing at the transmitting antennas.
Channel knowledge is required at the part of the system where array
gain is desired. Channel knowledge at the receiver side is typically
available whereas at the transmitter side is more difficult to obtain.

• Spatial diversity gain is a useful tool to mitigate the random fluc-
tuations (fades) that signal power suffers in common wireless links.
Diversity techniques are based on transmitting the same signal over
multiple paths with (ideally) independent fading. Diversity can be
carried out in time, frequency or space. Spatial diversity is preferred

6 Introduction

over time/frequency diversity as it does not involve an increase in
transmission time or bandwidth. With an increasing number of in-
dependent copies of the signal, the probability that at least one of
the copies is not experiencing a deep fade increases and, thus, the
quality and reliability of the reception is improved. A MIMO channel
with nT transmitting antennas and nR receiving antennas can ide-
ally offer nT nR independently fading links. Spatial diversity gain in
the absence of channel knowledge at the transmitter is possible us-
ing space-time coding techniques, where the transmitted signals are
carefully designed.

• Spatial multiplexing gain is achieved when multiple, independent data
streams are transmitted simultaneously within the bandwidth of op-
eration. This technique can offer a linear increase in data rate pro-
vided suitable channel conditions are available, such as rich scattering
in the environment. This way, the receiver can separate the differ-
ent streams, yielding a linear increase in the capacity of the wireless
network.

• Interference reduction and avoidance. Interference results from mul-
tiple users sharing time and frequency resources in a wireless net-
work. When multiple antennas are used, the differentiation between
the spatial signatures of the desired signal and cochannel signals can
be exploited to reduce interference. For instance, in the presence
of interference, array gain increases the tolerance to noise as well
as the interference power, hence improving the signal-to-noise-plus-
interference ratio (SINR). Interference reduction and avoidance im-
prove the coverage and range of a wireless network.

Generally, it is not possible to exploit all the advantages of MIMO tech-
nology simultaneously, due to conflicting demands on the spatial degrees
of freedom [2]. Nevertheless, a suitable combination of the above described
benefits through the careful design of the signaling scheme and transceiver
will result in improved capacity, coverage and reliability.

The performance improvements resulting from the use of MIMO sys-
tems are due to three main techniques: precoding, spatial multiplexing and
space-time coding [1]. In the following, these techniques are briefly intro-
duced.

1.1. Introduction 7

• Precoding for point-to-point MIMO systems is a generalization of
beamforming to support multi-layer transmission in MIMO wireless
communications. In (single-layer) beamforming, the same signal is
emitted from each of the transmit antennas with appropriate phase
(and sometimes gain) weighting such that the signal power is max-
imized at the receiver ouput. The benefits of beamforming are to
increase the signal gain from constructive combining and to reduce
the multipath fading effect. When the receiver has multiple anten-
nas, the transmit beamforming cannot simultaneously maximize the
signal level at all receive antennas and then precoding is used [4]. In
MU-MIMO, the data streams are intended for different users (known
as space-time division multiple access (SDMA)) and the performance
cannot be simultaneously maximized for all the users. Thus, some
measure of the total throughput (e.g., the sum performance) is max-
imized.

• Spatial multiplexing splits a high rate signal into multiple lower rate
streams and each stream is transmitted from a different transmit an-
tenna in the same frequency channel. If these signals arrive at the re-
ceiver antenna array with sufficiently different spatial signatures, the
receiver can separate these streams, creating parallel channels for free.
Spatial multiplexing is a very powerful technique to increase channel
capacity at high SNR. The maximum number of spatial streams is
limited by the lesser in the number of antennas at the transmitter
or receiver [4][5]. Spatial multiplexing can be used with or without
channel state information (CSI) at the transmitter.

• Space-time coding techniques (also known as diversity coding tech-
niques) are used to achieve spatial diversity gain. A single stream
(unlike multiple streams in spatial multiplexing) is transmitted but,
in this case, the signal is coded using certain principles of full or near
orthogonal coding [6][7][8]. Diversity coding exploits the independent
fading in the multiple antenna links to enhance signal diversity. As
previously said, these techniques are used without CSI at the trans-
mitter, thus, they do not provide any array gain.

Spatial multiplexing can also be combined with precoding when the
channel is known at the transmitter or combined with diversity coding
when decoding reliability is in trade-off [9].

8 Introduction

MIMO techniques can be also used to enhance the performance of or-
thogonal frequency division multiplexing (OFDM) systems by exploiting
the spatial domain. OFDM is an easy technique to mitigate the effects of
inter-symbol interference in frequency selective channels, turning a broad-
band frequency selective channel into a set of narrowband channels by trans-
mitting data in parallel over the different subcarriers. OFDM combined
with MIMO systems, also known as MIMO-OFDM [10], allows transmit-
ting different streams over the different subcarriers and, through MIMO
precoding, different spatial beams in each one of the subcarriers. The ad-
vantages of MIMO-OFDM are the increased data throughput and link re-
liability, as well as improved interference suppression. Here, all techniques
to exploit the MIMO gains can be applied on a subcarrier-by-subcarrier
basis.

The wide range of advantages provided by MIMO systems comes at the
expense of a substantial increase in the receiver complexity (and sometimes
in the transmitter complexity as well). In fact, when spatial multiplexing
is considered, while the capacity increases linearly with the minimum of
the number of antennas at the transmitter and the receiver, the detection
complexity undergoes a more than linear increase. Therefore, if wireless
communication devices with a high level of integrability and affordable
cost are aimed, the design of low-complexity receivers is mandatory [2].

1.2 Motivation and Scope

It is known that the use of MIMO communication systems complicates the
receiver stage and, specially, the detection part. The detector has the task
of processing the received mixture of signals affected by the channel in or-
der to recover the transmitted data with the highest reliability. Hence,
the search for low-complexity MIMO detectors is imperative. Achieving
this general goal is the main motivation of this dissertation. This section
describes some particular motivations leading towards low-complexity de-
tectors design.

If nearly optimal data detection is desired, the detector becomes often
the most computationally expensive algorithm within a MIMO receiver.
Nevertheless, the computational cost of data detection can be decreased by
following different strategies such as the combination of suboptimal MIMO

1.2. Motivation and Scope 9

detection with channel matrix preprocessing techniques. However, care
must be taken to avoid an unexpected increase of the computational cost
of the joint detection scheme. To this end, it seems useful to compare some
of the most employed preprocessing approaches in terms of performance
and complexity before choosing the best option. In addition, trying to
reduce the computational cost of the receivers preprocessing stage is also a
challenging task.

On the other hand, sphere decoding (SD) has been shown to sub-
stantially decrease the computational complexity of exhaustive maximum-
likelihood (ML) MIMO hard-output detection [11]. Unfortunately, the
worst-case complexity of SD methods still remains exponential with the
number of transmitting antennas [12]. Therefore, the search for low and
predictable complexity tree-search methods is still an intense research topic
[13]. Among many others, the K-Best tree-search algorithm is a useful ap-
proach to trade detection performance and complexity, proof of that are the
high number of published variants of this method [14][15]. Thus, further
improving the K-Best algorithm is another motivation behind this thesis.

Lattice-reduction (LR) techniques, which are a particular case of chan-
nel matrix preprocessing, have been widely employed for different applica-
tions, such as data detection in MIMO systems or signal precoding in MU-
MIMO systems [16][17][18]. However, these strategies not only transform
the MIMO channel matrix but also include a non-linear transformation
in the transmitted constellation symbols. This non-linear transformation
often complicates the use of LR techniques with tree-search detection meth-
ods. Thus, it is necessary to search for strategies that allow both techniques
being used jointly.

In MIMO systems with bit-interleaved-coded-modulation (MIMO-BICM),
the demodulation (or soft detection) and channel decoding are not usually
performed jointly at the receiver, but in two differentiated stages. First, the
demodulator provides reliability information (soft outputs) about the trans-
mitted coded bits in the form of real-valued log-likelihood ratios (LLR).
Next, these values are used by the channel decoder to make final decisions
on the transmitted coded bits. The complexity to perform optimum soft
detection is even higher than the one of hard detection, thus, the search for
efficient soft detectors will be another topic to be tackled throughout this
thesis.

Moving from the design of MIMO receivers towards practical physical

10 Introduction

setups, the search for high-throughput MIMO receiver implementations is a
major importance issue. Furthermore, scalability in the number of subcarri-
ers per MIMO-OFDM symbol as well as in the system size are key factors in
LTE and 4G wireless standards [3]. Therefore, focusing on the requirements
of high-throughput and scalability, the use of many-core processors such as
general purpose Graphic Processing Units (GPU) is becoming increasingly
attractive for the efficient implementation of signal processing algorithms
for communication systems [19][20]. The use of this hardware can accel-
erate the computation by employing many cores to execute in parallel as
many parts of the algorithms as possible. Hence, exploiting the potential
of GPU to implement MIMO detection algorithms seems a very promising
goal. Finally, it is advisable to compare the throughput achieved by the
developed GPU implementations with the minimum required by current
wireless standards in order to find out which transmission configurations
could be supported.

Taking into account the above presented motivations, the main scope
of this thesis is the following:

• To evaluate the computational cost and performance of existing MIMO
channel matrix preprocessing algorithms.

• To decrease the computational cost of existing MIMO channel matrix
preprocessing algorithms.

• To contribute with new tree-search-based hard-output MIMO detection
algorithms with lower computational cost than previously proposed ap-
proaches.

• To develop new lattice-reduction-aided schemes with lower computa-
tional cost than existing ones.

• To contribute with new tree-search-based soft-output MIMO detection
algorithms with lower computational cost than previously proposed ap-
proaches.

• To develop high-throughput implementations of hard- and soft-output
schemes using hardware architectures with high parallel processing ca-
pabilities and to evaluate them in terms of speedup and throughput.

1.3. Key Contributions 11

1.3 Key Contributions

Although this thesis tackles different particular problems arising in MIMO
communication systems, note that all of them are aimed at achieving a com-
mon goal: designing computationally-efficient MIMO receiver algorithms.
In this section, the main contributions of this thesis are summarized.

MIMO Channel Matrix Preprocessing Techniques

The use of channel matrix preprocessing techniques before data detection
in MIMO systems has been shown to be promising for improving diverse as-
pects of MIMO detectors. On the one hand, some preprocessing techniques
can help to decrease the computational cost of optimal performance detec-
tion methods. On the other hand, the use of preprocessing can improve the
performance in terms of bit-error-rate (BER) of suboptimal detectors.

In this study, a detailed overview of two widely employed preprocessing
techniques (the Lenstra, Lenstra, Lovasz lattice-reduction (LR) algorithm
[21] and the vertical Bell-Labs layered space-time zero-forcing decision feed-
back equalizer (VBLAST ZF-DFE) ordering [22]) is presented. First, the
computational costs of both methods are evaluated and compared. Af-
ter that, the performance improvement achieved by both methods when
used previously to K-Best tree-search detection is assessed. The purpose
is to show the SNR ranges at which each detector performs better than
the other one and vice versa. Moreover, a low-complexity implementation
of the VBLAST ZF-DFE preprocessing is proposed, which is based on the
QR decomposition of the matrices involved in the channel matrix reordering
process.

Hard-Output Tree-Search MIMO Detectors

Previous works have shown that the performance of MIMO detectors is
highly influenced by the MIMO channel matrix condition number [23]. In
this thesis, the impact of the 2-norm channel matrix condition number in
data detection is exploited in order to decrease the computational cost of
previously proposed MIMO detectors. First, a variable-breadth (VB) K-
Best detector where the value of its K parameter is varied depending on
the channel matrix condition number is developed. The method makes
use of a low-complexity condition number estimator stage and a threshold

12 Introduction

selection method, which are also contributions of this work. The results
show that the proposed scheme has lower average complexity than a fixed
K-Best detector of similar performance and, thus, it allows a meaningful
power-saving.

Another novel contribution is a detection scheme that exploits the
knowledge of the channel matrix condition number to avoid carrying out a
high percentage of LR calls. This way, complexity is saved while keeping
good detection performance.

Lattice-Reduction-Aided Schemes

In this study, several new approaches involving the use of LR are included.
First, the combination of LR with the K-Best algorithm is investigated
and alternative implementations that outperform previous proposals are
developed. Furthermore, an extended LLL algorithm for LR is proposed
to assist the preprocessing part of some lattice-reduction-aided (LRA) K-
Best schemes. Moreover, the proposed extended LLL algorithm is shown
to decrease the computational cost of several LRA precoding methods for
MU-MIMO systems. For the sake of completeness, the computational cost
and performance of the most employed signal precoding approaches are
evaluated and compared.

Soft-Output Tree-Search MIMO Detectors

Channel codes used in current wireless communications (low-density parity-
check codes (LDPC), turbo codes, etc.) work with bit sequences of thou-
sands to ten thousands of bits. Hence, the use of LLR quantizers previous
to LLR storage and further processing is becoming very usual in practical
MIMO-BICM systems.

In this thesis we focused on the use of LLR quantization to reduce
the complexity of the soft detection stage of MIMO-BICM receivers. An
efficient soft detection scheme based on the soft-output fixed-complexity
sphere decoder (SFSD) is proposed. The proposed approach uses the fact
that the quantized LLRs belong to an a priori known discrete set of values
(quantization levels) to avoid some of the computations carried out by the
soft detector. In addition, LLR clipping is also included to save complexity.
The performance and computational cost of the method are both evaluated
and compared to other existing approaches.

1.4. Organization of the Thesis 13

Implementation of High-Throughput MIMO Detection Schemes

As claimed throughout this thesis, the use of MIMO communication sys-
tems complicates the receiver stage, which has the task of processing the
received mixture of signals affected by the channel in order to recover
the transmitted data with the highest reliability. Therefore, having high-
throughput receiver implementations is nowadays an important challenge.

As previously said, the use of many-core processors such as GPU has
recently become attractive for the efficient implementation of signal pro-
cessing algorithms for communication systems. In this work, several GPU-
based implementations of sphere decoding algorithms providing either hard
or soft outputs are presented. The proposed implementations are evalu-
ated and compared in terms of achieved throughput as well as measuring
the computational time to execute the algorithms in GPU and on a high-
performance CPU.

1.4 Organization of the Thesis

The remainder of this thesis describes the research that has been under-
taken to develop the aims stated above. The chapters are organized and
presented as follows:

• Chapter 2: This chapter contains an introduction to the topic of
MIMO communications and describes many concepts necessary for
the understanding of this dissertation. In the first sections, the data
detection task in MIMO-Bell Labs layered space-time (BLAST) sys-
tems together with many widely employed detection algorithms is
described. Special attention is paid to those detectors based on a
tree-search strategy. Next, the transformation of an uncoded MIMO
system into a MIMO-BICM scheme is presented and, subsequently,
the use of MIMO demodulators is introduced. Finally, some prelim-
inaries related to signal precoding in multiuser MIMO systems are
also discussed.

• Chapter 3: This chapter presents a detailed overview of two widely
employed preprocessing techniques aimed at improving MIMO detec-
tion performance: the LLL LR algorithm and the VBLAST ZF-DFE

14 Introduction

ordering. Both the complexity and performance of the two methods
are evaluated and compared. In addition, a low-complexity imple-
mentation of the VBLAST ZF-DFE is proposed and included in the
evaluation.

• Chapter 4: In this chapter, the impact of the 2-norm channel matrix
condition number in data detection is exploited to decrease the com-
plexity of two already proposed detection schemes. First, a variable-
breadth K-Best detector is developed, where the value of its K pa-
rameter is varied depending on the channel matrix condition number.
The proposed approach includes a low-complexity condition number
estimator stage and a threshold selection method. Furthermore, the
idea of condition number thresholding is applied to a LRA detection
scheme in order to avoid carrying out the preprocessing stage when
the channel has already good condition number.

• Chapter 5: In this chapter, several contributions involving lattice-
reduction-aided algorithms are presented. First, the combination of
LR preprocessing with the K-Best algorithm is investigated and al-
ternative implementations that outperform previous proposals are de-
veloped. An extended LLL algorithm for LR is proposed to assist the
preprocessing part of some LRA K-Best schemes. In the last part of
the chapter, this extended LLL algorithm is exploited to decrease the
computational cost of several LRA precoding methods. In addition,
the most employed signal precoding approaches are evaluated and
compared in terms of both computational cost and complexity.

• Chapter 6: This chapter is focused on the use of soft detection in
MIMO-BICM. In practice, the reliability information delivered by
soft detectors (one LLR per coded bit) is usually represented with
a finite word-length, thus, LLR quantization is often mandatory. In
this chapter, an efficient fixed-complexity demodulator for systems
working with quantized LLRs is proposed. This approach reduces the
complexity of previously proposed schemes through the combination
of two strategies: a novel tree-pruning based on quantization and a
clipping-based pruning. The performance of the method is evaluated
to further justify the interest of the proposed approach.

• Chapter 7: This chapter presents several fixed-complexity sphere de-
coders implementations on GPU, which allow to considerably de-

1.4. Organization of the Thesis 15

crease the computational time required for the data detection stage in
MIMO systems. Both, hard- and soft-output detection methods are
implemented. In addition, a novel fully-parallel soft-output scheme
which can suitably exploit the GPU capabilities is proposed. The exe-
cution times of all the proposed GPU implementations are compared
with their execution times on a high performance CPU. Moreover,
the throughput of the algorithms is evaluated and compared to other
recent implementations and to the requirements specified by current
wireless standards.

• Chapter 8: Finally, the conclusions obtained throughout this thesis
are presented, including some guidelines for future research lines. A
list of published work related to this thesis is also given.

Preliminaries and State of the Art 2

Preliminaries and State of the Art 2
This chapter contains an introduction to the topic of MIMO commu-
nications and describes many concepts necessary for the understanding of
this dissertation. In the first sections, the data detection task in MIMO-
BLAST systems together with many widely employed detection algorithms
are described. Special attention is paid to those detectors based on a tree-
search strategy. Next, how an uncoded MIMO system is transformed into a
MIMO-BICM scheme is presented. Then, the use of MIMO demodulators
is introduced. Finally, some preliminaries related to signal precoding in
multiuser MIMO systems are also presented.

2.1 Multiple-Input Multiple-Output Systems

2.1.1 The BLAST System

The well-known Bell-Labs layered space-time system (BLAST) is a high
speed wireless communication system that employs multiple antennas at
both the transmitter and the receiver [22]. Spatial multiplexing gain is
achieved by splitting the data bitstream into nT transmit antennas (see

20 Preliminaries and State of the Art

v1Input
data

Estimated
symbols

s1

sn
T

hn
R,1

h1,n
T

vn
R

x1

xn
R

h1,1

hn
R,n

T

Transmitter Receiver

Detector

Figure 2.1. Spatial multiplexing MIMO system with nT

transmitting antennas and nR receiving antennas.

Fig. 2.1). The data is simultaneously sent to the channel, thus overlapping
in both time and frequency. The signals are received by nR receiving an-
tennas, as shown in Fig. 2.1, and the receiver has the task of processing the
received signals in order to recover the transmitted data.

Let us consider a MIMO-BLAST system characterized as block fad-
ing (the channel remains constant along the whole transmission of a data
block), with nT transmit antennas, nR receive antennas, nR ≥ nT , and
a certain SNR. The baseband equivalent model for such MIMO system is
given by

x = Hs + v, (2.1)

where s represents the baseband signal vector transmitted during each sym-
bol period, s = (s1, . . . , snT)T .

Fig. 2.2 shows the quadrature-amplitud-modulation (QAM) constel-
lations usually employed in MIMO communications, which are known as
M -QAM. M stands for the number of constellation points (constellation
size) and is usually in the set M = {4, 16, 64}. We let PM = {−√

M +
1, · · · ,−1, 1, · · · ,

√
M−1} be the real-valued representation of a QAM con-

stellation and define the constellation as Ω = {a + bj : a, b ∈ PM}. Then,
the symbols si are taken from Ω and carry log2 M Gray-encoded bits each,

2.1. Multiple-Input Multiple-Output Systems 21

4-QAM
(QPSK)

16-QAM 64-QAM

Figure 2.2. Most employed M -QAM constellations.

which in a BLAST system are grouped after being demultiplexed into nT

streams.

Vector x in (2.1) denotes the received symbol vector and v is a complex
white Gaussian noise vector with zero mean and variance σ2/2 per real
dimension, being the variance of each complex noise component equal to
σ2. The channel matrix H is formed by nR ×nT complex-valued elements,
hi,j , which represent the complex fading gain from the jth transmit antenna
to the ith receive antenna:

H =

⎛⎜⎜⎜⎜⎝
h1,1 h1,2 . . . h1,nT

h2,1 h2,2 . . . h2,nT

...
...

. . .
...

hnR,1 hnR,2 . . . hnR,nT

⎞⎟⎟⎟⎟⎠ . (2.2)

A Rayleigh fading model without correlation is often considered for
the channel matrix, i.e., its entries are chosen independently as zero-mean
complex Gaussian random variables with variance 1/2 per real dimension.
Also, the channel matrix is commonly assumed to be known at the receiver
after a channel estimation stage and to remain constant during a block of
Lch symbol vectors.

The SNR of the system is defined as the ratio between the average

22 Preliminaries and State of the Art

transmitted symbol energy and the noise variance [24]

SNR =
Es

σ2
, (2.3)

where Es is the average energy of the transmitted signal vector s, which is
often normalized before transmission to ensure Es = 1. As said before, the
elements of s belong to one of the sets in Fig. 2.2 in most cases. Therefore,
in order to normalize the symbols, the average energy of each constellation
(EM) can be easily calculated as:

EM =

√
2(M − 1)

3
. (2.4)

In a MIMO system without channel coding, the SNR can be related to
the Eb/N0 (SNR per bit) as follows:

Eb

N0
=

nR · SNR

nT · log2 M
. (2.5)

If the bits are encoded using a rate-R error correcting code, the expres-
sion of the Eb/N0 is:

Eb

N0
=

nR · SNR

nT · R · log2 M
. (2.6)

As digital signal processors (DSP) do not often support complex-valued
operations [25], in practice it is sometimes useful to transform the (nR ×
nT)-dimensional complex equation (2.1) into an equivalent (2nR × 2nT)-
dimensional real-valued representation (2.7), as in [14]

[
�(x)
�(x)

]
=

[
�(H) −�(H)
�(H) �(H)

][
�(s)
�(s)

]
+

[
�(v)
�(v)

]
. (2.7)

Note that the new size of x and v is 2nR × 1, vector s turns into a
2nT × 1 vector and thus the channel matrix H has 2nR × 2nT entries. In
the parts of the thesis where the the real-valued system (2.7) is employed,
this fact will be highlighted in the text.

2.1. Multiple-Input Multiple-Output Systems 23

2.1.2 Capacity of the MIMO Channel

The capacity of a channel determines the theoretical limit of the amount of
data bits that can be transmitted through the communication link without
errors. The capacity of SISO narrowband memoryless channels was derived
in [26] and is represented by

C = log[1 + SNR|h|2], (2.8)

where h represents the complex gain of the wireless channel. This expres-
sion was firstly extended to the MIMO case in [27]. When the channel
is constant and known perfectly at the transmitter and the receiver, the
capacity of the MIMO system is

C = max
Q:Tr(Q)=P

log{det(InR + HQHH]}, (2.9)

where Q is the input covariance matrix and P is the total power in the
system [28]. A MIMO channel can be converted to parallel, independent
SISO channels through a singular value decomposition (SVD) of the chan-
nel matrix [5]. The SVD yields min(nT , nR) parallel channels with gains
corresponding to the singular values of H.

The constant channel model is relatively easy to analyze, however, real
wireless channels are not fixed or constant. Thus, a certain fading model
must be considered to obtain the actual channel capacity. We here consider
the spatial multiplexing BLAST system, where perfect CSI at the receiver
is available and a zero mean spatially white distribution is considered at the
transmitter [28]. Recall that, in this case, the channel matrix H is assumed
to have independent identically distributed (i.i.d) complex Gaussian entries.
As said in [4] and [5], the next step is to find the optimum input covariance
matrix in the sense the ergodic capacity is maximized subject to a transmit
power constraint. It was shown that the optimum input covariance matrix
that maximizes ergodic capacity for this case is the scaled identity matrix,
i.e. Q = P

nT
InT [4][5]. Therefore, in practice the transmit power must

be divided equally among all the transmit antennas (a.k.a. uniform power
allocation). Hence, the ergodic capacity is given by

C = E

{
max log

{
det

(
InR +

P

nT
HHH

)}}
. (2.10)

24 Preliminaries and State of the Art

We will assume the uniform power allocation approach through the rest
of the thesis.

2.1.3 Maximum-Likelihood Detection

Lattices are periodic arrangements of discrete points. Apart from their
well-known use in pure mathematics, lattices have found applications in
a wide variety of signal processing problems [29]. In particular, lattices
are interesting for the design of MIMO detection algorithms, as it will be
further seen throughout this thesis.

The system model of Fig. 2.1 shows that the receiving antennas see the
superposition of all the transmitted signals affected by the different paths
that form the channel. Here, all the possible nT -dimensional transmitted
vectors with symbols belonging to a previously known finite M -ary alphabet
Ω can be represented as a lattice. Thus, the channel matrix can be seen as
a basis (or generator) of the lattice points.

Given the received signal x, the detection problem consists in deter-
mining the vector ŝ with the highest a posteriori probability of having been
transmitted:

ŝ = arg max
s∈ΩnT

P{ŝ = s|x}, (2.11)

where ΩnT denotes the set of possibly transmitted lattice points [30].

After applying Bayes’ theorem, (2.11) turns into

ŝ = arg max
s∈ΩnT

P{x|̂s = s}P{s}
P{x} . (2.12)

Equation (2.12) is known as the maximum-a-posteriori probability
(MAP) rule. If a priori equally likely inputs are assumed (P{s} is con-
stant), the MAP rule turns into the maximum-likelihood (ML) detection
rule as follows:

ŝ = arg max
s∈ΩnT

P{x|̂s = s}. (2.13)

Furthermore, if additive, white and Gaussian noise (AWGN) is con-
sidered, the ML detection rule is equivalent to solving the following least

2.1. Multiple-Input Multiple-Output Systems 25

Non-ML ML

 Linear SIC

ZF MMSE ZF-

(O)SIC

 MMSE-

 (O)SIC
 K-Best

ASD

ML

Exhaustive

 Tree-

search

MF

 Tree-

search

 FSD SD FP/SE

MIMO

Detectors

Figure 2.3. Classification of MIMO detection algorithms.

squares problem

ŝ = arg min
s∈ΩnT

||x − Hs||2 , (2.14)

where ‖ · ‖ denotes the 2-norm. The ML detector is widely known as the
optimum detector in terms of lowest probability of vector error [1].

Due to the fact that all the possible s vectors belong to a finite nT -
dimensional lattice, a direct way to find the solution of (2.14) is performing
an exhaustive search of points in the lattice and selecting the one that
minimizes (2.14). This strategy leads to an algorithm with a computational
cost exponentially growing with the number of transmit antennas.

The high complexity of exhaustive ML detection motivates the current
research on efficient detection schemes for MIMO systems [13], ranging from
the well-known linear detectors [31] to tree-search detection techniques [32].
Fig. 2.3 shows the classification of most of the existing MIMO detection
strategies. In a first level, detection algorithms can be classified between
ML (or optimal) methods and non-ML (or suboptimal) methods. A sec-
ond classification depends on the detection strategy, which can be either
in a linear or successive interference cancellation (SIC) way or via a tree
search. The detection schemes shown in Fig. 2.3 will be described in detail
throughout the following two sections.

Finally, it is useful to introduce the (spatial) diversity order of a re-

26 Preliminaries and State of the Art

ceiver, which is defined as the asymptotic slope of the error probability on
a log-log scale and depends on the MIMO channel statistics and on the
transceiver scheme. The maximum diversity order in a spatial multiplex-
ing system equals the number of receiving antennas (nR) and is attained
(among others) by ML detectors.

2.2 Linear and Successive Interference Cancellation

Detectors

2.2.1 Matched Filter Detector

The Matched Filter (MF) detector appeared as an extension from the clas-
sical data detection in SISO channels [31]. The detection step is carried out
just by multiplying the received vector by the transpose and conjugate of
the channel matrix and quantizing the result to round it off to the closest
symbol in the alphabet considered

ŝ = Q{HHx}, (2.15)

where Q(·) stands for component-wise quantization. This algorithm ex-
hibits near optimum behavior when the columns of H are nearly orthogo-
nal, since it means that the several channels that exist in parallel are almost
independent among themselves.

2.2.2 Zero-Forcing and Minimum Mean Square Error Detectors

The Zero Forcing (ZF) detector considers the signal from each transmit
antenna as the target signal and the rest of signals as interferers [31]. The
main goal of this detector is setting the interferers amplitude to zero, which
is done by inverting the channel response and rounding the result to the
closest symbol in the alphabet considered. When the MIMO channel matrix
is square (nR = nT) and non-singular (invertible) the inversion step is
performed just using the inverse of the channel matrix

ŝ = Q{H−1x}. (2.16)

2.2. Linear and Successive Interference Cancellation Detectors 27

However, when the channel matrix is tall (nR > nT), the pseudo-inverse of
H is then used, what leads to the following inversion step

ŝ = Q{(HHH)−1HHx}. (2.17)

The matrix that pre-multiplies the received vector is often called as
nulling matrix. In the case of ZF detection, it equals either the inverse or
the pseudo-inverse of H, depending on its dimensions.

The ZF detector has the drawback of, in some cases, finding singular
channel matrices that are not invertible. Another disadvantage is the fact
that ZF focuses on cancelling completely the interferences, at the expense
of enhancing the noise [31].

The Minimum Mean Square Error (MMSE) detector appeared with
the aim of counteracting the noise enhancement problem of the ZF detector
[31]. This method minimizes the error due to the noise and the interference
combined by using the following detection step:

ŝ = Q{(HHH + NoI)−1HHx}, (2.18)

where N0 denotes the noise power.

2.2.3 Successive Interference Cancellation Detectors

The performance of already presented algorithms (ZF and MMSE) can be
improved by using nonlinear techniques as symbol cancellation [33], leading
to the well-known nulling and cancellation detectors. By using symbol
cancellation, an already detected and quantized symbol from each transmit
antenna is extracted out from the received signal vector, similarly to what
is done in decision feedback equalization (DFE) or multiuser detection with
successive interference cancellation (SIC). Therefore, as soon as a signal is
detected, the next one will see one interferer less.

There are different ways to carry out SIC detection, one of them is
through the use of the QR decomposition of the inverse of the nulling
matrix. In the case of ZF, the channel matrix is decomposed into H = QR,
where Q is unitary, QQH = I, and matrix R can be decomposed into an
upper triangular nT × nT matrix, denoted by R′, and a (nR − nT) × nT

28 Preliminaries and State of the Art

matrix of zeroes. After this QR factorization and calling y = QHx, the
components of ŝ can be obtained as:

ŝi = Q
{(

yi −
∑nT

l=i+1 R′
i,lŝl

)
R′

i,i

}
, i = nT , . . . , 1. (2.19)

Note that since the nulling matrix for MMSE is W = (HHH+NoI)−1HH ,
the QR decomposition needed in this case to perform SIC detection is
W−1 = QR.

2.2.4 Reordered Detection

Nulling and cancellation detectors have the drawback of error propagation
to the next symbols to be detected when there has been any wrong decision
in the already detected symbols. It can be shown that it is advantageous
to perform the detection following a certain order, which can be sometimes
different from the initial one. In fact, finding a suitable detection ordering
has been shown to either improve SIC detection performance or to speed
optimal (ML) tree-search detection, as will be further described in the
section devoted to tree-search detection. Thus, the use of channel matrix
preprocessing and ordering techniques before the detection is an interesting
strategy in our context.

At the preprocessing stage, the MIMO channel matrix H is transformed
via a matrix P into a new channel matrix H̃ = HP. In order to keep the
system in (2.7) unaltered, it is convenient to define the new detected symbol
as z = P−1s. Therefore, the received signal vector x can be rewritten as

x = HPP−1s + v = H̃z + v. (2.20)

The structure and properties of the transformation matrix P depend on
the preprocessing algorithm used.

A quite simple reordering method calculates the norm of all the channel
matrix columns and reorders them in ascending order. This is an approach
to detect first the symbols with the highest SNR, i.e., the most reliable
ones. In [30], an optimal ordering was proposed by the BLAST laborato-
ries (VBLAST) and employed for nulling and cancellation detection. The

2.2. Linear and Successive Interference Cancellation Detectors 29

resulting scheme was named ordered SIC (OSIC) detector. The VBLAST
method improves the performance of the column-norm-based ordering tech-
nique at the expense of increasing its complexity. Both, column-norm-based
and VBLAST orderings are purely based on the knowledge of the channel
matrix coefficients, thus, there is no need to perform a new channel re-
ordering as long as the channel remains unchanged (usually during the
transmission of several signal vectors).

There are other preprocessing strategies that also use the received sig-
nal vector to decide on the most suitable channel ordering, such as the
ordering proposed in [34] or the gradient-based ordering described in [35].
The latter techniques, however, require a new ordering to be performed
every time a new signal vector has to be detected, which increases the com-
putational cost necessary for the detection stage. Note that, for instance,
detection strategies that involve SIC detection would require the recalcula-
tion of the QR decomposition of the channel matrix for every signal to be
detected.

In addition, several channel matrix preprocessing techniques based on
lattice-reduction (LR) [21] have been widely employed to improve MIMO
detectors performance [17][18]. These strategies will be included and de-
tailed in a later chapter of the thesis, together with the steps of the afore-
mentioned VBLAST ordering. Also, a QR-based low-complexity imple-
mentation of the VBLAST method will be proposed.

2.2.5 Performance Comparison

The performance of the above described linear and SIC detectors was as-
sessed by means of simulations to obtain bit-error-rate (BER) curves versus
SNR. Since current wireless standards that combine MIMO with OFDM,
such as WLAN, WiMAX or LTE, make use of QAM constellation schemes
(as these are the most spectrally efficient), the 16-QAM alphabet was se-
lected for the simulation. The size of the MIMO system was 4× 4 and the
detection results were averaged over 104 channel matrix realizations.

Fig. 2.4 shows the BER curves for ZF and MMSE detection together
with the curves of the SIC versions of both algorithms. The MMSE-SIC al-

30 Preliminaries and State of the Art

5 10 15 20 25
10

-4

10
 -3

10
 -2

10
 -1

10
0

SNR(dB)

B
it

 E
rr

or
 R

at
e

ZF

MMSE

ZF-SIC

MMSE-SIC
MMSE-OSIC
ML

Figure 2.4. Bit Error Rate of the classical detectors in a 4×4

MIMO system with 16-QAM.

gorithm was also evaluated considering a previous channel matrix ordering
based on the column norms; this scheme is labelled as MMSE-OSIC. It can
be seen that the SIC schemes outperform the linear detection algorithms,
as expected. The MMSE-OSIC decreases the BER attained by the plain
MMSE-SIC. Note that this result gives a preliminary idea of the usefulness
of channel matrix preprocessing to improve MIMO detectors performance.

Nevertheless, although the above presented linear and SIC algorithms
are interesting due to their low complexity, their performance is still far
away from the optimal ML performance. This fact motivates the search
for better performance detectors, such as the tree-search-based detectors,
which are described in the next section.

2.3. Tree-Search-Based Detection/Sphere Decoding 31

2.3 Tree-Search-Based Detection/Sphere Decoding

The ML detection rule (2.14) can be seen as the minimization of the nT -
dimensional squared distance between vector x and vector Hs. The original
idea behind the well-known sphere decoding (SD) methods comes from the
expression of the nT -dimensional squared Euclidean distance in (2.14) as
an addition of one-dimensional squared Euclidean distances [11]. Taking
into account this equivalence, SD methods intend to reach the ML solution
with lower complexity than the exhaustive search. This is done by looking
for the ML solution just within a subset of the total MnT possible vectors.
This subset is a nT -dimensional hypersphere centered at the received signal
vector [12][36] with a certain radius. All the insights of SD are shown
graphically and mathematically throughout this section.

2.3.1 Sphere Decoding Fundamentals

The main idea of SD methods relies on, instead of performing an exhaustive
search over the total nT -dimensional lattice points, limiting the search for
the solution to only the lattice points located at a distance of the received
vector lower than a given maximum distance [12], called sphere radius (D).
The sphere radius constraint can be included in the ML detection rule as
follows

ŝ = arg min
s∈ΩnT

{||x − Hs||2 ≤ D}. (2.21)

For instance, Fig. 2.5 shows the possible transmitted vectors (lattice points)
for a 2 × 2 MIMO system using a binary phase shift keying (BPSK) con-
stellation (M = 2) and assuming H = I. In this case, Hs = s and, thus,
the received vector can be easily related to the transmitted components.
It can be seen that, if a sphere radius D is chosen, there are two lattice
points that lie inside the sphere. These two points represent the candidate
solutions that would fulfill (2.21). Thus, the ML solution would then be
the closest lattice point of the list of candidate points to the received vector
x, which is labelled in Fig. 2.5 as ML.

Regarding complexity saving, in this simple case the search reduces
from among 4 candidates to just among 2 (i.e. it goes to the half). More

32 Preliminaries and State of the Art

s

s

x

D

+1

+1

+1

 -1

 -1

 -1

 -1

+1

Candidate
 solutions

2

1

ML

Figure 2.5. Decoding sphere of radius D for limiting the

candidate lattice points in a 2×2 MIMO system using a BPSK

constellation.

generally, as the system and/or constellation size gets higher, the complex-
ity reduction achieved by SD methods increases substantially [12]. This
complexity reduction, however, can be attained provided a suitable sphere
radius has been previously selected, which is not a straightforward task at
all.

Similarly to what is done in SIC detection, a QR factorization of the
channel matrix (H = QR) is employed. This allows to transform the prob-
lem (2.14) into an equivalent one that can be solved using a tree structure
[11]. The properties and dimensions of Q and R are the ones described in
Section 2.2.3 (Q unitary and R upper triangular). For the sake of simplic-
ity, a system with nT = nR is assumed.

In case of multiplying (2.14) by QH and calling y = QHx, the ML
problem (2.14) can be equivalently expressed as

ŝ = arg min
s∈ΩnT

{||y − Rs||2}, (2.22)

2.3. Tree-Search-Based Detection/Sphere Decoding 33

X

[+1]

[+1] [-1] [+1] [-1]

[-1]

+1

+1

-1

+1

+1

-1

-1

-1

Xs

s

2

1

X
ML

root

Figure 2.6. Decoding tree associated to the decoding sphere

of Fig. 2.5.

and the SD approach in a more detailed way as

ŝ = arg min
s∈ΩnT

{ nT∑
i=1

∣∣∣∣yi −
nT∑
j=i

Rijsj

∣∣∣∣2 ≤ D

}
, (2.23)

where the triangular structure of R has been exploited.

In a first step, a search-tree is built containing all the candidate lattice
points associated to the problem to be solved. The tree must have as many
levels as transmit antennas and each symbol value is represented by a tree
node. The tree-paths are built by connecting nodes and stand for candidate
solutions. For instance, a tree-path containing selected symbols from the
root up to level i has the form

S(i) = [si, si+1, . . . , snT]T . (2.24)

Fig. 2.6 depicts the decoding tree associated to the decoding sphere
of Fig. 2.5, which has two detection levels and four possible candidate
solutions.

In order to solve (2.23) the tree-search starts from the root (assumed
in level nT + 1) and every time that the search descends from a node in
level i (called parent node) to the nodes in level i − 1 that are connected
to it (called children nodes), the partial Euclidean distances (PED) of the
children nodes are computed as follows:

34 Preliminaries and State of the Art

ei(S(i)) = yi −
nT∑
j=i

Rijsj , (2.25)

which are also known as branch weights. Then, it is said that the parent
node has been expanded.

The calculation of the branch weights allows to update the accumulated
PED of each path as follows

Ti(S(i)) = Ti+1(S(i+1)) + |ei(S(i))|2 (2.26)

assuming that the root node starts with accumulated PED equal to zero:

T2nT +1(S(nT +1)) = 0. (2.27)

Following with the example, the candidate solutions discarded in Fig. 2.6
(both on the right side of the tree) would have accumulated PED exceed-
ing the value of D and, for this reason, they are outside the sphere in
Fig. 2.5. Note that when the accumulated PED of a parent node is higher
than D, its children nodes can be pruned in advance, resulting in a faster
tree-search. Therefore, the average number of expanded nodes can be used
as a measure of average computational complexity. To perform an efficient
tree-search, the ML solution should be found after having expanded the
minimum number of nodes.

Many different tree-search strategies have been proposed during the
last years, some of which can be found in [12][14][32][37]. Generally, tree-
search strategies can be classified into two main types: depth-first-based
and breadth-first-based. In the depth-first algorithms, the tree is explored
from top to bottom, i.e. starting at the root and ending at the bottom
nodes (leaves). No children nodes located on the right side of the tree can
be explored before those on the left are already explored. Fig. 2.7 illustrates
this kind of search.

In the breadth-first algorithms the tree is explored descending level by
level up to the leaf nodes, but every node in a certain level has to be visited
before starting to visit nodes in the level below. Fig. 2.8 depicts the general
idea behind breadth-first algorithms.

2.3. Tree-Search-Based Detection/Sphere Decoding 35

Figure 2.7. Decoding tree where a depth-first strategy is

followed.

Figure 2.8. Decoding tree where a breadth-first strategy is

followed.

36 Preliminaries and State of the Art

D1

D2

Figure 2.9. Comparison between the number of candidate

points inside spheres of radius D1 and D2.

As said above, a suitable sphere radius is generally needed for getting
the ML solution expanding as few nodes as possible. However, if a too
small sphere radius is chosen, there can be no candidate solutions and the
algorithm will not perform correctly. On the other hand, if a too large
sphere radius is selected, too many candidate points may be found and
the complexity of the algorithm can equal the one of an ML exhaustive
search, without any advantage over existing methods. For instance, Fig. 2.9
shows the candidate points inside two spheres of different radius, for a two-
dimensional case with D1 < D2. Note that D1 provides just one candidate
point whereas D2 leads to a search among four candidate points.

There are several methods to estimate the sphere radius [12]. A useful
radius estimate can be obtained by calculating the distance between the
received vector and the solution provided by a low-complexity detection
method such as ZF or MMSE. This reads

D̂ =
∣∣∣∣y − RŝB

∣∣∣∣2 , (2.28)

where ŝB is the solution obtained via a suboptimal method such as ZF

2.3. Tree-Search-Based Detection/Sphere Decoding 37

or MMSE. This radius estimator guarantees at least one point inside the
sphere.

Other authors suggested choosing a scaled version of the noise vari-
ance as a candidate radius, since it seems reasonable to consider that the
transmitted vector will be moved away from its original position a distance
related to the variance of the noise present in the system. Nevertheless,
no general estimator adequate for every single particular case has been yet
found.

2.3.2 Fincke-Pohst and Schnorr-Euchner Enumerations

One of the first-appeared depth-first SD algorithms is the one based on
the Fincke-Pohst enumeration (FP-SD) [38]. Let us show how this method
works with the example shown in Fig. 2.10, where a decoding tree for a 3×3
MIMO system with a BPSK symbol alphabet is represented. An appro-
priate sphere radius is assumed before starting the search for the solution.
In order to follow the FP enumeration, the tree-nodes are visited following
the order given by the node numbers, which makes the tree be traversed
from left to right and from top to bottom. Some branches and nodes have
been depicted in gray color to give examples of candidate solutions that
have been discarded because their PED exceed the sphere radius. It can be
seen that, after having completed the search, there are just three possible
solutions in the tree (i.e. inside the sphere), which correspond to the leaf
nodes numbered as 5, 6 and 9. The ML estimate would be the path with
the minimum PED among these final candidates.

The main drawback of this algorithm is its dependency on the sphere
radius which, as said before, can sometimes lead to a too small or even
negligible complexity reduction.

The Schnorr-Euchner SD (SE-SD) [39] also performs a depth-first
search but it modifies the FP algorithm to further decrease the number
of expanded nodes. Instead of exploring the tree naively from left to right,
the SE-SD computes the branch weights of the children nodes of a certain
node before expanding it. Then, it explores the children nodes according
to the increasing order of their branch weights. This improvement leads to

38 Preliminaries and State of the Art

First Last1 10

 2

3 4

5 6

7

8

9

Figure 2.10. Decoding tree for a 3× 3 MIMO system with a

BPSK constellation which follows a Fincke-Pohst search strat-

egy.

reaching valid leaf nodes faster than with the FP-SD.

Note that, however, this first modification is not sufficient, as the num-
ber of branch weights to be computed remains still the same than in the
FP-SD case. To overcome this problem, the SE-SD updates the search ra-
dius adaptively every time a new leaf node is reached. This way, no valid
points are discarded since, after having explored a certain point in the
search set, the algorithm must be only interested in visiting those points
that are even closer to the target than the just-visited points.

Therefore, the SE-SD allows working without any previous sphere ra-
dius selection since the radius can be initially set to infinity and be updated
every time a new leaf node is found. Thus, making a good choice of the
sphere radius is no longer a critical factor.

A further pruning of useless candidate solutions was introduced in [40].
It is based on using bounds for the PED in the tree-levels still to be explored.
These bounds can help to further discard useless candidate solutions in
the SE-SD. This way, the search radius is decreased faster. A concrete
implementation of this idea was firstly proposed in [41] and improved in
[42].

2.3. Tree-Search-Based Detection/Sphere Decoding 39

Expand K

Expand K

Expand K
Select solution

Level +1

Level

Level 2

Level 1

nT

nT

Figure 2.11. Decoding tree of the K-Best algorithm.

2.3.3 K-Best Sphere Decoder

The K-Best SD [14] (also known as K-Best tree-search detector or QRD-M
detector) is a breadth-first algorithm that expands only those K survivor
nodes that show the smallest accumulated PED at each level of the decoding
tree (see Fig. 2.11). Besides having a different search strategy than the
FP-SD and SE-SD methods, the K-Best SD includes another considerable
difference with respect to FP-SD: the candidate solutions are no longer
discarded using a sphere radius but setting a constraint in the number of
survivor paths per level. This constraint is represented by the K parameter.
Hence, strictly speaking, the K-Best SD is not an actual SD method.

Once the PED of each path at a certain level has been computed with
(2.25) and (2.26), the Ti(S(i)) values are sorted in ascending order and the
K paths having the minimum PED values are stored. Then, the search
continues from these K survivor paths and follows the same strategy until
the lowest tree-level is reached. The detected signal vector ŝ is given by
the path from the root up to the leaf node with the smallest accumulated
PED.

The main advantage of this method is that its maximum number of
paths is limited, yielding a fixed computational effort. In addition, the
complexity and memory requirements coincide at every level. This par-
allelism among detection levels allows an easier hardware implementation
of the algorithm. Several variants of this algorithm also include a sphere
radius in order to reduce the number of explored paths [43][44], however,
the complexity becomes non-fixed and unknown.

As it is shown in [45], it is more likely to discard the ML solution at

40 Preliminaries and State of the Art

0 5 10 15 20 25
10-4

10
 -3

10
 -2

10
 -1

100

SNR (dB)

B
it

 E
rr

or
 R

at
e

K-Best K=2
K-Best K=5
K-Best K=10
ML detector

Figure 2.12. Bit Error Rate of the K-Best detector for dif-

ferent values of K in a 4 × 4 MIMO system with 16-QAM

symbols.

early decoding stages, since in the lowest levels the accumulated PED is
closer to the final total distance. Thus, the method can be also modified to
work with different K values at different decoding levels, which is called as
dynamic K-Best detection. Although the dynamic K-Best approach keeps
the advantage of fixed and predictable complexity, it has the drawback of
not having the same complexity and memory needs at every level. There-
fore, the parallelism among detection levels can no longer be exploited as
in the case of the K-Best method.

Fig. 2.12 shows several curves of BER versus SNR for the K-Best detec-
tor with three different values of K. A 4 × 4 MIMO system with 16-QAM
symbols was considered for the simulations. Note that higher values of K

improve the performance of the K-Best detector.

2.3. Tree-Search-Based Detection/Sphere Decoding 41

Level +1

Level

Level 2

Level 1

n
T

n
T

Candidate in temporary list Replaced candidate

Figure 2.13. Decoding tree of the ASD algorithm.

2.3.4 Automatic Sphere Decoder

The Automatic sphere decoder (ASD) was initially proposed in [37]. It is
a breadth-first algorithm that, as the K-Best SD, does not make use of a
sphere radius to solve the detection problem. It decreases the complexity of
the exhaustive ML search by storing a list of candidates which defines the
limit between the already explored part of the tree and the non-yet-explored
part.

At the beginning of the algorithm, the list only contains the root node
and its associated accumulated PED (equal to zero). In each iteration, the
method selects and expands the node inside the list with smallest PED. This
just expanded node, is removed from the list and replaced by its children
nodes. Once a leaf node is reached and selected for the next expansion, the
algorithm ends and returns its associated path as the solution. In Fig. 2.13
it can be seen an example decoding tree where just the root node and a
node located at the nT level have been expanded and replaced by their
children nodes. The already visited branches are depicted in gray.

The main disadvantage of this method is the need for a variable-size
list of candidate solutions, which can be a drawback for hardware imple-
mentations. In addition, its complexity has be shown to be higher than
these of depth-first methods.

42 Preliminaries and State of the Art

2.3.5 Fixed-Complexity Sphere Decoder

In [46] the authors proposed a MIMO detection strategy intended to over-
come the two main problems of depth-first SD methods from an implemen-
tation point of view: their variable complexity and their sequential nature.
This algorithm was called fixed-complexity SD (FSD) and combines a pre-
processing stage followed by a predetermined tree-search composed of two
different stages: a full expansion of the tree (FE) in the first (highest) T

levels and a single-path expansion (SE) in the remaining tree-levels nT −T

[46].

The symbols are detected following a specific ordering also proposed in
[46] which is based on the following reasoning: if all the symbol possibilities
are explored in one tree-level (FE), the robustness of the signal at such
level is not relevant to the final performance, as no candidates are being
discarded. Therefore, the signals that suffer the largest noise amplification
are placed at the levels where a FE is performed. On the other hand, the
signals that suffer the smallest noise amplification are placed at the levels
associated to the SE, i.e. at those levels where the tree will be pruned.

The FSD ordering iteratively orders the nT columns of the channel
matrix H. At the ith iteration only those components still to be detected
are considered. If the corresponding tree-level belongs to the SE stage,
the component of s with the smallest post-detection noise amplification is
selected and placed in this tree-level. Otherwise, the signal with the largest
noise amplification is selected instead.

The particular steps carried out for each iteration are the following.
First, the pseudoinverse of the matrix containing only the columns of the
indexes not selected yet (Hi) is computed:

H+
i = (HH

i Hi)−1HH
i , i = nT , . . . , 1. (2.29)

Then, if a symbol for the FE is searched, the index that satisfies the fol-
lowing is selected

k = arg max ‖H+
i ‖2, (2.30)

otherwise, the selected index must fulfill

k = arg min ‖H+
i ‖2. (2.31)

2.3. Tree-Search-Based Detection/Sphere Decoding 43

1+j

-1+j

-1-j

1-j

FE

SE

Figure 2.14. Decoding tree of the FSD algorithm for a 4× 4

MIMO system with QPSK symbols.

Although the FSD does not guarantee to find the ML estimate in all
cases, it achieves the maximum detection diversity if the following value of
T is chosen [47]:

T ≥ √
nT − 1. (2.32)

Fig. 2.14 shows the search tree of the FSD algorithm for the case with
nT = 4 (T = 1) and QPSK symbols. At the FE stage, for each survivor
path, all the possible values of the constellation are assigned to the symbol
at the current level. The SE stage starts from each retained path and
proceeds in the tree calculating the solution of the remaining SIC problem
(see subsection 2.2.3).

As seen in Fig. 2.15, which shows a performance comparison between
the BER of optimal ML decoders and those achieved by the FSD for dif-
ferent modulations, the performance of the FSD comes stunningly close to
that of an optimal ML detector.

The main disadvantages of this method are, on the one hand, the com-
putational cost necessary for the preprocessing (which involves the calcula-
tion of several pseudoinverse matrices) and, on the other hand, the fact that
the number of expanded nodes can be often higher than that of a depth-

44 Preliminaries and State of the Art

5 10 15 20 25 30 35
10

-8

10
 -7

10
 -6

10
 -5

10
 -4

10
 -3

10
 -2

10
 -1

10
 0

SNR(dB)

B
it

 E
rr

or
 R

at
e

FSD QPSK

ML QPSK

FSD 16-QAM

ML 16-QAM

FSD 64-QAM

ML 64-QAM

Figure 2.15. BER achieved by the FSD in a 4 × 4 MIMO

system using QPSK, 16-QAM and 64-QAM compared to ML

performance.

2.4. MIMO-Bit-Interleaved Coded-Modulation Systems 45

first SD [48]. Also, although it guarantees near-ML average performance,
its solution might not coincide with the ML estimate in some cases.

2.4 MIMO-Bit-Interleaved Coded-Modulation Systems

Another closely related scenario where the above described MIMO detection
techniques are useful is the case when channel coding is inserted, such as in
MIMO-BICM [49][50]. In fact, the system description (2.1) can be easily
extended to describe a MIMO-BICM scheme with the same number of
antennas. Therefore, it is well justified to consider such systems in this
dissertation.

2.4.1 System Model and Log-Likelihood-Ratios

In a MIMO-BICM system (such as the one shown in Fig. 2.16), the sequence
of information bits is encoded using an error-correcting code and passed
through a bitwise interleaver Π prior to being demultiplexed and mapped
to complex-valued transmit symbol vector s = (s1, . . . , snT)T . Again the
symbols si are taken from a constellation Ω of size |Ω| = M and hence
carry log2 M code bits each.

Slightly deviating from previously used notation, we here denote the
baseband equivalent model for received vector by

y = Hs + v. (2.33)

In a BICM receiver, the demodulation and channel decoding are not
performed jointly but in two differentiated stages. At the receive side,
the demodulator uses the model (2.33) to compute soft information about
the code bits in terms of log-likelihood ratios (LLRs). The delivered soft
information is used by the channel decoder to make final decisions about
the transmitted sequence bits.

In this system model, xj,b denotes the bth bit in the bit label of symbol
sj and the LLR for each transmitted coded bit equals [51]:

Lj,b = log
f(xj,b = 1|y,H)
f(xj,b = 0|y,H)

, (2.34)

46 Preliminaries and State of the Art

v1

Encoder
Input
bits

LLRR

MIMO
channel

�

s1

snT

hnR,1

h1,nT
vnR

y1

ynR

D
em
od
ul
at
or

�-1 Decoder
Estimated
bits

h1,1

hnR,nT

Transmitter Receiver

M
U
X

D
E
M
U
X

Figure 2.16. Block diagram of a MIMO-BICM system.

where f(xj,b|y,H) is the probability mass function of the coded bits xj,b

conditioned on y and H.

Using the max-log approximation [52], the LLR of the bth bit of the
symbol in layer j is calculated as:

Lj,b =
1
σ2

[
min

s∈X (0)
j,b

‖y − Hs‖2 − min
s∈X (1)

j,b

‖y − Hs‖2

]
, (2.35)

where X (c)
j,b denotes the set of symbol vectors for which the bth bit in layer

j equals c.

The hard-output ML detection problem [1] can be shown to provide
one of the two minima in (2.35), i.e.,

sML = arg min
s∈ΩnT

‖y − Hs‖2, dML = ‖y − HsML‖2. (2.36)

Denote by xML
j,b the bth bit associated with sML

j . For each j and b, the
second minimum in (2.35) can be computed as

d̄j,b = min
s∈X

(xML
j,b

)

j,b

‖y − Hs‖2, (2.37)

where x denotes the complement of bit x. Note that s ∈ X (xML
j,b)

j,b represents
the counter-hypothesis to the ML solution for bit b in layer j.

2.4. MIMO-Bit-Interleaved Coded-Modulation Systems 47

Once (2.36) and (2.37) have been calculated, the LLRs are obtained as

Lj,b =
1
σ2

(
dML − d̄j,b

) (
1 − 2xML

j,b

)
, (2.38)

where the term at the end adjusts the sign depending on whether dML

corresponds to the first or the second minimum in (2.35).

As in the hard-output detection case, there are several methods to avoid
an exhaustive search over the nT-dimensional set ΩnT in the ML problem
(2.36). Some methods that are interesting in our context are those based
on tree-search detection. The basics of tree-search-based soft demodulation
are introduced next.

2.4.2 Tree-Search-Based Soft Demodulation

Tree-search detection methods can be employed to obtain the max-log-
approximated LLRs efficiently. The straight way is to perform a repeated
tree-search (RTS) [53]. In this case, an initial tree-search detection is carried
out first to obtain sML and dML (2.36). Then, nT ×log2 M new tree-searches
are performed, each of them forcing the detector to keep one of the bits
xML

j,b fixed. The RTS strategy is very straightforward and intuitive but it
performs several redundant calculations throughout the tree.

In [52], a list-based sphere decoding (LSD) scheme was proposed to
approximate the sets X (0)

j,b and X (1)
j,b by a list of candidates with a certain

size, smaller than the whole set ΩnT . Two parameters traded the complex-
ity of the method versus performance: the list size and the sphere radius,
both selected in a somewhat ad-hoc manner. There are other variants of
this method which also set a constraint in the number of solutions per
level, similarly to what is done in the K-Best tree-search detector. This
approaches are known as K-Best LSD [25].

An efficient way to calculate the exact max-log LLRs without neither
list-size constraints nor sphere radius was proposed in [54]. This scheme
obtains all the necessary distances by performing a single tree-search (STS)
and was shown to achieve meaningful results especially when combined
with LLR clipping. However, its computational cost varies depending on
the channel matrix and it is based on a purely sequential tree-search, which

48 Preliminaries and State of the Art

is clearly a drawback for parallel implementation.

Focusing on detection methods with a fixed number of visited nodes, in
[55] and [56] the hard-output FSD described in Section 2.3.5 was extended
to provide soft information. The method obtains an improved list of can-
didates with respect to the one in [52]. Between the two soft-output-FSD
(SFSD) proposals, the algorithm shown in [55] achieved good demodulation
results in a turbo encoded system expanding a lower number of candidates
than the one in [56].

In this thesis we paid special attention to the SFSD scheme, which will
be detailed in the chapter devoted to efficient soft-output detection.

2.5 Multiuser MIMO-OFDM Communication Systems

As introduced in Chapter 1, despite the use of MIMO systems was tradi-
tionally intended for point-to-point communication, multiuser MIMO (MU-
MIMO) technology is expected to play a key role in next generation cellular
systems. In addition, there are some algorithms related to MIMO detec-
tion that can be also employed for some of the necessary tasks in multiuser
signal precoding and vice versa. Thus, the MU-MIMO scenario will be also
considered in this thesis.

2.5.1 System Model

We consider the downlink of a multiuser MIMO-OFDM communication
from a base station (BS) with N antennas to K ≤ N single-antenna users
(MS) (see Fig. 2.17). According to the technical specifications in LTE
Release 8 [57], not all the subcarriers are occupied and the number of
used subcarriers can be varied. Thus, the same set of Nc subcarriers are
employed by all the users and the unused carriers are placed at the edge
of the occupied bandwidth in order to reduce the requirements of analog
filters.

The baseband received signal at the kth user for the mth subcarrier

2.5. Multiuser MIMO-OFDM Communication Systems 49

BS

OFDM
MODULATOR

.
.

.

.
.

.

#1

N

MS #1

MS #K

OFDM
MODULATOR

OFDM
DEMODULATOR

OFDM
DEMODULATOR

Figure 2.17. Multiuser MIMO-OFDM communication sys-

tem from a BS with N antennas to K single-antenna users.

can be expressed as:

xk[m] = hT
k [m]s[m] + vk[m], (2.39)

where vector s[m] = (s1[m], . . . , sN [m])T includes the precoded information
symbols for the mth subcarrier, hk[m] is the N -elements channel vector for
the mth subcarrier, and vk[m] is the received noise for the kth user at the
mth subcarrier. Elements of hk[m] contain the signal fading from each
transmitter antenna to the kth user for the mth subcarrier. We assume
again block-fading channels, constant on blocks of duration Lch symbols,
and changing according to some ergodic statistics from block to block.

The received signal for the K users of the system at the mth subcarrier
can be expressed in a more compact way by means of a vector x[m] =
(x1[m], . . . , xK [m])T as:

x[m] = H[m]s[m] + v[m], (2.40)

turning into practically the same expression as the one of the BLAST sys-
tem (2.1).

In the system considered, the users cannot cooperate to detect the
received signals. Therefore, multiuser interference must be cancelled at the
transmitter, which can be feasible if N ≥ K and CSI is available at the BS.

50 Preliminaries and State of the Art

Encoding
+

Interleaving

Mapping PrecodingS/P

OFDM

Data
bits

OFDM

#1

Nc

Nc

#N

Nc

#1

Nc

#K

.
.

.

Figure 2.18. Block diagram of the transmitter of a multiuser

MIMO-OFDM system with N antennas, K users and Nc sub-

carriers.

Multiuser interference is cancelled using signal precoding techniques. The
block diagram of the transmitter including the precoding stage is illustrated
in Fig. 2.18.

The type of precoding sets the way in which vector s is built from
the constellation points to be transmitted. For the sake of simplicity, we
drop the m index and focus on the original signal, precoded signal and
channel matrix for a given subcarrier, since the precoding process needs to
be performed for all subcarriers similarly. Moreover, the real-valued form
of the system (see Section 2.1.1) is employed hereafter.

In what follows, the problem of precoding and the most employed pre-
coding techniques are described in detail.

2.5.2 Vector Perturbation Precoding

The vector perturbation method [58] aims at finding the transmit signal
that requires minimum power as:

s = H+(s′ + p), (2.41)

where the perturbation vector is calculated as

p = arg min
p′∈AZ2K

‖H+(s′ + p′)‖2. (2.42)

Note that (2.42) can be seen as a search for the point H+p′ that is closest to
−H+s′ in the lattice AZ

2K . This search for a 2K-dimensional lattice point

2.5. Multiuser MIMO-OFDM Communication Systems 51

+
s'

-

s
~

mod

L-I

Q
+ s

Figure 2.19. Block diagram of the Tomlinson-Harashima

precoding.

can be carried out, for instance, using some of the tree-search algorithms
described in Section 2.3. However, this search can be still computation-
ally expensive, thus, other alternative approaches are usually employed to
calculate the vector perturbation method or directly the signal to be trans-
mitted.

2.5.3 Zero-Forcing Precoding

The simplest precoding methods are those where the transmitted vector s is
the result of the product of a 2N ×2K precoding matrix P by the vector s.
Similarly to linear detection, when the pseudoinverse of the channel matrix
is selected as precoding matrix, the method is known as the zero-forcing
(ZF) approach:

s = H+s′ = HH(HHH)−1s′. (2.43)

Note that vector s can be also obtained using the QR decomposition of
matrix H to avoid computing H+ explicitly.

2.5.4 Tomlinson-Harashima Precoding

Tomlinson-Harashima precoding (THP) [59] can be interpreted as moving
the feedback part of a DFE to the transmitter, as Fig. 2.19 shows. Since
signals are perfectly known at the transmitter, errors do not propagate and
multiuser interference is perfectly cancelled. The matrices that take part in
the precoding process are obtained from the LQ decomposition of matrix

52 Preliminaries and State of the Art

H, which initially equals H = L0Q0. A diagonal matrix G is introduced
as follows:

H = L0Q0 = (L0G−1)(GQ0) = LQ,

Q+ = (GQ0)+ = QT
0 G−1, (2.44)

where L is a 2K×2K lower triangular matrix with ones in its diagonal and
Q0 contains orthogonal rows.

From the THP scheme in Fig. 2.19, it can be noted that the algorithm
is a pseudo-linear equalization with matrix L. Therefore, the precoded
symbols ŝ can be initially expressed as

ŝi = s′i −
k−1∑
l=1

Lk,lsl, i = 1, . . . , 2N. (2.45)

Since this strategy increases the transmitted power significantly, a mod-
ulo operation is applied to restrict the symbols to the constellation Ω̂, which
is a continuous constellation within a square. This reads:

s̃i = ŝimodM = ŝi − M

⌊
ŝi + M/2

M

⌋
, i = 1, . . . , 2N, (2.46)

and thus the transmit power of this method is lower than with linear pre-
coding. For a QPSK constellation, it is sufficient to add an integer multiple
of 4 to the real and imaginary parts of the s̃i components to build Ω̂. For a
general M -QAM constellation, integer multiples of 2

√
M should be added

instead. This way, the original constellation is periodically extended and
the vector to be precoded can be selected from the expanded constellation.
Finally, s = Q+s̃ is transmitted over the channel.

2.5.5 Lattice-Reduction-Aided Precoding

The idea of preprocessing the channel matrix to improve data detection in
MIMO systems can also be exploited to approximate the vector perturba-
tion (2.42). In particular, the use of LR algorithms for signal precoding has
been widely employed [16]. Determining the computational costs of these
methods and trying to decrease them was one of the tasks carried out in

2.6. Conclusion 53

this thesis. For this reason, this kind of algorithms will be further detailed
in a later chapter of this document together with the related contributions
developed in this thesis.

2.6 Conclusion

In this chapter, the problem of ML detection in point-to-point MIMO
(BLAST) systems was introduced. An overview of MIMO detection tech-
niques was also presented. Detection methods were firstly classified ac-
cording to their performance between optimal and suboptimal. In a second
level, they were divided among linear, SIC and tree-search-based methods,
paying special attention to those based on tree-search. In this context,
the transformation of conventional ML detection into sphere decoding was
addressed, showing that it is a promising approach for efficient MIMO de-
tection.

Next, the extension of an uncoded MIMO system to a MIMO-BICM
scheme was presented together with the motivation for MIMO soft demod-
ulation. Some well-known soft demodulation schemes based on tree-search
were cited and briefly introduced.

The last part of the chapter introduced the MU-MIMO scenario and
system model, as a previous step towards describing multiuser signal pre-
coding. The system model associated to a single subcarrier was shown to
be equivalent to the MIMO-BLAST system model, showing the close rela-
tionship between both systems. Finally, some widely employed precoding
techniques were described for the sake of completeness.

MIMO Preprocessing Techniques 3

MIMO Preprocessing Techniques 3
MIMO channel matrix preprocessing techniques have been shown to
be useful to either decrease the computational cost of optimal SD meth-
ods or to improve the performance of suboptimal linear, SIC or tree-
search detectors. This chapter presents a detailed overview of two widely
employed preprocessing techniques: the Lenstra, Lenstra, Lovasz (LLL)
lattice-reduction (LR) algorithm and the VBLAST ZF-DFE ordering. Both
the complexity and performance of these methods are evaluated and com-
pared. In addition, a low-complexity implementation of the VBLAST ZF-
DFE ordering is proposed and included within the evaluation.

3.1 Introduction

The complexity of optimal SD can be decreased if a preprocessing stage
that transforms the MIMO channel matrix is included before the detection
[32]. This means that the preprocessed channel matrix allows the tree-
search to be completed after expanding less number of nodes than in the
case with the original channel matrix. Among others, some of the most
popular preprocessing techniques for MIMO detection are column ordering

58 MIMO Preprocessing Techniques

techniques [32] and lattice-reduction (LR) techniques [29]. Most of the
proposed column ordering techniques are based only on the MIMO channel
matrix, and therefore, they require to be performed only when the channel
changes (recall that when a block-fading channel is considered, it remains
unchanged for a complete frame transmission). However, there exist other
ordering strategies that also depend on the received vector and require a
new channel matrix ordering for each received vector such as the gradient-
based ordering [35] or the ordering proposed in [34].

As an alternative application, other authors have employed the above
mentioned preprocessing techniques to improve the performance of subop-
timal MIMO detectors [17][60]. In this case, the enhanced properties that
the channel matrix enjoys after preprocessing help the detector to make a
better decision on the solution.

This chapter presents an overview of two widely employed preprocess-
ing techniques: the VBLAST ZF-DFE ordering [61] and the LLL LR al-
gorithm [21]. The complexity of both methods is analyzed and a low-
complexity implementation of the VBLAST ZF-DFE ordering is proposed.
In addition, the performance of both methods to preprocess the channel
matrix before using the K-Best tree-search detector is evaluated. The in-
terest of this evaluation is twofold: it shows the detection performance
improvements that can be achieved after preprocessing the channel ma-
trix and also it allows to compare the detection performance achieved with
both schemes. This comparison provides two criteria that can help to se-
lect the most suitable preprocessing technique for a final practical set-up,
depending on the requirements and on the available hardware or software
resources. Although the preprocessing techniques are tested with a partic-
ular detector, all the results and conclusions presented in this chapter can
be directly exploited with other suboptimal detectors.

The chapter is structured as follows. Section 3.2 describes the VBLAST
ZF-DFE ordering algorithm. A complexity and a performance evaluation
of the method are introduced together with a proposed low-complexity
implementation. In Section 3.3 the complexity and performance of two
versions of the LLL method are presented. Finally, Section 3.4 is devoted
to the results comparison between both preprocessing approaches and some

3.2. VBLAST ZF-DFE Ordering 59

conclusions are presented in Section 3.5.

3.2 VBLAST ZF-DFE Ordering

As seen in Section 2.2.4, the preprocessing of the channel matrix is usually
modelled by a transformation matrix P. The steps to obtain the transfor-
mation matrix that models the VBLAST ZF-DFE ordering are described
below.

3.2.1 Algorithm Description

Although many formulations for the VBLAST ZF-DFE ordering can be
found in the literature [62][63], we will use in this work the one firstly
proposed in [61] and suggested in [32] as an optimal ordering for SD-based
detection.

The VBLAST ZF-DFE preprocessing and ordering algorithm intends
to find the column ordering vector π that maximizes the minimum values
in the diagonal of the R matrix (from the QR decomposition of H) among
all the possible column permutations. The transformation carried out by
this algorithm can be expressed by means of a permutation matrix Π (i.e.
P = Π), which holds ΠΠT = I, where I is an identity matrix.

The steps of the VBLAST ZF-DFE ordering are detailed in Algo-
rithm 1. Note that H(kj) denotes the matrix that results from selecting
only the columns of the channel matrix H indexed by Δ′. Assuming the
real-valued form of the system, the algorithm finds the optimal column or-
dering in 2nT steps and stores it in vector π. The matrix Π can be easily
built by ordering the columns of an identity matrix of size 2nT according
to the ordering contained in the vector of column indexes π.

Since this transformation does not modify the norm of the columns
of the channel matrix, the components of the new vector to be detected,
z, belong to the same set as the components of the initial vector to be
detected, s. In fact, z is just a reordered version of s (since P−1 = PT).

60 MIMO Preprocessing Techniques

Algorithm 1 VBLAST ZF-DFE Ordering Algorithm
Input: H, nT

Output: π

1: Δ = {1, . . . , 2nT }
2: for k = 2nT , . . . , 2 do
3: for j = 1, . . . , k do
4: Δ′ = Δ − {Δj}
5: H(kj) = H:,Δ′

6: pj = HT
:,j [I − H(kj)((H(kj))T H(kj))−1(H(kj))T]H:,j

7: end for
8: πk = arg max{p}
9: Δ = Δ − {πk}

10: end for

3.2.2 Complexity Analysis

The number of floating point operations (flops) required for each run of the
VBLAST ZF-DFE ordering algorithm can be determined in advance since
it is fixed for a given channel matrix size. From Algorithm 1 it can be noted
that step 6) contains the main contribution to the total complexity of the
algorithm. The number of flops of this step, however, can vary depending
on the way the operations are carried out therein.

At a first approach, let us describe the number of flops assuming a
straight calculation of step 6). Note that they all depend on the value of k

at each iteration.

• Product A = (H(kj))TH(kj): 4nT (k − 1)2 flops.

• Inversion of matrix A: 2(k − 1)3 flops.

• Product B = H(kj)A−1: 4nT (k − 1)2 flops.

• Product C = B(H(kj))T : 8n2
T (k − 1) flops.

• Subtraction D = I − C: 4n2
T flops.

• Product E = HT
:,jD: 8n2

T flops.

• Product F = EH:,j : 4nT flops.

3.2. VBLAST ZF-DFE Ordering 61

In addition, a search for the maximum value appears in step 8), which
also depends on the k value. This operation exhibits a cost of k flops.
Therefore, the total number of flops for each run of the algorithm can be
calculated as:

CVB =
2nT∑
k=2

k
[
2(k − 1)3 + 8nT (k − 1)2 + 8n2

T (k − 1) + 12n2
T + 4nT

]
+ k

∼= 992
15

n5
T + O(n4

T). (3.1)

3.2.3 Low-Complexity Implementation

As seen in (3.1), the conventional implementation of the VBLAST ZF-DFE
ordering has O(n5

T) complexity, which is very high for practical implemen-
tations. In this thesis we focused on reducing this complexity and developed
a more efficient QR-based approach. Recall that the new formulation of the
VBLAST ZF-DFE method gets exactly the same solution as the original
one with a much lower computational cost.

Making use of the QR factorization, the matrix H(kj) is decomposed
into the product Q(kj)R(kj), where Q(kj) is a 2nT × 2nT orthogonal matrix
and R(kj) = [RT

1 0]T is a 2nT × (k− 1) matrix, being R1 of size (k− 1)×
(k − 1) and upper triangular.

If step 6) of Algorithm 1 is expressed as follows:

pj = ‖H:,j‖2 − HT
:,jH

(kj)((H(kj))TH(kj))−1(H(kj))TH:,j , (3.2)

then, denoting as α = HT
:,jH

(kj)((H(kj))TH(kj))−1(H(kj))TH:,j , it can be
shown that α can be computed more efficiently by using Q(kj) and R(kj)

as:

α = HT
:,j(Q

(kj)[RT
1 0]T ([RT

1 0][RT
1 0]T)−1[RT

1 0](Q(kj))T)H:,j

= HT
:,jQ

(kj)

[
I(k−1)

0
0
0

]
(Q(kj))TH:,j = ‖w1:(k−1)‖2, (3.3)

where w = (Q(kj))TH:,j .

62 MIMO Preprocessing Techniques

Algorithm 2 Getting w
Input: Q,R, j, k

Output: w
1: w = R:,j ,
2: for i = j + 1, . . . , k − 1 do
3: Calculate Givens Rotation [c, s] for Ri−1,i and Ri,i

4: for l = i, . . . , k − 1 do
5: Ri,l = −sRi−1,l + cRi,l

6: end for

7: Θ =
[

c s

−s c

]
8: wi−1:i = Θwi−1:i

9: end for
10: w = w1:k−1

Finally, pj can be simply obtained as a subtraction of the norms of two
vectors:

pj = ‖H:,j‖2 − ‖w1:(k−1)‖2. (3.4)

Note that the cost is further reduced if the equivalence ‖H:,j‖2 =
‖R:,j‖2 is taken into account.

The just described alternative formulation only affects some steps of
Algorithm 1. First, the QR decomposition of H must be included among
the inputs. Next, the norms of the columns of H are computed before
step 2) and stored in a vector. This calculation requires 4n2

T flops.

Once inside the inner for loop (step 3)), the vector w1:k−1 is obtained
from the QR decomposition of H(kj), which is just an update of another
QR decomposition, as Algorithm 2 describes. In this updating process [64],
the main goal is to compute the new Q(kj) in order to get w = (Q(kj))TH:,j

subsequently. That is why matrix R is only partially updated, thus avoiding
several flops.

Algorithm 3 shows how the product (Q(kj))TH:,j can be obtained by
applying some Givens rotations to R:,j . Note that if H = QR, it is true
that

H(kj) = Q(kj)R(kj) = (QG)(GTR), (3.5)

3.2. VBLAST ZF-DFE Ordering 63

Algorithm 3 QR Update
Input: Q,R, πk

Output: Q̃, R̃
1: for i = πk + 1, . . . , k − 1 do
2: Calculate Givens Rotation [c, s] for Ri−1,i and Ri,i

3: Θ =
[

c s

−s c

]
4: for l = i, . . . , k − 1 do
5: [Ri−1,l Ri,l]T = Θ[Ri−1,l Ri,l]T

6: end for
7: for l = 1, . . . , 2nT do
8: [Ql,i−1 Ql,i] = [Ql,i−1 Ql,i]ΘT

9: end for
10: end for
11: Q̃ = Q
12: R̃ = R:,{1:πk−1,πk+1:k−1}

being GT the product of Givens rotations (Θ matrices) which makes QTH(kj)

be triangular. Thus, finally, w equals

w = (Q(kj))TH:,j = GT (QTH:,j) = GTR:,j . (3.6)

The cost to obtain w, depending on k and j, equals 3(k−j)2/2+13(k−
j) flops.

As a result, the value of each pj is calculated with (3.4) instead of (3.2).
Thus, the total cost to compute all the pj is k3/2 + 19k2/2 flops. Finally,
a QR update routine is necessary to get the QR decomposition of the
remaining columns of H after step 9) of Algorithm 1. The steps inside this
QR update routine are included in Algorithm 3 and spend 3k2+12knT +7k

flops. From now on matrices Q̃, R̃ will represent the QR decomposition of
the channel matrix after the preprocessing stage (H̃)

It must be again considered the search for the maximum (k flops). Fi-
nally, the total number of operations for each run of the QR-based VBLAST
ZF-DFE ordering can be calculated as:

64 MIMO Preprocessing Techniques

CQR
VB =

2nT∑
k=2

[
k3

2
+

25
2

k2 + 12knT + 8k

]
+ 4n2

T (3.7)

∼= 2n4
T + O(n3

T).

As (3.7) shows, the proposed QR-based implementation reduces the
complexity from O(n5

T) to O(n4
T).

3.2.4 Performance Evaluation

The peprocessing techniques under study were combined with the K-Best
tree-search detector. Fig. 3.1 illustrates the BER performance versus SNR
for the 3-Best and 5-Best detectors without preprocessing, compared to the
performance of those algorithms when the VBLAST ZF-DFE preprocessing
has been previously used, for a 4× 4 MIMO system with a 16-QAM alpha-
bet. Note that the VBLAST ZF-DFE preprocessing substantially improves
the performance of the K-Best detector with different values of K for high
values of the SNR. In fact, note that the combination of VBLAST ZF-DFE
with the 5-Best detector achieves almost ML performance.

3.3 Lattice-Reduction Algorithms

Any lattice can be generated from many possible bases [16]. Given a basis
B, many other generator bases can be constructed as B′ = BP for any
matrix P such that both P and P−1 have integer entries. If the columns
of the channel matrix H are considered to be the basis of a lattice, LR
strategies [21] can be used to preprocess and transform the channel matrix
H into a new channel matrix H̃ = HT with less correlated columns [17]. In
this case, the transformation matrix T is unimodular (i.e. det(T) = ±1).

The basic idea behind using LR prior to traditional low-complexity
detectors is to operate in a chosen lattice basis that is optimized for those
detectors, as shown in Fig. 3.2. Note that transmitting vector s through
the channel H is equivalent to transmitting z = T−1s through H̃. At the

3.3. Lattice-Reduction Algorithms 65

5 10 15 20 25 30
10

-7

10
 -6

10
 -5

10
 -4

10
 -3

10
 -2

10
 -1

10
0

SNR(dB)

B
it

 E
rr

or
 R

at
e

 3-Best detector

3-Best ordered VBLAST ZF-DFE
 5-Best detector

5-Best ordered VBLAST ZF-DFE
ML detector

Figure 3.1. BER curves of the K-Best detector with two dif-

ferent values of K (3 and 5) in a 4×4 MIMO system using 16-

QAM, both compared to the same algorithms after VBLAST

ZF-DFE preprocessing.

66 MIMO Preprocessing Techniques

Detector
for x

H

T H=HT

Detector
for z

T
-1

s

s

v

x s

z

v

x z s

+

+

Traditional Detection

LRA Detection

Figure 3.2. Comparison between traditional detection and

LR-aided detection

receiver, the detector must operate over z and multiply the result by T to
give the detected vector ŝ.

Among many LR algorithms [29], in this thesis we focused mainly on
the most employed one in the context of MIMO communications systems:
the LLL method [21]. A brief description of Seysen’s algorithm [65] is also
included.

3.3.1 LLL and Seysen’s Algorithms

The LLL method is a meaningful LR algorithm which was firstly proposed
in [21]. This method iterates between a weak Gram-Schmidt decomposition
and column-swapping in order to achieve more orthogonal columns of the
final LLL-reduced channel matrix. Although this method is suboptimal, it
has been shown to give acceptable results when used previously to a linear
detection [16][17][18] or previously to a tree search detection [60]. The LLL
method starts from the QR decomposition of matrix H and size-reduces
matrix R when the following condition is not satisfied:

|Rl,k| ≤ 1
2
|Rl,l|, (3.8)

3.3. Lattice-Reduction Algorithms 67

Algorithm 4 LLL Algorithm
Input: Q,R, δ

Output: Q̃, R̃, T
1: Q̃ = Q, R̃ = R, T = I2nT

, m = 2
2: while m ≤ 2nT do
3: for l = m − 1, . . . , 1 do
4: λ = round(R̃l,m/R̃l,l)
5: if λ
= 0 then
6: R̃1:l,m = R̃1:l,m − λR̃1:l,l

7: T:,m = T:,m − λT:,l

8: end if
9: end for

10: if δR̃2
m−1,m−1 > R̃2

m,m + R̃2
m−1,m then

11: R̃:,m−1 ↔ R̃:,m

12: T:,m−1 ↔ T:,m

13: Θ =

[
R̃m−1,m−1 R̃m,m−1

−R̃m,m−1 R̃m−1,m−1

]
14: Θ = Θ/‖R̃m−1:m,m−1‖
15: R̃m−1:m,m−1:2nT

= ΘR̃m−1:m,m−1:2nT

16: Q̃:,m−1:m = Q̃:,m−1:mΘT

17: m = max{m − 1, 2}
18: else
19: m = m + 1
20: end if
21: end while

where 1 ≤ l < k ≤ 2nT . In addition, two column vectors are exchanged if
(3.9) is not satisfied for a given δ parameter:

δR2
k−1,k−1 ≤ R2

k,k + R2
k−1,k, (3.9)

with 1/4 < δ ≤ 1 and for k = 2, . . . , 2nT . A typical value for δ is 3/4 [21],
which will be considered in this thesis.

In order to calculate the computational cost of the algorithm, it is
useful to observe the steps of the LLL algorithm, which are detailed in
Algorithm 4.

68 MIMO Preprocessing Techniques

Algorithm 5 Fixed-Complexity LLL Algorithm
Input: Q,R,δ, Y

Output: Q̃, R̃, T
1: Q̃ = Q, R̃ = R, T = I2nT

, m = 2
2: for y = 1, . . . , Y do
3: while m ≤ 2nT do
4: for l = m − 1, . . . , 1 do
5: λ = round(R̃l,m/R̃l,l)
6: if λ
= 0 then
7: R̃1:l,m = R̃1:l,m − λR̃1:l,l

8: T:,m = T:,m − λT:,l

9: end if
10: end for
11: if δR̃2

m−1,m−1 > R̃2
m,m + R̃2

m−1,m then
12: R̃:,m−1 ↔ R̃:,m

13: T:,m−1 ↔ T:,m

14: QR update
15: end if
16: m = m + 1
17: end while
18: end for

One of the main drawbacks of the LLL algorithm is that its number
of operations cannot be easily determined in advance, since the value of
m in the while loop that begins in step 2) of Algorithm 4 is not always
incremented, but it can be either incremented or decremented depending
on the condition in step 10). This is due to the if-else sentence contained
in steps 10) to 20).

In [66], a modified LLL algorithm that can eventually guarantee a max-
imum number of loops inside the LLL algorithm was proposed (and thus
called fixed complexity LLL (fcLLL)). Since this algorithm can be more
suitable for real-time applications, we included it in our study of perfor-
mance and complexity. The steps of the fcLLL are included in Algorithm 5.

Basically, the fcLLL algorithm removes step 17) from Algorithm 4,
which is the main responsible for the variable complexity, and includes an
outer for loop that fixes the number of times that the steps from 3) to

3.3. Lattice-Reduction Algorithms 69

17) are carried out, which is called LLL loop. The number of LLL loops,
L, can be set by means of an input value, Y , that ensures a number of
L = Y (2nT − 1) loops.

Another LR method of recent interest is Seysen’s algorithm [65]. This
method reduces not only the lattice basis H but also its dual lattice ba-
sis H# at the same time. The algorithm aims to minimize the Seysen’s
orthogonality measure defined as

S(H̃) =
nT∑
i=1

‖H:,i‖2‖H#
:,i‖2, (3.10)

where H:,i denotes the ith column of the channel matrix H. Further details
concerning SA can be found in [65] and its performance with linear detectors
in several works [23].

3.3.2 Complexity Analysis

As said above, the total number of operations required by the LLL al-
gorithm cannot be easily determined in advance due to the condition in
step 10). Moreover, the fulfillment of the condition in step 5) can also vary
the number of operations.

Therefore, as a first approach, the number of operations inside both
conditions are obtained as follows:

a) Inside the condition in step 5), from now on called condition 1, a
maximum number of 4nT flops are required for the linear combination of
two columns.

b) Inside the condition in step 10), in the sequel called condition 2, a
maximum number of 24nT flops is needed for the QR update of a matrix
of maximum size 2nT × 2nT . Actually, 12nT flops are necessary to update
matrix R and other 12nT flops to update matrix Q. Note that matrix Θ
is a 2 × 2 matrix which only modifies two columns of matrix Q when it
post-multiplies it. In the same way, Θ modifies only two rows of matrix R
when it pre-multiplies it.

Next, the number of times that each condition is satisfied was approxi-
mated in order to compute the overall complexity. From now on, the num-

70 MIMO Preprocessing Techniques

Table 3.1. Number of times that the conditions inside the

LLL algorithm are fulfilled.

γ1(LLL) γ2(LLL)

Complex MIMO Avg Max Avg Max
2 × 2 3.53 23 2.41 16
3 × 3 9.97 47 6.97 33
4 × 4 19.16 91 13.17 68
6 × 6 46.62 214 27.88 131
8 × 8 85.05 410 42.76 205

ber of times that condition 1 and condition 2 are fulfilled, which depend
on the current channel realization, are denoted as γ1 and γ2, respectively.
Considering this, the computational cost of the LLL algorithm for a given
channel can be calculated as:

CLLL
∼= γ1 · 4nT + γ2 · 24nT . (3.11)

To approximate γ1 and γ2, a wide range of MIMO channel matrices
were generated (106 matrices having i.i.d. entries ∼ CN (0, 1)) to be pro-
cessed by the LLL method. The number of times conditions 1 and 2 were
fulfilled was recorded and the maximum and average value of those param-
eters were extracted. These values for different channel matrix sizes are
collected in Table 3.1.

As it was shown in [66], the fcLLL algorithm has marginal loss of
performance in comparison to the LLL when a value of Y = 5 is considered,
for a 4× 4 complex MIMO system. Therefore, this value of Y was selected
for our complexity evaluation. The same value of Y will be assumed for
all the system sizes as an approximation. Further work includes a more
extensive analysis to determine the most convenient value of Y depending
on the channel matrix size, since the way the Y parameter affects the
complexity for higher systems is not investigated in [66].

3.3. Lattice-Reduction Algorithms 71

Table 3.2. Number of times that the conditions inside the

fixed complexity LLL algorithm with Y = 5 are fulfilled.

γ1(fcLLL) γ2(fcLLL)

Complex MIMO Avg Max Avg Max
2 × 2 3.50 19 2.40 13
3 × 3 10.58 41 6.85 23
4 × 4 21.12 74 12.13 31
6 × 6 49.97 132 21.62 46
8 × 8 86.81 210 29.95 57

The fcLLL is claimed to have fixed complexity [66], since this algo-
rithm restricts the maximum number of executed LLL loops. However,
inside each LLL loop, the fulfillments of conditions 1 and 2 are dependent
on the channel realization to be processed, as in the case of the original
implementation of the LLL method. Therefore, it could be said that the
complexity of the method is somewhat bounded but it is not always exactly
the same. In the end, the computational cost of the method is given again
by (3.11).

Table 3.2 presents the average and maximum γ1 and γ2 of the fcLLL
algorithm for Y = 5, using this Y value for several channel sizes.

Note that computer simulations could provide the average complex-
ity of both the LLL and fcLLL algorithms directly. However, the reason
for including (3.11) was to emphasize which contributions to the average
complexity of the LLL algorithm are predictable (number of operations in-
side each condition), and which ones are dependent on the current channel
realization (number of times that each condition is fulfilled).

3.3.3 Performance Evaluation

The use of channel matrix ordering techniques such as the VBLAST ZF-
DFE to improve MIMO detection are easy to combine with any detector

72 MIMO Preprocessing Techniques

just keeping in mind to reorder the detected components to undo the effects
of the preprocessing. However, there are other preprocessing techniques,
such as the LR, the use of which with tree-search detectors is not straight-
forward and requires extra computational cost. Nevertheless, in a later
section we will propose an approach to allow the use of LR with the K-
Best detector, which was employed in this thesis for all the performance
evaluations involving lattice-reduction-aided (LRA) K-Best detection.

Fig. 3.3 illustrates the performance of the 3-Best and 5-Best detectors
compared to the performance of those algorithms aided by LLL prepro-
cessing. As in the case with the VBLAST ZF-DFE preprocessing, the LLL
can improve the performance of the K-Best detector, but this time it is
only worth for high values of the SNR. In fact, for SNR values lower than
22 dB, the LLL preprocessing can even slightly worsen the performance of
the K-Best.

3.4 Complexity and Performance Comparison

The complexities, in number of flops, of the VBLAST ZF-DFE, LLL and
fcLLL preprocessing algorithms for different dimensions of the complex
MIMO system are displayed in Fig. 3.4. For the VBLAST ZF-DFE method,
the efficient implementation proposed in this thesis has been considered.
Also note that for both LLL algorithms, the maximum and average com-
plexities have been calculated, considering as values for the number of times
that the conditions inside the algorithm are fulfilled those from Tables 3.1
and 3.2. As Fig. 3.4 shows, the proposed low-complexity implementation of
the VBLAST ZF-DFE preprocessing requires a higher number of flops than
the LLL and fcLLL with Y = 5 for the average case. In fact, the fcLLL
remains less costly than the VBLAST ZF-DFE even for the worst-case
(maximum number of flops). Therefore, the LLL method is the algorithm
with the highest worst-case computational cost.

In Fig. 3.5 it is depicted the comparison between the BER curves of the
K-Best detector with K = 3 and the performance of the same algorithm
when either the LLL or the VBLAST ZF-DFE preprocessing algorithms

3.4. Complexity and Performance Comparison 73

5 10 15 20 25 30
10

-7

10
 -6

10
 -5

10
 -4

10
 -3

10
 -2

10
 -1

10
0

SNR(dB)

B
it

 E
rr

or
 R

at
e

5-Best detector

LRA 5-Best detector

ML detector

3-Best detector

LRA 3-Best detector

Figure 3.3. BER curves of the K-Best detector with two

different values of K (3 and 5) in a 4× 4 MIMO system using

16-QAM, both compared to the same algorithms when the

LLL preprocessing is applied.

74 MIMO Preprocessing Techniques

2 3 4 5 6 7 80

1

2

3

4

5

6

 104

n
T

F
lo

p
s

VBLAST ZF-DFE

LLL (avg)

fcLLL (avg)

LLL (max)

fcLLL (max)

Figure 3.4. Number of flops for the VBLAST ZF-DFE, LLL

and fixed complexity LLL with Y = 5 methods.

3.4. Complexity and Performance Comparison 75

5 10 15 20 25 30
10

-7

10
 -6

10
 -5

10
 -4

10
 -3

10
 -2

10
 -1

10
0

SNR(dB)

B
it

 E
rr

or
 R

at
e

LRA 3-Best detector (fcLLL)

3-Best detector

LRA 3-Best detector (LLL)

3-Best ordered VBLAST ZF-DFE
ML detector

Figure 3.5. BER curves of the K-Best detector with

K = 3 without preprocessing and when the LLL, fcLLL and

VBLAST-DFE preprocessing algorithms are applied, in a 4×4

MIMO system using 16-QAM.

76 MIMO Preprocessing Techniques

are applied. The BER curve of the fcLLL method with Y = 5 has also
been displayed and shows that this method has similar performance to the
LLL method. In this case, the VBLAST ZF-DFE preprocessing achieves
slightly better detection results than the LLL method only for SNR <

22 dB. However, for the 5-Best detector, Figs. 3.1 and 3.3 reveal that the
VBLAST ZF-DFE performs better for every SNR. After observing that a
higher average number of operations is needed to run the VBLAST ZF-DFE
ordering than to run the LLL algorithm, providing a closed rule to choose
between both algorithms is not possible. In the end, the most suitable
preprocessing should be chosen according to the application needs, and the
SNR and available system resources.

3.5 Conclusion

This chapter presented a performance and a complexity study of the ap-
plication of preprocessing techniques to the K-Best tree search MIMO de-
tector. Both, a complexity and a performance comparison between two
LR algorithms, the LLL and fcLLL, and a column ordering strategy based
on the channel matrix, the VBLAST ZF-DFE, were performed. Also, an
efficient QR-based implementation of the latter was proposed to reduce the
complexity from O(n5

T) to O(n4
T). It has been shown that the VBLAST

ZF-DFE ordering exhibits fixed complexity for a given MIMO channel size,
which can be more advisable for practical implementations that require
predictable complexity, whereas the LLL algorithms have variable overall
complexity, depending both on the size and values of the channel matrix
entries. Therefore, our comparison included the average and maximum
number of flops for the LLL algorithms, which were partially estimated by
simulations.

The results showed that the VBLAST ZF-DFE preprocessing algorithm
requires a higher number of operations than the fcLLL and LLL algorithms
for the average case. If the worst-case is considered, however, the com-
plexity of VBLAST ZF-DFE is in between the fcLLL and the LLL, being
the LLL the most costly algorithm. On the other hand, for high SNR, al-

3.5. Conclusion 77

though the LLL preprocessing achieves the best detection performance for
the 3-Best detector, the VBLAST ZF-DFE outperforms the LLL for the
5-Best case. Therefore, the most suitable preprocessing should be chosen
according to the application needs and the available resources.

The main contributions of this chapter were published in [67].

Efficient Hard-Output Detection 4

Efficient Hard-Output Detection 4
Previous works have shown that the performance of MIMO detectors
is highly influenced by the MIMO channel matrix condition number. In
this chapter, the impact of the 2-norm channel matrix condition number
in data detection is exploited in order to decrease the complexity of al-
ready proposed detection schemes. First, a variable-breadth K-Best detec-
tor is developed, where the value of its K parameter is varied depending
on the channel matrix condition number. The proposed approach includes
a low-complexity condition number estimator stage and a threshold selec-
tion method. The results show that the proposed scheme has lower average
complexity than a fixed-breadth K-Best detector of similar performance. In
addition, a second detection scheme to be used with LR techniques is pro-
posed, which employs the idea of condition number thresholding to avoid
carrying out a LR stage when the channel has already good condition num-
ber. This way, a high number of LR calls is avoided while keeping good
detection performance.

82 Efficient Hard-Output Detection

4.1 Introduction

Experiments in [68] show that the channel matrix condition number is
strongly related to the performance of suboptimal detection schemes, since
it is a measure of how the symbols belonging to the original constellation
get distorted by the channel. It can also be shown that the condition
number generally increases with the size of the channel matrix [69], thus,
MIMO systems with a high number of antennas can suffer from a stronger
detection degradation.

The influence of the condition number over data detection motivates
the design of MIMO detection schemes based on this parameter. Authors of
[70] developed MIMO detectors based on condition number thresholding,
for instance, combining the use of ML and ZF detectors. However, the
use of the ML detector either by exhaustive search or by optimal sphere
decoding leads to a generally non-fixed complexity in the resulting detector
structure. Keeping in mind the potential practical implementation of the
detector, these approaches require two or more different algorithms to be
implemented, which can be an additional drawback.

In this chapter, the impact of the 2-norm condition number in data
detection is exploited in order to either improve the performance of al-
ready proposed algorithms or to decrease their complexity while keeping
acceptable performance. Two different efficient detection schemes based on
condition number are described. The first of them is exclusively based on
the K-Best tree-search detector while the second one combines the K-Best
detector with the use of LR.

The chapter is organized as follows. Section 4.2 describes the proposed
variable-breadth K-Best detection method. In Section 4.3, low-complexity
channel matrix condition number estimation is described and the details
concerning threshold condition number selection are pointed out in Sec-
tion 4.4. Finally, Section 4.6 addresses some results of the variable-breadth
K-Best approach and Section 4.5 contains the main aspects of the proposed
LRA K-Best detector based on condition number.

4.2. Variable-Breadth K-Best Detector 83

4.2 Variable-Breadth K-Best Detector

The sensitivity of the solution of a non-singular system of linear equations
Ax = b with respect to perturbations of the matrix A is directly related
to its condition number [64], which is defined as

κp(A) = ‖A‖p‖A−1‖p. (4.1)

Note that κp(A) is a function of the norm (denoted by ‖ · ‖p), being
norms 1, 2 and ∞ generally the only used in practice. The variation of
κp(A) with p can be somewhat predicted, since on a finite dimensional
vector space, all norms are related [71]. For instance, the 1 and 2-norms
are related in R

n and the relationship among their respective condition
numbers is given by

1
n

κ2(A) ≤ κ1(A) ≤ nκ2(A), (4.2)

where the size of matrix A is assumed as n × n.

Among the three condition numbers mentioned above, κ2(A) was se-
lected for the design of the algorithms presented in this chapter. This was
motivated by some special properties of this condition number, which will
be introduced in a later section of this chapter. For the sake of simplicity,
in the sequel κ will denote κ2 and ‖ · ‖2 the 2-norm.

It is useful to mention that the 2-norm condition number of a matrix
A can be equivalently calculated as [64]

κ(A) =
σmax

σmin
, (4.3)

being σmax and σmin the maximum and minimum singular values of A,
respectively. According to (4.3), the condition number ranges between 1
and ∞. A matrix with a low condition number (close to 1) is said to be
well-conditioned, while a matrix with a high condition number is said to be
ill-conditioned.

The probability density function (pdf) of κ for a Gaussian MIMO chan-
nel matrix with nT = nR is given by [72]:

fκ(κ) =
8nT

3

κ3
exp

(
−4nT

2

κ2

)
. (4.4)

84 Efficient Hard-Output Detection

Note that since (4.4) decays polynomially, the probability of κ taking
high values cannot be neglected. As many experiments show, these high
values often worsen detectors performance.

This fact can also be observed in Fig. 4.1, which shows the degradation
performance of some MIMO detectors with the channel matrix condition
number for SNR= 20 dB. The selected algorithms were the optimal ML
detector and the K-Best tree-search detector with two different values of
K (5 and 8). On the one hand, it can be seen that, for channel matrix
condition number values lower than 8, the performance of the 5-Best is
almost equal to the one of the 8-Best or even to the ML. On the other
hand, as the condition number gets higher, the performance of 8-Best is
not as much degraded as the 5-Best. Considering this, it seems reasonable
to think that a suitable combination between 5-Best and 8-Best based on
the channel condition number could have a quasi-ML behavior for this
value of SNR. This is the idea behind the detection scheme developed in
this chapter.

The proposed approach performs always a K-Best detection but with
the possibility of tuning the breadth of the detection tree (given by K)
among a set of possible values. The most suitable K value is chosen de-
pending on the channel matrix condition number. This method was called
variable-breadth K-Best detector (VB K-Best).

Fig. 4.2 shows the flow diagram of the implementation of the VB K-Best
detector with only two considered condition number regions (i.e. setting
only one threshold). Note that a low value of K (K1) is used while working
with well-conditioned channels and a higher value of K (K2) when the
channel is ill-conditioned. This way, a greater number of tree paths is
considered in the K-Best detector, making the ML solution less likely to be
discarded in the second case.

Note that, although the proposed scheme adapts its complexity depend-
ing on the current channel matrix, in block fading channels the channel is
assumed constant during a whole block transmission. Thus, the new condi-
tion number is only computed once per block transmission and the system
observes most of the time fixed detection complexity. Moreover, when K is

4.2. Variable-Breadth K-Best Detector 85

2 4 6 8 10 12 14 16 18
0

0.4

0.8

1.2

1.6

2

B
it

 E
rr

or
 R

at
e

5-Best

8-Best

ML

κ (H)

-3
 10

Figure 4.1. BER of different MIMO detectors with a 16-

QAM constellation in a 4 × 4 MIMO channel and a SNR of

20 dB, as a function of the channel matrix condition number

κ(H).

86 Efficient Hard-Output Detection

 K-Best
 Sphere
 Decoder

(x, H)

>

<
κ th

 κ
selection

κ(H)
estimation

 s

th

Did H
change?

yes

K=K 2

K=K 1

 K

no

κ

κ

Figure 4.2. Flow diagram of the VB K-Best detector with

threshold selection and channel matrix condition number esti-

mation.

changed, the complexity switches to another value that is also fixed, thus
the main implementation advantage of the K-Best detector is conserved.

Recall that, as said before, an estimator of the condition number to-
gether with a threshold condition number, denoted by κth, are needed to
classify the channels and subsequently adjust the K parameter. The im-
plementation details of this auxiliary stages are described next.

4.3 Channel Matrix Condition Number Estimator

Focusing on the practical implementation of the proposed approach, it is
essential to have a reliable and low cost estimator of κ(H). As explained in
Section 2.3, tree-search detectors (without being the K-Best an exception)
require a factorization of the form H = QR. Making use of (4.1) and only
in case of working with the 2-norm, the following equality holds

κ(H) = κ(R) = ‖R‖‖R−1‖, (4.5)

since Q is a unitary matrix with ‖Q‖ = 1. Note that κ(R) can be calculated
faster than κ(H), due to the fact that R is triangular.

4.3. Channel Matrix Condition Number Estimator 87

The proposed condition number estimator is composed by the product
of two independent estimators that calculate σmax and 1/σmin, respectively.
First, to efficiently compute ‖R‖ = σmax, the Power Method (PM) [64] is
employed. Then, to compute ‖R−1‖ = 1/σmin, a low complexity method,
which was firstly developed in [73], is used. In what follows, each indepen-
dent estimator and the joint proposed one are described.

4.3.1 The Power Method to Estimate σmax.

The Power Method (PM) is an iterative algorithm that obtains the eigen-
value with the largest absolute value of a given n×n diagonalizable matrix
A. The method starts with a unit 2-norm vector q(0) ∈ R

n as an initial
approximation of one of the dominant eigenvectors. At each iteration i, it
updates q(i) in two steps. First, an auxiliary vector z(i) is calculated from
vector q in the previous iteration and, after this, z(i) is normalized:

z(i) = Aq(i−1), (4.6)

q(i) = z(i)/‖z(i)‖. (4.7)

After the last iteration of the process, the maximum eigenvalue of A
can be computed as

λmax = [q(i)]TAq(i). (4.8)

In our work, the PM is proposed for calculating ‖R‖ = σmax. To get
this, the maximum eigenvalue of A = RTR is obtained, which corresponds
to σ2

max. Obviously, the method can be applied to RTR without computing
explicitly this product.

Considering that the maximum size of the real channel matrices in
practical MIMO systems is usually up to 16 × 16, a maximum number of
10 iterations for running the PM gets quite accurate results. Thus, the
number of flops of the PM for a square matrix of size n equals 21n2 + 22n.

88 Efficient Hard-Output Detection

4.3.2 Estimator of σ−1
min.

This method was firstly developed in [73] and is based on solving two tri-
angular systems. The first system to be solved is

RTx = b, (4.9)

where the right-hand-side b has to be chosen so that the solution of the
system, x̂, makes ‖x̂‖/‖b‖ as large as possible. This is achieved after a
n-step iterative process, considering the size of R−1 is n. At each step i,
the component bi is chosen between +1 and −1 in order to maximize x̂i,
which will be computed as

x̂i =
bi − (R1ix̂i + · · · + Ri−1ix̂i−1)

Rii
. (4.10)

The second system to solve is

Ry = x̂. (4.11)

Once its solution ŷ is obtained, the estimation is given by

‖R−1‖ =
1

σmin
=

‖ŷ‖
‖x̂‖ . (4.12)

The number of flops of this estimator is only 2n2 + 6n.

4.3.3 Joint Estimator of κ(H).

As soon as σmax and 1/σmin are computed via the estimators described
above, κ(R) is simply calculated as the product of both values.

In [70] the authors estimated both σmax and 1/σmin by means of the
PM, what led to 42n2+44n+2 total flops. On the other hand, the proposed
combined estimator exploits better the QR factorization used in the K-Best
algorithms thus requiring only 23n2 + 28n + 2 flops.

Table 4.1 shows that the complexity of the proposed estimator of κ(R)
measured in number of flops is almost half the complexity of the estimator
of κ(R) that employs exclusively the PM to compute both singular values.

4.4. Threshold Selection 89

Table 4.1. Complexity in number of flops for the κ(R) esti-

mators of Gaussian MIMO channel matrices.

Real-valued channel Proposed estimator Power Method

4 × 4 482 850

8 × 8 1698 3042

16 × 16 6338 11458

Focusing not only on the complexity but also on the accuracy of the
estimators, the relative estimation error and the magnitude error were cal-
culated. The relative estimation error was obtained as

ER =
|κ̂(H) − κ(H)|

κ(H)
× 100 (4.13)

and the magnitude error was simply measured as

EM = |κ̂(H) − κ(H)|. (4.14)

Fig. 4.3(a) shows that the relative estimation error of the proposed joint
estimator for κ(R) is higher than the one of the estimator only based on
the PM. However, as can be seen in Fig. 4.3(b), the error magnitude is not
very significant, making this estimator a useful choice for the VB K-best
detector. In fact, the relative estimation error of the proposed estimator
always remains below the 8% for the typical case of 4× 4 Gaussian MIMO
channel matrices. As it will be shown in the BER curves, this accuracy is
already good enough for our application.

4.4 Threshold Selection

This section addresses a meaningful way to choose the threshold condition
number κth necessary for the VB K-Best detector. The complexity of the
proposed K-Best detector depends on the chosen threshold κth, which is
related to the cumulative density function (cdf) of the pdf (4.4). The cdf

90 Efficient Hard-Output Detection

5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

R
el

at
iv

e
es

ti
m

at
io

n
 e

rr
or

 (
%

)

(a)

κ(H)

Proposed estimator

Power Method

5 10 15 20 25
0

0.05

0.1

0.15

0.2

A
b
so

lu
te

 e
st

im
at

io
n
 e

rr
or

κ(H)

(b)

Proposed estimator

Power Method

Figure 4.3. Error of our proposed estimator compared with

the error of the Power Method for computing the whole con-

dition number: (a) Relative, (b) Absolute.

4.4. Threshold Selection 91

stands for the probability of having κ ≤ κth, which equivalently gives the
probability to choose the lower value of K. For the Gaussian MIMO channel
such cdf can be obtained as follows

Fκ(κth) =
∫ κth

1
fκ(κ)dκ ≈ exp

(
−4nT

2

κ2
th

)
, (4.15)

where, for the sake of simplicity, the approximation for high values of nT

proposed in [72] was used.

As said in Section 2.3, the complexity of tree-search detectors is com-
monly measured in number of expanded nodes, since this allows a fair
comparison among different algorithms. Considering a constellation of size
M , the number of expanded nodes for a K-Best algorithm working with
the real-valued system (2.7) can be easily calculated as follows:

nK =
2nT∑
l=1

n
(l)
K , (4.16)

where the n
(l)
K coefficients contain the number of expanded nodes at level l.

For the conventional K-Best detector, the number of expanded nodes can
be recursively calculated as

n
(l)
K = min (K, n

(l−1)
K M), (4.17)

with n
(1)
K = min (K, M).

For instance, considering a VB K-Best detector that switches between
two K values (K1 and K2, with K1 < K2), for a threshold value of κth, the
resulting average number of expanded nodes nκth

is given by

nκth
= Fκ(κth) · nK1 + (1 − Fκ(κth)) · nK2 , (4.18)

where nKi (for i = 1, 2) stands for the number of expanded nodes in a
Ki-Best algorithm.

Finally, after combining equations (4.15) and (4.18), an expression for
the threshold that provides the desired average number of expanded nodes
nκth

is:

κth = 2nT

√
log

(
nK1 − nK2

nκth
− nK2

)
. (4.19)

92 Efficient Hard-Output Detection

It can be noted that the desired average number of expanded nodes de-
termines the threshold value. In the same way, for a given threshold, the
average number of expanded nodes can be straightforwardly predicted.

The generalization of the proposed idea for more than two regions of
the channel matrix condition number is next described. Considering the
combination of a set of N K-Best detectors (N > 2) with parameters
ranging from K1 to KN (K1 < K2 < . . . < KN) and a set of thresholds
κth(1) < κth(2) < . . . < κth(N−1), the number of expanded nodes for the
resulting VB K-Best detector is

nκth(1)−(N−1)
= Fκ(κth(1)) · nK1 +

N−1∑
i=2

(Fκ(κth(i)) − Fκ(κth(i−1)) · nKi

+ (1 − Fκ(κth(N−1))) · nKN
. (4.20)

Note that in this case there exist multiple combinations among the thresh-
old values κth(i) and number of nodes nKi that fulfill (4.20). Thus, the set
of thresholds and detectors should be selected in a meaningful manner to
adjust the complexity at a desired value.

4.5 LRA K-Best Detector Based on Condition Num-

ber

In Section 2.2.4 the use of channel matrix preprocessing to improve MIMO
detection was introduced and in Chapter 3 two preprocessing methods were
described and evaluated in terms of complexity and performance. It was
shown that the use of LR methods such as the LLL improve the perfor-
mance of the K-Best detector at the expense of increasing the preprocessing
complexity.

It is important the fact that the LR stage has a direct effect on the
channel matrix condition number. Fig. 4.4 shows the pdf of the condition
number of a Gaussian 4× 4 channel matrix, obtained by simulation, before
and after the LLL-reduction. It can be noted that, after the LR transforma-
tion, low condition number values become more likely than higher values.
Thus, the LR step improves the condition number most of the times. From

4.5. LRA K-Best Detector Based on Condition Number 93

5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

initial pdf
pdf after LLL

κ (H)

Figure 4.4. Probability density function of the condition

number of a 4×4 channel matrix with Gaussian entries, before

and after the LLL-reduction.

some of the reasonings in Section 4.2, it is obvious that MIMO detectors
will perform better after the LR preprocessing of the channel matrix.

A criterion to measure the reduction of the condition number achieved
by the LR method is the ratio between the initial matrix condition number
κ(H) and the matrix condition number after applying the LR algorithm
κ(H̃). In what follows, it will be denoted by RR (reduction ratio) and it is
easily calculated as:

RR(H) =
κ(H)

κ(H̃)
. (4.21)

Fig. 4.5 shows the average RR obtained by the LLL method for a 4 × 4
MIMO channel with Gaussian entries, as a function of the initial condition
number. It can be seen that the RR increases nearly linearly with κ. Since
higher condition number values experience a higher reduction, it seems to

94 Efficient Hard-Output Detection

5 10 15 20 25 30
1

2

3

4

5

6

7

8

9

10

R
R

(H
)

κ (H)

Figure 4.5. Average reduction ratio vs initial condition num-

ber for Gaussian 4 × 4 channel matrices.

be more worth to run the LLL routine for higher condition number matrices.
This leads again to the idea of condition number thresholding.

A meaningful approach to reduce the complexity of the LRA K-Best
is to perform the LR step only for ill-conditioned channel matrices and to
avoid doing it when the condition number is already low. The proposed
approach is referred to as LRA K-Best detector based on condition number.
Its flow diagram is shown in Fig. 4.6.

In this case, only two condition number regions are needed, associated
to switching between using LR or not. Nevertheless, further work could
combine this approach with the VB K-Best strategy in order to define
more thresholds and K values in the high condition number region. The
combined approach could offer more possibilities to tune the performance
and complexity.

The preprocessing complexity reduction of the LRA K-Best depends

4.6. Results 95

 K-Best
 Detector

(x, H, κ)

 κ(H)

 s

New H?

yes

no

κ

estimation
κ > ?thκ

th

yes

 Lattice
Reduction

no

H=HT

∼

Figure 4.6. Flow diagram of a LRA K-Best Detector based on

condition number with channel condition number estimation.

on the chosen threshold κth and it is related to the function Fκ(κth) (4.15),
as in the case of the VB K-Best detector. The function Fκ(κth), which
stands for the probability of having κ ≤ κth, gives the probability of not
performing a previous LR. In the next subsection some examples showing
this complexity reduction will be described.

4.6 Results

4.6.1 VB K-Best Detector

First, a 4 × 4 MIMO system with 16-QAM symbols was considered to
simulate the performance of a VB K-Best detector with K1 = 2 and K2 =
12, i.e., combining the 2-Best and the 12-Best detectors. The BER curves of
the conventional (fixed-breadth) K-Best detectors with K = 2 and K = 12
together with the BER curve of the optimal ML detector were also included
for reference. The threshold values for the VB K-Best detector, which was
chosen following the previously proposed threshold selection method, were
κth = 10 and κth = 20. The algorithm was tested first using the exact
condition number and afterwards using the proposed QR-based condition

96 Efficient Hard-Output Detection

0 5 10 15 20 25

10
-4

10
-5

10
 -3

10
 -2

10
 -1

10
0

SNR(dB)

B
it

 E
rr

or
 R

at
e

2-Best

12-Best

ML detector

Variable-Breadth K-Best κth=20

 (est.)Variable-Breadth K-Best κ κth=10

Variable-Breadth K-Best (est.)κκth=20

Variable-Breadth K-Best κth=10

Figure 4.7. BER curves of the proposed VB K-Best detector

with two different thresholds on a 4 × 4 MIMO system using

16-QAM, working with either the exact or estimated 2-norm

condition number, all compared to conventional 2-Best, 12-

Best and ML detectors.

number estimator.

Fig. 4.7 shows that, as expected, the performance gets worse as the
threshold increases. It can be also observed that the slightly imprecise
knowledge of the condition number does not modify the performance of
the proposed detector at all, since in Fig. 4.7 the discontinuous curves (VB
K-Best with estimated κ) match perfectly the continuous ones (VB K-Best
with exact κ). Therefore, this estimator is useful for this application despite
its magnitude error, which was shown in Fig. 4.3(b).

Table 4.2 includes the average complexity in number of expanded nodes

4.6. Results 97

Table 4.2. Average number of expanded nodes nK for the

VB K-Best detector in a 4 × 4 MIMO system using 16-QAM.

2-Best 12-Best κs
th = 10 κa

th = 10 κs
th = 20 κa

th = 20

16 88 37.25 50.03 21.89 26.64

nK of the considered VB K-Best detectors. Note that the entries labelled as
κs

th denote the average number of expanded nodes calculated by means of
simulations, where a high number of Gaussian channel matrices were gen-
erated to test their condition numbers. The entries labelled as κa

th contain
the average number of expanded nodes calculated by means of (4.18). It is
observed that the analytical values of the number of expanded nodes are
more conservative than the simulated ones. Obviously all the nK values for
the VB detector remain between the nK values of the 2-Best and 12-Best
detectors.

Next, the two cases of VB K-Best detector are compared to the con-
ventional K-Best detectors that have similar complexity. The VB K-Best
detector with κs

th = 10 can be reasonably compared to a 5-Best detector,
which expands 40 nodes in average, and the case with κs

th = 20 is equiv-
alent to a 3-Best detector, which expands 24 nodes. This comparison is
quite fair, since the low-complexity calculation of the condition number is
carried out only once per channel realization within the preprocessing stage
and its complexity gets somewhat masked by that of the node expansion.

It can be seen in Fig. 4.8 that the VB K-Best detectors outperform
the conventional ones for a given average complexity, so it is in fact worth
to exploit the knowledge of the channel matrix condition number to adjust
the breadth of the decoding tree.

Finally, the performance of the VB K-Best detector was tested in the
case of working with 64-QAM constellation symbols. Since higher order
constellations need more paths to be expanded in order to achieve better
performance, for this simulation the 2-Best detector was combined with the

98 Efficient Hard-Output Detection

0 5 10 15 20 25
10

-5

10
 -4

10
 -3

10
 -2

10
 -1

10
0

SNR(dB)

B
it

 E
rr

or
 R

at
e

5-Best

Variable-Breadth K-Best

κth=10

3-Best

ML detector

Variable-Breadth K-Best

κth=20

Figure 4.8. BER curves of the proposed VB K-Best detec-

tor with two different thresholds on a 4 × 4 MIMO using 16-

QAM, both compared to the conventional K-Best detectors

with equivalent complexity (3-Best and 5-Best) and to the ML

detector.

4.6. Results 99

5 10 15 20 25 30 35
10

-6

10
 -5

10
 -4

10
 -3

10
 -2

10
 -1

10
0

B
it

 E
rr

or
 R

at
e

2-Best

Variable-Breadth K-Best

 κth=20

κth=10

14-Best

ML detector

Variable-Breadth K-Best

SNR(dB)

Figure 4.9. BER curves of the proposed VB K-Best detector

with two different thresholds on a 4×4 MIMO using 64-QAM,

all compared to conventional 2-Best, 14-Best and ML detec-

tors.

14-Best detector instead of with 12-Best. Fig. 4.9 reveals that the selected
VB K-Best detector shows a very similar behavior for the 64-QAM case
and the same conclusions can be extracted from it. It is interesting to see
that the BER curve for the VB K-Best detector with κs

th = 10 overlaps
the curve of the 14-Best. The performance of the estimator has not been
evaluated for this case, since the estimator only depends on the channel
matrix statistics and size, and these two features were kept unchanged for
this simulation.

Table 4.3 includes the average complexity in number of expanded nodes
nK of the VB K-Best detectors for the 64-QAM case. The notation equals

100 Efficient Hard-Output Detection

Table 4.3. Average number of expanded nodes nK for the

VB K-Best Detector in a 4× 4 MIMO system using 64-QAM.

2-Best 14-Best κs
th = 10 κa

th = 10 κs
th = 20 κa

th = 20

16 106 37.39 58.54 23.47 29.30

the one in Table 4.2. The values of nK for the 2-Best and 14-Best detectors
were also included for the sake of comparison and, obviously, the number
of expanded nodes of the VB K-Best detectors remains between them.
Note that the number of expanded nodes of the VB K-Best detector with
κs

th = 10 is much lower than the one of the 14-Best (almost the half that
in the analytical case). This result again shows how useful the VB K-Best
detector is to reduce the computational cost of the conventional K-Best,
sometimes without losing performance and, in the worst case, with only a
slight performance loss.

4.6.2 LRA K-Best Based on Condition Number

In this section we evaluate the performance of the proposed LRA K-Best
detector based on condition number by means of BER simulations in a
4 × 4 MIMO system with 16-QAM symbols. The detector was initially
formed by the 2-Best and the LLL algorithm. The threshold values to test
were κth = 10 and κth = 20, following the threshold selection method in
Section 4.4.

Fig. 4.10 illustrates the performance of the LRA K-Best detector based
on condition number with both selected thresholds. The two LRA detectors
are compared to the conventional K-Best with K = 2 (2-Best) and the
LRA 2-Best detectors. The ML detection curve is included as a reference.
As expected, the performance gets worse as the threshold increases. A
meaningful result is that the LRA detector based on condition number
with κth = 10 achieves the same performance as the LRA K-Best detector
without threshold.

4.6. Results 101

5 10 15 20 25 30
10

-7

10
 -6

10
 -5

10
 -4

10
 -3

10
 -2

10
 -1

10
0

SNR(dB)

B
it

 E
rr

or
 R

at
e

2-Best

2-Best with LLL

2-Best with LLL and κth=10
 2-Best with LLL and κth=20

ML detector

Figure 4.10. BER curves of the LRA K-Best detector based

on condition number with two different thresholds on a 4 × 4

MIMO using 16-QAM, both compared to conventional 2-Best

and 2-Best with LLL detectors.

102 Efficient Hard-Output Detection

5 10 15 20 25 30
10

-7

10
 -6

10
 -5

10
 -4

10
 -3

10
 -2

10
 -1

10
0

SNR(dB)

B
it

 E
rr

or
 R

at
e

2-Best

2-Best with LLL and

2-Best with Seysen and

 =10
ML detector

thκ

 =10thκ

Figure 4.11. BER curves of the proposed LRA K-Best de-

tector on a 4 × 4 MIMO using 16-QAM, in the two cases of

performing the lattice reduction with LLL or Seysen.

4.7. Conclusion 103

Regarding complexity, the opposite event probability of (4.15), i.e. 1−
Fκ(κth), can be used to obtain the number of LR calls that are performed
when a certain threshold κth is selected. Basic calculations show that for
a threshold value of κth = 10, only 47% LR calls are necessary and, as
said above, the performance remains the same as in the case with 100% LR
calls. For κth = 20, the number of LR calls is reduced to just 14%, at the
expense of only a 2 − 3 dB loss at high SNR regimes.

The BER of the proposed LRA detector with κth = 10 using Seysen’s
algorithm [65] for LR was also evaluated. The comparison with the use
of LLL in Fig. 4.11 shows that both LR algorithms achieve the same per-
formance when used in the condition-number-based scheme. It was shown
in [23] that Seysen’s algorithm has higher per-iteration complexity than
LLL, although it requires a lower number of iterations. In practice, as it
was suggested there, parallel hardware structures can be used to compute
several independent operations existent in Seysen’s algorithm, in order to
make this algorithm more efficient than LLL. Therefore, in the end it is
up to the user to select the most suitable LR algorithm for the proposed
approach depending on the available resources.

4.7 Conclusion

Throughout the first section of this chapter it was developed a variable-
breadth K-Best detector that uses two different values of the parameter
K in the K-Best tree-search algorithm depending on the 2-norm condition
number of the MIMO channel matrix. It was also proposed a condition
number estimator that reuses the computation of the QR decomposition
of the channel matrix, which is always a previous step before tree-search
detection. In addition, a meaningful way of determining the threshold con-
dition number was proposed. The proposed detection approach is built
from fixed-complexity parts, which are advised for efficient practical imple-
mentations.

Some performance and complexity results showed that the proposed
scheme achieves the same performance as other conventional K-Best detec-

104 Efficient Hard-Output Detection

tors but with the advantage of having lower average complexity. Thus, it
can be said that this scheme offers average power saving. Regarding the
condition number estimator, it does not degrade the performance of the
VB K-Best detector at all and it has lower complexity than the estimator
based exclusively on the PM.

In the second part of the chapter, a LRA K-Best detector based on
condition number developed in this thesis was described. The idea behind
it is to perform a LR of the channel matrix when its condition number ex-
ceeds a given threshold. Results showed that the proposed detector exhibits
the same performance as already proposed LRA K-Best methods, with the
advantage of not carrying out the LR step for every channel, thus reduc-
ing the percent of preprocessing calls to just 47% or even 14%. Moreover,
this second proposal was tested in the cases of working with the LLL algo-
rithm and with Seysen’s algorithm, without showing noticeable differences
between their performances. Therefore, the chosen LR algorithm should
finally be determined depending on other practical reasons, for instance on
the available hardware resources or complexity restrictions.

The main contributions described throughout this chapter were pub-
lished in the next cited journal and conference papers. The first version of
the VB K-Best detector was included in [74] and an improved version of
it in [75]. The proposed method to estimate the channel matrix condition
number was proposed in [76], together with the threshold selection method
also described in this chapter. Finally, the LRA K-Best detector based on
condition number was presented in [77].

Efficient Lattice-Reduction-Aided Algorithms5

Efficient Lattice-Reduction-Aided Algorithms5
Lattice-reduction (LR) techniques have been widely employed for dif-
ferent applications such as the data detection in MIMO systems or the sig-
nal precoding in MU-MIMO systems. In this chapter, several contributions
which involve the use of LR methods are presented. First, the combination
of LR with the K-Best algorithm is investigated and alternative implemen-
tations that outperform previous proposals are developed. An extended
LLL algorithm for LR is proposed to assist the preprocessing part of some
LRA K-Best schemes. In the last part of the chapter, this extended LLL
algorithm is exploited to decrease the computational cost of several LRA
precoding methods. In addition, the most employed signal precoding ap-
proaches are evaluated and compared in terms of both computational cost
and performance.

5.1 Introduction

In Chapter 3, the use of channel matrix preprocessing before MIMO detec-
tion was evaluated considering the VBLAST ZF-DFE and LLL preprocess-
ings before K-Best detection. As explained in Section 2.2.4, preprocessing

108 Efficient Lattice-Reduction-Aided Algorithms

can be seen as transforming the MIMO channel matrix H into a new matrix
H̃ = HP. After this, the transmitted symbol-vector s turns into z = P−1s.

When matrix P causes a permutation of the channel matrix columns,
the counter permutation is needed by the detected components to make
them match the order of the input data. This is the only thing to consider
when using preprocessing methods such as the VBLAST ZF-DFE ordering.
However, when a previous LR preprocessing has been applied to the channel
matrix, the vector to be detected becomes z = T−1s. Since T−1 involves a
more complicated transformation, the range of values expanded by z is no
longer the same as the one of s. This idea is next explained graphically.

Fig. 5.1(a) shows the initial lattice points existing in an example symbol-
constellation Ω = {−1, 0, 1, 2}, which is assumed to be transmitted through
a particular 2 × 2 real-valued MIMO system. For instance, if the sys-
tem is transformed by the matrix T = [1, 1;−1, 0], with inverse matrix
T−1 = [0,−1; 1, 1], the transformed lattice points are those depicted in
Fig. 5.1(b). This example shows that the elements of z do not belong to Ω
in all cases. Moreover, each of the components of vector z may expand a
different range of possible values, which will depend on the T−1 matrix, as
the comparison between z1 and z2 reveals.

A straightforward way of determining all the possible z values would
be to obtain all the s ∈ ΩnT and, afterwards, transform them with T−1.
Note that this requires similar complexity to exhaustive search detection
and, hence, it is not useful in our context.

The above described problem led to discard the idea of combining LR
with tree-search detectors [32]. Nevertheless, the authors in [60] proposed
an implementation of a LR-aided (LRA) K-Best detector that slightly leaves
aside the strategy of conventional tree-search detectors (searching within a
finite and a priori known set of points). Before introducing our proposed
approaches, the method in [60] will be described in what follows.

The structure of this chapter is the following. First, Sections 5.2 and
5.3 describe an existing methodology (the LRA-SIC K-Best detector) and
a novel scheme for LRA K-Best detection, respectively. The insights of
boundary calculation of the transformed lattice points together with an ex-

5.2. LRA-SIC K-Best detection 109

2-1 10 -2 -1 10

-1

1

2

-1

-2

1

2

3

4

(a) (b)

s2 z2

s1 z1

Figure 5.1. (a) Initial lattice points and (b) transformed

lattice points.

tended LLL algorithm are also presented in Section 5.3. In Section 5.4, the
boundary calculation is exploited to decrease the complexity of previously
proposed LRA K-Best detectors. Finally, Section 5.6 addresses the use of
the extended LLL method to perform efficient multiuser signal precoding.
A comparison among several precoding methods in terms of performance
and computational cost is also included.

5.2 LRA-SIC K-Best detection

Considering the real-valued system model (2.7), the application of LR tech-
niques before data detection requires a set of consecutive integer constel-
lation symbols [78]. Therefore, it is necessary to introduce a displacement
vector d2nT×1 = [1, . . . , 1]T to shift and scale the original constellation
symbols as

x̃ =
(x + Hd)

2
= H

[
(s + d)

2

]
+

v
2

= H̃z̃ +
v
2

, (5.1)

where s̃ = (s + d)/2 and z̃ = T−1s̃. After this transformation, x̃ is used to
carry out the detection.

110 Efficient Lattice-Reduction-Aided Algorithms

Once the symbols are scaled and shifted, the QR factorization of the
LR channel matrix is computed (H̃ = Q̃R̃) and (5.1) is pre-multiplied by
Q̃T . Then, the system becomes:

x̃′ = R̃z̃ +
Q̃Tv

2
. (5.2)

The steps proposed in [60] to carry out the detection over system (5.2)
are described in Fig. 5.2. First, an initial estimate of the solution is cal-
culated at each level of the tree through SIC detection (see Section 2.2.3).
Due to its implicit SIC detection, we will call this method LRA-SIC K-Best.
Second, a neighborhood of points is expanded around this first estimation
in order to approximate the set of transformed lattice-points. Note that
this method considers only a subset of transformed lattice points to avoid
the computation of the complete set.

The LRA-SIC K-Best detector was shown to be meaningful mainly to
provide soft information about encoded bits since it outperforms conven-
tional K-Best detector with lower K values. However, the LRA-SIC K-Best
detector does not follow the usual implementation of tree-search methods
(searching among a finite and a priori known set of points). Therefore,
most of the existing approaches to optimize the practical implementation
of the K-Best algorithm cannot be straightforwardly applied. Moreover, the
displacements to grow the neighborhood and the value of N are selected
in an ad-hoc manner, which increases the dependency of the algorithm on
the actual system parameters.

In [79] a strategy to avoid the predetermined set of displacements re-
quired in steps 2) and 5) of the LRA-SIC K-Best was proposed. The method
also selected the first child node as in step 5) (solving the SIC problem)
but, after that, it followed the Schnorr-Euchner enumeration to find the
next neighbor-points by taking zig-zag moves around it. Despite reducing
the complexity of the neighborhood calculation, this method still has the
drawback of depending on an initial SIC calculation. Thus, it alters the
usual structure of K-Best methods. Note also that no justified boundary
control rule is provided.

5.2. LRA-SIC K-Best detection 111

1. Calculate symbol estimate at layer l = 2nT using a SIC procedure:

ẑ2nT
=

⌈
x̃′

2nT

R̃2nT ,2nT

⌋
,

where �·� rounds to the nearest integer.

2. Generate a N(> K)-point neighborhood around ẑ2nT
at the 2nT layer and calculate

the Euclidean distance of each point to x̃′
2nT

.

3. Select the K candidates with the lowest Euclidean distances and store them.

4. Decrease l = l − 1. For each of the K best paths z̃i
l+1:2nT

that were stored in level
l + 1, generate the symbol estimate at layer l using the SIC procedure:

ẑi
l =

⌈
x̃′

l − R̃l,l+1:2nT
z̃

R̃l,l

⌋
, i ∈ 1, . . . , K.

5. Generate a N(> K)-point neighborhood of ẑi
l at the l layer using a set of predeter-

mined integer displacements and calculate their accumulated Euclidean distances to
x̂i

l.

6. Select the K candidates with the lowest distances and store them.

7. If the iteration arrives at level 1 of the tree, stop the algorithm and select the best
path as ẑ. Transform it into ŝ = 2Tẑ − d, quantize the value of ŝ if it is outside the
initial lattice and give the result as an output. Otherwise go to step 4.

Figure 5.2. LRA-SIC K-Best detector.

112 Efficient Lattice-Reduction-Aided Algorithms

5.3 LRA K-Best Detector

In this thesis, we developed an alternative approach to implement LRA
K-Best detection that conserves the initial strategy of conventional tree
search methods. Previous proposals were based on modifying the original
structure of the K-Best algorithm through adapting it to the currently re-
ceived signal vector (SIC stage). Thus, extra complexity was required at
every symbol interval. However, we proposed an scheme based on a low-
complexity preprocessing stage that is totally independent of the K-best
detector. This means that it is carried out only once per different channel
realization, as other stages inside the receiver such as the channel estima-
tion and the LLL lattice-reduction. Hence, the proposed scheme allows for
a disjoint implementation of the LR and K-Best detection stages, which
makes the algorithm as versatile and modular as required for practical im-
plementations.

Fig. 5.3 shows the MIMO system model described in Section 2.1 includ-
ing the proposed approach to carry out an efficient data detection. Note
that the receiver is based on a conventional K-Best detector which, at ev-
ery symbol period, needs the following inputs: the received signal vector,
the matrices from the QR decomposition, the transformation matrix from
the LLL algorithm and the set of points among which the K-Best search
must be performed. These stages that are only carried out once per differ-
ent channel realization appear shadowed in the figure. Note that the set of
points that enter the K-Best detector (denoted by Φ) is calculated from the
initial constellation set and from the inverse of the channel transformation
matrix. The calculation of Φ will be detailed later.

The steps to look for the solution in the proposed LRA K-Best al-
gorithm are described in Fig. 5.4. Note that the proposed LRA K-Best
algorithm has exactly the same structure as the conventional K-Best de-
tector without LR. The only difference is step 1), which is performed once
per channel realization and can be reused for a long number of runs of the
K-Best detection part. The following section is devoted to describe how to
compute Φ.

5.3. LRA K-Best Detector 113

Data
Conventional

K-Best
Detector

v1

vnR

x1

xnR

s1

snT

h1,1

hnRnT

hnR,1

h1,nT

Transmitter Receiver

Channel
estimator

Extended
LLL

H

Boundary
calculation

Q, R, T

T
-1

Φ

Ω

Q(2Tz-d)
s

Figure 5.3. Block diagram of a MIMO-BLAST system model

including the proposed LRA K-Best detector.

1. Compute all the sets of candidates and store them into Φ.

2. At level l = 2nT + 1, initialize one path with accumulated PED equal to zero.

3. Decrease l and calculate the children nodes of the K best paths that were stored in
level l+1, considering vector φ(l). Update the accumulated PED for each path with
(2.26).

4. Sort the candidate paths according to their accumulated PEDs and select the K

best paths to be expanded in the next level.

5. If l = 1, stop the algorithm and select the best path as ẑ. Transform it into ŝ =
2Tẑ − d, quantize the value of ŝ if it is outside the initial lattice and give the result
as an output. Otherwise go to step 3.

Figure 5.4. Proposed LRA K-Best detector

114 Efficient Lattice-Reduction-Aided Algorithms

-2 -1 10

-1

-2

1

2

3

4
zmax

(2)

zmin
(2)

zmin
(1)

zmax
(1)

z2

z1

Figure 5.5. Transformed lattice points and boundaries of the

transformed lattice.

5.3.1 Boundary Calculation of the Transformed Lattice Points

As said in the introduction, the straight calculation of all the transformed
lattice points requires similar complexity to exhaustive search detection.
We propose a low-complexity approach that determines only the minimum
and maximum integer value of each of the components of vector z, de-
noted as zmin

(l) and zmax
(l) with l ∈ {1, . . . , nT }. These values provide the

boundaries of the transformed lattice at each level of the detection tree.
As it can be seen in the example of Fig. 5.5, the values within zmin

(l) and
zmax

(l), with l ∈ {1, 2}, provide a set of integers where the solution at each
level is certain to be found. Thus, the elements in such set can be used as
the candidate solutions at each level of the tree in LRA MIMO detectors.

Although several extra points are explored in those cases where the
original channel matrix is highly skewed, this disadvantage also exists in
the other LRA K-Best proposals such as the LRA-SIC K-Best in [60]. Un-
fortunately, this is the price to pay to avoid an exhaustive candidate cal-
culation.

If matrix T−1 is available for each channel realization, the maximum
and minimum z at levels l ∈ {1, . . . , nT } can be obtained from the maximum
and minimum value of Ω as follows

5.3. LRA K-Best Detector 115

zmax
(l) = Ωmax

∑
j∈P (l)

T−1
lj + Ωmin

∑
j∈N(l)

T−1
lj , (5.3)

zmin
(l) = Ωmin

∑
j∈P (l)

T−1
lj + Ωmax

∑
j∈N(l)

T−1
lj ,

where P (l) stands for the set of j indexes where T−1
lj > 0 and N (l) stands

for the set of j indexes where T−1
lj < 0.

Once zmin
(l) and zmax

(l) have been calculated, the candidates of each
level l are obtained as

φ(l) =
[
zmin

(l), zmin
(l) + 1, . . . , zmax

(l) − 1, zmax
(l)
]T

. (5.4)

The boundary vectors are also stored in the following 2 × 2nT matrix:

Φ =

[
zmin

(1)

zmax
(1)

zmin
(2)

zmax
(2)

. . .

. . .

zmin
(2nT)

zmax
(2nT)

]
, (5.5)

which will be an input of the proposed LRA K-Best algorithm.

Even though the proposed boundary calculation needs the inverse of
the transformation matrix, T−1, LR algorithms such as LLL [21] only pro-
vide matrix T as an output. The computational cost for inverting matrix
T is cubic with the number of transmitting antennas. In order to fulfill
this requirement with low cost, we developed an extended LLL algorithm
that efficiently provides matrix T−1, which is described in the following
subsection.

5.3.2 Extended LLL Algorithm

In Section 3.3.1 a thorough description of the LLL algorithm was presented.
The steps of this algorithm were described in Algorithm 4. Thus, this
section will only focus on the additional steps to be included in the original
algorithm.

Recall that, in the LLL algorithm, all the transformations performed
on matrix R are stored in matrix T when the algorithm ends. At the

116 Efficient Lattice-Reduction-Aided Algorithms

beginning, matrix T is initialized to the identity matrix and then two basic
operations are performed over it. The first one is a linear combination
of columns in order to fulfill condition (3.8), which is done in step 7) of
Algorithm 4. The second operation is a column exchange that aims at the
fulfillment of condition (3.9) and is addressed in step 12) of Algorithm 4.

We developed an efficient way to calculate matrix T−1 inside the LLL
algorithm. It is useful to note that the result of the linear combination of
columns in step 7) can be also represented by a matrix C that postmultiplies
T. For instance, the matrix that adds the product of −λ by the column l

to the column m is simply an identity matrix with its (l, m)-entry replaced
by −λ. As an example with l = 2, m = 3 and a 3 × 3 T matrix:

C =

⎡⎢⎣ 1
0
0

0
1
0

0
−λ

1

⎤⎥⎦ . (5.6)

Since the equality TT−1 = I holds, it is also true that TCC−1T−1 = I.
If we calculate the matrix C−1 and premultiply T−1 by it, we get that this
operation corresponds to the following linear combination of rows in T−1:

T−1
l,: = T−1

l,: + λT−1
m,:. (5.7)

In a similar manner, the column exchange performed in step 12) can be
directly represented by a permutation matrix P that again postmultiplies
T. The matrix P is built after swapping the columns we need to exchange in
T (column m−1 by column m) in an identity matrix. Since for permutation
matrices it is true that PPT = I, the premultiplication of T−1 by P is only
this row exchange

T−1
m−1,: ↔ T−1

m,:. (5.8)

Therefore, the extended LLL algorithm provides the QR decomposition
matrices of the lattice-reduced channel matrix, together with the transfor-
mation matrix and its inverse, as claimed before.

5.3. LRA K-Best Detector 117

5 10 15 20 25 30
10

-7

10
 -6

10
 -5

10
 -4

10
 -3

10
 -2

10
 -1

10
0

SNR(dB)

B
it

 E
rr

or
 R

at
e

LRA-SIC 3-Best detector

LRA 3-Best detector

3-Best detector

5-Best detector

ML

LRA 5-Best detector

Figure 5.6. BER curves of the proposed LRA K-Best detec-

tor with two different values of K (3 and 5) on a 4× 4 MIMO

system using 16-QAM, both compared to conventional 3-Best,

5-Best and optimal detectors.

5.3.3 Performance Evaluation

A 4×4 MIMO system with a 16-QAM alphabet is here considered. Fig. 5.6
shows the BER performance versus SNR for the proposed LRA K-Best
detector, the conventional K-Best detector with K = 3 and K = 5 and the
LRA-SIC K-Best proposed in [60]. For the LRA schemes, the K parameter
was set to 3. It can be seen that our proposal performs exactly in the same
way as the LRA-SIC K-Best (for the rest of K values and constellations,
the same results were obtained).

As Fig. 5.6 shows, the proposed LRA detector outperforms the plain

118 Efficient Lattice-Reduction-Aided Algorithms

K-Best detector with the same value of K at high SNR values. The BER
degradation compared to optimal ML detection is quite low (� 1 dB).
Moreover, the LRA 3-Best detector performs exactly the same as the LRA
5-Best detector; thus, the proposed approach is very suitable for low K

values.

Focusing on a particular BER value, e.g. 25 dB, the plain K-Best
needs a value of K = 9 to achieve the same performance as the LRA K-
Best detector with K = 3. Therefore, the LRA K-Best detector can achieve
the same results as the plain K-Best with a much lower K value.

5.3.4 Computational Cost Analysis

The proposed LRA K-Best detector can be divided in two stages. On
the one hand, the preprocessing stage, which includes the LLL and the
boundary calculation, is carried out only when the channel changes and,
thus, it can be performed off-line. On the other hand, the K-Best detector
is run when a new symbol vector is received, which happens many times
for a given realization of a block-fading channel.

The complexity of the LLL was previously analyzed in Chapter 3. Note
that the computational cost of the extended LLL algorithm is almost the
same as the one of the LLL but including 2nT sums and 2nT products when
one of the conditions of the LLL is fulfilled.

Regarding the boundary calculation, it can be observed that, according
to (5.3), it is performed with very simple mathematical calculations. The
upper bound for the cost of the proposed preprocessing stage corresponds
to 2nT products and 2nT − 1 additions. Generally, this computational cost
becomes even lower in practice since the unimodular matrix T−1 usually
contains several entries that are equal to 0, −1 and 1, which avoids several
products and additions.

As discussed in Section 2.3, the complexity of tree-search detectors is
commonly measured in number of expanded nodes since this allows a fair
comparison among different algorithms. The number of expanded nodes for
any K-Best algorithm can be easily calculated as nK =

∑nT
l=1 n

(l)
K , where

the n
(l)
K coefficients contain the number of expanded nodes at level l (see

5.3. LRA K-Best Detector 119

Table 5.1. Stages of the proposed LRA K-Best and the LRA-

SIC K-Best schemes.

Proposed LRA K-Best LRA-SIC K-Best

Preprocessing Extended LLL LLL
cost Boundary calculation

Per-symbol-vector nT K visited nodes nT K visited nodes
cost SIC calculation

Section 4.4). For the proposed LRA K-Best detector, the coefficients n
(l)
K

can be recursively calculated as

n
(l)
K = min

(
K, n

(l−1)
K (z(l)

max − z
(l)
min + 1)

)
, (5.9)

with n
(0)
K = 1. Note that the complexity is upper-bounded by nT K, as in

the conventional K-Best algorithm.

Table 5.1 collects the contributions to the preprocessing and per-symbol-
vector computational costs for the proposed LRA K-Best detector and the
LRA-SIC K-Best detector [60]. Taking a look at the differences between
our proposal and the LRA-SIC K-Best detector, the main advantage of our
scheme is that the computational cost of the boundary calculation stage
(2nT products and 2nT − 1 additions) is much lower than the one required
for calculating the SIC solution of each group of nT symbols (with O(n2

T)).
Moreover, unlike the SIC computation, the boundary calculation is carried
out only at the preprocessing, which reduces the complexity even more.

Next, when comparing the computational cost of our proposal with
that of the conventional K-Best, both have the same worst-case number of
expanded nodes nT K. However, as the LRA K-Best achieves better per-
formance than the K-Best, a fair comparison requires to increase the K pa-
rameter in the conventional K-Best to provide the same performance as the
LRA K-Best does. This fact leads to an increase in the per-symbol-vector
cost, which is the main contribution to the overall cost of the algorithm, as

120 Efficient Lattice-Reduction-Aided Algorithms

discussed above.

5.4 Complexity Reduction Using Boundaries

In this section, we propose several alternative applications for the bound-
aries of the transformed lattice. Note that, once these boundaries are avail-
able, they can be used to reduce the search for the solution at each level of
the decoding tree of the LRA-SIC K-Best detector described in Section 5.2.
By limiting the search in this way, the number of explored candidate so-
lutions is substantially reduced. This first strategy is called LRA K-Best
with Candidate Limitation (LRA-CL). The second strategy is based on
the dynamic K-Best detection approach (see Section 2.3.3) and it led to
two different detection proposals: the Dynamic-K LRA K-Best and the
Dynamic-N LRA K-Best.

5.4.1 LRA K-Best with Candidate Limitation

Considering that the boundaries of the transformed lattice have been cal-
culated as presented in Section 5.3.1, the only steps of the LRA-SIC K-Best
detector that have to be modified in order to discard erroneous solutions
are steps 3) and 6) (see Fig. 5.2). Step 6) is reformulated as:

6) Pick N > K integer values around ẑi
l at the l layer following a zig-

zag strategy around the SIC solution. In case of reaching the boundaries,
follow the same direction and reduce N to the value of N = �(N/2)�,
where �·� denotes rounding to the higher integer. If the other boundary
is also reached, stop exploring candidates. Finally calculate the Euclidean
distances of the candidates to x̂i

l.

Fig. 5.7 represents an example of the candidate selection following a
zig-zag strategy around the SIC solution. It will be considered for this
case a value of N = 8 and a solution from the SIC detector equal to -2,
labelled in the figure as SIC. The first row of numbers surrounded by circles
represent the order in which each candidate is explored when there is no
candidate limitation. However, when the candidate limitation is applied,
if a value for the lower boundary of zmin = −3 is supposed, the value

5.4. Complexity Reduction Using Boundaries 121

-2-3 -1 0 1 2-4-5

zmin

1 23 457 6 8

SIC

1 23 4

LRA-SIC K-Best

LRA-CL

N=8

N=4

Figure 5.7. Representation of the order in which candidate

points are explored in the LRA-SIC K-Best scheme and in the

LRA-CL scheme.

of N is reduced to N = 4 and the selected candidates points now range
from -3 to 0. Therefore, the proposed candidate limitation can reduce the
number of candidates without decreasing the detection performance, as will
be discussed below.

The modifications over step 3) can be straightforwardly predicted.

Results and Complexity Discussion

The computational complexity comparison has been performed for a 4 × 4
MIMO system working with 16-QAM and 64-QAM constellations. For the
sake of simplicity, the simulations were carried out using the real represen-
tation of the MIMO system and an uncoded scheme, although the proposed
technique can be easily adapted to a complex system. The LLL algorithm
[21] was employed for the LR operation.

For a 2nT × 2nT MIMO system, it can be easily seen that the number
of explored paths at each run of the original LRA K-Best algorithm equals
N +(2nT −1)NK, since every level needs to explore NK candidates except
the first level, where only N are explored. In the case considered for our
simulations, the number of levels of the decoding tree is 8, and thus, the
number of explored paths at each run of the algorithm equals N + 7NK.
From now on, it will be considered that N = K + 1, which leads to a
number of explored candidates of 7K2 + 8K + 1. Note that the complexity
analysis has been performed under the assumption of working with a real
representation of the MIMO system.

122 Efficient Lattice-Reduction-Aided Algorithms

Table 5.2. Average number of expanded candidates for the

LRA-SIC and LRA-CL detectors (16-QAM case).

LRA-SIC 3-Best LRA-SIC 5-Best
[60] LRA-CL Reduction (%) [60] LRA-CL Reduction (%)
88 71 19 216 148 31.5

Table 5.3. Average number of expanded candidates for the

LRA-SIC and LRA-CL detectors (64-QAM case).

LRA-SIC 5-Best LRA-SIC 10-Best
[60] LRA-CL Reduction (%) [60] LRA-CL Reduction (%)
216 185 14.4 781 570 27

Tables 5.2 and 5.3 show the average number of expanded nodes for the
LRA-SIC K-Best and LRA-CL algorithms and the achieved corresponding
reduction using the LRA-CL strategy. For the 16-QAM case, simulations
were run with the LRA-SIC 3-Best and LRA-SIC 5-Best detectors. As
Table 5.2 shows, the LRA-CL scheme decreases the number of explored
candidates of the LRA-SIC 3-Best in a 19%. For the LRA-SIC 5-Best case,
the complexity is reduced in a 31.5%.

The results for a 64-QAM constellation are collected in Table 5.3, con-
sidering the LRA-SIC 5-Best and LRA-SIC 10-Best detectors. It can be
seen that, for the 5-Best scheme, the number of candidates is decreased
in a 14.4%. For the LRA-SIC 10-Best case, the reduction is 27% of the
candidates. Therefore, it can be concluded that the higher the value of K

is, the higher the percentage of reduction can be achieved.

5.4.2 Dynamic-K and Dynamic-N LRA K-Best Detectors

In this subsection, a dynamic selection of the parameters of the LRA-SIC
K-Best detector is proposed in order to decrease its average complexity.
Note that the complexity of the LRA-SIC K-Best detector is subject to the

5.4. Complexity Reduction Using Boundaries 123

two parameters K and N , with N > K. Parameter K is responsible for
the number of stored paths per level and N for the number of candidate
solutions that are explored before choosing the K best ones.

As it can be seen from the proposed boundary calculation, vector φ(l)

allows to determine the number of valid candidate solutions at each level
l of the decoding tree. It seems reasonable that levels with higher number
of candidate solutions should not discard as many paths as levels with
lower number of candidates. Therefore, the computational complexity of
the algorithm can be decreased either by having both a different Kl and
Nl value at each level (later called as Dynamic-K scheme), or keeping the
number of stored paths K unaltered and only assigning different Nl values
per level (Dynamic-N scheme). The first approach leads to both a variable
number of explored paths Kl−1Nl and a variable number of stored paths Kl

at each level, whereas the second approach explores KNl paths and stores
K paths (which is a fixed value).

Following the above mentioned strategies, we propose two different
dynamic algorithms. In the Dynamic-K algorithm (Dyn-K) a non-linear
distribution of the Kl values at each level of the tree is suggested. A gen-
eralized logistic function [80] rounded to the higher integer by the operator
�·� is used. The resulting Kl values are calculated according to the number
of candidates at level l and also to the K value of a same performance fixed
K-Best algorithm, as follows:

Kl =
⌈
1 +

(K − 1)
(1 + 0.5 exp (−(Ll − M)))2

⌉
, (5.10)

where Ll stands for the number of candidate points at level l:

Ll = (φ(l)
2 − φ

(l)
1) + 1 (5.11)

and M denotes the central point of the range of values expanded by L =
[L1, . . . , Ll, . . . , L2nT]

M = (max
∀l

(L) − min
∀l

(L))/2. (5.12)

Let this distribution of Kl values be clarified by means of an example.
Considering a 4 × 4 complex MIMO system (8 × 8 in its real-valued rep-
resentation), working with a 16-QAM constellation, 8 detection levels are

124 Efficient Lattice-Reduction-Aided Algorithms

Table 5.4. Example of assigned Kl values in a 8×8 real-valued

MIMO system, associated to the set of number of candidates

Ll for each of the 8 detection levels.

Level (l) Candidates (Ll) Assigned K (Kl)

1 3 3
2 2 2
3 4 4
4 6 5
5 3 3
6 3 3
7 1 1
8 8 5

necessary to obtain the whole detected vector. At each level, the number
of candidate points (Ll) for a given channel realization can be calculated
by using (5.11) and previously related equations. A set of possible values
of Ll is given as an example in Table 5.4 for each level l. The next step
for the calculation of the Kl values is the calculation of M , which can be
easily performed using (5.12) as M = (8 − 1)/2 = 3.5.

Once the values of Ll and M are available, a fixed K-Best algorithm to
be compared has to be chosen, for instance 5-Best (K = 5). Inserting Ll,
M and K into (5.10), the values shown in the third column of Table 5.4,
labelled as Kl, are achieved. It can be easily checked that the average K

value is now 3.62, which is lower than the K value of the fixed 5-Best for
this particular case. The smallest value for vector N at each level was
considered, being calculated as Nl = Kl + 1.

In the Dyn-K scheme, the fact of working with different Kl values
affects steps 4) and 7) of the above described LRA-CL scheme. These
steps should be modified in order to operate with the Kl best paths instead
of with the K best paths. In the same way, steps 3) and 6) of the above
described LRA-CL scheme should be modified in order to operate with
the Nl integer values around the SIC solution instead of with the N values.

5.4. Complexity Reduction Using Boundaries 125

Table 5.5. Average number of expanded candidates for the

LRA-CL, Dyn-K and Dyn-N detectors (16-QAM case).

LRA-SIC 3-Best LRA-SIC 5-Best
LRA-CL Dyn-K Dyn-N LRA-CL Dyn-K Dyn-N

71 66.2 54.2 148 131.8 124.3

This strategy has been shown to reduce the average number of stored paths
(K) and the average number of expanded nodes of the LRA-CL algorithm,
without decreasing the performance, as will be presented in the next section.
Therefore, this first dynamic approach saves average power consumption in
practical implementations.

In the second dynamic scheme, called Dynamic-N algorithm (Dyn-N),
the value of K remains constant and the Nl values are now calculated as
follows:

Nl =
⌈
1 +

(K − 1)
(1 + 0.5 exp (−(Ll − M)))2

⌉
. (5.13)

In this case, only steps 3) and 6) of the above described LRA-CL scheme
should be modified in order to operate with the Nl integer values around
the SIC solution instead of with the N values. This strategy has been
shown to reduce the average number of explored paths and to keep the
average number of stored paths fixed, since K is the same for all levels.

Tables 5.5 and 5.6 show the average number of expanded candidates
for the LRA-CL algorithm and for the two proposed dynamic versions of
this method, labelled as Dyn-K and Dyn-N . It can be seen that dynamic
schemes can further reduce the complexity.

Table 5.7 shows the comparison between the average K values for some
fixed K-Best detectors and the average K values for the Dyn-K detection
scheme that achieves the same performance. Also, the relative reduction of
K in % obtained with the dynamic scheme is presented. It can be observed
that the Dyn-K detector reduces the average K value and, thus, the average
number of stored paths of the algorithm.

126 Efficient Lattice-Reduction-Aided Algorithms

5 10 15 20 25 30
10

-7

10
 -6

10
 -5

10
 -4

10
 -3

10
 -2

10
 -1

10
0

SNR(dB)

B
it

 E
rr

or
 R

at
e

3-Best detector

ML detector

Dyn-K 3-Best detector

LRA-CL 3-Best detector

LRA-SIC 3-Best detector

Figure 5.8. BER curves of the proposed LRA K-Best schemes

(LRA-CL and Dyn-K) on a 4 × 4 MIMO system using 16-

QAM, compared to conventional 3-Best, LRA 3-Best and ML

detectors.

5.5. Relationship among the proposed hard-output

schemes 127

Table 5.6. Average number of expanded candidates for the

LRA-CL, Dyn-K and Dyn-N detectors (64-QAM case).

LRA-SIC 5-Best LRA-SIC 10-Best
LRA-CL Dyn-K Dyn-N LRA-CL Dyn-K Dyn-N

185 155 143 570 473 486.7

Table 5.7. Reduction of the average K values with a Dyn-K

detector.

16-QAM 64-QAM
Fixed Dyn-K Reduction (%) Fixed Dyn-K Reduction (%)

3 2.8 6.7 5 4.3 14
5 4.4 12 10 8.1 19

Finally, Fig. 5.8 shows the performance of the LRA-CL and Dyn-K
schemes with K = 3, in a 4 × 4 MIMO system using 16-QAM, compared
to conventional 3-Best, LRA-SIC 3-Best and ML detectors. It can be seen
that the BER curves of the proposed low-complexity detectors overlap the
BER curve of the LRA-SIC 3-Best detector, and all of them improve the
performance of conventional 3-Best detector for SNR ≥ 20 dB. Therefore,
the proposed schemes can decrease the average complexity without mod-
ifying the performance. It has been checked that the BER curve for the
Dyn-N algorithm also overlaps the curves of LRA-SIC K-Best, LRA-CL
and Dyn-K.

5.5 Relationship among the proposed hard-output

schemes

To further clarify the relationship among the suboptimal techniques pro-
posed in Chapter 4 and so far in Chapter 5, we show how these techniques

128 Efficient Lattice-Reduction-Aided Algorithms

compare among each other in Fig. 5.9. The first level contains the basic
preprocessing stages that, when combined with the K-Best detector, result
in the proposed approaches. These basic stages are the condition number
calculation and thresholding, the LR stage and the boundary calculation
of the transformed lattice.

The second level includes the VB-K-Best detector, which uses condition
number thresholding in conjunction with K-Best detection. If LR is used
instead, there are two possible alternatives: either the proposed LRA K-
Best (with boundary calculation) or the existing LRA-SIC K-Best (with a
SIC calculation per received symbol-vector).

At the third level of the figure there are three detection strategies
which are built from further modifications of the detectors in the second
level. These detectors are the LRA K-Best detector based on condition
number, which includes condition number thresholding and LR, the LRA-
SIC K-Best detector with candidate limitation, which uses the boundaries
of the transformed lattice to limit the search in the LRA-SIC K-Best, and
the Dynamic-K or Dynamic-N LRA-SIC schemes, which exploit the knowl-
edge about the number of candidates among the boundaries to set different
values of either the K or the N parameter.

General guidelines on the suitability of each proposed technique for a
certain application are hard to be given. Nevertheless, we found useful to
describe at least some considerations to be taken into account when using
these techniques.

In general, all the proposed approaches are intended to reduce the com-
plexity of the detection stage at the expense of including extra preprocess-
ing complexity. The practical cases when this strategy is worth, however,
will depend on the time the channel remains constant. If the channel has a
fast variation in time, those algorithms with a low-complexity preprocessing
stage are more suitable, for instance the VB K-Best of the LRA-SIC K-Best
detectors. On the other hand, if the channel remains constant during the
transmission of many symbol-vectors, the preprocessing complexity has a
small contribution to the total complexity of the algorithm. For the latter
case, algorithms such as the LRA K-Best of LRA K-Best based on condition

5.6. Multiuser Precoding using the Extended LLL Method 129

Condition Number
Thresholding

Lattice
Reduction

Lattice Boundary
Calculation

Variable-Breadth
K-Best

LRA-SIC
K-Best

LRA
K-Best

LRA K-Best Based on
Condition Number

LRA K-Best with
Candidate Limitation

Dynamic-K/N
LRA K-Best

Preprocessing Stages

Figure 5.9. Relationship among all the hard-output strate-

gies proposed in Chapters 4 and 5.

number may be more appropriate. Finally, if the practical application has
fixed-complexity requirements, algorithms such as the LRA-SIC K-Best CL
or Dyn-K and Dyn-N LRA-SIC schemes would be less suitable, due to their
variable complexity. If there are no fixed-complexity requirements, then the
latter algorithms are more advisable than the plain LRA-SIC K-Best.

5.6 Multiuser Precoding using the Extended LLL Method

As shown in Section 2.5, there is a close relationship between the MIMO
point-to-point system model and the one of multiuser systems. In fact,
there are several MIMO detection algorithms that can be also used to
perform multiuser signal precoding.

In Section 2.5, some well-known precoding techniques were introduced,
such as the vector perturbation, zero-forcing and Tomlinson-Harashima

130 Efficient Lattice-Reduction-Aided Algorithms

approaches. LR algorithms have also been widely employed for signal pre-
coding, some examples are the schemes proposed in [16] and [81].

In this section, we present several LRA precoding techniques and pro-
pose their combination with the extended LLL algorithm. Our aim is to
save computational cost when the inverse of the transformation matrix
is required by the LRA precoding algorithms. The preprocessing and per-
symbol-vector computational cost of all the multiuser precoding algorithms
presented in this thesis are both evaluated. Then, the impact that the ex-
tended LLL has in the overall cost of those LRA algorithms that employ the
inverse of the transformation matrix is investigated. Finally, all the algo-
rithms are compared in terms of both computational cost and performance
in order to determine the algorithm with the best trade-off.

5.6.1 Lattice-Reduction-Aided Precoding

In [81] it was proposed a simple and efficient way to approximate the per-
turbation vector (2.42) based on LR. A LR stage is applied to the columns
of the pseudoinverse matrix H+, giving

H+
R = H+T, (5.14)

where H+
R is the new precoding matrix with less correlated columns. After

this, the perturbation vector is approximated as:

papp = −TQ{T−1s′}, (5.15)

where Q{.} denotes the componentwise quantization of a 2K-dimensional
vector to the scaled integer lattice MZ.

Finally, the precoded signal is

s = H+(s′ + papp), (5.16)

as displayed in Fig. 5.10. Note that both T and T−1 are needed by the
algorithm.

5.6.2 Enhanced Lattice-Reduction-Aided Precoding

There is another variant of this algorithm which is based on SIC [81], which
will be called as the LRA-SIC precoding method. Here the matrices Q and

5.6. Multiuser Precoding using the Extended LLL Method 131

+
s'

Q T T
-1

p
app

+
H

s

(·)

Figure 5.10. Block diagram of the Lattice-Reduction-Aided

precoding.

L are calculated with a QR-type decomposition of the LR matrix H+
R to

obtain:
QH+

R = L, (5.17)

where Q contains orthogonal rows and L is a 2K × 2K lower triangular
matrix. It can be observed in Fig. 5.11 that the first step of the algorithm
builds the vector

q = −QH+s′. (5.18)

Next, the components of q̃ are calculated as follows

q̃k = Q{qk −
k−1∑
l=1

Lk,lq̃l}, k = 2, . . . , 2K. (5.19)

Finally, the perturbation vector is calculated as

papp = T−1q̃. (5.20)

This algorithm requires again the matrices T and T−1 together with the
QR decomposition of H+

R.

5.6.3 Lattice-Reduction-Aided Tomlinson-Harashima Precoding

The THP strategy, which was introduced in Section 2.5, can be also per-
formed after a LR of the channel matrix [82], leading to the LRA-THP
precoding approach. Now the components of vector s′ in (2.45) must be

132 Efficient Lattice-Reduction-Aided Algorithms

+

+

s'

q

-

q
~

-QH
+

Q

L-I

T
-1

p
app

+

H

s

(·)

Figure 5.11. Block diagram of the Enhanced Lattice-

Reduction-Aided precoding.

replaced by the components of a new vector d = T−1s′ (see Fig. 5.12).
In this case, the QR is performed over the lattice-reduced channel matrix.
This method also employs T and T−1.

5.6.4 Performance Comparison

A brief performance comparison among the precoding algorithms under
study was included for the sake of completeness. The performance of all
the methods was analyzed by showing the achieved BER within a range
of Eb/N0 values. A system with N = 4 transmit antennas and K = 4
users with a QPSK constellation was considered. To average the results,
106 channel matrices with Gaussian entries of zero mean and unit variance
were generated.

Fig. 5.13 shows that the precoding methods employing LR (labelled as
LRA, LRA-SIC and LRA-THP) outperform the ZF and THP algorithms
and attain full receive diversity. It is interesting to see that, although the
LRA-THP is not a vector perturbation method, it improves the perfor-
mance of the LRA-SIC method and almost reaches the exhaustive estima-
tion of the perturbation vector obtained through optimum sphere-encoding
(labelled as VP(SE)).

5.6. Multiuser Precoding using the Extended LLL Method 133

s'

+

d

-

s
~

mod

L-I

s-1
T

+
Q

Figure 5.12. Block diagram of the Lattice-Reduction-Aided

Tomlinson-Harashima precoding.

0 5 10 15 20

10
-4

10
-5

10
 -3

10
 -2

10
 -1

10
0

Eb/N0

B
it

 E
rr

or
 R

at
e

ZF
THP
LRA
LRA-SIC
LRA-THP
VP (SE)

Figure 5.13. BER curves of the five precoding algorithms

under study in a system with N = 4 transmitter antennas and

K = 4 users using QPSK symbols.

134 Efficient Lattice-Reduction-Aided Algorithms

5.6.5 Computational Cost Analysis and Comparison

In practical applications, the computational complexity restrictions can
help to decide which is the most suitable algorithm. Thus, it is important
to analyze the different precoding schemes from a computational point of
view. An interesting fact is that the overall computational cost of the above
described precoding algorithms comes from two different parts that must
be analyzed independently. On the one hand, the preprocessing stages (QR
decomposition, LLL and inversion of matrices) together with some products
matrix by matrix that do not depend on the symbol-vector to transmit are
only carried out when the channel changes, thus they can be done off-line.
On the other hand, the remaining calculations are performed every time
that a new symbol vector is transmitted, which happens several times for
a given realization of a block-fading channel.

Per-symbol-vector computational cost

Table 5.8 collects the per-symbol-vector number of sums and products for
the five precoding algorithms under study, which will be next explained.
The per-symbol-vector arithmetic operations of the ZF precoding come
from the product H+s′. The per-symbol-vector cost of the LRA precoding
is due to (5.15) and (5.16), and the one of LRA-SIC precoding to (5.18-
5.20) and (5.16). Finally, the cost of the THP relies mainly on (2.45) and
the product by matrix Q+ before transmission. The increased cost of the
LRA-THP with respect to the conventional THP is due to the product of
the initial data vector by T−1. Both THP and LRA-THP also require 2K
modulo operations.

Preprocessing computational cost

Table 5.9 shows which of the precoding algorithms under study need any
of the following preprocessing stages: QR decomposition, LLL lattice re-
duction and matrix inversion (either (HHH)−1 or T−1).

The number of arithmetic operations of the QR factorization is 2(2K)2(2N−
2K/3) for a 2N ×2K matrix, assuming that it has been computed through
Householder reflections [64]. On the other hand, the inversion of a 2K×2K

matrix through Gaussian elimination requires an amount of K(2K+1) divi-

5.6. Multiuser Precoding using the Extended LLL Method 135

Table 5.8. Per-symbol-vector cost of precoding algorithms.

Sums Products

ZF 2K2 + 4KN − 3K − 2N 2K2 + 4KN − K

LRA 8K2 + 4KN − 2K − 2N 8K2 + 4KN

LRA-SIC 10K2 + 4KN − 3K − 2N 10K2 + 4KN − K

THP 2K2 + 4KN − K − 2N 2K2 + 4KN − K

LRA-THP 6K2 + 4KN − 3K − 2N 6K2 + 4KN − K

Table 5.9. Main preprocessing stages of precoding algo-

rithms.

QR LLL T−1 (HHH)−1

ZF Yes No No No
LRA No Yes Yes Yes

LRA-SIC Yes Yes Yes Yes
THP Yes No No No

LRA-THP Yes Yes Yes No

136 Efficient Lattice-Reduction-Aided Algorithms

Table 5.10. Additional preprocessing cost of precoding algo-

rithms.

Sums Products

ZF-SIC - 4KN + 2K

LRA 16K2N − 4K2 − 4KN 16K2N

LRA-SIC 24K2N − 8K2 − 4KN 24K2N

THP - 4KN + 2K

LRA-THP - 4KN + 2K

sions, (2(2K)3+3(2K)2−10K)/6 products and (2(2K)3+3(2K)2−10K)/6
sums.

The number of sums and products of any other preprocessing calcula-
tions apart from the ones discussed in Table 5.9 were included in Table 5.10.
In most of the algorithms, the calculations are needed to perform the pseu-
doinverse of the channel matrix.

Note that the total number of arithmetic operations required by the
LLL and fcLLL algorithms (already presented in Chapter 3) were directly
considered for the present complexity evaluation.

Overall computational cost

The overall computational cost depends on the number of symbol vectors
that can be transmitted through the same channel without needing to es-
timate it again, i.e. the time that the channel remains unchanged. Hence,
the overall cost of the precoding of a symbol vector equals

Ctot = Cpsv +
Cpre

Lch
, (5.21)

where it has been considered that the preprocessing cost (Cpre) is shared
among Lch transmitted symbol vectors.

For the computational cost comparison, it is useful to know from which
value of Lch the per-symbol-vector cost (Cpsv) exceeds Cpre/Lch and thus,
decreasing the preprocessing cost is not so necessary. Table 5.11 shows

5.6. Multiuser Precoding using the Extended LLL Method 137

Table 5.11. Minimum value of Lch for Cpsv > (Cpre/Lch).

ZF LLL LLL-SIC THP THP-LLL
Lch 5 9 14 5 9

these Lch values for the five precoding algorithms under study in a 4 × 4
system. Note that for values of Lch ≤ 5, the per-symbol-vector costs of all
the algorithms are lower than their respective preprocessing costs. When
Lch > 14, the opposite thing happens.

Taking into account the results above, the total number of arithmetic
operations of the precoding algorithms under study were depicted in Fig. 5.14,
for N = 4 and different values of K. For the LRA, LRA-SIC and LRA-
THP precoding methods, the computational cost with the conventional
calculation of the inverse of the transformation matrix is displayed in con-
tinuous line and the one with the extended fcLLL algorithm in dashed line.
Figs. 5.14(a) and 5.14(b) show the cost when Lch = 5 and Lch = 20, respec-
tively. Note that in the first case, the extended fcLLL algorithm decreases
slightly the overall cost of the methods, whereas in the second case, the
cost decrease is hardly noticeable. The reason is that, for all the precoding
algorithms, (Cpre/Lch) > Cpsv when Lch = 5, so a decrease in the pre-
processing cost is worthwhile here. On the other hand, for Lch = 20 the
per-symbol-vector cost is predominant and masks the preprocessing cost
reduction.

Focusing now on the comparison among algorithms, in Fig. 5.13 it was
observed that the LRA-THP and LRA-SIC precoding methods achieved
the lowest BER. In Fig. 5.14, the cost of the LRA-THP is lower than the
one of the LRA-SIC. The reason is that, whereas the THP schemes directly
generate the precoded vector to transmit, the vector perturbation methods
require extra calculations to generate the precoded vector after knowing the
perturbation vector. Therefore, the LRA-THP method seems to be a better
choice than the LRA-SIC. Nevertheless, in case of tighter computational
requirements, either THP or ZF without LR should be employed instead.

138 Efficient Lattice-Reduction-Aided Algorithms

0

100

200

300

400

500

600

700

T
ot

al
 a

ri
th

m
et

ic
 o

p
er

at
io

n
s

ZF
LRA
LRA-SIC
THP
LRA-THP
LRA(II)
LRA-SIC(II)
LRA-THP(II)

1 2 3 4

Number of users(K)

(b)

ZF
LRA
LRA-SIC
THP
LRA-THP
LRA(II)
LRA-SIC(II)
LRA-THP(II)

(a)

1 2 3 4
0

200

400

600

800

1000

1200

1400

1600

Number of users(K)

T
ot

al
 a

ri
th

m
et

ic
 o

p
er

at
io

n
s

Figure 5.14. Total number of arithmetic operations of the

five precoding algorithms under study for a system with N =

4. (a) Lch = 5. (b) Lch = 20.

5.7. Conclusion 139

5.7 Conclusion

This chapter introduced the problem of using LR methods with K-Best
tree-search detectors. After describing a previously proposed approach to
combine both techniques (the LRA-SIC K-Best), a novel LRA K-Best de-
tector was presented. The proposed approach performs a LR of the channel
matrix using an extended version of the LLL algorithm, which provides the
inverse of the channel transformation matrix. After the LR step, the can-
didate points for each level of the detection are computed via an efficient
boundary calculation and the detection is carried out with any conventional
K-Best detector. The simulations revealed that the proposed scheme sub-
stantially improves the performance of conventional K-Best detectors at
high SNR. The main advantage of this LRA K-Best detector is that it does
not need an initial estimate of the solution at each level. Therefore, it can
be easily merged with already existing K-Best schemes.

Making use of the proposed lattice boundary calculation and extended
LLL algorithm, several schemes to decrease the computational complexity
of already existing LRA K-Best detectors were proposed. The first one
was called as LRA K-Best scheme with candidate limitation (LRA-CL).
It employed the boundaries of the transformed lattice to discard in the
LRA K-Best scheme those candidates that are certainly outside the trans-
formed lattice. In addition, two schemes with a dynamic distribution of the
parameters K and/or N based on the boundaries were proposed. The com-
putational complexity was further decreased by means of these last schemes
without performance loss.

In the last section of this chapter, the extended LLL method was ex-
ploited to decrease the computational cost of some LRA precoding schemes
for multiuser communications. The performance and computational cost of
five widely employed precoding algorithms were compared. It was shown
that the overall cost depended on two different terms: the preprocessing
cost and the per-symbol-vector cost. The impact that each term had over
the total cost depends on the time that the channel remained unchanged
(Lch). It was observed that for Lch = 5, a reduction in the preprocessing
cost decreased the overall cost. On the other hand, for Lch = 20 the per-

140 Efficient Lattice-Reduction-Aided Algorithms

symbol-vector cost was predominant and masked any preprocessing cost
reduction. Thus, this parameter should be taken into account to direct our
efforts towards reducing the term that is predominant in the overall cost.

Finally, a performance comparison revealed that the LRA-THP and the
LRA-SIC precoding methods got the lowest BER. Regarding computational
cost, the LRA-THP was more efficient than the LRA-SIC method, making
the LRA-THP the precoding option with the best tradeoff.

The following publications contain the main contributions described
in this chapter. The extended LLL algorithm was published in [83]. The
different LRA K-Best schemes with reduced complexity were presented in
[84] and the complexity comparison among the most employed preprocess-
ing techniques is contained in [85].

Efficient Soft-Output Detection 6

Efficient Soft-Output Detection 6
The use of soft detection (demodulation) in MIMO-BICM systems
can substantially improve their performance with respect to the use of hard
detection. In practical MIMO-BICM systems, demodulators have to deliver
finite word-length (quantized) log-likelihood-ratios (LLR). In this chapter,
we propose an efficient modification of the fixed-complexity sphere decoder
for MIMO-BICM systems working with quantized LLRs. Our approach re-
duces the complexity of previously proposed schemes via pruning strategies
that exploit the clipping and quantization of LLR. Numerical results con-
firm that our scheme achieves a significant complexity reduction (by 37%
for the case of 2 bits per LLR and by 31% for the case of 3 bits per LLR)
with negligible degradation in bit error rate performance.

6.1 Introduction

As it was already presented in Section 2.4, which was devoted to MIMO-
BICM, the demodulation (or soft detection) and channel decoding are not
performed jointly at the receiver of these systems, but in two differenti-
ated stages. First, the demodulator provides reliability information (soft

144 Efficient Soft-Output Detection

outputs) about the transmitted coded bits in the form of real-valued log-
likelihood ratios (LLRs). Next, these values are used by the channel decoder
to make final decisions on the transmitted coded bits.

Some remarkable demodulators were also mentioned in Section 2.4, es-
pecially those based on SD or tree-search. Among the cited schemes, the
soft-output fixed-complexity SD (SFSD) proposed in [55] exhibits better
performance than the list-based SD described in [52] while keeping fixed
complexity. Nevertheless, its complexity can be still to high for some prac-
tical applications.

Channel codes used in current wireless communications (LDPC, turbo
codes, etc.) work with bit sequences of thousands to ten thousands of bits.
Hence, saving the LLRs delivered by the soft MIMO detector before passing
them to the channel decoder requires a lot of memory and, consequently,
large chip sizes. This requirement is translated into both higher power
consumption and cost. Due to this, in practical systems, real numbers are
usually represented with a finite word-length. Thus, LLR quantization is
being paid increasing attention recently [86][87]. Since meaningful guide-
lines on the necessary number of bits for efficient LLR quantization together
with quantization design rules are well detailed in [86], the design of LLR
quantizers will be out of the scope of the present thesis. On the other hand,
we will focus on the use of LLR quantization to reduce the complexity of
the soft MIMO detection stage.

In this chapter we propose an efficient soft detection scheme with fixed
complexity for MIMO-BICM systems working with quantized LLRs, which
is based on the SFSD. This approach makes use of the fact that the quan-
tized LLRs belong to an a priori known discrete set of values (quantization
levels) to avoid some of the computations carried out by the soft detector.
In addition, LLR clipping is also included to save complexity when a cer-
tain LLR value exceeds a previously selected clipping level. Simulations to
evaluate the performance and complexity of the efficient SFSD scheme are
presented, showing the usefulness of the method.

The chapter is structured as follows. Section 6.2 describes the MIMO-
BICM system model with turbo decoding used in this chapter. In Sec-

6.2. System model 145

tion 6.3 a soft-output detection method based on fixed-complexity tree-
search is presented. A proposed approach to perform soft detection deliv-
ering quantized outputs is detailed in Section 6.4, where a novel pruning
based on quantization together with clipping-based pruning are introduced.
Finally, Section 6.5 is devoted to the performance and complexity results
of the proposed approach and conclusions are presented in Section 6.6.

6.2 System model

In Section 2.4 of Chapter 2, a generic MIMO-BICM system with nT trans-
mit antennas, nR receive antennas (nR ≥ nT) and a certain SNR was
described. Since Fig. 2.16 shows a general MIMO-BICM system where nei-
ther the channel encoder nor the channel decoder are specified, the specific
channel coding considered in this chapter is described next.

We consider the MIMO-BICM system depicted in Fig. 6.1, where two
parallel concatenated convolutional codes are used at the transmitter. The
coded bits are mapped to symbols which are split into the nT antennas
and transmitted simultaneously. A block Rayleigh fading channel constant
during Lch time intervals is assumed. At the receiver, the soft information
is decoded by a turbo decoder. Note that no information is exchanged
between the soft detector and the turbo decoder.

As seen in Section 2.4, the max-log approximated LLRs calculated by
the soft MIMO detector are:

Lj,b =
1
σ2

[
min

s∈X (0)
j,b

‖y − Hs‖2 − min
s∈X (1)

j,b

‖y − Hs‖2

]
, (6.1)

where X (0)
j,b and X (1)

j,b denote the sets of symbol vectors containing the bth
bit of the jth symbol equal to 0 and 1, respectively, and xj,b is the bth bit
in the bit label of symbol sj .

Once the LLRs are available, they are split into two sets (Lin1 and Lin2)
and enter the turbo decoder, which has to update them iteratively. At each
iteration, the ith BCJR decoder obtains the a posteriori information, Ldi

,
using the a priori information, Lai , and the information provided by the

146 Efficient Soft-Output Detection

Input
bits

Output
bits

MIMO

channel

Π

Π
-1

Transmitter

Receiver

Convol.
encoder 1

Convol.
encoder 2

BCJR
decoder 1

BCJR
decoder 2

Π

Bit
reordering

and
mapping

Soft
MIMO

detection

Le1

Le2

La2

La1

Ld1
Lin1

Lin2

Hard
decision

Figure 6.1. MIMO-BICM block diagram with parallel con-

catenated convolutional encoding and turbo decoding.

6.2. System model 147

Soft
Detector

Turbo
DecoderM

U
X

Soft
Detector

Quantized
Outputs

Turbo
DecoderM

U
X

(a)

(b)

Decoding
result

Decoding
result

Q(·)

Figure 6.2. MIMO-BICM receiver: (a) Using soft detection

and LLR quantization, (b) Using soft detection with quantized

outputs.

soft MIMO detector, Lini . Next, this information is converted into extrinsic
information, Lei , and it is deinterleaved and passed to the other BCJR
decoder as a priori information. In the final iteration, the first decoder
generates a posteriori information about the uncoded bits, Ldi

, which is
used to obtain the estimated transmitted bitstream.

When the MIMO-BICM system with turbo decoding is assumed to
work with LLR quantization, the receiver block diagram turns into the
one in Fig. 6.2(a), where a quantization step is inserted between the soft
detection and the turbo decoding. This receiver would be equivalently
implemented as Fig. 6.2(b) shows, since, in this case, the soft detector
directly delivers quantized LLRs. This consideration will be taken into
account next for the design of efficient soft detectors delivering quantized
LLRs.

148 Efficient Soft-Output Detection

6.3 Soft-output Fixed-complexity Detection

In Section 2.3.5, the FSD was described as an efficient method to achieve
quasi-ML hard detection performance. The method consisted of a prepro-
cessing stage followed by a predetermined tree-search with fixed complexity.
An interesting strategy to provide soft information after the FSD search
was proposed in [55]: the soft-output FSD (SFSD). The two main stages of
the SFSD method are depicted in Fig. 6.3 for an example search-tree with
nT = 4, QPSK symbols and T = 1.

First of all, a conventional hard-output FSD tree-search is carried out
(Fig. 6.3(a)). This search gives as a result 4 SIC branches of 4 symbols
each, from where the path with the minimum accumulated PED is selected
as the ML solution. The distance associated to this ML path approximates
one of the two minima in (6.1):

dML = ‖y − HsML‖2. (6.2)

For each j and b, the second minimum in (6.1) can be computed as

d̄j,b = min
s∈X

(xML
j,b

)

j,b

‖y − Hs‖2, (6.3)

where x denotes the complement of bit x. Recall that s ∈ X (xML
j,b)

j,b represents
the counter-hypothesis to the ML solution for bit b in layer j.

The SFSD [55] extends the FSD tree search in order to obtain the
minimum distances in (6.3) after (6.2) has been solved. The SFSD starts
from the candidate list obtained by the hard-output FSD (4 SIC branches
of 4 symbols each) and adds new candidates for the counter-hypotheses (see
Fig. 6.3(b)). Since the first level of the hard-output FSD tree is already
totally expanded, all the necessary values to compute the LLRs of the
symbol bits in the first level are available. To begin the list extension,
the best Niter paths are selected from the initial hard-output FSD list (in
this example, Niter = 2). This is motivated by the heuristics that the
lowest-distance paths may be candidates differing from the best paths in
only a few bits. The symbols belonging to these Niter paths are picked

6.3. Soft-output Fixed-complexity Detection 149

00 01 10 11

(a)

00 01 10 11

10 0010 01

11 11 01 1001 10

00 10 01 0111 00

00 11

(b)

Figure 6.3. Decoding trees of the SFSD algorithm for a 4×4

MIMO system with QPSK symbols and Niter = 2: (a) Hard-

output stage and (b) Soft-output extension.

150 Efficient Soft-Output Detection

up from the root up to a certain level l; at level l − 1, additional log2 M

branches are explored, each of them having one of the bits of the initial
path symbol negated. Afterwards, these new partial paths are completed
using the SIC path, as done in the hard-output FSD scheme. The same
operation is repeated until the lowest level of the tree is reached. Note that
Niter depends on the symbol constellation.

The values that achieved almost max-log performance for a 4×4 system
in [55] were Niter = {2, 4, 6} for QPSK, 16-QAM, and 64-QAM, respectively.
In the remainder of this thesis we will consider these values.

6.4 Proposed SFSD with quantized outputs

Quantizer designs for the LLRs delivered by the demodulator of a MIMO-
BICM system have been introduced in [86]. A q-bit quantizer uses K = 2q

quantization intervals {I1, I2, ..., IK}. These intervals are specified by Ik =
[ik−1, ik] where {i0, i1, i2, ..., iK} are the quantizer thresholds (i0 = −∞ and
iK = ∞ by convention). The quantized LLR value Λj,b is given by

Λj,b = Q(Lj,b) = λk, if Lj,b ∈ Ik, (6.4)

where λk is the kth quantization level. For fixed q, the ideal quantizer
maximizes the mutual information between the input code bits and the
quantized LLRs [88]. Since the design of this ideal quantizer is difficult in
practice, [86] proposed an alternative quantizer design that maximizes the
mutual information between the LLRs before and after quantization [86],
i.e.,

{iopt
k }K−1

k=1 = arg max
{ik}K−1

k=1

I (Lj,b; Λj,b) . (6.5)

Following [86], we restrict to even K and symmetric quantizers in which
case {iopt

K/2} = 0 and ik = −iK−k+1.

If the MIMO-BICM system uses quantized LLRs, the final demodulator
output is known in advance to belong to the finite set {λ1, . . . , λK}. This
fact allows to reduce the size of the candidate list used by the SFSD to
refine the initial LLRs.

6.4. Proposed SFSD with quantized outputs 151

6.4.1 Quantization-based Pruning

As described above, once dML has been found at the hard-output FSD
stage, the SFSD adds log2 M new tree paths to the candidate list. Slightly
abusing notation, we denote by d̄j,b the current estimate of the minimum
distance associated with the counter-hypothesis for bit b at level j. Every
new path starting from level j is intended to update d̄j,b by negating the
bth bit. In fact, any refinement of the distances in the candidate list can
only modify d̄j,b by a smaller value than the current one. The proposed
approach decides whether a certain d̄j,b needs to be updated or not by
testing whether the magnitude of the associated LLR satisfies the following
condition:

|Lj,b| =
1
σ2

∣∣dML − d̄j,b

∣∣ ≤ iopt
K/2+1. (6.6)

This condition holds for those LLR values that lie within either IK/2 =
[iK/2−1, iK/2] or IK/2+1 = [iK/2, iK/2 + 1]. Since dML and d̄j,b both are
greater than zero and dML ≤ d̄j,b for all {j, b}, (6.6) is equivalent to

d̄j,b ≤ (dML + σ2iopt
K/2+1). (6.7)

This condition can be easily tested in the SFSD path extension stage to
avoid unnecessary updates of d̄j,b.

6.4.2 Clipping-based Pruning

In order to further reduce the number of path extensions in the SFSD,
we propose to combine the previously described pruning with LLR clip-
ping. The use of LLR clipping has been widely adopted as a mechanism to
reduce the complexity of tree-search detectors [52][54]. LLR clipping im-
poses a constraint on the dynamic range of the LLRs to enable fixed-point
implementations. In our quantization context this reads

Lj,b =

{
Lj,b, if |Lj,b| ≤ Lclip,

Lmax sign(Lj,b), else.
(6.8)

Here, Lmax is the largest admissible LLR value and Lclip is the associate
LLR clipping threshold. Similar to (6.7), the clipping can be exploited in

152 Efficient Soft-Output Detection

the SFSD search to avoid unnecessary updates of d̄j,b whenever the current
LLR estimate Lj,b satisfies |Lj,b| > Lclip, which is equivalent to

d̄j,b > (dML + σ2Lclip). (6.9)

Note that when doing LLR quantization, we have Lmax = λK = −λ1

and Lclip = iopt
K−1 = −iopt

1 .

6.5 Results

We consider a 4×4 MIMO-BICM system with a 16-QAM symbol alphabet.
The channel code is a parallel concatenated turbo code with rate=1/2 and
a block length of 6144 bits. The code polynomials in octal notation are
[13, 15] and rate-1/2 is achieved after puncturing the parity bits of the
code. The MIMO channel was i.i.d. block Rayleigh fading (staying constant
for 16 MIMO symbols). Fig. 6.4 shows the BER versus SNR for max-log
demodulation, the plain SFSD, SFSD with clipping only, and SFSD with
2-bit and 3-bit LLR quantization. For the demodulator using LLR clipping
only, we chose Lclip = 8 as in [52]. For the quantization-based demodulator,
the LLR quantizer was designed as proposed in [86].

First of all, it can be observed that the plain SFSD achieves max-log
performance. With 3-bit quantization, the BER degradation compared to
the non-quantized case is negligible (� 0.1 dB). SFSD with 2-bit quantiza-
tion performs slightly worse (� 0.5 dB gap to non-quantized case). Note
that quantization-based demodulation inherently performs LLR clipping as
well.

Next, we study the complexity savings achieved by the proposed ap-
proach in terms of the average number of visited nodes, which is directly
related to the number of partial distance calculations in the tree. Fig. 6.5
shows the average number of visited nodes for the SFSD scheme with
quantization-based pruning only and with quantization- and clipping-based
pruning. The complexity of plain SFSD detection without pruning is
included in the figure as a baseline reference. It can be seen that the
quantization-based pruning is more significant at lower SNR whereas the

6.5. Results 153

5 5.5 6 6.5 7 7.5 8 8.5 9

10
-5

10
-6

10
-4

10
-3

10
-2

10
-1

10
0

B
it

 e
rr

or
 r

at
e

SFSD

SFSD 2-bit-qt.

SFSD 3-bit-qt.

SFSD with clipping

max-log

Eb /N0(dB)

Figure 6.4. BER curves for different SFSD schemes and for

max-log demodulation, all with a rate-1/2 turbo code in a 4×4

MIMO-BICM system using 16-QAM.

complexity reduction due to clipping-based pruning increases as the SNR
grows. Moreover, as expected, 2-bit quantization results in larger com-
plexity savings than 3-bit quantization. Clearly, the complexity savings
achieved by the combined pruning strategy are much larger than those
achieved by either of the two pruning techniques alone, with complexity re-
ductions of 37% and 31% for 2-bit- and 3-bit quantization, respectively, at
an SNR of 9 dB. Since quantization-based pruning yields more pronounced
savings at low SNR and clipping-based pruning yields larger savings at high
SNR, their combination provides a more uniform complexity over the SNR
range considered.

Furthermore, the average number of candidates contained in the final
list of each SFSD scheme was also recorded during the soft detection stage.

154 Efficient Soft-Output Detection

90

100

110

120

130

140

150

160

A
v
er

ag
e

n
u
m

b
er

 o
f
v
is

it
ed

 n
od

es

SFSD

SFSD 2-bit-qt.

SFSD 3-bit-qt.

SFSD 2-bit-qt. & clip.

SFSD 3-bit qt. & clip.

SFSD with clipping

5 5.5 6 6.5 7 7.5 8 8.5 9

Eb/N0(dB)

Figure 6.5. Average number of nodes visited by the different

SFSD schemes in a 4×4 MIMO-BICM system using 16-QAM.

6.5. Results 155

30

35

40

45

50

55

60

65

A
v
er

ag
e

li
st

 s
iz

e

5 5.5 6 6.5 7 7.5 8 8.5 9

Eb/N0 (dB)

SFSD

SFSD 2-bit-qt.

SFSD 3-bit-qt.

SFSD 2-bit-qt. & clip.

SFSD 3-bit qt. & clip.

SFSD with clipping

Figure 6.6. Average list size of the different SFSD schemes

under study in a 4 × 4 MIMO-BICM system using 16-QAM

symbols.

156 Efficient Soft-Output Detection

Note that this parameter gives an idea about the storage requirements, the
necessary memory accesses and also the complexity to sort the list and to
subsequently search for the minimum paths. Fig. 6.6 shows the average list
size for the SFSD scheme with LLR quantization pruning, with and with-
out clipping. The upper bound for this parameter is also included. It can
be seen that both the list size reduction due to quantization-based pruning
and the one due to clipping follow the same tendency as the average number
of visited nodes reduction shown in Fig. 6.5. Hence, the 2-bit quantization
strategy decreases the average list size more than the 3-bit-quantization
and, when clipping is included additionally to quantization, further reduc-
tion is achieved than those of the independent pruning techniques. The
percentages of list size reduction reach 39% for 2-bit-quantization and 47%
for 3-bit-quantization, both for the highest Eb/N0 in the considered range.

6.6 Conclusion

In this chapter we considered MIMO-BICM systems working with quan-
tized soft information. Some guidelines on how to embed the LLR quanti-
zation stage into the demodulator to directly deliver quantized soft outputs
were given. As an example, the well-known SFSD scheme was modified to
take into account the subsequent quantization stage in order to prune in
advance those tree-paths useless for LLR refinement. In addition, LLR
clipping was considered and efficiently combined with quantization-based
pruning to further reduce the average number of visited nodes in the SFSD
tree-search.

Several performance results were obtained for the typically used quan-
tization lengths: 2 and 3 bits. The complexity reduction was assessed by
measuring the average number of visited nodes. Furthermore, the average
candidates list size was obtained in order to assess the storage requirements,
the necessary memory accesses and also the complexity to sort the list and
to subsequently search for the minimum paths.

Results showed that while the complexity reduction due to quantization
was mainly important at low SNR, the complexity reduction due to clipping

6.6. Conclusion 157

increased at higher SNR. This complementary behavior justifies the com-
bination of both pruning techniques to provide nearly uniform complexity
reduction along the SNR range without noticeably degrading the results
after quantization.

The efficient SFSD with quantized outputs is currently under consid-
eration in [89].

GPU Implementation of MIMO Detectors7

GPU Implementation of MIMO Detectors7
The use of many-core processors such as general purpose Graphic
Processing Units (GPU) has recently become attractive for the efficient im-
plementation of signal processing algorithms for communication systems.
This is due to the cost-effectiveness of GPU together with their poten-
tial capability of parallel processing. This chapter presents efficient GPU
implementations of several hard- and soft-output detection schemes, which
allow to considerably decrease the computational time required for the data
detection stage in MIMO systems. Moreover, a fully-parallel soft-output
scheme with a GPU-aware preprocessing stage is developed. All the im-
plementations are evaluated for different system configurations: changing
the constellation used, the system size or the number of subcarriers. In
addition, the computational times of the proposed GPU implementations
are compared with their execution times on a high performance CPU. Fur-
thermore, the throughputs of all the algorithms are computed, showing
to outperform other recent implementations while ensuring nearly-optimal
detection performance.

162 GPU Implementation of MIMO Detectors

7.1 Introduction

As claimed throughout this thesis, the use of MIMO communication sys-
tems complicates the receiver stage, which has the task of processing the
received mixture of signals affected by the channel in order to recover the
transmitted data with the highest reliability. If nearly optimal detection
is desired, this stage becomes often the most computationally expensive
within a MIMO system and, thus, the search for high-throughput receiver
implementations is imperative. Furthermore, scalability in the number of
subcarriers per MIMO-symbol and in the system size are key factors in
LTE and 4G wireless standards [3].

Recently, the use of many-core processors such as GPU has become
attractive for the efficient implementation of signal processing algorithms
with high computation requirements [90][91]. Although multi-core CPU
implementation could also replace the traditional use of DSP and field pro-
grammable gate arrays (FPGA), this option would interfere with the exe-
cution of the tasks assigned to the CPU of the computer, possibly causing
speed decrease. Therefore, since the GPU is more rarely used than the CPU
in conventional applications, its use as a co-processor in signal processing
systems is very promising. Several recent works show the growing interest
of GPU for the development of reconfigurable software-defined-radio plat-
forms [92][93]. Signal processing for MIMO wireless communication systems
is indeed a field which requires high computation capabilities, thus, GPU
are becoming very useful to implement high-throughput schemes such as the
MIMO detectors proposed in [20][94][95] or the fast decoding schemes for
LDPC codes presented in [19] and [96]. This is due to the cost-effectiveness
of GPU together with their huge capability of parallel processing.

Since most of the existing MIMO detection algorithms were not specif-
ically designed to exploit the GPU resources efficiently, the algorithms that
best match a certain GPU architecture must be carefully selected and, if
necessary, be improved before facing implementation. Note that the latter
task is not straightforward at all.

In this chapter, the different parts that constitute GPU are described
together with some general rules on how to best exploit their capabilities.

7.2. GPU and CUDA 163

After this, we propose GPU implementations for several schemes based on
the FSD proposed in [46], which ensure nearly optimal detection perfor-
mance in MIMO-BICM systems with high throughput. Both hard-output
and soft-output algorithms are implemented. In addition, a fully parallel
soft-output scheme is proposed with a GPU-aware designed preprocessing
stage. Focusing on real-time applications, the execution times of the al-
gorithms are also evaluated and compared to those of some other recent
implementations in the literature. Furthermore, the achieved throughputs
are compared with the minimum one required by current wireless stan-
dards and the transmission configurations supported by the proposed GPU
implementations are discussed.

The chapter is structured as follows. Section 7.2 gives an overview of
compute unified device achitecture (CUDA) programming and GPU archi-
tectures and describes the features of the GPU employed for the implemen-
tations. In Section 7.3, the motivation for choosing the algorithms selected
in this thesis is described. In addition, a fully parallel soft detection algo-
rithm, which is suitable for GPU implementation, is proposed. Section 7.5
addresses the configuration parameters and performance measures consid-
ered for the evaluation of the proposed GPU implementations. Finally,
Section 7.6 contains the conclusions of this chapter.

7.2 GPU and CUDA

Compute Unified Device Architecture (CUDA) [97] is a software program-
ming model that exploits the massive computation potential offered by
GPU. In what follows, the CUDA environment and many insights about
GPU architectures are described.

7.2.1 CUDA Programming Model

CUDA technology is an environment based on C language which allows the
development of software intended to solve high complexity computational
problems efficiently. This software takes profit from the high amount of
execution threads which are available in GPU. CUDA programming is per-

164 GPU Implementation of MIMO Detectors

Host

RAM
Memory

CPU

Device

GPU
Memory

GPU

PCI-Express

Figure 7.1. Interconnection between host and device in the

programming model.

formed in the two different parts of the system shown in Fig. 7.1: the host,
formed by one or more CPU and their corresponding RAM memory and the
device, where one or more GPU and GPU memory are located. Host and
device communicate through the PCI express bus. The time required for
this communication is sometimes the bottleneck of implementations, thus,
it is advisable to minimize data transfers between host and device [98].

According to Flynn’s taxonomy [99], from a conceptual point of view,
a GPU can be considered as a single instruction, multiple data (SIMD)
machine; that is, a device in which a single set of instructions is executed on
different data sets. Fragments of code that are executed by many threads in
the device are called kernels, which can be only launched by the host. The
number of threads that execute the parallel code (or kernel code) depends
on the amount of data, the data type and the operation to be executed.
Nevertheless, the kernel only contains the code to be executed by one thread
and all the threads assigned to it will execute the same code. The logical
structure of a CUDA program is shown in Fig. 7.2. First of all, the data to
be processed is loaded in CPU RAM memory. Next, data are transferred
to GPU memory and the computations are carried out by the GPU kernel.
Once the device ends, results are transferred back to the CPU.

Threads are grouped in blocks of usually up to 512 threads (depending

7.2. GPU and CUDA 165

Load data in CPU

Reserve GPU memory

 Transfer data
CPU GPU

Free GPU memory

Free CPU memory

Kernel execution
in the GPU

 Transfer data
GPU CPU

Figure 7.2. CUDA programming model.

166 GPU Implementation of MIMO Detectors

0 1 2 3 4

Block 0

0 1 2 3 4

Block 1

0 1 2 3 4

Block 3

Grid

Figure 7.3. Position of threads inside a unidimensional grid

with 3 blocks and 5 threads per block.

on the GPU) and threads within a block can communicate through a special
memory called shared memory. In the same way, thread blocks are grouped
to form a grid. The grid organization also depends on the data type being
used. Each thread has a unique identifier within a block, which, at the
same time, has a unique identifier within a grid. Blocks and grids can
be unidimensional, bidimensional or tridimensional. For instance, Fig. 7.3
shows a unidimensional grid with three blocks, each of them with 5 threads.
All this multilevel thread organization is intended to lead the programmer
towards getting maximum GPU performance. Therefore, before launching
a CUDA execution, the number of threads per block and their distribution
together with the number of blocks per grid and their distribution must be
carefully selected.

Each block to be executed is partitioned into warps, which are groups
of 32 threads. The block size must be a multiple of 32, otherwise the last
warp of the block will have some remaining threads which occupy hardware
but do not perform any useful work.

In the CUDA model, although each thread executes the kernel inde-
pendently, threads within a block can synchronize through a barrier and
write simultaneously to shared memory to share data between them. In
contrast, thread blocks are completely independent among themselves and
can only share data through the global memory once the kernel ends.

7.2. GPU and CUDA 167

Table 7.1. Nvidia Tesla C2070 features.

Number of stream multiprocessors 14
Number of cores 448
Clock rate 1.15 GHz
Global memory 4 GB
Constant memory 64 kB
Shared memory per block 48 kB

7.2.2 GPU Architecture

The first-proposed GPU architecture, also known as Tesla architecture
[100], was based on a unit called Stream Multiprocessor (SM), which char-
acterizes most of the Tesla and GeForce NVIDIA GPU models. In those
GPU versions supporting CUDA computing capabilities between 1.0 and
1.3 [97], each SM consisted of 8 scalar single-precision processors, also called
CUDA cores, one double-precision processor, 16 kB of shared memory and
16384 registers.

There is a wide variety of GPU models but the recently appeared Fermi
architecture [101] deserves important attention. This architecture includes
CUDA capabilities 2.0 or 2.1, where the number of cores per SM was in-
creased to 32 [97]. Furthermore, the maximum parallelism level is guaran-
teed by overlapping the execution of several kernels, overlapping data copy
and kernel execution, transferring data from host to device and from device
to host simultaneously, etc.

In this thesis, we employed for the implementations the NVIDIA Tesla
C2070 GPU with 2.0 CUDA capability. Its specifications can be seen in
Table 7.1. The installed CUDA toolkit and SDK version is 4.0 [97]. Note
that asynchronous memory copy is supported to overlap data transfer and
kernel execution.

168 GPU Implementation of MIMO Detectors

7.3 Algorithms Selected for GPU Implementation

In [102], the impact of GPU and multi-core CPU in signal processing was
evaluated quantitatively through testing several implementations of sig-
nal processing algorithms (benchmarks) in different platforms. One of the
conclusions extracted therein was that the performance of GPU is highly
dependent on the problem to be solved. In fact, those algorithms with cer-
tain dependency among intermediate results can hardly benefit from the
potential of GPU. In this section, the selection of those MIMO detectors
that can best fit within the GPU architecture is addressed. In addition, a
novel soft-output scheme with fully parallel structure is proposed.

7.3.1 FSD versus K-Best

In [102], one of the selected benchmarks was the K-Best tree-search detec-
tor, which was described in Section 2.3.3 and has been employed throughout
this dissertation many times. The K-Best approach performs the necessary
calculations to expand a number of N = K ·M tree-nodes per level. These
calculations include the branch weight, the accumulated PED update and
the selection of the best K paths to proceed the tree-search in the next
level. Note that the node expansions of all the surviving paths at the same
level can be carried out in parallel and are the same for all levels. However,
the results in one level affect the calculations in the following level, thus,
parallelism among levels cannot be exploited.

In the GPU implementation proposed in [102], the PED calculation of
each tree-branch was assigned to a different thread. When all the threads
finished, the results associated to the N nodes and their distances were sent
to the CPU, which obtained the K minimum distances. Unfortunately, the
inherent dependency between the tree levels required mandatory barrier
synchronization among threads. This dependency also made impossible to
employ shared memory (much faster than the global one) to store interme-
diate calculations and to get the K survivors in the kernel, since the shared
memory is only accessible by a certain processor. After all, the GPU paral-
lelization was only worth for the PEDs calculation and not for the sorting
and selection of the K-best survivors, which had to be carried out sequen-

7.3. Algorithms Selected for GPU Implementation 169

tially. In the end, the total computational times of the algorithm were
very similar in the CPU and GPU implementations, which showed that the
K-Best method was not an appropriate algorithm for GPU implementation.

The above described limitations of the K-Best tree-search detector led
us to investigate the parallel processing capabilities of the hard-output FSD
in [46]. As described in Section 2.3.5, in the hard-output FSD, all the
SIC branches are totally independent among them and this feature makes
the algorithm very suitable for GPU implementation, as will be shown
later. Hence, the hard-output FSD was one of the algorithms selected for
GPU implementation. In addition, we implemented in GPU the soft-output
version of the FSD (SFSD) [55], which was presented in Section 6.3. The
motivation for this selection was twofold. On the one hand, the first stage
of the SFSD method is based on the FSD and, thus, it is suitable for parallel
implementation. On the other hand, the method exhibits fixed complexity,
which leads to a predictable and constant execution time.

Finally, we designed a GPU-aware soft-output detector to further de-
crease the computational time needed to carry out this task. The proposed
approach is described next.

7.3.2 Proposed Soft-Output Detection Scheme

Although the SFSD method proposes a smart list extension based on the
lowest distance paths in the initial list, this extension cannot be performed
at the same time as the FSD hard-output stage since the paths to be
extended are known for the first time when the FSD stage ends. Therefore,
the parallelism degree that can be exploited by the SFSD varies among its
stages. For this reason, we propose an alternative soft-output FSD with a
fully parallel structure: the fully-parallel FSD (FPFSD).

The proposed soft-output approach is purely based on the hard-output
FSD scheme. The list of candidates and distances necessary to obtain soft
information is calculated by means of nT hard-output FSD searches, each
with a different channel matrix ordering. The nT different channel orderings
ensure that a different layer (level) of the system is placed at the top of the
tree each time. This way, candidate paths containing all the bit labelling

170 GPU Implementation of MIMO Detectors

possibilities in every level are guaranteed and, thus, soft information about
all the bit positions is always available. Fig. 7.4 shows the search-tree of the
FPFSD for the case with nT = 4 and QPSK symbols. Note that the nT = 4
hard-output FSD searches are totally independent and can be carried out
in parallel.

In [46], a special ordering was proposed to place the detection layers
associated to the less reliable received symbols at the top of the tree. This
way, full expansion was performed for those symbols to make the solu-
tion independent of the decision in these levels. The rest of symbols were
detected from the most reliable one to the less. This ordering strategy,
although showing good performance, involves the calculation of a pseudo-
inverse matrix with cost O(n3

T) at each of the nT iterations, leading to a
complexity of O(n4

T). On the other hand, the calculations to be carried out
for each iteration are not independent among them, thus, no parallelism
can be exploited at such preprocessing stage. Due to the just-described rea-
sons, the preprocessing stage proposed in [46] was discarded for our parallel
implementation.

In this work we propose the use of a much simpler ordering strategy
which is fully parallel and easy to be implemented in either multi-core or
GPU. First of all, the norms of the columns of the channel matrix are ob-
tained (requiring nT products, nT −1 sums and one squared root operation
each) and sorted in ascending order (n2

T flops in the worst-case). Thus, the
complexity of this proposed ordering is O(n2

T). Note that this can be com-
puted considerably faster if the norms are processed in parallel. Generally,
this ordering leads to more reliable decisions than a random ordering, since
symbols with the highest signal-to-noise ratio are detected before those with
the lowest, thus reducing error propagation. Once the norm-based order-
ing is available, the nT orderings needed by the FPFSD are directly built
based on this initial norm-based ordering. Taking into account the above
explained requirements, the first level of each new ordering is assigned a
different detection position in order to guarantee the availability of soft
information for all the possible bit values in every system level. Note that,
as when using the FSD ordering, the reliability of the symbol placed in the
FE stage is irrelevant. Then, the remaining levels are ordered following the

7.3. Algorithms Selected for GPU Implementation 171

00 01 10 11 00 01 10 11 00 01 10 11

. . .

Ordering 1 Ordering 2 Ordering 4

Figure 7.4. Decoding trees of the FPFSD algorithm for a

4 × 4 MIMO system with QPSK symbols.

Table 7.2. Symbol detection position and corresponding tree-

level in the initial system for the involved FPFSD orderings in

an example with nT = 4.

Detection Norm-based Ordering Ordering Ordering Ordering
position ordering #1 #2 #3 #4

1st 2 1 2 3 4
2nd 4 2 4 2 2
3rd 3 4 3 4 3
4th 1 3 1 1 1

initial column-norm-based ordering but skipping the level that was already
set on the top. The example in Table 7.2 shows how the ordering is set up
for a particular column-norm-based ordering of a 4 × 4 channel, which in
this case is {2, 4, 3, 1}. As the first row of Table 7.2 shows, the ith proposed
ordering starts the data detection at the ith tree-level, being i ∈ {1, 2, 3, 4}.
Then, the remaining levels are explored following the column-norm-based
ordering in column 2.

The GPU implementation of the FPFSD method together with the
FSD and SFSD implementations are addressed in the next section.

172 GPU Implementation of MIMO Detectors

BLOCK
(0,0)

BLOCK
(0,1)

BLOCK
(0,N)

. . .

GRID
BLOCK

 THREAD
(0,)

. . .
THREAD

(0,0)
THREAD

(0,1)

 THREAD
(1,)

. . .
THREAD

(1,0)
THREAD

(1,1)

. . .

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

THREAD
(,0)

BLOCK
(1,0)

BLOCK
(1,1)

BLOCK
(1,N)

. . .

BLOCK
(N ,0)

BLOCK
(N ,1)

BLOCK
(N ,N)

. . .
 B B B

 B

 B

 B

Nthx

Nthx

Nthx

Nthy

THREAD
(,1)Nthy

 THREAD
(,)Nthy

Figure 7.5. Grid and block distributions considered for the

preprocessing kernel of the hard- and soft-output FSD imple-

mentations.

7.4 Implementation of MIMO Detection Algorithms

in CUDA

This section describes the grid configuration, block size and number of
kernels that were chosen for the GPU implementations developed in this
thesis. In addition, detailed information about the kernels structures is also
given.

Fig. 7.5 shows the bidimensional grid considered for the algorithms,
where the number of blocks per dimension is denoted by NB and, similarly,
the numbers of threads per block dimension are denoted by Nthx and Nthy ,
respectively. The block size Nthx × Nthy will be chosen to be a multiple of
32 in order to avoid incomplete warps. Moreover, the most suitable block
size for each configuration, which includes the value of Nc, nT and M , will
be selected to minimize the execution time. Asynchronous memory copy
is supported to overlap data transfer and kernel execution, this way, the
necessary time to transfer results back to the CPU can be disregarded.

The particular parameters of the grids together with the kernels infor-
mation are described for each specific algorithm subsequently.

7.4. Implementation of MIMO Detection Algorithms in CUDA 173

FSD-based
ordering

QR
decomposition

FSD
tree-search

Kernel 1 Kernel 2

(y,H)

1 thread threadsM

Detected
symbols

Figure 7.6. Block diagram of the proposed FSD GPU im-

plementation including the number of threads which execute

each kernel for each subcarrier.

7.4.1 Hard-Output FSD

The FSD GPU implementation is formed by the two kernels shown in
Fig. 7.6. The first kernel is in charge of the preprocessing stage and the
second one attains the tree-search.

In kernel 1, each thread calculates the ordering of a different channel
matrix and, afterwards, the QR decomposition of the reordered channel
matrix is computed by the same thread. Note that the channel matrices
to be decomposed are quite small (4 × 4), thus, multi-thread execution of
each QR factorization is not considered. As shown in [103], its multi-core
execution is advised for bigger problem sizes (1000×1000 and above). Thus,
only one thread per subcarrier is needed and the number of subcarriers that
can be processed by a single block is directly

Ncb = (Nthx · Nthy). (7.1)

Once Nthx and Nthy are selected, the value of NB is chosen as:

NB =

⌈√
Nc

(Nthx · Nthy)

⌉
. (7.2)

As it was described in Section 2.3.5, the FSD ordering requires the
computation of a pseudoinverse matrix in every step. This calculation can
be performed more efficiently by solving the two linear systems that are
next presented.

174 GPU Implementation of MIMO Detectors

The pseudoinverse matrix to be computed at step i is

G = H+
i = (HH

i Hi)−1HH
i . (7.3)

Calling H̃i = (HH
i Hi) and with H̃i = Q̃iR̃i, if (7.3) is multiplied by H̃i, it

can be equivalently expressed as:

H̃iG = Q̃iR̃iG = HH
i . (7.4)

Next, (7.5) can be multiplied by Q̃H
i resulting in

Q̃H
i Q̃iR̃iG = R̃iG = Q̃H

i HH
i , (7.5)

which can be solved following the next described two steps. First, an aux-
iliary matrix Ji is computed as:

Ji = Q̃H
i HH

i , (7.6)

then, solving the following upper triangular system gives matrix G as a
result:

R̃iG = Ji. (7.7)

The steps carried out by each thread within a block for the first kernel
of the FSD are detailed in Algorithm 6, where the permutation matrix P
is built and the QR factorization matrices of the reordered channel matrix
are computed and stored in global memory.

In kernel 2, the M independent branches of the hard-output FSD
scheme of all the subcarriers within the same group are simultaneously
executed by different threads. Since M threads are needed for the tree-
search, the number of subcarriers per block is given by

Ncb =
(Nthx · Nthy)

M
, (7.8)

and the value of NB is chosen as:

NB =

⌈√
(M · Nc)

(Nthx · Nthy)

⌉
. (7.9)

7.4. Implementation of MIMO Detection Algorithms in CUDA 175

Algorithm 6 Calculations carried out by the qth thread at the FSD preprocess-
ing stage
1: Get H associated to the current subcarrier from global memory
2: Δ = {1, 2, · · · , nT }
3: dis1:nT

= [1, 1, · · · ,M]
4: P = zeros(nT , nT)
5: for i = nT , . . . , 1 do
6: H(i) = H:,Δ

7: Obtain G solving Eqs. (7.6) and (7.7)
8: dmax = 0
9: dmin = 1e6

10: for j = 1, . . . , length(Δ) do
11: normj = ‖Gj,:‖2

12: if disi == M and normj > dmax then
13: dmax = normj

14: k = Δj

15: else if disi = M and normj < dmin then
16: dmin = normj

17: k = Δj

18: end if
19: end for
20: Pk,i = 1
21: Δ = Δ − {Δj}
22: end for
23: Permute columns of matrix H with P
24: H = QR

Algorithm 7 shows the operations carried out by each thread within a
block of kernel 2, where q goes over the threads in the block and, hence, it
ranges between 1 and Nthx · Nthy . On the other hand, i ranges between 1
and M to go over the set of constellation symbols. Note that the referred
equations are not here included because they were already well detailed in
Section 2.3.5).

7.4.2 Soft-Output FSD

The SFSD scheme was described in Section 6.3. This method starts from
the list of candidates that the hard-output FSD gets and extends this list

176 GPU Implementation of MIMO Detectors

Algorithm 7 Calculation of one of the branches of the hard-output FSD by the
qth thread.

1: Get one of the values of Ω (denoted by Ωi) from constant memory,
2: Assign snT ,q = Ωi and store it in shared memory,
3: Get R and y′ associated to the current subcarrier from shared memory,
4: Compute the PED dnT

(S(nT)
q) with equations (2.26-2.25) and store it in shared

memory,
5: for k = nT − 1, . . . , 1 do
6: Compute the kth symbol using SIC (2.19),
7: Update path distance dk(S(k)

q),
8: end for
9: Store the whole path and all the distances in shared memory,

10: Sync barriers

to provide more information about the counter bits of the ML solution.
The two main stages of the SFSD scheme are shown in Fig. 6.3.

The proposed GPU implementation is structured in the two kernels
shown in Fig. 7.7. The first kernel coincides with the one set for the FSD,
thus, its description is again given by Algorithm 7. The second kernel,
however, includes two more stages intended to extend the list and compute
the LLRs, respectively.

In the SFSD GPU implementation, after the hard-output part is fin-
ished, the first thread of each subcarrier calculates the Niter minimum dis-
tances. Then, the first kernel ends and the indices of the Niter best paths are
stored in shared memory. In order to obtain the Niter · log2 M ·(nT −1) ·Ncb

new candidates in kernel 2, all the calculations are equally distributed
among the threads of the block. Then, each thread calculates every new
candidate path as shown in Algorithm 8. After this, a list with P =
M +Niter · log2 M ·(nT −1) paths and distances is stored in shared memory.
Thus, the last part of kernel 2 finds within this list the minimum distances
of paths having the counter bits and computes the log2 M · nT LLRs.

The steps carried out by each thread in the last stage of the second
kernel are described in Algorithm 9.

7.4. Implementation of MIMO Detection Algorithms in CUDA 177

FSD-based
ordering

QR
decomposition

FSD
tree-search

LLR
calculation

Kernel 1

(y,H) LLRs

1 thread threadsM

List
extension

Kernel 2

Figure 7.7. Block diagram of the proposed SFSD GPU im-

plementation including the number of threads which execute

each kernel for each subcarrier.

Algorithm 8 Calculation of new candidates for the soft-output FSD by the qth
thread.
1: Get level (l), bit position (b) and selected path (Nit) to be extended,
2: Copy symbols from level l to nT from shared memory into sl+1:nT ,q,
3: Negate bth bit, keep the rest of bits as in the Nit-path symbol and assign the

associated symbol to sl,q,
4: Compute the PED dl(S

(l)
q) with equations (2.25-2.26) and store it in shared

memory,
5: if l > 1 then
6: for k = l − 1, . . . , 1 do
7: Compute the kth symbol using SIC (2.19),
8: Update path distance dk(S(k)

q),
9: end for

10: end if
11: Store the new path and its accumulated distances in shared memory,
12: Sync barriers

Algorithm 9 Computation of the LLR for the bth bit of the lth level by the qth
thread.
1: dmin = 1e6,
2: for k = 1, . . . , P do
3: if (d1(S

(1)
k) < dmin) and (bth bit of sl,k is equal to xML

l,b) then

4: dmin = d
S

(1)
k

1

5: end if
6: end for
7: L(xl,b) = (dML − dmin)(1 − 2xML

l,b)/σ

178 GPU Implementation of MIMO Detectors

Column-norm-
based

ordering

QR
decompositions

FSD
tree-searches

LLR
calculation

Kernel 1 Kernel 2 Kernel 3

(y,H) LLRs

n threads
T n threadsTM n threadsT

log (M)2

Figure 7.8. Block diagram of the proposed FPFSD GPU

implementation including the number of threads which execute

each kernel for each subcarrier.

7.4.3 Fully-Parallel SFSD

The proposed GPU implementation of the FPFSD is composed of three
consecutive kernels that are executed over the bidimensional grid configura-
tion depicted in Fig. 7.5. Since the parallelism degree that can be exploited
within the different stages of the FPFSD is not always the same, the pro-
posed GPU implementation consists of three differentiated kernels, shown
in Fig. 7.8. The number of threads associated to each subcarrier within a
certain block, which differs among kernels, is also included in the figure.
Note that the first kernel is in charge of the preprocessing stage, composed
by the proposed channel matrix orderings together with the corresponding
QR decompositions. The second kernel performs the nT FSD tree-searches.
And, finally, the third kernel calculates the LLR values.

In the first kernel, each thread calculates one column-norm and only one
out of nT threads sorts the nT norms. After this, each thread computes
one of the necessary nT QR decompositions. Therefore, nT kernels per
subcarrier are needed and, hence, the number of processed subcarriers per
block is given by

Ncb =
⌈

(Nthx · Nthy)
nT

⌉
, (7.10)

and the value of NB for the first kernel is:

NB =

⌈√
(nT · Nc)

(Nthx · Nthy)

⌉
. (7.11)

7.4. Implementation of MIMO Detection Algorithms in CUDA 179

Algorithm 10 Calculations carried out by the qth thread at the norm-based
preprocessing stage.
1: normq = ‖H:,q‖,
2: Sync barriers
3: if q == 1 then
4: Sort nT norms
5: end if
6: Sync barriers
7: H(q) = Q(q)R(q)

The tasks carried out by each thread of kernel 1 are detailed in Algo-
rithm 10.

After computing the QR factorizations of the reordered channel matri-
ces of all the subcarriers, these are copied into the GPU global memory to
be used by the second kernel.

The second kernel must perform nT independent FSD stages, thus, the
M ·nT independent SIC problems for all the subcarriers are simultaneously
executed by different threads. Hence, the number of processed subcarriers
per block for the second kernel of the FPFSD is

Ncb =
⌈

(Nthx · Nthy)
(M · nT)

⌉
, (7.12)

and the following value of NB is selected:

NB =

⌈√
(M · nT · Nc)
(Nthx · Nthy)

⌉
. (7.13)

The operations carried out by each thread within a block at the second
kernel are those already addressed in Algorithm 7.

Once the nT FSD stages have been performed, the second kernel ends
and a list with P = M · nT paths and distances is stored in global memory
to allow its access from the third kernel. The third kernel has to find the
minimum values of d

(0)
min and d

(1)
min associated to each LLR calculation. This

task is carried out by log2 M · nT · Ncb threads working in parallel, thus,
the following values of Ncb and NB are selected for this kernel:

180 GPU Implementation of MIMO Detectors

Algorithm 11 Computation of the LLR for the bth bit of the lth level by the
qth thread.

1: d
(0)
min = 1e6, d

(1)
min = 1e6,

2: for k = 1, . . . , P do
3: if (d1(S

(1)
k) < d

(0)
min) and (bth bit of sl,k is equal to 0) then

4: d
(0)
min = d1(S

(1)
k),

5: end if
6: if (d1(S

(1)
k) < d

(1)
min) and (bth bit of sl,k is equal to 1) then

7: d
(1)
min = d1(S

(1)
k),

8: end if
9: end for

10: L(xl,b) = (d(0)
min − d

(1)
min)/σ

Ncb =
⌈

(Nthx × Nthy)
(log2 M · nT))

⌉
, (7.14)

NB =

⌈√
(log2 M · nT · Nc)

(Nthx · Nthy)

⌉
. (7.15)

The steps of the third kernel of the FPFSD are detailed in Algorithm 11.

7.5 Results

7.5.1 Configuration Parameters and Performance Measures

We considered 2 × 2 and 4 × 4 MIMO systems with QPSK, 16-QAM and
64-QAM symbol alphabets. The values of Nthx × Nthy were selected to
minimize the execution time. We considered the LTE standard specifi-
cations, where a 0.5 ms time slot is composed of 7 MIMO-OFDM sym-
bols plus their respective cyclic prefixes [57]. Furthermore, the perfor-
mances with the different Nc values reported in the LTE standard, i.e.
Nc = {150, 300, 600, 900, 1200}, are investigated. In the proposed imple-
mentation all the symbols in the same time slot are detected simultane-
ously.

7.5. Results 181

As described in LTE Release 10 [3], transmission bandwidths up to 100
MHz can be employed by means of the aggregation of up to five component
carriers as the ones in Release 8. Thus, the transmission can be done over
a maximum of 5 × 1200 = 6000 subcarriers. The latter values of Nc were
also considered for some of the results.

Apart from the BER performance, which has been evaluated through
all this thesis, two different performance measures were considered to eval-
uate the proposed implementations:

• Speedup, which is defined as the ratio between the computational
time resulting of executing the algorithms sequentially on a single
core of a high-performance CPU and the time to execute the same
algorithms on the GPU. This calculation shows how advantageous the
use of GPU is to process large amounts of data compared to CPU.
The selected CPU is an Intel Xeon X5680 hexacore processor at 3.33
GHz with 96 GB of DDR3 main memory. It has 12 MB of cache
memory and, with the hyperthreading technology, each core has 24
virtual processors. Note that, although this is not a fair comparison
(since only one core of the CPU is being considered), this parameter
gives an idea of the level of parallelism that the GPU is exploiting.
Moreover, the GPU can always act as a co-processor and leave CPU
resources free for other tasks carried out in the MIMO system. Hence,
this comparison is not intended to detract the use of the CPU, but
to assess the parallel processing capabilities of the GPU.

• Throughput, which is defined as the number of processed information
bits per second. Note that this parameter was previously used to
assess other implementations on GPU such as the ones in [95] and [94],
thus, it allows a fair comparison among implementations. Moreover,
the throughput evaluation exposes whether a given implementation
guarantees the real-time requirements of a certain wireless standard.

182 GPU Implementation of MIMO Detectors

Table 7.3. Optimal block size for the preprocessing part of

the Hard-output FSD implementation.

Nc QPSK 16-QAM 64-QAM

300 4 × 4 16 × 16 4 × 64
1200 16 × 4 16 × 16 2 × 64
6000 32 × 4 8 × 16 2 × 64

7.5.2 Hard-Output FSD

Speedup

The parallel implementation of the hard-output FSD on GPU was com-
pared to the implementation in the above-mentioned high-performance
CPU. The values of Nthx × Nthy that minimize the execution time for
the two considered system sizes and three representative values of Nc are
collected in Table 7.3.

Fig. 7.9(a) shows the speedup for a 2× 2 system and the three consid-
ered constellations as a function of the number of subcarriers. It can be
observed that, generally, the higher the number of subcarriers and constel-
lation size, the higher the achieved speedup. Next, the speedup of the 4×4
system was evaluated and depicted in Fig. 7.9(b). The comparison between
Figs. 7.9(a) and (b) reveals that higher speedup is achieved when the sys-
tem size increases. Therefore, as the computational saving increases as the
problem size does, the use of GPU is very promising for high dimensional
constellations and/or LTE configurations dealing with a large amount of
subcarriers.

Note that for values of Nc ≥ 3600, the speedup achieved for the 16-
QAM case is higher than the speedup achieved for the 64-QAM case. As
said in [97], the number of registers and shared memory used by a kernel
can have a significant impact on the number of resident warps. Moreover,
the occupancy of the device for a certain configuration gives an idea of how
well an algorithm exploits its parallel processing capabilities. However, a
higher occupancy does not mean higher performance, since it depends on

7.5. Results 183

other factors such as global memory accesses, divergent branches, etc. Nev-
ertheless, we evaluated the occupancy of the device for each configuration
using the CUDA Visual Profiler, resulting in 67% for the QPSK and 16-
QAM cases and 58% for 64-QAM. The lower occupancy for the 64-QAM
may justify the lower speedup achieved.

Throughput

Next, the throughput and runtime of the hard-output FSD implementation
for a 4 × 4 were evaluated and compared to the one of the trellis-based
detector proposed in [95], which considered the Nvidia 9600 GT GPU with
64 cores at 1.9 GHz.

To allow a fair comparison, we defined a factor α which gathers the
differences between two GPU (a and b) both in number of cores (Ncore)
and their clock frequencies (f), as follows:

α =
N

(a)
core · fa

N
(b)
core · fb

. (7.16)

Note that α compares the total processing capability of a certain GPU with
another. Since our implementation uses 448 cores against the 64 cores used
in [95] (7 times more) but the cores of our device (Nvidia Tesla C2070 GPU)
are much slower (1.15 GHz against 1.9 GHz), this gives a value of αh � 4.24.
Thus, we included among the results in Table 7.5 some results weighted by
αh to allow a fairer comparison with the trellis-based implementation.

It can be seen that our proposed approach outperforms the scheme in
[95] for all the constellation values. Moreover, recall that while the hard-
output FSD algorithm achieves the same performance as the optimal ML
detector, the trellis-based architecture is not shown to have this behavior
and may not reach the ML solution in all cases. Thus, our proposed GPU
implementation is more efficient than the trellis-based approach both in
terms of throughput and BER performance.

Regarding the LTE real-time requirements, for the QPSK and 16-QAM
cases a whole slot can be processed before having received the following one
(i.e. in ≤0.5 ms) for all the considered subcarrier configurations. For the
64-QAM case, the runtime is ≤0.5 ms for the Nc = 150 and Nc = 300

184 GPU Implementation of MIMO Detectors

1000 2000 3000 4000 5000 6000

Nc

0

5

10

15

20

25

30

35

40

S
p
ee

d
u
p

4x4 system

(b)

QPSK

16-QAM

64-QAM

(a)

1000 2000 3000 4000 5000 6000

Nc

0

5

10

15

20

25

S
p
ee

d
u
p

2x2 system

30

QPSK

16-QAM

64-QAM

Figure 7.9. Speedup for the hard-output FSD with different

constellations and number of subcarriers: (a) 2 × 2 MIMO

system and (b) 4 × 4 MIMO system.

7.5. Results 185

Table 7.4. Runtime of the FSD proposed implementation in

the Nvidia Tesla C2070 GPU for a 4 × 4 system for differ-

ent configurations compared to trellis-based detector results

in [95].

QPSK 16-QAM 64-QAM

FSD (Nc = 150) 0.046 ms 0.054 ms 0.219 ms
FSD (Nc = 300) 0.054 ms 0.077 ms 0.409 ms
FSD (Nc = 600) 0.078 ms 0.126 ms 0.772 ms
FSD (Nc = 900) 0.102 ms 0.174 ms 1.152 ms
FSD (Nc = 1200) 0.125 ms 0.220 ms 1.518 ms

FSD (Nc = 300)∗ 0.229 ms 0.326 ms 1.73 ms
Trellis (Nc = 300)∗∗ 0.350 ms 0.427 ms 3.31 ms
∗Results weighted by αh.
∗∗Results using Nvidia 9600 GT GPU.

cases. Therefore, the proposed GPU implementation can manage all the
LTE configurations except the three having the highest values of Nc when
using 64-QAM symbols. Thus, further work is needed to decrease the
runtime of the latter configurations, either by further optimizing the code
or by making use of more powerful GPUs.

We used the CUDA Compute Visual Profiler to assess our implemen-
tation and observed that the bottleneck of our implementation is the size
of the shared memory.

7.5.3 Soft-Output FSD

Speedup

Before comparing to other soft-output FSD implementations, the parallel
implementation of the soft-output FSD on GPU was compared to the im-
plementation in CPU. Contrary to the hard-output FSD implementation,
the values of Nthx × Nthy that minimize the execution time depend on the
system size. The selected values are included in Table 7.6.

186 GPU Implementation of MIMO Detectors

Table 7.5. Throughput of the FSD proposed implementation

in the Nvidia Tesla C2070 GPU for a 4 × 4 system for differ-

ent configurations compared to trellis-based detector results in

[95].

QPSK 16-QAM 64-QAM

FSD (Nc = 150) 182.61 Mbps 311.11 Mbps 115.07 Mbps
FSD (Nc = 300) 311.11 Mbps 436.36 Mbps 123.23 Mbps
FSD (Nc = 600) 430.77 Mbps 533.33 Mbps 130.57 Mbps
FSD (Nc = 900) 494.12 Mbps 579.31 Mbps 131.25 Mbps
FSD (Nc = 1200) 537.60 Mbps 610.91 Mbps 132.81 Mbps

FSD (Nc = 300)∗ 73.37 Mbps 102.92 Mbps 29.06 Mbps
Trellis (Nc = 300)∗∗ 46.16 Mbps 74.30 Mbps 14.50 Mbps
∗Results weighted by αh. ∗∗Results using Nvidia 9600 GT GPU

Table 7.6. Optimal block size for the SFSD implementation.

QPSK 16-QAM 64-QAM
Nc nT = 2 nT = 4 nT = 2 nT = 4 nT = 2 nT = 4

300 16 × 4 4 × 4 4 × 16 4 × 16 8 × 64 1 × 64
1200 16 × 4 8 × 4 32 × 16 4 × 16 4 × 64 1 × 64
6000 32 × 4 16 × 4 8 × 16 4 × 16 2 × 64 1 × 64

7.5. Results 187

The resulting speedup is depicted in Fig. 7.10. It can be seen that, for
the QPSK and 16-QAM cases, the speedup for the 4 × 4 system remains
nearly the same than for the 2 × 2 case. On the other hand, the speedup
of the 64-QAM scheme increases with respect to the 2 × 2 case. However,
it experiences a saturation effect for high Nc values and it is always below
the speedup of the 16-QAM configuration.

The GPU occupancy was evaluated and scored 50% for QPSK and 16-
QAM, whereas only 33% for 64-QAM. This fact together with the higher
amount of shared memory needed by the 64-QAM case with respect to the
16-QAM somewhat justifies the saturation effect shown by the 64-QAM
speedup curve.

Throughput

Next, the throughput achieved by the SFSD FSD implementation for a
4×4 was evaluated and compared to the one of the trellis-based soft MIMO
detector proposed in [20], which considered the detection of 8 streams of
8192 symbols simultaneously in a Nvidia Tesla C1060 GPU with 240 cores
at 1.3 GHz.

The comparison between our device and the one used in [20] leads
to a value of αs � 1.65. Thus, we included among the results in Ta-
bles 7.7 and 7.8 some results weighted by αs to allow a fairer comparison
with the trellis-based implementation. The comparison in Table 7.8 reveals
that, considering the weighted results, the proposed SFSD implementation
achieves higher throughput than the trellis-based approach for all cases.

Regarding the LTE real-time requirements, for the QPSK case, the pro-
posed SFSD GPU implementation can process a whole slot before having
received the following one for all Nc values except for Nc = 1200. Never-
theless, real-time is nearly achieved for the latter case. For the 16-QAM
case, however, the runtime is ≤0.5 ms only for the Nc = 150 case. There-
fore, the SFSD GPU implementation requires further optimizations than
the hard-output FSD to meet real-time. In fact, the occupancy values are
lower than their respective ones in the FSD implementation.

188 GPU Implementation of MIMO Detectors

2x2 system

5

10

15

20

25

1000 2000 3000 4000 5000 6000

Nc

(a)

QPSK
16-QAM
64-QAM

S
p
ee

d
u
p

4x4 system

S
p
ee

d
u
p

1000 2000 3000 4000 5000 6000

Nc

(b)

5

10

15

20

25

QPSK
16-QAM
64-QAM

Figure 7.10. Speedup for the soft-output FSD with different

constellations and number of subcarriers: (a) 2 × 2 MIMO

system and (b) 4 × 4 MIMO system.

7.5. Results 189

Table 7.7. Runtime of the SFSD proposed implementation

in the Nvidia Tesla C2070 GPU for a 4 × 4 system for differ-

ent configurations compared to trellis-based detector results in

[20].

QPSK 16-QAM 64-QAM

SFSD (Nc = 150) 0.115 ms 0.373 ms 2.57 ms
SFSD (Nc = 300) 0.204 ms 0.680 ms 5.17 ms
SFSD (Nc = 600) 0.317 ms 1.29 ms 10.40 ms
SFSD (Nc = 900) 0.426 ms 1.94 ms 15.77 ms
SFSD (Nc = 1200) 0.535 ms 2.58 ms 21 ms

SFSD (8 × 8192 sym)∗ 1.56 ms 8.28 ms 67.88 ms
Trellis (8 × 8192 sym)∗∗ 1.76 ms 8.31 ms 124.62 ms
∗Results weighted by αs.
∗∗Results using Nvidia Tesla C1060 GPU.

Table 7.8. Throughput of the SFSD proposed implementa-

tion in the Nvidia Tesla C2070 GPU for a 4 × 4 system for

different configurations compared to trellis-based detector re-

sults in [20]

QPSK 16-QAM 64-QAM

SFSD (Nc = 150) 73.04 Mbps 45.04 Mbps 9.82 Mbps
SFSD (Nc = 300) 82.35 Mbps 49.41 Mbps 9.74 Mbps
SFSD (Nc = 600) 105.99 Mbps 52.09 Mbps 9.68 Mbps
SFSD (Nc = 900) 118.31 Mbps 51.88 Mbps 9.59 Mbps
SFSD (Nc = 1200) 125.61 Mbps 52.09 Mbps 9.60 Mbps

SFSD (8 × 8192 sym)∗ 87.36 Mbps 32.86 Mbps 6.01 Mbps
Trellis (8 × 8192 sym)∗∗ 74.47 Mbps 27.94 Mbps 3.15 Mbps
∗Results weighted by αs. ∗∗Results using Nvidia Tesla C1060 GPU.

190 GPU Implementation of MIMO Detectors

Table 7.9. GPU execution times for the proposed norm-based

preprocessing and for the FSD-based preprocessing, with nT =

4 and different Nc values.

Nc 150 300 600 1200 3600 6000

Norm 0.618 ms 0.631 ms 0.694 ms 1.36 ms 2.87 ms 4.32 ms
FSD 6.96 ms 10.4 ms 16.8 ms 26 ms 70.5 ms 105 ms

7.5.4 Fully-Parallel SFSD

Preprocessing execution time

As said in Section 2.3.5, the authors in [46] proposed a channel-matrix
ordering which was shown to obtain good performance when used before the
FSD. This ordering, from now on referred to as FSD ordering, was recently
used by the implementation in [104] to perform soft-output detection. The
method in [104] consisted of nT different FSD-like orderings followed by nT

FSD tree-searches.

For the FPFSD scheme we proposed a column-norm-based ordering
and argued that it is more suitable for GPU implementation than the FSD-
based. Note that the FPFSD BER results obtained with the two channel
matrix orderings under study revealed that both preprocessing strategies
achieve the same average performance. Thus, the execution time of the
column-norm-based ordering implementation can be fairly compared to the
FSD-based channel-matrix ordering strategy suggested in [104]. Table 7.9
shows the execution times of the proposed norm-based preprocessing and of
the FSD-based preprocessing used in [104], both implemented on GPU for
a 4×4 system with different numbers of subcarriers. It can be seen that the
execution time of the FSD-based preprocessing is much higher (up to � 24
times) than the norm-based preprocessing time, showing that the proposed
norm-based preprocessing exploits the GPU resources much better.

7.5. Results 191

Table 7.10. Optimal block size for the FPFSD implementa-

tion.

QPSK 16-QAM 64-QAM
Nc nT = 2 nT = 4 nT = 2 nT = 4 nT = 2 nT = 4

300 8 × 8 8 × 8 16 × 16 8 × 8 16 × 16 16 × 16
1200 8 × 16 8 × 8 8 × 16 8 × 16 16 × 16 16 × 64
6000 8 × 16 8 × 8 8 × 16 8 × 16 16 × 16 16 × 16

Speedup

Next, the GPU implementation of the FPFSD was compared to its respec-
tive sequential implementation in CPU. Table 7.10 contains the values of
Nthx × Nthy that minimize the execution time for the FPFSD GPU im-
plementation. Note again that, for simplicity, the results for only some
representative Nc values were included.

Fig. 7.11 (a) shows the speedup for a 2 × 2 system and the three con-
sidered constellations, as a function of the number of subcarriers. It can
be observed that the higher the constellation size, the higher the achieved
speedup. Fig. 7.11 (b) depicts the results for a 4 × 4 MIMO system. Here
it can be observed that, for the QPSK and 16-QAM constellations, the
speedup increases with respect to the one of the 2 × 2 case. However, for
the 64-QAM case, the speedup increase is hardly noticeable. Therefore, it
can be said that, in general, the speedup increases as the number of sub-
carriers and/or the system size gets higher and, particularly for the 2 × 2
system, the speedup also increases as the constellation size grows.

In fact, the speedup for the 64-QAM case in a 4 × 4 system exhibits
a totally different behavior, which can be caused by the use of a higher
amount of shared memory, which brings the GPU to saturation and makes
some threads be executed sequentially. In any case, a substantial gain with
respect to sequential execution in one core of a high-performance CPU is
observed for all cases under study.

The GPU occupancy for this implementation is 67% for QPSK and

192 GPU Implementation of MIMO Detectors

16-QAM and 58% for 64-QAM. These values are almost the same ones as
those reached by the hard-output FSD implementation, being lower than
the ones of the SFSD. This fact may be related with the high speedup of
the FPFSD implementation against the SFSD one.

Throughput

Tables 7.11 and 7.12 collect the runtime and throughput values of the
FPFSD implementation for the considered LTE configurations. To allow a
fair comparison between our proposed approach and the trellis-based im-
plementation in [20], we also executed the FPFSD CUDA code on the GPU
employed in [20] (Nvidia Tesla C1060) and for the configuration used there,
i.e. for the simultaneous detection of 8 streams of 8192 symbols. This com-
parison reveals that the FPFSD implementation achieves the same through-
put as the trellis-based detector for QPSK and slightly higher throughput
for the 16-QAM case. For 64-QAM, our proposed approach doubles the
throughput.

Regarding the LTE real-time requirements, for the QPSK case a whole
slot can be processed before having received the following one (i.e. in ≤0.5
ms) in all cases. For the 16-QAM case, the runtime is ≤0.5 ms for the
Nc = 150 and Nc = 300 cases, being the peak throughput approximately
halved in all cases with respect to QPSK. For the 64-QAM case, the LTE
requirement is not fulfilled at any subcarrier configuration. Also, the in-
crease in the number of bits per symbol does not compensate the runtime
increase, leading to much lower throughput values. Since the GPU occu-
pancy is 50% for the three constellations, the time to access GPU global
memory was found to be the limiting factor of the implementation. The
reason is that the higher the constellation size, the higher the number of
threads accessing this memory.

Moreover, further work is also needed to further optimize the code or
to make use of more powerful GPU in order to decrease the runtime of
those configurations not fulfilling the LTE standard requirements.

7.5. Results 193

4x4 system

2x2 system

1000 2000 3000 4000 5000 6000

Nc

(b)

1000 2000 3000 4000 5000 6000

Nc

(a)

S
p
ee

d
u
p

S
p
ee

d
u
p

10

15

20

25

30

35

40

45

50

55

5

10

15

20

25

30

35

40

QPSK
16-QAM
64-QAM

QPSK
16-QAM
64-QAM

Figure 7.11. Speedup of the FPFSD for different constella-

tions and number of subcarriers in a MIMO system of size:

(a) 2 × 2 and (b) 4 × 4.

194 GPU Implementation of MIMO Detectors

Table 7.11. Runtime of the FPFSD proposed implementa-

tion in the Nvidia Tesla C2070 GPU for a 4 × 4 system for

different configurations compared to trellis-based detector re-

sults in [20].

QPSK 16-QAM 64-QAM

FPFSD (Nc = 150) 0.078 ms 0.232 ms 1.36 ms
FPFSD (Nc = 300) 0.112 ms 0.407 ms 2.71 ms
FPFSD (Nc = 600) 0.186 ms 0.743 ms 5.65 ms
FPFSD (Nc = 900) 0.253 ms 1.103 ms 8.68 ms
FPFSD (Nc = 1200) 0.317 ms 1.456 ms 11.72 ms
FPFSD (8 × 8192 sym)∗ 1.75 ms 8.07 ms 64.74 ms
Trellis (8 × 8192 sym)∗ 1.76 ms 8.31 ms 124.62 ms
∗Results using Nvidia Tesla C1060 GPU

Table 7.12. Throughput of the FPFSD proposed implemen-

tation in the Nvidia Tesla C2070 GPU for a 4 × 4 system for

different configurations compared to trellis-based detector re-

sults in [20].

QPSK 16-QAM 64-QAM

FPFSD (Nc = 150) 107.70 Mbps 72.41 Mbps 18.60 Mbps
FPFSD (Nc = 300) 150 Mbps 82.56 Mbps 18.59 Mbps
FPFSD (Nc = 600) 180.65 Mbps 90.44 Mbps 17.84 Mbps
FPFSD (Nc = 900) 199.21 Mbps 91.39 Mbps 17.41 Mbps
FPFSD (Nc = 1200) 211.99 Mbps 92.31 Mbps 17.20 Mbps
FPFSD (8 × 8192 sym)∗ 74.88 Mbps 32.48 Mbps 6.07 Mbps
Trellis (8 × 8192 sym)∗ 74.47 Mbps 27.94 Mbps 3.15 Mbps
∗Results using Nvidia Tesla C1060 GPU

7.6. Conclusion 195

7.6 Conclusion

In this chapter, several MIMO detectors based on the fixed-complexity
sphere decoder have been implemented in GPU. The detection stage is
highly accelerated through exploiting two parallelism levels: first, inde-
pendent parts of the considered algorithms are processed in parallel and,
second, the detection step is carried out simultaneously for all the subcar-
riers in the system through forwarding each parallel stream to a different
thread.

The block size was shown to be crucial to efficiently exploit the GPU
capabilities. A study of the execution time for all the constellations, number
of subcarriers and system sizes was carried out to select the best block
configuration, and it showed the high dependency of this parameter on the
system features.

The selected methods were also implemented in a high-performance
CPU and the CPU execution times were compared to the execution times
of the proposed GPU implementations. Speedup results showed that the
GPU-based hard-output FSD implementation performs up to 40 times
faster than its CPU-equivalent for some cases whereas the SFSD scheme
reaches a speedup of 24.

In addition, a fully parallel soft-output scheme (FPFSD) with a low-
complexity preprocessing stage was proposed and implemented in GPU.
The speedup and throughput of the algorithm were assessed and compared
to those of the SFSD and trellis-based schemes. Results showed that the
GPU-based FPFSD implementation performs nearly up to 55 times faster
than its CPU-equivalent for some cases. Hence, this method exploits the
GPU capabilities even further than the SFSD. Thus, a high degree of par-
allelism is indeed exploited for the three considered algorithms. Moreover,
the speedup increases with the system size and number of subcarriers, show-
ing the interest of GPU implementation for configurations managing many
data streams simultaneously.

The throughput of the three GPU implementations considering a 4×4
system was obtained for the three constellations. Among the hard-output

196 GPU Implementation of MIMO Detectors

algorithms, the FSD achieves higher throughput than the trellis-based
scheme. On the other hand, comparing the two soft-output implemen-
tations (SFSD and FPFSD) and the trellis-based soft-output scheme, the
FPFSD implementation achieves the highest throughput.

Future work is needed to decrease the runtime for those configurations
not attaining real-time. The use of either more powerful GPU and/or more
than one GPU might be promising solutions for this purpose. Another
interesting topic for future research is to analyze the amount of energy
consumed by the proposed GPU implementation.

The GPU implementations of the FSD and SFSD are reported in [105].
The paper containing the design and GPU implementation of the FPFSD
is [106].

Conclusions 8

Conclusions 8
The overall aim of this research was to deepen into MIMO wireless
systems and, specially, into the task of MIMO data detection. The moti-
vation of this research came from the necessity of finding low-complexity
receivers with as good BER performance as possible.

This chapter will summarize the findings of this research work, revisit-
ing the research objectives given in the introductory chapter. First, Section
8.1 will review the contents of this study, outlining the main conclusions
that were extracted from each chapter. Recommendations for future re-
search will be discussed in Section 8.2. Additionally, the final section con-
tains a list of works published during the course of candidature for the
degree.

8.1 Summary

The first part of this dissertation presented a performance and a complex-
ity study of the application of preprocessing techniques to the K-Best tree-
search MIMO detector. Both, a comparison between two LR algorithms

200 Conclusions

(the LLL and fcLLL) and a column ordering strategy based on the channel
matrix, the VBLAST ZF-DFE, was performed. Also, an efficient QR-based
implementation of the latter was proposed, showing a complexity reduction
from O(n5

T) to O(n4
T). The results demonstrated that the VBLAST ZF-

DFE preprocessing algorithm requires a higher number of operations than
the fcLLL and LLL algorithms for the average case. If the worst-case is
considered, however, the complexity of VBLAST ZF-DFE is between the
fcLLL and the LLL, being the LLL the most costly algorithm. The com-
parison conducted between both methods showed that their performance is
highly dependent on the SNR and K value. As a result, general guidelines
to select the best algorithm are hard to be given and the preprocessing
method must be selected according to the application needs and the avail-
able resources.

Chapter 4 presented two condition-number-thresholding-based tech-
niques built from the K-Best detector. It was also proposed a condition
number estimator that reuses the computation of the QR decomposition
of the channel matrix, which is always a previous step before tree-search
detection. A meaningful way to determine the threshold condition num-
ber was additionally proposed. The performance and complexity results
showed that the proposed schemes achieve the same performance as other
conventional K-Best detectors but with the advantage of having lower aver-
age complexity. Thus, these schemes offer average power saving. Moreover,
the proposed condition number estimator exhibited lower complexity than
other published approaches without degrading the performance of the pro-
posed detection schemes.

Chapter 5 presented several contribution involving the use of LR tech-
niques. First, the combination of LR with the K-Best algorithm was in-
vestigated. Then, new efficient LRA K-Best schemes were developed. An
extended LLL algorithm for LR was proposed to assist the preprocessing
stage of the above schemes. In the last part of the chapter, the extended
LLL algorithm was exploited to decrease the computational cost of several
LRA precoding methods for multiuser communication. Finally, these effi-
cient precoding approaches were compared to some well-known precoding
methods in terms of both computational cost and complexity.

8.2. Further Work 201

Chapter 6 considered soft-output detection in MIMO-BICM systems
working with LLR quantization. The computational cost of a soft-output
fixed-complexity sphere decoder (SFSD) was reduced by a quantization-
based pruning. The SFSD scheme was modified to perform quantization-
based tree pruning and LLR clipping. The results showed that nearly
uniform complexity reduction along the SNR range was achieved without
noticeably degrading the results after quantization.

The implementation of several MIMO detection algorithms in GPU was
covered in Chapter 7. Both, hard- and soft-output tree-search-based algo-
rithms were implemented. The computational times of the proposed GPU
implementations were compared with their execution on a high performance
CPU in order to provide speedup results. In addition, the throughput of
the algorithms was evaluated and compared to those of other recent im-
plementations. Results showed that high speedup was achieved (up to 55),
which increased with the system size and number of subcarriers. Thus, the
interest of GPU implementation for configurations managing many data
streams simultaneously was demonstrated. Furthermore, the throughput
values of the methods were calculated for some LTE configurations and
compared to the ones of previously proposed trellis-based detectors. The
resulting throughput outperformed those of the trellis-based detectors for
all the cases under study and was also shown to support many configura-
tions included in the LTE Advanced standard.

8.2 Further Work

Following the investigations described in this thesis, the main lines of re-
search that remain open are listed below:

• This thesis was focused on the design of MIMO receivers assuming
perfect knowledge about the channel matrix (perfect CSI). In prac-
tice, however, it is common to only have information about a version
of the channel matrix which includes estimation errors. It has been
shown that the design of MIMO receivers taking into account the
possible estimation errors improves detection performance. Hence,

202 Conclusions

it would be interesting to evaluate and redesign the detection ap-
proaches developed in this thesis taking into account channel estima-
tion errors.

• The MIMO receivers developed in this thesis were mainly designed
and tested assuming the transmission through flat fading channels
with zero-mean Gaussian entries. Either using more realistic channel
models or directly real channel measurements to test the detectors
would be interesting topics for future research.

• The performance of MIMO-BICM receivers was tested considering
only iterative decoding instead of joint iterative demodulation and
decoding (i.e. no information was exchanged iteratively between the
demodulator and the channel decoder). It has been shown that the de-
tection performance can be further improved if the information from
already decoded bits is reused by the demodulator as a priori infor-
mation. Considering these kind of iterative receivers for the design
of efficient demodulators would be definitely a good future research
line.

• Almost all the algorithms selected for GPU implementation were
based on the fixed-complexity sphere decoder, since this method could
exploit well the parallel processing capabilities of these devices. Nev-
ertheless, there is still room for further development of preprocessing
and detection schemes suitable for GPU implementation.

• The GPU implementations carried out in this thesis considered the
use of a single GPU. Nevertheless, devices including more than one
GPU are already a reality. Thus, an open research line is to fur-
ther exploit the parallelism of the implemented MIMO schemes by
mapping them into multiple GPUs.

8.3. List of Publications 203

8.3 List of Publications

A list of published work produced during the course of candidature for the
degree is presented in what follows. Note that the publications where the
author of this thesis is the primary author are differentiated from the rest
of publications.

Publications as the first author

Refereed ISI Journals

• S. Roger, A. Gonzalez, V. Almenar, G. Matz, ”Efficient Fixed-
Complexity Sphere Decoder with Quantized Outputs”, IEEE Com-
munications Letters, submitted 2012.

• S. Roger, C. Ramiro, A. Gonzalez, V. Almenar, A. M. Vidal, ”Fully
parallel GPU Implementation of a Fixed-Complexity Soft-Output
MIMO Detector”, IEEE Transactions on Vehicular Technology, sub-
mitted 2012.

• S. Roger, C. Ramiro, A. Gonzalez, V. Almenar, A. M. Vidal, ”An
Efficient GPU Implementation of Fixed-Complexity Sphere Decoders
for MIMO Wireless Systems”, Integrated Computed-Aided Engineer-
ing, submitted 2011.

• S. Roger, A. Gonzalez, V. Almenar, A. M. Vidal, ”Practical As-
pects of Preprocessing Techniques for K-Best Tree Search MIMO De-
tectors”, Computers and Electrical Engineering (Elsevier), vol. 37,
no. 4, pp. 451-460, July 2011.

• S. Roger, A. Gonzalez, V. Almenar, A. M. Vidal, ”Extended LLL
Algorithm for Efficient Signal Precoding in Multiuser Communication
Systems”, IEEE Communications Letters, vol. 14, no. 3, pp. 220-222,
March 2010.

204 Conclusions

• S. Roger, A. Gonzalez, V. Almenar and A. M. Vidal, ”MIMO Chan-
nel Matrix Condition Number Estimation and Threshold Selection for
Combined K-Best Sphere Decoders,” IEICE Transactions on Com-
munications, vol. E92-B, no. 4, pp. 1380-1383, April 2009.

Peer-reviewed non-ISI Journals

• S. Roger, F. Domene, C. Botella, G. Piñero, A. Gonzalez and V.
Almenar, ”Recent Advances in MIMO Wireless Systems”, in Waves,
vol. 1, pp. 115-123, 2009.

• S. Roger and M. Cobos, ”Developing Your Electrical Engineering
Degree Thesis”, in IEEE Potentials Magazine, no. 4, vol. 28, pp. 12-
16, 2009.

Papers in International Conferences

• S. Roger, C. Ramiro, A. Gonzalez, V. Almenar and A. M. Vidal,
”Rapid Prototyping of MIMO Detectors Using Graphic Processing
Units”, First Women’s Workshop on Communications and Signal
Processing, Banff, Canada, July 2012.

• S. Roger, F. Domene, A. Gonzalez, V. Almenar, G. Piñero, ”An
Evaluation of Precoding Techniques for Multiuser Communication
Systems”, International Symposium on Wireless Communications Sys-
tems (ISWCS), York, United Kingdom, September 2010.

• S. Roger, A. Gonzalez, V. Almenar and A. M. Vidal, ”Variable-
Breadth K-Best Detector for MIMO Systems”, IEEE International
Wireless Communications and Mobile Computing Conference (IWCMC),
Caen, France, July 2010.

• S. Roger, A. Gonzalez, V. Almenar and A. M. Vidal, ”Lattice-
Reduction-Aided K-Best MIMO Detector based on the Channel Ma-
trix Condition Number”, IEEE International Symposium on Commu-
nications, Control and Signal Processing (ISCCSP), Limassol, Cyprus,
March 2010.

8.3. List of Publications 205

• S. Roger, A. Gonzalez, V. Almenar and A. M. Vidal, ”On Decreas-
ing the Complexity of Lattice-Reduction-Aided K-Best MIMO Detec-
tors,” European Signal Processing Conference (EUSIPCO), Glasgow,
Scotland, United Kingdom, August 2009.

• S. Roger, A. Gonzalez, V. Almenar and A. M. Vidal, ”Combined K-
Best Sphere Decoder based on the Channel Matrix Condition Num-
ber,” IEEE International Symposium on Communications, Control
and Signal Processing (ISCCSP), St. Julians, Malta, March 2008.

Papers in National Conferences

• S. Roger, C. Ramiro, A. Gonzalez, V. Almenar, A. M. Vidal, ”On
the Use of Graphic Processing Units for the Efficient Implementation
of MIMO Detectors”, Simposium Nacional de la Unión Cient́ıfica
Internacional de Radio (URSI), Elche, Spain, September 2012.

Patents

• A Maximum-Likelihood Sphere Decoding Method for Multiple-Input
Multiple-Output (MIMO) Systems.

– Inventors: V. M. Garcia, A. Gonzalez, S. Roger and A. M.
Vidal.

– Number : P201230387.

– Date: 14/03/2012.

– Holder : Universitat Politècnica de València.

206 Conclusions

Other coauthored publications related to this thesis

Peer-reviewed non-ISI Journal Papers

• V. M. Garcia, A. Gonzalez, C. Gonzalez, F. J. Martinez-Zaldivar,
C. Ramiro, S. Roger, A. M. Vidal, ”The Impact of GPU/Multicore
in Signal Processing: a Quantitative Approach”, in Waves, vol. 3,
pp. 96-106, 2011.

• A. Gonzalez, J. A. Belloch, G. Piñero, J. Lorente, M. Ferrer, S.
Roger, C. Roig, F. J. Martinez, M. de Diego, P. Alonso, V. M.
Garcia, E. S. Quintana-Ort́ı, A. Remon and A. M. Vidal, ”Applica-
tion of Multi-core and GPU Architectures on Signal Processing: Case
Studies”, in Waves, vol. 2, pp. 86-96, 2010.

Papers in International Conferences

• C. Ramiro, S. Roger, A. Gonzalez, V. Almenar and A. M. Vidal,
”Parallel Implementation of a Fixed-Complexity MIMO Detector on a
Multi-Core System”, in International Conference on Computational
and Mathematical Methods in Science and Engineering (CMMSE),
La Manga, Spain, 2012.

• F. Domene, S. Roger, C. Ramiro, G. Piñero, A. Gonzalez, ”A Re-
configurable GPU Implementation for Tomlinson-Harashima Precod-
ing”, IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Kyoto, Japan, 2012.

• V. M. Garcia, S. Roger, R. A. Trujillo, A. M. Vidal, A. Gonza-
lez, ”A Deterministic Lower Bound for the Radius in Sphere Decod-
ing Search”, International Conference on Advanced Technologies for
Communications (ATC/REV), Ho-Chi-Mihn City, Vietnam, 2010.

• J. Fink, S. Roger, A. Gonzalez, V. Almenar and V. M. Garcia,
”Complexity Assessment of Sphere Decoding Methods for MIMO De-
tection,” IEEE International Symposium on Signal Processing and
Information Technology (ISSPIT), Ajman, UAE, December 2009.

8.3. List of Publications 207

• R. A. Trujillo, V. M. Garcia, A. M. Vidal, S. Roger and A. Gonzalez,
”A Gradient-Based Ordering for MIMO Detection,” IEEE Interna-
tional Symposium on Signal Processing and Information Technology
(ISSPIT), Ajman, UAE, December 2009.

Papers in National Conferences

• F. Domene, S. Roger, C. Ramiro, G. Piñero, A. Gonzalez, ”Efficient
GPU Implementation of Precoding Algorithms for MIMO-OFDM
Systems”, Simposium Nacional de la Unión Cient́ıfica Internacional
de Radio (URSI), Elche, Spain, September 2012.

• J. Fink, S. Roger, A. Gonzalez and V. Almenar, ”Complexity eval-
uation of Sphere Decoding techniques for MIMO detection,” Simpo-
sium Nacional de la Unión Cient́ıfica Internacional de Radio (URSI),
Santander, Spain, September 2009.

• V. Motos, S. Roger, A. Gonzalez and V. Almenar, ”Análisis de
las prestaciones de detectores MIMO en presencia de errores de esti-
mación del canal,” Simposium Nacional de la Unión Cient́ıfica Inter-
nacional de Radio (URSI), Santander, Spain, September 2009.

Bibliography

[1] A. J. Paulraj, D. A. Gore, R. U. Nabar, and H. Bölcskei, “An overview
of MIMO communications - a key to Gigabit wireless,” Proceedings
of the IEEE, vol. 92, no. 2, pp. 198–218, 2004.

[2] E. Biglieri, R. Calderbank, A. Constantinides, A. Goldsmith,
A. Paulraj, and H. V. Poor, MIMO Wireless Communications. Cam-
bridge University Press, 2007.

[3] 3GPP TS 36.201, V10.0.0, “Evolved Universal Terrestrial Radio Ac-
cess (E-UTRA); Physical Layer - General Description,” December
2010.

[4] G. J. Foschini and M. J. Gans, “On limits of wireless communications
in a fading environment when using multiple antennas,” Wireless
Personal Communications, vol. 6, no. 3, p. 311335, March 1998.

[5] I. E. Telatar, “Capacity of multi-antenna gaussian channels,” Euro-
pean Transactions on Telecommunications, vol. 10, no. 6, pp. 585–595,
November 1999.

[6] V. Tarokh, N. Seshadri, and A. Calderbank, “Space-time codes
for high data rate wireless communication: performance criterion

210 Conclusions

and code construction,” IEEE Transactions on Information Theory,
vol. 44, no. 2, pp. 744–765, March 1998.

[7] S. Alamouti, “A simple transmit diversity technique for wireless com-
munications,” IEEE Journal on Selected Areas in Communications,
vol. 16, no. 8, pp. 1451–1458, October 1998.

[8] V. Tarokh, H. Jafarkhani, and A. Calderbank, “Space-time block
codes from orthogonal designs,” IEEE Transactions on Information
Theory, vol. 45, no. 5, pp. 1456–1467, July 1999.

[9] L. Zheng and D. Tse, “Diversity and multiplexing: a fundamental
tradeoff in multiple-antenna channels,” IEEE Transactions on Infor-
mation Theory, vol. 49, no. 5, pp. 1073–1096, May 2003.

[10] M. Jiang and L. Hanzo, “Multiuser MIMO-OFDM for next-
generation wireless systems,” Proceedings of the IEEE, vol. 95, no. 7,
pp. 1430 –1469, 2007.

[11] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, “Closest point search
in lattices,” IEEE Transactions on Information Theory, vol. 48, no. 8,
pp. 2201–2214, August 2002.

[12] B. Hassibi and H. Vikalo, “On Sphere Decoding algorithm. Part I,
the expected complexity,” IEEE Transactions on Signal Processing,
vol. 54, no. 5, pp. 2806–2818, August 2005.

[13] E. G. Larsson, “MIMO detection methods: How they work,” IEEE
Signal Processing Magazine, vol. 26, no. 3, pp. 91–95, May 2009.

[14] Z. Guo and P. Nilsson, “Algorithm and implementation of the K-Best
Sphere Decoding for MIMO Detection,” IEEE Journal on Selected
Areas in Communications, vol. 24, no. 3, pp. 491–503, March 2006.

[15] M. Wenk, M. Zellweger, A. Burg, N. Felber, and W. Fichtner, “K-
best MIMO detection VLSI architectures achieving up to 424 Mbps,”
in IEEE International Symposium on Circuits and Systems (ISCAS
2006), Island of Kos, Greece, May 2006.

[16] H. Yao and G. Wornell, “Lattice-reduction-aided detectors for MIMO
communication systems,” in IEEE Global Communications Confer-
ence, Taipei, Taiwan, November 2002.

[17] C. Windpassinger and R. F. H. Fischer, “Low-complexity near-
maximum-likelihood detection and precoding for MIMO systems us-
ing lattice reduction,” in IEEE Information Theory Workshop, Paris,
France, 2003.

[18] D. Wübben, R. Böhnke, V. Kühn, and K.-D. Kammeyer, “Near-
Maximum-Likelihood Detection of MIMO Systems using MMSE-
Based Lattice Reduction,” in IEEE International Conference on
Communications, Paris, France, June 2004.

[19] G. Falcao, V. Silva, and L. Sousa, “How GPUs can outperform ASICs
for fast LDPC decoding,” in International Conference on Supercom-
puting, Yorktown Heights, New York (USA), 2009.

[20] M. Wu, Y. Sun, S. Gupta, and J. Cavallaro, “Implementation of a
high throughput soft MIMO detector on GPU,” Journal of Signal
Processing Systems, vol. 64, no. 2, pp. 123–136, July 2011.

[21] A. Lenstra, H. Lenstra, and L. Lovász, “Factoring polynomials with
rational coefficients,” Math. Ann., vol. 261, pp. 515–534, 1982.

[22] G. J. Foschini, “Layered space-time architecture for wireless commu-
nication in a fading environment when using multi-element anten-
nas,” Bell Labs. Technical Journal, vol. 1, no. 2, pp. 41–59, Autumn
1996.

[23] D. Seethaler, G. Matz, and F. Hlawatsch, “Low-Complexity MIMO
Data Detection using Seysen’s Lattice Reduction Algorithm,” in
IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP 2007), Honolulu, Hawaii, USA, April 2007.

[24] A. Paulraj, R. Nabar, and D. Gore, ”Introduction to Space-Time
Wireless Communications. United Kingdom: Cambridge University
Press, 2003.

212 Conclusions

[25] J. Janhunen, O. Silvén, and M. Juntti, “Programmable processor
implementations of K-best list sphere detector for MIMO receiver,”
Signal Processing, vol. 90, no. 1, pp. 313–323, January 2010.

[26] C. E. Shannon, “A mathematical theory of communication,” Bell
System Technical Journal, vol. 27, pp. 623–656, July 1948.

[27] I. Telatar, “Capacity of multi-antenna gaussian channels,” ATT Bell
Laboratories, Tech. Rep., 1995.

[28] A. Goldsmith, S. A. Jafar, N. Jindal, and S. Vishwanath, “Capac-
ity limits of MIMO channels,” IEEE Journal of Selected Areas in
Communications, vol. 21, no. 5, pp. 684–702, June 2003.

[29] D. Wübben, D. Seethaler, J. Jalden, and G. Matz, “Lattice reduction:
A survey with applications in wireless communications,” IEEE Signal
Processing Magazine, vol. 28, no. 3, pp. 70–91, May 2011.

[30] T. Kailath, H. Vikalo, and B. Hassibi, ”MIMO Receive Algorithms,”
in Space-Time Wireless Systems: From Array Processing to MIMO
Communications, (editors H. Bolcskei, D. Gesbert, C. Papadias, and
A. J. van der Veen). United Kingdom: Cambridge University Press,
2005.

[31] J. Barry, E. Lee, and D. Messerschmitt, Digital Communications.
United States: Ed. Springer, 2003 (3rd Edition).

[32] M. O. Damen, H. E. Gamal, and G. Caire, “On Maximum-Likelihood
detection and the search for the closest lattice point,” IEEE Transac-
tions on Information Theory, vol. 49, no. 10, pp. 2389–2402, October
2003.

[33] I. Berenguer and X. Wang, “Space-Time coding and signal process-
ing for MIMO communications,” Journal of Computer Science and
Technology, vol. 18, no. 6, pp. 689–702, November 2003.

[34] K. Su and I. J. Wassell, “A new ordering for efficient Sphere Decod-
ing,” in IEEE International Conference on Communications, Seoul,
Korea, May 2005.

[35] R. A. Trujillo, V. M. Garcia, A. M. Vidal, S. Roger, and A. Gonzalez,
“A gradient-based ordering for MIMO detection,” in IEEE ISSPIT,
Ajman, UAE, 2009.

[36] E. Viterbo and J. Boutros, “A universal lattice decoder for fading
channels,” IEEE Transactions on Information Theory, vol. 45, no. 5,
pp. 1639–1642, July 1999.

[37] K. Su, “Efficient Maximum Likelihood detection for communication
over MIMO channels,” University of Cambridge, Technical Report,
February 2005.

[38] U. Fincke and M. Pohst, “Improved methods for calculating vectors
of short length in a lattice, including a complexity analysis,” Mathe-
matics of Computation, vol. 44, pp. 463–471, April 1985.

[39] C. Schnorr and M. Euchner, “Lattice basis reduction: Improved prac-
tical algorithms and solving subset sum problems,” Mathematical
Programming, vol. 66, no. 2, pp. 181–191, September 1994.

[40] M. Stojnic, H. Vikalo, and B. Hassibi, “Speeding up the sphere de-
coder with h-infinity and SDP inspired lower bounds,” IEEE Trans-
actions on Signal Processing, vol. 56, no. 2, pp. 712–726, February
2008.

[41] J. Maurer, J. Jalden, D. Seethaler, and G. Matz, “Achieving a con-
tinuos diversity-complexity tradeoff in wireless MIMO systems via
preequalized sphere-decoding,” IEEE Journal of Selected Topics in
Signal Processing, vol. 3, no. 6, pp. 986–999, December 2009.

[42] V. M. Garcia, S. Roger, R. A. Trujillo, A. M. Vidal, and A. Gonza-
lez, “A deterministic lower bound for the radius in sphere decoding
search,” in International Conference on Advanced Technologies for
Communications, Ho Chi Mihn City, Vietnam, October 2010.

[43] Y. H. Wu, Y. T. Liu, H.-C. Chang, Y.-C. Liao, and H.-C. Chang,
“Early-pruned K-best sphere decoding algorithm based on radius
constraints,” in IEEE International Conference on Communications,
Beijing, China, May 2008.

214 Conclusions

[44] C.-A. Shen and A. Eltawil, “A radius adaptive K-best decoder with
early termination: Algorithm and VLSI architecture,” Circuits and
Systems I: Regular Papers, IEEE Transactions on, vol. 57, no. 9, pp.
2476 –2486, September 2010.

[45] Q. Li and Z. Wang, “Improved K-Best Sphere Decoding algorithms
for MIMO systems,” in International Symposium on Circuits and
Systems (ISCAS 2006), Island of Kos, Greece, May 2006.

[46] L. G. Barbero and J. S. Thompson, “Fixing the complexity of the
sphere decoder for MIMO detection,” IEEE Transactions on Wireless
Communications, vol. 7, no. 6, pp. 2131–2142, June 2008.

[47] J. Jalden, L. G. Barbero, B. Ottersten, and J. S. Thompson, “The er-
ror probability of the fixed-complexity sphere decoder,” IEEE Trans-
actions on Signal Processing, vol. 57, no. 7, pp. 2711–2720, July 2009.

[48] J. Fink, S. Roger, A. Gonzalez, V. Almenar, and V. M. Garcia, “Com-
plexity assessment of sphere decoding methods for MIMO detection,”
in IEEE International Symposium on Signal Processing and Informa-
tion Technology (ISSPIT), Ajman, UAE, December 2009.

[49] G. Caire, G. Taricco, and E. Biglieri, “Bit-interleaved coded modula-
tion,” IEEE Transactions on Information Theory, vol. 44, no. 3, pp.
927–946, May 1998.

[50] J. Boutros, F. Boixadera, and C. Lamy, “Bit-interleaved coded mod-
ulations for multiple-input multiple-output channels,” in IEEE Sixth
International Symposium on Spread Spectrum Techniques and Appli-
cations, New Jersey, USA, September 2000.

[51] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary
block and convolutional codes,” IEEE Transactions on Information
Theory, vol. 42, no. 2, pp. 429–445, March 1996.

[52] B. M. Hochwald and S. ten Brink, “Achieving near-capacity on a
multiple-antenna channel,” IEEE Transactions on Communications,
vol. 51, no. 3, pp. 389–399, March 2003.

[53] R. Wang and G. B. Giannakis, “Approaching MIMO channel capacity
with reduced-complexity soft sphere decoding,” IEEE Transactions
on Communications, vol. 51, no. 3, pp. 389–399, March 2003.

[54] C. Studer, A. Burg, and H. Bolcskei, “Soft-output sphere decoding:
Algorithms and VLSI implementation,” IEEE Journal on Selected
Areas in Communications, vol. 26, no. 2, pp. 290–300, February 2008.

[55] L. G. Barbero, T. Ratnarajah, and C. Cowan, “A low-complexity
soft-MIMO detector based on the fixed-complexity sphere decoder,”
in IEEE International Conference on Acoustics, Speech and Signal
Processing, Las Vegas, Nevada (USA), March 2008.

[56] L. G. Barbero and J. S. Thompson, “Extending a fixed-complexity
sphere decoder to obtain likelihood information for turbo-MIMO sys-
tems,” IEEE Transactions on Vehicular Technology, vol. 57, no. 5,
pp. 2804–2814, September 2008.

[57] 3GPP TS 36.300, V8.9.0, “Evolved Universal Terrestrial Radio Access
(E-UTRA); Physical Layer - General Description,” December 2009.

[58] B. Hochwald, C. Peel, and A. Swindlehurst, “A vector-perturbation
technique for near-capacity multiantenna multiuser communication,
part II: Perturbation,” IEEE Transactions on Communications,
vol. 53, no. 3, pp. 537–544, January 2005.

[59] C. Windpassinger, R. Fischer, T. Vencel, and J. Huber, “Precoding
in multiantenna and multiuser communications,” IEEE Transactions
on Wireless Communications, vol. 3, no. 4, pp. 1305–1316, July 2004.

[60] X.-F. Qi and K. Holt, “A Lattice-Reduction-Aided Soft Demapper for
High-Rate Coded MIMO-OFDM Systems,” IEEE Signal Processing
Letters, vol. 14, no. 5, pp. 305 – 308, May 2007.

[61] G. J. Foschini, G. D. Golden, R. A. Valenzuela, and P. W. Wol-
niansky, “Simplified processing for high spectral efficiency wireless
communication employing multi-element arrays,” IEEE Journal on
Selected Areas in Communications, vol. 17, no. 11, pp. 1841–1852,
November 1999.

216 Conclusions

[62] J. Benesty, Y. Huang, and J. Chen, “A fast recursive algorithm for op-
timum sequential signal detection in a BLAST system,” IEEE Trans-
actions on Signal Processing, vol. 51, no. 7, pp. 1722–1730, July 2003.

[63] T. Koike-Akino, “Low-complexity systolic V-BLAST architecture,”
IEEE Transactions on Wireless Communications, vol. 8, no. 5, pp.
2172–2176, May 2009.

[64] G. Golub and C. V. Loan, Matrix Computations. Baltimore: The
Johns Hopkins University Press, 1996.

[65] M. Seysen, “Simultaneous reduction of a lattice basis and its recip-
rocal basis,” Combinatorica, vol. 13, pp. 363–367, 1993.

[66] H. Vetter, V. Ponnampalam, M. Sandell, and P. A. Hoeher, “Fixed
complexity LLL algorithm,” IEEE Transactions on Signal Processing,
vol. 57, no. 4, pp. 1634–1637, April 2009.

[67] S. Roger, A. Gonzalez, V. Almenar, and A. M. Vidal, “Practical
aspects of preprocessing techniques for K-best tree search MIMO de-
tectors,” Computers and Electrical Engineering, vol. 37, no. 4, pp.
451–460, 2011.

[68] H. Artes, D. Seethaler, and F. Hlawatsch, “Efficient detection algo-
rithms for MIMO channels: A geometrical approach to approximate
ML detection,” IEEE Transactions on Signal Processing, vol. 51,
no. 11, pp. 2808 – 2820, November 2003.

[69] J. E. Gentle, Numerical Linear Algebra for Applications in Statistics.
United States: Ed. Springer, 1998, ISBN: 978-0-387-98542-8.

[70] J. Maurer, G. Matz, and D. Seethaler, “Low-complexity and full-
diversity MIMO detection based on condition number thresholding,”
in IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP 2007), Honolulu, Hawaii, USA, April 2007.

[71] S. Xu and J. Zhang, “A new data mining approach to predicting ma-
trix condition numbers,” Communications in information and sys-
tems, International Press, vol. 4, no. 4, pp. 325–340, 2004.

[72] A. Edelman, “Eigenvalues and Condition Numbers of Random Matri-
ces,” Massachusetts Institute of Technology, Cambridge (MA), Ph.D.
thesis, 1989.

[73] A. K. Cline, C. B. Moler, G. W. Stewart, and J. H. Wilkinson, “An
estimate for the condition number of a matrix,” SIAM Journal on
Numerical Analysis, vol. 16, no. 2, pp. 368–375, April 1979.

[74] S. Roger, A. Gonzalez, V. Almenar, and A. M. Vidal, “Combined K-
Best Sphere Decoder based on the channel matrix condition number,”
in IEEE International Symposium on Communications, Control and
Signal Processing (ISCCSP 2008), St. Julians, Malta, March 2008.

[75] ——, “Variable-breadth K-best detector for MIMO systems,” in In-
ternational Wireless Communications and Mobile Computing Con-
ference (IWCMC), Caen, France, June 2010.

[76] ——, “MIMO channel matrix condition number estimation and
threshold selection for combined K-best sphere decoders,” IEICE
Transactions on Communications, vol. E92, no. 4, pp. 1380–1383,
2009.

[77] ——, “Lattice-reduction-aided K-best MIMO detector based on the
channel matrix condition number,” in IEEE International Sympo-
sium on Communications, Control and Signal Processing (ISCCSP),
Limassol, Cyprus, March 2010.

[78] I. Berenguer, J. Adeane, I. Wassell, and X. Wang, “Lattice-reduction-
aided receivers for MIMO-OFDM in spatial multiplexing systems,” in
Proc. Int. Symposium on Personal, Indoor and Mobile Radio Com-
munications (PIMRC), vol. 2, September 2004, pp. 1517–1521.

[79] M. Shabany, K. Su, and P. G. Gulak, “A pipelined scalable high-
throughput implementation of a Near-ML K-Best complex lattice de-
coder,” in IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP 2008), Las Vegas, Nevada, USA, April
2008.

218 Conclusions

[80] F. J. Richards, “A flexible growth function for empirical use,” J. Exp.
Bot., vol. 10, pp. 290–300, 1959.

[81] C. Windpassinger, R. F. H. Fischer, and J. B. Huber, “Lattice-
reduction-aided broadcast precoding,” IEEE Transactions on Com-
munications, vol. 52, no. 12, pp. 2057–2060, December 2004.

[82] D. Xu, Y. Huang, and L. Yang, “Improved nonlinear multiuser pre-
coding using lattice reduction,” Signal, Image and Video Processing,
vol. 3, no. 1, pp. 47–52, February 2009.

[83] S. Roger, A. Gonzalez, V. Almenar, and A. M. Vidal, “Extended LLL
algorithm for efficient signal precoding in multiuser communication
systems,” IEEE Communications Letters, vol. 14, no. 3, pp. 220–222,
March 2010.

[84] ——, “On decreasing the complexiy of lattice-reduction-aided K-best
MIMO detectors,” in European Signal Processing Conference (EU-
SIPCO 2009), Glasgow, Scotland, August 2009.

[85] S. Roger, F. Domene, A. Gonzalez, V. Almenar, and G. Piñero, “An
evaluation of precoding techniques for multiuser communication sys-
tems,” in International Symposium on Wireless Communication Sys-
tems, York, United Kingdom, September 2010.

[86] C. Novak, P. Fertl, and G. Matz, “Quantization for soft-output de-
modulators in bit-interleaved-coded-modulation systems,” in IEEE
ISIT, Seoul, Korea, 2009.

[87] C. Novak, C. Studer, A. Burg, and G. Matz, “The effect of unreli-
able LLR storage on the performance of MIMO-BICM,” in Asilomar
Conference on Signals, Systems and Computers, Pacific Grove, CA
(USA), November 2010.

[88] W. Rave, “Quantization of log-likelihood ratios to maximize mutual
information,” IEEE Signal Processing Letters, vol. 16, pp. 283–286,
April 2009.

[89] S. Roger, A. Gonzalez, V. Almenar, and G. Matz, “Efficient fixed-
complexity sphere decoder with quantized outputs,” IEEE Commu-
nications Letters, Submitted 2012.

[90] A. Gonzalez, J. A. Belloch, F. J. Martinez, P. Alonso, V. M. Garcia,
E. S. Quintana-Orti, A. Remon, and A. M. Vidal, “The impact of the
multi-core revolution on signal processing,” Waves, vol. 2, pp. 74–85,
2010.

[91] A. Gonzalez, J. A. Belloch, G. Pinero, J. Lorente, M. Ferrer, S. Roger,
C. Roig, F. J. Martinez, M. de Diego, P. Alonso, V. M. Garcia,
E. S. Quintana-Orti, A. Remon, and A. M. Vidal, “Applications of
multi-core and GPU architectures on signal processing: Case stud-
ies,” Waves, vol. 2, pp. 86–96, 2010.

[92] M. Palkovic, P. Raghavan, M. Li, A. Dejonghe, L. Van der Perre, and
F. Catthoor, “Future software-defined radio platforms and mapping
flows,” IEEE Signal Processing Magazine, vol. 27, no. 2, pp. 22–33,
March 2010.

[93] J. Kim, S. Hyeon, and S. Choi, “Implementation of an SDR system
using graphics processing unit,” IEEE Communications Magazine,
vol. 48, no. 3, pp. 156–162, March 2010.

[94] T. Nylanden, J. Janhunen, O. Silven, and M. Juntti, “A GPU imple-
mentation for two MIMO-OFDM detectors,” in International Con-
ference on Embedded Computer Systems, Samos, Greece, July 2010.

[95] M. Wu, Y. Sun, S. Gupta, and J. Cavallaro, “A GPU implementa-
tion of a real-time MIMO detector,” in IEEE Workshop on Signal
Processing Systems, Tampere, Finland, October 2009.

[96] F. J. Mart́ınez-Zald́ıvar, A. M. Vidal, A. Gonzalez, and V. Almenar,
“Tridimensional block multiword LDPC decoding on GPUs,” Journal
of Supercomputing, vol. 58, no. 3, pp. 314–322, December 2011.

[97] “NVIDIA CUDA C programming guide,”
November 2011. [Online]. Available:

220 Conclusions

http://developer.download.nvidia.com/compute/DevZone/docs
/html/C/doc/CUDA C Programming Guide.pdf

[98] “NVIDIA CUDA C best practices
guide,” January 2012. [Online]. Available:
http://developer.download.nvidia.com/compute/DevZone/docs
/html/C/doc/CUDA C Best Practices Guide.pdf

[99] M. Flynn, “Some computer organizations and their effectiveness,”
IEEE Transactions on Computers, vol. 21, pp. 948–960, September
1972.

[100] D. B. Kirk and W.-M. Hwu, Programming Massively Parallel Pro-
cessors: A Hands-on Approach. Massachusetts, CA (USA): Morgan
Kaufmann Publishers, February 2010.

[101] “NVIDIA’s next generation: FERMI,”
November 2011. [Online]. Available:
http://www.nvidia.com/content/PDF/fermi white papers
/NVIDIA Fermi Compute Architecture Whitepaper.pdf

[102] V. M. Garcia, A. Gonzalez, C. Gonzalez, F. J. Martinez-
Zaldivar, C. Ramiro, S. Roger, and A. M. Vidal, “The impact
of GPU/multicore in signal processing: a quantitative approach,”
Waves, vol. 3, November 2011.

[103] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra,
“Parallel tiled QR factorization for multicore architec-
tures,” LAPACK Working Note 190, Tech. Rep., 2007,
http://www.netlib.org/lapack/lawnspdf/lawn190.pdf.

[104] Q. Qi and C. Chakrabarti, “Parallel high throughput soft-output
sphere decoding algorithm,” Journal of Signal Processing Systems,
vol. 68, no. 2, pp. 217–231, August 2012.

[105] S. Roger, C. Ramiro, A. Gonzalez, V. Almenar, and A. M. Vidal, “An
efficient GPU implementation of fixed-complexity sphere decoders for
MIMO wireless systems,” Integrated Computed-Aided Engineering,
Submitted 2011.

[106] ——, “Fully parallel GPU implementation of a fixed-complexity soft-
output MIMO detector,” IEEE Transactions on Vehicular Technol-
ogy, Submitted 2011.

