
Tuan Van Pham

Wavelet Analysis For Robust

Speech Processing and Applications

Dissertation

vorgelegt an der

Technischen Universität Graz

zur Erlangung des akademischen Grades

Doktor der Technischen Wissenschaften

durchgeführt am

Institut für Signalverarbeitung und Sprachkommunikation

First Advisor:

Prof. Dr. Gernot Kubin, Graz University of Technology, Austria

Second Advisor:

Prof. Dr. Zdravko Kačič, University of Maribor, Slovenia

Graz, February 2007



ii



Abstract

In this work, we study the application of wavelet analysis for robust speech processing.

Reliable time-scale features (TS) which characterize the relevant phonetic classes

such as voiced (V), unvoiced (UV), silence (S), mixed-excitation, and stop sounds are

extracted. By training neural and Bayesian networks, the classification rates provided

by only 7 TS features are mostly similar to the ones obtained by 13 MFCC features.

The TS features are further enhanced to design a reliable and low-complexity

V/UV/S classifier. Quantile filtering and slope tracking are used for deriving adaptive

thresholds. A robust voice activity detector is then built and used as a pre-processing

stage to improve the performance of a speaker verification system.

Based on wavelet shrinkage, a statistical wavelet filtering (SWF) method is designed

for speech enhancement. Non-stationary and colored noise is handled by employing

quantile filtering and time-frequency adaptive weighting. A newly proposed comparison

diagnostic test and other subjective tests show improvements compared with other

denoising methods.

The SWF is further optimized to enhance speech quality for robust ASR. By chang-

ing the shape of the frequency weighting and estimating perceptual noise thresholds

in critical subbands, the perceptual SWF method provides almost equal performance

compared with the ETSI baseline for car noise and significant improvements compared

with other methods in aircraft maintenance factory conditions.
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Kurzfassung

Diese Arbeit beschäftigt sich mit der Anwendung der Wavelet Analyse zur robusten

Sprachverarbeitung. Schlagwrter So genannte time-scale (TS) Merkmale, die phonetis-

che Klassen (stimmhaft, stimmlos, gemischte Anregung, Verschlusslaut) charakter-

isieren, werden aus dem Sprachsignal extrahiert. Mittels Neuronaler und Bayes’scher

Netze werden unter Verwendung von nur 7 TS Merkmalen gleiche Resultate in der

Klassifikation wie mit 13 MFCC Merkmalen erreicht.

Um Robustheit gegenüber sich ändernden Umgebungsbedingungen zu gewährleisten,

werden adaptive Schwellen unter der Verwendung von Methoden der Quantilen-Filterung

oder der Verfolgung des Kurvenzuges abgeleitet. Diese Wavelet Methode wurde zur

Detektierung von Sprachaktivität weiterentwickelt und reduziert als Vorverarbeitung-

seinheit eines Sprecherverifikationssystems dessen Fehlerrate.

Weiters wurde diese Methode zur Sprachverbesserung eingesetzt. Dafür wurde die

statistische Wavelet Filterung angewandt, die auf der “wavelet shrinkage” Methode

basiert. Um robust gegenber nicht-stationärem und nicht-weiem Rauschen zu sein, wird

zusätzlich zur Quantilen-Filtering eine adaptive Zeit-Frequenz Gewichtung angewandt.

Nach der Optimierung der Gewichtungsfunktionen für die Spracherkennung konnten

vergleichbare Ergebnisse wie mit der von ETSI entwickelten Methode, für in Fahrzeugen

gemachte Aufnahmen erreicht werden sowie Verbesserungen in Aufnahmen, die bei der

Fluzeugwartung gemacht wurden.
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Chapter 1

Introduction

Speech communication is the interdisciplinary subject of describing the information

transfer from one person to another via speech signals. Modern speech processing tech-

nology is usually considered to comprise several sub-fields of speech analysis, speech

synthesis, speech recognition, speech coding, and speech enhancement. To be consid-

ered as an essential framework for coding, synthesis and recognition of speech, speech

analysis methods study speech production, process the acoustic waveform, and extract

interesting acoustic features. Speech synthesis and speech recognition establish a two-

way communication between human beings and machines. They have been more and

more widely used in many useful applications such as dialog, user interfaces, security

systems, machine translation and understanding based on voice communication. While

speech coding techniques are the most efficient processes for transmission and storage

of speech signals for communication between humans, speech enhancement is moti-

vated by the complicated and significant impacts of realistic environments which may

distort speech quality and lead to system performance degradation.

All addressed topics make robustness to acoustic background noise be highly chal-

lenging in speech communications. A comprehensive state-of-the-art research of the

techniques in robust speech processing have been motivated by the increase of the

need for low-complexity and efficient speech feature extraction methods, the need for

enhancing the naturalness, acceptability and intelligibility of the received speech signal

corrupted by environmental noise, and the need of reducing noise for robust speech

recognition systems to achieve high recognition rate in harsh environments. In this

dissertation, these challenges are studied by novel methods which are based on the

wavelet transform. They are designed for robust speech processing and applications.
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The next section is used to review briefly state-of-the-art speech technology, thereby

addressing growing challenges in the field. Advantages of the wavelet transform as

well as interpretative explanations for its application in robust speech processing are

presented in the next two sections. Finally, the thesis contents and work contributions

are presented.

1.1 Robust speech processing and applications

In last two decades, speech coding was developed following two different approaches as

vocoders and waveform coders. They both shows the trade-off between speech qual-

ity and bit rate. Code-excited linear prediction [SA85], multi-pulse excitation [AR82]

algorithms are some of the current generation coders in the time domain. The multi-

band excited coders [GL88], sinusoidal/harmonic [AS84, MQ86] can be considered as

the ones in the frequency domain. The application of these speech coders, however,

are limited due to the presence of acoustic background noise which can substantially

degrade the performance of them in real communication environments. To deal with

the problem, besides bandwidth extension and multi-channel speech enhancement ap-

proaches, many single-channel speech enhancement techniques were proposed to en-

hance the recorded noisy speech signal. The most conventional procedure proposed

in some patents [HC95, ENS02] is the pre-processing of the input signal by applying

noise reduction methods in order to enhance the speech quality before the speech cod-

ing stage [BSN03].

The usage of voice activity detection (VAD) is very necessary and is considered a

classic approach to estimate the noise level [Coh03] in most of the noise reduction meth-

ods. The automatic speech/non-speech distinction and phonetic classification are the

most crucial topics in speech processing and applications. In some speech coding sys-

tems, the optimal bit allocation is dependent on the different phonetic types of speech

frames as voiced sound or unvoiced sound [KAK93, Kle93]. The discrimination between

phonetic classes improves quality and performance of data-driven speech synthesizers

by adjusting non-uniform scaling factors of each phonetic class in time-scale modifica-

tion algorithms [KK94, DJC03]. Besides, the phonetic alignment of huge databases can

be performed faster by applying the phonetic classifier as a pre-classification step. Fi-

nally, there is a need for a phonetic classifier in automatic speech recognition to improve
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the performance of end-point detection [RSB+05] in order to increase the recognition

rate.

The categorization of various speech enhancement systems is based on different

approaches of deriving information about the speech and the noise. Some methods

employ basic underlying principle that waveforms of voiced sounds are almost peri-

odic. Then adaptive comb filtering [FSBO76] is applied on the noisy speech signal to

eliminate the non-harmonic components which are considered as noise. Other methods

rely on concepts of human perceptual criteria [CO91, JC03], and speech production

[LO79, YMPSR02]. Some systems are based on estimation of speech characteristics in

the time and frequency domains derived from the short-time Fourier transform (STFT)

with various methods such as spectral subtraction [Bol79], nonlinear spectral subtrac-

tion [BSM79, MM80, EM83], Wiener filtering [LO79, SF96, AC99], and subspace-based

method [ET95]. Other systems use statistical models to exploit a-priori signal infor-

mation such as [Dru68, EM84] with the assumption that the Fourier coefficients of

speech signals follow a Gaussian distribution, or [LV03, Mar02, Mar05] with the prior

assumption of different super-Gaussians such as Gamma distribution for speech, and

Laplace or Gaussian distribution for noise. The more sophisticated statistical models

such as Gaussian mixture models (GMMs) [BG02], hidden Markov models (HMMs)

[Eph92a, SSDB98], and codebooks [Sri05] which are trained on selected databases in-

crease accuracy at the cost of a high computational complexity. The noise removal

takes palce not only in the time-frequency domain but also in the time-scale domain

by applying the wavelet transform. A survey on this later approach will be presented

in the next sections. Thanks to the assumption of uncorrelatedness between speech

and noise, and to the assumption that noise is more stationary than speech, the higher

precision we model the speech/noise, the more ability to separate noise from speech.

However, overmodeling also makes the speech enhancement algorithms inaccurate due

to the wide variation of speech signals and noise signals in the real word. The as-

sumptions do not hold in case of many real noise types, which are non-white and very

non-stationary, such as machine, car, babble, cafeteria noise or human conversation

interference. This trade-off can be addressed by designing the speech enhancement

system for specific environments and applications. More precisely, the speech enhance-

ment system can be optimized based on perceptual criteria, or more on mathematical

criteria, or somewhere in the middle which is motivated by machine learning applica-

tions such as speech recognition.
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With the growing demands of automatic human-machine interaction applications,

many automatic speech recognition (ASR) systems such as HTK [YEG+05], CMU

SPHINX [LHR90, CMU06] have been developed for large vocabulary continuous speech.

Together with PC-based applications, speech recognition has become widely used for

mobile communications. Due to the nature of mobile technology, the communication

processes are often carried out in real environments such as office, car, constructions,

etc., which exhibit a wide range of potential sources of noise and distortion that can de-

grade the quality of the speech signal. This makes robustness to environments for ASR

a highly important research topic. There may be three different approaches towards

robust ASR such as noise suppression [Ace90], robust feature extraction [Ohs93] and

acoustic model adaptation [GY96]. The Aurora Distributed Speech Recognition (DSR)

working group [Pea00] of the The European Telecommunications Standards Institute

(ETSI) works on the development and standardization of algorithms to parameterize

a representation of speech which is suitable for distributed speech recognition. This

project can be considered as the integration of the first and second approaches to make

ASR environmentally robust: the advanced distributed speech recognition front-end

(AFE) [ETS03]. To overcome the addressed problems of the ASR systems using a

single microphone, the approach based on single-channel noise reduction is considered

low-complexity and effective method to clean up speech recorded in noisy environ-

ments, and also compensates the mismatch between speech recognition training and

testing conditions.

1.2 Wavelet transform

The development of the wavelet transform (WT) is considered a revolution of modern

signal processing techniques and most widely used over the past two decades. Signif-

icant contributions of wavelet analysis to different signal processing techniques have

been developed for signal, image and speech processing as well as applications. Let

ψs,u(t) = (1/
√
s)ψ((t−u)/s) be a set of continuous-time wavelet basis functions which

is generated by scaling the mother wavelet ψ(t) by s and translating it by u. The

continuous wavelet transform (CWT) of any signal x(t) is defined as:

CWTx(s, u) =

∫ +∞

−∞

x(t)ψs,u(t)dt =

∫ +∞

−∞

x(t)
1√
s
ψ

(
t− u

s

)
dt, (1.1)
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The continuous wavelet transform has redundancy due to the continuous values of s and

u. By sampling them as s = sm0 and u = nu0s
m
0 , m,n ∈ Z, we obtain a set of discrete-

parameter continuous-time wavelet basis functions ψm,n(t) = s
−m/2
0 ψ(s−m0 t − nu0). If

this set is complete in L2(R) for some choice of ψ(t), s0, u0, then any continuous-time

signal x(t) ∈ L2(R) can be represented as the following superposition:

x(t) =
∑

m

∑

n

dm,nψm,n(t), (1.2)

where dm,n are the wavelet coefficients for all m,n ∈ Z and estimated by:

dm,n =

∫ ∞

−∞

x(t)s
−m/2
0 ψ(s−m0 t− nu0)dt. (1.3)

With s0 = 2 and u0 = 1, we obtain the dyadic-parameter wavelet basis functions

ψm,n(t) = 2−m/2ψ(2−mt − n) which are considered in our research [AH01]. As we

see, the pure wavelet expansion in Equation 1.2 requests an infinite number of scales

or resolutions m to represent the signal x(t) completely. This is impractical. If the

expansion is known only for certain scale m < M , we need a complement component

to present information of expansion for m > M . This is done by introducing a scaling

function φ(t) such that, ∀m ∈ Z, the set φm,n(t) = 2−m/2φ(2−mt−n) is an orthonormal

basis for subsapce Vm of L2(R). With the introduced component, the signal x(t) ∈
L2(R) can be represented as a limit of successive approximations corresponding to

different resolutions [AH01]. This presentation is named as multiresolution analysis

(MRA) [Mal89, VK95]. In other words, the signal x(t) is presented as the sum of an

approximation plus M details at the M th decomposed resolution:

x(t) =
∑

n

aM,nφM,n(t) +
M∑

m=1

∑

n

dm,nψm,n(t)

=
∑

n

aM,n2
−M/2φ

(
t

2M
− n

)
+

M∑

m=1

∑

n

dm,n2
−m/2ψ

(
t

2m
− n

)
,

(1.4)

where M represents the number of scales. am,n and dm,n are the approximation or

scaling coefficients and the detail or wavelet coefficients. In discrete-time domain, the

set of discrete-time scaling functions and wavelet functions can be constructed from

filter bank as:

φm,n(l) =
∑

p

h(p− 2n)φm−1,n(2
−(m−1)l − n), (1.5)

ψm,n(l) =
∑

p

g(p− 2n)φm−1,n(2
−(m−1)l − n), (1.6)
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where h(n) and g(n) form a pair of conjugate mirror filters used at the analysis stage

with g(n) = (−1)1−nh(1 − n) [Mal99]. Based on these bases, the scaling coefficients

am,n and wavelet coefficients dm,n are derived by the discrete convolutions:

am,n =
∑

p

am−1,ph(p− 2n) = am−1 ∗ h(2n), (1.7)

dm,n =
∑

p

dm−1,pg(p− 2n) = dm−1 ∗ g(2n), (1.8)

where h(−2n) = h(2n) and g(−2n) = g(2n) are synthesis filters. As a generalization

of discussed wavelet decomposition, wavelet packet expands a range of signal analysis

by doing additional implementations of wavelet decomposition on detail coefficients.

In this study, we only consider the binary wavelet packet decomposition (WPD). Each

packet node (m, k) corresponds to a space W 0
0 which is spanned by an orthonormal

basis {ψkm(2−ml−n)}n∈Z, with k = 1, . . . , 2m the packet channel index. Assuming that

we already construct the basis at node (m, k), the two wavelet packet bases at the

children nodes are calculated by:

ψ2k
m,n(l) =

∑

p

h(p)ψkm−1,n(2
−ml − n), (1.9)

ψ2k+1
m,n (l) =

∑

p

g(p)ψkm−1,n(2
−ml − n), (1.10)

The corresponding wavelet packet coefficients are derived as:

d2k
m,n =

∑

p

dkm−1,ph(p− 2n) = dkm−1 ∗ h(2n), (1.11)

d2k+1
m,n =

∑

p

dkm−1,pg(p− 2n) = dkm−1 ∗ g(2n), (1.12)

From now on, we call Xm,i(n) the sequence of all wavelet coefficients (i.e. am,n and

dm,n) which are derived by the DWT at the mth scale of the ith frame, n is the coef-

ficient index. Let denote Nf be the number of samples in one speech frame, and also

the number of coefficients in Xm,i(n). Thus, Nm =
Nf

2m
is the number of coefficients

in corresponding subbands at the mth scale. In case of applying the WPD, Xk
m,i(n)

describes a sequence of wavelet packet coefficients (i.e. d2k
m,n and d2k+1

m,n ) derived at the

mth scale of the ith frame. As studied later on in chapter 4, the WPD is implemented

at a fixed decomposition scale m = 7 for an application, so m is discarded in the

notation, and superscript k is become supscript k to simplify the notation of wavelet

packet coefficients as Xk,i(n).
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Implementation of the wavelet transform by the way of multiresolution analysis is

applied successfully in image compression as JPEG 2000 [Gro00], and considered as

potential technique for speech coding and speech compression. It is known that the

WT is suitable to analyze speech signals which are considered as non-stationary sig-

nals. In addition to the MRA ability, wavelet shrinkage with plentiful mathematical

advantages has become a powerful and promising technique of removing noise for image

and speech signals. The decomposition and reconstruction of the signal can be imple-

mented efficiently by using convolutions with quadrature mirror filters in a pyramidal

algorithm [Mal89]. With the wavelet representation, there is no redundant information

because of the orthogonality of the wavelet basis. It is essential to select wavelet basis

with desired properties such as vanishing moments and compact support. Number of

vanishing moments P and compact support size of a wavelet basis ψ influent to the

sparsity of the wavelet representation which is essential to the performance of noise

removal and data compression.

If a wavelet function ψ that its Ψ(ω) is P times continuously differentiable at ω = 0,

it has at least P vanishing moments, while the converse statement is not true. So we

have a loose relationship between the smoothness or regularity of the wavelet functions

with the number of vanishing moments [Mal99]. If the analyzed signal x(l) is the sum

of a polynomial and some localized singularities, the wavelet with suitable order of van-

ishing moments will decompose the signal into two different parts clearly: the details

reflecting the singular components of the signal and the polynomial approximation.

Conversely, a wavelet with lower order leads to a interference of the approximation

into the details which results in worser ability of analyzing singularities [MH92]. In

other words, the wavelet kills all polynomials of degree smaller than number of vanish-

ing moments and results in a sparse representation for piecewise smooth signals. This

means if the analyzed signal x(l) is regular and ψ has enough number of vanishing

moments, then the wavelet coefficients dm,n at fine scale 2m are small. Of course, the

price to pay for having a large number of vanishing moments is that the basis func-

tions will be less localized. Some experimental research suggests that the number of

vanishing moments required depends heavily on the application. A more information

on the number of vanishing moments are presented in appendix A.

The wavelets having a compact support are useful in local analysis. Wavelets with

small support size are good because they can pick up isolated singularities and are
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fast to compute. Moreover, by reducing the support size, we can minimize the num-

ber of large coefficients which makes more sparse presentation of the analyzed signal.

Consequently, the narrowness in time domain results in a very low resolution in fre-

quency domain. Conversely, wavelets with large compact support are more regularity

or smoother due to high number of vanishing moments. By designing the synthesize

conjugate mirror filters h(n) with as few non-negligible coefficients as possible, the

support size of wavelet basis ψm,n(l) is minimized [Mal99].

Wavelet thresholding/shrinking is a fully promising tool to remove noise from an

observed noisy signal. The principle is based on thresholding or shrinking the wavelet

coefficients towards zero. Due to the decorrelation property of the DWT, the noise

is spread out over all wavelet coefficients. This means the DWT leads to a sparse

representation which allows to replace the noisy coefficients by zero. Hard and soft

thresholding are proposed by [DJ94] as the simple and effective denoising functions.

A modification of hard and soft thresholdings which provide a smoother function is

studied in [ZD97, ZL99]. A so-called wavelet firm shrinkage which generalize hard

and soft thresholding is proposed in [BG97]. There are many procedures to calculate

thresholds related to noise levels as minimax threshold proposed in [DJ98], universal

threshold [DJ94, Don95], or SURE (Stein’s unbiased risk estimator) threshold [DJ95].

1.3 Why wavelets for speech processing ?

Based on the MRA, a signal is decomposed into an approximation and details at vari-

ous scales. In other words, various information levels across successive resolutions can

be extracted by decomposing the original signal using a wavelet orthonormal basis. As

a conventional transform, the well-known short-time Fourier transform (STFT) is used

widely in mathematics and engineering. A limitation of the STFT is that, because a

single window is used for all frequencies, the resolution of the analysis is the same at

all locations in the time-frequency plane [VH92]. This limitation represents a handicap

in speech and audio signals since human hearing system uses a frequency-dependent

resolution. The DWT can solve this drawback with the rectangular tiling of the time-

frequency plane.

In mathematics, research on singularities and irregular structures is very neces-

sary because they often carry the most useful information in signals (e.g. transient,
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discontinuous, and non-stationary sounds). The greatest challenge is the selection of

appropriate techniques which are able to study irregularities of signal structures. Until

now, the Fourier transform was the main mathematical tool for analyzing singulari-

ties. However, the Fourier transform with sinusoidal waveforms extending over a fixed

window length provides only a description of the global regularity of signals without

well adapting to the localization of singularities in the time-frequency domain. This

motivates the study of the wavelet transform which can characterize the local regular-

ity of signals by decomposing signals into well-localized time-frequency components.

As proved in [MH92], the detection of all the singularities of the signal are based

on the local maxima property which is measured from the evolution across scales of

these local maxima. The detection of singularities with multiscale transforms has been

studied not only in mathematics but also in signal processing and application domains.

The flexible analysis in the time-frequency plane of the DWT in comparison with the

STFT [VH92, MH92] shows its advantages for speech processing. With Heisenberg’s

uncertainty principle, it is known that no transform can provide high resolution in both

time and frequency domains at the same time. The useful locality property is exploited

in this context. Because the wavelet basis functions are short waves and generated by

scaling from the mother wavelet, they are well-localized in time and scale domains.

This automatic behavior of wavelet decomposition is absolutely suitable for process-

ing of speech signals which requires high frequency resolution to analyze low-frequency

components (voiced sounds, formant frequencies), and high temporal resolution to ana-

lyze high-frequency components (mostly unvoiced sounds). This smart behavior of the

DWT is employed for auditory representations of acoustic signals [YWS92], speech cod-

ing [Lit98, CD99] using wavelet packet representation in the context of auditory mod-

eling, speech segmentation [TLS+94] and phonetic classification [CG05, PK04, PK05a].

In recent years, the wavelet shrinking approach to speech enhancement has been

developed rapidly, starting with the simple hard and soft thresholdings proposed in

[Don95]. Many improvements of wavelet thresholding to enhance speech signal have

been done as semisoft thresholding with selected threshold for unvoiced regions [SB97],

efficient hard and soft thresholdings [SMM02], smooth hard thresholding function based

on µ-law [SA01, CKYK02, PK05b]. In [LGG04], the combination of soft and hard

thresholding is applied to adapt with different properties of the speech signal. Mo-

tivated by lower speech distortion, wavelet thresholding/shrinking methods are inte-
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grated with other techniques such as the Teager energy operator and masked adaptive

threshold [BR01]. Critical-band wavelet decomposition is used with noise masking

threshold in [LW03], and perceptual wavelet packet decomposition (PWPD) which

simulates the critical bands of the psychoacoustic model is proposed in [JM03, CW04].

A blind adaptive filter of speech from noise is designed in the wavelet domain in [VG03].

Dealing with enhancement and feature extraction for robust ASR, several param-

eterization methods which are based on the DWT and wavelet packet decomposition

(WPD) have been proposed in [GT00, GG01]. More sophisticated shrinking func-

tions with better characteristics than soft and hard thresholding are optimized for

speech enhancement and speech recognition [KKH03]. The usage of wavelet-based

features extracted from the WPD leads to improvement of recognition rate compared

with the well-known conventional feature Mel-frequency cepstral coefficients (MFCC)

[SPH98, CKYK02, Kot04]. In addition to this approach, wavelet denoising is applied

as pre-processing stage before feature extraction to compensate environmental mis-

matches [BE97, FD03].

1.4 Outline of the thesis

Motivated by challenging topics of modern speech technology such as speech classifica-

tion, speech enhancement for hearing aids and noise reduction for speech recognition,

wavelet analysis with its technically powerful characteristics is exploited to develop

novel methods for improving the performance and robustness of the addressed sys-

tems. Analysis and design of such systems are discussed in detail in the following

chapters:

Time-scale features for phonetic classification

In chapter 2 some common methods of phonetic classification are reviewed by concen-

trating on the ways of extracting features and of learning classification models. Based

on the analysis of phonetic characteristics of voiced, unvoiced, silence, mixed-excitation,

voiced closure, and release of plosive sounds, the DWT is applied to extract time-scale

features which characterize the interesting phonetic classes. To learn the classifiers in

feature space, the feed-forward neural network and the Bayesian network are selected

for their potential ability for pattern recognition. The processes of designing, training

and testing of the classifiers based on wavelet features are discussed in detail. This
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study shows the effectiveness of the wavelet features compared with the baseline fea-

tures and opens an approach to the design of a robust phonetic classifier in the next

chapter.

Robust speech classifiers for adverse environments

Unlike the study in chapter 2, which is applied for noise-free speech signals, the ro-

bustness of speech classification against environmental noise is addressed in chapter

3. In detail, robust detection of speech/non-speech as well as classification of voiced/

unvoiced/ silence periods is developed to meet the demands of realistic environments.

The time-scale features proposed in chapter 2 are adjusted and further enhanced by the

non-linear Teager energy operator. Quantile filtering and slope tracking are designed

as two advanced methods for deriving adaptive decision threshold. The robustness of

the novel phonetic methods is proved by the evaluation on a speech database artificially

contaminated by different kinds of realistic noise. The results show better performance

compared with other methods. A further evaluation is made in the application domain

where a voice activity detection (VAD) is developed from the outputs of the phonetic

classifier and applied as pre-processing stage of a speaker verification system. An im-

provement of verification rate confirms the robustness and efficiency of the proposed

method in harsh environments.

Statistical wavelet filtering for speech enhancement

Besides the advantage of flexible time-frequency analysis which is employed for speech

classification, the powerful ability of noise removal by wavelet shrinking is exploited for

speech enhancement. In chapter 4, the demand of improving quality, acceptability and

intelligibility of noisy speech is addressed by a novel single-channel speech enhancement

method. Statistical wavelet filtering is proposed to eliminate musical noise as well as

to handle colored and non-stationary noise. The denoising process is done in the

wavelet domain by appyling the WPD on the noisy speech signal. The estimate of the

threshold relating to the noise level is implemented by the quantile filtering technique

over recursive buffers which results in a more accurate and adaptive threshold. Non-

stationary and non-white noise is handled by the nonlinear adaptive weighting functions

in time and frequency domains. The suppression rule is based on the smoothed hard

shrinking function with an adaptive factor to remove noise effectively while maintaining

the pleasantness of the processed speech signal. In addition to standard subjective tests,
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a comparison diagnostic test is proposed to obtain more specific insight from evaluation

studies of speech enhancement systems.

Noise Reduction For Robust Speech Recognition

Chapter 5 deals with robust automatic speech recognition (ASR) in adverse environ-

ments. The proposed noise reduction method in chapter 4 is employed as pre-processing

stage in the font-end unit. Thus, the quality of the recorded speech signal is enhanced

to ensure that proper information will be extracted by the feature extraction stage

after that, thereby increasing the recognition performance of the ASR system. The

proposed statistical wavelet filtering method is further optimized for achieving robust

word recognition performance by changing the shape of the frequency weighting func-

tion and estimating noise thresholds for critical subbands. By integrating the proposed

denoising process into the ASR training phase, the retrained models provide higher

recognition rates. As improving the speech recognition rate is not our only interest,

the study also investigates whether an increase in perceptual quality of a speech signal

leads to an increase in recognition rate of the ASR system or not. As a last study

issue, the need to employ noise reduction to compensate the mismatch between the

training and testing phases of the ASR system is examined by experiments in different

training/testing conditions which include complex noise from harsh environments.

Conclusions and perspectives

Chapter 6 summarizes the proposed approaches with more discussion and conclusions.

Finally, we address some open issues that should be studied further as well as possi-

ble applications of the proposed robust speech processing methodologies in the next

generation of modern speech technology.

1.5 Work contributions

The thesis mainly deals with application of wavelet analysis to a wide range of speech

applications such as speech classification, speech enhancement, and speech recognition.

The scientific contributions are discussed in the following.
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At the beginning of the doctoral research, a significant effort was spent for con-

structing phonetic classifiers. The goals were firstly to analyze acoustic-phonetic prop-

erties of interesting phonetic classes, and secondly to exploit advantageous character-

istics of wavelet analysis for extracting time-scale features which represent the corre-

sponding phonetic classes with high confidence. Finally methods from simple multi-

threshold decision models to modern pattern recognition methods were studied in or-

der to build the effective classifiers. This first work contributions were published in

[PK04, PK05a, PP06a]. Currently, we are developing an advanced phonetic classifier

by extracting a better time-scale feature set. The improved results are reported in a

submitted journal article [PP06b].

As a second contribution, a robust and low-complexity speech classifier was designed

and applied successfully as a pre-processing unit of a speaker verification system. By

considering the acoustic properties and spectrogram of noisy voiced and unvoiced seg-

ments, we extracted a single time-scale feature which is very robust against background

noise after enhancement by applying a hyperbolic tangent sigmoidal function and me-

dian filtering. As one of the significant inventions, the quantile filtering technique is

designed to estimate an adaptive decision threshold accurately. The experimental re-

sults showed that the classification performance is high and robust due to this effective

estimation. Its variant with adaptive quantile factor was used to design a robust voice

activity detector which is integrated as a pre-processing stage of the speaker verifica-

tion system. The improved verification rate of the system in a harsh environment that

simulates air traffic communication confirms its robustness. To meet delay and mem-

ory requirements of real-time applications, the slope tracking method was proposed to

classify phonetic classes almost online. Though this method has not been applied for

any real-time applications yet, we definitely believe that it is feasible and beneficial.

These achievements were reported in [PKW+06, PK06b, NPK07], and were recently

contributed as a part of a book chapter [NPHKon].

Combining the quantile filtering technic with optimal wavelet shrinkage to design a

novel speech enhancement algorithm - statistical wavelet filtering (SWF)- is considered

as a third contribution of the thesis. The superior performance obtained in subjective

tests proved its effectiveness in comparison with state-of-the-art single channel speech

enhancement methods operating in Fourier domain. Noise thresholds are estimated ac-

curately and adaptively for every frequency channel by quantile filtering applied over



14 1. Introduction

recursive buffers. A lot of effort was also invested in designing the nonlinear adaptive

weighting functions in both time and frequency domains to handle the non-stationary

and non-white noise effectively. By introducing the adaptive factor, the smoothed hard

shrinking gain function can remove noise effectively while maintaining the pleasantness

of the enhanced speech signal. As an additional contribution, we built the Comparison

Diagnostic Test to perfect the evaluation of speech quality. A detailed description and

application of the proposed system were published in [PK05b]. The application of SWF

in the denoising of an office meeting database helps to improve the performance of VAD

and direction of arrival estimation. These works, which were implemented for the MIS-

TRAL project [mis] are not presented in the thesis, but reported in [KPK+06, KPN06].

The final contribution is the optimization of the statistical wavelet filtering to en-

hance speech quality for speech recognition in adverse environments. The perceptual

SWF method was developed by applying full WPD and estimating of noise thresholds

at critical wavelet subbands. Besides a suitable frequency weighting function was de-

signed, the parameters of time-frequency weighting functions were turned to optimize

recognition performance. As presented in the thesis, the retrained speech recognizer

which employs the optimized SWF as pre-processing stage before front-end extrac-

tion provides almost equal word recognition rate compared with the baseline ETSI

advanced front-end for the car noise condition. The proposed system was applied in

the SNOW project [sno] to improve the performance of a mobile speech recognizer op-

erating in the Airbus maintenance factory. The very first results obtained by applying

the SWF and testing with the SNOW database was published in [RPK06]. With the

perceptual SWF method, latest achievements which were published in the final report

of the SNOW project [SNO06] show that our proposed algorithm is the best candidate

among others. This improved system will be described in an in preparation journal

article [PRK07].



Chapter 2

Time-scale features for phonetic

classification

2.1 Introduction

1 Automatic speech classification is crucial for different speech processing methods

and various speech applications. The performance of concatenative speech synthesis

may be improved by selecting proper smoothing strategies at concatenation points

[HB96]. Moreover, the discrimination between phonetic classes improves quality and

performance of data-driven speech synthesizers by adjusting non-uniform scaling fac-

tors of each phonetic class in the time-scale modification algorithm to get better

perceptual results [KK94, DJC03]. Some speech coding systems use phonetic clas-

sification to determine the optimal bit allocation for every different speech frame

[KAK93, ZWC97, O’S00]. In Internet telephony applications, the adaptive loss con-

cealment algorithm uses the voiced/unvoiced detector at the sender [San98]. This helps

the receiver to conceal the loss of information based on the similarity between the lost

segments and the adjacent segments. Besides, its application to real-time speech trans-

mission on the internet are proposed in [SCJ+02]. By using the phonetic classifier as a

pre-classification step, the phonetic alignment of huge databases can be implemented

faster, too.

The speech classification task has been studied in many articles by a variety of

methods since the 1980’s. In principle, the classification is performed by training a

model to learn differences of statistical distributions of the acoustic features between

1This chapter is based on materials published earlier in [PK04, PK05a, PK06a, PP06a, PP06b].
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different phonetic classes [AR76]. These features can be derived by three approaches:

• The first approach works in the time domain and uses statistical measurements.

The common features are the zero crossing rate, relative energy level, autocorre-

lation coefficients, etc. [Ked86, CHL89, LG99]. The calculation of these features

is quite simple but they may be damaged in adverse noise conditions.

• The second approach works in the frequency domain. Frequently used features

are the spectrum [ZSW97, YVH99], optimal filters [NS02], cepstrum pitch detec-

tion [AS99]. As reported, the frequency-based features which carry important

characteristics of the speech signal such as fundamental frequency and formants

help to increase the performance of speech classifiers and speech recognizers.

Mel frequency cepstral coefficients [XH02] which are standard features for speech

recognition are commonly used due to their high performance. The DWT is re-

cently applied for the phonetic classification task with promissing results [LE03].

• The third approach combines both time and frequency domains by considering

the changes in time of the spectrum such as spectral flux [SS97a]. The variation

of other features over time were used as smoothing on raw clasification as the

hangover scheme in [ETS03]. The 15ms/200ms rule in [Bra68] could be applied

for VAD.

Based on the extracted features, the classification can be made by simply applying

multi-threshold decision (MTD) classifier [PK04]. The operation of the MTD classi-

fier is based on comparison between observed features of the input speech frames and

fixed pre-determined thresholds. The best hard thresholds of the model are found by

experimental pattern classification. As an advanced approach, pattern recognition is

applied to train models of the feature space for every class statistically. Then the

likelihood of the observed feature with respect to the trained models is measured to

make the classifying decision. Since the development of the backpropagation learn-

ing algorithm [Mit97], feed-forward neural networks (FNNs) have been used widely in

pattern recognition. In particular, it has been applied for speech classification with

promising potential [MBB96, QH93, GCEJ91]. The usage of hidden Markov models

as a representation for phonetic classification and recognition is studied in [DS94].

Considered as an interesting survey, a comparison between Gaussian mixture models

(GMM) and FNN has been presented in [LCG93]. In [CG05], a relationship between

wavelets and filter banks is employed to design filter banks for feature extraction and

classification is done by training GMMs. Recently, application of Bayesian networks
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(BNs) in classification task has been studied as another approach. Generative classi-

fiers learn a model of the joint probability of the features and the corresponding class

label and perform predictions by using Bayes’ rule. The usual approach for learning

a generative model is maximum likelihood (ML) estimation [Pea88]. Discriminative

classifiers directly model the class posterior probability. Maximizing the conditional

likelihood (CL) [GZ02] of the class given the attributes results in optimizing the ability

to correctly predict the class. Discriminatively trained Bayesian networks proposed in

[PB06] achieve promising results in general classification domains. Though they have

not been used for phonetic classification so far.

In this chapter, phonetic classifiers will be designed to segment the input speech sig-

nal into phonetic groups which are defined as homogeneous sequences of speech sounds

such as silence (S), voiced (V), unvoiced (U), mixed excitation (M) classes, and partially

the plosive (P) class by detecting the voiced closure interval (VC) and transient (T)

frames. The approach of multi-domain features is employed. Time-scale features are

extracted by applying the DWT to every overlapped speech frame multiplied by a win-

dow. Phonetic decisions are made by employing different classifiers such as feedforward

neural networks and Bayesian networks. To achieve robust classification, two FNNs

are trained to learn the optimal thresholds. Two FNNs with two layers each operate

on input features extracted from speech frames by DWT and statistical measurements

in order to classify these frames as transient, voiced, unvoiced and mixed excitation

classes. After that, a linear classifier for detecting the silence and voiced closure interval

classes are jointly combined with the trained FNNs to build an efficient multi-threshold

FNN classifier. As another method to obtain statistical classifiers, both discriminative

parameter learning by optimizing the CL and generative parameter training (ML es-

timation) on both discriminatively and generatively structured Bayesian networks are

applied. The naive Bayes (NB) and the tree augmented naive Bayes (TAN) classifiers

are used. The proposed classification systems and some other methods are evaluated

with the TIMIT database. The extracted wavelet feature sets are compared with the

baseline MFCC in terms of classification rates. Gender dependent and gender indepen-

dent classifiers are studied to assess the impact of gender dependency to classification

rate. Further discussion on the effectiveness and limitations of each system is given

finally.

The chapter is organized as follows: the next section describes the speech charac-
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teristics and the application of the DWT for the speech classification task. The two

following sections show the processes of designing, training and testing of two classifiers

based on the FNN and the BN. The evaluations and discussion are reported after that,

and the final section presents a conclusion and perspectives for future research.

2.2 Time-scale features for speech classification

2.2.1 Acoustic-phonetic properties

Speech is the audible representation of the language system and composed of a sequence

of sounds. In order to understand how sound is generated, the study of acoustic

properties is necessary [OGC93]. One can classify speech signals into five acoustic

classes:

• Silence shows up as a blank section in spectrograms with very low amplitude

levels.

• Periodic sound refers to the repeating structure of the speech wave caused by the

release of pressure pulses at regular intervals. Each pulse has approximately the

same amplitude, and the same time period.

• Noise-like sound refers to the irregular structure of the pressure wave caused by

turbulent airflow. The spectrogram appears as random over a wide range of

frequencies.

• Mixed-excitation sound is created from both sources of periodic and noise-like

pressure waves simultaneously.

• Transient sound is formed when a high-pressure jet of air releases into lower

pressure areas, it creates a single shock-wave that travels outwards.

In this research, we want to classify five types of phonetic groups which are homo-

geneous frame sequences having the same phonetic characteristics as classified in Fig.

2.1. We do not classify other non-continuant such as affricates. We consider a stop

as a group consisting of all parts of a plosive: closure interval, transient and release.

Besides the silence group, other phonetic groups are classified as follows:

• The voiced group includes vowels, semivowels, diphthongs and nasals which have

repetitive time-domain structure and low-frequency voiced striations in the spec-

trogram.
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Figure 2.1: Classification diagram for phonetic groups.

• The unvoiced group includes unvoiced fricatives and release part of plosives which

have irregular time-domain structure and high frequencies in the spectrogram

• The mixed group includes voiced and glottal fricatives which have both periodic

and noise-like properties.

• The stop group contains closure intervals, transient and releases. There are voiced

plosives with voiced closure and unvoiced plosives that is closure is similar with

silence. Only voiced closure and transient frames are detected in this research.

2.2.2 Voiced/unvoiced/mixed-excitation/silence classification

Depending on the phonetic properties of the input speech frames, the power distribution

in different subbands varies. As a primitive analysis, DWT at the 1st decomposition

scale is applied on voiced, unvoiced, silence and mixed-excitation speech frames. We

observe that the power of wavelet coefficients derived from voiced frames is mostly

contained in the approximation part and much less in the detail part as depicted in

Fig. 2.2. This is reversed for the unvoiced frames as shown in Fig. 2.3. A relatively

equal power distribution occurs for the mixed-excitation and silence frames.

An analysis on intra-scale relationship is done by considering the power variation

of different details at different scales. The power of detail coefficients extracted from

voiced frames increases from scale 1 to scale 4 as shown in Fig. 2.4 (b). However, this

power order occurs vice versa for unvoiced frames which is depicted in Fig. 2.5 (b).

There is almost no power change over various scales for mixed-excitation and silence

frames. Fig. 2.6 shows the power variation of the detail coefficients which are derived

from a speech segment consisting of a sequence of voiced-silence-unvoiced frames. These
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Figure 2.2: (a) Waveform of a voiced segment, (b) Approximation coefficients a1,n

and detail coefficients d1,n derived from the DWT of the segment at the 1st scale, (c)

a1,n and d1,n in time-scale plane.

behaviors are similar with spectral tilts of the voiced and unvoiced segments as shown

in Fig. 2.4 (c) and Fig. 2.5 (c). By comparing the frame-based short-term power

values as well, mixed-excitation frames can be distinguished from silence frames. So,

these properties can be used in the specific representation to distinguish between voiced

frames, unvoiced frames, mixed-excitation frames and silence frames.

2.2.3 Transient detection

From the observation of the first three levels of the wavelet analysis in Fig. 2.6, we can

also apply the power variation of detail coefficients for detecting transient frames when

considering two neighboring frames. A transient frame always has higher absolute

power in its details than a closure interval frame which may be silence or periodic.

This characteristic is used to define the closure-transient detail power ratio and it is

combined with statistical features to detect transient frames.

In addition to wavelet features, statistical measures in the time domain are further
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Figure 2.3: (a) Waveform of an unvoiced segment, (b) Approximation coefficients a1,n

and detail coefficients d1,n derived from the DWT of the segment at the 1st scale, (c)

a1,n and d1,n in time-scale plane.

applied to provide more representative information of every phonetic class. Besides the

short-term energy feature, the zero crossing rate (ZCR) which is counted by the number

of sign changes between successive samples in a speech frame is also exploited. Clearly,

because voiced speech does not change so fast, unvoiced speech always has higher ZCR

than voiced speech [Ked86], and this relation occurs between voiced speech and silence,

too.

2.2.4 Feature extraction

By applying the DWT at the scale M = 3 on each ith speech frame of 16ms frame length

and 4ms frame rate, we obtain one approximation subband and three detail subbands

which form the sequence of wavelet coefficients X3,i(n) = {a3,p, d3,p, d2,p, d1,p}, where

m = 3, 2, 1. The numbers of coefficients in the approximation subband and the three

following detail subbands are denoted as
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Figure 2.4: (a) Waveform of a voiced frame, (b) Power variation over different scales,

(c) Spectral tilt illustrated by DFT.
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N3 =

Nf

8
, N3 =

Nf

8
, N2 =

Nf

4
, N1 =

Nf

2

}
, respectively. The set of features is cal-

culated as follows:

• Wavelet power ratio (WPR) is the ratio between the power of the approxi-

mation coefficients at the 1st scale and the power of all wavelet coefficients:

WPR(i) =
2N3 +N2 +N1

2N3 +N2

∑N1

n=1X
2
3,i(n)

∑N1

n=1X
2
3,i(n) +

∑Nf

n=N1+1X
2
3,i(n)

(2.1)

• The power variation of detail coefficient (PVD) is defined by the differ-

ence between the power of the 1st and the 3rd detail coefficients:

PVD(i) =
1

N1

Nf∑

n=N1+1

X2
3,i(n) − 1

N3

N2∑

n=N3+1

X2
3,i(n) (2.2)

• Short-term logarithmic average energy (SAE) is calculated for every ith
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Figure 2.5: (a) Waveform of an unvoiced frame, (b) Power variation over different

scales, (c) Spectral tilt illustrated by DFT.

speech frame :

SAE(i) = 10 log



 1

Nf

·
Nf∑

l=1

x(l)2



 (2.3)

• Zero crossing rate (ZCR) is the number of sign changes of successive samples

in ith speech frame:

ZCR(i) =

Nf∑

l=1

|sgn(x(l)) − sgn(x(l − 1))| (2.4)

• The closure interval-transient detail ratio (CTDR) is the ratio of the

detail energy at the same decomposed scale, computed for the current ith frame

and the previous (i− 1)th frame as shown in Fig. 2.7:

CTDRm(i) =

∑Nm−1

n=Nm+1X
2
3,i(n)

∑Nm−1

n=Nm+1X
2
3,i−1(n)

(2.5)
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Figure 2.6: (a) A speech segment consisting of voiced, unvoiced and silence frames,

(b) Power variation of detail coefficients.

where m = 1, · · · ,M , and M = 3 is the decomposition scale. When m = 1, the

upper index becomes Nm−1 = N0 ≡ Nf .

In total, seven features are estimated for the classification task. The different

behavior of the feature values with respect to different phonetic classes of the speech

frames is shown in Fig. 2.8, which visualizes the evolution of the first 4 features (the

mixed sounds and their features are not shown in this figure). We see that the PVD

values are larger than zero for unvoiced frames but less or equal zero for voiced and

silence frames. Besides, the energy of the voiced frames is often higher than the one of

unvoiced frames, and both of them are higher than that of silence frames. Moreover,

the values of WPR are low while the ZCR values are high for unvoiced frames in

comparison with voiced and silence frames. The ZCR values are smoothed by 3-point

median filtering to reduce the fluctuations of continuous speech. From the analysis of

the DWT of speech frames for different phonetic classes, we see that silence, voiced,

unvoiced and mixed-excitation groups can be classified directly by measuring the listed
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Figure 2.7: (a) Closure interval frames followed by a transient and release frames, (b)

Detail coefficients decomposed at 3 scales.

features. Fig. 2.9 shows CTDR peaks detected at different decomposed scales which

correspond to the transient frames of stops. To detect a plosive group, we need to

combine the classificatie results of voiced/unvoiced closure frames, a transient frame,

and unvoiced frames by an interpolator which will be explained in the next section.

2.3 Joint neural network classifier

A novel and efficient phonetic classifier is developed by jointly combining the FNNs

and a multi-threshold classifier. As reported in [LCG93] and other studies [MBB96,

QH93, GCEJ91], application of neural networks helps to improve the performance of

the classifier. Two FNNs operate on input features to classify the input frames as

voiced, unvoiced, mixed excitation and transient frames, respectively. Silence frames

and voiced closure interval frames are detected by employing one part of the MTD clas-

sifier proposed in [PK04]. While the optimal thresholds which are found automatically
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Figure 2.8: (a) A speech utterance “had your dark suit” and its phonetic classes

V/VC/S/UV/T, (b) Evolution of the extracted features and segmentation of

phonetic regions.

by training FNNs, can improve the performance of the joint classifier, its complexity is

lowered due to the simplicity of the linear thresholds derived from the MTD classifier.

2.3.1 Network initialization

A supervised learning algorithm is used to train the FNNs (depicted in Fig. 2.10). So,

the network weights and biases are adjusted to minimize the mean-square error between

the network outputs and real target outputs. To detect transient frames, a first two-

layer network with 5-dimensional input vector and 1-dimensional output is trained. A

second network is configured with 4-dimensional input vector and 3-dimensional output

to perform the three-way classification: voiced, mixed excitation, and unvoiced frames.

The targets are labeled with 1 for the desired class and 0 for the other classes. As

a preprocessing step, all elements of the input and output vectors are normalized to

get zero mean and unity standard deviation over the training set. To compute error
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Figure 2.9: (a) Spectrogram of the same speech utterance, (b) The closure

interval-transient detail ratio CTDR3, (c) CTDR2, (d) CTDR1.

percentages, the outputs will be postprocessed to convert them back into the same

units that were used for the original target data. The feedforward networks use log-

sigmoid transfer functions for all hidden units in their hidden layer and linear transfer

functions at the output layer. Biases and weights of each unit are initialized to very

small random values.

2.3.2 Network learning

A weight decay heuristic or regularization is used to avoid overfitting in the backprop-

agation learning algorithm. This approach results in smaller weights and biases and

forces the network response to be smoother over its complex decision surface [Mit97].

In detail, the weights are decreased by some small factor during each iteration. This

means that the standard cost function is modified by adding a penalty term corre-
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Figure 2.10: Feedforward neural network configuration with N inputs xk, M outputs

oi, and M targets ti, wj are the weighting factors between units of different layers.

sponding to the sum of squares of the network weights:

Ereg = γ
1

N

N∑

i=1

(ti − oi)
2 + (1 − γ)

1

M

M∑

j=1

(wj)
2 (2.6)

where γ is a performance ratio, wj are all weights of the NN, and ti and oi are the output

and target values, respectively. Some common parameters of the learning algorithms

are set up to initialize the neural network configurations as follows:

• The learning rate lr = 0.05.

• The number of iterations epochs = 1000.

• The training performance goal = 1e− 5

There are several learning algorithms for learning the neural network such as: mo-

mentum, variable learning rate, Levenberg-Marquardt and BFGS Quasi-Newton algo-

rithms. Their characteristics [DB02] are explained briefly as follows:

• Adding momentum: the weight update on the current iteration depends partially

on the update that occurred during the last iteration. This helps the gradient

descent-based algorithm pass some local minima or flat region in the error surface.

• Variable learning rate: the performance of the steepest descent algorithm can be

improved if the learning rate is changed during the training process. An adaptive

learning rate algorithm tries to keep the learning step size as large as possible

while maintaining stability.
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• Levenberg-Marquardt and BFGS Quasi-Newton algorithms are improvements

over the steepest descent algorithms and generally achieve faster convergence.

2.3.3 Selection of parameters and structure

It is difficult to determine the optimum value for the performance ratio γ and the

number of hidden units nH which result in overfitting or underfitting. The best values

can be chosen experimentally by a procedure proposed in [PK05a]. By varying the

performance ratio γ and number of hidden units nH over the ranges [0.3, 0.35, ..., 0.8]

and [5, 10, ..., 140], respectively, several experiments were implemented to select the best

parameters and structure. The optimal values will be the ones for which the sum of

training and testing error rates is smallest. The datasets containing the extracted time-

scale features used for learning the network structure are constructed from the dialect

speaking region 1 of the TIMIT database [GLF+93]. There are 110 utterances uttered

by four female speaker and seven male speaker are collected separately to investigate

the gender-dependency of the phonetic classifiers. Another dataset containing both

genders is used to design a gender-independent phonetic classifier. Each dataset is

divided into 70% for training and 30% for testing.

Before finding the optimal parameters and structure of the FNNs, the investigation

of selecting the best learning algorithm is done. By fixing the performance ratio γ = 0.5

and varying number of hidden units nH over the ranges [5, 10, ..., 140], four listed

learning algorithms are applied to train the classifiers. For each dataset, the results

of the training phase shows that the Levenberg - Marquardt (LM) algorithm generally

gives the highest network performance. Fig. 2.11 shows the changes of classification

performance obtained from every learning algorithm over the defined range for the

number of hidden units nH for the training dataset spoken by female speakers. For

this learning algorithm, the optimal choices of the performance ratio γ and the number

of hidden units nH are found out by trying many different combinations of γ and nH

from the defined ranges. Figure 2.12 shows the performance error rates derived from

two different combinations of γ and nH for the training and testing female datasets.

The best combinations which provide the lowest error percentage on the training and

test sets of the one-class FNN classifier and of the three-classes FNN classifier are

presented in Table 2.1. These configuration will be used for evaluation of the designed

classifiers in section 2.5.
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Figure 2.11: Performance of the learning algorithms at γ = 0.5.

Table 2.1: Optimal choices for the performance ratio and the number of hidden units.

Gender Female Male Mixed

Parameters γ nH γ nH γ nH

Neural network

One-class FNN 0.75 60 0.55 55 0.55 70

Three-classes NN 0.40 100 0.50 125 0.65 110

2.3.4 Joint classifier

The MTD classifier proposed in [PK04] considers all seven input features to classify

every speech frame into different phonetic classes. It works by comparing determined

thresholds with the extracted features. Based on this comparison, the classification de-

cision is carried out. The hard thresholds which are employed by the model are chosen

via experimental pattern classification which is described in more detail in appendix B.

Because the fixed thresholds had been optimized experimentally for a specific data set,

they are not robust when applied for other databases recorded in different conditions.
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Figure 2.12: The best performance ratios γ for LM algorithm.

That is why the FNN is employed as well. However, the characteristics of the silence

and voiced closure interval classes are quite simple and can be detected accurately by

applying the multi-threshold decision classifier. This property certainly allows to lower

the required number of inputs and outputs of the FNNs and, thereby to increase the

classification performance of the network classifiers. Thus, to exploit the simplicity of

the MTD classifier and the optimality of FNNs, a joint phonetic classifier is proposed

with the following scheme:

The algorithm for classification into different phonetic groups is implemented in

four sequential steps as follows:

• First, silence and voiced closure interval frames are detected by a linear classi-

fier which is based on the comparison between extracted feature values and pre-

determined hard thresholds. The linear classifier is one of the modules of the MTD

classifier. A procedure for designing the MTD and a flow chart of the linear classifier

are described in appendix B.

• Second, transient (T ) frames are detected by considering frames which immedi-
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Figure 2.13: Block scheme of combined classifier.

ately follow silence or voiced closure interval frames (VC). Five parameters (i.e.

WPR, ZCR, CTDR1, CTDR2, and CTDR3) are computed for these frames and

classified by the first NN. The network distinguishes between transient frames and

other frames. Then, all silence and voiced closure interval frames occurring before

transient frames are marked as closure interval frames.

• Third, four parameters (i.e. WPR, SAE, ZCR and PVD) of every not yet classi-

fied frame are calculated to build the input vectors for the second NN. The three

classes voiced, unvoiced and mixed-excitation are recognized based on the output

values of the second neural network.

• Finally, an interpolation method relying on phonemic features is implemented to

determine the temporal boundary of plosives which are formed by closure interval

+ transient + release frames (unvoiced frames following a transient frame). The

operation of the interpolation method relies on phonemic features and the sequential

structure of speech sounds in American English. Then, some remaining incorrect

decisions are repaired by a smoothing method based on the sequential consistency

of speech sounds. For example: VVSVV → VVVVV, VVUVV → VVVVV.

2.4 Bayesian network classifier

2 In this section, the application of Bayesian networks for the phonetic classifica-

tion task is studied. A Bayesian network [Pea88] B = 〈G,Θ〉 is a directed acyclic

2 Thanks to F. Pernkopf for designing the Bayesian classifiers and assisting the text material

published in [PP06a].
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graph G = (Z,E) consisting of a set of nodes Z and a set of directed edges E =
{
EZi,Zj

, EZi,Zk
, . . .

}
connecting the nodes where EZi,Zj

is an edge from Zi to Zj. This

graph represents factorization properties of the distribution of a set of random variables

Z = {C,X1, . . . , XN} = {Z1, . . . , ZN+1}, where each variable in Z has values denoted

by lower case letters {c, x1, . . . , xN}. We use boldface capital letters, e.g. Z, to denote

a set of random variables and correspondingly boldface lower-case letters denote a set

of instantiations (values). The random variable C ∈ {1, . . . , |C|} represents the classes,

|C| is the cardinality of C, X1:N = {X1, . . . , XN} denote the set of random variables

of the N attributes of the classifier. Each graph node represents a random variable,

while the lack of edges specifies independences. Specifically, in a Bayesian network

each node is independent of its non-descendants given its parents. These conditional

independence relationships reduce both the number of parameters and the required

computational effort. The symbol Θ represents the set of parameters which quantify

the network. Each node Zj is represented as a local conditional probability distribution

given its parents ZΠj
. The joint probability distribution of the network is determined

by the local conditional probability distributions as PΘ (Z) =
∏N+1

j=1 PΘ

(
Zj|ZΠj

)
.

2.4.1 Classifier structures

The naive Bayes (NB) and tree augmented naive (TAN) structures are used in our

research. For TAN structures we have to learn a 1-tree. The NB network assumes

that all the attributes are conditionally independent given the class label [FGG97].

The structure of the naive Bayes classifier is illustrated in Figure 2.14a. In order to

correct some of the limitations of the NB classifier, Friedman et al. [FGG97] introduced

the TAN classifier. A TAN is based on structural augmentations of the NB network,

where additional edges are added between attributes in order to relax some of the most

flagrant conditional independence properties of NB.

2.4.2 Network learning

We apply both generative and discriminative parameter learning. The generative pa-

rameter learning which is based on ML estimation [Pea88] to maximize the likelihood

function:

LL (B|S) =
M∑

m=1

logPΘ (Z = zm) (2.7)

with a fixed structure of B, S is the data set containing M samples. Discriminative

parameter learning presented in [GZ02] tries to optimize the conditional likelihood
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Figure 2.14: Bayesian Network: (a) NB, (b) TAN [PP06a].

(CL):

CLL (B|S) =

M∑

m=1

logPΘ (C = cm|X1:N = xm1:N ) (2.8)

For learning structures of the Bayes networks, in the first approach, we employ gen-

erative structure learning where the conditional mutual information (CMI) I (Xi;Xj|C)

between the attributes given the class variable is used as score. Friedman et al. [FGG97]

give an algorithm for constructing a TAN network using this measure. In the second

approach, we use an order-based greedy search heuristic, in fact order mutual informa-

tion (OMI) heuristic, for efficient learning of the discriminative structure of a Bayesian

network classifier which is proposed by Pernkopf at al. [PB06]. It consists of two steps:

• First establish an ordering of nodes X1:N
≺ =

{
X1

≺, X
2
≺, . . . , X

N
≺

}

• Second select the parent of Xj
≺ ∈ X1:j−1

≺ by maximizing the classification rate.
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2.5 Evaluation and discussions

2.5.1 Data setup

The speech data used to build the experimental datasets are general data including

transition frames between different classes extracted from dialect speaking region 4

(DR4) of the TIMIT database [GLF+93] which has a balance distribution between the

number of male and female speakers. All of the speech sounds were digitized at a

sampling rate of 20 kHz with an anti-aliasing filter at 10 kHz, then downsampled to

Fs=16kHz. The data have been split into 2 mutually exclusive subsets of D ∈ {S1,S2}
where the size of the training data S1 is 70% and of the test data S2 is 30% of D.

Throughout the experiments, we use exactly the same data partitioning. The dialect

region 4 consists of 16 male and 16 female speakers, 320 utterances, and 121629 frames

in total. We perform classification experiments on data of male speakers (Ma), female

speakers (Fe), and both (Ma+Fe) genders. Besides the proposed features, baseline fea-

tures, i.e. 12 MFCCs + Log-energy are used for comparison. The values of attributes

in the data sets are continuous.

The distributions of six phonetic classes V/UV/S/M/VC/T which are extracted

from the transcriptions of the DR4, TIMIT database are 20.9%, 54.66%, 12.26%, 2.74%,

6.08%, 3.36%, respectively. The performance of the proposed classifiers is assessed by

several measurements. We see that silence, voiced, unvoiced and mixed-excitation

classes are evaluated directly at the outputs of the linear or non-linear threshold classi-

fiers. As discussed at the end of the section 2.2, plosive class consists of voiced closure

interval or unvoiced closure interval frames with transient frame and release frames.

So, its performance can be assessed indirectly via the classification rate of the VC class

and the T class, or directly at the output of the interpolator in section 2.3.4 which is

based on phoneme structure.

2.5.2 Performance of joint classifier

The configurations of the parameters and structure of the neural networks which are

reported in section 2.3 are re-used to train and test the joint classifiers with the current

datasets of dialect speaking region 4. Because these configurations were experimen-

tally optimized for specific dataset, some other configurations are also tried in this

experiment. The combined linear classifier is the same as designed in [PK05a].

In order to compare the performance of time-scale features with MFCC features,
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Table 2.2: Joint neural networks classifier using time-scale features.

Experiments No. 1 No. 2 No. 3

Parameters γ nH γ nH γ nH

One-class NN 0.55 70 0.55 55 0.75 60

Three-class NN 0.65 110 0.50 125 0.40 100

Data set Features

Ma+Fe TSF 83.02 ± 0.20 82.93 ± 0.20 81.87 ± 0.20

Ma TSF 83.76 ± 0.27 83.67 ± 0.27 82.23 ± 0.28

Fe TSF 80.97 ± 0.29 79.84 ± 0.30 81.04 ± 0.29

Table 2.3: Neural network classifier using MFCC features.

Experiments No. 1 No. 2 No. 3

Parameters γ nH γ nH γ nH

0.50 100 0.5 200 0.5 400

Data set Features

Ma+Fe MFCC 81.40 ± 0.20 82.78 ± 0.20 80.24 ± 0.21

Ma MFCC 84.41 ± 0.27 83.19 ± 0.28 83.27 ± 0.28

Fe MFCC 79.26 ± 0.30 82.85 ± 0.28 80.13 ± 0.30

a two-layer FNN classifier which has 13 inputs and 6 outputs is trained from MFCC

features. We repeat the procedure in section 2.3 to find out several good configurations

for this FNN classifier. From our observation, it seems that the best performance ratio

is around value of 0.5. Thus, we fix the performance ratio at γ = 0.5 and only vary

the number of hidden units. Table 2.2 and table 2.3 present the average classification

rates [%] derived from each three different configurations of parameters and structures

of the neural networks using time-scale features (TSF) and MFCC features. Because

the distributions of the six phonetic classes are not the same, the average classification

rates is calculated as a ratio between the sum over all numbers of true acceptance

frames and total number of tested frames. The claculation of standard deviation is

based on evaluating hypothese that error rate is a random variable which obeys the

Binomial distribution [Mit97]. The detailed explanation and formular are presented in

appendix C.

With the observed results, we see that the usage of TSF provides slightly lower
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classification rates than the usage of the MFCC features for Ma and Fe databases,

while higher classification rates are obtained in case of Ma+Fe database. However,

for TSF we used only 7 features compared to 13 MFCC features, that may lead to

the simpler classifier. In comparison with the MTD classifier, the joint neural network

improves significantly the average classification rates for three data sets Ma+Fe, Ma

and Fe given as 83.02, 83.67 and 81.04 [%] compared to 54.32, 57.24 and 48.17 [%]

of the MTD. The classification performance of the MTD classifier is rather low be-

cause its hard thresholds were manually optimized for another smaller data set. With

the optimization constrained to a specific limited data set and the usage of re-labeled

transcriptions at the acoustic level, high classification rates were originally achieved in

[PK04], but they are now known to not generate well. This observation also implies

that the MTD classifier suffers from the overfitting problem which is a consequence

from its careful manual training.

Table 2.4: Confusion matrix in [%] for all six classes derived from joint FNN using

time-scale features, for mixed data set.
Assignments V UV S M VC T

Transcriptions

V 84.63±0.58 4.07±0.32 3.64±0.30 0.69±0.13 2.16±0.24 4.81±0.35

UV 0.95±0.10 94.33±0.23 0.87±0.09 1.16±0.11 1.78±0.13 0.91±0.10

S 5.83±0.50 4.16±0.42 80.02±0.85 0.58±0.16 9.14±0.61 0.27±0.11

M 16.58±1.66 11.04±1.40 13.89±1.55 42.07±2.21 13.62±1.54 2.80±0.74

VC 11.02±0.94 26.82±1.33 25.24±1.30 1.02±0.30 34.77±1.43 1.13±0.32

T 29.52±1.84 21.47±1.66 2.29±0.60 1.03±0.41 2.98±0.69 42.72±2.00

Table 2.5: Confusion matrix in [%] for all six classes derived from FNN using MFCC,

for mixed data set.
Assignments V UV S M VC T

Transcriptions

V 83.22±0.61 4.34±0.33 3.87±0.31 1.33±0.19 2.32±0.24 4.92±0.35

UV 0.87±0.09 93.86±0.24 1.24±0.11 1.20±0.11 1.28±0.11 1.55±0.12

S 5.65±0.49 4.41±0.43 79.12±0.86 0.66±0.17 9.81±0.63 0.35±0.12

M 16.98±1.68 11.42±1.42 12.84±1.50 40.95±2.20 13.88±1.55 3.93±0.87

VC 11.71±0.97 25.03±1.30 24.42±1.29 1.23±0.33 36.39±1.44 1.22±0.33

T 27.17±1.80 19.02±1.59 2.39±0.62 0.88±0.38 2.24±0.60 43.30±2.00

The confusion matrices show the classification performance of each phonetic class.

The results in percentage obtained from evaluating the joint classifier using time-scale
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features and the neural network using MFCC features on the mixed (male and female)

data set are reported in Table 2.4 and Table 2.5. The classification rates of the voiced,

unvoiced and silence classes are higher than the rates of the remaining classes. As

expected, the application of wavelet power distributions according to section 2.2.2 re-

sults in these interesting rates. This results from the flexibility of having short basis

functions to analyze high-frequency speech components while long ones are applied on

low-frequency speech components of the DWT. The mixed-excitation class has lower

classification rates because it consists of acoustic properties of both voiced and un-

voiced sounds. This makes it more dfficult to detect the class. As reported in Table 2.4

and Table 2.5, the classification rates of the transient class derived from the TSF is

a little lower than the ones obtained by the MFCC features. By analyzing the classi-

fication outputs, we see that sometimes double transient frames are detected from a

single plosive. This may come from the use of too long wavelet basis (dB20) with high

number of vanishing moments to obtain good separation between voiced and unvoiced

sounds.

Based on the classification performance of the voiced closure interval class and the

transient class, the plosive detection rate can be calculated by applying the interpola-

tion rule in section 2.3.4. With the designed joint neural network classifier, the plosive

detection rates are 37.72, 41.86 and 40.17 [%] for the Ma+Fe, Ma and Fe data sets,

respectively. By analyzing the errors, we observed that many misdetected plosives do

not have a perfect acoustic properties as they would be expected while the measure of

detection rates is based on the transcriptions performed manually by phoneticians. The

same observation was reported by [NS02] in detail. As analyzed, the deviations may

come from individual speaker characteristic and unsuitable phonetic labels. Speakers

with high mis-classification rates have stop consonants that are always weakly visible

in the speech signal.

From the confusion matrices, the recall (Re) and precision (Pr) measures which

represent the classification rate and accuracy of the classifiers can be calculated as:

Re =
TA

TA+ FR
, Pr =

TA

TA+ FA
, (2.9)

where TA, FR and FA is the number of true acceptance, false rejection and false

acceptance frames, respectively, derived from the confusion matrices (in number of

frames rather than %). The measures are illustrated in table 2.6. In most cases, the

precisions of every class are quite balance with the recalls with the average difference
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is about 3%. The unvoiced class has the highest recall and precision scores obtained

by all classifiers. It is interesting that the accuracy of the mixed-excitation, voiced

closure, and transient classes are better than their detection rates. This means there

are lower probabilities of introducing inserted frames into these three classes.

Table 2.6: Recall and precision measured on mixed data set for all six classes derived

from joint FNN using time-scale features and MFCC features.

Classes V UV S M VC T

Measures Features

Re TSF 84.63 94.33 80.02 42.07 34.77 42.72

Pr TSF 84.95 92.86 77.42 72.18 42.53 47.24

Re MFCC 83.22 93.86 79.12 40.95 36.39 43.30

Pr MFCC 85.12 91.11 76.34 58.38 44.79 36.22

2.5.3 Performance of the Bayesian network

We apply both discriminative parameter learning by optimizing the CL [GZ02] and

generative parameter training (ML estimation) [Pea88] on both discriminatively (TAN-

OMI) and generatively (TAN-CMI) structured Bayesian networks. We use the NB and

the TAN classifier topology. Since the classifiers are constructed for multinomial at-

tributes, the features have been discretized using the algorithm in [FI93] where the

codebook is produced using only the training data. Zero probabilities in the condi-

tional probability tables of the Bayesian networks are replaced with a small epsilon

ε = 0.00001. Discriminative parameter learning is currently implemented in a naive

way. We either perform 15 iterations of the gradient descent algorithm or prematurely

terminate the parameter optimization in case of convergence.

Table 2.7: Bayesian network using time-scale features.
Classifier NB TAN TAN

Struct. Learn. - CMI OMI

Param. Learn. ML CL ML CL ML CL

Data set

Ma+Fe 81.54 ± 0.20 81.63 ± 0.20 83.12 ± 0.20 83.15 ± 0.20 83.47 ± 0.19 83.49 ± 0.19

Ma 82.50 ± 0.28 82.60 ± 0.28 84.05 ± 0.27 84.06 ± 0.27 84.72 ± 0.27 84.73 ± 0.27

Fe 81.14 ± 0.29 81.20 ± 0.29 82.52 ± 0.28 82.58 ± 0.28 82.70 ± 0.28 82.69 ± 0.28
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Table 2.8: Bayesian network using MFCC features.
Classifier NB TAN TAN

Struct. Learn. - CMI OMI

Param. Learn. ML CL ML CL ML CL

Data set

Ma+Fe 82.08 ± 0.20 82.16 ± 0.20 82.89 ± 0.20 82.91 ± 0.20 83.39 ± 0.19 83.40 ± 0.19

Ma 82.35 ± 0.28 82.48 ± 0.28 83.87 ± 0.27 83.88 ± 0.27 84.28 ± 0.27 84.31 ± 0.27

Fe 81.99 ± 0.28 82.05 ± 0.28 82.63 ± 0.28 82.63 ± 0.28 83.03 ± 0.28 83.06 ± 0.28

Table 2.7 and table 2.8 present the classification rates [%] obtained from all differ-

ent generative/discriminative classifiers for 6 phonetic classes using TSF features and

MFCC features. As reported, the TAN classifier using discriminative structure and

parameter learning (TAN-OMI-CL) outperforms the generative approaches for both

feature sets by a small margin. However, the evaluation of the classification rate in

the OMI algorithm is computationally expensive. Discriminative parameter learning

(CL) produces mostly a better classification performance than generative parameter

learning (ML).

In general, the obtained classification rates are higher than the results derived from

the FNN classifiers. The improvement may come from the abilities of learning struc-

ture of BN by the generative structure learning [FGG97] and discriminative struc-

ture learning [PB06] algorithms. These automatic learning methods yields a better

structure than the experimental structure selection method described in section 2.3.2.

However, the use of neural networks requires much lower computational effort while

providing approximately similar results. Just as in the case of neural networks, the

proposed time-scale features outperform the baseline MFCC features in most classifiers

(for mixed and male data sets). The confusion matrices in percentage obtained from

evaluating the BN (TAN-OMI-CL) using time-scale features and MFCC features on

the male data set are reported in table 2.9 and table 2.10, respectively.

Again, we see that the classification rates of the transient class derived from the TSF

is lower than the ones obtained by the MFCC features. For all classifiers tested above,

both the neural networks and the Bayesian networks, the classification performance

achieved by the gender-independent classifiers are somehow lower than the one derived

from the gender-dependent classifiers. The reason is the gender-independent classifiers

have to learn more complex class borders from the bigger mixed dataset. The average

difference of classification performance due to the gender factor approximates 1.50 % for
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Table 2.9: Confusion matrix in [%] for all six classes derived from BN (TAN-OMI-CL)

using time-scale features, male speaker data set.
Assignments V UV S M VC T

Transcriptions

V 85.27±0.57 3.93±0.31 3.51±0.30 0.66±0.13 2.06±0.23 4.57±0.34

UV 0.84±0.09 96.31±0.19 0.56±0.08 0.17±0.04 1.31±0.11 0.81±0.09

S 5.75±0.49 3.80±0.40 81.10±0.83 0.24±0.10 8.93±0.60 0.19±0.09

M 16.25±1.65 10.91±1.40 13.45±1.53 43.65±2.22 13.46±1.53 2.28±0.67

VC 10.53±0.92 26.41±1.32 24.91±1.30 0.56±0.22 36.84±1.45 0.75±0.26

T 29.48±1.84 20.92±1.64 1.43±0.48 0.48±0.28 2.69±0.65 45.01±2.01

Table 2.10: Confusion matrix in [%] for all six classes derived from BN (TAN-OMI-CL)

using MFCC, male speaker data set.
Assignments V UV S M VC T

Transcriptions

V 84.73±0.58 4.59±0.34 3.68±0.30 0.69±0.13 2.99±0.28 3.31±0.29

UV 1.35±0.12 95.82±0.20 0.70±0.08 0.47±0.07 0.77±0.09 0.89±0.09

S 7.36±0.55 3.99±0.41 78.25±0.87 0.95±0.21 9.16±0.61 0.28±0.11

M 15.74±1.63 13.20±1.52 12.69±1.49 40.10±2.19 11.92±1.45 6.35±1.09

VC 10.90±0.94 26.79±1.33 22.56±1.26 1.79±0.40 36.94±1.45 1.03±0.30

T 21.55±1.66 21.08±1.65 1.90±0.55 0.48±0.28 4.28±0.82 50.71±2.02

most considered classifiers. The average difference of classification rates between male

speakers and female speakers is also quite low. This achievement opens an approach

for gender independent phonetic classification.

2.6 Conclusions

Two novel methods for phonetic classification have been developed. The discrete

wavelet transform is exploited to extract useful features for classifying a sequence of

input speech frames into six phonetic classes given as the voiced, unvoiced, silence,

mixed-excitation, voiced closure, and transient classes. The classification decision is

done by training feedforward neural networks and Bayesian network. The linear clas-

sifier using a multi-threshold decision scheme is combined with two trained FNNs in

order to build an efficient joint classifier. An interpolation rule and phonetic smoothing

helps to detect the plosive class. This joint classifier has optimal non-linear thresholds

learned by FNN and low complexity due to the usage of the linear multi-threshold

classifier. Furthermore, discriminative structure learning of Bayesian networks is su-



42 2. Time-scale features for phonetic classification

perior to the generative approach. Discriminative parameter training improves the

classification rate in most cases and gives slightly better classification performance

than the one derived by the joint FNN classifiers. Both the joint FNN classifier and

BN classifier provide quite good classification rate with high accuracy. The proposed

time-scale features provide similar classification performance compared to the base-

line MFCC features in most cases. The performance of gender-dependent/independent

based classifiers suggest the viability of gender independent phonetic classification.

From our analysis, we see that the time-scale features can be improved further in

order to improve the performance of the mixed-excitation, voiced closure, and transient

classes. In addition, an adaptive selection of wavelet bases for different phonetic classes

should be investigated. The wavelet bases with very short support would be suitable to

capture transient frames exactly while the long ones are used to detect voiced/unvoiced

frames. The usage of hidden Markov models with Viterbi decoding is a good candidate

for replacing the phonetic interpolation rule in plosive detection. Besides, the optimal

structure design of structure for neural networks should be investigated. Comparison

between FNN-based classifiers and GMM-based classifiers in terms of classification rate

is an interesting issue. From the reported results, we observe that the classification rates

are just increased slightly from the use of the neural networks to Bayesian networks

owning optimal trained structures. It might be wise to investigate on how to improve

the feature extraction to gain significant performance than to train the more smart

but complicated classifiers with lower gain. Gender mismatch between training and

testing phase is an interesting open issue that should be tested. Finally, evaluation

on other databases with more accurate transcriptions will be investigated. As an

evaluation in the application domain, the outputs of the phonetic classifiers will be

used in time-scale modification algorithms as extra input information to adjust a non-

uniform scaling factor for each phonetic class in order to get better perceptual quality.

Besides, the application of the proposed classifiers to phonetic pre-alignment with

addressed phonetic classes for large databases is very useful.



Chapter 3

Robust speech classifiers for

adverse environments

3.1 Introduction

3 Nowadays, the demand of using speech technologies for human communication in real-

world environments increases swiftly. Plentiful approaches of speech processing have

been developed to achieve robustness of speech applications in real environments which

exhibit different kinds of noise. Voice activity detection (VAD) which is employed by

most speech applications is a common task of speech classification. VAD is used to

estimate the noise level which is the critical point for many noise reduction methods

[Coh03]. In automatic speech recognition, there is a need of VAD for a speech/non-

speech detection to improve the recognition rate [ETS03, RSB+05]. Application of VAD

in speaker verification (SV) systems was introduced in [MCGB01] to achieve reliable

model estimation. Study on influence of VAD to performance of SV systems under

adverse conditions is an interesting topic. The classification of voiced/unvoiced/silence

(V/U/S) as well as voice activity detection are not simple when they are applied in

realistic environments.

Many studies on speech and phonetic classification have been proposed since in the

last decade. Very common features are used for the task such as zero-crossing rate,

autocorrelation coefficients [CHL89, TO00], periodicity estimation [Tuc92], short-term

energy [ETS03]. These features may be affected by complex and strong noise. Recently,

some novel methods have been proposed to deal with high noise conditions and differ-

3This chapter is based on materials published earlier in [NPHKon, PK06b, NPK07], and unpub-

lished in [PNK07].
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ent noise types which may appear in real-world environments. The features extracted

from the frequency domain are the LPC distance feature [RS97], cepstrum [HM93], mel

frequency cepstrum coefficients [XH02], instantaneous frequency amplitude spectrum

[AK05] and pitch estimation [Che99]. Several standard algorithms were proposed by

ITU-T and ETSI for different applications. ITU-T standard Rec. G.729 Annex B

[BSS+97] is developed for fixed telephony and multimedia communications. It uses

input speech frame of 10ms to extract four features, i.e. differential power in the 0− 1

kHz band, differential power over the whole band, differential zero crossing rate, and

spectral distortion. ETSI [ets99] has two standards for the adaptive multirate (AMR)

codec. They are developed for the third-generation mobile communication systems.

The AMR standard 1 estimates the signal-to-noise ratios (SNRs) in nine subbands and

compares them with adaptive thresholds which are different for each subband. The

AMR standard 2 divides frames of 20ms into two subframes of 10 ms, and extracts

three features for each of them, i.e. channel power, voice metrics, and noise power.

The detection is done by comparing the voice metrics with a SNR-based threshold. If

at least one subframe is detected as speech then a frame is labeled as speech frame.

ETSI ES 202 050 [ETS03] has proposed VAD for the advanced front-end in distributed

speech recognition. The VAD algorithm employs the short-term log-energy in compar-

ison with an adaptive SNR-based threshold. A hangover scheme is used after that to

smooth the output decisions. An adaptive forgetting factor is used to update the noise

estimation.

The features extracted in the frequency domain by applying the short-time Fourier

transform face some limitations due to a fixed absolute resolution of time-frequency

(TF) analysis. The application of the discrete wavelet transform which provides a

rectangular tiling of the TF plane with fixed relative resolution to design robust VAD

has been investigated recently in [SS97b, CW02]. To be robust against noise, several

VAD algorithms based on wavelet features have been designed by employing statistical

models [LA06], or the auto-correlation function and the Teager energy operator (TEO)

[WW06]. Other methods using subband order-statistics filters [RSB+04] and higher-

order statistics in the LPC residual domain [NGM01] can improve VAD performance

in non-stationary noise conditions. Nevertheless, more research on this and other TF

analysis techniques for VAD is worth undertaking.

In this chapter, an efficient and robust speech classifier based on a single wavelet
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feature and quantile filtering is presented. The classifier is designed to classify every

input speech frame into V/U/S classes and thereby detect speech frames out of non-

speech frames. The DWT is applied on every speech frame extracted by overlapping

windows. Then a frame-based delta feature is extracted from the calculated TEO of

the wavelet coefficients. To be robust against noise, the extracted feature is enhanced

by applying a sigmoid function and median filtering. After that, the enhanced fea-

ture is compared with a quantile-based threshold to classify each frame into V/U/S

classes. Furthermore, by applying a slope tracking method on the processed feature

instead of using the adaptive threshold, the V/U/S decisions can be obtained with

lower delay and memory requirements. The VAD decision is done from this phonetic

classification output. To obtain a better estimate of the noise threshold, the quantile

filtering method of [PK06b] is further improved by an adaptive estimation of the quan-

tile factor. Finally, by applying a hang-over scheme [PKW+06] over a buffer storing

frame-based phonetic decisions, fluctuations resulting from strong non-stationary noise

in the VAD outputs are further smoothed out. The proposed algorithms are tested with

noisy speech databases with additive white, car, and factory noise over a wide range

of signal-to-noise ratios. Separate evaluations are done to study the impact of gen-

der dependence on the algorithm. Moreover, the performance of the proposed speech

classifier is further assessed via its effect on the performance of a speaker verification

system [NPHKon]. There, a voice activity detector, which is built from outputs of the

speech classifier, is used in the front-end processing stage.

The remainder of this chapter is structured as follows: In the next section, the ap-

plication of the TEO and other pre-processing methods to extract a wavelet feature are

presented. In section 3.3 the quantile filtering method and the slope tracking method

are designed to derive the adaptive noise threshold. The noise threshold estimate is

improved by an adaptive selection of the quantile factor. In section 3.5, the perfor-

mance of the proposed algorithms is evaluated and discussed. After that, section 3.6

presents the application of VAD in a speaker verification system. The performance of

the proposed VAD is assessed via the recognition rate of the system. The conclusion

finalizes the chapter.
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3.2 Robust feature extraction

Based on the observed wavelet power distribution in section 2.2, an efficient wavelet

feature is extracted to classify every noisy speech frame into one of three classes:

Voiced/Unvoiced/Silence. An adaptive threshold is estimated for making the clas-

sifying decision. Thus, a block scheme of the proposed classifier is given as follows:

Figure 3.1: Block diagram of the proposed speech classifier.

3.2.1 Teager Energy Operator

Teager’s studies in [HT90, Tea90] on nonlinear speech modeling pioneered the impor-

tance of analyzing speech signals from an energy point of view. A simple nonlinear

energy tracking operator is derived, for a continuous-time signal x(t) as:

Ψc[x(t)] =

(
d

dt
x(t)

)2

− x(t)

(
d2

dt2
x(t)

)
. (3.1)

and for a discrete-time signal x(l) as:

Ψ[x(l)] = x2(l) − x(l − 1)x(l + 1). (3.2)

These operators were introduced systematically by Kaiser [Kai90a, Kai90b]. The TEO

has been considered as an efficient nonlinear operator for many speech processing al-

gorithms and speech applications. A study in [MKQ93] motivated the use of TEO

for general speech modeling. After that, the discrete TEO has been applied for stress

detection by analyzing nonlinear feature characteristics in specific frequency bands

[RHM+02]. As reported by [BR01, CW04], application of the TEO can enhance the

discriminability of speech components from noise.

Dealing with the speech classification task, after applying the DWT for every input

frame, the TEO coefficients Em,i are calculated from the wavelet coefficients by the
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discrete form in 3.2 as follows:

Em,i(n) = X2
m,i(n) −Xm,i(n+ 1)Xm,i(n− 1). (3.3)

where Xm,i are wavelet coefficients derived from the DWT at the mth scale of the ith

frame and n is the coefficient index as explained in section 1.2. An output consisting of

approximation and detail parts derived from the wavelet decomposition on an unvoiced

frame at the 3rd scale is shown in Fig. 3.2.
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Figure 3.2: Approximation coefficients and detail coefficients derived by WD at 3rd

scale for a clean recording unvoiced frame.

As observed in chapter 2 for unvoiced frames, the signal energy is mostly distributed

in the detail parts and less in the approximation part. However, it is hard to observe the

same energy distribution at very low SNR conditions as shown in the upper diagram of

Fig. 3.3. Very high energy is concentrated in the low-frequency subband. The benefit of

the TEO is a magnification of the amplitude difference between the wavelet coefficients

in the approximation subband and the ones in the detail subbands as depicted in the

lower diagram of Fig.3.3. We see that the power difference D (which is calculated in

Equation 3.4) from TEO coefficients is larger than the one of wavelet coefficients. This
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improvement is certainly useful to extract a robust feature for the classification task in

harsh environments, especially for the unvoiced class.
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Figure 3.3: WD at 3rd scale of an unvoiced frame with additive white noise at 5dB

SNR: (a) Wavelet coefficients, (b) TEO coefficients.

3.2.2 Sigmoidal delta feature

As reported in Section 2.2.2, the power of the voiced frames is mostly contained in the

approximation subband and much less in the detail subbands, and vice versa for the

unvoiced frames. A relatively equal power distribution occurs for the silence frames.

From the statistical properties of speech sounds, we observe that the spectrogram power

in the range [0.0−1.0] kHz is very low for unvoiced fricative frames in comparison with

voiced frames consisting of vowels and voiced fricatives. In this study, the decompo-

sition scale is chosen as m = 3 to consider the relation between the frequency band

0−1kHz and other higher frequency bands of the speech signal sampled at fs = 16kHz.

A delta parameter which is the power difference between the approximation subband
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and the detail subbands is extracted as:

D(i) =
1

Na

Na∑

n=1

E2
m,i(n) − 1

N −Na

N∑

n=Na+1

E2
m,i(n). (3.4)

where Na =
N

2m
and N − Na are the length of the approximation subband and detail

subbands, respectively. N is the number of samples in one speech frame. This delta

feature differs from the feature PVD in Equation 2.2 which consider the difference

between the 1st detail and the 3rd one.

Some voiced or unvoiced frames at low volume result in small values of D while, in

general, the voiced and unvoiced frames give very high values of D with positive and

negative sign, respectively. In order to balance the impact of the large range of values

of D during processing, the hyperbolic tangent sigmoidal function is applied on D(i)

as:

Ds(i) =
2

1 + e−2D(i)
− 1. (3.5)

With this operation, small values of the delta feature D(i) resulting from weak speech

frames are amplified. It also compresses very high values of the D(i) feature resulting

from loud speech frames. Because of the strong noise at low SNRs, the parameter

Ds fluctuates with high variance even during silence segments. To make the classifier

robust against noise, the parameter Ds is further smoothed by median filtering with

a window length of 4 frames to keep a low delay. Median filtering is a non-linear

signal enhancement technique for the smoothing of signals, the suppression of impulse

noise while preserving edges. The figure 3.4 demonstrates the feature evolution which

is extracted without using the TEO from speech with added car noise at SNR=5dB.

Its enhanced version by calculating the TEO, applying the sigmoidal operation, and

finally by median filtering shows less fluctuation and more robust behavior than the

primitive feature.

3.3 Threshold adaptation by quantile filtering

To make the classifying decision, the extracted feature values need to be compared with

the thresholds which are derived from speech signal data in advance. As a principle,

the thresholds are set as constants which are found by doing experiments for certain

conditions of recorded speech and noise sources. However, these constant threshold

values will not be valid for other testing conditions. The need for threshold adaptation

leads to a challenging task. The next two sections present two novel techniques for

threshold adaptation.
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Figure 3.4: Signal waveform at SNR = 5dB and the feature extracted without

applying TEO, with TEO and its enhanced version Ds(i) including sigmoidal

compressing and median filtering.

3.3.1 Quantile filtering

As reported in [SFB00] the signal energy in each frequency channel can be at the

noise level over a significant part of the time, i.e. whenever there is no speech energy

present in this band at this moment of time. Thus, the noise level can be estimated

by observing the qth quantile over the duration of the utterance in every channel. This

proposal was applied and further developed in [PK05b] to estimate the noise level in

the wavelet domain. There, pre-determined overlapped buffers, instead of the whole

utterance which might continue indefinitely, are used to meet memory saving and delay

requirements for the estimation algorithm.

This quantile approach is applied to threshold adaptation for the classification task.

We observed that typically, at every wavelet subband, there is a high energy distribu-

tion of non-speech frames over each buffer of ten seconds in length. This means the
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energy in each wavelet subband stays at the noise level over a significant part of the

buffer. Because the delta parameter Ds represents an energy relation between sub-

bands, its values also stay at the noise level over a significant part of the buffer. If a

threshold relating to the noise level can be determined, speech frames can be detected

out of non-speech frames. In a second step, voiced and unvoiced frames will be classi-

fied due to specific properties of their delta feature values Ds.

3.3.2 Threshold adaptation algorithm

The threshold adaptation is implemented in two steps:

• First, the delta values Ds(i) are sorted in ascending order over a buffer b of one

second length storing Nf frames ⇒ Ds(i
′), i′ = [1 . . . Nf ].

• Second, the quantile threshold Tq is determined by taking the qth quantile:

Tq(b) = Ds(i
′) | i′=⌊qNf⌋ (3.6)

The quantile factor q = 0.3 shows in Fig. 3.5 has been selected experimentally over

the range of values q = 0.0, 0.1, . . . , 1.0. Quantile filtering is actually a generalization of

the minimum statistics approach [Mar94]. If the quantile factor q = 0, it coincides with

the minimum statistics principle. The quantile threshold estimate is adaptive because

it is updated for every buffer of one second in length. Thanks to this adaptability,

the method is absolutely suitable to be used for estimation the noise threshold in

case of non-stationary noise conditions. To make the V/U/S decisions, the enhanced

delta parameter Ds(i) of each input speech frame is calculated and compared with the

adaptive threshold by the following rule:

Ds(i) =






Voiced, if Ds(i) > Tq,

Unvoiced, if Ds(i) < −Tq,
Silence, otherwise.

. (3.7)

3.4 Threshold adaptation by slope tracking

The proposed quantile method needs memory for storing delta values in the buffer

and one frame delay. To lower the memory and delay requirements, a slope tracking

method is proposed for the processed feature.
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Figure 3.5: Rank order distribution of delta feature for one subband at three different

conditions: noise-free, SNR=20dB and SNR=5dB observed for 427 frames. The

quantile factor q = 0.3 is selected after visual inspection of this distribution for the

strongly different noise conditions.

3.4.1 Slope generation

The frame-based values Ds(i) of a speech signal are filtered by a one-pole IIR filter as:

Df (i) = Df(i− 1) +Ds(i). (3.8)

Although this filter is unstable, it is useful to distinguish between silence and unvoiced

sounds which are visible as flat and downward slopes, respectively, at the output of

this filter. By using finite-length buffers for processing of input segments, the steady

increase towards infinity, which results from the unstable filter, can be limited. In

general, the parameter Ds has positive values for voiced frames, negative values for

unvoiced frames and approximates zero for silence frames. Because the filter operates

as the cumulative sum of the elements of Ds, this results in the output parameter Df

as upward slope, downward slope, and almost flat regions for voiced, unvoiced, and
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silence classes, respectively (depicted in Fig. 3.6). In noisy environments, the filtered

parameter Df still shows the same slope characteristics as clearly even at the very

low SNR of Fig. 3.7. From that, the phonetic segments can be classified by a slope

detection method which is described later.
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Figure 3.6: (a) Noise-free speech signal, (b) The filtered feature Df with the assigned

phonetic classes.

3.4.2 Slope detection

To detect the rising and falling slopes as well as the flat regions of the parameter Df , a

three-step method is proposed as shown in Fig. 3.8. This method detects the beginning

and end points of the different phonetic segments online:

∗ First, if the magnitude difference of the parameter Df(i) between the current frame

and the previous frame is bigger than a positive threshold Tp = 0.5 or smaller than a

negative threshold Tn = −0.1, i.e. if Ds(i) is bigger or smaller, then the index of the
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Figure 3.7: (a) Noisy speech signal at SNR=5dB, (b) The filtered feature Df with the

robustly assigned phonetic classes.

previous frame is marked as the beginning point of a non-silence phonetic segment

and saved in memory.

∗ Second, the described procedure is repeated for every couple of the neighboring frames

until it fails. That means the difference is smaller or larger than the selected thresh-

olds. Then the total magnitude difference DT of the smoothed parameter Df between

the beginning frame and the current frame is calculated and compared with another

threshold Tc = 10 and Tc = 1.5 for voiced and unvoiced classes, respectively. If DT is

higher than Tc, the position of the current frame is marked as the end point and the

segment is labeled with the corresponding class. Otherwise, the beginning point is

replaced by the current point and the process is continued till the end of the buffer.

∗ Third, after all voiced and unvoiced segments are found, the remaining segments will

be marked as silence automatically.
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Figure 3.8: Slope detection.

The advantage of processing with the running integrator, as shown in Fig 3.7, lies in

saving memory and lower delay. Only the beginning and end points need to be stored

in memory. In addition, it exploits the continuity of speech sounds to classify long

segments into phonetic classes without separate frame by frame detection as in most

other current algorithms. This provides highly reliable performance for continuous

sounds.

For both proposed adaptation methods, i.e. quantile filtering and slope tracking,

occasionally occurring incorrect decisions, which are due to non-stationary noise and

transient sounds, are repaired by a frame-based smoothing method which enforces

sequential consistency of speech sounds such as: VVSVV → VVVVV, etc. Figure 3.9

demonstrates the evolution of the extracted delta feature which is enhanced by the

sigmoidal function Ds(i), and by the unstable filter, Df(i). The V/U/S labels are done

based on the quantile filtering in Ds(i) and the slope tracking for Df (i) in a noisy

recording.
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Figure 3.9: Speech signal with additive car noise at SNR = 5dB: (a) Enhanced

sigmoidal delta feature Ds(i) and V/U/S labels derived by quantile filtering of Ds(i),

(b) same but with slope tracking on Df (i).

3.5 Evaluation of classification rate

3.5.1 Experimental setup

The speech data used to build the experimental dataset is extracted from the TIMIT

database [GLF+93]. Two gender-dependent sets of female (F) and male (M) speakers

are selected from dialect speaking region 4 with 80 continuous utterances totally (ca.

10100 frames of 32 ms frame length and 8 ms frame rate). The selected dataset

is divided into two subsets, 70% for training and 30% for testing. The speaker set

contains 4 female speakers and 4 male speakers. In this research, the closure and

release frames of plosives and affricates are excluded from the analysis because they

are difficult to classify as voiced or unvoiced sounds. All non-speech events are also

removed completely. So we are left with about 4900 frames for the training set and

2100 frames for the test set. The speech signals, which are sampled at fs=16kHz are

artificially corrupted with additive white, car, and factory noise over the SNR range
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of [30, 20, 10, 5]dB. This processing yields 73500 and 31500 of noisy speech frames

used for the training phase and testing phase, respectively. The noise data which have

obtained from the Signal Processing Information Base [StNSF95] is filtered by an anti-

aliasing filter and downsampled to the sampling rate fs=16kHz from fs=19.98kHz.

The reference labels (V/U/S) of the speech frames, which are derived automatically

from the phonemic TIMIT transcriptions, are compared with the phonetic class labels

at the output of the classifiers. The two proposed classifiers using the DWT with

adaptive quantile filtering (AQF) and adaptive slope tracking (AST) are compared

with the method proposed in [Chi00]. There glottal closure indices (GCI) is extracted

for detecting voiced frames, and then the short-term log-energy is calculated to classify

between unvoiced and silence frames. From our experience, the use of GCI which

is based on the LP residual derived from speech frame provides quite robust pitch

estimation in hars environments. This observation is also reported in [PY04]. So, it is

referred as a baseline for classifying voiced and unvoiced classes.

3.5.2 Results and discussions

Because the relative frequencies of the three classes are not the same, i.e. 63.98%/

24.20%/ 11.82% for the V/U/S classes, respectively, the average classification rate is

calculated as a ratio between the sum of correctly accepted frames and the total number

of tested frames over all classes. Table. 3.1-3.3 show the average classification rates

calculated from the confusion matrices over all frames of three classes V/U/S for the

mixed gender (Ma+Fe), female (Fe) and male (Ma) speaker datasets, including noise-

free and noisy recordings. The standard deviation values are estimated by formula in

appendix C.

For all three different types of noise, the AQF method provides up to 2.5% lower

error rate than the AST method. Moreover, by considering very harsh conditions with

SNR = 5dB, we see that the classfication rate differences between the AQF method

and the AST method are very small in case of stationary white noise, and larger for

complex factory noise. This is expected because the AQF method is based on a globally

adaptive threshold while the AST method is not. However, the latter method with the

running integrator saves memory during the tracking of phonetic classes. We observe

that these wavelet-based methods have lower average error rates than the GCI-based

method [Chi00] for clean speech and noisy speech with SNRs down to 5dB. Due to

the highest complexity of factory noise which includes transient, colored, and non-

stationary noise, the average performance over the considered SNR range derived by
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SNR (dB) Clean 30 20 10 5

Algos. Gender

Ma+Fe 93.31±0.55 92.16±0.59 91.09±0.62 89.25±0.68 86.62±0.74

AQF Fe 93.77±0.75 93.38±0.77 92.37±0.82 91.53±0.86 87.51±1.02

Ma 93.22±0.78 92.89±0.79 91.67±0.85 90.02±0.93 86.53±1.05

Ma+Fe 92.42±0.58 90.27±0.65 90.39±0.64 87.42±0.72 85.57±0.77

AST Fe 93.53±0.76 92.92±0.79 92.12±0.83 90.77±0.89 86.36±1.06

Ma 92.37±0.82 91.02±0.88 91.08±0.88 88.83±0.97 85.77±1.08

Ma+Fe 91.58±0.61 89.94±0.66 89.22±0.68 87.09±0.73 82.76±0.82

GCI Fe 92.88±0.79 92.61±0.81 91.37±0.87 89.61±0.94 84.19±1.13

Ma 91.35±0.87 90.88±0.89 90.18±0.92 87.76±1.01 83.0±1.16

Table 3.1: Average classification rates (%) in case of white noise.

SNR (dB) Clean 30 20 10 5

Algos. Gender

Ma+Fe 93.31±0.55 91.34±0.61 89.15±0.68 87.96±0.71 83.17±0.82

AQF Fe 93.77±0.75 93.00±0.79 91.84±0.84 90.07±0.92 85.44±1.09

Ma 93.22±0.77 91.74±0.85 89.98±0.93 88.75±0.97 84.02±1.13

Ma+Fe 92.42±0.58 90.63±0.64 88.28±0.70 86.69±0.74 81.71±0.84

AST Fe 93.53±0.76 92.54±0.81 91.11±0.88 88.79±0.97 83.66±1.14

Ma 92.37±0.82 91.07±0.88 89.49±0.95 87.53±1.02 82.11±1.18

Ma+Fe 91.58±0.61 90.12±0.65 88.09±0.71 87.53±0.72 77.86±0.91

GCI Fe 92.88±0.79 91.91±0.84 90.47±0.91 86.15±1.07 80.94±1.21

Ma 91.35±0.87 90.22±0.92 88.63±0.98 88.74±0.98 78.77±1.26

Table 3.2: Average classification rates (%) in case of car noise.

SNR (dB) Clean 30 20 10 5

Algos. Gender

Ma+Fe 93.31±0.55 90.94±0.63 87.52±0.72 83.79±0.80 81.79±0.84

AQF Fe 93.77±0.75 92.11±0.83 90.13±0.92 86.97±1.04 81.62±1.20

Ma 93.22±0.78 91.22±0.87 88.47±0.99 84.91±1.10 82.83±1.16

Ma+Fe 92.42±0.58 91.02±0.62 85.76±0.76 82.88±0.82 75.88±0.93

AST Fe 93.53±0.76 91.18±0.88 88.07±1.00 85.33±1.09 79.91±1.24

Ma 92.37±0.82 91.66±0.85 86.19±1.06 83.79±1.14 76.73±1.30

Ma+Fe 91.58±0.61 89.19±0.68 83.61±0.81 78.29±0.90 73.79±0.96

GCI Fe 92.88±0.79 90.22±0.92 86.95±1.04 82.04±1.18 76.19±1.31

Ma 91.35±0.87 89.31±0.95 84.16±1.13 79.48±1.25 74.99±1.34

Table 3.3: Average classification rates (%) in case of factory noise.
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both wavelet-based methods drops down by about 6% and 3% in comparison with the

performance of the white and car noise cases, respectively.

As observed from Tables 3.1-3.3, the mixed-gender dataset results in higher error

rates than the gender-dependent datasets for all three classifiers. The average difference

of the average error rates over the given range of SNRs obtained by the wavelet-

based methods is lower than the difference observed for the GCI-based method [Chi00],

(1.33% compared with 1.77%), but higher than the one in [PK05a] (1.14%). The

classification performance for the three classes obtained by the proposed algorithms for

clean speech are higher than the ones obtained by the joint neural network classifiers

proposed in the previous chapter. This is expected because the joint FNN classifier

has been designed to classify six classes. There, the false acceptance rates of the voiced

and unvoiced classes rise because of the wrong assignments of speech frames belonging

to the mixed-excitation class.

Table 3.4: Confusion matrix in [%] for three classes tested with Ma+Fe data set which

is contaminated by additive white noise at SNR = 5dB.

Class assignments V UV S

Transcriptions Methods

AQF 86.87±0.92 4.60±0.57 8.53±0.76

V AST 85.57±0.96 5.38±0.62 9.05±0.78

GCI 83.59±1.01 5.85±0.64 10.56±0.84

AQF 5.33±0.99 85.89±1.54 8.78±1.26

UV AST 5.82±1.04 85.52±1.56 8.66±1.25

GCI 7.72±1.18 82.15±1.70 10.13±1.34

AQF 5.93±1.50 7.34±1.66 86.73±2.15

S AST 6.50±1.57 8.67±1.79 84.83±2.28

GCI 8.56±1.78 11.87±2.05 79.57±2.56

Now we examine the performance of each phonetic class in terms of their confusion

matrices. Tables 3.4-3.6 show the true acceptance, false rejection and false acceptance

rates for three classes obtained for the Ma+Fe data set with white, car, and factory

noise at SNR = 5dB, respectively. Depending on the characteristics of the additive

noise, the detection rates of different classes vary differently. We first discuss the

results obtained by AQF, the most reliable method. There is a significant decrease

of the classification rate of the silence class when going from white to car noise, then

factory noise (86.73%, 81.55% and 78.82%, respectively). The reason is that more



60 3. Robust speech classifiers for adverse environments

Class assignments V UV S

Transcriptions Methods

AQF 84.18±1.00 10.07±0.82 5.75±0.64

V AST 82.93±1.03 10.33±0.83 6.74±0.68

GCI 79.20±1.11 12.51±0.90 8.29±0.75

AQF 11.14±1.40 81.27±1.73 7.59±1.18

UV AST 12.93±1.49 78.85±1.81 8.22±1.22

GCI 14.02±1.54 75.27±1.91 10.71±1.37

AQF 10.26±1.93 8.19±1.74 81.55±2.46

S AST 10.34±1.93 8.72±1.79 80.94±2.49

GCI 13.23±2.15 10.90±1.98 75.87±2.72

Table 3.5: Confusion matrix in [%] for three classes tested with Ma+Fe data set which

is contaminated by additive car noise at SNR = 5dB.

Table 3.6: Confusion matrix in [%] for three classes tested with Ma+Fe data set which

is contaminated by additive factory noise at SNR = 5dB.

Class assignments V UV S

Transcriptions Methods

AQF 82.78±1.03 12.91±0.91 4.31±0.55

V AST 77.63±1.14 14.68±0.96 7.72±0.73

GCI 75.81±1.17 15.84±1.00 8.35±0.75

AQF 12.18±1.45 80.63±1.75 7.19±1.15

UV AST 17.06±1.67 73.96±1.95 8.98±1.27

GCI 18.23±1.71 71.18±2.01 10.59±1.37

AQF 13.68±2.18 7.50±1.67 78.82±2.59

S AST 19.12±2.50 10.43±1.94 70.45±2.89

GCI 20.73±2.57 11.02±1.99 68.25±2.96

non-stationary noise occurs in car and factory conditions. A smaller change occurs for

the unvoiced class, with a smaller gap between car noise and factory noise (85.89%,

81.27% and 80.63%). The results show that the classification rates of the voiced class

vary slightly (86.87%, 84.18% and 82.78%). These observations prove that, by applying

the wavelet-based classifiers, the ability of detecting voiced and unvoiced classes are

somewhat robust in noisy conditions. With the colored noise in case of car and factory
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conditions, the false acceptance rates of the voiced class rise to higher values than the

one of white noise.

3.6 Evaluation in application domain

As an extended evaluation of the robustness of the proposed phonetic classifier, we as-

sess its performance via its effect on a speaker verification (SV) system. The phonetic

outputs of the speech classifier are used to build a voice activity detector (VAD) for the

front-end unit of the SV system. The incorporation of VAD is one of the approaches

to make the SV system robust against noise. As reported in [MCGB01], VAD has a

main impact on SV performance under noisy conditions. In our research, a VAD is

integrated into an SV system which was designed in [NPHKon] to increase the security

level of air traffic control (ATC). When a pilot registers the first time to a control

sector his voice is automatically enrolled. At any later occurrence of the same aircraft

identification tag [NPHKon], the received voice message is verified against the existing

speaker model. The design of the ATC-oriented SV system is based on training Gaus-

sian mixture models (GMMs) and a universal background model (UBM) [Bea00].

3.6.1 VAD as a pre-processing stage

4 The main challenges for the ATC-oriented SV system are the degradation of the

transmitted noisy signal, caused by the fading channel and the bandwidth limitation

of the transceiver equipment. A frequency range of only 300−2500 Hz is used for speech

transmission in ATC [NPHKon]. Due to the lack of an ATC speech database, we only

deal with the bandwidth limitation by simulating this condition on other databases.

The design of the SV system consists of four phases as shown in Figure 3.10. In phase 1,

gender-dependent UBMs are trained. These trained models are then applied in phase

2 for speaker dependent modeling using gender information from gender recognition.

Retraining of a speaker model is performed in phase 3, and finally, in phase 4 the

verification task is carried out. A detailed description of the SV system can be found

in [NPHKon].

As an important pre-processing stage, VAD is employed in the front-end unit as

depicted in Fig. 3.10 to detect only segments with voice activity which are used to

4 Thanks to M. Neffe for his SV system, and his acceptance for re-editing text material for intro-

ducing ATC, SV system, and experimental database setup.
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Figure 3.10: VAD as pre-processing stage in the SV system [NPHKon].

extract linear-frequency cepstral coefficients. Robust VAD is crucial in the SV system

in order to extract suitable speaker dependent data. Non-speech data which is con-

taminated by noise of the transmission channel may drive the model training process

into incorrect convergence, thereby leading to an unreliable SV system. A robust VAD

is designed according to following scheme:

Figure 3.11: A block diagram showing the VAD based on outputs of the phonetic

classifier (Figure 3.1).

To meet the specific properties of the air traffic voice channel, some adjustments

on the proposed phonetic classifier have been done. Dealing with the voice signal with

a bandwidth of [0.3 − 2.5] kHz, we choose a decomposition scale m = 1 to consider

the relation between a low-frequency subband of [0.3 − 1.1] kHz and the remaining

higher-frequency subband. From the temporal characteristics of the input utterances,

we observe that the ratio between the number of speech frames and the number of

non-speech frames varies for different buffers. Thus, the quantile factor q(b) is apdated

for each buffer to achieve a better noise threshold estimate. The method is based on a
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comparison of feature differences cross five consecutive rank-sorted frames and a pre-

determined level ε = 10−3. The test is performed from the beginning of the buffer and

is stopped when the difference is larger than this level. Then the quantile factor q(b)

is selected as:

q(b) = i′, if Ds(i
′) −Ds(i

′ − 4) > ε (3.9)
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Figure 3.12: Adaptive quantile factors selected for different examples of frame buffers.

At the output of the speech classifier, all voiced and unvoiced frames are relabeled

as speech frames and the remaining silence frames are considered as non-speech frames.

For smoothing of fluctuations resulting from strong non-stationary noise in the VAD

outputs, a hang-over scheme [PKW+06] has been applied. The output sequence VAD(i)

is smoothed by using the 100ms/200ms hangover scheme to bridge short voice activity

regions, preserving only candidates with a minimal duration of 100ms, and being not

more than 200ms apart from each other. This excludes talk-spurts shorter than 100ms

and relabels pauses smaller than 200ms. The impact of the bridging rule is considered

during experiments.

The designed VAD based on wavelet sigmoidal delta feature is compared with

other VAD methods based on short-term log-energy with constant quantile filtering

[NPHKon], and short-term log-energy with SNR-based adaptive threshold which was

designed for the advanced front-end of the distributed speech recognition ETSI ES 202
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Figure 3.13: VAD based on short-term log-energy with constant quantile filtering:

(top) Extracted feature, (bottom) speech signal at SNR = 10dB and VAD labels.

050 [ETS03]. Tests of three examined VAD methods on a car noise recording with

SNR = 10dB are demonstrated from Figure 3.13 to Figure 3.15. These informal tests

show the best results for voice activity detection with the proposed wavelet method.

3.6.2 Experiments and evaluations

For the experimental evaluation, we use the fixed SPEECHDAT-AT database, con-

sisting of noisy, fixed network telephone recordings [BEK00], and the WSJ0 database

consisting of almost noise-free broadcast recordings [GGPP93]. Dialect regions and

speaker ages were selected randomly. In order to simulate the conditions of ATC, all

files were band-pass filtered to a bandwidth from 300 Hz to 2500 Hz and down-sampled

to a sampling frequency of 6 kHz. Furthermore, the databases were cut artificially in

utterances of 5 seconds which corresponds to typical talk spurt lengths in ATC.

Gender-dependent UBMs were trained as GMMs with 38 Gaussian components

using two minutes of recordings for each of 50 female/male speakers selected ran-
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Figure 3.14: VAD based on short-term log-energy with updated SNR-based threshold:

(top) Extracted feature, (bottom) speech signal at SNR = 10dB and VAD labels.

domly from each of the 100 female/male speakers extracted from the SPEECHDAT-

AT database. Out of the remaining 50 female and 50 male speakers for testing, 20

speakers were marked as reference speakers, 10 male and 10 female each. For each

speaker, 6 utterances were used for verification. So each reference speaker model was

compared to 600 utterances, yielding a total of 12000 test cases for 20 reference speaker

models all together. For the experiment on the WSJ0 database, 23 female and 28 male

speakers from CD 11 2 1 was used to train the gender dependent UBMs. CD 11 1 1

with 26 female and 19 male speakers were taken for testing. Out of them, 24 speakers

were marked as reference speakers, 12 male and 12 female each. For each speaker, 12

utterances were used for verification. So each reference speaker model was compared

to 540 utterances, yielding a total of 12960 test cases for 24 reference speakers.

The SV performance is assessed by using the detection error trade-off (DET) curve

[MDK+97] and the equal error rate (EER) [PM98]. The energy-based VAD [NPHKon]

using logarithmic short-term energy with constant quantile filtering is compared with
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Figure 3.15: VAD based on wavelet sigmoidal delta feature with adaptive quantile

filtering: (top) Extracted feature, (bottom) speech signal at SNR = 10dB and VAD

labels.

the optimized wavelet-based VAD in terms of the SV performance. The hangover

schemes for output smoothing are the same in both VAD methods. As reported in Table

3.6.2, the usage of both VAD methods improves SV performance significantly, compared

to the case without using VAD, for the SPEECHDAT-AT database. However, for

the WSJ0 database, the obtained results are almost similar. This shows a positive

effect of VAD in removing noise-dominated non-speech segments which may lead to

an unreliably trained SV system. For the SPEECHDAT-AT database, and comparing

the wavelet-based VAD with the energy-based VAD, the EER is reduced from 11.7%

to 9 % without smoothing, and from 6.52% to 4.75% with smoothing as illustrated in

Fig. 3.16. Thus, by using the proposed wavelet-based VAD, we obtain a 23% and 27%

relative improvement compared to the energy-based VAD in both cases. In addition,

from the observed results, we discover that not only an accurate detection of speech

frames but also a smoothing hangover scheme to bridge short pauses between speech

frames helps to improve the SV performance.
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VAD Algorithms NoVad EVad WaVad

Hang-over wo/w wo/w

Databases

SPEECHDAT-AT 25.12 11.7 / 6.52 9 / 4.75

WSJ0 10.15 - / 10.37 - / 10

Table 3.7: EER [%] results derived from both databases, without using VAD and

using energy-based (EVad), wavelet-based VADs (WaVad) without (wo) and with (w)

applying the hangover scheme.
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Figure 3.16: DET-curves showing the false acceptance (FA) rate versus the false rejec-

tion (FR) rate, and obtained EERs when using energy-based (EVad), wavelet-based

VADs (WaVad) and without VAD (NoVad) [NPHKon].

To assess the impact of environmental mismatch between training and test con-

ditions, a cross testing has been performed using the SPEECHDAT-AT database for
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training the UBMs but the WSJ0 database for testing, and vice versa. The wavelet-

based VAD is employed for these experiments. In the former condition, the EER is

11.8 % which is worse than the above results because the models were trained with

noisy speech and tested with clean speech. In the latter condition, the slight improve-

ment of EER to 11 % may result from the VAD reducing noisy non-speech segments in

the testing phase. In both conditions, the use of the VAD cannot solve the mismatch

between the training and testing phases.

3.7 Conclusions

High-performance phonetic classification algorithms have been developed based on the

discrete wavelet transform and the Teager energy operator. They exhibit a very low-

complexity as the classifiers use only a single parameter. The results presented in this

chapter illustrate the effectiveness of the time-scale feature extracted from the wavelet

coefficients. The quantile filtering which generalizes the concept of the minimum statis-

tics is an excellent technique for estimating the noise level accurately, especially in case

of non-stationary noise. As reported in the experiments, the quantile-based threshold

adaptation method provides quite robust performance but requires a buffer of frames to

determine the quantile threshold, and thus results in delay. The slope tracking method

uses a running integrator in three steps and saves memory and delay, while providing

slightly poorer performance.

Based on the proposed phonetic classifier, a voice activity detector has been devel-

oped and built into the front-end processing stage to improve speaker verification. The

VAD is specially designed for the needs of air traffic control with respect to bandwidth

restriction and high noise conditions due to the ATC radio channel. The quantile fil-

tering technique is adjusted with an adaptive quantile factor to meet those demands.

Systematic tests have been performed using this system without VAD, with the energy-

based VAD, and the wavelet-based VAD . The last method which is based on the

enhanced wavelet feature and the adaptive noise threshold provides the best perfor-

mance. The hangover scheme which smooths the VAD output also contributes to the

EER reduction. Significant EER reduction is achieved under harsh environments when

applying the wavelet-based VAD.

In future work, the testing on a larger database is necessary to validate the ro-
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bustness of the proposed phonetic classifiers. More complicated types of noise should

be considered for example babble noise consisting of interfering speaker background

noise. Parameters of the wavelet-based VAD will be fine tuned to maximize EER

performance. The relationship between VAD objective performance and speaker veri-

fication performance should be considered. The performance of a VAD developed from

original phonetic classifier using quantile filtering with constant quantile factor will be

compared with the one using the adaptive quantile factor in terms of precision and

recall measures.
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Chapter 4

Statistical wavelet filtering for

speech enhancement

4.1 Introduction

Mobile communication has been researched and developed to meet the demands of

human communication. Due to the nature of mobile technology, the communication

processes are often carried out in real environments which contains a wide range of po-

tential sources of noise and distortion that can degrade the quality of the speech signal.

This makes robustness to acoustic background noise a highly motivated challenge in

speech communications. Out of different approaches to enhance the transmitted speech

signal such as bandwidth extension, source separation, etc., a wide range of techniques

for noise reduction have been proposed to deal with varying levels and types of back-

ground noise as encountered on telephone channels, constructions, cars, babble noise,

etc. The noise reduction methods not only improve the quality, acceptability and intel-

ligibility of the speech signal for human listener, but they also crucial to achieve high

performance of speech recognition.

In our research, we only study single-channel speech enhancement systems which

differ from multi-channel systems where two or more channels are employed for both

spatial and temporal processing. Nowadays, since most mobile devices are designed

with only one microphone channel, noise estimation from a second microphone channel

which would be very helpful for noise reduction algorithms is impossible. Due to the

spectral overlap between speech and noise signals, however, the denoised speech signals

obtained from single-channel methods exhibit more speech distortion when tuned for

significant noise reduction. Nevertheless, this kind of method is relevant to keep the
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low cost and small size of mobile devices. Fig. 4.1 shows a block scheme of single-

channel noise reduction. The signal is firstly transformed into other domains to get a

better presentation of the speech signal. Based on the observed coefficients, the two

following steps are implemented:

• The noise level is estimated by noise estimation block.

• Then the noise signal component is removed out of the noisy speech signal by

the gain function.

Figure 4.1: Block scheme of standard single-channel noise reduction approach.

Noise reduction can be considered as an estimation of the unknown clean speech from

the observed noisy speech only. Based on different linear estimators and non-linear

estimators, a gain function is designed and applied on the noisy coefficients to reduce

the noise properly, thereby enhancing the speech quality. Because only the noisy speech

signal is observed, an estimate of the noise signal component is required. It is one of the

most difficult parts in the noise reduction algorithms, especially for non-stationary and

non-white whose characteristics change the speech signal over various frequency bands.

Several noise reduction methods may work fine with certain noise environments and

certain applications but can fail with others. Thus, given the large diversity of noisy

environments and various applications, it is clear that there cannot be one single perfect

noise reduction algorithm. Single-channel noise reduction methods can be divided as

follows:

• Exploiting the periodicity of voiced speech.

• Auditory model based systems.

• Optimal linear estimators.

• Statistical model based systems using optimal non-linear estimators.
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The following paragraphs introduce some methods which belong to the first two ap-

proaches. After that, the widely used approaches using optimal estimators in the

frequency domain and the wavelet domain are reviewed.

The first approach utilizes the basic principle that waveforms of voiced sounds are

almost periodic. With this observation, an adaptive comb filter is applied on the noisy

speech signal to pass the harmonics of speech but reject the frequency components

between the harmonics [FSBO76]. A system closely related to comb filtering is de-

veloped in [Par76] which integrates a pitch extractor. These approaches require an

accurate voiced/unvoiced classification and a good estimate of the pitch period which

are problematic in harsh noisy conditions. Besides, this periodicity based method only

can enhance voiced frames of the recorded speech signals. This results in very low

perceptual quality and bad intelligibility in many languages where unvoiced fricatives

and plosives contribute a significant amount to the word meaning.

In the second approach, application of psychoacoustic principles to speech enhance-

ment is introduced in [CO91, TMK97] and further developed following the ideas suc-

cessful audio coding based on auditory masking [Joh88]. Noise components that lie

below the masking threshold can be left untouched which results in lower distortion

of the enhanced speech signal [Vir99]. The incorporation of auditory masking into a

subspace-based speech enhancement system is introduced in [Vet01, JC03]. Critical-

band wavelet decomposition is used with a noise masking threshold in [LW03], and

a perceptual wavelet packet decomposition which simulates the critical bands of the

psychoacoustic model in [JM03, CW04].

4.1.1 Optimal estimation for frequency-domain denoising

Considered as a classical approach, the noise-free speech signal x̂ is estimated as the

output of a linear frequency-response function H driven by the observed noisy speech

signal y. The Wiener filter [LO79, SF96] represents the optimal solution in the mini-

mum mean-square error (MMSE) sense for the linear estimation technique where the

speech signal and the noise signal are assumed to be jointly Gaussian. Besides, the

common spectral subtraction (SS) method [Bol79] is considered as a direct estimation

of the short-time spectral amplitude (STSA) of the clean speech signal. The enhanced

speech is obtained by subtracting the noise spectrum from the noisy speech spectrum
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computed with the discrete Fourier transform (DFT). The noise spectrum is estimated

by several methods such as voice activity detection (VAD) [BJF94], soft-decision VAD

[SS98], minimum statistics [Mar94], and quantile filtering [SFB00, PK05b]. The SS

method introduces artifacts in the processed speech signal which is called “musical

noise” and will be discussed late in this text. Kalman filter is also applied for speech

enhancement [GKG91, KGG89].

In an effort of reducing musical noise and lowering the speech distortion, instead

of applying an optimal linear estimator, optimal non-linear estimators which require

knowledge of the joint probability density function of the speech and noise Fourier ex-

pansion coefficients is applied to estimate the clean speech DFT coefficients given the

noisy speech DFT coefficients. The required a priori probability distribution can be

estimated from training data of speech and noise or, alternatively, based on assuming a

reasonable statistical modelling assumption [Eph92b]. Gaussian models are discussed

in [EM84, EM85]. In [Mar02, BM03], with an assumption of super-Gaussian (Gamma,

Laplace) models, MMSE estimates of the speech DFT coefficients are derived. To esti-

mate the parameters of a speech model, different objectives such as maximum likelihood

[MM80], maximum a posteriori (MAP) [WG01] and MMSE [EM84, EM85] are applied.

4.1.2 Wavelet shrinking estimator

Based on the mathematical properties of the wavelet transform explained in section 1.2

and section 1.3, David Donoho and other researchers have developed wavelet denoising

methods using the thresholding/shrinking technique which is based on optimal linear

and non-linear estimates. A brief summary of wavelet shrinkage denoising is reported

in [Tas00]. The principle of removing noise is based on thresholding/shrinking wavelet

coefficients towards zero. These techniques have been widely used in signal processing,

image compression and image denoising. Recently, wavelet thresholding/shrinking is

applied for speech processing in order to enhance speech quality.

Two thresholding functions are considered by Donoho et al. [Don95, DJ98] as hard

thresholding and soft thresholding. These thresholding functions are obtained by ap-

plying optimal linear estimation technique. Modifications of the thresholding functions

are studied in [ZD97, ZL99] with an adaptive higher order derivatives shrinking func-

tion. A so-called wavelet firm shrinkage which generalizes hard and soft thresholding
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is proposed in [BG95, BG96, BG97]. All of these variants try to get smoother shrink-

ing functions to denoise effectively while preserving more useful information of the

noise-free signal. The noise threshold is estimated in the RiskShrink approach with the

minimax threshold [DJ98], in the VisuShrink approach with the universal threshold

[DJ94], and in the SureShrink approach with the SURE (Stein’s unbiased risk estima-

tor) threshold [DJ95].

Many improvements of wavelet thresholding techniques for enhancing noisy speech

signals have been studied such as semisoft thresholding with selected threshold for

unvoiced regions [SB97], efficient hard and soft thresholdings [SMM02], and a smooth

hard thresholding function based on µ-law [SA01, CKYK02]. In [LGG04], the combina-

tion of soft and hard thresholding is adapted to different properties of the speech signal.

The more sophisticated shrinking functions with better characteristics than soft and

hard thresholdings are developed for speech recognition in [KKH03]. To obtain lower

speech distortion, wavelet thresholding/shrinking method are integrated with other

techniques such as Teager energy operator and masked adaptive threshold [BR01]. A

blind adaptive filter of speech from noise is designed in wavelet domain [VG03].

Motivated by the classical wavelet shrinkage pioneered by Donoho and his col-

leagues, optimal non-linear estimates have been applied in Bayesian-based wavelet

shrinking methods. Contributions to the development of Bayesian approaches to

wavelet shrinkage are presented in [Vid98, ASS98]. Bayes’ rule is applied to achieve

non-linear thresholding. Adaptive Bayesian wavelet shrinkage is proposed in [CKM97]

which is applied for image denoising with promising performance [SA96, JB99]. As

a development from [Vid98], the local false discovery rate is linked with Bayes factor

shrinkage to form a novel shrinking method called Bayesian adaptive multiscale shrink-

age [Lav06]. A very good overview of noise reduction by non-linear wavelet shrinking

derived from optimal linear and non-linear estimates can be found in [Jan00]. Ap-

plication of Bayesian-based wavelet shrinkage into speech enhancement is studied in

[KYK01]. Thresholds are estimated by minimizing the Bayesian risk.

In this chapter, a novel speech enhancement system based on statistical wavelet

shrinking is designed to eliminate musical noise as well as handle colored and non-

stationary noise. The denoising process is considered in a sequence of buffers consisting

of several overlapping speech frames. The wavelet coefficients of 128 channels are ex-
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tracted by performing the full WPD on every speech frame. For every wavelet channel

of all frames in the buffer, the universal thresholds [DJ94] are calculated. Then quan-

tile filtering method [SFB00, PK05b] is applied to statistically estimate more accurate

thresholds relating to the noise levels. This procedure is done recursively for the sorted

universal thresholds along each wavelet channel. Next, to deal with non-stationary

noise, adaptive weighting functions are built based on the temporal threshold variation.

In addition, colored noise is handled by another static non-linear weighting function.

The wavelet shrinking gain function proposed in [SA01, CKYK02] is optimized by an

adaptive factor for listening comfort. The designed statistical wavelet shrinking algo-

rithm is evaluated on the AURORA3 and NTIMIT databases. Besides objective tests

measuring the segmental SNRs, subjective tests such as an overall quality evaluation

based on Comparison Category Rating (CCR) and based on ITU-T standards are ap-

plied. As a new contribution to subjective testing methods, a Comparison Diagnostic

Test (CDT) is developed from the Diagnostic Rhyme Test standard to improve the

evaluation quality for speech enhancement system.

The chapter continues with the following section for reviewing and discussing state-

of-the-art speech enhancement methods in more depth. Then, the wavelet denoising

approach is treated with different wavelet gain functions for removing noise. The

three next sections present in detail all steps for noise threshold estimation by scale-

dependent universal threshold, quantile threshold, and time-frequency weighted thresh-

old, respectively. In the evaluation section, all designed methods are assessed by an

objective test and subjective tests on different databases. A new evaluation method is

designed in this section. Finally, the conclusion section reviews the designed system

and presents an outlook for future work to improve the speech enhancement method.

4.2 State-of-the-art speech enhancement

From modeling point of view, the speech signal can be distorted by additive noise

from the environment or convolutive noise created by the (linear) transfer function of

the communication channel. Additive noise is considered in most noisy signal models

although it is not always the case. Its model is linear in the power spectral domain

while the model of convolutive noise is linear in the log-spectral or cepstral domain. In

this thesis, we are interested only in the additive noise model as follows:

y(n) = x(n) + d(n) . (4.1)
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where a noisy speech signal y(n) results from a clean speech signal x(n) which is cor-

rupted by the additive noise signal d(n). Noise signals are considered as undesired.

They can be stationary, non-stationary, narrowband, and broadband noise. Even in-

terfering speech signals, such as multi-talker babble or a single concurrent speaker, can

be classified as background noise. Noise can originate from a localized position or from

virtually all directions which is called diffuse noise. The additive model can also be

presented in the frequency domain as:

Yw(k) = Xw(k) +Dw(k). (4.2)

where Yw(k), Xw(k) and Dw(k) denote the short-time spectra of the time-domain

signals yw(n), xw(n) and dw(n) which are obtained by multiplying a sliding time-limited

window w with the signals. k is the discrete frequency index, k = 0, 1, ..., K − 1. Since

the speech signal and the noise signal are uncorrelated, the following relation holds,

too:

Py(k) = Px(k) + Pd(k). (4.3)

where Py(k), Px(k) and Pd(k) are the power spectral densities (PSD) of the time-

domain signals y(n), x(n), and d(n), respectively. For stationary signals, as K → ∞,

the PSD can be defined as Px(k) = E{|Xw(k)|2}. Based on these additive models,

different suppression rules based on different optimal estimators have been proposed.

The a priori and a posteriori SNR which are used to build these rules are introduced

after McAulay and Malpass [MM80], Ephraim and Malah [EM84] as follows:

ξk ,
Px(k)

Pd(k)
, (4.4)

γk ,
|Yw(k)|2
Pd(k)

. (4.5)

The differences and similarities between various speech enhancement approaches will

be discussed in the following sections.

4.2.1 Spectral subtraction and its variants

The most common approach is spectral subtraction (SS) [Bol79] in the frequency do-

main. The denoising process is performed by subtracting an average estimate of the

noise spectrum |Dw(k)| from the observed noisy speech spectrum |Yw(k)| as follows:

|X̂w(k)| = max
(
|Yw(k)| − |Dw(k)|, 0

)
. (4.6)
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In its variant, so-called power spectral subtraction [LO79], an estimate of the short-time

energy spectrum of the speech signal is calculated as:

|X̂w(k)|2 = max
(
|Yw(k)|2 −E{|Dw(k)|2}, 0

)
. (4.7)

From the observed data yw(n), the short-time energy spectrum |Yw(k)|2 of noisy speech

signal is calculated directly. The noise level E{|Dw(k)|2} is estimated by averaging

|Dw(k)|2 over many non-speech frames where the background noise is assumed to be

stationary. Negative values resulting from spectral subtraction are replaced by zero.

This process results in a well known artifact so-called “musical noise” or “running

spring water” which yields residual noise with a very unnatural and disturbing quality.

Strong fluctuations may appear in the enhanced speech signal after denoising by the

spectral subtraction method. The reason is that a succession of randomly spaced

spectral peaks emerges in the frequency bands. This results in the residual noise which

is composed of narrow-band components located at random frequencies that turn on

and off randomly in each short-time frame [Cap94]. This “musical noise” artifact can

be reduced by an improved estimation of the average noise spectrum. A generalization

of the SS method is proposed in [LO79, BSM79] as follows:

|X̂w(k)|p = max (|Yw(k)|p − αE{|Dw(k)|p}, 0) . (4.8)

And a frequency response of the enhancement system or a suppression rule is repre-

sented as a function of the a posteriori SNR γk as:

HSS(k) =
X̂w(k)

|Yw(k)| =

(
1 − α

γk

)1

p
. (4.9)

A degree of freedom is described by the exponent p where p = 1 and p = 2 correspond

to magnitude and power spectral subtraction, respectively. Noise overestimation, i.e.

α ≥ 1, helps to remove noise as much as possible while increasing speech distortion.

In case of underestimation, 0 < α < 1, the subtraction of noise is reduced to avoid

the introduction of artifacts, and to keep the background noise at a certain level which

maybe comfortable for the human ear.

4.2.2 Wiener filtering

The goal of the Wiener filter is to filter out noise that has corrupted a signal by

statistical means. With this technique, a frequency weighting for an optimum filter is

first estimated from the noisy speech. This filter is then applied to obtain an estimate
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of the noise-free speech signal. Wiener’s solution requires information regarding the

spectral content of the clean speech signal and the noise. Based on assumption that the

speech signal and the noise signal are uncorrelated stationary random processes, the

linear estimator of x(n) which minimizes the mean square error is obtained by filtering

y(n) with the non-causal Wiener filter [LO79]:

H(k) =
E{|Xw(k)|2}

E{|Xw(k)|2} + E{|Dw(k)|2} . (4.10)

This solution does not modify the phase of the noisy speech signal, it has zero phase.

The phase associated with the estimate X̂w(k) is that of Yw(k). The approximated

PSD E{|Xw(k)|2} of the clean speech signal can be estimated by first estimating

E{|Yw(k)|2}, then E{|Dw(k)|2} is subtracted from the estimated E{|Yw(k)|2} to obtain

an estimate of E{|Xw(k)|2}. A generalization of the Wiener filtering has been studied

as parametric Wiener filters:

HWF (k) =

[
E{|Xw(k)|2}

E{|Xw(k)|2} + αE{|Dw(k)|2}

]β
. (4.11)

where α and β are constants which are used to tune the characteristics of the Wiener

filter. The Wiener filter solution corresponds to α = β = 1. For α = 1 and β = 1/2, we

obtain a formula for power spectral subtraction. This means the Wiener gain function

is just simply the square of the suppression rule for the power spectral subtraction

method. Its gain function is rewritten as a function of the a posteriori SNR γk as

follows:

HWF (k) =

(
1 − α

γk

)β

. (4.12)

4.2.3 Optimal non-linear estimator

As another approach, the modification of the SS is proposed in [MM80]. The estimation

problem is formulated by assuming the noise at each frequency channel is Gaussian and

the resulting estimate is derived from the ML estimate:

|X̂w(k)| =
1

2
|Yw(k)| + 1

2

(
|Yw(k)|2 − E{|Dw(k)|2}

) 1

2 , (4.13)

and a gain function is calculated as:

HML(k) =
1

2
+

1

2

√
1 − 1

γk
. (4.14)

By considering the fact that speech does not always appear in all recorded speech

frames yw(n), a probabilistic factor for the present of speech is proposed as a function
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of |Yw(k)| [MM80].

The optimal non-linear spectral amplitude estimation based on the minimum mean

square error criterion and its modification [EM83, EM84, EM85] achieves a significant

noise reduction while reducing the “musical noise” and maintaining good speech quality.

In [EM84] a combination between the MMSE amplitude estimate and the MMSE phase

estimate improves the optimality of the resulting estimate. The MMSE amplitude

estimate is derived as following gain function:

HMMSE(k) =

√
πνk

2γk
exp

(−νk
2

) [
(1 + νk)I0(

νk
2

) + νkI1(
νk
2

)
]
, (4.15)

where I0(.) and I1(.) are the modified Bessel functions of order zero and one, respec-

tively, and νk is defined as:

νk =
ξk

1 + ξk
λk. (4.16)

The performance of this constrained MMSE amplitude estimate was shown to be bet-

ter than the ML estimate [MM80] using the same Gaussian model. The gain function

in Equation (4.15) requires high computational effort due to Bessel functions. Sim-

plifications of this suppression rule are proposed in [WG01] with three simpler rules

corresponding to the joint maximum a posteriori (MAP) estimate of the amplitude and

the phase, MAP estimate of the amplitude, and MMSE estimate of the spectral power

[Sri05]. The third approach provides the best approximation to Equation (4.15) with

the following suppression rule:

HSP (k) =

√
ξk

ξk + 1

νk + 1

νk
. (4.17)

By applying a MMSE log-spectral amplitude estimator which provides a better distor-

tion measure than the MSE of the spectral amplitude only [EM85], the following gain

function is obtained by minimizing E

{(
logXw(k) − log X̂w(k)

)2
}

:

HLSA(k) =
ξk

ξk + 1
exp

(
1

2

∫ ∞

νk

e(−t)

t
dt

)
. (4.18)

where Xw(k) and X̂w(k) are the amplitudes of the kth spectral component of the noise-

free speech and estimated speech signals, respectively. As shown in [EM85], this sup-

pression rule results in lower residual noise than the one derived by minimizing the

MSE in the spectral domain. Motivated by the observation that the speech DFT co-

efficients are better modeled by a Gamma distribution, and by using a Gaussian or
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Laplacian distribution for the noise coefficients, two non-linear MMSE estimators are

derived in [Mar02] which reduce “musical noise” for low a-priori SNRs. With the same

assumption, it was proved in [BM03] that the use of a Gaussian distribution for the

noise results in “musical noise” while it is reduced by using Laplacian distribution. A

nice overview of the MMSE estimation approach assuming different super-Gaussian

models for speech and noise is presented in [Mar05].

4.2.4 Noise estimation

A good noise estimate may lead to high quality of the denoised speech signal [Chi00,

Vas00, Dav02]. As a general method, the noise estimate can be calculated from non-

speech frames which are detected previously by VAD [BJF94, BJF95, SS97b, TO00,

CK01]. The soft-decision VAD overcomes some disadvantages of the binary VAD by

considering the probability of non-speech/speech presence in specific segments [SS98].

A drawback of the VAD-based spectral subtraction approach is low temporal consis-

tency if the unreliable speech/non-speech detection is occupied. Another drawback of

VAD is that the noise estimate cannot be updated during speech periods which re-

sults in poor noise estimation. To overcomes the problems of VAD, the noise estimate

can be updated during the speech activity regions by the minimum statistics method

which is proposed in [Mar93, Mar01]. As the minimum is sensitive to outliers, a re-

lated method which is called quantile method is presented in [SFB00, Eva01]. The

noise level is estimated by taking the temporal quantile instead of the minimum at

each frequency bin. One more approach which provides a more accurate noise estimate

uses trained statistical models [Eph92a, SSKon] to exploit the prior knowledge about

noise. HMMs, GMMs, and codebooks are such statistical models that are trained on

a specific database.

4.3 Wavelet denoising approach

While the approaches described so far are based on the short-time Fourier transform,

the noise reduction topic has been studied and developed recently in the wavelet domain

by using the wavelet transform and the wavelet packet decomposition. The short-time

Fourier transform which is used in the spectral subtraction method has a limitation due

to its fixed absolute bandwidth resolution in the time-frequency plane. The discrete

wavelet transform which provides a fixed relative bandwidth in the time-frequency

analysis can avoid that drawback [VK95, Mal99]. This advantage of the DWT results
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from its short basis functions which allow to analyze high-frequency signal components

while the long ones are helpful for low-frequency signal components.

4.3.1 Hard and soft thresholding functions

To be compared with other denoising methods using optimal non-linear estimator re-

viewed in previous sections, wavelet denoising is considered as a non-parametric statis-

tical estimation which does not need to estimate parameters of the model prior. Due

to the linearity of the wavelet transform, the additivity of the model in Equation (4.1)

is preserved. The wavelet coefficients of noisy speech Yk(n) can be expressed as the

sum of the coefficients of clean speech Xk(n) and noise Dk(n) as:

Yk(n) = Xk(n) +Dk(n) . (4.19)

In this noise model, we assume noise coefficients is white and Gaussian distribu-

tion with zero mean and variance σ2. The goal of wavelet thresholding/shrinking

is, with selected T , to minimize the mean squared error or formally the risk R(T ) =

E
{
‖X̂k(n) −Xk(n)‖2

}
. The heuristic of the wavelet-based denoising technique orig-

inates from this statement: every empirical wavelet coefficient contributes noise of

variance σ2, but only very few wavelet coefficients contribute signal [DJ94]. As we

know, the wavelet transform decorrelates the signal and leaves uncorelated noise un-

correlated. Because the noise is spread out equally over wavelet coefficients, i.e. the

wavelet decomposition leads to a sparse representation, the important coefficients can

be distinguished from noisy coefficients by their higher absolute values. This suggests

a denoising strategy (so-called wavelet thresholding) by replacing the noisy DWT coef-

ficients which are lower than a certain threshold T by zero and doing the inverse DWT

to get a denoised signal. In case of very low SNRs, this technique can not hold because

it is difficult to distinguish between signal coefficients and noisy coefficients.

With the hard-thresholding gain function GH(T ) [DJ94], all wavelet coefficients

which are lower than the threshold T are removed while the others are left untouched:

X̂H
k (n) = GH(T, Y ) =

{
Yk(n) , if |Yk(n)| > T

0 , if |Yk(n)| ≤ T
. (4.20)

Because of the strong discontinuity of this input-output characteristics as depicted

in Figure 4.2, some applications do not use hard-thresholding. The pure noise coeffi-

cients may pass a threshold which results in artifacts introduced in the outputs such
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Figure 4.2: Input-output characteristic of hard-thresholding and its discontinuities.

as annoying ’blips’ and increased residual signal distortion. With the soft-thresholding

proposed in [DJ94, Don95], these artifacts can be reduced by shrinking the wavelet

coefficients above the threshold by an amount equal to the absolute threshold value T :

X̂S
k (n) = GS(T, Y ) =

{
sgn (Yk(n)) (|Yk(n)| − T ) , if |Yk(n)| > T

0 , if |Yk(n)| ≤ T
(4.21)

Consequently, the input-output characteristics becomes continuous, see Figure 4.3.

It reduces the discontinuity of hard-thresholding but is still sub-optimal because its

high-order derivatives are all zero and because of the strict setting to zero of the

coefficients whose absolute values are below the threshold. This leads to the destruction

of wavelet coefficients of unvoiced speech due the high similarity in terms of signal

characteristics between unvoiced consonants and noise. By deriving bias, variance, and

risk function for the hard thresholding and soft thresholding, Andrew Bruce in [BG95]

analyzed the basic difference between hard and soft thresholding. Hard thresholding

tends to have bigger variance because of the discontinuity of the gain function while

soft thresholding tends to have bigger bias due to its shifting of all coefficients which

are bigger than threshold T towards zero by an amount of T . Contribution of threshold
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Figure 4.3: Input-output characteristics of soft-thresholding and strict setting to zero.

selection to bias and variance is discussed in next section.

4.3.2 Shrinking functions

The shrinking terminology is to be distinguished from thresholding. Thresholding

means all wavelet coefficients whose values are below a selected threshold are strictly

set to zero, while shrinking preserves more information of coefficients by setting them

to a fraction of their original values, only a small part of them is replaced strictly by

zero. As one of the methods for achieving small variance and small bias at once, a

semisoft shrinkage function was proposed in [BG95]. It employs two thresholds T1 and

T2, and represents a compromise between soft and hard thresholding and is defined as

the following function:

X̂SS
k (n) = GSS(T1, T2, Y ) =






0 , if |Yk(n)| ≤ T1

sgn(Yk(n))
T2(|Yk(n)| − T1)

T2 − T1
, if T1 < |Yk(n)| ≤ T2

Yk(n) , if |Yk(n)| > T2

(4.22)
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The semisoft shrinkage function includes both hard thresholding (T1 = T2) and soft

thresholding (T2 = ∞) as special cases. This kind of generalized shrinkage can prevent

the sensitivity to small fluctuation of the wavelet coefficients which is very critical in

hard thresholding. Due to its high discontinuity, the hard thresholding output changes

dramatically when the values of wavelet coefficients vary slightly around the threshold.

There are several variants of wavelet shrinkage which try to smoother the gain

function. A differentiable shrinkage function presented in Equation (4.23) was studied

in [ZD97, ZL99]. These shrinking functions have higher order derivatives which allow to

develop adaptive schemes of denoising based on gradients and will have better numerical

properties in general.

X̂DS
k (n) = GDS(T, ρ, Y ) =






Yk(n) + T − T

2ρ+ 1
, if Yk(n) ≤ −T

1

(2ρ+ 1)T 2ρ
Y 2ρ+1
k (n) , if |Yk(n)| ≤ T

Yk(n) − T +
T

2ρ+ 1
, if Yk(n) > T

(4.23)

Motivated by a novel shrinking function which is continuous around the threshold and

adapts to the characteristics of the input signal, a customized shrinking function was

designed in [YV04] as follows:

X̂CS
k (n) = GCS(T, τ, ǫ, Y )

=






Yk(n) − sgn(Yk(n))(1 − τ)T , if |Yk(n)| ≥ T

0 , if |Yk(n)| ≤ ǫ

τ

( |Yk(n)| − ǫ

T − ǫ

)2 [
(τ − 3)

( |Yk(n)| − ǫ

T − ǫ

)
+ 4 − τ

]
, otherwise

(4.24)

where 0 < ǫ < T is the cut-off values below which the wavelet coefficients are set

to zero, and 0 < τ < 1 is a parameter controlling the function shape. With τ = 0

we obtain the soft thresholding function and with τ = 1 we get a smoothed hard

thresholding function which is discussed in the next section.

4.3.3 Optimal shrinkage: Smoothed hard thresholding

An enhanced shrinkage, i.e. smoothed hard thresholding based on the µ-law, is pro-

posed in [SA01, CKYK02] for speech enhancement. It preserves the larger coefficients

and has a smooth transition from noisy coefficients to signal coefficients
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Figure 4.4: Enhanced wavelet shrinking by smoothed hard-thresholding.

X̃SH
k (n) = GSH(T, µ, Y )

=






Yk(n) , if |Yk(n)| > T

T sgn(Yk(n))

µ



(1 + µ)

|Yk(n)|
T − 1



 , if |Yk(n)| ≤ T

(4.25)

This suppression rule is further modified by [Kot04] for denoising in robust speech

recognition with an adaptive parameter µk which is defined as:

µk = θ
max
n

{|Xk[n]|}
T

, (4.26)

where θ is a constant factor selected to minimize the MSE between the noise-free speech

signal x[n] and its estimate x̂[n] [Kot04]. In section 4.6.3, an adaptive factor θ will

be proposed to improve perceptual speech quality. The µ-law shrinkage as well as the

semisoft shrinkage [BG96] present a compromise between soft and hard thresholding.

As discussed, the hard thresholding function has larger variance but smaller bias, while

the soft thresholding shows higher bias but smaller variance. In other words, hard

thresholding tends to keep closeness to the signal, while soft thresholding achieves
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smoothness of the signal [BG96]. A big advantage of the µ-law shrinkage over others is

that it does not strictly set to zeros ll or parts of the wavelet coefficients, whose absolute

values are below the threshold, as done by hard and soft thresholding [DJ94]. Besides,

the drawback of the semisoft shrinkage [BG96] (higher computational complexity with

two thresholds) is avoided here.

Fig. 4.4 shows the input-output characteristic of the µ-law based optimal shrinkage

function. The lower the adaptive parameter, the more wavelet coefficients are retained

and vice verse. The smoothed hard-thresholding turns into conventional hard thresh-

olding when the adaptive parameter goes to infinity. This shrinking preserves more

wavelet coefficients which fall below the threshold. This behavior of saving coefficients

is demonstrated in Figure 4.5 and Figure 4.6, with wavelet coefficients derived from a

3rd scale DWT of an unvoiced fricative segment at SNR = 15dB, and their versions

processed by hard thresholding and smoothed hard thresholding.
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Figure 4.5: (a) Wavelet coefficients derived from an unvoiced segment at SNR =

15dB, (b) Denoising by hard-thresholding, (c) Denoising smoothed hard-thresholding.

Another advantage of the smoothed hard thresholding is that it maintains the struc-

ture of voiced speech better than hard thresholding for high noise level. As shown in
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Figure 4.6: (a) A fricative segment with SNR = 15dB in the time domain, (b) Its

enhancement by hard-thresholding, (c) Its enhancement by smoothed

hard-thresholding.

Figure 4.7, the almost periodic structure of the reconstructed waveform of the phoneme

/e/ which is corrupted by car noise is maintained better after denoising by smoothed

hard-thresholding than the one using hard-thresholding. The introduced artifacts in

Figure 4.7 (c) may come from the unsuitable selection of the wavelet basis.

4.4 Estimate of thresholds

4.4.1 Bias and variance

We consider the contributions of bias and variance into risk function and focus on

the threshold that minimizes this objective function. The content is this section is

adapted from original material of chapter 3 in [Jan00]. Thresholding can be considered

a trade-off between data fitting and smoothing. A small threshold achieves a close

fitting to input speech with high probability of retained noise. On the other hand, a
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Figure 4.7: (a) A vowel segment with SNR = 15dB, (b) Its enhancement by

hard-thresholding, (c) Its enhancement by smoothed hard-thresholding.

large threshold shrinks much more wavelet coefficients to zero so as to smooth the input

signal while degrading the speech characteristics by introducing distortions, especially

for noise-like, i.e. unvoiced sounds. The expected risk function is presented as a

function consisting of bias and variance terms:

E {R(T )} = E
{
‖E{X̂k(n)} −Xk(n)‖2

}
+ E

{
‖X̂k(n) − E{X̂k(n)}‖2

}
,

Risk = Bias+ V ariance.
(4.27)

Obviously replacing the smallest coefficients by zero lowers the variance but increases

the bias, and vice versa. By increasing the threshold, we get smaller variance which

produces a smoother signal, while decreasing the threshold corresponds to a lower bias

which represents a closer fitting. The minimum risk threshold is the best compromise

between variance and bias. The contribution of each individual coefficients to the risk

function affects the threshold estimation [DJ94]. Assuming the noise source is Gaus-

sian, an important conclusion is derived: the small coefficients with less information
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are best thresholded by high thresholds, whereas the big coefficient containing useful

information should be served with small thresholds [Jan00].

4.4.2 Universal threshold procedure

The universal threshold derived by Donoho [Don95] is based on the principle of mini-

mization of the risk between the expected signal and the noise-reduced output signal.

He proved that, under assumptions such as orthogonality of DWT and i.i.d. noise with

variance σ2, the universal threshold is proportional to the standard deviation and the

log of the length N of the wavelet coefficient sequence:

T = σ
√

2 logN (4.28)

This threshold which is derived for the asymptotic behavior of the minimum risk is

not actually the optimal threshold vale. However, it is applicable for any signal with

length N and sufficiently smooth [Jan00].

4.4.3 White and non-white noise

The wavelet decomposition provides not only a sparse representation but also a multi-

scale representation. The later property is an important wavelet characteristic which

helps to choose the threshold in case of colored noise where the noise power depends

on the scale. We see that the noise level is equal over all scales only for the white noise

case. Thus, the noise threshold can be estimated from the detail coefficients at the 1st

analysis scale because this detail contains most of the small coefficients. However, in

case of colored noise, the noise level must be assessed at each scale, and the variance

at that scale is re-calculated. Scale-dependent threshold Tk was proposed by [Joh99].

It is more adaptive to speech characteristic.

Tk = σk
√

2 logNk (4.29)

where Nk is the length of one wavelet packet containing the sequence of wavelet coeffi-

cients Yk(n) in the kth frequency channel. σk is the standard deviation of the noise in

Yk(n). To avoid outliers, the noise level is estimated by the median absolute deviation

(MAD) of the sequence of wavelet packet coefficients which is a robust estimate of the

standard deviation:

Tk =
1

γMAD

Median(|Yk(n)|)
√

2 logNk , (4.30)
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where γMAD = 0.6745 is the conversion factor between the standard deviation and

MAD in case of white Gaussian noise [Don95]. In our research, the universal thresh-

old and the smoothed hard shrinking function are used to estimate the threshold and

removing noise in case of stationary and non-white noise. Because the speech enhance-

ment system processes the speech signal frame by frame, the frame index i is introduced

into the formula of the shrinking function as:

X̃SH
k,i (n) = GSH(T, µ, Y )

=






Yk,i(n) , if |Yk,i(n)| > Tk,i

Tk,i sgn(Yk,i(n))

µ



(1 + µk,i)

|Yk,i(n)|
Tk,i − 1



 , if |Yk,i(n)| ≤ Tk,i

(4.31)

where the adaptive parameter µk,i is defined as:

µk,i = θ
max
n

{|Yk,i[n]|}
Tk,i

, (4.32)

The universal threshold calculation is applied for every kth frequency channel at the

ith frame as:

Tk,i =
1

γMAD
Median(|Yk,i(n)|)

√
2 logNk,i , (4.33)

From the analysis of the universal threshold approach, we conclude that this is a

very local estimate. It does not take into account the correlations between different

coefficients across scales. This consideration is necessary for denoising speech signals

contaminated by non-white noise which has different characteristics at different fre-

quency channels. This drawback is surmounted by a nonlinear frequency weighting

function proposed in subsection 4.6.1. Besides, the universal thresholds are calculated

from the wavelet packets of every frequency channel at a certain frame. This means

the temporal characteristics of speech and noise are not accounted for the estimation

of the threshold, especially for non-stationary noise. In order to handle the addressed

problem, the calculated universal thresholds are further modified by quantile filtering

over a buffer containing Nf speech frames. The thresholds are updated for every buffer

by a recursive scheme in section 4.5.1 and temporally weighted by an adaptive function

in section 4.6.2.
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4.5 Statistical quantile filtering

It is well known that speech information does not always appear in all frequency chan-

nels simultaneously, even in speech intervals. The energy in each frequency channel

is on the noise level over a significant part of the time as reported in [SFB00]. Thus,

the noise level can be estimated by taking the qth quantile observed over the duration

of the utterance in every channel. From this observation, we develop a quantile-based

algorithm to estimate the thresholds related to the noise level in each wavelet packet

channel.

4.5.1 Quantile filtering and recursive buffer

To meet the memory saving and delay requirements, overlapping buffers instead of the

whole utterance (which might continue indefinitely) are used. Because of the properties

of quantile method, the buffer length and its effect on the perceptual quality should be

considered. Some settings of these parameters are described in Table 4.1. The buffers

(Lb = 960ms length and 480ms overlap) which storeNf = 47 speech frames (Lf = 40ms

length and 20ms overlap) are used because of the good results from informal listening

tests and their suitability to real-time applications. After sorting the threshold values

Lb(ms) Nf(frames) Lf (ms)

480 23 40

960 47 40

Table 4.1: The setting of frame and buffer sizes

stored in a buffer for every wavelet packet channel, we observe that the threshold values

derived from non-speech frames occupy up to 60% of the buffer as depicted in Fig. 4.8.

This lower quantile part should be memorized and transferred into the next buffer to

maintain continuity with the estimated noise level of the previous buffer. This is done

by applying a recursive scheme as described in Fig. 4.9 which is constructed from

the overlapping buffers. The use of recursive buffering mechanism helps to track non-

stationary noise because the thresholds related to noise levels are updated for every

buffer automatically.

4.5.2 Noise threshold estimation

Noise threshold estimation is implemented in three steps as follows:
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Figure 4.8: Quantiles of sorted threshold values over a buffer of 960ms at three

selected wavelet subbands.

• First, the threshold Tk,i are calculated for all wavelet packet channels of all frames

from the current buffer (e.g., the 2nd buffer in Fig. 4.9) using Equation 4.33, and

stored in the corresponding threshold buffer.

• Second, the new thresholds Tk,i of the frames i = 24, . . . , 47 are selected and merged

with the sorted thresholds Tk,i which are selected from quantile range q = 0.1, . . . , 0.6

of the previous sorted threshold buffer to form a recursive buffer. The selection of this

quantile range guarantees the ’fading memory’ property for the recursive buffering

scheme.

• Then, for each WPD channel, the thresholds of all speech frames in the recursive

buffer are sorted in ascending order which leads to Tk,i′, where i′ = 1, . . . , Nf are the

frame indices after sorting with Nf = 47. This sorted recursive buffer will be used in

the next loop.

• Finally, the threshold related to the noise level, the so-called quantile threshold Γk,

for all frames in the sorted recursive buffer at the kth channel, is determined as the
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ovelapping buffer 1
i=1
frames

i=47

sort

compute universal thresholds

select q=0.1,...,0.6

threshold buffer 1

ovelapping buffer 2

select i=24,...,47

threshold buffer 2

merge selections

recursive
buffer 2

choose quantile q=0.2

sorted
recursive
buffer 2

loop for
next buffer

(*)

(**)

i=1 i=47 i=1 i=47

sorted threshold buffer 1
q=0.0 q=1.0

sort

q=1.0

q=0.1 q=0.6 i=24 i=47

Figure 4.9: Recursive scheme.

qth quantile:

Γk = Tk,i′ |i′=⌊qNf ⌋ (4.34)

We have performed informal listening tests over the range of possible values q =

0.0, 0.1, . . . , 0.6. With q = 0, we get the minimum statistics estimation of the noise

threshold as in [Mar01]. There is, of course, an obvious question about the optimal

selection of q. Some research in [SFB00] tried to compare the use of mean, modal,

and median of quantiles in spectral subtraction based speech recognition. However,

quantile selection in the wavelet threshold domain is still an open question for speech

enhancement. The quantile q = 0.2 is a good choice which yields the best performance

in informal listening test.

4.6 Time-frequency weighted quantile threshold

As mentioned in section 4.4.3, in order to handle the non-stationary and non-white noise

effectively, the quantile threshold Γk derived for every kth channel at each ith frame in a
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certain buffer is weighted by a time-frequency dependent non-linear adaptive function

as follows :

Γ̃k,i = λk,iηkΓk, (4.35)

where λk,i, ηk are nonlinear parameters in the time and frequency domains, respectively.

Γ̃k,i is the weighted estimate of the quantile threshold.

4.6.1 Non-linear frequency weighting

Correlated or colored noise has high variation of noise energy over the various wavelet

channels. As reported in [Jan00], by the analysis of the correlation matrix of the noisy

wavelet coefficients, if the noise is not white, then the colored noise is maintained after

the wavelet transform. To suppress colored noise effectively, the quantile threshold Γk

is weighted by the static non-linear function ηk as follows:

ηk = (a1Γk)
−b1 + d1 , (4.36)

where a1 = 10, b1 = 0.4, d1 = 0.2 are constants and selected manually to obtain good

perceptual quality from our informal listening tests.

By employing ηk, a better estimate of the noise level thresholds over all wavelet

channels is achieved, thereby the quality of the processed speech is enhanced. As shown

in Fig. 4.10, the weighting function ηk amplifies strongly the small quantile thresholds

and less those in the larger range. With this behavior, the weighting function meets

the requirements discussed in section 4.4.1. In general, the small coefficients which

lead to small universal thresholds, and thus small quantile thresholds (in the range

of [0.0, . . . , 0.1] depicted in Fig. 4.10) should be best thresholded with high thresh-

olds. Whereas the big coefficients which lead to large universal thresholds, and thus

large quantile thresholds (which are higher than 0.1) should be served by less amplified

thresholds. In other words, by applying frequency weighting in Equ. 4.36, the big

coefficients containing speech information mostly at low-frequency channels result in

low thresholds, and thus are slightly impacted. This leads to a low distortion of the

enhanced speech signal while removing background noise effectively. In [PK05b], there

was another proposed function which provides quite similar behavior. The only differ-

ence is that the very low threshold range of [0.0, . . . , 0.05] should not be thresholded by

too high a threshold in order to make the remaining background noise sound comfort-

able. However this function is more expensive than the function in Equation (4.36).

Besides, its usage is effective only when dealing with white noise which is not always

realistic. For other types of background noise, the quality of speech sounds enhanced
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Figure 4.10: Frequency non-linear weighting function.

by these two functions is very similar. Design of this function is reported in appendix

E.1.

4.6.2 Adaptive temporal weighting

Non-stationary noise can be handled by adaptive weighting method in the time domain.

In principle, the method is based on the observed temporal variation of the universal

threshold values of all frames over a buffer. The time-varying threshold dependent

curve (TDC) λTDCk,i is built to track where speech and noise appear along the buffer.

The frames with smaller estimated thresholds Tk,i, which are obtained from quantile

filtering, might correspond to noise and will undergo stronger thresholding. The frames

with large Tk,i values always contain more speech information and are treated in the

reverse way to preserve speech quality, see Fig. 4.11. This is expressed as:

λTDCk,i = (a2T
∗
k,i)

−b2 + d2 , (4.37)
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where a2 = 1, b2 = 0.14, d2 = 0.2 are selected experimentally from informal listening

tests, T ∗
k,i is the universal threshold in the current threshold buffer (step (*) in Fig.

4.9). By introducing this parameter λTDCk,i , the weighted threshold Γ̃k,i in Equation

4.35 becomes frame-dependent threshold.
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Figure 4.11: Input universal threshold Tk,i and adaptive temporal weighting λTDCk,i .

After the nonlinear weighting by the time-frequency parameter, the weighted thresh-

olds Γ̃k,i are smoothed by median filtering to reduce the fluctuations between estimated

noise thresholds of neighboring frames. Figures 4.12 - 4.14 shows noise thresholds

estimation in the time-frequency plane by applying frequency weighting, time and

frequency weighting, and smoothed time and frequency weighting on the calculated

universal thresholds.

4.6.3 Adaptive factor for smoothed hard shrinking

From our initial listening tests, we felt that the processed speech sound is not as good

as natural speech if we keep the factor θ constant. A high value of θ eliminates the noise

effectively with a rather quiet residual in the non-speech frames. But it also creates
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Figure 4.12: Frequency weighting over all channels in a buffer.

some discontinuities in the speech frames that result in speech distortion artifacts. To

overcome this phenomenon, the factor θ is adapted itself by the normalized smoothed

thresholds Γ̃k:

θk,i = exp



α Γ̃k,i

max
i

{Γ̃k,i}



 (4.38)

where α = 5.8 is a slope constant. Due to this adaptive factor θk,i, at each wavelet

packet channel, the part of the curve below the threshold in Fig. 4.4 is flatter for the

speech frames so as to preserve more coefficients and steeper for the non-speech frames

so as to compress noise. This improves the perceptual quality for the speech parts

significantly and keeps the background noise at a very small level for the non-speech

parts.
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Figure 4.13: Time-frequency weighting over all channels for all frames in a buffer.

4.7 Speech enhancement evaluation

Based on quantile filtering and smoothed hard shrinking of wavelet packet coeffi-

cients, the statistical wavelet filtering (SWF) algorithm using time-frequency weighting

has been implemented. The proposed algorithm is evaluated on the AURORA3 and

NTIMIT databases, and compared with other STFT-based algorithms such as spectral

subtraction (SS) [Bol79], nonlinear spectral subtraction (NSS) [EM83], and the NSS

algorithm with the noise estimator based on the minimum statistic principle [Mar01]

(NSS-MM) (which has been implemented by [Ser03]). All four algorithms are evalu-

ated by objective tests and subjective tests explained in the next sections. Samples of

denoised files are available on our website [Pha05].

4.7.1 Experimental setup

The algorithms are tested on a set of 40 utterances each from the AURORA3 database

[aur01] and the NTIMIT database [FDGM+93]. The AURORA3 database [aur01] is a

subset of the SpeechDat-Car database for the German language. All recordings were
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Figure 4.14: Smoothed time-frequency weighting over all channels for all frames in a

buffer.

sampled at Fs = 8kHz. It contains isolated and connected German digits recorded

in car noise conditions. The NTIMIT database [FDGM+93] was built by transmitting

all original TIMIT recordings [GLF+93] in the English language through a telephone

handset and over various channels in the NYNEX telephone network and redigitizing

them. All recordings were sampled at Fs = 16kHz. For every database, 40 utter-

ances are selected randomly and each is denoised by four different algorithms. While

an objective test is quite straight forward, subjective tests use more complicated pro-

cedures and require much more effort. Most of listening evaluation standards were

developed for speech synthesis and speech coding applications. In our research, we

perform overall quality evaluation by using Comparison Category Rating and the P.85

ITU-T standard. Besides, a segmental evaluation method, the so-called Comparison

Diagnostic Test, is developed in the basis of the Diagnostic Rhyme Test standard. All

subjective tests have been done by 10 native German male listeners.
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4.7.2 Objective test

The segmental signal-to-noise ratio (SegSNR) is estimated for a total of 80 enhanced

utterances. As shown in Fig. 4.15, the statistical wavelet filtering algorithm SWF

provides higher output SegSNR than the NSS-MM for noisy speech an input SegSNR

≥ 5dB and a little bit lower output SegSNR in case of input SegSNR ≤ 0dB. The

SS and NSS algorithms achieve higher output SegSNR. However, the SegSNR does

not faithfully express the speech quality. Thus, we have also performed three more

subjective tests on processed data sets.
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Figure 4.15: Input-ouput SegSNR for different algorithms.

4.7.3 Segmental evaluation: Comparison Diagnostic Test

The Comparison Diagnostic Test is developed on the basis of the Diagnostic Rhyme

Test standard introduced by Fairbanks in 1985 [GMW97]. The test material is focused

on consonants only because they are more problematic than vowels. From 40 processed

files of the AURORA3 data set, 8 utterances spoken by 4 female and 4 male speakers are

selected randomly. There, each of 2 files is chosen from one of four different recording

conditions (low speed, high speed, stop with operating engine, and running in town).
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One is recorded with close-talking microphone, and another one is recorded with far-

distance microphone. These 8 files are combined with 2 files chosen from 40 processed

files of NTIMIT database to build a data set of 10 files for CDT evaluation. Then 10

utterances consisting of one word or several words which store unvoiced consonants,

voiced consonants, and plosives are artificially cut out of the whole sounds for listening

purpose.
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Figure 4.16: Comparison Diagnostic Test results.

The listeners hear the unprocessed file and processed utterances, and concentrate

on single phonetic classes that are marked in the corresponding texts. Then they vote

by Comparison Category Rating (ITU-T P.800) [GMW97] with scales from 3 (much

better) to -3 (much worse) as described in Table D.2. As shown in Figure 4.16a,

the SWF and NSS-MM methods maintain consonants better than the two former, ie.,

SS and NSS methods. The SWF algorithm is the best one in preserving plosives as

expected from its nonlinear time adaptive weighting. A detailed description of the

proposed CDT is presented in appendix D.1.
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4.7.4 Overall evaluation: Comparison Category Rating

In this test, another data set of 10 utterances containing 8 car noise and 2 telephone

noise utterances are selected randomly by the procedure of section 4.7.3. The listeners

hear the noisy and the enhanced utterances, then judge which of the utterances are

better overall and how much (in score values of CCR) it is improved in comparison

with the original file. From Tab. 4.2, we see that the SWF algorithm achieves higher

performance in case of car and telephone noise with 10dB SegSNR. In the case of 5dB

SegSNR, by asking explicitly listeners the best algorithm that they prefer, more than

2/3 of the listeners prefer the output of our system over the original noisy speech.

Databases Aurora3 NTIMIT

SegSNRs 5dB 10dB 10dB

Algorithms

SS -2.23 ± 1.10 -2.45 ± 0.61 -2.25 ± 1.88

NSS -1.28 ± 1.26 -0.55 ± 1.51 -1.35 ± 1.03

NSS-MM 0.45 ± 1.75 1.00 ± 1.44 0.75 ± 1.78

SWF 0.83 ± 1.33 1.30 ± 1.24 1.30 ± 1.06

Table 4.2: Means and standard deviations of overall evaluation based on CCR.

4.7.5 Overall evaluation: ITU-T Standard P.85

Again, a third data set of 10 utterances is constructed for this listening test ITU-T

standard P.85 [GMW97]. By using absolute scales per category, the listeners assess the

speech quality of noisy speech and denoised speech. There are 6 categorical ratings such

as acceptance, overall impression, listening effort, comprehension, articulation, voice

pleasantness. The definitions and score ranges of all categories are given in appendix

D.2. The lower the mean values of a category are, the higher the speech quality. The

scores evaluated on the Aurora3 and NTIMIT databases are shown in Figure 4.17 and

Figure 4.18, respectively. The two latter algorithms get similar or lower mean values

compared with the ones of the noisy speech. In almost all categorical ratings with

various SegSNRs, the performance of the proposed SWF always exceeds the one of

the NSS-MM. In the categories “overall impression” and “listening effort” the SWF

algorithm yields a clear improvement over the original noisy speech.
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Figure 4.17: Overall test according to ITU-T (P.85), scores obtained on the Aurora3

database processed by different algorithms and without processing (NP)

4.8 Conclusion

A speech enhancement system based on a statistical wavelet shrinking is designed to

eliminate musical noise as well as handle colored and non-stationary noise. The scale-

dependent threshold relating to the noise level is estimated by employing statistical

quantile filtering for every frequency channel and each time-domain buffer. In addition

to the use of a scale-dependent threshold, a nonlinear weighting function in frequency

helps to handle non-white noise. To achieve a better estimate of the noise threshold

in case of non-stationary noise, a temporally adaptive weighting function has been de-

signed and used together with quantile filtering to handle non-stationary noise. The

good results of subjective tests confirm the possibility of a high-level of noise suppres-

sion while preserving speech intelligibility and naturalness. Application of frequency

weighting which leads to the less impact on the voiced sounds and the proposed adap-

tive factor of the smoothed hard shrinking function provides an explanation for the

preserved naturalness as observed in the evaluation experiments. Finally, the specific
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Figure 4.18: Overall test according to ITU-T (P.85), scores obtained on the NTIMIT

database processed by different algorithms and without processing (NP).

time-frequency analysis of the DWT using a short basis function to analyze high-

frequency components and vice versa contributes to the good maintenance of quality

of the unvoiced sounds. The newly developed Comparison Diagnostic Test provides

a more accurate evaluation of the quality of unvoiced sounds in speech enhancement

applications.

As we see from our studies, the design of the wavelet thresholding/shrinking or

gain function is very important in this wavelet-based speech enhancement approach.

A survey on the application of different wavelet shrinking functions, especially the

generalized form [SB97, LGG04], to enhance noisy speech signal should be done in

the future. The use of optimal non-linear estimators based on the Bayesian approach

[Vid98, Lav06] opens an interesting research area for deriving optimal non-linear gain

functions in the wavelet domain. Beyond the universal threshold, the minimax and

SURE thresholds can also be applied. In order to improve the estimate of the noise

level in case of non-stationary noise, quantile filtering could be improved by using an
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adaptive quantile factor as proposed in section 3.6.1. The minimum statistics principle

could be implemented at every wavelet channel and compared with quantile filtering in

terms of speech enhancement performance. The selection of the optimal WPD tree as

well as the employment of the perceptual WPD will be studied to reduce the processing

time of the proposed system while maintaining the utmost speech quality. Besides,

the replacement of WPD by STFT in the proposed denoising framework needs to be

studied as a performance comparison between application of Wavelet transform and

Fourier transform in speech enhancement as well as speech recognition applications.



Chapter 5

Noise reduction for robust speech

recognition

5.1 Introduction

As one part of human-machine communication, the objective of automatic speech recog-

nition system can be interpreted as a transcriber of linguistic contents of speech signal

into words or sentences. The most interesting topic in this field over the last few

years is the robustness of ASR system in noisy environments. The current laboratory

ASR system is able to recognize continuous speech with average error rate from 5%

to 10%. If speaker adaptation is allowed, the error rate drops below 5% after several

minutes [You96]. However, the recognition performance decreases dramatically in in-

tensively noisy environments which distort the speech signal. Besides variability in the

speech signal caused by inter-speaker, intra-speaker, contextual and linguistic varia-

tions [Hil04], ambient noise of operating environment is a very important factor that

can enormously reduce the recognition rate of speech recognizer in real world applica-

tions. In addition, a mismatch between training and testing conditions leads to the low

recognition performance. This physical constraint, the lack of robustness to environ-

mental variabilities, motivates a technical challenge needed to be overcome. An ASR

system is environmentally robust if it is able to cope with a wide range of noise sources

in different environments such as cars, construction sites, cafeterias, offices, stations,

factories etc., where very low signal-to-noise ratios are encountered. The ambient noise

impacts not only speech signal but also speech production which is known as Lombard

effect [LT71, Jun93, JFF99]. In strong noise environments, a human speaker always

increases the vocal effort, e.g., by changing the articulatory shape, which results in
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variations in the produced speech signal.

Since last decade, plenty methods have been proposed and studied to improve the

robustness of speech recognizer in harsh environments. Roughly, the methods can be

divided into three approaches: acoustical model adaptation, robust feature extraction,

and noise reduction.

• Acoustical model adaptation is used to compensate the mismatch between train-

ing and testing conditions, thereby increasing the robustness of ASR system. A

common method is parallel model combination [GY96] which uses two separated

models for clean speech and noisy speech. However, the trained model which is op-

timized for one target environment may not handle environments with other noise

sources. Also, this approach increases complexity of the ASR system.

• Robust feature extraction is crucial in a speech recognition system for extracting

the best parametric representation of necessary linguistic information from speech

waveform. The objective is to find a lower-dimensional representation of informa-

tion from the speech signal that enhances the phonetic differences. The representa-

tive features may be extracted via three methods such as Fourier transform, linear

prediction, and wavelet decomposition. In the first method, the mel-frequency cep-

stral coefficients (MFCCs) [DM80] are used widely in the current ASR systems.

The second method consists of finding coefficients for a linear prediction (LP) filter

[Ita75] which is equivalent to autoregressive modeling of the signal, and the cepstral

coefficients are derived from the LP filter coefficients (linear prediction ceptral coef-

ficients, LPCC) [HN97]. As observed by [DM80], the MFCC features obtained from

Fourier spectrum preserve more acoustic information than LPCC, derived from the

linear prediction filter transfer function, and support better compression of small

spectral variations in high-frequency bands. Although speech recognition based on

MFCC features achieves a high recognition rate in the condition of clean speech

signals, performance is poor in the harsh environments, especially at very low SNR

levels. The drawback may result from the fixed resolution in time-frequency plane of

the STFT. Several parameterization methods based on DWT and WPD have been

proposed to address this problem in the literature [Kot04, SPH98, GT00, GG01]. It

is reported that the usage of WPD based features improves performance of speaker

identification and ASR as compared to MFCC features [SPH98, Kot04], but con-

stitutes an increased computational load.
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• Noise reduction is considered as an effective approach for robust ASR system.

As shown in Fig. 5.1, the quality of recorded speech signal is enhanced in a pre-

processing stage to ensure that proper information will be extracted by feature

extraction stage, thereby increasing recognition performance of the ASR systems.

In comparison with the two former approaches, the third solution using a pre-

processing stage for removing noise leaves an existing ASR system untouched.

Figure 5.1: Noise reduction approach for robust ASR.

In the framework of our study, we concentrate on the third approach by optimiz-

ing the proposed statistical wavelet filtering method for robust speech recognition. As

reported in chapter 4, for noise reduction of speech signals targeted at increased per-

ceptual comfort for the human listener, the proposed algorithm was found to preserve

overall quality (intelligibility, naturalness, etc.) while keeping a robust attenuation of

background noise. This motivates the question whether the increase in perceptual qual-

ity of a speech signal leads to an increased recognition rate of the ASR system or the

other way round. In the second investigation, several enhancements of the statistical

wavelet filtering are introduced as effective solutions for improving ASR performance.

The frequency weighting shape is changed to adapt with demands of ASR. Moreover,

noise thresholds are estimated in critical subbands by employing perceptual wavelet

packet decomposition. In a following study, by integrating the proposed noise reduction

process into training phase, the retrained models are expected to provide higher recog-

nition rates. To assess how effective the noise reduction process is under mismatch

conditions between training and testing phase of the ASR system, the experiments

with three different conditions as well-match, medium mismatch and high mismatch

are implemented and compared. The AURORA3 [aur01] and SNOW [sno] databases

which consist of complex noise from harsh acoustic environments are used to evaluate
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the efficiency of the optimized noise reduction algorithms.

The chapter is organized with the description of noise characteristics of practical

environments and some selected noise reduction algorithms for robust ASR in the

following section. Structures of standard and advanced front-ends are reported in the

next section. After that, different solutions to enhancing the statistical wavelet filtering

for improving ASR performance are described. Finally, the experimental results are

presented and discussed. Conclusions and proposals for further development end up

the chapter.

5.2 Why noise reduction for robust ASR?

In particular when ASR systems are used in environments where it is not possible to use

close-talking microphones, like for hands-free applications in cars, or if strong sources

of background noise, like factory noise, impact the speech signal noise suppression is re-

quired to achieve robust recognition performance. The noise sources in a car may come

from inside and outside as studied in [Hil04]. The outside noise is low-frequency noise

due to mechanical sources such as engine, and tires, etc. The inside noise results from

audio equipments, passengers, acoustic warning signals, windscreen wiper, etc. This

kind of low-frequency noise has quasi-stationary characteristic. Speech recognition in

such car noise environments is studied in the AURORA3 project [aur01]. In a real-

world environment, also strongly non-stationary noise sources, such as transient noise

of machines in the factory floor, or strongly correlated noise sources, as harmonic noise

from engines, have to be expected. The application of ASR in such a harsh environment

is considered in the European project SNOW (Services for NOmadic Workers) [sno],

where the task is to provide robust ASR for workers in a factory floor environment,

namely in airplane maintenance. The non-white and non-stationary noise sources en-

countered in these environment are a big challenge for noise reduction techniques in

robust ASR.

It is known that robust feature extraction and noise reduction are still far away

from human performance. This motivates a research with new techniques for improv-

ing performance of the ASR system in the wide range of noise sources. Many noise

reduction algorithms which were designed for speech enhancement task are optimized

and integrated into the ASR system as the pre-processing module. The optimal non-

linear spectral subtraction [EM83] which achieves a significant noise reduction while
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maintains high speech quality are used in co-operating with the minimum statistics ap-

proach [Mar93, Mar01] for noise estimation. This method can track the non-stationary

noise by updating the noise estimation during the speech activity regions. By applying

an optimized spectral subtraction algorithm to remove noise, the recognition rate is

improved as reported in [GMM04]. In the ETSI advanced front-end [ETS03] Wiener

filtering is used to improve the quality of extracted features.

Recently, with the flexible resolutions in time-frequency analysis of DWT [VK95,

AH01] and ability of maintaining unvoiced sounds of optimal wavelet shrinkage [Don95,

CKYK02], the wavelet-based noise reduction methods have been applied to improve

significantly recognition performance in harsh environments [Ohs93, Kot04]. The pro-

posed noise reduction method based on statistical wavelet filtering [PK05b] which pre-

serves high quality of denoised speech signal is employed for robust ASR in [RPK06].

With the capability of handling non-stationary and non-white noise by quantile filter-

ing, non-linearly adaptive weighting in time-frequency domain, and optimal wavelet

shrinkage, the SWF method is expected to increase recognition rate further by exper-

imentally parameter optimization and perceptual estimate of noise threshold.

5.3 Robust front-ends

Since MFCC features are currently the most popular features used for speech recog-

nition, the ETSI standard front-end (SFE) feature extraction [ETS00] is used for the

experiment. The recent algorithm which demonstrates the best overall performance

as compared to the ETSI standard will be explained briefly in its block scheme. It is

selected as the new standard for the advanced front-end (AFE) for distributed speech

recognition [ETS03]. The AURORA working group from the ETSI works on the de-

velopment and standardization of algorithms to parameterize a representation of the

speech (at 8kHz, 11kHz and 16kHz sampling rate) that is suitable for distributed

speech recognition. The AFE sub-group is in charge of defining the front-end and

speech processing methods. The AURORA working group has published two following

DSR standards:

• ETSI ES 201 108 (2000-02) provides the algorithm for front-end feature extraction

to create Mel-cepstrum parameters and compress these features for lower data trans-

mission rate (4800 bps).

• ETSI ES 202 050 (2003-11) proposes an advanced DSR front-end to improve recogni-

tion rate in noise environments. The noise reduction is carried out by Wiener filtering
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(8 kHz) and spectral subtraction (11 kHz and 16 kHz) with support of an energy-

based VAD. The Mel-cepstrum features of the enhanced speech are extracted after

noise reduction.

The speech enhancement methods used in the ETSI standards are well-known meth-

ods with limited efficacy in case of non-stationary and colored noise. Since the contri-

bution to these standards is possible, the promising noise reduction method based on

wavelet packet decomposition, statistical wavelet filtering, is employed as a replacement

for the Wiener filtering to improve recognition rate.

5.3.1 Standard front-end parameterization

The standard front-end structure is based on the mel-cepstral feature extraction. As-

suming short-term stationarity, the speech signal is framed with the frame length of

25ms, and the frame shift interval is 10ms. Then the framed input speech signal is filter

with a pre-emphasis filter to amplify high-frequency components for compensating the

attenuation caused by the radiation from the lips. A Hamming window is applied to

the output of each pre-emphasized signal frame, and a fast Fourier transform (FFT)

is applied to the windowed signal. Then the Fourier spectrum is smoothed by inte-

grating over Fourier coefficients in Mel-scale frequency bands (channels). There are

24 channels obtained by applying triangular, half-overlapping windows. The output of

Mel-filtering is log-compressed. Finally, 13 cepstral coefficients are derived by applying

a discrete cosine transform (DCT) to the output of log-compression. The whole process

is depicted by the scheme in Fig. 5.2:

Figure 5.2: Feature extraction scheme of standard front-end

5.3.2 Advanced front-end parameterization

In the advanced front-end project, the cepstral features are calculated from the input

speech signal with three main blocks as shown in Fig. 5.3. The noise reduction block

is a combination of a two-stage Wiener filter [AC99] and time domain noise reduction

[NSJ+01] which are described in next section. An energy-based voice activity detector

is used during the Wiener filter design. After that, the SNR-dependent waveform
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processing block based on the Teager energy operator is applied to the denoised speech

signal. The cepstrum calculation block is implemented similar as the standard MFCC

extraction in Fig. 5.2 with only a few small differences.

Figure 5.3: Block scheme of advanced front-end

5.4 Two-stage Mel-warped Wiener filtering

This noise reduction process is implemented in two stages of Wiener filtering [AC99]

as shown in Fig. 5.4. The two stages are similar but the gain factorization block, and

the position of each stage make a difference between two stages as well as their roles

in the noise reduction process.

Figure 5.4: Two-stage Mel-warped Wiener filtering noise reduction scheme

The input signal is framed by the 25 ms frame length and 10 ms frame shift. After

Fourier transform, by averaging each two consecutive frequency bins of the 128-bin
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Figure 5.5: Noise spectrum estimation for the construction of Wiener filter

spectrum, the Fourier spectrum is reduced to 64 frequency bins. Next a power spectral

density mean (Pin) is used to compute the mean over two consecutive power spectrum

bins, which reduces the variance of spectral estimation. A voice activity detector based

on energy measurement is used for noise estimation in Wiener filter design. A frame

is decided as speech if the difference between the current frame log energy and the

long-term estimate of non-speech log energy exceeds a defined threshold. The Wiener

filter coefficients in frequency domain are calculated by using both the current frame

spectrum and the noise spectrum estimation as shown in Fig. 5.5. First the noise

spectrum Sn(k, i) is estimated by using VAD, where k is spectrum bin and i is frame

index. Then the transfer function of the first Wiener filter is calculated as:

H1(k, i) =
S1(k, i)

S1(k, i) + Sn(k, i)
, (5.1)

where the denoised spectrum S1(k, i) is obtained by:

S1(k, i) = βS3(k, i− 1) + (1 − β) max{Pin(k, i) − Sn(k, i), 0}, (5.2)

the denoised spectrum S3(k, i− 1) is computed from the previous frame:

S3(k, i− 1) = H2(k, i− 1)Sin(k, i− 1). (5.3)

The second denoised spectrum S2(k, i) is computed by applying the first designed

Wiener filter to the PSD mean input signal:

S2(k, i) = H(k, i)Pin(k, i), (5.4)

and it is combined with the noise spectrum Sn(k, i) to estimate the second Wiener

filter frequency response as follows:

H2(k, i) =
λ(k, i)

1 + λ(k, i)
, with λ(k, i) = max

{
S2(k, i)

Sn(k, i)
, λT

}
(5.5)
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In the next step, the Wiener filter spectrum is smoothed by integrating the spectral

coefficients within triangular frequency bins arranged in the non-linear Mel-scale using

24 triangular frequency bins. The denoised speech signal is the output of the convolu-

tion of the noisy input speech signal with the Wiener filter impulse response which is

obtained from Mel-warped inverse cosine transform (Mel IDCT). The main benefit of

the two-stage approach is the flexibility of the Wiener filter design. While the SNR of

the input signal in the first stage may be low, the input signal SNR in the second stage

is quite high after first denoising. This helps that the gain factorization is performed

more accurately.

5.5 Enhancement of statistical wavelet filtering for

ASR

As explained in Chapter 4, with the ability of handling non-stationary and colored

noise, and preserving phonetic information of the speech signal, the proposed statistical

wavelet filtering has a high potential for the application in robust speech recognition.

This leads to the question whether the increased perceptual quality of denoised speech

signal goes with an increased recognition rate of the ASR system. By applying different

noise reduction methods, such as the statistical wavelet filtering, nonlinear spectral

subtraction, or Wiener filtering, with parameters optimized for increasing perceptual

quality we observed that ASR recognition performance is quite low, even below the

one without using noise reduction pre-processing as reported in section 5.6. This leads

to the preliminary conclusion, that, unlike the speech enhancement systems which are

designed for human hearing purposes, where dynamic comprehension, naturalness and

intelligibility are essential criteria, noise reduction algorithms designed for ASR need to

be optimized somehow between perceptual constraints and mathematical constraints

to compensate the effects of environmental noise, thereby provide robust recognition

performance. In this section, the statistical wavelet filtering algorithm is optimized

for improving recognition performance. The two main modifications proposed in the

next sections are the modification of the shape of the frequency weighting function and

the estimation of noise thresholds in critical subbands by perceptual wavelet packet

decomposition.
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5.5.1 Frequency weighting shape for ASR

With the frequency weighting function ηk given by Equ. 4.36 in the previous chapter,

the small quantile threshold values in the range [0, . . . , 0.1] are amplified strongly while

the higher values are only slightly amplified or damped. Since the quantile thresholds

are estimated from the universal thresholds calculated from all wavelet packets in each

speech frame, their small values are properly obtained by noisy wavelet coefficients

which have lower amplitudes than those of useful wavelet coefficients. As discussed

in sections 4.4.1 and 4.6.1, this means that the small noisy coefficients will be shrunk

due to the amplified thresholds while the large coefficients carrying speech information

are only slightly impacted. Consequently, the process leads to low level of remained

background noise while maintaining most of the speech spectrum with high quality as

shown in Figs. 5.6 (b) and 5.7 (b). In the further, lets call this weighting function ηHA
k

which is designed for hearing aid (HA).
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Figure 5.6: Waveform of (a) recording distorted by car noise, and denoised sounds

using frequency weightings optimized for (b) hearing aid (HA) ηHA
k , and for (c)

speech recognition (SR) ηSR
k .

In harsh environments where the SNR of captured signal is very low (maybe under

5dB), the less impact on large coefficients results in a high level of background noise
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Figure 5.7: Spectrogram of (a) recording distorted by car noise, and denoised sounds

using frequency weighting optimized for (b) hearing aid (HA) ηHA
k , and for (c) speech

recognition (SR) ηSR
k .

during the speech regions after denoising. As reported in the listening evaluation sec-

tion for subjective tests, this can be tolerated for listening aid applications because

the less the speech spectrum is modified the more the naturalness of speech sound is

maintained. However, the high background noise is a big problematic of speech recog-

nition application in adverse acoustic environments. The overlapping of strong noise on

speech regions may provide unsuitable information for feature extraction that results

in reduced recognition rate. Moreover, the harmonic noise from engines with a high

amplitude spectrum will not be removed using this type of weighting function. This

is undesired because the recognizer may confuse noise with speech sound, increasing

the insertion error rate. For this reason, another weighting function ηSR
k is designed to

meet requirements of speech recognition (SR) application:

ηSR
k = (a4Γk)

b4 + d4 . (5.6)

where a4, b4, d4 are constants and selected experimentally in order to achieve the high

word recognition rate (WRR). From our experimental observation, mainly the factor
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a4 and the power b4 affect the WRR. Out of a number of parameter sets tried, the set

a4 = 70, b4 = 0.5, d4 = 0.4 was found to yield the highest WRR for the designed SWF

method using full wavelet packet decomposition.
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Figure 5.8: Designed weighting function for speech recognition application.

The new weighting functions in Fig. 5.8 produces stronger weighting on the large

quantile thresholds Γk stemming from wavelet packets containing large coefficients of

speech and noise. Obviously, this new weighting results in a denoised speech which is

less natural, but still clear and intelligible, with a very low remaining noise level, as

shown in Figs. 5.6 (c) and 5.7 (c). The influence of the frequency weighting ηSR
k to

recognition performance will be evaluated in section 5.6. As another demonstration for

the benefit of employing quantile filtering and the frequency weighting ηSR
k , figures 5.9

and 5.10 show the effective suppression of an alarm siren component by the method.

5.5.2 Perceptual threshold estimation

In order to improve the accuracy of noise estimation, we propose a perceptual thresh-

old estimation method based on psychoacoustic model of human hearing. The noise
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Figure 5.9: Waveform of (a) recording distorted by siren noise, and denoised sounds

using frequency weightings optimized for (b) hearing aid (HA) ηHA
k , and for (c)

speech recognition (SR) ηSR
k .

reduction scheme designed in Chapter 4 is modified by adding a so-called threshold

mapping module. For each processed frame, instead of using directly the calculated

universal threshold values of all channels obtained by full WPD, the threshold map-

ping function integrates these 128 universal threshold values into 17 threshold values

corresponding to 17 critical subbands of the psychoacoustic model. Then statistical

filtering and adaptive weighting is applied to estimate the noise thresholds for these

subbands. Finally, an inverse mapping is implemented to provide the shrinking gain

function for the estimated noise thresholds of all 128 wavelet channels. A block scheme

of noise reduction based on perceptual threshold estimation is presented in Fig. 5.11.

In the literature, there are many examples for speech processing using the WPD

with subbands designed to match the auditory critical subbands. By applying percep-

tual WPD (PWPD) in speech applications such as speech enhancement [FW03, CW04],

speech coding [CD99, GAE04], speech recognition [FD01], and speaker identification

[SPH98, SGFK05], an increased system performance is reported as compared to using

conventional WPD. Within our new proposal, we still implement the full WPD. How-
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Figure 5.10: Spectrogram of (a) recording distorted by siren noise, and denoised

sounds using frequency weighting optimized for (b) hearing aid (HA) ηHA
k , and for (c)

speech recognition (SR) ηSR
k .
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Figure 5.11: Scheme of statistical wavelet filtering using perceptual threshold

estimation.

ever, the estimation of noise thresholds is carried out on the critical subbands. Then,

the estimated thresholds are used to shrink noisy coefficients of all wavelet channels
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derived by the full WPD. By this process, the complexity of the system is reduced

due to processing on limited number of critical subbands only, while noise is removed

efficiently from all wavelet channels. Moreover, the estimate of noise on mel-frequency

channels helps to improve the quality of recognition features which are also extracted

from mel-frequency channels.

Figure 5.12: Tree structure of the perceptual wavelet packet decomposition.

Bandwidths of the PWPD subbands are designed to match approximately the criti-

cal subbands of the psychoacoustic model. As studied in [RJ93], frequency components

of sounds can be integrated into critical bands in which the subjective response becomes

significantly different. The relations between linear frequency f [Hz] and critical band

rate z[Bark], the corresponding critical bandwidth (CBW)[Hz] of the center frequencies

fc[Hz] are described by Zwicker in [ZT80] as follows:

z(f) = 13 arctan(7.6x10−4f) + 3.5 arctan(1.33x10−4f)2 [Bark] (5.7)

CBW(fc) = 25 + 75(1 + 1.4x10−6f 2
c )

0.69 [Hz] (5.8)

In our research framework using the SNOW and AURORA3 databases sampled at

8 kHz, there are approximately 17 critical subbands obtained for the bandwidth of 4 kHz

[RJ93]. According to the specifications of center frequencies, for CBW obtained from

Equation 5.8 a tree structure of the PWPD is constructed [CW04] to approximate the

auditory critical subbands on the Bark scale as depicted in Fig. 5.12. The perceptual

thresholds Pm,i of each critical subband m, at ith frame are estimated by calculating

the mean of the universal thresholds Tk,i from corresponding wavelet channels k of the
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Table 5.1: Mapping between critical subbands and wavelet channels derived by the full

WPD.

Critical band no. m Full WPD Channels [C1m..C2m] Bandwidth (kHz)

1 [1..4] 0 - 0.125

2 [5..8] 0.125 - 0.25

3 [9..12] 0.25 - 0.375

4 [13..16] 0.375- 0.5

5 [17..20] 0.5 - 0.625

6 [21..24] 0.625 - 0.75

7 [25..28] 0.75 - 0.875

8 [29..32] 0.875 - 1

9 [33..40] 1 - 1.25

10 [41..48] 1.25 - 1.5

11 [49..56] 1.5 - 1.75

12 [57..64] 1.75 - 2

13 [65..72] 2. - 2.25

14 [73..80] 2.25 - 2.5

15 [81..96] 2.5 - 3

16 [97..112] 3 - 3.5

17 [113..128] 3.5 - 4

ith frame as defined by a following equation:

Pm,i =
1

C2m − C1m + 1

C2m∑

k=C1m

Tk,i (5.9)

where [C1m..C2m] are orders of wavelet channels derived by the full WPD. The mapping

of these channels into the critical subbands are described in Table 5.1. These perceptual

thresholds are then employed in statistical quantile filtering and adaptive weighting

to estimate final thresholds of noise levels. With this perceptual statistical wavelet

filtering method, the parameters of time and frequency weighting functions are further

tuned to improve recognition rates for different front-end setups. A brief description

of the tuning experiment is presented in appendix E.2.
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5.6 Experiments and evaluations

5.6.1 Speech databases and recognizers

To assess the suitability of the presented noise suppression algorithms for the use in

ASR systems, a number of tests were carried out on the SpeechDat-Car corpus [aur01]

and on the SNOW [sno] database. The German Aurora 3 SpeechDat-Car corpus in-

cludes samples of series of digits recorded in a car environment under various driv-

ing conditions such as: car stopped with motor running, town traffic, driving at low

speech on rough road, driving with high speed on good road. All speech sounds are

recorded with a close talking microphone and a hands-free microphone at a sampling

rate Fs = 8 kHz. The SNOW database consists of a number of 40 phonetically bal-

anced sentences and 60 commands typical for the SNOW application recorded by 10

different speakers in native French in the first data set (SNOW1), and by 12 native

and non-native speakers in English for the second data set (SNOW2). The databases

are recorded originally at sampling rates of Fs = 16 kHz (SNOW1) and Fs = 22.05 kHz

(SNOW2), and than sub-sampled to 8 kHz. The speech data was collected in the halls

of a factory. The noise is on average high level, including both stationary and non-

stationary noises, and some background music. The background noise always comprises

the full reverb from the halls. As observed, the noise environment for the SpeechDat-

Car corpus is not as adverse as the factory floor environment in the SNOW corpus [sno],

however, the corpus is widely used for assessing ASR systems and thus allows for direct

comparison of noise suppression algorithms, and particularly the training/test set with

“high-mismatch” (i. e., with rather clean samples used as training data and very noisy

samples as test data) should allow for a rough assessment of how the proposed noise

suppression algorithm would behave in a more adverse environment.

Two different speech recognizers were employed during experiments. In the first

recognizer, two front-ends were employed as standard front-end MFCC specified by

[ETS00] and advanced front-end defined by [ETS03] in combination with the HTK

recognizer [YEG+05] for the German AURORA3 SpeechDat-Car corpus. The recog-

nizer structure in the AURORA3 framework is described in detail by [PH00, Pea00].

Simple left to right acoustic models without skips over states are utilized. There are 16

states per word, and a mixture of 3 Gaussians per state. In the Aurora framework, two

pause models known as “sil” and “sp” are defined to model the pauses before and after

the utterance and the pauses between words. For tests on the SNOW database, the

Loquendo hybrid HMM-NN speech recognizer [GAM99] with general purpose acoustic
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models trained on a large telephonic corpora, including several speakers with a statisti-

cal distribution of age, sex, and geographic areas is applied. The Loquendo recognizer

employs an acoustic model for noise and end-point detection, which is similar to VAD.

5.6.2 Test results with the SWF

By applying full WPD, the proposed denoising algorithms based on statistical wavelet

filtering using different frequency weighting functions built for hearing aid ηHA
k , Equ. 4.36

in chapter 4 (SW1), and designed for speech recognition ηSR
k , Equ. 5.6 in section 5.5.1

(SW2) are applied in a pre-processing stage to the front-end of the speech recogniz-

ers. In addition, the use of non-linear spectral subtraction (NSS) [EM84] and two-stage

Wiener filtering (WF) [AC99] of AFE as well as without using noise reduction (w.o.NR)

are evaluated as the references. Firstly, the proposed denoising algorithms are tested

with standard front-end MFCC (SFE) specified by [ETS00], and used as replacement

of the WF in advanced front-end (AFE) [ETS03] of the HTK recognizer [YEG+05] for

the German Aurora 3 SpeechDat-Car corpus. Secondly, the statistical wavelet filtering

SW2 and the elaborate spectral subtraction of Loquendo (SSL) [GMM04] modified

from Ephraim-Malah rule [EM84, EM85] are tested with Loquendo speech recognizer.

The performance in terms of word recognition rate (WRR) and accuracy (ACC) de-

rived from the experiment are reported in Table 5.2. The test has been implemented

in two modes as without (w.o.) retraining and with retraining of the acoustic models.

The “high-mismatch” training/test set of the German SpeechDat-Car corpus and the

SNOW1 data set are used for the test.

Table 5.2: Recognition performance as WRR/ACC derived by applying different noise

reduction algorithms and without denoising (w.o.NR).

Recognizers German SpeechDat-Car/HTK SNOW1/LOQ

Mode w.o. retraining with retraining w.o. retraining

Front-ends SFE AFE SFE AFE -

Measures WRR/ACC WRR/ACC WRR/ACC WRR/ACC WRR/ACC

Algorithms

w.o.NR 66.70/63.23 85.34/84.27 66.70/63.23 85.34/84.27 -/-

SW1 61.98/54.49 79.37/51.43 68.83/64.01 83.44/65.96 -/-

SW2 65.63/60.41 83.21/77.30 75.30/73.20 85.20/83.90 78.40/67.10

NSS 60.68/59.39 80.11/74.61 70.44/69.75 83.46/82.39 -/-

WF -/- 89.78/89.45 -/- 79.42/79.28 -/-

SSL -/- -/- -/- -/- 83.70/75.20
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As addressed in the introduction of the chapter and in section 5.5.1, the interesting

question whether the increase in perceptual quality of a speech signal leads to an in-

crease in recognition rate of the ASR system or not is firstly examined. We see that the

use of the SW2 algorithm instead of the SW1 increases WRR from 61.98% to 65.63%

(ACC from 54.49% to 60.41%) for the SFE, and from 79.37% to 83.21% (ACC from

51.43% to 77.30%) for AFE. The achieved performance is also higher than the one

derived by using the NSS algorithm optimized for hearing aid.

In case of using the recognizer without retraining, however, the use of the SWF-

based noise suppression algorithms does not increase the recognition rate as compared

to the use of the original front-ends (no denoising in SFE and using WF in AFE). For

the “high-mismatch” training/test set of the German SpeechDat-Car corpus, the WRR

is reduced from 66.7 % to 65.63 % (accuracy from 63.23 % to 60.41 %) for the standard

MFCC front-end, and from 89.8 % to 83.21 % (accuracy from 89.45 % to 77.30 %) for

the AFE. We attribute this mainly to the different training and test conditions, and

probably to a negative interference between the proposed noise suppression algorithm

and the denoising algorithm in the AFE.

The second test thus comprises the retraining of the HTK recognizer using the

proposed noise suppression algorithm SW2 as a pre-processing stage for the standard

MFCC front-end, and as a replacement for the Wiener filter denoising in the AFE. Here,

the word recognition rate of 66.7 % using the standard MFCC front-end for training

and testing is increased to 75.3 % with the proposed algorithm (accuracy from 63.2 %

to 73.2 %), however, the word recognition rate for the AFE of 89.8 % is reduced to

85.2 % (accuracy from 89.5 % to 83.9 %).

The third test was performed on a corpus set up in the scope of the SNOW project,

comprising 435 utterances (a total of 1135 words, utterances are commands for control-

ling a graphical browser display) recorded by 4 female and 4 male speakers under work

conditions in an airplane maintenance facility. For this recognition test the Loquendo

ASR system [Loq06] using SSL denoising algorithm [GMM04] was utilized, using a

grammar where all the vocabulary words can be looped without any constraints. The

proposed wavelet noise suppression algorithm was again used as a pre-processing stage,

in addition to the denoising in the ASR front-end. Like in the experiment with HTK,

the word recognition rate is reduced, too, from originally 83.7 % to 78.4 %.
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5.6.3 Test results with perceptual SWF

Application of the perceptual noise threshold estimation is examined on the second data

set SNOW2 consisting of recordings from 12 native and non-native speakers in English,

and on the SpeechDat-Car corpus in three different conditions: high-mismatch (hm),

medium mismatch (mm) and well match (wm). From the above evaluation, the fre-

quency weighting function optimized for speech recognition is selected and integrated

into the perceptual statistical wavelet filtering (PSWF) algorithm. The parameters

of time and frequency weighting functions are fine tuned experimentally to achieve

the highest recognition rate and accuracy as possible for different front-ends. A brief

description of the tuning experiment is presented in appendix E.2. The PSWF algo-

rithm is compared with the WF algorithm used as baseline in terms of recognition

performance in Table 5.3.

Table 5.3: Recognition performance as WRR/ACC using PSWF.

Recognizers German SpeechDat-Car/HTK

Algorithms PSWF Baseline

Mode with retraining -

Front-ends SFE AFE SFE AFE

Measures WRR/ACC WRR/ACC WRR/ACC WRR/ACC

Conditions

hm 77.71/76.73 89.45/86.63 66.70/63.23 89.78/89.45

mm 81.92/78.99 88.65/85.29 78.48/76.43 89.53/89.02

wm 92.91/91.20 95.07/93.25 90.48/87.92 95.55/94.65

In this fourth experiment, by replacing the WF by the PSWF in advanced front-end

AFE, the obtained word recognition rate is almost similar to the one of baseline for all

different conditions, e.g. 89.45% to 89.78%, 88.65% to 89.53% and 95.07% to 95.55%

for hm, mm and wm conditions, respectively. This shows an improvement compared

to the use of statistical wavelet filtering SW2 and SW1 in terms of WRR (89.45%

to 85.20% and 83.44%) and ACC (86.63% to 83.90% and 65.96%). From Table 5.3,

we observe that usage of noise reduction as a pre-processing stage only makes sense

if there is a high mismatch between training and testing environments. In the hm

condition, the WRR is improved up to 11.11% (from 66.70% to 77.71%) but the WRR

improvement is lower, 3.44% and 2.43%, for the mm and wm conditions, respectively.
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This observation not only confirms the crucial role of noise reduction for environment

mismatch compensation, but also opints at the necessity of background model adap-

tation in case of a mismatch between the training and testing data sets.

With more test results reported in Tables E.2, E.3, and E.4 in appendix E.3, we

observe that the need of model retraining depends on the mismatch conditions no mat-

ter the front-ends are used. The most noticeable improvements from without to with

retraining are found for the hm condition. This makes sense since there is a big gap of

environmental mismatch between training and testing sets. Thus, operating condition

can be considered for decision on retraining model.

By evaluating ASR performance in terms of number of deleted words (D) and num-

ber of inserted words (I), very useful observations are made: In the AFE setup, the

usage of both WF and VAD results in very low I but high D due to the impact of VAD

with wrong voice activity decisions. However, with the proposed PSWF, much lower D

is obtained for all tried experiments. The application of temporal weighting function

which is considered as a kind of voice activity detection introduces a soft decision with

the smoothed transitions at the word edges. Of course more noise frames will survive

as a trade-off of this mechanism. However, a high number of false rejection is more

harmful to recognition performance than high number of false acceptance.

In the final experiment, the PSWF algorithm is tested with the Loquendo speech

recognizer on the SNOW2 database. The PSWF provides slightly higher word accu-

racy 94.78% to 94.69% which is derived from baseline of Loquendo recognizer without

using end-point detector. In case of using end-point detector that tries to identify the

starting point and ending point of user utterance, the Loquendo baseline ACC drops

down to 68.20%. The risk is that a portion of utterance is removed when the end-point

detector fails. However, the ACC is increased to 88.98% by using the PSWF. It is

interesting that the PSWF algorithm really helps EPD to reduce the deletion of speech

portions.
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5.7 Conclusion

In [PK05b] we have shown that an elaborate SWF-based speech enhancement algo-

rithm allows for consistent attenuation of background noise while preserving speech

naturalness and intelligibility. In this chapter the algorithm has been adapted to suit

the requirements of noise suppression for the use with ASR systems. The modification

to the algorithm allow for a more aggressive suppression of low-frequency background

noise compared to the previous setting [PK05b]. A further optimization is done by

applying the perceptual wavelet packet decomposition tree and the estimate of noise

threshold in critical subbands. The experiments with ASR systems show, on the one

hand, that, for the application in adverse noise environment, no improvement in recog-

nition rate can be achieved when the proposed algorithm is used as a pre-processing

module in addition to ASR internal noise reduction methods without re-training. On

the other hand, if the ASR system is trained with the noise suppression algorithm, a

significant improvement is achieved using the ETSI 201 108 standard front-end, and

the proposed algorithm almost achieves the performance of the noise reduction in the

ETSI 202 050 advanced front-end.

Thus, this promising SWF-based algorithm can be applied for both speech enhance-

ment and ASR, and should be further investigated and optimized for ASR in future

research. In spite of the more aggressive noise suppression approach targeted at the

application with ASR, the proposed algorithm still provides better performance regard-

ing naturalness of the speech signal in a comparison with other denoising algorithms in

informal listening tests. In particular, the combination with voice activity detection, as

used in the AFE, should be beneficial to increase accuracy by reducing the number of

insertions. To conclude, one should think how to fully integrate this noise suppression

algorithm into the front-end processing in order to extract more accurate and robust

recognition features.



Chapter 6

Conclusions and perspectives

The dissertation has investigated several applications of wavelet analysis and wavelet

denoising in robust speech processing and advanced applications. Now, we summarize

the achieved results and outline perspectives for future research.

Through most chapters of the thesis, robustness to acoustic background noise for

speech processing and applications is the focus. In modern speech technology, the need

for extracting efficient acoustic features to improve phonetic classification, the need

for enhancing the quality of recorded speech signals distorted by background noise

from real-word environments, and the need of reducing noise for achieving robust word

recognition in harsh environments are well motivated. The Wavelet transform with its

smart ability of decomposing signals into well-localized time-scale features and optimal

wavelet shrinkage as a powerful noise removing tool is applied for the addressed goals.

In our research we designed novel phonetic classifiers by focusing on reliable fea-

ture extraction and by applying advanced machine learning approaches. Based on the

analysis of acoustic properties of the phonetic sound classes, the DWT is exploited

to extract useful time-scale features which characterize these classes. We classify se-

quences of speech frames into six phonetic classes, i.e., voiced, unvoiced, silence, mixed-

excitation, voiced closure, and transient classes. An efficient joint classifier was built

by combining a multi-threshold decision classifier with two trained feed-forward neural

networks. This joint classifier provides optimal non-linear thresholds learned by FNN

and low complexity due to the usage of the linear multi-threshold model. As another

approach to pattern recognition, we trained Bayesian networks for the task. The ob-

tained results show that the proposed time-scale features provide classification rates
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comparable to the baseline MFCC features. Additionally, the use of only 7 time-scale

features compared to 13 MFCC features leads to a simpler classifier. Discrimina-

tive parameter/structure training improves the classification rate in most cases and

gives slightly better classification performance than the one derived by the joint FNN

classifiers. The study of gender-dependent/independent classifiers opens an approach

towards the realization of gender-independent phonetic classification.

With the promising results obtained from above research, we developed a robust

speech classifier to detect voiced/unvoiced/silence segments and speech/non-speech

segments from noisy speech signals. After applying Teager’s energy operator on wavelet

coefficients, a single time-scale feature is extracted and further enhanced by the hyper-

bolic tangent sigmoidal function and median filtering to make it robust against noise.

A quantile filter and slope tracker are designed as two advanced methods for adapt-

ing the decision threshold. We developed a quantile filtering method which is based

on the minimum statistics method in order to estimate the adaptive threshold accu-

rately, especially in case of non-stationary noise. We also developed the slope tracking

method in three steps to classify phonetic classes while meeting delay and memory

requirements of real-time applications. As a further evaluation, we designed a robust

voice activity detector with adaptive quantile factor and integrated it into the speaker

verification system as a pre-processing stage. The robustness of the invented method

is again confirmed by the improved verification rates in a simulated environment of air

traffic communication.

Based on the adaptive estimate of the quantile filtering technique, we design a

speech enhancement system using statistical wavelet filtering (SWF) which is able to

eliminate musical noise as well as handle non-white and non-stationary noise. The

proposed algorithm operates in the wavelet packet domain and employs the smoothed

hard shrinking gain function to suppress noise. Noise thresholds are estimated adap-

tively by quantile filtering at every frequency channel over a recursive buffer. Together

with the use of a scale-dependent threshold, a nonlinear weighting function in the fre-

quency domain helps to handle non-white noise. In addition to the adaptive quantile

threshold estimate, temporal adaptive weighting functions have been designed to pro-

vide a better noise threshold estimate from non-stationary noise. With the proposed

adaptive factor, the smoothed hard shrinking gain function can suppress noise as much

as possible while maintaining perceptual quality of the enhanced speech signal. The
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superior performance obtained by subjective tests shows that the invented algorithm is

comparable to state-of-the-art single channel speech enhancement methods operating

in the Fourier domain. To cover more aspects of enhanced speech quality evaluation,

we proposed the Comparison Diagnostic Test to examine the quality of unvoiced sounds

which are most problematic in the speech enhancement field.

To increase the robustness of automatic speech recognition (ASR) in adverse envi-

ronments, the proposed statistical wavelet filtering is employed as pre-processing stage

before the front-end feature extraction unit of a speech recognizer. The goal is to

ensure that proper features for word recognition will be extracted from the enhanced

speech signal, thereby increasing the recognition performance of the ASR systems. We

have shown in previous research that the elaborate SWF-based speech enhancement

algorithm allows for consistent attenuation of background noise while preserving speech

naturalness and intelligibility. This brings us to a tricky question whether the increase

in perceptual quality of a speech signal leads to an increase in recognition rate of the

ASR system or not. From our test results, we see that the SWF needs to be further op-

timized with respect to recognition performance. Three adaptations have been studied

to achieve robust word recognition performance: changing the shape of the frequency

weighting function, experimentally tuning the parameters, and estimating the noise

thresholds for critical subbands derived from perceptual WPD. The experiments with

ASR systems show, on the one hand, that no improvement in recognition rate can be

achieved when the proposed algorithms are used as a pre-processing module in the

ASR systems without re-training. On the other hand, if the ASR system is re-trained

on the training data set enhanced by the proposed noise suppression algorithms, a

significant improvement is achieved using the ETSI 201 108 standard front-end, and

the proposed algorithm almost achieves the performance of the noise reduction in the

ETSI 202 050 advanced front-end. In the last study, we show the need of employing

noise reduction as pre-processing stage to compensate the mismatch between training

and testing phases of the ASR system. With this solution, the recognition rates are

increased significantly in case of highly mismatched environments.

The promising results obtained from the studied systems raise some open issues that

are interesting to be investigated in the furture. A better set of time-scale features

should be extracted to improve classification performance for the mixed-excitation,

voiced closure, and transient classes. The usage of hidden Markov models with Viterbi
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decoding is a good candidate for replacing the phonetic interpolation rule in detecting

plosives. The optimization of the robust WT-based VAD needs to be constrained to

the maximization of EER performance. It is very interesting to study the relation-

ship between VAD objective performance and application performance, for example

speaker verification in our research. Dealing with the novel speech enhancement algo-

rithm, a comparison of different wavelet shrinking functions to enhance noisy speech

signals could be done. The use of optimal non-linear estimators based on the Bayesian

approach opens an interesting research area for deriving optimal non-linear gain func-

tions in the wavelet domain. We want to combine the robust VAD with the proposed

noise reduction algorithm to increase the accuracy of the speech recognizer by reducing

number of insertions. To conclude, one should address how to fully integrate this noise

suppression algorithm into the front-end processing in order to extract more accurate

and robust recognition features.

From the significant achievements of the presented study, we do believe that the

approach of applying wavelet analysis as well as wavelet shrinkage is an excellent can-

didate for the next generation of modern speech technology.
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Wavelet properties

The continuous wavelet transform (CWT) of any signal x(t) is defined as:

CWTx(a, b) =

∫ +∞

−∞

x(t)ψa,b(t)dt =
1√
a

∫ +∞

−∞

ψ(
t− b

a
)dt, (A.1)

One of the most important properties of the wavelets is their admissibility condition

[Mal99]:

Cψ =

∫ |Ψ(ω)|2
ω

dω < +∞ (A.2)

where Ψ(ω) is the Fourier transform of ψ(t). The condition allows a decomposition

and a restruction of a signal x(t) without loss of information [Val04]. To make sure

this integral is finite, Ψ(ω) must be zero at ω = 0. This also means the average of the

wavelet equals zero: ∫
ψ(t)dt = 0 (A.3)

It is essential to select wavelet basis with desired properties such as vanishing moments

and compact support due to their influence to the sparsity of the wavelet representa-

tion. We interpret here the concept of number of vanishing moments. As presented in

[She96], the CWT in A.1 can be expanded into the Taylor series till order P at t = 0

as:

CWTx(a, 0) =
1√
a

[
P∑

p=0

x(p)(0)

∫ +∞

−∞

tp

p!
ψ

(
t

a

)
dt+ O(p+ 1)

]
, (A.4)

where the shift factor b = 0 for simplicity, x(p)(t) is the pth derivaties of x(t). Now we

rewrite the expansion in terms of Mp moments as:

CWTx(a, 0) =
1√
a

[
ax(0)M0 + a2x

(1)(0)

1!
M1 + ...+ aP+1x

(P )(0)

P !
MP + O(s(P+2)

]
,

(A.5)
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where the moment Mp is defined as

Mp =

∫ +∞

−∞

tpψ(t)dt (A.6)

Because the average of the wavelet equals zero, we have the 0th moment M0 = 0,

and the first term goes to zero. If we have a wavelet with P vanishing moments,

the the polynomial of order P will be cancelled out of the wavelet coefficients. These

polynomials are moved to scaling space. Actually, the moments do not have to be zero,

but small values are good enough [Val04] for compression or noise removal tasks.
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Multi-threshold decision classifier

The multi-threshold decision (MTD) model which was developed in [PK04] considers

four input features to decide the classes of every speech frame. The hard thresholds

which are employed by the model are chosen via experimental pattern classification.

It works by comparing these thresholds with the extracted input features. Based on

these results, the classification decision is carried out. The procedure of determining

good thresholds can be described as follows:

• Dataset: About 40.000 training segments from 110 sentences of female and

male speakers, dialect speaking region 1 (DR1), have been selected from TIMIT

database [GLF+93].

• Wavelet basis selection: The good wavelet basis is found as bior5.5 (among 39

wavelet bases of Wavelet toolbox in [MMOP02]) whose WPR values are consistent

over all kinds of frames when checking WPR over nearby 300 frames of phonemes

/A/, /V/, /S/ in the database of sustained phonemes. The initial thresholds

WPR1, WPR2 are taken from [Agb96], and SAE1 is obtained from observing

10 silence frames.

• Next, 396 frames of female speakers are classified by these initial thresholds.

Based on the TIMIT transcription file, these thresholds are modified and some

more thresholds are added as WPR3, PVD1, PVD2, SAE2, SAE3. These

procedures are repeated for other recordings to improve classification accuracy.

• Then, the selected thresholds are applied to male speakers and modified to trade

off performance between female and male speakers. Finally, the good thresh-

olds are obtained. This procedure has the advantage of revealling automati-
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cally gender-dependencies of the classifier. Fig. B.1 shows scatter plot for 3-

dimensional features extracted from 2000 randomly samples.
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Figure B.1: Scatter plot for feature space derived from 2000 frames (all samples

denoted with different size and color but similar marker belong to the same phonetic

class).

Figure B.2: The flow chart of the multi-threshold linear classifier.

Fig. B.2 shows operating flow chart of the linear classifier with the turned hard

thresholds as WPR3 = 99%, PVD1 = 0.15, PVD2 = 0.35, SAE1 = 0.001/160,

SAE2 = 0.025/160 and SAE3 = 0.016/160. Subsequently, presmoothing is used to

eliminate some wrong decisions.
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Evaluating hypotheses

It has shown in [Mit97] that error rate E is a random variable, and it obeys the Binomial

distribution. Thus, the standard deviation of the random variable E is estimated as:

σE =
√
Np(1 − p) (C.1)

where N, p are the parameters of the Binomial distribution. In the concept of evalua-

tion, p is a misclassifying probability, and N is the number of instance in the test set

S. Actually we don’t know p but we can approximate p = r/N where r is the number

of instance from S misclassified by the classifier. So, the standard deviation for the

error rate E can be approximated as:

σE ≈
√

(1 − FR)FR

N
(C.2)

where FR = r/N is defined as a false rejection rate (%).
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Appendix D

Subjective tests for speech

enhancement

D.1 Comparison Diagnostic Test

Based on the Diagnostic Rhyme Test standard introduced by Fairbanks in 1985 [GMW97],

we propose a comparison diagnostic test (CDT) on determined phonetic classes which

are constructed from some groups of phonemes as follows:

Phonetic classes Unvoiced fricatives Voiced fricatives

Assigned phonemes /f/,/th/,/s/,/sh/ /v/,/dh/,/z/,/zh/

Phonetic classes Nasals Stops

Assigned phonemes /m/,/n/,/ng/ /b/,/d/,/g/,/p/,/t/,/k/

Table D.1: Assigned phonetic classes for evaluating with CDT.

As shown in Table D.1, the test materials are focused on consonants only because

they are more problematic than vowels. From 40 processed sounds of AURORA3

data set, 8 utterances spoken by 4 female and 4 male speakers are selected randomly.

There, each of 2 sounds is chosen from one of four different recording conditions (low

speed, high speed, stop with operating engine, and running in town). One sounds is

recorded with close-talking microphone, and another one is recorded by far-distance

microphone. These 8 sounds are combined with 2 sounds chosen from 40 processed

sounds of NTIMIT database to build a data set of 10 sounds for CDT evaluation. Then

10 utterances consisting of one word or several words which store unvoiced fricatives,

voiced fricatives, nasals and plosives are artificially cut out of the whole sounds for

listening purpose. The listeners hear the unprocessed and processed utterances, and
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concentrate on single phonetic classes that the corresponding texts are marked. Then

they vote by Comparison Category Rating (ITU-T P.800) described in Table D.2.

Quality Much better Better Slightly better About the same

Scales 3 2 1 0

Quality Slightly worse Worse Much worse

Scales -1 -2 -3

Table D.2: Comparison Category Rating (ITU-T P.800)

D.2 Overall quality test ITU-T P.85

This isthe a proposal by ITU-T (1993) for comparative evaluation of overall quality.

It consists of eight categorial estimation scales [GMW97]. However, for evaluating

performance of speech enhancement algorithms, we selected only six suitable categories

as follows:

• a. Acceptance (Do you think that this voice could be used for a telephone con-

versation?) 1: yes, 2: no.

• b. Overall impression (How do you rate the quality of the sound of what you

have just heard?) 1:excellent, 2:good, 3:fair, 4:poor, 5: bad.

• c. Listening effort (How would you describe the effort you were required to make

in order to understand the message?) 1:complete relaxation possible, no effort

required, 2:attention necessary, no appreciable effort required, 3:moderate effort

required, 4:effort required, 5:no meaning understood with any feasible effort.

• d. Comprehension problems (Did you find certain words hard to understand?)

1:never, 2:rarely, 3:occasionally, 4:often, 5:all of the time.

• e. Articulation (Were the sounds distinguishable?) 1:yes, very clear, 2:yes, clear

enough, 3:fairly clear, 4:no, not very clear, 5:no, not at all.

• f. Voice pleasantness (How would you describe the voice?) 1:very pleasant,

2:pleasant, 3:fair, 4:unpleasant, 5:very unpleasant.

To do this subjective test, we construct a data set of 10 utterances which consists 8

and 2 recordings selected randomly from Aurora3 and NTIMIT databases, respectively.
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For each test category, every listener is requested to listen the un-processed utterance

(NP) and its four denoised utterances derived by five corresponding algorithms (SS,

NSS, NSS-MM, SWF). Then he/she rates the scale for noisy utterance and denoised

utterances. Listeners are allowed to listen recordings as many times as they wish. Test

results are reported in Table D.3.

Algorithms NP SS NSS NSS-MM SWF

Measures M ± S M ± S M ± S M ± S M ± S

Terms Utt.(dB)

A3 (5) 1.45 ± 0.27 2.00 ± 0.00 1.81 ± 0.16 1.55 ± 0.27 1.27 ± 0.42

a. A3 (10) 1.18 ± 0.16 2.00 ± 0.00 1.54 ± 0.27 1.27 ± 0.22 1.00 ± 0.00

NT (10) 1.00 ± 0.00 1.92 ± 0.07 1.71 ± 0.22 1.14 ± 0.13 1.14 ± 0.13

A3 (5) 3.45 ± 0.87 4.64 ± 0.45 3.82 ± 0.56 2.73 ± 0.62 2.64 ± 0.65

b. A3 (10) 2.82 ± 0.56 4.64 ± 0.25 3.73 ± 0.62 2.55 ± 0.87 2.27 ± 0.42

NT (10) 2.57 ± 0.26 4.50 ± 0.27 3.71 ± 0.22 2.57 ± 0.26 2.07 ± 0.23

A3 (5) 2.36 ± 0.65 3.27 ± 1.02 2.91 ± 0.69 2.09 ± 0.69 1.82 ± 0.56

c. A3 (10) 1.73 ± 0.22 3.27 ± 0.62 2.36 ± 0.45 1.73 ± 0.62 1.55 ± 0.47

NT (10) 2.07 ± 0.23 3.57 ± 0.73 2.79 ± 0.80 1.93 ± 0.53 1.71 ± 0.37

A3 (5) 1.45 ± 0.47 2.27 ± 1.02 2.00 ± 1.20 1.45 ± 0.47 1.45 ± 0.47

d. A3 (10) 1.27 ± 0.22 2.27 ± 0.62 1.82 ± 0.16 1.45 ± 0.47 1.18 ± 0.16

NT (10) 1.64 ± 0.25 2.50 ± 0.73 1.93 ± 0.53 1.71 ± 0.22 1.57 ± 0.26

A3 (5) 1.82 ± 0.76 3.55 ± 1.07 2.91 ± 0.49 2.18 ± 0.36 2.09 ± 0.49

e. A3 (10) 2.64 ± 0.45 4.36 ± 0.45 3.63 ± 0.65 2.73 ± 0.62 2.45 ± 0.27

NT (10) 2.50 ± 0.27 4.50 ± 0.42 3.50 ± 0.58 2.36 ± 0.86 2.29 ± 0.37

A3 (5) 2.64 ± 0.45 4.36 ± 0.45 3.64 ± 0.65 2.73 ± 0.62 2.45 ± 0.27

f. A3 (10) 2.36 ± 0.65 4.55 ± 0.27 3.45 ± 0.67 2.64 ± 0.85 2.18 ± 0.16

NT (10) 2.30 ± 0.27 4.53 ± 0.42 3.32 ± 0.57 2.36 ± 0.86 2.1 ± 0.37

Table D.3: Detail performance in terms of mean (M) and standard deviation (S) of

overall quality test ITU-T P.85 on utterances (Utt.) at different SegSNRs (dB)

selected from Aurora3 (A3) and NTIMIT (NT) databases.
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Appendix E

Robust speech recognition

E.1 Frequency weighting for hearing aid

As firstly proposed in [PK05b] to handle the correlated or colored noise, a frequency

weighting ηk is applied on noise thresholds over all wavelet channels to enhance quality

of denoised speech sound:

ηk = (a0Γk)
−(a0Γk)b0 + d0 , (E.1)

where a0 = 10, b0 = 0.55, d0 = 0.6 are constants and selected manually from informal

listening tests.

Figure E.1 shows the weighted thresholds by applying the weighting function ηk in

Equ. E.1. In general, the large coefficients which leads to large universal threshold,

and thus large quantile thresholds (which are larger than 0.1) should be served by less

amplified thresholds. Whereas, the small coefficients which leads to small universal

threshold, and thus small quantile thresholds (in a range of [0.0, . . . , 0.1] as depicted in

Fig. E.1) should be best thresholded with high thresholds. Though, from our pre-formal

listening, the very low threshold (in a range [0.0, . . . , 0.05]) should not be thresholded

by too high threshold in order to keep remained background noise at a certain low

level which creates comfortable sound. That’s why we end up with the formula in Eq.

E.1. This function results in low distortion of enhanced speech signal while keeping

background noise remained at a certain level.
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Figure E.1: Frequency non-linear weighting function.

E.2 Parametric turning of the time-frequency weight-

ing for ASR

With the perceptual SWF method, we again turn parameters of time and frequency

weighting functions in order to obtain high recognition performance for different used

front-ends in two different modes: without and with retraining acoustic model. The

quantile threshold Γk derived for every channel kth atThe network configuration cor-

responding to experiment number 2 could be a best candidate. each frame ith in a

certain buffer is further estimated by:

Γ̃k,i = λk,iη
SR
k βkΓk, (E.2)

where λk,i, η
SR
k are adaptive weighting functions in time and frequency domains, re-

spectively, βk is introduced as an overestimate factor for quantile threshold Γk, Γ̃k,i is

the weighted estimate of the quantile threshold. The temporal weighting is formulated



E.2 Parametric turning of the time-frequency weighting for ASR 145

as:

λk,i = (a2Tk,i)
−b2 + d2 , (E.3)

and the frequency weighting that its shape was changed for ASR is reused:

ηSRk = (a4Γk)
b4 + d4 . (E.4)

In general, all three terms - time weighting, frequency weighting and overestimation

factor - involves to recognition performance as mentioned previously in chapter 5. We

start the turning experiment with the previous configuration used for the SWF (a2 =

10, b2 = 1, d2 = 2, a4 = 70, b4 = 0.5, d4 = 0.4, and βk = 1) which provides performance

reported in Table 5.2. From our first trials, we found that besides the overestimation

factor βk, the frequency non-linear weighting mostly affects the performance of ASR in

terms of number of delected words (D), number of substituted words (S), and number

of inserted words (I). Especially, the factors a4 shows a parabolic tendency of these

measures. This means when keeping all other factors constant and varying only a4,

a local minimum is found from obtained values of each measure as shown later. This

behavior does not occur with moderate changes in other factors. Figures E.2 to E.5

presents tendencies of D, S and I when varying factor a4 while keeping other factors

constant as a2 = 10, b2 = 1, d2 = 2, b4 = 0.5, d4 = 0, and βk = 1. Based on this

observation, the value of factor a4 is selected to obtain minimum number of D+S+I.

After that, the overestimation factor is further adjusted to obtain better recognition

performance. The sets of final values of factors which achieve highest WRR and ACC

for different used front-ends in different modes are reported in Table E.1. A detailed

procedure is reported in [GP06].

Table E.1: Best configurations of factors for different front-ends in without (w.o.) and

with (w.) retraining modes.

Factors a2 b2 d2 a4 b4 d4 βk

Front-ends Modes

SFE w.o. 10 1 2 150 0.5 0 0.5

SFE w. 10 0.8 2 95 0.5 0 0.5

AFE w.o. 10 1 2 150 0.5 0 0.2

AFE w. 10 1 2.5 64 0.5 0 0.5
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Figure E.2: Tendencies of D/S/I obtained with SFE in without retraining mode,

when varying factor a4 of frequency weighting ηSRk .

E.3 Recognition performance

Table E.2 to E.4 reports the test results derived from the baseline (without denoising for

SFE, with WF for AFE), and from the use of our proposed PSWF as a pre-processing

for SFE and as a replacement for WF in AFE.
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Figure E.3: Tendencies of D/S/I obtained with SFE in retraining mode, when

varying factor a4 of frequency weighting ηSRk .

Table E.2: Recognition performance obtained from the baseline.
Recognizers German SpeechDat-Car/HTK

Algorithms Baseline Baseline

Front-ends SFE AFE

Measures WRR/ACC/SRR D/S/I WRR/ACC/SRR D/S/I

Conditions

hm 66.70/63.23/38.83 443/277/75 89.78/89.45/72.08 121/100/7

mm 78.48/76.43/52.70 149/145/28 89.53/89.02/70.54 59/84/7

wm 90.48/87.92/67.89 203/374/128 95.55/94.65/82.05 87/136/45
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Figure E.4: Tendencies of D/S/I obtained with AFE in without retraining mode,

when varying factor a4 of frequency weighting ηSRk .

Table E.3: Recognition performance obtained from standard front-end SFE.
Recognizers German SpeechDat-Car/HTK

Algorithms PSWF PSWF

Mode without retraining with retraining

Measures WRR/ACC/SRR D/S/I WRR/ACC/SRR D/S/I

Conditions

hm 73.13/70.77/48.73 311/270/51 77.71/76.73/58.12 280/202/21

mm 69.03/56.88/30.71 191/232/166 81.92/78.99/52.28 75/172/40

wm 90.08/84.33/59.31 142/355/288 92.91/91.20/72.91 117/238/86
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Figure E.5: Tendencies of D/S/I obtained with AFE in retraining mode, when

varying factor a4 of frequency weighting ηSRk .

Table E.4: Recognition performance obtained from advanced front-end AFE.
Recognizers German SpeechDat-Car/HTK

Algorithms PSWF PSWF

Mode without retraining with retraining

Measures WRR/ACC/SRR D/S/I WRR/ACC/SRR D/S/I

Conditions

hm 86.63/68.87/34.77 59/230/384 89.45/86.63/64.21 87/141/61

mm 86.75/57.83/19.92 25/156/395 88.65/85.29/63.49 41/114/46

wm 94.29/81.31/52.40 49/237/650 95.07/93.25/78.37 61/186/91
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