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Abstract

The ever-increasing growth of the wireless application andservices affirms the importance

of the effective usage of the limited radio spectrum. Existing spectrum management policies

have led to significant spectrum under-utilization. Recentmeasurements showed that large

range of the spectrum is sparsely used in both temporal and spatial manner. This conflict

between the inefficient usage of the spectrum and the continuous evolution in the wireless

communication calls upon the development of more flexible management policies. Cognitive

radio (CR) with the dynamic spectrum access (DSA) is considered to be a key technology in

making the best solution of this conflict by allowing a group of secondary users (SUs) to share

the radio spectrum originally allocated to the primary user(PUs). The operation of CR should

not negatively alter the performance of the PUs. Therefore,the interference control along

with the highly dynamic nature of PUs activities open up new resource allocation problems

in CR systems. The resource allocation algorithms should ensure an effective share of the

temporarily available frequency bands and deliver the solutions in timely fashion to cope with

quick changes in the network.

In this dissertation, the resource management problem in multicarrier based CR systems

is considered. The dissertation focuses on three main issues: 1) design of efficient resource

allocation algorithms to allocate subcarriers and powers between SUs such that no harmful

interference is introduced to PUs, 2) compare the spectral efficiency of using different

multicarrier schemes in the CR physical layer, specifically, orthogonal frequency division

multiplexing (OFDM) and filter bank multicarrier (FBMC) schemes, 3) investigate the impact

of the different constraints values on the overall performance of the CR system.

Three different scenarios are considered in this dissertation, namely downlink transmis-
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sion, uplink transmission, and relayed transmission. For every scenario, the optimal solution is

examined and efficient sub-optimal algorithms are proposedto reduce the computational bur-

den of obtaining the optimal solution. The suboptimal algorithms are developed by separate the

subcarrier and power allocation into two steps in downlink and uplink scenarios. In the relayed

scenario, dual decomposition technique is used to obtain anasymptotically optimal solution,

and a joint heuristic algorithm is proposed to find the suboptimal solution. Numerical simu-

lations show that the proposed suboptimal algorithms achieve a near optimal performance and

perform better than the existing algorithms designed for cognitive and non-cognitive systems.

Eventually, the ability of FBMC to overcome the OFDM drawbacks and achieve more spectral

efficiency is verified which recommends the consideration ofFBMC in the future CR systems.
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Resumen

El crecimiento continuo de las aplicaciones y servicios en sistemas inalámbricos, indica la

importancia y necesidad de una utilización eficaz del espectro radio. Las polı́ticas actuales de

gestión del espectro han conducido a una infrautilización del propio espectro radioeléctrico.

Recientes mediciones en diferentes entornos han mostrado que gran parte del espectro queda

poco utilizado en sus ambas vertientes, la temporal, y la espacial. El permanente conflicto

entre el uso ineficiente del espectro y la evolución continua de los sistemas de comunicación

inalámbrica, hace que sea urgente y necesario el desarrollo de esquemas de gestión del espectro

más flexibles.

Se considera el acceso dinámico (DSA) al espectro en los sistemas cognitivos como una

tecnologı́a clave para resolver este conflicto al permitir que un grupo de usuarios secundarios

(SUs) puedan compartir y acceder al espectro asignado inicialmente a uno o varios usuarios

primarios (PUs). Las operaciones de comunicación llevadas a cabo por los sistemas radio

cognitivos no deben en ningún caso alterar (interferir) los sistemas primarios. Por tanto, el

control de la interferencia junto al gran dinamismo de los sistemas primarios implica nuevos

retos en el control y asignación de los recursos radio en lossistemas de comunicación CR. Los

algoritmos de gestión y asignación de recursos (Radio Resource Management-RRM) deben

garantizar una participación efectiva de las bandas con frecuencias disponibles temporalmente,

y ofrecer en cada momento oportunas soluciones para hacer frente a los distintos cambios

rápidos que influyen en la misma red.

En esta tesis doctoral, se analiza el problema de la gestiónde los recursos radio en sistemas

multiportadoras CR, proponiendo varias soluciones para suuso eficaz y coexistencia con los

PUs. La tesis en sı́, se centra en tres lı́neas principales: 1) el diseño de algoritmos eficientes
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de gestión de recursos para la asignación de sub-portadoras y distribución de la potencia en

sistemas segundarios, evitando asi cualquier interferencia que pueda ser perjudicial para el

funcionamiento normal de los usuarios de la red primaria, 2)analizar y comparar la eficiencia

espectral alcanzada a la hora de utilizar diferentes esquema de transmisión multiportadora en

la capa fı́sica del sistema CR, especı́ficamente en sistemasbasados en OFDM y los basados en

banco de filtros multiportadoras (Filter bank Multicarrier-FBMC), 3) investigar el impacto de

las diferentes limitaciones en el rendimiento total del sistema de CR.

Los escenarios considerados en esta tesis son tres, es decir; modo de transmisión

descendente (downlink), modo de transmisión ascendente (uplink), y el modo de transmisión

”Relay”. En cada escenario, la solución óptima es examinada y comparada con algoritmos sub-

óptimos que tienen como objetivo principal reducir la carga computacional. Los algoritmos

sub-óptimos son llevados a cabo en dos fases mediante la separación del propio proceso de

distribución de subportadoras y la asignación de la potencia en los modos de comunicación

descendente (downlink), y ascendente (uplink). Para los entornos de tipo ”Relay”, se ha

utilizado la técnica de doble descomposición (dual decomposition) para obtener una solución

asintóticamente óptima. Además, se ha desarrollado un algoritmo heurı́stico para poder obtener

la solución óptima con un reducido coste computacional.

Los resultados obtenidos mediante simulaciones numéricas muestran que los algoritmos

sub-óptimos desarrollados logran acercarse a la solución óptima en cada uno de los entornos

analizados, logrando ası́ un mayor rendimiento que los ya existentes y utilizados tanto en

entornos cognitivos como no-cognitivos. Se puede comprobar en varios resultados obtenidos

en la tesis la superioridad del esquema multiportadora FBMCsobre los sistemas basados en

OFDM para los entornos cognitivos, causando una menor interferencia que el OFDM en

los sistemas primarios, y logrando una mayor eficiencia espectral. Finalmente, en base a lo

analizado en esta tesis, podemos recomendar al esquema multiportadora FBMC como una

idónea y potente forma de comunicación para las futuras redes cognitivas.
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Chapter 1
Introduction

”Before you start some work, always ask yourself three questions - Why am I doing

it, What the results might be and Will I be successful. Only when you think deeply

and find satisfactory answers to these questions, go ahead”Chanakya.

Contents
1.1 Motivation and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 1

1.2 Organization of the Dissertation . . . . . . . . . . . . . . . . . . .. . . . . . . . 4

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 8

1.1 Motivation and Scope

The rapid development in the communication systems can be visualized by a simple compari-

son between the first Morse symbols per second in telegraph communications in the mid of the

19th century and the300 Mbps already considered in the long term evolution (LTE) [1]. The

advent of new high data rate wireless standards and servicesas well as the continuous grow

of the applications and consumers result an increasing in the demand for the frequency spec-

trum which is a limited natural resource that may not be able to accommodate the emerging

technologies.

Currently, the frequency allocation is regulated by governmental agencies which apply

the ”command-and-control” allocation model by providing an exclusive assignment of a fixed

frequency block for each communication service. In addition to the spectrum allocation, these
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Chapter 1. Introduction

agencies regulate the spectrum usage by specifying the typeof service, the maximum transmis-

sion powers, and the duration of license. This static and inflexible spectrum licensing scheme

as shown by practical measurements leads to inefficient use of the spectrum since the licensed

users who have the permission to use a certain portion of the spectrum cannot necessarily ex-

ploit this resource at all times or locations and in the same time prohibits other users or service

providers from accessing the unused spectrum [2].

To make a balance between the spectrum scarcity and the spectrum under-utilization, the

dynamic spectrum access (DSA) scheme has been proposed to replace the current inadequate

spectrum licensing scheme [3]. By DSA, spatio/temporal spectrum opportunities1allocated

originally to a certain licensed2user can be accessed and utilized by other unlicensed3users aim-

ing to maximize the utilization of the spectrum while accommodating the increasing number of

services [4,5]. The unlicensed users must be sufficiently agile in order to improve the spectrum

efficiency [6], and should adapt to the conditions of the spectrum opportunities and guarantee

the rights of the licensed users. Cognitive radio (CR) has been received a significant attention

as the enabling technology for DSA by providing the wirelesssystem with the required capa-

bility to adapt its parameters intelligently according to the surrounding environment and users

requirements to achieve a highly reliable communications [4,5,7].

The major functionalities of a CR system include spectrum sensing, spectrum management

and spectrum mobility. By spectrum sensing [8, 9], CR detects the licensed users activity

to determine the spectrum opportunities. Additionally, CRis required to sense the spectrum

during the unlicensed user transmission to avoid the collision with reappeared licensed user.

Through spectrum management, the spectrum opportunities are analyzed and the spectrum

access decisions are performed. The available system resources are optimized to achieve the

required objectives and performance. The spectrum mobility changes the operational frequency

bands when the status of the target spectrum changes. Several testbeds [10–13] and experiments

[14, 15] have demonstrated that the DSA with CR is a promisingsolution. However, there is

still a long way to go before having a real CR system. A lot of work has to be performed

in order to find efficient solutions to the open problems like the spectrum identification, the

users coordination, and interference-free spectrum usage. In this dissertation, we focus on the

1The terms spectrum opportunities, spectrum holes, and white spaces are used interchangeably in the disserta-

tion.
2Licensed users and primary users terms are used interchangeably in the dissertation.
3Unlicensed users, secondary users, and cognitive users areused interchangeably in the dissertation.
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spectrum management function and aim to design efficient resource allocation algorithms in

multicarrier based CR systems.

Multicarrier communications have several advantages overthe single-carrier ones. It of-

fers higher spectral efficiency and more robustness to the fading channel. Additionally, mul-

ticarrier systems have the flexibility to distribute the resources among different users with the

capability to handle with the multipath channel and requiresimple channel equalization tech-

niques. In CR systems, multicarrier communications are considered as promising technique

because -in addition to the mentioned advantages- of its ability to operate in discontiguous

bands by transmitting only on the spectrum opportunities while nulling (deactivating) the occu-

pied spectrum [6,16,17]. The multicarrier transmission enables the control of the transmission

parameters of each subcarrier to avoid inducing severe interference to the licensed users.

Orthogonal frequency division multiplexing (OFDM) is the most common multicarrier

technique that is considered by several communication standards including IEEE 802.22 [18,

19] TV based cognitive system that develops an unlicensed wireless regional area network

(WRAN) to exploit the unused TV bands. In spite of this, thereare several factors that limit

the achieved capacity in OFDM systems. The large frequency domain sidelobes of the OFDM

signal produces high mutual interference to the adjacent licensed system due to the lack of the

synchronization. Moreover, OFDM utilizes the transmission of the cyclic prefix (CP) to com-

pact the effect of the multiple path propagation which reduces the overall spectral efficiency. To

overcome the limitations of the OFDM, the light is shed againrecently on the filter bank mul-

ticarrier (FBMC) system which was invented before the OFDM.FBMC systems have received

limited attention in comparison with that devoted to OFDM due to the simple concept and low

complexity of OFDM [6, 20]. In FBMC systems, the sidelobes ofeach subcarrier frequency

response is reduced by using signals with high spectral containment. Additionally, FBMC

doesn’t require any CP extension and offers more robustnessto the time and frequency offsets

than OFDM. This dissertation highlights the advantages of using FBMC instead of OFDM in

the physical layer of future CR systems.

3
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1.2 Organization of the Dissertation

This dissertation tackles the problem of the resource management in multicarrier based CR

systems. The aim is to design efficient subcarrier and power allocation algorithms in order to

maximize the system capacity while guarantee that the interference introduced to the licensed

system is not harmful. The dissertations consists of six chapters written in way that every

chapter has its own reference list. The organization of the dissertation is as follows

• Chapter 2. This chapter introduces the basic background of several concepts that is used

in the dissertation. First, an overview of the CR system is presented. The CR characteris-

tics and architectures are discussed and also the CR standardization efforts are reviewed.

Next, the multicarrier systems structure and implementation are described. Different

transmission schemes are outlined (OFDM, FBMC, and non orthogonal frequency di-

vision multiplexing (NOFDM)) and the resource allocation problem is reviewed. The

last part of this chapter is devoted to the description of some optimization concepts and

algorithms that are applied in the next chapters.

• Chapter 3. This chapter considers the resource allocation problem in downlink scenario.

The allocation is performed subject to both the total power and interference constraints.

The optimal solution is derived and a computationally efficient suboptimal scheme is

proposed. The advantage of enable the CR system to use activeas well as non-active

licensed bands, is verified. The FBMC physical layer is compared with the OFDM one

to prove its efficiency.

The contributions of this chapter are published in part on one journal, one book chapter

and four international conferences:

– M. Shaat and F. Bader, ”Computationally efficient power allocation algorithm in

multicarrier-based cognitive radio networks: OFDM and FBMC systems,”EURASIP

Journal on Advances in Signal Processing, vol. 2010, Article ID 528378, 13 pages

,2010.

– M. Shaat and F. Bader,”Power allocation with interference constraint in multicar-

rier based cognitive radio systems,”Book Title: Multi-Carrier Systems and Solu-

tions. Chapter 4: Adaptive Transmission.Eds. Plass, S.; Dammann, A.; Kaiser, S.;

Fazel, K. Springer 2009. ISBN: 978-90-481-2529-6 (HB). Netherlands.
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– M. Shaatand F. Bader, ”Low complexity power loading scheme in cognitive radio

networks: FBMC capability,” inIEEE 20th International Symposium on Personal,

Indoor and Mobile Radio Communications (PIMRC’09), Tokyo-Japan, Sept. 2009.

– M. Shaat and F. Bader, ”A two-step resource allocation algorithm in multicarrier

based cognitive radio systems,” inIEEE Wireless Communications and Networking

Conference (WCNC’10), Sydney-Australia, April 2010, pp. 1–6.

– M. Shaat and F. Bader, ”Power allocation and throughput comparison in OFDM

and FBMC based cognitive radio,” inProceeding of 22nd Meeting of the Wireless

World Research Forum (WWRF’09), Paris-France, May 2009.

– M. Shaatand F. Bader, ”Downlink resource allocation algorithm in OFDM/FBMC

cognitive radio networks,” inthe 3rd Mosharaka International Conference on Com-

munications, Signals and Coding (MICCSC’09), Amman-Jordan, Nov. 2009.

• Chapter 4. This chapter develops the algorithm presented in chapter 3 to be used in

uplink scenario where the problem become more complicated due to the individual power

constraints for every unlicensed user. The interference introduced to the licensed band is

not only induced by a single source like the downlink case butit is introduced by several

nodes that are transmitting on the available spectrum holes. The allocation is performed

in order to achieve fairness among different users. Efficient suboptimal algorithm is

presented and the capability of FBMC in the CR system is shown.

The contributions of this chapter are published in part on one journal and three interna-

tional conferences:

– M. Shaatand F. Bader, ”Efficient resource allocation algorithm for uplink in multicarrier-

based cognitive radio networks with fairness consideration,” accepted inIET Com-

munications.

– M. Shaat and F. Bader, ”An uplink resource allocation algorithm for OFDM and

FBMC based cognitive radio systems,” in Proceedings ofthe Fifth International

Conference on Cognitive Radio Oriented Wireless Networks Communications (CROWN-

COM’10), Cannes-France, June 2010, pp. 1–6.

– M. Shaatand F. Bader, ”Fair and efficient resource allocation algorithm for uplink

multicarrier based cognitive networks,” inIEEE 21st International Symposium on

5
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Personal Indoor and Mobile Radio Communications (PIMRC’10), Istanbul-Turkey,

Sept. 2010, pp. 1212 –1217.

– M. Shaatand F. Bader, “Efficient uplink subcarrier and power allocation algorithm

in cognitive radio networks,” in7th International Symposium on Wireless Commu-

nication Systems (ISWCS’10), York-UK, Sept. 2010, pp. 223–227

• Chapter 5. This chapter deals with the resource allocation problem in relayed CR sys-

tem. The scenario of dual-hop multi-relay decode-and-forward (DF) multicarrier based

CR system is considered. An asymptotically optimal resource allocation algorithm is

derived. The subcarriers pairing, power allocation and relay assignment are optimized

jointly in order to maximize the system capacity under the interference and per-relay

power constraints. Additionally, an efficient greedy suboptimal algorithm is developed

to reduce the computational complexity of the optimal scheme. The efficiency of using

FBMC instead of OFDM is also verified.

The contributions of this chapter are published in part on one journal paper, four interna-

tional conferences and one conference paper under review:

– M. Shaat and F. Bader, ”Asymptotically optimal resource allocationin OFDM-

based cognitive networks with multiple relays,” accepted in IEEE Transactions on

Wireless Communications.

– M. Shaat and F. Bader, ”Joint Resource Optimization in Decode and Forward

Multi-relay Cognitive Network With Direct Link,”Submitted to IEEE Wireless

Communications and Networking Conference, (WCNC’12), Paris-France.

– M. Shaat and F. Bader, ”Optimal power allocation algorithm for OFDM-Based

decode-and-Forward dual- Hop cognitive systems,” inIEEE 73rd Vehicular Tech-

nology Conference (VTC Spring), Budapest-Hungary, May 2011, pp. 1–5.

– M. Shaat and F. Bader, ”Optimal and suboptimal resource allocation for two-

Hop OFDM-Based multi-Relay cognitive networks,” inIEEE 22nd International

Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’11),

Toronto-Canada, Sept. 2011, pp. 477–481.

– M. Shaat and F. Bader, ”Optimal resource allocation in multi-Relay cognitive

networks using dual decomposition,” inICT-ACROPOLIS Network of Excellence

6



1.2. Organization of the Dissertation

Workshop on ”Cognitive Radio and Networking: Challenges and Solutions Ahead”

jointly located with IEEE 22nd International Symposium on Personal, Indoor and

Mobile Radio Communications (PIMRC’11), Toronto-Canada, Sept. 2011, pp.

2335–2339.

– M. Shaat and F. Bader, ”Joint subcarrier pairing and power allocation for DF-

Relayed OFDM cognitive systems,” to appear inIEEE Global Telecommunications

Conference (GLOBECOM’11), Houston-USA, Dec. 2011.

• Chapter 6. This chapter concludes the dissertation by summarizing themain research

challenges and highlighting the main achieved results. Thefuture work is outlined at the

end of this chapter.
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Chapter 2
Background

”To know that we know what we know, and that we do not know what we do not

know, that is true knowledge”Henry David Thoreau.
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Chapter 2. Background

2.1 Cognitive Radio Overview

Since the early twentieth century, the electromagnetic spectrum is regulated by the governments

in most of the countries where the available spectrum is divided into several frequency bands

that are allocated traditionally to a specific user or service provider exclusively in order to be

protected from any interference. Since most of the current frequency bands have been already

allocated [1], it will be very hard to find vacant bands for theemerging wireless systems or

services. Moreover, recent measurements by the Federal Communications Commission (FCC)

show that the spectrum utilization in the 0-6 GHz band variesfrom 15 to 85% depending on

time, frequency and geographical location as shown in Fig. 2.1 [2, 3]. These observations

motivate the development of the cognitive radio (CR) [4, 5] and to modify the current static

spectrum access policies accordingly in order to overcome the spectrum sacristy and under-

utilization problems.
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Figure 2.1: Spectrum utilization [3].

2.1.1 Cognitive Radio Definition and Characteristics

A soft-defined radio (SDR) is a wireless communication system which can be reconfigured

by software reprogramming to operate on different frequencies with different protocols [6].

CR is generally implemented based on SDR platform. The term CR means different thing

to different audiences. The concept was first introduced by Mitola as ”The point in which

wireless personal digital assistants and the related networks are sufficiently computationally

intelligent about radio resources and related computer to computer communications to detect

user communication needs as a function of use context, and toprovide radio resources and
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2.1. Cognitive Radio Overview

wireless services most appropriate to those needs” [4]. Other definitions of CR were provided

in [2,5,7] as follows

• FCC in [2]: ”CR is a radio that can change its parameters based on interaction with the

environment in which it operates” .

• Haykin in [5]: ”Cognitive radio is an intelligent wireless communication system that

is aware of its surrounding environment (i.e., outside world), and uses the methodology

of understanding-by-building to learn from the environment and adapt its internal states

to statistical variations in the incoming RF stimuli by making corresponding changes in

certain operating parameters (e.g., transmit power, carrier-frequency, and modulation

strategy) in real-time, with two primary objectives in mind: highly reliable communica-

tions whenever and wherever needed and efficient utilization of the radio spectrum”.

• Jondral in [7]: ”CR is an SDR that additionally senses its environment, tracks changes,

and reacts upon its findings. A CR is an autonomous unit in a communication environ-

ment that frequently exchanges information with the networks it is able to access as well

as with other CRs”.

From these definitions, CR has two main characteristics [3,5]

1. Cognitive capability: which is the ability to acquire the radio parameters from itssur-

roundings. CR should be able to determine the frequency occupancy by identifying the

spectrum holes (or spectrum opportunities). The spectrum hole is defined as the fre-

quency bands which are allocated but not utilized in some location and at some times

by the licensed system as given in Fig 2.2. Moreover, depending on the system, CR

might have information about the modulation and coding as well as the geolocation of

the licensed system devices.

2. Reconfigurability: which is the ability to rapidly adapt the transmit parameters ,i.e.

operating frequency, modulation and coding, transmit power and communication tech-

nology, according to the radio environment in order to achieve the optimal performance.

To perform the required CR characteristics, in addition to the SDR based RF front-end in

the CR physical (PHY) layer, the different protocols in medium access control (MAC), net-
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works, transport and application layers should be adaptiveto the variation in the CR environ-

ment like the licensed user activity, cognitive system requirements and the channel qualities.

On top of that, a CR module is used to establish the interfacesamong the different layers and

control the protocol parameters based on intelligent algorithms [8].

2.1.2 Cognitive Radio Functions

The CR network has two main components: the primary network and the secondary one. The

primary network, also refereed to as licensed network, has alicense to operate in a certain fre-

quency band. It consists of primary users (PUs) with/without primary base stations (BSs). PUs

are generally not equipped with any CR functions. On the other side, the secondary network is

able to share/acess the licensed spectrum without affecting the primary network transmission.

The secondary network is composed of secondary users (SUs) with/without secondary BS. Ad-

ditionally, spectrum broker can be used to enable efficient and fair spectrum sharing between

multiple secondary networks coexist in the same frequency band.

To support this type of spectrum sharing between the primaryand cognitive networks, and

to guarantee efficient usage of the resources in both networks, CR is required to perform the

following four functions

1. Spectrum sensing: by this function, the CR monitors its radio environment in order

to identify the PUs activity. Based on the sensing information, CR can determine the

available spectrum holes that can be used for the CR transmission in a particular time,

14



2.1. Cognitive Radio Overview

frequency, and location. Furthermore, the CR need to keep sensing the frequency spec-

trum during the CR transmission to avoid interfering with reappeared PUs.

Spectrum sensing can be performed in either centralized or distributed ways. In cen-

tralized spectrum sensing, a central unit, also called sensing controller, is in charge of

the sensing process. The sensing information is shared withthe different SUs using a

control channel. Although that the centralized approach reduces the complexity of the

SUs devices, it suffers from the hidden/far PUs detection problem. The SUs are perform-

ing the spectrum sensing in the distributed way. Depending on the level of cooperation

in the network, each SU can take the decision based on his sensing information (non-

cooperative sensing) or based on the sensing information shared with the other nodes

in the network (cooperative spectrum sensing (see e.g. [9–13] and references therein).

Moreover, a central unit can collect the distributed sensing information to control the

cognitive traffic [14]. The cooperative spectrum sensing ismore accurate and can reduce

the primary signal detection time [9,10,15]. However, cooperative introduces additional

signaling overhead which increases with the number of SUs and with fast varying spec-

trum usage [16,17].

Depending on the detected signal, spectrum sensing can be categorized into the following

two main groups

• Primary transmitter detection: where the sensing is performed over the week signal

received at the CR terminal from the primary transmitter. The increasing in the dis-

tance between the CR terminal and the primary transmitter aswell as the shadowing

degrades the performance of this type of sensing. Cooperation between nodes im-

prove the performance and the accuracy. The typical practical schemes used for

primary transmitter detection are: matched filter detection, energy detection and

cyclostationary feature detection. The matched filter detection is the optimal when

the CR terminal has a priori knowledge of the waveform of the PU . Energy detec-

tor is the most common type of the spectrum sensing because ofits implantation

simplicity besides to that it requires no prior informationabout the PU signal. How-

ever, its relatively slow, sensitive to the noise, and cannot distinguish between the

PU and SU signals [16–18]. Eventually, cyclostationary feature detection uses the

bulid-in periodicity in primary signal to detect the primary transmitter by analyzing
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the spectral correlation function. Its robust to the noise power uncertainty but it

has a high computational cost and requires long observationtimes [19–23]. The

advantages and disadvantages of these sensing schemas are summarized in Table.

2.1.

• Primary receiver detection: this type of sensing detects the local oscillator leakage

power emitted by the RF front-end of the primary receiver [24]. Currently, this

method is only feasible in the detection of the TV receivers [3].

In [25–27], the possibility of active agreement between thesecondary network and the

primary system to share the spectrum occupancy informationis discussed. This kind of

network-aided approach may help the secondary network to have a perfect channel infor-

mation but it requires additional modifications to the existing primary networks which

may not be possible. Fig. 2.3 summarizes the classificationsof the spectrum sensing

approaches.

2. Spectrum decision: this function analyzes the information from the spectrum sensing

phase. The characteristics of the detected spectrum holes,the probability of the PU ap-

pearance, and the possible sensing errors should be considered before making the spec-

trum access decision. Once the appropriate band is selected, the CR has to optimize the

available system resources in order to achieve the requiredobjective.

Table 2.1: Comparison of the primary transmitter detection techniques.

Sensing Approach Advantages Disadvantages
Matched filter detection - Optimal Performance

- Fast detection and low cost
- Robust to the noise uncertainty
- Requires low number of sapmles

- Prior knowledge of the primary
signal
- High complexity

Energy detection - No prior information is required
- Low cost
- Easy to implement

- Unreliable in Low SNR regime
- High False Alarm
- Cannot differentiate PU signal
from other SUs
- Doesn’t work for spread spec-
trum signals

Feature detection - Robust to noise uncertainty
and performs well in low SNR
regimes.
- Can differentiate between several
types of transmissions

- Partial knowledge of the primary
signal
- High computational complexity
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Figure 2.3: A taxonomy of spectrum sensing.

3. Spectrum sharing: this function choose the appropriate MAC protocol to accessthe

spectrum holes. By the MAC protocol, fair spectrum sharing between the different SUs

can be guaranteed. Additionally, coordination between nodes can be achieved in order to

avoid the collision with PUs as well as other SUs.

4. Spectrum mobility: also called spectrum handover and by this function, CR is able

to change the operating band in order to avoid a detected PU activity. Additionally,

the CR can perform the spectrum handover in order to improve the secondary network

performance by transmitting in another spectrum hole with better condition. The protocol

parameters at the different levels should be adapted according to the new operating band.

2.1.3 Dynamic Spectrum Access

Dynamic spectrum access (DSA) is standing on the opposite ofthe current inflexible spectrum

licensing scheme and represents the mechanisms to adjust the spectrum usage in response to

the different changes (environment, objectives, radio state, constraints, etc.) [28]. Based on

the DSA, the functionality of the secondary network access protocol as well as the coexistence

characteristics between the primary and secondary networks are defined. As described in Fig.

2.4, existing DSA schemes can be broadly classified into three main models:

1. Exclusive-use model:in this model, the radio spectrum is licensed to user/service exclu-
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Figure 2.4: A taxonomy of dynamic spectrum access [29].

sively in a similar way to that used in the static spectrum allocation policy. The difference

is in the flexibility introduced by allowing the spectrum owner to grant the cognitive users

a spectrum access right to the non-utilized bands. Two approaches have been proposed

under this model:

• Long term exclusive model: this model was first proposed by the European project

DRiVE (Dynamic Radio for IP-Services in Vehicular Environments) in order to im-

prove the spectrum efficiency through dynamic spectrum allocation depending on

the temporal and traffic statistics [30]. Afterwards, this approach is considered by

several researchers (e.g. see [31–34] and references therein) to assign the spectrum

exclusively to a given service in a given region and at a giventime. The cognitive

network can change the type of the wireless services and the spectrum access pa-

rameters during the licensed time in theflexible-type sub-modelwhich is not the

case in thefixed-type sub-model.

• Dynamic exclusive model: the spectrum owner in this model can trade its own spec-

trum by selling or leasing it and thus can get revenue. This type of trading is called

the secondary market (e.g. see [35–40] and references therein). The secondary

market has three main categories. The first one is callednon-real-time secondary

marketwhere the trading and the spectrum allocation are performedbefore the

spectrum is accessed. The other two types are calledreal-time secondary markets

for homogeneous and for heterogenous multi-operator sharingwhere the spectrum

can be traded and allocated in on-demand basis. Unlike the homogeneous multi-

operator sharing, the heterogenous one allows that the typeof the wireless service

can be different between the spectrum owner and the secondary network. Note that
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Figure 2.5: Overlay and underlay spectrum access techniques.

theDynamic exclusive modelis also calledspectrum property rights model[29,35].

2. Open sharing model: also calledspectrum commons[29, 41], the CRs in this model

have the same rights to access the radio spectrum. The spectrum can be not owned

by any entity which called theuncontrolled-commons sub-modellike the access to the

unlicensed industrial,scientific and medical (ISM) and unlicensed national information

infrastructure (U-NII) bands. The cognitive radios accesscan be controlled by a man-

agement protocol which called themanaged-commons sub-model. The protocol should

minimize the communication overheads and promote fair spectrum access among the

cognitive radios [41, 42]. When the cognitive radios accesstechnology and protocol are

specified by the spectrum owner, the sub-model is calledprivate-commons. The peer-to-

peer cognitive communications is an example of this model. To address the technological

challenges under this model, centralized [43, 44] and distributed [45, 46] spectrum shar-

ing strategies have been investigated.

3. Hierarchal access model: this model distinguishes between the modes in which the

secondary network can access the spectrum. The secondary system can use the spectrum

unless the primary system transmission is interrupted. Thesecondary network should

not introduce harmful interference to the primary network.As described in Fig. 2.5, the

hierarchal access structure is adopted to classify the spectrum sharing modes into two

main approaches

• Spectrum overlay: this model enable the secondary network to access opportunisti-

cally the spectrum holes left by the primary network [47–52]. The secondary user

should perform the spectrum sensing in order to detect the available spectrum holes.
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The probability of the sensing errors as well as the out of band interference should

be considered before/during the transmission [53].

• Spectrum underlay: the primary and cognitive networks transmit simultaneously

using the same frequency band in this model. However, the transmission power

of the secondary system should be limited in order to operatein the noise floor

of the primary system. Therefore, spectrum underlay can be applied in the short

range applications where high data rate can be achieved withthe low transmission

power. The code division multiple access (CDMA) and ultra wide band (UWB)

technologies can be used in this spectrum sharing model.

2.1.4 Interference Temperature Model

Constraining the SUs transmitter power to guarantee that noharmful interference introduced to

the licensed system is a challenging issue. Using of restrictive constraints may reduce spectrum

holes utilization which opposites the CR aim. On the other hand, more relaxed constraints

may cause a degradation of the primary system performance. FCC [2] has proposed a metric

calledinterference temperatureto quantify the interference introduced to the licensed users in

a particular time and at a particular location, and is definedas the temperature equivalent to

the RF power available at the receiving antenna per unit bandwidth [54, 55]. Theinterference

temperatureis specified in Kelvin and is expressed as

TI (fc, B) =
PI (fc, B)

kB
(2.1)

wherePI (fc, B) is the average interference power in Watts centered atfc, covering the band-

width B measured in Hertz, andk is the Boltzmann’s constant (k = 1.38 × 10−23 Joules per

Kelvin degree).

As shown in Fig. 2.6 , the interference temperature model shows that the signal of the

CR have to be designed to operate in a range at which the received power by PUs approaches

the level of noise floor. The peaks above the original noise floor indicates that the noise floor

increases at various points due to the appearance of additional interfering signals [3]. Based

on this model, aninterference temperature limitTL is determined, which provides a maximum

amount of the interference that the licensed user can tolerate. The multitaper method can be

used to have a spectral estimate of the interference temperature with a large number of sensors
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Figure 2.6: Interference temperature model [2].

[5]. The large number of sensors can account for the spatial variation of the RF-energy from

one location to another [5]. Additionally, subspace-basedmethod can provide knowledge about

the quality of usage of the spectrum band where information about the interference temperature

is obtained by eigenvalue decomposition [56].

Based on the ability of of the secondary system to identify the licensed signal as well as the

ability to measure the interference floor, ideal and generalized interference temperature models

are considered [55].

• Ideal interference temperature model:in this model, the cognitive transmission should

not violate the interference temperature limit at the different licensed receivers. Assume

that the secondary system transmitter is operating with average powerP , and frequency

fc, with bandwidthB. Assume also that this transmission frequency band overlaps n

licensed signals with respective frequencies offi andBi. Therefore, the target is to

guarantee that

TI (fi, Bi) +
MiP

kBi

≤ TL (fi) ∀i ∈ {1, · · · , n} (2.2)

where0 ≤ Mi ≤ 1 is a multiplicative attenuation factor due to path loss and fading in

the link between the secondary system transmitter and the licensed receiver.

For the ideal interference model, the waveform of the licensed users signals has to be

known at the secondary system transmitter in order to able todistinguish the licensed

signals from the the unlicensed ones. Additionally, the waveform structure knowledge

help the secondary user to determine the transmit and salience portions of the licensed

signals and thus measure the interference floor.
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• Generalized interference temperature model:this model is used when there is no a

priori knowledge of the licensed user signal. In this case, the signals from the primary

and secondary systems cannot be differentiated. Therefore, the interference temperature

model should be applied to the entire frequency range, and not just where the licensed

signals are detected. According to this model, the interference temperature limit can be

defined as follows

TI (fc, B) +
MP

kB
≤ TL (fc) (2.3)

From the equation above, one can notice that the constraint is expressed in terms of

the parameters in secondary system transmitter where the licensed receivers ones are

unknown.

A comprehensive study on the achievable capacity under the interference temperature

model has been proposed in [57,58], which shows that the achieved capacity is a simple func-

tion of the number of the nodes, the average bandwidth, and the fractional impact to the primary

signal’s coverage area. It is found that using the interference temperature model to constrain

the transmit power results in very poor performance. The results are improved significantly if

the ideal model is adopted in conjunction with spectrum shaping [59] where a waveform with

non-uniform power spectral density is used. Therefore, theportions of the waveform that over-

lap the licensed signal could be attenuated, while those non-overlapping portions could use a

higher transmit power.

2.1.5 Cognitive Radio Standardization

The standardization is a key aspect of the success of the current and future CR systems. IEEE

started the development of the first international CR standard in 2006. Meanwhile, IEEE have

several ongoing work to improve the current standards to support the cognitive capability. In

addition to the underway work of the IEEE, International Telecommunication Union (ITU),

European Telecommunications Standards Institute (ETSI) and European association for stan-

dardizing information and communication systems (ECMA) are examples of other interna-

tional organizations or associations who have made or are making standards for various appli-

cation [60]. Within the IEEE, two major standards on CR areIEEE 802.22andIEEE P1900.

• IEEE 802.22: this standard [61, 62] is the first worldwide standard on CR technology.
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The main target of this standard is to enable the sharing of the TV spectrum with broad-

cast service in the low population rural areas. In this standard, not only the PHY and

MAC layers are considered. But unlike other standards, it addresses an additional func-

tions like the spectrum sensing functions and the geo-location one. Using the spectrum

sensing function, the spectrum holes are identified while the geo-location one is deter-

mining the location of the cognitive devices. The location information is combined with

a database of the primary transmitters to determine the available channels. The network

BS is covering a geotropical area with 30 km radius and can support a maximum of 255

fixed units of customer premises equipment (CPE). The minimum downlink (BS to CPE)

throughput is 1.5 Mb/s while the minimum in the uplink (CPE toBS) is 384 kb/s.

• IEEE P1900: this standard focuses on the next generation radio and spectrum manage-

ment [63]. The standard considers the the advanced radio system technologies such as the

CR systems, policy defined radio system, adaptive radio systems and related technolo-

gies. The standards consists of six working groups:IEEE P1900.1to define the glossary

of the terms,IEEE P1900.2for the interference coexistence analysis, IEEEP1900.3for

the evaluation of software modules in SDR to guarantee the compliance in the software

part,IEEE P1900.4is the major working group which relates to coexistence support for

the reconfigurable heterogenous air interface,IEEE P1900.5for the definition of the pol-

icy language and policy architectures, and finally, IEEEP1900.6to define the spectrum

sensing interfaces as well as data structures for DSA systems.

In relation to the existed IEEE standards, theIEEE 802.11 TGafgroup is established to

make amendments to the PHY and MAC layers to support the channel access and coexistence

in the TV white space [64, 65]. Moreover, a coexistence mechanisms of the operation of the

Worldwide Interoperability for Microwave Access (WiMAX) in the license-exempt bands is

developed withinIEEE 802.16hstandard [66]. Furthermore, within the IEEE 802 standard

committee, the wireless coexistence technical advisory group IEEE 802.19is established to

deal with the issue of the coexistence of different wirelessnetworks within the same location

[60]. An extensive review on the standardization activity within IEEE and other organization

can be found on [17,60,67].
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2.2 Multicarrier Systems Overview

The history of the multicarrier systems dates back to mid 1960s when Chang and Saltzberg

presented the theory and the analysis of the parallel data transmission technique [68, 69]. The

idea behind that is dividing the broadband band into parallel sub-bands, called subcarriers,

where the high data rate stream is split into low-rate streams. As the number of subcarriers

increases, the bandwidth of each subchannel becomes narrower which increases the ability of

the communication system to overcome the problem imposed byfrequency-selective channels.

Every subcarrier is affected by a flat fading channel which reduces the receiver complexity.

CR requires a flexible and efficient physical layer. Multicarrier communications has been

recommended as a candidate for future CR systems due its ability to perform underlying sens-

ing as well as its capability to fill the spectrum gaps left by the PU. Moreover, multicarrier

based CR systems can meet the spectrum shape requirements bydeactivating (i.e. nulling)

the subcarriers where the PU is currently transmitting or the subcarriers that can potentially

interfere with other users. Additionally, the different system resources can be distributed and

utilized efficiently to adapt the different transmission environments. The multicarrier systems

offers very flexible multiple access and spectral allocation of the available spectrum which can

be performed in the CR system without any extra hardware complexity. Several parameters can

be adjusted in the system like subcarrier spacing, subcarrier number, modulation, coding and

powers.

The orthogonal frequency division multiplexing (OFDM) andfilter bank multicarrier (FBMC)

are considered as physical layers for the CR in this dissertation. Therefore, the principles of

OFDM and FBMC systems are described in the following. The advantages and disadvantages

of each scheme are highlighted. Furthermore, the generalized multicarrier (GMC) framework

is discussed.

2.2.1 Orthogonal Frequency Division Multiplexing (OFDM) system

In OFDM systems, the frequency spectrum of the subcarriers are overlapped with minimum

frequency spacing and the orthogonality is achieved between the different subcarriers. The

schematic diagram of the OFDM system is depicted in Fig. 2.7.Each OFDM symbol can

be generated as follows. The bit stream is split into parallel data streams using the serial-to-
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Figure 2.8: CP insertion in the OFDM symbol.

parallel (S/P) converter. Afterwards, the parallel streams are passed into an inverse fast Fourier

transformation (IFFT) to generate a time sequence of the streams. Subsequently, the OFDM

symbol time sequences are extended by adding a cyclic extension called the cyclic prefix (CP).

The CP is a copy of the last part of the symbol that is added in the beginning of the sequences

as given in Fig. 2.8 and should be larger than the network delay spread in order to mitigate

the inter-symbol interference (ISI) generated by the arrival of different OFDM symbols with

different delay. The resulting digital signal is convertedinto an analogue one and transmitted

through the channel. At the receiver side, the signal is reconverted again into digital one and

the fast Fourier transformation (FFT) is performed on the received streams after removing the

CP. Finally, the parallel streams are gathered into single stream as the original transmitted one.

From the discussion above, the OFDM baseband equivalent is formed by taking the inverse

discrete Fourier transform (IDFT) to a set of complex input symbols{Xk} and adding a cyclic

prefix. This can be written mathematically as

x (n) =
∑

k

∑

l∈Z
Xk,lgT (n− lT ) ej2π(n−lT−C)k/N (2.4)

where{k} is the set of data subcarrier indices and is a subset of the set{0, 1, · · · , N − 1}, N

is the IDFT size,C is the length of the cyclic prefix in number of samples, andT = C +N is
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Figure 2.9: Frequency representation of three subcarriers in OFDM signal.

the length of the OFDM symbol in number of samples.l denotes thelth OFDM symbol while

gT (n) is a rectangular pulse shape that can be expressed as

gT (n) =





1 n = 0, 1, · · · , T − 1

0 otherwise
(2.5)

Notice that any two subcarriers in OFDM are orthogonal in thetime intervalT . Fig. 2.9

shows the frequency representation of an OFDM signal. For each frequency multiple of1
T

,

there is only one of the subcarriers contribute to the OFDM signal whereas the rest are null

at this frequency since the sinc shape in the frequency domain for a given subcarrier has zero

matching with frequency allocation of the other subcarriers.

OFDM has been exploited in several wireless technologies due its attractive features.

OFDM is considered currently in digital audio and video broadcasting standards, several wire-

less local access network (WLAN) (e.g. HIPERLAN2 and IEEE 802.11a/g) and broadband

wireless access system (e.g. IEEE 802.16e, IEEE 802.20 and Long term evolution (LTE)).

The multi-user version of the OFDM is called Orthogonal Frequency-Division Multiple Ac-

cess (OFDMA). The multiple access is achieved by allocatinga group of subcarriers to a given

user. OFDMA and OFDM are used interchangeably throughout the dissertation.
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Figure 2.10:Frequency response of OFDM and RC windowing OFDM with roll-off parameter

β = 0.5 andβ = 1.

Side-lobes Reduction in OFDM System

OFDM system is widely used due to its simple concept and low complexity. However, in ad-

dition to the CP insertion, the large sidelobes of the OFDM signal frequency response causes

high interference to the adjacent unsynchronized subcarriers and considered as the major short-

coming of the OFDM system specially in the CR context where the large sidelobes means more

interference to the primary system. In the literature, manytechniques have been developed to

solve the large sidelobes problem [53, 70–80]. Instead of using a rectangular pulse to shape

the OFDM symbol, a window with soft transition among successive symbols can be used.

The raised cosine (RC) windowing is one of the well known techniques to reduce the OFDM

sidelobes [70]. One of the drawback of this technique that itintroduces a small reduction on

sidelobes close to the mainlobe as given in Fig. 2.10. It is shown in [71] that the high sidelobe

suppression using RC windowing requires a prohibitive length of the cosine tail (overhead).

The windowing at the receiver side is another type of the windowing techniques that can be

used as proposed in [72, 73]. It requires a suffix samples in addition to the CP which fur-

ther reduces the bandwidth efficiency. Remark that windowing reduces delay spread tolerance

too [74].

Adding a guard bands by nulling the subcarriers in the boundaries of the adjacent unsyn-

chronized bands was proposed by Weiss et al. in [53]. Its clear that this method reduces the
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spectrum efficiency. Brandes et al. proposed a method to reduce the sidelobes by assigning

non-zero values to the deactivated subcarriers in order to combine destructively with sidelobes

of the transmitted data on the other subcarriers [75]. Similar concept is used by Cosovic et al.

in [76] by applying weighting factors to the active subcarriers. The achieved sidelobe reduction

in [75] and [76] is around20 dB and10 dB respectively. Note that no additional canceling sub-

carriers are used in [76]. Cosovic et al in [77,78] developeda multiple-choice sequence (MCS)

method to obtain a10 dB reduction. The method maps the transmitted symbol sequence to a

set of sequencing in order to choose the sequence with the lowest side lobe.

In [79], a sidelobe reduction technique consists of a dual application of the constellation

expansion and subcarrier cancelation. The low order constellations are mapped to subset of

points in higher order constellation using the constellation expansion. Afterwards, the mapping

that offer the lowest sidelobes is chosen where16 dB sidelobe suppression is achieved using

this technique.

Xu and Chen in [80] perform a data precoding before the IFFT atthe transmitter. A com-

plex optimization task is required to obtain the coding matrix at every time the configuration

of the active channels varies. This method requires the addition of the precoding overhead and

achieves around20 dB sidelobe reduction.

2.2.2 Filter Bank Multicarrier (FBMC) system

FBMC system can be considered as alternative solution to overcome the OFDM shortcomings

by the addition of generalized symbol shaping filters. As discussed formerly, OFDM system

uses CP to cope with the multiple path channel which reduces the effective throughput of the

system in addition to the power wasting in the transmission of the CP part. Besides, the high

spectral leakage of OFDM causes interference to the unsynchronized signal in the adjacent

bands. These problems are addressed in FBMC by using a well designed shaping filters which

produces a well localized subchannel in both time and frequency domain. Accordingly, FBMC

systems have more spectral containment signals and providemore efficient use of the radio

resources where no CP is needed. The spectra of OFDM and FBMC subcarriers are plotted in

Fig. 2.11. The OFDM signal has larger sidelobes than the FBMCone. The first sidelobe in

OFDM is13 dB below the mainlobe. In FBMC, the first sidelobe is40 dB below the mainlobe

and the filter attenuation exceeds60 dB for the frequency range above two subchannel spacings.
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Figure 2.11: Frequency response of OFDM and FBMC filters [81].

Filter bank can be defined generally as an array ofN filters that processesN (different or

equal) input signals to produceN outputs as depicted in Fig. 2.12. If the inputs of theseN

filters are connected together, the system -in analogous manner- can be seen as analyzer to the

the input signal based on each filter characteristics. Therefore, this type of filter bank is called

analysis filter bank (AFB). On the other hand, by adding the outputs of the filter array, a new

signal is synthesized and hence this type of filter bank is called synthesis filter bank (SFB) [82].

Note that any single output of the analysis filters represents a portion of the signal spectrum in

the subband processing where further processing can be performed on it. To reduce the number

of operation without missing the original data, the downsampling (decimation) can be used

where the Nyquist-Sahnnon sampling theory should be fulfilled [83, 84]. Alternatively, by the

upsampling (interpolation) of the inputs of the SFB, the signal can occupy the desired spectral

region. Filter bank with different sampling rates are called multirate filter bank [85–89].

Depending on the AFB and SFB arrangement, two different systems are obtained as de-

scribed in Fig. 2.13. In the analysis-synthesis configuration, a subband system is constructed.

Audio/image compression system where subband signals are coded depending on their ener-

gies is an example of this system. Moreover, the single tap equalizer whereby the the different

subbands of the signals are amplified differently accordingto the channel is using this type of

configuration. Conversely, the synthesis-analysis configuration is called transmultiplexer and

is applied in the multicarrier communication systems [86].

29



Chapter 2. Background

 !0h n

 !1
h n

 !1Nh n 

! "0x n

 !1
x n

 !1Nx n 

! "0y n

 !1y n

 !1Ny n 

! "0h n

 !1h n

 !1Nh n 

! "X n ! "0y n

 !1y n

 !1Ny n 

! "0h n

 !1h n

 !1Nh n 

! "0x n

 !1
x n

 !1Nx n 

! " ! "i

i

Y n Y n#$

Signal Analysis

Signal Synthesis

Filters array

Figure 2.12: General filter bank structure.

AFB AFBSFBSFB)(nx )(ˆ nx

)(0 nx

)(1 nx

)(1 nxN 

)(ˆ0 nx

)(ˆ1 nx

)(ˆ
1 nxN 

Subband System Transmultiplexer

Figure 2.13: AFB and SFB different arrangements.

When the system is designed so that the output is a time-delayed version of the input,

i.e. no error in the output, the filter bank is called prefect reconstruction (PR) filter bank.

Systems with limited aliasing or distortion are called nearperfect reconstruction (NPR) filter

bank [85,86,90].

The FBMC systems are classified into three main methods: offset quadrature amplitude

modulated OFDM (OQAM-OFDM), cosine-modulated multitune (CMT) and filtered multi-

tune (FMT). OQAM-OFDM was first proposed by Chang [91] in the mid 1960’s and decoupled

by Salzberg in [69]. The basic idea is to introduce a half symbol delay between the inphase

and the quadrature components of the quadrature amplitude modulation (QAM) symbols. The

discrete time implementation of the OQAM-OFDM is developedin [92]. Thereafter, Hirosaki

in [93] developed an efficient polyphase discrete Fourier transform (DFT) structure for the im-
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plementation of Salzberg’s method. The isotropic orthogonal transfer algorithm (IOTA) has

been presented in [94, 95] in order to adapt the FBMC system tomatch the channel time and

frequency dispersion. See [96,97] for further discussion about IOTA design.

The adjacent bands in OQAM-OFDM overlap among each other where the subcarrier

bands are spaced by the symbol rate. The time staggering in addition to the well designed fil-

ters ensures the orthogonality between the adjacent subcarriers and guarantee the reception of

the symbols free of ISI and inter carrier interference (ICI). OQAM-OFDM is adopted in TIA

digital radio technical standards [98], which is the only radio transmission standard that uses

FBMC [99]. Extended analysis and design issues can be found in [100–102]. In CMT, the

subcarriers carry a sequence of pulse amplitude modulation(PAM) symbols and are modulated

using the vestigial sideband (VSB) modulation. With the same symbol duration and number of

subchannels, CMT uses half of the bandwidth used by OQAM-OFDM [103]. CMT is consid-

ered by the under-development IEEE P1901 standard for powerline communication (PLC) sys-

tems [99]. Further details on CMT can be found in [104–106]. Different from OQAM-OFDM

and CMT systems, FMT does not allow the subcarrier overlapping. To allow the transition

between bands, guard bands are inserted. Therefore, FMT hasthe least bandwidth efficiency

among the different FBMC types [103].

FBMC for Cognitive Radio

The advantages of adopting FBMC systems in CR scenarios werediscussed by Amini et al. in

[103] and by Farhang-Boroujeny et al. in [107]. The FMT, CMT and OQAM-OFDM methods

are compared in terms of the spectral efficiency. The spectral efficiency of FBMC is found to be

higher than that of OFDM. The authors discuss that FMT has thesimplest implementation but

suffers from low spectral efficiency. Moreover, CMT offers the best frequency selectively and

has the capability of blind detection. Additionally, the authors states that OFDM-OQAM signal

is the best suitable method for CR scenario since it achievesthe highest stopband attenuation

among the three methods which means lower interference to the adjacent bands and accurate

spectrum sensing results. Farhang-Boroujeny in [108] proposed a filter bank multi-tapper based

spectrum sensing method. The spectrum sensing is performedby measuring the signal powers

at the outputs of the subcarrier channels at the receiver. Therefore, the spectrum sensing is

performed at virtually no computational cost by reusing of the FBMC receiver.
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In [109], Zhang et al. studied the spectral efficiency of OQAM-OFDM CR systems as well

as the induced interference to the PU. Different OQAM-OFDM prototype filters are compared

and the authors states that SUs with OQAM-OFDM physical layer achieve more throughput

than those with OFDM or windowed OFDM ones. Afterwards, zhang et al. in [110] proposed

a resource allocation algorithm in the uplink OQAM-OFDM based CR systems. They showed

that the achieved capacity of the OQAM-OFDM system is higherthan that of the OFDM sys-

tem.

Ihalainen et al. in [111] addressed the reappearing PU detection problem during the on-

going secondary transmission. An energy based spectrum sensing technique is used. The high

frequency containment of the OQAM-OFDM waveform is exploited to construct continuous

silent subbands within the transmission band for spectrum monitoring. The authors suggest to

distribute a reappeared PU detected message over the monitoring subbands to alarm SUs for

quick channel vacation.

Due to the preference of using OQAM-OFDM1in the CR systems, the system structure is

described next in detail.

2.2.3 Structure and Implementation of OQAM-OFDM

Each subcarrier in the OQAM-OFDM system is modulated with a staggered QAM as described

previously. The basic idea is to transmit real-valued symbols instead of transmitting complex-

valued ones. Due to this time staggering of the in-phase and quadrature components of the

symbols, orthogonality is achieved between adjacent subcarriers. The modulator and the de-

modulator are implemented using the synthesis and analysisfilter banks. The filters in SFB are

AFB are obtained by frequency shifts of a single prototype filter. Figure 2.14 depicts the struc-

ture of the synthesis and analysis filter banks at the transmitter and receiver in OQAM-OFDM

systems. The different blocks of this structure can be described as follows

1. OQAM modulation : the nth QAM symbol at thekth subcarrier can be expressed as

Symk(n) = ak(n) + jbk(n), whereak(n) andbk(n) are the real and imaginary parts

respectively, andk = 0, · · · , N − 1. The inputs to SFBInSFBk(n) are generated as

1In the next chapters, FBMC refers to OQAM-OFDM structure.
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follows

InSFBk (2n) =





ak (n) , k even

jbk (n) , k odd
,

InSFBk (2n+ 1) =





jbk (n) , k even

ak (n) , k odd

(2.6)

A mapping example using OQAM is plotted in Fig. 2.15. The gridshowed the mapping

of the real and imaginary parts of the different subcarrier at different time symbols [112].

2. SFB: the OQAM modulated symbols are filtered using SFB. In SFB, aswell as the AFB,

the filters are obtained by frequency shifts of single low pass prototype filter. The use of

polyphase structure leads to efficient implementation. Theinput and output relation for

a given FIR filter can be written as

y(k) =
L−1∑

i=0

hix(k − i) (2.7)

whereL is the number of filter coefficients. Therefore, the corresponding Z-transform

function is

H(z) =

L−1∑

i=0

hiz
−i (2.8)
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If the target is constructing N-bands filter bank where the center frequency of each band

is 2πi
N

, the transfer function of thenth band in the transmitter side can be expressed as

En(z) =
L−1∑

i=0

hiz
−iW ni (2.9)

whereW = e−j2π/N . LettingL = KN , (2.9) becomes

En(z) =
KN−1∑

i=0

hiz
−iW ni =

N−1∑

n=0

z−lHn

(
zN
)

(2.10)

where

Hn

(
zN
)
=

K−1∑

k=0

hkN+n

(
z−Nk

)
(2.11)

Considering all the different filters with1/N frequency shifts, SFB operation can be

represented in a matrix form as follows



E0 (z)

E1 (z)

·
·

EN−1 (z)




=




1 1 · · 1

1 W−1 · · W−N+1

· · · · ·
· · · · ·
1 W−N+1 · · W−(N−1)2







H0

(
zN
)

z−1H1

(
zN
)

·
·

z−(N−1)HN−1

(
zN
)




(2.12)

Note that the square matrix is the IDFT matrix of orderN and every subcarrier input

is occupying the subchannel with the center frequency1/N filtered with a filter with

frequency response shifted by1/N as well.

3. AFB: is the first part in the receiver side. Its function is producing output signals with

spectrum centered in the zero frequency. Therefore, at eachsubcarrier, the input is shifted

by 1/N on the frequency axis and then filtered using the low pas prototype filter. By a

similar analysis to that used in SFB, the matrix form representation of the AFB is as

follows



E0 (z)

E1 (z)

·
·

EN−1 (z)




=




1 1 · · 1

1 W 1 · · WN−1

· · · · ·
· · · · ·
1 WN−1 · · W (N−1)2







H0

(
zN
)

z−1H1

(
zN
)

·
·

z−(N−1)HN−1

(
zN
)




(2.13)

The square matrix here represents the DFT matrix of orderN .
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4. OQAM demodulation: in this part, the original QAM symbol are reconstructed from

the OQAM ones received at thekth subcarrier according to the following rule

SymOutk (n) =





Re [OutAFBk (2n)] + jIm [OutAFBk (2n + 1)] , k even

jIm [OutAFBk (2n)] + Re [OutAFBk (2n + 1)] , k odd

(2.14)

whereOutAFBk(n) is the output of AFB at thenth symbol time on thekth subcarrier.

The OQAM-OFDM baseband equivalent can be expressed mathematically as [113],

x (n) =
∑

k

∑

l∈Z
ak,lh (n− wτo) e

j2π k
N
nejφk,l (2.15)

where{k} is the set of subcarrier indices,φk,l = π
2
(k + l) − πkn is an additional phase

term represents the OQAM modulation andτo is OQAM-OFDM symbol duration.ak,l are the

real symbols obtained from the complex QAM symbols andh(n) is the prototype filter. The

prototype filter is designed depending on the application. As described in [114], in order have

a perfect recovery in an ideal noiseless channel, the prototype filters in SFB and AFB should

be real filters, with a frequency response bandlimited within [−F, F ] with F = 1
2τo

, and half-

Nyquist, i.e. the multiplication of the frequency responses of the SFB and AFB filters must

satisfy the Nyquist criterion. Throughout this dissertation, the prototype filter considered in

the European Project ”PHYDYAS-physical layer for dynamic spectrum access and cognitive

radio-” is used [81, 102]. Accordingly, by assuming an overlapping factor ofK = 4 andN

subcarriers, theL = KN filter coefficients can be obtained as follows

h (0) = 0, h (n) = 1 + 2
K−1∑

k=1

(−1)kH

(
k

L

)
cos

(
2πkn

L

)
; 1 ≤ n ≤ L− 1 (2.16)

whereH
(
k
L

)
are the desiredL values in the frequency domain which given by

H (0) = 1

H
(
1
L

)
= 0.971960

H
(
2
L

)
= 1√

2

H
(
3
L

)
=
√
1−H2

(
1
L

)
= 0.235147

H
(
k
L

)
= 0; 4 ≤ k ≤ L− 1

(2.17)

Fig. 2.16 plots the impulse response of the PHYDYAS prototype filter with overlapping factor

K = 4 andN = 512 subcarriers. Fig.2.17 plots the frequency response of the OFDM and
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Figure 2.16: PHYDYAS filter impulse response.

the PHYDYAS prototype filters. It can be noted that the OQAM-OFDM system has very small

side lobes in comparison with that of the OFDM system. Note that the OFDM system is a

special case of the FBMC which can be generated by setting thefilter coefficients equal to one,

i.e. rectangular pulse shape.

2.2.4 Non Orthogonal Frequency Division Multiplexing (NOFDM) Sys-

tems

The non-orthogonal multicarrier modulation was first proposed in [115] as an approach for

multicarrier transmission over doubly dispersive channels. In doubly dispersive channels, the

transmission is affected by both the time dispersion due to the multipath propagation and by the

frequency dispersion due to the doppler shift caused by the mobility of the terminals. NOFDM

is a generalized multicarrier (GMC) framework where FBMC and OFDM systems are consid-

ered as special cases. The basic differences can be summarized as follows

• In OFDM and FBMC systems, the shaping pulses are designed to be orthogonal which

is not the case in NOFDM. Note that the orthogonal basis functions are optimum basis

in additive white Gaussian noise (AWGN) channels but not in the doubly dispersive
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Figure 2.17: OFDM and PHYDYAS filters frequency responses.

channels.

• The signals in NOFDM can overlap each other in time and frequency (TF) domain as

given in Fig. 2.18 where every circle - also refereed to as atom- denotes the TF represen-

tation of the pulse. This overlapping reduces the distancesbetween the pulses and allows

more denser TF grid which leads to to higher spectral efficiency.

The discrete-time representation of NOFDM signal is the Gabor discrete signal expansion

and can be expressed as [115–119]

s [k] =
∑

n∈Z

M−1∑

m=0

cn,mgm,n [k] (2.18)

whereM is total number of subcarriers,cn,m is the frame coefficients,Z is the set of integers,

and{gm,n [k]} is the sequence of basis function (Gabor atoms) and defined as

gm,n [k] = g [k − nN ] ej2πm(k−nN)/M (2.19)

whereN is the symbol time andg [k] is the pulse shape. The sequence{gm,n [k]} form the

frame if the frame condition holds [118, 120, 121]. The framecondition is satisfied if there

exists two real constants0 < A ≤ B <∞, referred to as frame bounds, such that

A ‖s [k]‖2 ≤ |〈s [k] , gm,n [k]〉| ≤ B ‖s [k]‖2 (2.20)
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Figure 2.18: Time-Frequency representation of NOFDM transmission frame.

where〈., .〉 denotes the inner product. A necessary condition for the sequence{gm,n [k]} to

complete a Gabor frame is thatN ≤ M which means that{gm,n [k]} are sufficiently densely

placed in the TF plane since the number of Gabor coefficient isgreater than the number of

signal samples, i.e. overcritical sampling. This also meanthat dual Gabor frame exists [115,

117,118,120], i.e.{γm,n [k]}. From{γm,n [k]}, the coefficients{cn,m} can be evaluated as

cn,m =
∑

k∈Z
s [k] γ∗m,n [k] (2.21)

where

γm,n [k] = γ [k − nN ] ej2πm(k−nN)/M (2.22)

and∗ denotes the complex conjugate.

g [k] andγ [k] are dual real valued prototype filters (Gabor atoms) and referred to as syn-

thesis window and analysis window respectively. Like the FBMC systems, NOFDM can be

implemented efficiently using IFFT/polyphase structure and hence has higher complexity and

peak-to-average power ratio (PAPR) than OFDM system at the price of good TF localization

of the signals [119,122,123].

The prototype filters are designed according to the requiredapplication and objectives.

For example, the prototype filter is deigned in order to have small sidelobes for overlay CR

systems [122, 123]. Usually the design starts by determining the analysis filter as well as the

number of channels. Afterwards, the dual synthesis pulse and the symbol time are derived.

Various algorithms were developed to drive the dual prototype filters. The simplest but not
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efficient one is the design in order to achieve biorthogonality between the pulses as described

in [86,124]. The least square error (LSE) can be used to design the dual pulses to be as similar

as possible as given in [125,126]. Low complexity algorithmis presented in [127] while other

techniques can be found in [128,129].

The use of NOFDM systems in CR systems is discussed in [118, 123]. The authors states

that there exists a tradeoff between the high out of band interference in the OFDM systems and

the higher implementation complexity and PAPR in NOFDM system. The authors suggests the

development of an application-based analysis tool that canhelp in dealing with tradeoff during

the decision-making process in the CR systems.

2.2.5 Summary of OFDM and FBMC Differences

The main differences (advantgaes/disadvantages) betweenOFDM and FBMC systems can be

summarized in the following points

• CP extension: unlike the FBMC, OFDM requires the addition of the CP in order to

mitigate the effect of the multipath channel and avoid ISI. This addition reduces the

OFDM bandwidth efficiency. However, the CP extension makes OFDM more robust to

the timing-phase error, i.e. a phase rotation in the frequency domain, since it allows some

variation of the timing phase [99].

• Sidelobes: OFDM systems suffers from the large sidelobes of the frequency response of

its rectangular filters which causes high interference to the unsynchronized signals. The

low sidelobes of FBMC makes it more attractive for CR overlaysystems.

• Synchronization: the OFDM signals should arrive the receiver with perfect sauceriza-

tion in order to be detected correctly. This is can be performed easily by the BS in

downlink. In uplink, synchronizing the transmission signals from different users is not a

trivial task and might be not possible. Therefore, additional processing techniques like

the multiple access interference (MAI) cancelation shouldbe performed in the receiver.

In FBMC, MAI is suppressed mostly without any additional processing due to the excel-

lent frequency localization of the subcarriers.

• Doppler effect: OFDM has high sensitively to the frequency offset than FBMC. There-

fore, FBMC performs significantly better with the increase of the user mobility.
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• Multiple input multiple output (MIMO) systems : the extension of OFDM to work

with MIMO systems is straightforward but its not simple in FBMC. This is due to the

interference introduced in time and frequency to a given symbol by the surrounding ones.

Some limited work on MIMO-FBMC systems can be found in [130–133].

• Spectrum sensing: in both OFDM and FBMC, the spectrum sensing can be performed

with no additional cost using the existing system components. However, the spectral

leakage in OFDM signals degrades the performance of the spectrum sensing. Much

larger dynamic range can be exploited in FBMC systems and high spectrum sensing

resolution can be achieved.

• Equalization: in OFDM, single-tap equalizer is used with the flat gain channels when

the length of CP is more than the channel impulse response as well as when the channel

is constant over each subcarrier during the transmitting time. This flat gain assumption

is approximately correct in FBMC when sufficiently large number of subcarriers is used.

• Computational Complexity: as shown in Fig. 2.7 and Fig. 2.14, the general structure

of OFDM and FBMC is quite similar where the FFT block is commonin both of them

and the CP insertion/removing block in OFDM is replaced by the polyphase network in

FBMC which requires more computational complexity. However, using of filtering or

any other technique to solve the large sidelobes or synchronization problems in OFDM

make the computational complexity of FBMC moderately higher than that of OFDM.

2.3 Resource Management in Multicarrier Systems

The distribution of the available resources is a fundamental aspect in the multicarrier systems.

The target is to allocate the power and frequency spectrum aswell as select the appropriate

modulation type so that the system performance is maximizedand the required quality of ser-

vices is achieved. In this section, a general overview of theresource management in multicar-

rier systems is presented. Detailed review of the previous work in non-cognitive and cognitive

systems is postponed to the next chapters.
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Figure 2.19: Description of the water-filling principle.1/SNR denotes the inverse of the

subcarriers signal to noise ratio.

2.3.1 Resource Allocation in Single User Multicarrier systems

Two categories of problems are considered for optimizationin single user multicarrier systems.

The first is therate maximization problem(RM) where the objective is to maximize the total

data rate under a given power budget constraint. The other problem is calledmargin maxi-

mization problem(MM) where the objective is maximizing the achievable system margin by

minimizing the transmit powers subject to rate constraint.In [134], the duality between rate

and margin maximization problems is proved which means thatthe optimal solution for one

yields to the optimal solution for the other. The optimal power and bit allocation in single user

multicarrier systems (also called point to point systems) can be achieved by applying thewater-

filling (also calledwater-pouring) solution in which a large amount of power is loaded on the

subcarriers with low attenuation compared with the others [135]. The water-filling principle

is described in Fig. 2.19. As we can see, zero power is allocated to the subcarriers with high

attenuation.

The water-filing algorithm in the single user systems has several variants. Instatistical

water-filling [136], the maximum capacity is achieved by performing the water-filling over

time when the channel statistics are known.Constant power water-filling[137] simplifies

the transmitter design by allocating zero power to the subchannels with zero power in the

exact water-filling, while allocates constant power in the rest of the subchannels with positive

power in the exact water-filling as described in Fig. 2.20.Mercury water-fillingis proposed

in [138] to deal with limitation introduced by having a discrete constellation. The signal to

noise ration (SNR) gap is introduce to quantify the gap between the capacity practical system
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Figure 2.20: Description of the constant water-filling principle.

and the Shannon theoretical capacity. As depicted in Fig. 2.21, a mercury layer is poured over

the subcarriers before the water. Each subchannel has different mercury hight from the others

to fit to the loaded constellation. Note that, like the conventional water-filling, the allocated

power at each subchannel is the hight to the water-filling level.

2.3.2 Resource Allocation in Multi-user Multicarrier systems

In multiple user multicarrier systems, the users transmissions/receptions may undergo variant

fading attenuations due to the different locations of everyuser. This is called multi-user di-

versity. To benefit from this diversity, adequate resource allocation should be performed to

achieve the maximum performance. Therefore, the allocation process includes not only power

(bit) allocation like the single user case but also the subcarrier (frequency) allocation where a

disjoint set of subcarriers should be allocated to each user. The disjoint set of subcarriers con-

Water-filling 

level

Frequency

Allocated power

Zero power is allocated 

on this subcarrier

1 SNR

P

Mercury 

Figure 2.21: Description of the mercury water-filling principle.
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straint makes the problem not convex where the complexity ofobtaining the optimal solution

grows exponentially with the number of subchannels. In order to reduce the high complexity of

obtaining the optimal solution, two different approaches are used: either to use a sub-optimal

approach, like the allowing the subcarrier sharing, to solve the original joint optimization prob-

lem or split the original problem into two sub-problems; onefor the frequency allocation and

another for power allocation.

The addressed problems in multiuser multicarrier systems can be categorized in three dif-

ferent types [139]. The first isMulti-user raw rate maximizationwhere the total sum-rate of

all users is maximized subject to the total/individual power and disjoint subcarrier allocation

constraints. This way of maximization suffers from the limited achieved fairness between users

since the users located close to the transmitter/receiver,i.e. users with good channel, are allo-

cated with more subcarriers than the distant ones, and in order to enhance the system fairness,

the rate adaptive optimizationapproach is used by maximizing the rate of the weakest user

subject to the powers and disjoint subcarrier allocation constraints. Thismax-min fairnessis

not well suited to scenarios with users require different rates corresponding to different service

levels. Therefore, a non-linearproportional fairnessconstraints on the rate are imposed to

guarantee probational rates among the different users as given in [140]. The third approach is

themargin adaptive optimizationwhere the transmit powers are reduced subject to per-user rate

constraints. Thehard fairnessconstraint might be added to force the users to have the same rate

at each channel realization. To consider the trade-off between the different optimization param-

eters like spectral efficiency, fairness and quality of service (QoS), the utility function is used

to map the resource use as well as the performance criteria into a price value and hence, utility-

based resource allocation and scheduling algorithms are developed [141]. Besides, MIMO

systems are capable of exploiting both transmitter and receiver diversity. By combining MIMO

technology with multi-user multicarrier systems, the transmission rate, range and reliability are

improved [142]. The trade-off between the different gains in the MIMO systems, i.e. diversity

gain, multiplexing gain, and multiple-access gain, is studied in [143]. Many algorithms have

been developed for the resource allocation in multicarriersystems with MIMO capability (see

e.g. [144,145] and references therein).

The research on resource allocation in multi-cell multicarrier networks has attracted many

effort. The most common way to avoid the inter-cell interference is by applying what is called

the frequency reuse. By the frequency reuse, each cell uses frequency bands different from that
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used in the adjacent cells. The number of different channelsbetween cells is called the reuse

factor. By careful selection of the reuse factor value as well as the BSs locations, the inter-

ference between cell might be neglected or modeled as a noise. Accordingly, the algorithms

developed to solve the resource allocation problem in single-cell scenarios can be adopted

in the multi-cell scenario. The fixed reuse factor is developed in [146, 147] to be fractional,

whereby the full band is assigned to users in the internal part of the cell while the frequency

reuse is adopted at the edges of the cells. Moreover, random reuse factor based on the actual

channel conditions is proposed in [148], where a given subcarrier is allocated to a certain BS if

the overall capacity of the system will be increased. The dynamic frequency reuse improve the

performance significantly with respect to the fixed frequency reuse scheme.

2.4 Constrained Optimization

The design of the communication system in order to achieve a given objective (maximize/minimize

a cost function) subject to various resource constraints isan essential task. This type of prob-

lems is called constrained optimization which often appears in the multicarrier systems. Con-

sider the optimization problem in the form

max
x

f0 (x)

s.t. fi (x) ≤ 0; i = 1, · · · , m
(2.23)

wherex = [x1, · · · , xn] is the optimization variables,f0 (·) andfi (·) , i = 1, · · · , m are the

objective function and the inequality constraints functions respectively.x is called afeasible

point if it satisfies the constraints and the unionXof all the feasible points is calledfeasible set.

p⋆ is called the optimal value and referred to the value of the objective function at one of the

points inside the optimal set.

If the objective and constraints functions are all linear, the problem is called linear pro-

gramming (LP) and the global optimal point is easy to be found. Simplex algorithm is one of

the most popular LP algorithms. Since the LP problem having asolution must have an optimal

value that falls on the boundary of the feasible region, the algorithm starts with a given initial

solution and moves to the neighboring vertex that best improve the objective function value.

These movements are performed until obtaining the optimal point [149].

When the optimization problem is convex, the global optimalsolution is equal to local op-
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timal point. LP problem is a special kind the convex optimization problem. Different methods

can be used to find the global optimal point. For the unconstrained convex problem, gradi-

ent and Newton’s method are the known ones. Gradient method (also called gradient ascent

method) moves from an initial feasible point towards the optimal value by updating iteratively

the current optimization variables values in the directionof the gradient. Although the gra-

dient method is simple and it guarantees locating the optimal point (if exists), it has slow

convergence [150]. Newton’s method normally converges faster than the gradient method but

it requires computing the Hessian of the objective function. Newton’s method is used to find

the roots of the equation in one or more dimensions by approximating the objective function at

a given point by a quadratic function and takes a step towardsthe maximum of that quadratic

function.

In a constrained convex optimization problems, projected gradient algorithm, interior point

method, and ellipsoid method can be applied. In projected gradient algorithm, the search direc-

tion is projected into the subspace tangent to the active constraints. Ellipsoid method generates

a sequence of ellipses inside the feasible set whose volumesdecreases at each iteration to

enclose the maximum of the convex function. Ellipsoid method is used in low-dimensional

problem due its poor performance in large ones. Interior point method is a search algorithm

that adds a penalty to the objective function when the searchpoint approaches the boundary of

the feasible set. More description of this algorithm follows.

If the objective function or some of the constraints are non-linear, the optimization prob-

lem is called non-linear programming (NLP) problem. Interior point method, simulated anneal-

ing [151], and genetic algorithm [152] are widely employed to perform the global optimization

of in NLP. The name of simulated annealing is inspired from the annealing process in met-

allurgy which consists of heating and control cooling of a material increase the size of the

crystals. In simulated annealing, the current solution is replaced by a new nearby random solu-

tion generated according to pre-defined distribution. The probability by which the new solution

is accepted or not depends on the difference between the objective function values and also on

a global parameter called temperature. Genetic algorithmsare class of evolutionary algorithms

inspired by the evolution biology. It starts by constructing a population of a group of random

candidate solution (called individuals). The fitness of this population is evaluated and multiple

individuals are selected based on their fitness and modified to from a new population. The

process is repeated until the terminating condition is met.
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When the value of any of the optimization variables is restricted to be integer, the problem

is called integer programming problem. In this category of problems, there are no optimality

conditions that can be checked to declare that a given feasible solution is optimal. Relaxation

and decomposition method is one of the ways of solving the integer programming problems.

By this method, the complicated constraints are removed from the constraints set by forming a

new suboptimal problem that is easier to solve. The suboptimal problem is solved repetitively

until the optimal value is found [153]. The branch-and-bound method is another technique to

solve the integer programming problems. This method tries to avoid the enumeration of all the

possible solutions of the problem by eliminating the unfeasible or dominated solutions. The

branching is used to cover the feasible region by smaller subregions while the bounding is used

to exclude the solutions dominated by previous computations [149]. In the sequel, we review

the related concepts that are used in the dissertation.

2.4.1 Lagrangian Method and Optimality Conditions

Consider the problem given by () wheref0 (·) andfi (·) are continuously differentiable func-

tions but not necessarily convex or concave. Augmenting theobjective function with a weighted

sum of the constraint functions forms theLagrangian functionand can be expressed as

L (x, λ) = f0 (x)−
m∑

i=1

λifi (x) (2.24)

whereλ = [λi, · · · , λm] is the Lagrange multipliers vector. The Lagrangian function forms an

upper bound onf0 (·) within the feasible set, i.e.

L (x, λ) ≥ f0 (x) ∀x ∈ X (2.25)

Based on the Lagrangian function, the following necessary and sufficient conditions are

formed to find the global maximum of the problem (2.4.1) as follows

• Karush-Kuhn-Tucker (KKT) necessary conditions [149]: let x⋆ to be a local maxi-

mum of the problem (2.4.1), then there exists unique Lagrange multiplier vectorsλ⋆ =

[λ⋆i , · · · , λ⋆m] such that
∂L(x⋆,λ⋆)

∂xi
= 0, i = 1, · · · , n

λ⋆j ≥ 0, j = 1, · · · , m
λ⋆jfi (x

⋆) = 0, j = 1, · · · , m
(2.26)
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Note that the necessary condition means that if a given pointsatisfies the KKT conditions,

it might not be a local minimum of the problem (2.4.1).

• General sufficient condition [149]: if x⋆ is a feasible point together with the Lagrange

multipliers vectorλ⋆ satisfiesλ⋆jfi (x
⋆) = 0, j = 1, · · · , m and maximizes the La-

grangian functionL (x, λ⋆) overx ∈ X , i.ex
⋆ = argmax

x∈X
L (x, λ⋆), thenx⋆ is a global

maximum of the optimization problem (2.4.1).

If f0 (·) andfi (·) are convex functions, the Lagrangian function is convex function as

well and the necessary conditions become also sufficient.Therefore, the global maximum

x
⋆ can be found by solving the system of equations formed by

∂L (x⋆, λ⋆)

∂xi
= 0, i = 1, · · · , n (2.27)

2.4.2 Interior Point Method

Although that the system of equations formed by the KKT conditions is solvable, but many

times a closed form can not be obtained. Therefore, another iterative techniques might be

used to find the optimal solution. Interior point method can be adopted to convert the orig-

inal constrained problem to a sequence of simplified unconstrained maximization problems.

A description of thebarrier methodis provided in this section as a particular interior point

method.

The idea of the barrier method , also referred to aspath-following algorithm, is to start

from a point in the interior of the setS defined by the inequality constraints, i.e.S = {x ∈
X |fi (x) < 0, i = 1, · · · , m} , and construct a barrier that prevents any optimization variable

from reaching the boundary of the feasible set. The problem (2.4.1) can be rewritten as [150]

max
x

f0 (x) +

m∑

i=1

I (fi (x)) (2.28)

whereI (fi (x)) term causes the objective to decrease without bound asfi (x) approaches zero

from negative value and can be expressed as

I (u) =





0 u ≤ 0

−∞ u > 0
(2.29)

48



2.4. Constrained Optimization

The objective function (2.28) is not differentiable. Therefore, I (u) can be approximated

using the logarithmic barrier function as follows

Î (u) = −1

t
log (−u) (2.30)

wheret > 0 is a parameter sets the accuracy of the approximation. Therefore, by setting that

φ (x) = −
m∑
i=1

log (−fi (x)), (2.28) can be expressed as

max
x

tf0 (x) + φ (x) (2.31)

The vectorx⋆ evaluated at givent is called a central point and denoted byx
⋆ (t). Moreover,

the set of the central pointsx⋆, t > 0 forms the central path of the problem (2.4.1). The central

pointx (t) is m
t

suboptimal, i.e.(f0 (x⋆ (t))− p⋆) ≤ m
t
.

Let ǫ = m
t

to be the accuracy of the solution found by the barrier method, problem

(2.31) can be solved directly using any unconstrained optimization technique like the New-

ton’s method [150]. Good starting point as well as moderate accuracy, i.e.ǫ is not too small,

are required for excellent performance. However, this method does not work well for large

problem. A simple extension can be made by solving the problem sequentially where each it-

eration commenced by evaluating the new central point starting from the previously computed

central point in the last iteration. The variablet is increased in every iteration by factorµ > 1.

The algorithm terminates whenm
t
< ǫ. The factorµ controls the number of required iterations

and practically preferred to be in the intervalµ ∈ [20, 30]. Finally, the initial value oft is

adjusted to be approximately of the same order asf0
(
x(0)
)
− p∗ or µ times this amount where

x
(0) denotes the starting point [150].

2.4.3 Subgradient Method

When the objective function is nondifferentiable, the subgradient method can be used. This

method is much slower than the interior point method and its performance depends on the

problem scaling and conditioning. The subgradient of any function f at the pointx is any

vectorg that satisfies the inequality

f (y) ≥ f (x) + hT (y − x) , ∀y (2.32)

whenf is differentiable,g is the gradient off atx, i.e.∇f (x).
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To solve the problem (2.4.1), the algorithm performs the following update on the opti-

mization variablesx at every iteration

x
(k+1) = x

(k) + αkh
(
x
(k)
)

(2.33)

wherek denotes the iteration number,αk is thekth step size, andh
(
x
(k)
)

is a subgradient of

the objective function or one of constraint functions atx
(k) and is given by [154]

h
(
x
(k)
)
=





∂f0
(
x
(k)
)

fi
(
x
(k)
)
≤ 0, i = 1, · · · , m

∂fj
(
x
(k)
)

for somej such thatfj
(
x
(k)
)
> 0

(2.34)

where∂f (x) denotes the set of subgradients off at x. Therefore, from (2.34), if the cur-

rent point is feasible, the objective subgradient is used while the subgradient of any violated

constraint is used when the current point is infeasible.

The step size should be set before the starting of the algorithm. Many different types of

step size rules like constant step size withαk = α, ∀k, and diminishing step size rule. A typical

example of the diminishing step size rule isαk =
a√
k

wherea > 0.

Its worth mentioning that the iteration of the subgradient method can reduce the objective

function and hence the algorithm should keep track of the best point found so far, i.e.

p⋆ = f
(k)
best = max{f0

(
x
(k)
) ∣∣x(k)feasible, k = 1, · · · , K } (2.35)

2.4.4 Duality

The concept of duality theory is used frequently in the communication systems. It can be used

to bound a nonconvex problem, determine the stopping criteria of the algorithm, or decompose

the large problem into smaller ones.

Consider the following primal problem

max
x

f0 (x)

s.t. h (x) ≤ C
(2.36)

wheref0 (·) andh (·) are not necessarily convex or concave functions andC is a constant.x is

the optimization variable andp⋆ is the optimal value. To construct the dual problem, we start

by finding the Lagrangian function of the problem

L (x, λ) = f0(x)− λ (h (x)− C) (2.37)
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whereλ is the Lagrange multiplier. The Lagrange dual function is the maximum value of the

Lagrangian function and can be expressed as

g (x, λ) = max
x

L (x, λ) (2.38)

The Lagrange dual function gives an upper bound on the optimal valuep⋆ of the problem

(2.36) for everyλ ≥ 0. Therefore, to find the lowest upper bound, the dual problem is formed

by minimizing the Lagrangian dual function as follows

g⋆ = min
λ
g (x, λ)

s.t. λ > 0
(2.39)

Accordingly, the inequalityg⋆ ≥ p⋆ is always holds even if the original problem is not

convex which called theweek duality. The differenceg⋆ − p⋆ ≥ 0 is referred to as theoptimal

duality gapand it defines the gap between the optimal value of the primal problem and the

lowest upper bound on it that can be obtained from the Lagrange dual function.

The strong dualityholds if g⋆ = p⋆, i.e. the optimal duality gap is zero. If the primal

problem is convex, the strong duality usually holds. For problem (2.36), whenf0 (·) is concave

andh (·) is convex, and there exists a strictly feasible point in the constraints set, the primal

and dual problems have the same solution [150].

When the primal problem is not convex, the zero duality gap cannot be assured. However,

the strong duality holds for the nonconvex problems that satisfied the time sharing condition

[155]. The time sharing condition can be described as follows [155]: Assume thatx⋆ and

y⋆ are the optimal solutions of the optimization problem (2.36) with C = Cx andC = Cy

respectively. The optimization problem (2.36) satisfies the time sharing condition if for any

C = Cx, C = Cy and for any0 ≤ θ ≤ 1, there always exists a feasible solutionz, such that

h (z) ≤ θCx + (1− θ)Cy andf (z) ≥ θf (x) + (1− θ) f (y).

The time sharing implies that the maximum value of the optimization problem is a concave

function ofC. Therefore, if the primal problem satisfies the time sharingcondition and there

exists a strictly feasible solution in the constraints set,the strong duality holds regardless of

the convexity of the problem. This condition is usually satisfied for the optimization problems

appear in the multicarrier systems in the limit as the numberof subcarriers goes to infinity.

Remark that the dual problem is always convex and the subgradient method is usually used

to find its solution since it is not always continuously differentiable. Eventually, if the strong
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duality holds, the dual problem can be solved instead of the primal one when its easier to be

solved or when a closed form solution can be found.
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Chapter 3
Resource Allocation in Downlink

Multicarrier Based Cognitive Radio Systems

”The obvious is that which is never seen until someone expresses it simply”Kahlil

Gibran.
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3.1 Introduction

Multicarrier communication systems have been suggested asa candidate for cognitive radio

(CR) systems due to its flexibility to allocate resources among different secondary users (SUs).
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The problem of resource allocation for conventional (non-cognitive) multiuser multicarrier sys-

tems has been widely studied (see e.g. [1–7] and references therein). In single user multicarrier

systems, the data rate of the system is maximized under the total power constraint by adapt-

ing the transmit powers according to the waterfilling policy[1, 2]. A survey on bit and power

allocation algorithms for single user multicarrier systems was presented in [3] where the main

algorithms proposed to solve the main classes of loading problems, i.e. rate maximization

problem (RM) and margin maximization problem (MM), are reviewed considering the total or

individual power constraints. Additionally, the problem of the integer-bit loading is discussed

and the optimal discrete solution as well as several low complexity algorithms are examined.

In the multiuser multicarrier systems, the overall capacity of the system can benefits from

the available diversity where the probability of having thesame subcarrier in deep fade for

all the users is low. Jang et al. proved in [4] that the data rate of the downlink multiuser or-

thogonal frequency division multiplexing (OFDM) systems is maximized by assigning each

subcarrier exclusively to the user with the highest signal-to-noise ratio (SNR). Afterwards, the

transmit power is distributed using the waterfilling algorithm. This way of subcarrier alloca-

tion to the user with best channel may cause that the users with the higher average channel gain

will be allocated most of the resources. To insure that all the users achieve similar data rate,

Rhee et al. in [5] formulate amax-minproblem to maximize the capacity of the user with the

worse capacity. The authors allow the subcarrier sharing between users and write the problem

in a standard convex form. Additionally, they propose an efficient suboptimal algorithm to

reduce the computational complexity of the optimal scheme.In the suboptimal scheme, uni-

form power allocation is assumed in every subcarrier-user link and only the subcarrier with

maximum achieved capacity is allocated to every user. Afterward, the rest of non-allocated

subcarriers are assigned sequentially to the user with the lowest data rate. Shen et al. in [6]

relaxed the equal data rate fairness constraint by proposing an algorithm that guarantees the

proportional fairness between users in order to satisfy thedifferent quality of service (QoS)

requirements. Further details about the resource allocation problem in non-cognitive downlink

multicarrier can be found in the recent survey [7] and the references therein.

In CR systems, two types of users (secondary users (SUs) and primary users (PUs)) and

the mutual interference between them should be considered.The use of the resource allocation

algorithms proposed for the non-cognitive is not always efficient because additional constraints

should be introduced to keep the interference caused by the sidelobes in different subcarriers
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below the maximum limit of the interference that can be tolerated by PUs. Therefore in CR

systems, more power should be allocated to the good channelsthat at the same time introduce

small amount of interference to the PUs which motivates the need of developing a wise resource

allocation policy.

Wang et al. in [8] proposed an iterative partitioned single user waterfilling algorithm. The

algorithm aims at maximizing the capacity of the CR system under the total power constraint

as well as the per subcarrier power constraint formed by the PUs interference limit. The per

subcarrier power constraint is evaluated based on the pathloss factor between the CR trans-

mitter and the PU protection area. The mutual interference between the SU and PU was not

considered. In [9] and [10], the authors proposed an optimaland two suboptimal power load-

ing schemes using the Lagrange formulation. These loading schemes maximize the downlink

transmission capacity of the CR system while keeping the interference induced to only one

PU below a pre-specified interference threshold without considering the total power constraint.

In [11], an algorithm calledRC algorithmwas presented for multiuser resource allocation in

OFDM based CR systems. This algorithm uses a greedy approachfor the subcarrier and power

allocations by successively assigning bits, one at a time, based on the minimum SU power

and minimum interference to PUs. The algorithm has a high computational complexity and a

limited performance in comparison with the optimal solution. In [12], a risk return model is

employed to consider the probability of PUs appearance and the misdirection errors. Based on

this model, an energy-aware capacity expression is developed to take into account the subcar-

riers availability. The algorithm allocates the availablepower selectively to the underutilized

subcarriers. Setoodeh and Haykin formulated in [13] the transmit power adaptation problem

as a noncooperative game and use tools from control theory tostudy the equilibrium and tran-

sient of the proposed scheme. A robust version of the iterative water-filling algorithm (IWFA)

is developed to address the variation in the spectrum occupancy and guarantee an acceptable

level of performance of the CR system. Furthermore in [13], It is proved that the IWFA algo-

rithm can prevent violating the permissible interference power levels even with outdated, i.e.

delayed, channel information.

Recently, Almalfouh et al. in [14] considered the imperfectspectrum sensing errors in

the allocation process, and proposed suboptimal algorithms to solve the problem. The powers

are initially determined according to pre-defined criteriaand based on that, the subcarriers are

allocated to the users by solving a multiple-choice Knapsack problem (MCKP). In [15], a low
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complexity suboptimal solution is proposed. The algorithminitially assumes that the maximum

power that can be allocated to each subcarrier is equal to thepower found by the conventional

waterfilling, and it then modifies these values by applying a power reduction algorithm in or-

der to satisfy the interference constraints. Experimentalresults like [16], emphasize the need

for low interference constraints, where this algorithm hasa limited performance. Moreover,

the non transmission of the data over the subcarriers below the waterfilling level or the deac-

tivated subcarriers due to the power reduction algorithm decreases the overall capacity of the

CR system. An overview of the state-of-art results on resource allocation over space, time, and

frequency for emerging CR wireless networks can be found in [17].

OFDM based CR systems suffer from high interference to the PUs due to large sidelobes

of its filter frequency response. The insertion of the cyclicprefix (CP) in each OFDM symbol

decreases the system capacity. The leakage among the frequency sub-bands has a serious

impact on the performance of FFT-based spectrum sensing. Inorder to combat the leakage

problem of OFDM, a very tight and hard synchronization implementation has to be imposed

among the network nodes [18].

Filter bank multicarrier system (FBMC) can overcome the spectral leakage problem by

minimizing the sidelobes of each subcarrier and therefore lead to high efficiency (in terms of

spectrum and interference) [18,19]. Moreover, efficient use of filter banks for spectrum sensing

when compared with the FFT-based periodogram and the Thomson’s multitaper (MT) spectrum

sensing methods have been recently discussed in [18] and [20].

In this chapter, we propose a resource allocation algorithmin order to maximize the down-

link capacity of multicarrier based CR systems. We address the scenario in which the CR sys-

tem is interfering with several PUs and hence, the differentresources should be allocated to the

SUs subject to both total power and interference constraints. The hybrid underlay and overlay

spectrum access scheme is employed by the cognitive networkso that the CR system is able to

use the active as well as the non-active PU bands. The chaptercontribution is summarized in

the following points

• Because of the high complexity of the joint optimal scheme, atwo-step suboptimal al-

gorithm is proposed to perform the subcarrier and power allocation separately. We show

that the proposed algorithm achieves a near optimal performance with a significant reduc-

tion in the computational complexity. The higher efficiencyof the proposed algorithm
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Figure 3.1: Cognitive Radio Network.

with respect to those presented in [11,15] is also demonstrated.

• We investigate the efficiency of using FBMC-based physical layer in CR systems and

compare it with that of OFDM-based systems.

• The advantage of enable the CR to access the active and non-active bands is verified and

compared with an opportunistic access method that allow access to the non-active PU

bands only.

This chapter encompasses research published in [21–26] andis organized as follows: Sec-

tion 3.2 gives the system model while Section 3.3 formulatesthe problem. The proposed

algorithm is presented in Section 3.4. Numerical results are presented in Section 3.5. Finally,

Section 3.6 summarizes the chapter.

3.2 System Model

In this chapter, the downlink scenario shown in Fig. 3.1 willbe considered. The CR system

coexists with the PUs radio in the same geographical location. The cognitive base station

(CBS) transmits to its SUs and causes interference to the PUs. Moreover, the PUs base station

interferes with the SUs. The CR system’s frequency spectrumis divided intoN subcarriers
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Figure 3.2: Frequency distribution of the active and non-active primary bands.

each having a∆f bandwidth. The side by side frequency distribution of the PUs and SUs will

be assumed (see Fig. 3.2). The frequency bandsB1,B2,· · · ,BL have been occupied by the PUs

(active PU bands) while the other bands represent the non-active PU bands. It’s assumed that

the CR system can use the non-active and active PU bands provided that the total interference

introduced to thelth PU band does not exceed the valueI lth which is the maximum interference

power that can be tolerated byPUl.

The interference introduced by theith subcarrier tolth PU,I li (di, Pi), is the integration of

the power spectral density (PSD),Φi (f), of theith subcarrier across thelth PU band,Bl, and

can be expressed as [27]

I li (di, Pi) =

di+Bl/2∫

di−Bl/2

∣∣gli
∣∣2 PiΦi (f) df , PiΩ

l
i (3.1)

wherePi is the total transmit power emitted by theith subcarrier anddi is the spectral distance

between theith subcarrier and thelth PU band.gli denotes the channel gain between the CBS

and thelth PU on the subcarrieri. Ωl
i denotes the interference factor of theith subcarrier to the

lth PU band.

The interference power introduced by thelth PU signal into the band of theith subcarrier

is [27]

J l
i (di, PPUl

) =

di+∆f/2∫

di−∆f/2

∣∣yli
∣∣2 ψl

(
ejω
)
dω (3.2)

whereψl (e
jω) is the PSD of thePUl signal andyli is the channel gain between theith subcarrier

andlth PU signal. The PSD expression,Φi (f), depends on the used multicarrier technique.

As described in the previous chapter, the OFDM PSD is expressed as follows

ΦOFDM (f) =
σ2
x

T

∑

k

∣∣∣∣GT

(
f − k

N

)∣∣∣∣
2

(3.3)
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whereGT (f) is the Fourier transform of the pulse shapegT (n), T = C + N is the length of

the OFDM symbol in number of samples whereC is the length of CP in number of samples

andN is the IDFT size,σ2
x is the variance of the zero mean (symmetrical constellation) and

uncorrelated input symbols and{k} is the set of subcarrier indices. The pulse shapegT (n) can

be chosen as

gT (n) =





1 n = 0, 1, · · · , T − 1

0 otherwise
(3.4)

and hence its Fourier transform is

|GT (f)|2 = T + 2
T−1∑

r=1

(T − r) cos (2πfr) (3.5)

Additionally, the PSD of the FBMC can be expressed by [28]

ΦFBMC =
σ2
r

τ◦

∑

k

∣∣∣∣H
(
f − k

N

)∣∣∣∣
2

(3.6)

whereH (f) is the frequency response of the prototype filter with coefficients h [n] with

n = 0, · · · ,W − 1 , whereW = KN , andK is the length of each polyphase components

(overlapping factor) whileN is the number of the subcarriers. Additionally,{k} is the set of

subcarrier indices,σ2
r = σ2

x

2
is the FBMC symbol variance, andτo is FBMC symbol duration.

Assuming that the prototype coefficients have even symmetryaround the
(
KN
2

)th
coefficient,

and the first coefficient is zero [29,30], we get

|H (f)| = h [W/2] + 2

W
2
−1∑

r=1

h [(W/2)− r] cos (2πfr) (3.7)

To make a parallel between OFDM and FBMC, we place ourselves in the situation where

both systems transmit the same quantity of information. This is the case if they have the same

number of subcarriersN together with duration ofτo samples for FBMC real data andT = 2τo

for the complex QAM ones [28,29].

3.3 Problem Formulation

The maximum achievable transmission rate of theith subcarrier,Ri, with the transmit power

Pi can be evaluated using the Shannon capacity formula and is given by

Ri (Pi, hi) = ∆f log2

(
1 +

Pi |hi|2
σ2
i

)
(3.8)
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wherehi is the subcarrier fading gain from the CBS to the user.σ2
i = σ2

AWGN +
∑L

l=1 J
l
i

whereσ2
AWGN is the mean variance of the additive white Gaussian noise (AWGN) andJ l

i is

the interference introduced by thelth PUs band into theith subcarrier of the CR system. The

interference from PUs to theith subcarrier is assumed to be the superposition of large number

of independent components, i.e.
∑L

l=1 J
l
i . Hence, by using central limit theorem, we can model

the interference as AWGN. This assumption may not be valid for a low number of PU bands but

can be considered as a good approximation for a large number of PU bands. This assumption

is generally taken in this research area (e.g. [10, 15, 18]).Remark that the nature of the PUs

interference on SUs band is the same on both OFDM and FBMC systems. The difference is

only in the SUs interference to the PU bands, where FBMC has significantly lower interference,

because its sidelobes are significantly smaller than those of OFDM.

Assuming that each subcarrier band is narrow, subcarriers can be approximated as channel

with flat fading gains [31, 32]. It will be assumed that the channel changes slowly so that the

channel gains remain constant during transmission. The total achievable rate for OFDM and

FBMC systems is evaluated by summing the transmission rate across the different subcarri-

ers [19, 33]. All the instantaneous fading gains are assumedto be perfectly known at the CR

system. Remark that the channel gains between the CR system nodes can be obtained prac-

tically by means of classical channel estimation techniques while the channel gains between

the CR system and PUs can be obtained by estimating the received signal power from the

primary terminal when it transmits, under the assumptions of pre-knowledge on the primary

transmit power levels and the channel reciprocity [34–37].In [38], a blind parameter extrac-

tion algorithm is proposed to estimate the symbol period, useful symbol period, length of the

cyclic prefix, number of subcarriers and the carrier frequency offset of the received OFDM sig-

nals when affected by additive Gaussian noise, time-dispersive channel, timing and frequency

offsets.

Let vi,m to be a subcarrier allocation indicator, i.e.vi,m = 1 if and only if the subcarrier

i is allocated to themth user, and zero otherwise. It is assumed that each subcarriercan be

used for transmission to at most one user at any given time. Our objective is to maximize the

total capacity of the CR system subject to the instantaneousinterference introduced to the PUs

and total transmit power constraints. Therefore, the optimization problem can be formulated as

follows
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P1 : max
Pi,m

M∑
m=1

N∑
i=1

υi,mRi,m (Pi,m, hi,m)

s.t. υi,m ∈ {0, 1} , ∀i,m
M∑

m=1

υi,m ≤ 1, ∀i
M∑

m=1

N∑
i=1

υi,mPi,m ≤ PT

Pi,m ≥ 0, ∀i ∈ {1, 2, · · · , N}
M∑

m=1

N∑
i=1

υi,mPi,mΩ
l
i ≤ I lth, ∀l ∈ {1, 2, · · · , L}

(3.9)

whereN denotes the total number of subcarriers,M is the number of users,I lth denotes the

interference threshold prescribed by thelth PU andPT is the total SUs power budget.L is the

number of the active PU bands. Inequality
M∑

m=1

υi,m ≤ 1, ∀i ensures that any given subcarrier

can be allocated to at most one user.

The optimization problemP1 is a combinatorial optimization problem and its complexity

grows exponentially with the input size. In order to reduce the computational complexity, the

problem is solved in two steps by many of the suboptimal algorithms in the scientific literature

(see e.g. [4, 39–41] and references therein). In the first step, the subcarriers are assigned to

the users and then the power is allocated for these subcarriers in the second step. Once the

subcarriers are allocated to the users, the multiuser system can be viewed virtually as a single

user multicarrier system. As proven in [4], the maximum datarate in downlink can be obtained

if each subcarrier is assigned to the user who has the best channel gain for that subcarrier.

The proof given in [4] is presented considering the non-cognitive multicarrier systems. The

main difference between the optimization problem in the non-cognitive and cognitive systems

is the existence of the interference constraints in the latter. However, the CBS has common

interference factor for all the SUs, i.e. the value ofΩl
i is SU independent and hence, the proof

is valid for the cognitive case as well. The subcarrier allocation algorithm is described in

Algorithm 3.1. No fairness or data rate constraints are considered in this chapter. However,

the fairness between users can be achieved by adopting the algorithms proposed for the non-

cognitive multicarrier systems like ( [5,6] and referencestherein).

By applying Algorithm 3.1, the values of the channel indicatorsυi,m are determined and

hence for notation simplicity, the single user notation canbe used. The values of the channel
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Algorithm 3.1 Subcarriers to User Allocation
Initialization:

Setυi,m = 0 ∀i,m
Subcarrier Allocation:

for i = 1 toN do

m∗ = argmax
m

{hi,m}; υi,m∗ = 1

end for

gains can be determined from the subcarrier allocation stepas follows

hi =
M∑

m=1

υi,mhi,m (3.10)

Therefore, problemP1 in (3.9) can be reformulated as follows

P2 : max
Pi

N∑
i=1

log2

(
1 + Pi|hi|2

σ2
i

)

s.t.
N∑
i=1

PiΩ
l
i ≤ I lth ∀l ∈ {1, 2, · · · , L}

N∑
i=1

Pi ≤ PT

Pi ≥ 0 ∀i ∈ {1, 2, · · · , N}

(3.11)

The problemP2 is a convex optimization problem. Solving for the optimal solution (See

Appendix 3.A.1 for the derivation), we get

P ∗
i =




1
L∑
l=1

αlΩl
i + β

− σ2
i

|hi|2




+

(3.12)

where[x]+ = max (0, x). αl, l ∈ {1, 2, . . . , L} andβ are the Lagrange multipliers related to

the interference and power constraints respectively. Solving for L + 1 Lagrangian multipliers

is computationally complex. The powers can be found numerically using ellipsoid or interior

point method with a complexityO (N3) [15,42]. In what follows, a low complexity algorithm

that achieves near optimal performance is proposed.

3.4 Proposed Low Complexity Algorithm

The optimal solution for the optimization problem has a highcomputational complexity which

makes it unsuitable for problems with a high number of subcarriers. A low complexity algo-
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rithm is proposed by Zhang et al. in [15]. The subcarriers nulling and deactivating throughout

this algorithm degrade the system capacity and cause the algorithm to have a limited perfor-

mance in case of low interference constraints. To overcome the drawbacks of this algorithm, a

low complexity power allocation algorithm is presented.

As described in [27] and [15], most of the interference affecting the PU bands is induced

by the cognitive transmission in the subcarriers where the PU is active as well as in the sub-

carriers that are directly adjacent to the PU bands. Considering this fact, it can be assumed

that each subcarrier belongs to the closest PU band and only introducing interference to it, and

accordingly the optimization problemP2 can be reformulated as follows

P3 : max
P ′
i

N∑
i=1

log2

(
1 +

P ′
i |hi|2
σ2
i

)

s.t.
∑
i∈Nl

P ′
iΩ

l
i ≤ I lth ∀l ∈ {1, 2, · · · , L}

N∑
i=1

P ′
i ≤ PT

P ′
i ≥ 0 ∀i ∈ {1, 2, · · · , N}

(3.13)

whereNl denotes the set of the subcarriers belonging to thelth PU band. Using the same

derivation leading to (3.12), we get

P ′
i =

[
1

α′
lΩ

l
i + β ′ −

σ2
i

|hi|2
]+

(3.14)

whereα′
l andβ ′ are the non-negative dual variables corresponding to the interference and power

constraints respectively. The solution of the problem still has high computational complexity

which encourages us to find a faster and more efficient power allocation algorithm.

If the interference constraints are ignored inP3, the solution of the problem will follow

the well known waterfilling interpretation [2],

P
′(PT )
i =

[
λ− σ2

i

|hi|2
]+

(3.15)

whereλ is the waterfilling level. On the other hand, if the total power constraint is ignored, the

Lagrangian of the problem can be written as

G(Int) = −
∑

i∈Nl

log2

(
1 +

P
′(Int)
i |hi|2
σ2
i

)
+ α

′(Int)
l

(
∑

i∈Nl

P
′(Int)
i Ωl

i − I lth

)
(3.16)

whereα′
l is the Lagrange multiplier. Equating∂G

(Int)

∂P
′(Int)
i

to zero, we get

P
′(Int)
i =

[
1

α
′(Int)
l Ωl

i

− σ2
i

|hi|2

]+
(3.17)
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where the value ofα′
l can be calculated by substituting (3.17) into

∑
i∈Nl

P
′(Int)
i Ωl

i = I lth to get

α
′(Int)
l =

|Nl|
I lth +

∑
i∈Nl

Ωl
iσ

2
i

|hi|2
(3.18)

It is clear that if the summation of the allocated power underonly the interference con-

straints is lower than or equal to the available total power,i.e.
N∑
i=1

P
′(Int)
i ≤ PT , ∀i ∈ {1, 2, · · · , N},

then (3.17) and (3.18) will be the optimal solution for the optimization problemP3. In most

of the cases, the total power budget is considerably lower than this summation, and hence the

PowerInterference (PI) constrained algorithm, referred to asPI-Algorithm, is proposed to allo-

cate the power under both total power and interference constraints. A flowchart that describes

the PI-Algorithm is depicted in Fig. 3.3 where the followingstages are performed

• Maximum power determination: we can start by assuming that the maximum power

that can be allocated for a given subcarrierPMax
i is determined according to the inter-

ference constraints only by using (3.17) and (3.18) for every set of subcarriersNl, ∀l ∈
{1, 2, · · · , L}. By this assumption, we can guarantee that the interferenceintroduced to

the PU bands will be under the pre-specified thresholds.

• Power constraint testing: once the maximum powerPMax
i is determined, the total

power constraint is tested. If the total power constraint issatisfied, then the solution has

been found and is equal to the maximum power that can be allocated to each subcarrier,

i.e. P ′
i = PMax

i . Otherwise, continue to the next steps.

• Power budget distribution: the available power budget should be distributed among

the subcarriers ensuring that the power allocated to each subcarrier is lower than or equal

to the maximum power that can be allocated to each subcarrierPMax
i , and hence the

following problem should be solved

P4 : max
PW.F
i

N∑
i=1

log2

(
1 +

PW.F
i |hi|2

σ2
i

)

s.t.
N∑
i=1

PW.F
i ≤ PT

0 ≤ PW.F
i ≤ PMax

i

(3.19)

The problemP4 is called”cap-limited” waterfilling [3]. The problem can be solved effi-

ciently using the concept of the conventional waterfilling.As described in Fig. 3.4, given
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Figure 3.3: Flowchart of the proposed subcarrier and power allocation algorithm.
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Figure 3.4: Cap-Limited waterfilling graphical example.

the initial waterfilling solution, the channels that violate the maximum powerPMax
i are

determined and upper bounded withPMax
i . The total power budget is reduced by sub-

tracting the power assigned so far. At the next step, the algorithm proceeds to successive

waterfilling over the subcarriers that did not violate the maximum powerPMax
i in the last

step. These procedures are repeated until the allocated powerPW.F
i doesn’t violate the

maximum powerPMax
i in any of the subcarriers in the new iteration. Low computational

complexity implementation of the”cap-limited” waterfilling can be found in [43].

• Power levels re-adjustment: the solutionPW.F
i of the problemP4 satisfies the total

power constraint of the problemP3 with equality which is not the case for the different

interference constraintsI lth. Since it is assumed thatPW.F
i ≤ PMax

i , some of the powers

allocated to the subcarriers will not reach the maximum allowable values. This will

make the interference introduced to the PU bands below the thresholdsI lth. In order to

take advantage of all the allowable interference, the values of the maximum power that

can be allocated to each subcarrierPMax
i should be updated depending on the residual

interference. The residual interference can be determinedas follows

I lResidual = I lth −
∑

i∈Nl

PW.F
i Ωl

i (3.20)

Assuming thatAl ⊂ Nl is the set of the subcarriers that reach their maximum, i.e.
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Figure 3.5: Example of the SUs allocated power using porpsoedPI-Algorithm.

PW.F
i = PMax

i , ∀i ∈ Al, then,PMax
i , ∀i ∈ Al can be updated by applying the equations

(3.17) and (3.18) on the subcarriers whose indices are in thesetAl with the following

interference constraints

I ′lth = I lResidual +
∑

i∈Al

PW.F
i Ωl

i (3.21)

After determining the updated values ofPMax
i , the ”cap-limited” waterfilling is per-

formed again to find the final solutionP ′
i = PW.F

i . Now, the solutionP ′
i satisfies approx-

imately the interference constraints with equality and guarantees that the total power used

is equal toPT .

Fig.3.5 describes graphically thePI-Algorithm where the maximum powers are deter-

mined firstly, and followed by specifying the subcarriers inthe setA with allocated powers

equals to the maximum allowed powers. The maximum powers areupdated to the subcarriers

in the setA and finally, the”cap-limited” waterfilling is performed to find the final power al-

location. The implementation procedures of thePI-Algorithmand the”cap-limited” algorithm

are described in Algorithm 3.2 and Algorithm 3.3 respectively.

The computational complexity of Step2 in the proposedPI-Algorithm (Algorithm 3.2)

is
L∑
l=1

O (|Nl| log |Nl|) ≤ O (N logN). Steps4 and 6 of the algorithm execute the”cap-

limited” waterfilling which has a complexity ofO (N logN). Step5 has a complexity of
L∑
l=1

O (|Al| log |Al|) +O (L) ≤ O (N logN) +O (L). Therefore, the overall complexity of the

algorithm is lower thanO (N logN)+O (L). In comparison with the computational complex-

ity of the optimal solution, i.e.O (N3), the proposed algorithm has much lower computational
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Algorithm 3.2 PI-Algorithm

1. Initialize N = {1, 2, · · · , N}, Nl = Nl, I lResidual = 0, S = PT andAl = ∅.

2. ∀l ∈ {1, 2, · · · , L}, sort
{
Hi =

σ2
i

|hi|2
Ωi, i ∈ Nl

}
in decreasing order withk being the

sorted index. Find thePMax
i as follows:

(a) Hsum =
∑

i∈Nl
Hi, α

′(Int)
l = |Nl| /

(
I lth +Hsum

)
, n = 1.

(b) while α
′(Int)
l > H−1

k(n) do

Hsum = Hsum − Hk(n), Nl = Nl\ {k (n)}, α
′(Int)
l = |Nl| /

(
I lth +Hsum

)
,

n = n+ 1

end while

(c) SetPMax
i =

[
1

α
′(Int)
l

Ωl
i

− σ2
i

|hi|2

]+

3. if
∑

i∈N PMax
i ≤ PT

LetP ′
i = PMax

i and stop the algorithm.

end if

4. Execute the”cap-limited” waterfilling (Algorithm 3.3) and find the setAl ⊂ Nl where

PW.F
i = PMax

i .

5. EvaluateI lResidual = I lth − ∑
i∈Nl

PW.F
i Ωl

i and setNl = Al, I lth = I lResidual +
∑

i∈Al
PW.F
i Ωl

i and apply again only step2 to updatePMax
i .

6. Execute the”cap-limited” waterfilling (Algorithm 3.3) and setP ′
i = PW.F

i .

84



3.5. Simulation Results

Algorithm 3.3 Cap-Limited Waterfilling

1. Initialize F = M = N = {1, 2, · · · , N}, P̄i = PMax
i , andS = PT .

2. Sort
{
Ti =

σ2
i

|hi|2
, i ∈ N

}
in decreasing order withJ being the sorted index. Find the

waterfillingλ as follows:

(a) Tsum =
∑

i∈N Ti, λ = (Tsum + S) / |N |, n = 1.

(b) while TJ(n) > λ do

Tsum = Tsum − TJ(n), N = N\{J (n)}, λ = (Tsum + S) / |N |, n = n+ 1

end while

(c) SetPW.F
i = [λ− Ti]

+ , ∀i ∈ F

3. repeat

if PW.F
i ≥ P̄i

Let PW.F
i = P̄i, S = S − PW.F

i , M = M\{i}, N = M, and go to step 2;

end if

until PW.F
i ≤ P̄i, ∀i ∈ F

complexity specially when the number of the subcarriersN is high. Table. 3.1 summarizes the

complexity of the different algorithms.

Table 3.1: Computational complexity comparison

Algorithm Complexity

Exhaustive enumerationO
(
N3MN

)

Optimal O (N3)

Zhang [15] O (N logN) +O (LN)

PI-Algorithm O (N logN) +O (L)

3.5 Simulation Results

In the simulations, a scenario like the one depicted in Fig.3.1 is considered. A multicarrier

system ofM = 3 cognitive users andN = 32 subcarriers is assumed. The values of∆f
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andPT are assumed to be0.3125 MHz and1 watt respectively. AWGN of variance10−6 is

assumed. Without loss of generality, the interference induced by the PUs to the SUs band is

assumed to be negligible. The channel gainsh andg are outcomes of independent, identically

distributed (i.i.d) Rayleigh random variables (rv’s) withmean equal to1, and assumed to be

perfectly known at the CBS. OFDM and FBMC based cognitive radio systems are evaluated.

The OFDM system is assumed to have a6.67% of its symbol time as CP. For FBMC system,

the prototype coefficients are assumed to be equal to PHYDYAScoefficients with overlapping

factorK = 4, are defined by [44] [30]

h [0] = 0;

h [n] = 1− 1.94392 cos
(
2πn
128

)
+
√
2 cos

(
4πn
128

)
− 0.470294 cos

(
6πn
128

)
; 1 ≤ n ≤ 127

(3.22)

For the purpose of performance comparison, the following algorithms are considered:

1. Optimal : the subcarriers are allocated by Algorithm 3.1 while the powers are allocated

by using the interior point method.

2. PI: the subcarriers are allocated by Algorithm 3.1 while the powers are allocated by the

proposed algorithm described in Algorithm 3.2.

3. Zhang [15]: the subcarriers are allocated by Algorithm 3.1 while the power allocation is

performed in two steps. The powers are allocated initially according to the conventional

waterfilling and then modified to satisfy the interference constraints by applying a power

reduction algorithm.

4. RC [11]: the algorithm uses a greedy approach for the subcarrier and power allocation.

The algorithm assigns one bit a time to the SUs based on the required power by SUs as

well as the induced interference to the PUs.

All the results have been averaged over1000 iterations. The cases of single and two active

PU bands are considered in the simulation.

3.5.1 Case 1: Two Active PU Bands

In this case, two interference constraints belonging to twoactive PU bands, i.e.L = 2, are

assumed as depicted in Fig. 3.6. Each active PU band is assumed to have six subcarriers
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Figure 3.6: Frequency distribution with two active PU bands.

(|N1| = |N2| = 16). The achieved capacity usingoptimal, PI and Zhangalgorithms for

different interference constraints whereI1th = I2th is plotted in Fig. 3.7. It can be noted that the

proposedPI-algorithmapproaches the optimal solution and outperformsZhangalgorithm.

The effect of assuming that every subcarrier belongs to the closest PU band and introduc-

ing interference to it only on the net interference introduced to the active PU bands is studied

in Fig.3.8 and Fig. 3.9 forPU1 andPU2 respectively.
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Figure 3.7: Achieved capacity vs allowed interference threshold for OFDM and FBMC based

CR systems - Two active PU bands.
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It can be observed that the net interference induced using thePI-algorithmapproximately

satisfies the pre-specified interference constraints whichmakes the assumption reasonable. Un-

like the OFDM based CR system, the interference induced by the FBMC based system does

not reach the pre-specified thresholds. This is because the FBMC based CR system reaches

the maximum interference that can be introduced to the PU using the given power budget.

Moreover, the interference induced by the proposed algorithm is less than that usingZhang

algorithm. Returning to Fig.3.7, one can notice that the interference constraints aboveI lth = 10

mWatt start to have no effect on the achieved capacity of the FBMC system. This indicates

also that the FBMC system reaches the maximum interference for the given power budget.

The small difference between the net interference values aboveI lth = 10 mWatt is due to the

averaging over different channel realizations.

The achieved capacity of the different algorithms is plotted in Fig. 3.10 with lower values

of the interference constraints. It can be noticed thatZhangalgorithm has a limited perfor-

mance with low interference constraints because the algorithm turns off the subcarriers that

have a noise level which is higher than the initial waterfilling level and never uses these subcar-

riers again even if the new waterfilling level exceeds its noise level. Moreover, the algorithm
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Figure 3.10: Achieved CR vs allowed interference threshold (low) for OFDM and FBMC

based CR systems - Two active bands.
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deactivates some subcarriers, i.e. transmit zero power, inorder to ensure that the interfer-

ence introduced to PU bands is below the pre-specified thresholds. The lower the interference

constraints, the higher the number of deactivated subcarriers is, which justifies the limited per-

formance of this algorithm in case of low interference constraints.

To show the efficiency of transmitting over the active PU bands as well as the non-active

bands, Fig.3.11 and Fig.3.12 show the achieved capacity using the PI algorithm with and with-

out allowing the SUs to transmit over the PU active bands. Thecapacity of the CR system

transmitting on both the active and non-active bands is higher than that of the system in which

the transmission takes place on the non-active bands only. Since the cognitive transmission

in the active PU band introduces more interference to the PUsthan the other subcarriers, low

power levels can be used in these bands with low interferenceconstraints. This justifies why

the difference between the two systems decreases when the interference constraints decrease.

For all the presented results, the capacity of FBMC based CR system is higher than that

of the one based on OFDM because the sidelobes in FBMC’s PSD are smaller than those in

OFDM, which introduces less interference to the PUs. Moreover, the inserted CP in OFDM
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Figure 3.11: Achieved capacity vs allowed interference threshold with and without transmit-

ting over active bands- Two active PU bands.

90



3.5. Simulation Results

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
−5

4

5

6

7

8

9

10

11

12

13

14

Ith−Watt

C
ap

ac
ity

 (
B

it/
H

z/
se

c)

PI−OFDM
PI−OFDM−without−PU−Band
PI−FBMC
PI−FBMC−without−PU−Bnad

Figure 3.12:Achieved capacity vs allowed interference threshold (low)with and without trans-

mitting over active bands - Two active PU bands.

based CR systems reduces the total capacity of the system. Itcan be noticed also that the in-

terference condition introduces a small restriction on thecapacity of FBMC based CR systems

which is not the case in OFDM based CR systems.

3.5.2 Case 2: Single Active PU Band

The RC algorithm can be used if there is only one active PU band, i.e.L = 1. The RC

algorithm allocates the subcarriers and bits considering the relative importance between the

power needed to transmit and the interference induced to thePU band. In order to compare the

proposedPI-algorithmwith RCalgorithm, One active PU band with 12 subcarriers is assumed

in this case as depicted in Fig. 3.13.

For fair comparison, the same bit mapping used in [11] is considered, that is

bi =

⌊
log2

(
1 +

P ′
i |hi|2
σ2
i

)⌋
(3.23)

wherebi denotes the maximum number of bits in the symbol transmittedin the ith subcarrier

and⌊.⌋ denotes the floor function.
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Figure 3.13: Frequency distribution with one active PU band.

Fig. 3.14 and Fig. 3.15 show that the proposedPI-algorithm performs better than the

RCandZhangalgorithms. In low interference constraints,RCalgorithm performs better than

Zhangalgorithm because of the limited performance ofZhangalgorithm in such conditions.
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Figure 3.14:Achieved capacity vs allowed interference threshold for OFDM and FBMC based

CR systems - One active PU band.
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Figure 3.15: Achieved capacity vs allowed interference threshold (low)for OFDM and FBMC

based CR systems - One active PU band.

3.6 Chapter Summary and Conclusions

In this chapter, a low complexity sub-optimal resource allocation algorithm for multicarrier

based CR networks is presented. Our objective was to maximize the total downlink capacity of

the CR network while respecting the available power budget and guaranteeing that no excessive

interference is caused to the PUs. The problem is formulatedas a combinatorial optimization

problem that has an exponential time computational complexity. To reduce the computational

complexity, the problem is divided into two steps. In the first step, the different subcarriers

are allocated exclusively to the users with the highest channel gain. In the second step, every

subcarrier is assumed to belong to the closest PU band and then a convex optimization prob-

lem is generated for every PU band in order to evaluate the optimal subcarriers power levels.

Multiple Lagrangian multipliers have to be determined in order to find the optimal solution by

using any of the numerical methods like interior point or ellipsoid method withO (N3) com-

plexity. To further reduce the computational complexity ofthe algorithm, an iterative algorithm

calledPI-algorithm is presented. The algorithm consists of four stages. In the first stage, the

maximum power that can be allocated to every subcarrier is determined by optimizing subject
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to the interference constraints only. Afterwards, the power constraint is tested in the second

stage and if it is not satisfied, the third stage is executed todistribute the power budget with-

out exceeding the maximum levels determined on the first stage. Finally, the allocated powers

are readjusted in the fourth stage in order to increase the system capacity. With a significant

reduction in the computational complexity fromO (N3) to O (N logN) + O (L), it is shown

that the proposedPI-algorithmachieves a near optimal performance and outperforms the sub-

optimal algorithms proposed so far. It is found that the net total interference introduced to the

PUs band is relatively not affected by assuming that each subcarrier belongs to the closest PU

band and only introducing interference to it. It is also demonstrated that the capacity of the

CR system which uses the non-active as well as the active bands is more than that only uses

the non-active bands. Simulation results prove that the FBMC based CR systems have more

capacity than OFDM based ones. FBMC offers more spectral efficiency and introduces small

interference to the PUs. The significant increase in the capacity of FBMC-based CR systems

over the OFDM-based ones recommends the FBMC physical layeras a candidate for the future

CR systems.
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3.A Appendix

3.A.1 Derivation of the Optimal Power Allocation Given By Equation

(3.12)

We want to find the optimal solution for the following optimization problem

max
Pi

N∑

i=1

log2

(
1 +

Pi |hi|2
σ2
i

)
(3.24)

subject to
N∑

i=1

PiΩ
l
i ≤ I lth ∀l ∈ {1, 2, · · · , L} (3.25)

N∑

i=1

Pi ≤ PT (3.26)

Pi ≥ 0 ∀i ∈ {1, 2, · · · , N} (3.27)

The problem above is a convex optimization problem. The Lagrangian can be written as

G = −
N∑

i=1

log2

(
1 +

P ∗
i |hi|2
σ2
i

)
+

L∑

l=1

αl

(
N∑

i=1

P ∗
i Ω

l
i − I lth

)
+β

(
N∑

i=1

P ∗
i − PT

)
−

N∑

i=1

P ∗
i µi

(3.28)

whereαl, l ∈ {1, 2, . . . , L}, µi, i ∈ {1, 2, . . . , N}, andβ are the Lagrange multipliers. The

Karush-Kuhn-Tucker (KKT) conditions can be written as follows

P ∗
i ≥ 0, ∀i ∈ {1, 2, · · · , N}
αl ≥ 0, ∀l ∈ {1, 2, · · · , L}
β ≥ 0

µi ≥ 0, ∀i ∈ {1, 2, · · · , N}

αl

(
N∑
i=1

P ∗
i Ω

l
i − I lth

)
= 0, ∀l ∈ {1, 2, · · · , L}

β

(
N∑
i=1

P ∗
i − PT

)
= 0

µiP
∗
i = 0, ∀i ∈ {1, 2, · · · , N}

∂G
∂P ∗

i
= −1

σ2
i

|hi|2
+P ∗

i

+
L∑
l=1

αlΩl
i + β − µi = 0

(3.29)

Furthermore, the solution should satisfy the total power and interference constraints given

by (3.26) and (3.25). Rearranging the last condition in (3.29) we get

P ∗
i =

1
L∑
l=1

αlΩl
i + β − µi

− σ2
i

|hi|2
(3.30)
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SinceP ∗
i ≥ 0, we get

σ2
i

|hi|2
≤ 1

L∑
l=1

αlΩi + β − µi

(3.31)

If σ2
i

|hi|2
< 1

L
∑

l=1

αlΩl
i+β

, thenµi = 0 and hence

P ∗
i =

1
L∑
l=1

αlΩl
i + β

− σ2
i

|hi|2
(3.32)

Moreover, if σ2
i

|hi|2
> 1

L
∑

l=1
αlΩl

i+β

, from (3.30) we get

1
L∑
l=1

αlΩl
i + β − µi

≥ σ2
i

|hi|2
≥ 1

L∑
l=1

αlΩl
i + β

(3.33)

and sinceµiP
∗
i = 0 andµi ≥ 0, we get thatP ∗

i = 0.

Therefore, the optimal solution can be written as

P ∗
i =





1
L
∑

l=1

αlΩl
i+β

− σ2
i

|hi|2
if

σ2
i

|hi|2
< 1

L
∑

l=1

αlΩl
i+β

0 if
σ2
i

|hi|2
≥ 1

L
∑

l=1
αlΩl

i+β

(3.34)

or more simply, (3.34) can be; written as the following

P ∗
i =




1
L∑
l=1

αlΩl
i + β

− σ2
i

|hi|2




+

(3.35)

where[x]+ = max (0, x).
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Chapter 4
Resource Allocation in Uplink Multicarrier

Based Cognitive Radio Systems

”Each success only buys an admission ticket to a more difficult problem” Henry

Kissinger.
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Chapter 4. Resource Allocation in Uplink Multicarrier Based Cognitive Radio Systems

4.1 Introduction

By virtue of its flexibility in the allocation of different resources among different users as well

as its ability to fill the spectrum holes left by PUs, multicarrier communication systems have

been considered as an appropriate candidate for cognitive radio (CR) systems [1,2]. Uncounted

research work has been done to find optimal/efficient resource allocation techniques in conven-

tional (non-cognitive) multicarrier systems. As described in chapter 3, in non-cognitive down-

link scenario (see, e.g. [3–7] and references therein), themaximum throughput can be achieved

by allocating each subcarrier to the user with the maximum signal to noise ratio (SNR) and

then distributing the power according to waterfilling solution. Additionally, many algorithms

to solve resource allocation problem in uplink non-cognitive systems have been proposed (see,

e.g. [8–11] and references therein). In [10], Kim et al. proposed a greedy subcarrier allocation

algorithm based on marginal rate function and iterative waterfilling power allocation algorithm.

This algorithm is developed in [11] to consider fairness among different users. The algorithms

used in non-cognitive multicarrier systems are not efficient in CR ones due to the existence of

the interference temperature constraints.

For single channel (carrier) CR systems, the optimal resource allocation schemes in uplink

and downlink have been presented for both single and multiuser systems (see, e.g. [12–16]). In

multicarrier based CR systems, the downlink scenario has been addressed well recently (see,

e.g. [2, 17–21]), while less existed research on subcarrierand power allocation in the uplink

one [22–28].

In [23] and [28], game theory based approaches has been applied. In the former [23], a

network-assisted resource allocation problem is modeled and analyzed using cooperative game

theory. Both the primary users (PUs) and the secondary users(SUs) inform the primary base

station (BS) of their channel state information (CSI) and the primary BS utilize this informa-

tion to perform the allocation [23]. In the latter [28], a joint resource allocation algorithm is

developed to achieve a good trade-off between the fairness and efficiency [28]. A competi-

tive fairness among users is enforced based on Blotto game [29]. In Blotto game, the SUs

are tasked to distribute their limited power budgets over several subcarriers while taking into

consideration the interference introduced to the PUs. The user who is allocating the most re-

sources to a certain subcarrier wins the subcarrier. Therefore, the SUs need to allocate their

budget judiciously to win as many good subcarriers as possible. In [22], Fadel proposed an
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algorithm for jointly allocating channels and powers amongdifferent users under individual

user’s power constraints. The problem is relaxed to obtain aconvex version. Then, the solu-

tion is quantized to yield a binary channel allocation. Afterwards, the solution is modified to

consider the constraints on the in-band interference to thelicensed system. Wang et al. pro-

posed in [24] an algorithm to allocate resources in uplink OFDMA based CR systems under

per subcarrier power constraints (in-band interference constraints). Subcarriers are allocated

initially to the users with the best channel quality and thenadjusted according to different

user’s waterfilling levels. The algorithm has high computational complexity and limited per-

formance. In [25], Zhang et al. proposed a resource allocation algorithm in which subcarrier

assignment and power allocation are carried out sequentially under mutual interference and

per user power constraints. The proposed scheme requires pre-knowledge about the number of

subcarriers that should be allocated to each user as well as the capacity that can be achieved by

each subcarrier. The power allocation was performed using the gradient projection algorithm.

Nam et al. proposed in [26] a location-based low-complexityalgorithms which use the relative

location information between PUs and SUs to estimate the interference. The imperfect sensing

errors are considered in [27]. The authors determine the initial power levels according to differ-

ent criteria, then formulate the subcarrier allocation part as a generalized assignment problem

(GAP). Instantaneous fairness among users was not taken into consideration in the algorithms

previously mentioned in [22,24–27].

In [30], the mutual interference between PU and SU was studied. The mutual interfer-

ence depends on the transmitted power as well as the spectraldistance between PUs and SUs.

OFDM based CR system suffers from high interference to the PUs due to large sidelobes of

its filter frequency response. Moreover, the insertion of the cyclic prefix (CP) in each OFDM

symbol decreases the system capacity. Filter bank multicarrier system (FBMC) with the offset

quadrature amplitude modulation (OQAM) can achieve smaller intersymbol interference (ISI)

and intercarrier interference (ICI) without using the CP byutilizing well designed pulse shapes

that satisfy the perfect reconstruction conditions. Moreover, the problem of the spectral leakage

can be solved by minimizing the sidelobes of each subcarrierwhich leads to high efficiency (in

terms of spectrum and interference) [25,31].

In this chapter, an efficient resource allocation algorithmin uplink OFDM-based CR sys-

tems is proposed. The scenario in which the SUs are transmitting on the unused PU bands and

causing interference to the active ones is considered. The objective is to maximize the capacity
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while respecting the per-user power constraints and guaranteeing that no excessive interference

is induced to the PUs. The chapter contributions are summarized in the following points:

• As the resource allocation algorithm is a mixed-integer optimization problem, we pro-

posed an efficient algorithm that reduces the computationalcomplexity by separating the

subcarrier and power allocation processes into two different steps. The proposed algo-

rithm is shown to have a near-optimal performance and outperforms the algorithms pre-

sented in [22, 24]. Additionally, the performance of the algorithm used in non-cognitive

multicarrier systems is discussed.

• Different from the algorithms developed in [22, 24], the fairness among users is consid-

ered within the subcarrier allocation by reducing the probability of having users whose

instantaneous rate is below the minimum required value.

• The efficiency of the proposed algorithm is investigated forOFDM and FBMC based

systems to show the capability of using FBMC in the cognitivenetworks.

The contents of this chapter have been partially published in references [32–35]. This

chapter is organized as follows: Section 4.2 introduces thesystem model and formulates the

problem. The proposed algorithm for single PU is presented in Section 4.3, and then gen-

eralized for multiple PUs in Section 4.4. The computationalcomplexity of the algorithm is

discussed in Section 4.5 while selected numerical results are presented in Section 4.6. Finally,

Section 4.7 summarizes and concludes the chapter.

4.2 System Model and Problem Formulation

In this chapter, the PUs and SUs are co-existing in the same geographical location as described

in Fig.4.1. For the CR system, uplink transmission will be assumed in which SUs are op-

portunistically accessing the unused PU bands and transmiting to their cognitive base station

(CBS) without causing harmful interference to PUs. As shownin Fig.4.2, the frequency bands

B1,B2,· · · ,BL represent theL active PU bands while the non-active bands represent the bands

that can be used by CR system (CR band). The CR band is divided intoN subcarriers each

having a∆f bandwidth. There is no synchronization between the primaryand secondary sys-
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CR base station

(CBS)

Secondary User

(SU1)

(SU2)

(SU3)
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Primary  User

(PU1)

(PU2)

Figure 4.1: Uplink Cognitive Radio Network.

tems. The interference induced to thelth PU band should not exceed the predefined interference

temperature limitI lth.

Assume thatΦi (f) is the power spectral density (PSD) of theith subcarrier. The expres-

sion of the PSD depends on the used multicarrier technique. If an OFDM based CR is assumed,

the PSD of theith subcarrier can be written as

Φi (f) = |Gi (f)|2 (4.1)

where|Gi (f)|2 is the Fourier transform of the used pulse shapegT . Assuming a rectangular

pulse with lengthTs = N + C whereN is the number of subcarriers (IDFT size) andC is the

length of the CP,|Gi (f)|2 can be expressed as follows

|Gi (f)|2 = Ts + 2

Ts−1∑

r=1

(Ts − r) cos (2πfr) (4.2)

If FBMC based CR system is assumed, the PSD of theith subcarrier can be written as

Φi (f) = |Hi (f)|2 (4.3)

Active 

PU1 band
Active

PU2 band
Active 

PUL band

1 2 ………. N

Frequency

Non-

Active 

band

B1 B2 BL

f 

Figure 4.2: Frequency distribution of active and non-active primary bands.
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where |Hi (f)| is the frequency response of the prototype filter with coefficientsh [n] with

n ∈ {0, · · · ,W − 1} , whereW = KN andK is the length of each polyphase component

(overlapping factor). Assuming that the prototype coefficients have even symmetry around the
(
KN
2

)th
coefficient, and the first coefficient is zero [36], we get

|Hi (f)| = h [W/2] + 2

W
2
−1∑

r=1

h [(W/2)− r] cos (2πfr) (4.4)

The interferenceI li,m
(
dli, Pi,m

)
introduced by the transmission of theith subcarrier of the

Cr system -which is allocated to themth SU- to thelth PU band is the integration of the PSD

of theith subcarrier across thelth PU band, and can be expressed as [30]

I li,m
(
dli, Pi,m

)
= Pi,mΩ

l
i,m ; Ωl

i,m =

dli+Bl/2∫

dl
i
−Bl/2

∣∣gli,m
∣∣2Φi (f)df (4.5)

wheredli is the spectral distance between theith subcarrier and thelth PU band.gli,m denotes the

channel gain -may include path loss and shadowing part- between theith subcarrier and thelth

PU band whilePi,m is the total transmit power emitted by theith subcarrier.Ωl
i,m denotes the

interference factor of theith subcarrier to thelth PU band.Bl is the bandwidth of the PU band.

The subscriptm denotes the case when theith subcarrier is allocated to themth SU. Similarly,

the interference power introduced by thelth PU signal into the band of theith subcarrier is [30]

J l
i,m =

dli+∆f/2∫

dli−∆f/2

∣∣yli,m
∣∣2 ψl

(
ejω
)
dω (4.6)

whereψl (e
jω) is the PSD of thelth PU signal andyli,m is the channel gain between theith

subcarrier andlth PU signal.

The maximum achievable transmission rate of theith subcarrier,Ri can be evaluated by

Ri (Pi,m, hi,m) = ∆f log2

(
1 +

Pi,m |hi,m|2
σ2
i

)
(4.7)

wherePi,m is the transmission power andhi,m is theith subcarrier fading gain from themth SU

to the CBS. Additionally,σ2
i = σ2

AWGN +
L∑
l=1

J l
i whereσ2

AWGN is the variance of the additive

white Gaussian noise (AWGN) andJ l
i is the interference introduced by thelth PU band into

the ith subcarrier which is evaluated using (4.6) and can be modeledas AWGN as described

in [2]. Throughout this chapter, all the instantaneous fading gains are assumed to be perfectly
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known at the CBS. Practically, the channel gains between SUsand the CBS can be obtained by

classical channel estimation techniques while the channelgains between SUs and PUs can be

obtained by estimating the received signal power from each primary terminal when it transmits,

under the assumptions of pre-knowledge on the primary transmit power levels and the channel

reciprocity [16, 37]. Based on the channel gains, the CBS assigns the subcarriers and powers

to each SU through a reliable low-rate signaling channel.

It is assumed that each subcarrier can be used for transmission to at most one user at any

given time. Fairness among SUs is guaranteed by assuming that every SU has a minimum

instantaneous rateRmin. Our objective is to maximize the total data rate of the CR system

subject to the constraints on the interference introduced to the PUs, the per-user transmit power

constraints and the per-user minimum rate constraints. Therefore, the optimization problem

can be formulated as follows

P1 : max
Pi,m,vi,m

M∑
m=1

N∑
i=1

vi,mRi (Pi,m, hi,m)

s.t.
M∑

m=1

N∑
i=1

vi,mPi,mΩ
l
i,m ≤ I lth ∀l ∈ {1, · · · , L}

N∑
i=1

vi,mPi,m ≤ Pm, ∀m

Pi,m ≥ 0, ∀i,m
vi,m ∈ {0, 1} , ∀i,m
M∑

m=1

vi,m ≤ 1, ∀i
N∑
i=1

vi,mRi (Pi,m, hi,m) ≥ Rmin, ∀m

(4.8)

whereN denotes the total number of subcarriers whileM denotes the number of SUs.vi,m is

the subcarrier allocation indicator, i.e.vi,m = 1 if and only if theith subcarrier is allocated to

themth user.L is the number of active PU bands andI lth is the interference threshold prescribed

by thelth PU.Pm is themth SU total power budget. Without loss of generality, the minimum

instantaneous rateRmin is assumed constant for all users. The solution can be easilyextended

to consider different minimum instantaneous rates for the different SUs. The CBS performs

the subcarrier and power allocation and then diffuse the result to the different SUs.

The optimization problemP1 is a mixed-integer optimization problem; in which achiev-

ing the optimal solution needs high computational complexity. Additionally, the minimum rate

constraints increase the complexity of the problem. In order to solve the problem, an algo-

rithm to perform the resource allocation in two steps is proposed. In the first step, a heuristic
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sub-optimal algorithm is used to allocate the subcarriers to the different users. Afterwards,

the optimal power allocation is evaluated in the second step. The optimal power allocation

algorithm requires high computational complexity. Thus, alow complexity power algorithm is

proposed to perform the power allocation step. Depending onthe values of the constraints and

the channel gains, the CR system may not be able to satisfy theminimum rateRmin for all the

users. Therefore, the last constraint in the optimization problemP1 is relaxed by reducing the

probability of having users whose rates are below the minimum rate. The outage probability

can be defined as

Poutage = Pr{Mlow ≥ 1} (4.9)

whereMlow is the number of SUs whose instantaneous rate are belowRmin.

The proposed algorithm is discussed in the next section. Forsake of description clarity,

the single PU case is firstly explained then, the solution is generalized for multiple PUs case.

4.3 Proposed Subcarrier and Power Allocation Algorithms

(Single PU Case)

The optimal downlink subcarrier to users allocation schemein cognitive and non-cognitive

multicarrier systems is achieved by allocating each subcarrier to the user with the maximum

signal to noise ratio (SNR) [4–7]. This scheme of subcarrierallocation is inefficient in the

uplink case due to the per-user power constraints. Moreover, the interference introduced to

the primary system by each SU should be considered in CR context which makes the schemes

used in classical multicarrier systems inefficient. In thissection, a heuristic subcarrier and

power allocation algorithm is presented. For better description of the proposed algorithm, only

one PU band, i.e. single interference constraint, is considered in this section. The solution is

generalized in the next section to consider multiple interference constraints. We refer to the

single interference constraint byI l∗th and hence, the first constraint in the optimization problem

P1 can be rewritten as follows

M∑

m=1

N∑

i=1

vi,mPi,mΩ
l∗
i,m ≤ I l∗th (4.10)

whereΩl∗
i,m denotes the interference factor of theith subcarrier to the PU band (l∗) when the

ith subcarrier is allocated tomth SU. In the sequel, the proposed subcarrier to user assign-
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ment scheme with low outage probability is introduced, and then an efficient power allocation

algorithm is presented.

4.3.1 Proposed Subcarrier Allocation Algorithm with Fairness Consider-

ation

To achieve an efficient subcarrier allocation, the proposedalgorithm should assign the subcar-

riers to different SUs considering not only their channel quality and per-user power constraints

but considering also the induced interference to the PU band. Moreover, the probability of

having users with instantaneous rates below the minimum rate should be reduced.

The scheme assumes that the interference introduced to the primary system, i.e.I l∗th, is

divided uniformly among the different subcarriers [2]. Accordingly, the maximum amount of

interference,I l∗Uniform, that can be introduced by any subcarrier is

I l∗Uniform =
I l∗th
N

(4.11)

Using (4.5), the maximum power,PUni
i,m , that can be allocated to theith subcarrier when it is

allocated to themth SU is

PUni
i,m =

I l∗Uniform

Ωl∗
i,m

(4.12)

Let us define the following sets

• C : the set of unassigned subcarriers.

• U : the set that contains the indices of the users whose rates are belowRmin.

• Am : the set that includes the subcarriers already allocated tothemth user with powers

equal to the maximum powerPUni
i,m .

• Bm : the set that includes the subcarriers already allocated tothemth user with powers

equal to the average power. The average power means here thatthe remaining power

for themth user after allocating the powers to the subcarriers inAm is divided equally

among the subcarriers in the setBm, i.e. P avg
m =

Pm− ∑

x∈Am

PUni
x,m

|Bm| where|Bm| means the

cardinality of the setBm.
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According to the previous definition, the instantaneous rate of themth user,R (m,Am,Bm), is

the summation of the rates of the subcarriers in the setsAm andBm and is given by

R (m,Am,Bm) =
∑

i∈Am

Ri

(
PUni
i,m , hi,m

)
+
∑

i∈Bm

Ri (P
avg
m , hi,m) (4.13)

whereRi (Pi,m, hi,m) is evaluated using (4.7). Note that the allocated powers according to

either the maximum or the average power are only used to simplify the calculation of the

increment in the data rate. The optimal power allocation will be derived later based on the

subcarrier allocation information.

The algorithm commences by allocating the subcarriers thatare located next to the PU

band, i.e. subcarriers that may have more interference to the PU, and moving towards the

distant ones. The subcarriers are allocated sequentially to the users until all the subcarriers are

assigned. In order to reduce the probability of having userswhose rates are below the minimum

value, the allocation of the subcarriers will be confined within the users in the setU . Initially the

setU is assumed to contain all SUs. Throughout the allocation of the different subcarriers, if the

rate of themth user becomes more than the minimum required rateRmin, the user is removed

from the setU . If the minimum rate constraints are satisfied for all the users, i.e.U is empty, the

subcarrier can be allocated to any one of the SUs. If the optimization problem is assumed to be

solved without any minimum rate constraints, the setU is assumed always empty. Accordingly,

the subcarrier can be allocated to any one of the SUs. It is worth mentioning that the subcarriers

with high interference gains will potentially have a low transmitting power even when they

have a good channel quality. Therefore, the limitation thatwill be introduced to any subcarrier

assignment due the interference constraints should be considered and the subcarriers should be

classified according to their interference gains. To allocate a given subcarrier, the algorithm

initially assigns the subcarrier to the setBm and evaluates new average power,PTest. If the

average power exceeds the maximum power, i.e.PTest ≥ PUni
i,m , then the subcarrier should

be moved to the setAm. Afterwards, the increments of the individual data rates due to the

allocation of a particular subcarrier to different SUs are evaluated and the subcarrier is allocated

to the SU with maximum data rate increment. The scheme is repeated until the allocation of

all subcarriers. Note that the final set of allocated subcarriers tomth SU isNm = Am ∪ Bm.

By assuming initially thatU = {1, · · · ,M}, and both setsAm andBm are empty sets, the

assigning procedures of a particular subcarrieri∗ ∈ C are described in Algorithm 4.4.
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Algorithm 4.4 Subcarrier to User Allocation

1. ∀m ∈ U ,

EvaluatePTest =
Pm− ∑

r∈Am

PUni
r,m

|Bm|+1

if PTest ≥ PUni
i∗,m

let A∗
m = Am ∪ {i∗} andB∗

m = Bm

elseletB∗
m = Bm ∪ {i∗} andA∗

m = Am.

2. Compute the amount of increment∆m in the data rate when the subcarrier{i∗} is as-

signed tomth SU, i.e,

∆m = Rnew
m −Rold

m = R (m,A∗
m,B∗

m)−R (m,Am,Bm)

whereR (m,A∗
m,B∗

m) andR (m,Am,Bm) are evaluated using (4.13).

3. Findm∗ satisfyingm∗ = argmaxm (∆m), setvi∗,m∗ = 1, and update the setsAm∗ =

A∗
m∗ andBm∗ = B∗

m∗ .

4. If R (m∗,Am∗ ,Bm∗) ≥ Rmin, removem∗ from the setU . If U is empty, letU =

{1, · · · ,M}.

5. Remove the subcarrieri∗ from the setC.
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4.3.2 Proposed Power Allocation Algorithm

By the subcarrier to users assignment step, the subcarriersare allocated to different users with

the consideration of minimum rates constraints. Therefore, the values of the subcarriers in-

dicators, i.e.vi,m, are already known from the previous step. The multiuser system can be

viewed virtually as a single user multicarrier system and the power allocation problem can be

formulated as follows

P2 : max
Pi,m

N∑
i=1

Ri (Pi,m, hi,m)

s.t.
N∑
i=1

Pi,mΩ
l∗
i,m ≤ I l∗th

∑
i∈Nm

Pi,m ≤ Pm ∀m

Pi,m ≥ 0 ∀i

(4.14)

wherem refers to the user who has already got the subcarrieri, i.e. vi,m = 1. Nm denotes the

set of subcarriers allocated to themth SU. Remark that having too much power in relative with

the interference constraint leads to an interference-onlyoptimization problem while having

high interference constraint in relative with the total power leads to non-cognitive ( classical)

resource allocation problem.

The problemP2 is a convex optimization problem. Solving for the optimal solution (See

Appendix 4.A.1 for the derivation), one gets

P ∗
i,m =

[
1

αl∗Ωl∗
i,m + βm

− σ2
i

|hi,m|2

]+
(4.15)

whereαl∗ andβm are the non-negative Lagrange multipliers and[x]+ = max (0, x). Solving for

(M + 1) Lagrangian multipliers is computational complex. The optimal solution can be found

numerically using ellipsoid or interior point method with acomplexityO (N3) [38]. The high

computational complexity makes the optimal solution unsuitable for practical application and

hence a low complexity algorithm is proposed.

On one side, ignoring the interference constraint in problemP2 lets the optimal solution to

be the distribution of the per-user power budgetPm among the set of subcarriersNm according

to the well known waterfilling solution [39]. On the other side, if the per-user power constraints

are ignored, the analysis given in [2] can be followed where the Lagrangian of the problem

(4.14) can be written as

G(Int) (l∗) = −
N∑
i=1

Ri

(
P

(Int)
i,m , hi,m

)
+ γ

(Int)
l∗

(
N∑
i=1

P
(Int)
i,m Ωl∗

i,m − I l∗th

)
(4.16)
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whereγ(Int)l∗ is the Lagrange multiplier.(Int) stands for optimization under the interference

constraint only. Equating∂G
(Int)(l∗)

∂P
(Int)
i,m

to zero, we get

P
(Int)
i,m (l∗) =

[
1

γ
(Int)
l∗ Ωl∗

i,m

− σ2
i

|hi,m|2

]+
(4.17)

Hence, substituting (4.17) into
N∑
i=1

P
(Int)
i,m Ωl∗

i,m = I l∗th we get

γ
(Int)
l∗ =

|N |

I l∗th +
N∑
i=1

Ωl∗
i,mσ2

i

|hi,m|2

(4.18)

One can note that if the solution found by (4.17) and (4.18) satisfies the different per-user power

constraints, i.e.
∑

i∈Nm

P
(Int)
i,m (l∗) ≤ Pm, ∀m, then (4.17) and (4.18) is composing the optimal

solution for the optimization problemP2 where the case of interference-only optimization

problem occurred. In most of the cases, this relation doesn’t hold which motivates developing

an efficient algorithm considering both the interference and per-user power constraints.

In the previous chapter, we dealt with the downlink power allocation problem considering

one total power constraint. ThePI-algorithmpresented in the previous chapter is extended here

to consider the uplink scenario with several per-user powerconstraints. The power allocation

step is performed throughout the following stages:

• Maximum power determination: assume that the maximum power,PMax
i,m , that can be

allocated to each subcarrier is determined according to theinterference constraint only

using (4.17) and (4.18), i.e.PMax
i,m = P

(Int)
i,m (l∗).

• Power constraints testing:test the per-user power constraints to check whether the rela-

tion
∑

i∈Nm

P
(Int)
i,m (l∗) ≤ Pm, ∀m holds or not. If the relation is satisfied, then the solution

is found whereP ∗
i,m = PMax

i,m . Otherwise, continue.

• Power budgets distribution: the available powerPm for each SU should be distributed

among the subcarriers inNm given that the power allocated to each subcarrier is lower

than or equal toPMax
i,m . For every SU, the following problem should be solved

P3 : max
PW.F
i,m

∑
i∈Nm

Ri

(
PW.F
i,m , hi,m

)

s.t.
∑

i∈Nm

PW.F
i,m ≤ Pm;

0 ≤ PW.F
i,m ≤ PMax

i,m

(4.19)
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The problemP3 is called”cap-limited” waterfilling [40, 41] wherePW.F
i,m is the cap-

limited waterfilling allocated power. More detailed description about the”cap-limited”

waterfilling can be found in Section 3.4.

• Power levels re-adjustment: the solutionPW.F
i,m of the problemP3 satisfies the per-

user power constraints of the problemP2 with equality which is not the case for the

interference constraintI l∗th. Due to that, some of the powers allocated to subcarriers

is not reach the maximum allowable values which makes the interference introduced

to the primary system below the thresholdI l∗th. In order to take the advantage of the

allowable interference, some amount of power can be taken from one subcarrier and

given to another; hoping to increase the total system capacity. Therefore, the values of

the maximum power that can be allocated to each subcarrierPMax
i,m should be updated

depending on the remaining interference. The residual interference can be determined as

follows

I l∗Residual = I l∗th −
N∑

i=1

PW.F
i,m Ωl∗

i,m (4.20)

Assuming thatSm ⊂ Nm is the set of the subcarriers that reach its maximum, i.e.

PW.F
i,m = PMax

i,m , ∀i ∈ Sm, then,PMax
i,m , ∀i ∈ Sm can be updated by applying the equations

(4.17)-(4.18) on the subcarriers in the setS = {S1 ∪ S2 · · · ∪ Sm} with the following

interference constraint

I l∗updated = I l∗Residual +
∑

i∈S
PW.F
i,m Ωl∗

i,m (4.21)

After determining the updated values ofPMax
i,m , the ”cap-limited” waterfilling is per-

formed again for every SU to find the final solutionP ∗
i,m = PW.F

i,m .

A graphical description of the proposed power allocation algorithm is given in Fig. 4.3

where the subcarriers are distributed between two SUs, named SU1 and SU2. Two levels of

allocation are performed, the upper one is performed on a global way while the lower ones

are performed on an individual (per user) way. In the global level, the interference constraint is

considered where the interference is accumulated by all subcarriers while the power constraints

are considered in the lower level where the different users distribute the powers among their

allocated subcarriers. The algorithm starts by determining the maximum powers that can be

allocated to each subcarrier. Afterwards, every SU distributes the power budget on its own
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Figure 4.3: Example of the SUs allocated power using proposed power allocation algorithm.

subcarriers considering the pre-specified maximum powers.Thereafter, the allocation process

returns backs to the global level to update the maximum poweraccording to the residual in-

terference. Finally, the per-user power is allocated on different subcarriers considering the

updated maximum values.

4.4 Generalization of the Proposed Algorithms (Multiple PUs

Case)

The algorithm presented in the Section 4.3 to solve the optimization problemP1 considering

only one interference constraint is generalized in this section to considerL interference con-

straints, i.e. multiple PU bands. In the previous chapter, we assumed that the CR can induce

interference to the primary bands slightly more than the value of the interference constraint.

This simplifies the original problem by assuming that the subcarrier belongs to the closest PU

band and introducing interference to it only. The numericalsimulations show that this assump-

tion is reasonable. In this chapter, a more restrictive primary system is assumed where no

violation of the interference constraints is allowed. Thistype of restriction is considered in the
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generalization of the subcarrier and power allocation algorithms by selecting always the power

that generates the minimum interference to the PU bands.

For the subcarrier allocation step, considering the same assumption in which every subcar-

rier is able to introduce the same amount of interference to the different PU bands, the value of

the maximum power that can be allocated to each subcarrier, i.e.PUni
i,m , is determined by choos-

ing the minimum among the different maximum powers evaluated according to the different

interference constraints. Therefore, equation (4.12) canbe generalized as follows

PUni
i,m = min{I

1
Uniform

Ω1
i,m

,
I2Uniform

Ω2
i,m

, · · · , I
L
Uniform

ΩL
i,m

} (4.22)

Once the maximum powerPUni
i,m is determined, the same subcarrier assigning procedures pre-

sented previously can be used for the multiple PU bands case.

In the power allocation step, if multiple interference constraints are considered in the op-

timization problemP2, the solution given in (4.15) can be generalized as follows

P ∗
i,m =

[
1

∑L

l=1 α
lΩl

i,m + βm
− σ2

i

|hi,m|2

]+
(4.23)

whereαl andβm are the non-negative Lagrange multipliers. Therefore, theproblem becomes

more computationally complex where (M + L) Lagrangian multipliers should be determined.

To find a suboptimal solution for the multiple PUs case, the values of the allocated power

P
(Int)
i,m (l) under every interference constraintI lth are determined using (4.17) and (4.18). Then,

the maximum powerPMax
i,m that can be allocated to each subcarrier is determined according to

the following formula

PMax
i,m = min{P (Int)

i,m (1) , P
(Int)
i,m (2) , · · · , P (Int)

i,m (L)} (4.24)

Afterwards, the per-user power constraints are tested and the ”cap-limited” waterfilling is ap-

plied for every userm. Using (4.20) and (4.21), the updated values of the interference thresh-

olds can be found. Afterwards, (4.17) and (4.18) are appliedto find the values ofP (Int)
i,m (l)

∀i ∈ S. Accordingly, the new values ofPMax
i,m can be determined using (4.24). The ”cap-

limited” waterfilling is performed again for every SU considering the updated maximum values

to find the final solution. The flowcharts of the generalized power allocation algorithm is given

in Fig. 4.4 and detailed in Algorithm 4.5.
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Figure 4.4: Flowchart of the proposed power allocation algorithm.
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Algorithm 4.5 Power Allocation Algorithm

1. Initialize N = {1, 2, · · · , N}, I lResidual = 0 andS = ∅.

2. ∀l ∈ {1, · · · , L}, Sort
{
Hi =

σ2
i

|hi,m|2Ω
l
i,m, i ∈ N

}
in decreasing order withk being the

sorted index. Find thePMax
i as follows:

(a) Hsum =
∑

i∈Nl
Hi, γ

(Int)
l = |N | /

(
I lth +Hsum

)
, n = 1.

(b) while γ(Int)l > H−1
k(n) do

Hsum = Hsum − Hk(n), N = N\{k (n)}, γ(Int)l = |N | /
(
I lth +Hsum

)
, n =

n + 1

end while

(c) SetP (Int)
i,m (l) =

[
1

γ
(Int)
l

Ωl
i,m

− σ2
i

|hi,m|2

]+

3. EvaluatePMax
i,m = min{P (Int)

i,m (1) , P
(Int)
i,m (2) , · · · , P (Int)

i,m (L)}

4. if
∑

i∈Nm
PMax
i,m ≤ Pm; ∀m

LetP ∗
i,m = PMax

i,m and stop the algorithm.

end if

5. ∀m, Perform the”cap-limited” waterfilling on the set of subcarriersNm under the per-

user constraintPm and the maximum power that can be allocated to each subcarrier PMax
i,m

and find the setSm ⊂ Nm wherePi,mi
W.F = PMax

i,m .

6. Let S = {S1 ∪ S2 · · · ∪ Sm}, evaluateI lResidual = I lth −∑N

i=1 P
W.F
i,m Ωl

i,m, setN = S,

I lupdated = I lResidual +
∑

i∈S P
W.F
i,m Ωl

i,m and apply again only the second and third steps to

updatePMax
i,m .

7. ∀m, Perform the”cap-limited” waterfilling on the set of subcarriersNm under the per-

user constraintPm and the maximum power that can be allocated to each subcarrier PMax
i,m

and setP ∗
i,m = PW.F

i,m .

In Fig. 4.4, the maximum power determination block applies (4.24) to find the maximum

power that can be allocated to every subcarrier. Afterwards, the power constraints are tested

and when one of them is violated, the per-user power budget isdistributed between the subcar-
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riers in the power budget distribution block. Afterwards, the residual interference is evaluated

for each interference constraint and the power levels are re-adjusted by performing again the

commands in the maximum power determination and power budgets distribution blocks.

4.5 Computational Complexity Analysis

The exhaustive enumeration scheme needs to iterateMN times to exhaust all the cases, and its

complexity ofO
(
N3MN

)
is very hard to afford. The algorithm proposed in [22] has a com-

plexity ofO (NM) with the assumption of sorted channel gains matrices. Therefore, including

the sorting complexity of the different matrices as well as the iterative nature of the algorithm,

the complexity will be more thanO (N logN) +O (NM). Moreover, the algorithm proposed

by Wang et al. in [24] has a complexity larger thanO (N2M) and lower thanO (N3M).

Note that the algorithms presented in [22, 24] are not considering fairness among users and

are dealing with interference temperature constraint as several per-subcarrier maximum power

constraints.

Recall that our proposed algorithm to solve problemP1 is divided into two steps: the

subcarriers to users allocation step and the power allocation step. Each subcarrier in the

first step requires no more thanM function evaluations to be assigned to one user depend-

ing on the size of the setU . Hence, the computational complexity of the proposed subcar-

rier to user allocation algorithm is lower than or equalO (NM). In the power allocation

algorithm, Step2 in Algorithm 4.5 has a computational complexity ofO (N logN) while

Steps5 and 7 of the algorithm execute the”cap-limited” waterfilling for every SU with a

complexity of
M∑

m=1

O (Nm) ≤ O (N) ≤ O (N logN) [41]. Step6 has a complexity of

O (|S| log |S|) ≤ O (N logN). Hence, the complexity of the power allocation algorithm is

lower thanO (N logN). Thus, the overall asymptotic complexity of the proposed uplink re-

source allocation algorithm is lower thanO (N logN) +O (NM). Table. 4.1 summarizes the

complexity of the different algorithms.
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Table 4.1: Computational complexity comparison

Algorithm Complexity

Optimal O
(
N3MN

)

Wang [24] ∈ [O (N2M) ,O (N3M)]

Fadel [22] O (N logN) +O (NM)

Proposed O (N logN) +O (NM)

Classical+Pr O (N logN) +O (NM)

4.6 Simulation Results

The simulations are performed under the scenario given in Fig.4.1. The values ofTs, ∆f , and

σ2
i are assumed to be4µ seconds,0.3125 MHz and10−6 respectively. The OFDM system is

assumed to have6.67% of its symbol time as cyclic prefix (CP). For FBMC system, the proto-

type coefficients are assumed to be equal to PHYDYAS coefficients [42] [43] with overlapping

factorK = 4 as given by (2.16) and (2.17).

The channel gainsh andg are outcomes of independent Rayleigh random variables with

mean equal to1. Perfect synchronization is assumed between SUs. All the results have been

averaged over1000 iterations. For the purpose of performance comparison, thefollowing

algorithms are considered:

1. Optimal : the subcarriers are allocated by exhaustive enumeration while the powers are

allocated by solvingP2. The optimal capacity is found without considering the minimum

rate requirements.

2. Classical+Pr: the subcarriers are allocated according to the scheme usedin non-cognitive

OFDM systems [10], while the powers are allocated by solvingP2. In [10], uniform

powers are assumed on the subcarriers allocated to a given user. Based on this, the sub-

carriers are allocated sequentially to the user with the highest capacity.

3. Fadel [22]: the per SU maximum power constraint is generated by converting the in-

terference constraint into per-subcarrier power constraints using (4.22). The algorithm

allows initially the subcarrier sharing between the users to have a convex problem, and

then approximated to have a binary channel allocation. Afterwards, the interference is
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considered by limiting the allocated powers in order not to exceed the maximum allowed

in-band interference.

4. Wang [24]: this algorithm allocated initially the subcarriers to the users with best chan-

nel. The initial allocation is adjusted based on change of the waterfilling levels when

the subcarrier is assigned to another user. The interference constraint is converted into

per-subcarrier power constraints using (4.22) to fit with algorithm formulation.

The simulation results are divided for three cases, the firsttwo cases deal with an OFDM

based CR system with low and high number of subcarriers and SUs, respectively. The third

case compares the performance of the OFDM and FBMC systems.

4.6.1 Case 1: OFDM with Small Number of SUs and Subcarriers

Two interference constraints belonging to two active PU bands , i.e. L = 2, are assumed

with B1 = B2 and I1th = I2th (see Fig. 4.2). Fig. 4.5 plots the average capacity of a CR

system withM = 3 SUs versus the interference thresholds when the number of subcarriers
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Figure 4.5: Three SUs Achieved capacity vs interference threshold whenN = 8 subcarriers,

Pm = 1 mWatt,B1 = B2 = 1.25 MHz, andRmin = 4 Mbits/sec.
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is N = 8, the per-user power budgetPm = 1 mWatt andB1 = B2 = 1.25 MHz. The

proposed algorithm without fairness achieves good performance in comparison with optimal

and outperforms the other algorithms. When the minimum user’s rate constraint of4 Mbits/s

is applied , i.e.Rmin = 16 bits per OFDM symbol, the proposed algorithm with fairness still

performs well where the outage probability of having users belowRmin is reduced as described

in Fig. 4.6.
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Figure 4.6: Outage probability vs allowed interference thresholds when N = 8 subcarriers,

Pm = 1 mWatt,B1 = B2 = 1.25 MHz, andRmin = 4 Mbits/sec.

4.6.2 Case 2: OFDM with High Number of SUs and Subcarriers

In this case, the optimal solution is not simulated due to itsextremely high computational com-

plexity when the numbers of subcarriers and users are increased. The CR system is assumed to

haveM = 10 SUs andN = 128 subcarriers. The per-user power budget is set to bePm = 1

mWatt. Two active PU bands are assumed withI1th = I2th andB1 = B2 = 10 MHz. The

minimum rate for each user is set to be20 Mbits/s, i.e.Rmin = 80 bits per OFDM symbol.

Fig. 4.7 plots the average capacity vs. the interference thresholds withI1th = I2th. It can be

observed that as the interference thresholds increase, theaverage sum rate increases since each
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Figure 4.7: Achieved capacity vs allowed interference thresholds whenN = 128 subcarriers,

M = 8 SUs,Pm = 1 mWatt,B1 = B2 = 10 MHz, andRmin = 20 Mbits/sec.

SU is allowed to have more flexibility in allocating more power on its subcarriers. Remark that

the algorithmsWang, Fadel andClassical+Pr are not considering any fairness among users.

The performance of the proposed algorithm without considering the fairness among the users

outperforms the reference algorithms. Moreover, it is worth noting that the performance of the

proposed algorithm without fairness is considered as an upper bound for the case when fairness

is considered. From this fact, numerical results reveal that the proposed algorithm with fairness

consideration achieves a very good performance. The behavior of the different algorithms in

Fig. 4.7 can be seperated into two main regions

1. WhenI1th = I2th ≤ −20 dBm: in this region, the proposed algorithm andFadel algo-

rithm significantly improves the achievable capacity of theCR system in comparison

with the other algorithms. This is because the interferenceconstraint value in this region

highly affects the optimization problem. This reduces the achieved capacity by theClas-

sical+Pr algorithm which does not take the interference constraint into consideration

while allocating the subcarriers. This is also reveals the limited performance ofWang

algorithm.
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2. WhenI1th = I2th > −20 dBm: in this region, theClassical+Pr algorithm has approx-

imately the same performance of the proposed algorithm. This reflects that the system

is behaving like a non-cognitive one due to the high interference constraint value. With

sufficient power budgets, the proposed algorithm with fairness can perform as the one

without fairness constraints with high interference threshold value.

Fig. 4.8 plots the outage probability of different algorithms. The outage probability of the

proposed algorithm with fairness is much lower than that of the reference algorithms. More-

over, the outage probability decreases with the increase ofthe interference constraints because

the different algorithms become more able to fulfill the minimum instantaneous rate for the dif-

ferent users. By using the proposed algorithm, the minimum rate is always achieved by all SUs

when the interference constraint is more than−20 dBm. This justified by the increase of the

system ability to use more powers on the good CR channels evenif they have high interference

gain to the primary system.

Fig. 4.9 shows the average capacity versus the number of SUs when the interference

thresholds are−20dBm and−30dBm. The capacity increases with the number of users due to
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Figure 4.8: Outage probability vs allowed interference thresholds whenN = 128 subcarriers,

M = 8 SUs,Pm = 1 mWatt,B1 = B2 = 10 MHz, andRmin = 20 Mbits/sec.
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Figure 4.9: Achieved capacity vs No. of SUs whenN = 128 subcarriers,Pm = 1 mWatt,

B1 = B2 = 10 MHz, andRmin = 20 Mbits/sec.

the multiuser diversity. The lower the number of SUs, the smaller the difference between the

proposed andClassical+Pralgorithms is. This is because the number of subcarriers that will

be allocated to each user will increase which reduces the amount of power that will be allocated

to each subcarrier and consequently the amount of interference imposed to the primary system.

This causes the CR system to act as a non-cognitive system. The gap between the different

algorithms decreases with the interference thresholds as the CR system becomes closer to the

classical (non-cognitive) system.

Fig. 4.10 shows the average capacity versus per-user power constraint,Pm, when the in-

terference thresholds are−20 dBm and−30 dBm. The proposed algorithm outperforms the

reference algorithms. The capacity of the CR system increases as the per-user power budget

increases up to certain total power value. After this value,the capacity remains constant re-

gardless of the increase of the per-user power because the system reaches to the maximum

power that can be used with the given interference threshold. It is worth noticing that when the

available SUs power is too low and unable to cause the pre-defined interference constraint, the

CR system acts as a non-cognitive one where the proposed algorithm performs very close to

theClassical+Pralgorithm. The gap between the curves with different interference constraints
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Figure 4.10: Achieved capacity vs per-user powerPm whenN = 128 subcarriers,M = 8

SUs,B1 = B2 = 10 MHz, andRmin = 20 Mbits/sec.

is increased with the increase of the power constraints, where the behavior of the algorithms

performance can be described according to two main regions

1. WhenPm ≤ −10 dBm: in this region, the available power budgets is not able to in-

troduce the maximum allowable interference to the primary system. Therefore, all the

algorithms has close performance even with the increase of the interference constraint.

2. WhenPm > −10 dBm: the CR system in this region becomes more able to introduce

harmful interference to the primary system. Accordingly, as the interference constraint

increased, the performance of the different algorithms is also increased where the ef-

ficiency of the proposed algorithm appears. Unlike to the previous region, theClassi-

cal+Pr algorithm andWangalgorithms has limited performance in comparison with the

other algorithms.

Fig.4.11 plots an example of the instantaneous data rate fora given user over time for

the proposed algorithm with and without fairness consideration whenI1th = I2th = −20 dBm.

It can be noted that the proposed algorithm with fairness keeps the instantaneous rate above

Rmin = 80 bits/symbol.
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Figure 4.11: Instantaneous rates over time whenN = 128 subcarriers,M = 8 SUs,Pm = 1

mWatt,B1 = B2 = 10 MHz, I1th = I2th = −20 dBm andRmin = 20 Mbits/sec (80 bits per

OFDM symbol).

4.6.3 Case 3: OFDM and FBMC with Low/High Number of SUs and

Subcarriers

Fig. 4.12 plots the average capacity of a CR system withM = 2 SUs versus the interference

threshold when the number of subcarriers isN = 8, the per-user power budgetPm = 1 mWatt.

Single PU band with bandwidthB = 2.5 MHz is assumed. The fairness constraint is omitted

in this case. The proposed algorithm achieves a good performance in comparison with optimal

and outperforms theClassical+Pr algorithm. Moreover, the capacity of FBMC based CR

system is higher than that of OFDM based one since the sidelobes in FBMC’s PSD are smaller

than that in OFDM which introduces less interference to the PU’s. Moreover, the CP insertion

in OFDM based CR systems reduces the total capacity of the system.

Fig. 4.13 plots the average capacity versus the interference threshold when the number of

subcarriers isN = 64, the number of SUs isM = 10, the per-user power budget isPm = 1

mWatt andB = 10 MHz. It can be observed that the gap between the different algorithms

decreases with the interference threshold as the CR system becomes closer to the classical

(non-cognitive) system. The capacity of FBMC based CR system is higher than that of OFDM.
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Figure 4.12: Achieved capacity vs allowed interference threshold whenN = 8 subcarriers,

M = 2 SUs,Pm = 1 mWatt andB = 2.5 MHz.
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4.7. Chapter Summary and Conclusions

In the case of OFDM system, the interference has a high effecton the system performance

where the efficiency of the proposed algorithm appears. Moreover, the inefficiency of theClas-

sical+Pr algorithm is shown when the interference constraint affects the optimization problem.

In FBMC systems, the difference between theClassical+Pralgorithm and the proposed algo-

rithm is very small because the FBMC system induces small amount of interference to the

primary system which makes the CR system behaves very close to the non-conative one. In

FBMC CR system with an extremely small interference threshold (or with high power budget),

the proposed algorithm will be useful and achieves more capacity than theClassical+Pr al-

gorithm as in the region below−70 dBm in Fig. 4.13. Since theClassical+Pralgorithm and

the proposed algorithm apply the same power allocation algorithm, it is clear that the capac-

ity increase of the proposed algorithm over theClassical+Pr algorithm one results from the

subcarrier allocation step.

4.7 Chapter Summary and Conclusions

In this chapter, we proposed an efficient resource allocation algorithm for uplink in multicarrier

based CR networks with fairness consideration. The resource allocation problem is a mixed

integer optimization problem in which achieving the optimal solution is hard to afford. To

reduce the computational complexity, the allocation process is separated into two steps. In

the first step, the subcarriers are allocated sequentially to the users according to their channel

quality as well as the interference that they may introduce to the primary system. Afterwards,

the multi-user system can be treated as a single user system where the per-user power bud-

get is distributed in the second step among the subcarriers so that the total system capacity is

maximized without causing excessive interference to the primary system. The fairness among

users is considered within the subcarrier allocation by reducing the probability of having users

whose instantaneous rates are below the given minimum rate.Without applying the fairness

constraints, the proposed algorithm can achieve lower computational complexity along with

better performance in comparison with the reference algorithms in which the fairness among

users are not considered. The proposed algorithm achieves superior outage performance when

the fairness among users is considered. We noticed that the gap among the different algorithms

decreases with interference constraints as the CR system acts similar to non-cognitive system.

This also happens when the available power budget is limitedand able to introduce the max-
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imum allowable interference. The proposed algorithm reduces the computational complexity

fromO
(
N3MN

)
required by the optimal solution toO (N logN)+O (NM). Moreover, sim-

ulation results prove that the FBMC based CR systems have more capacity than OFDM based

ones which highlights the importance of considering the useof the FBMC in CR physical layer.
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4.A. Appendix

4.A Appendix

4.A.1 Derivation of the Optimal Power Allocation Given By Equations

(4.15) and (4.23)

We want to find the optimal solution for the following optimization problem

max
Pi,m

N∑

i=1

log2

(
1 +

Pi,m |hi,m|2
σ2
i

)
(4.25)

s.t.

N∑

i=1

Pi,mΩ
l
i,m ≤ I lth ∀l ∈ {1, · · · , L} (4.26)

∑

i∈Nm

Pi,m ≤ Pm ∀m (4.27)

Pi,m ≥ 0 ∀i (4.28)

The problem above is a convex optimization problem. Introducing the lagrange multipliersαl,

µi, andβm for the inequality constraints in (4.26), (4.27) and (4.28)respectively, the Lagrangian

can be written as

G = −
N∑
i=1

Ri (Pi,m, hi,m) +
L∑
l=1

αl

(
N∑
i=1

Pi,mΩl
i,m − I lth

)
+

M∑
m=1

βm

(
∑

i∈Nm

Pi,m − Pm

)
−

N∑
i=1

Pi,mµi

(4.29)

The Karush-Kuhn-Tucker (KKT) conditions can be written as follows

αl ≥ 0 ∀l ∈ {1, 2, · · · , L} ; βm ≥ 0 ∀m ∈ {1, 2, · · · ,M} ;
µi ≥ 0 ∀i ∈ {1, 2, · · · , N} ; P ∗

i,m ≥ 0;

αl

(
N∑
i=1

P ∗
i,mΩ

l
i,m − I lth

)
= 0

βm

( ∑
i∈Nm

P ∗
i,m − Pm

)
= 0; ∀m ∈ {1, 2, · · · ,M}

µiP
∗
i = 0; ∀i ∈ {1, 2, · · · , N}

N∑
i=1

Pi,mΩ
l
i,m − I lth ≤ 0

∑
i∈Nm

Pi,m − Pm ≤ 0; ∀m ∈ {1, 2, · · · ,M}

∂G
∂P ∗

i,m

= −1
σ2
i

|hi,m|2
+P ∗

i,m

+
L∑
l=1

αlΩl
i,m + βm − µi = 0

(4.30)

Rearranging the last condition in (4.30) we get

P ∗
i,m =

1
L∑
l=1

αlΩl
i,m + βm − µi

− σ2
i

|hi,m|2
(4.31)
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SinceP ∗
i,m ≥ 0, we get

σ2
i

|hi,m|2
≤ 1

L∑
l=1

αlΩl
i,m + βm − µi

(4.32)

If σ2
i

|hi,m|2 <
1

L
∑

l=1
αlΩl

i,m+βm

, thenµi = 0 and hence

P ∗
i,m =

1
L∑
l=1

αlΩl
i,m + βm

− σ2
i

|hi,m|2
(4.33)

Moreover, if σ2
i

|hi,m|2 >
1

L
∑

l=1
αlΩl

i,m+βm

, from (4.31) we get

1
L∑
l=1

αlΩl
i,m + βm − µi

≥ σ2
i

|hi,m|2
>

1
L∑
l=1

αlΩl
i,m + βm

(4.34)

and sinceµiP
∗
i,m = 0 andµi ≥ 0, we get thatP ∗

i,m = 0.

Therefore, the optimal solution can be written as follows

P ∗
i,m =




1
L∑
l=1

αlΩl
i,m + βm

− σ2
i

|hi,m|2




+

(4.35)

where[x]+ = max (0, x). If only one PU is assumed with interference constraintI l∗th , (4.35) is

reduced to

P ∗
i,m =

[
1

αl∗Ωl∗
i,m + βm

− σ2
i

|hi,m|2

]+
(4.36)
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Chapter 5
Resource Allocation in Multicarrier Based

Relayed Cognitive Radio Systems

”Real unselfishness consists in sharing the interests of others” George Santayana.
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5.1 Introduction

Combining cognitive radio (CR) with cooperative communications can further improve the

spectrum utilization and enhance the network performance.Different relays in the network can
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collaborate in the spectrum sensing and assist the network transmissivity [1]. An overview of

the cooperative communication in cognitive scenario has been presented in [2,3].

The relay assisted transmission can be categorized into twobasic strategies; amplify and

forward (AF) and decode and forward (DF). In the AF strategy,the relay amplifies the received

signal and then forwards it to the destination. On the other hand, in DF scheme, the relay

decodes the received massage before the retransmission. Inmulticarrier based relay networks,

in addition to the power and subcarrier allocation requiredin non-cooperative networks, proper

relay selection and subcarrier coupling in the different hops are required to improve the system

performance.

The resource allocation problem in multicarrier based non-cognitive relay systems has

been received much attention over the past years (see e.g. [4–14] and references therein). In [4],

Wang et al. studied the optimal joint subcarrier matching and power allocation in a single relay

system under the global power constraints. By making use of the equivalent channel power

gains, a low complexity scheme is proposed. The algorithms matches the subcarriers according

to order of their equivalent channel gains and applies the waterfilling among the matched pairs

to find the optimal power allocation. The work in [4] is developed in [5] by the same authors

to consider the individual power constraints in the source and relay where the matching is

performed by pairing the subcarriers according to their channel qualities order. Afterwards,

the waterfilling is performed separately at the nodes. The imbalance between the matched

links capacities is removed by applying the waterfilling again to the side with the less capacity.

In [6], Boostanimehr et al. developed a subcarrier selection, matching, and power allocation

algorithm in single relay dual-hop networks. The algorithmformulates a linear assignment

problem to select and match some subcarriers for relayed transmission and use the rest only for

direct transmission. Based on the subcarrier matching and selection information , the power

allocation is evaluated by solving the resulting convex optimization problem. Two different

transmission protocols have been analyzed by Vandendrope et al. in [7] for a single relay dual-

hop scenario with direct link. The difference between the two protocols is in the use of the non-

relayed subcarriers not in the second time slot. The authorsprove the efficiency of using these

subcarrier to transmit new symbols from the source to the destination in the second time slot. In

[9–12], the dual approach has been used to allocate the different system resources where Dang

et al. in [9] dealt with multiple AF relays system while Hsu etal. considered DF single relay

system in [10]. Additionally, Wang et al. in [11] optimize the transmission mode and allocate

142



5.1. Introduction

the different resources considering multiple DF relays. The transmission at each subcarrier can

be either in direct mode without any relay assisting, or can be relayed through one or several

relays. Each one of the relays is eligible for assisting the transmission which exploits all the

degree of freedom in the network and improve the system performance. The fairness between

the nodes is considered in [12]. The transmission duration is optimized along with the other

resources in [13] where the transmission durations at the source and the relay are designed to

be asymmetric, which enhances the degree of freedom for transmission. The asymmetric time

allocation has a significant impact on the system capacity when the system has a larger number

of users (destinations) and a longer distance between the source and destinations. The resource

allocation problem in multi-hop relay network is considered in [14]. The authors proved that

under a fixed power allocation, the optimal subcarrier matching at each relay is achieved by

matching the incoming and the outcoming channels accordingto their signal to noise rations

(SNR). Using this results, they showed that the joint power allocation and subcarrier matching

can be decoupled into two independent steps where the subcarrier matching is performed first

and followed by the power allocation. This separation principle is shown to hold for a variety

of scenarios including AF and DF relaying strategies under either total or individual power

constraints.

The CR should not disturb the operation of the primary systemor negatively altering its

performance and hence, the different resources should be distributed adequately so that the in-

terference introduced to the primary system is not harmful.Mietzner et al. developed in [15]

a fully decentralized and a distributed feedback-assistedpower allocation schemes to maxi-

mize the output signal to interference plus noise ratio (SINR) or minimize the overall transmit

power subject to predefined SINR target. Jia et al. proposed in [16] a centralized heuristic al-

gorithm to select the most profitable pair of nodes and to allocate the different channels based

on the availability of the spectrum. The interference to theprimary system was not consid-

ered. In [17], a power allocation algorithm in a single relayDF orthogonal frequency division

multiplexing (OFDM) based CR system has been proposed. Under the assumption of prior

perfect subcarrier matching in the two hops, the authors treated the optimization problem in

the source and the relay individually. The algorithm performance degrades significantly if the

relay has to forward the receiving message on the same subcarrier, i.e. there is no subcarrier

pairing. The work is developed in [18] to deal with the bit loading problem in relay. In [19], the

CR network use the same spectrum of the primary network so that the transmission time and
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power of relay-assisted CR network is optimized to reduce its generated interference while still

guaranteeing its quality-of-service (QoS) level. Additionally, the authors of [20] proposed a

distributed relay selection and power control algorithm. Astochastic optimization formulation

is used where the tradeoff between the achievable rate and the network life time is considered.

Liying et al. presented in [21] a joint relay selection and power allocation algorithm where the

cognitive relay system is prevented from inducing severe interference to the primary system

by limiting its maximum transmission power. In [22], the authors proposed an algorithm to

select the best transmit way between the network nodes. The algorithm can select direct, dual

or diversity transmission based on the available spectrum as well as the maximum allowable

transmission powers. The systems in [21] and [22] are considering single carrier channels. To

the best of our knowledge, the resource allocation with the consideration of the interference

constraint in OFDM based multi-relay CR has not been investigated before.

Although that a considerable attention has been devoted to the use of OFDM systems,

OFDM systems has several disadvantages like the sensitivity to the fast time variation of the

radio channel in addition to the synchronization error problems. Furthermore, the cyclic pre-

fix (CP) insertion in each OFDM symbol reduces the spectral efficiency. Additionally, in CR

context, the large sidelobes of the OFDM signal causes high interference to the primary sys-

tem. Filter bank multicarrier (FBMC) is an alternative multicarrier transmission scheme that

can overcome the OFDM disadvantages by replacing the rectangular pulse used in OFDM by

another prototype filter with better frequency localization [23, 24]. OFDM and FBMC are

considered as a transmission techniques in this chapter.

This chapter considers the resource allocation problem in adual-hop multi-relay DF mul-

ticarrier based CR system. The different system resources,i.e. powers, subcarriers and relays,

are optimized jointly in order to maximize the system capacity. The resource allocation pro-

cess is performed under the per-node power constraint as well as the interference to the primary

system constraint. The chapter contributions are summarized as follows

• We formulate the resource allocation problem as a mixed-integer programming problem.

Thanks to the fulfillment of the time sharing condition, the dual decomposition technique

is used to find jointly the optimal subcarrier pairs, selected relays and allocated powers.

The group of subcarriers used for the direct transmission (without relaying) is determined

as well.
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• Due to the high computational complexity of the optimal algorithm, we proposed a

heuristic suboptimal algorithm. The suboptimal algorithmallocates jointly the differ-

ent resources taking into consideration the channel qualities, interference to the primary

system, individual power budgets and the limitation introduced from applying the DF

relaying strategy.

• We compare the performance of the OFDM and FBMC based CR systems. Moreover,

the impact of the different constraints values on the systemperformance is investigated.

The contents of this chapter have been partially published in references [25–30]. This

chapter is organized as follows: Section 5.2 gives the system model while the problem is for-

mulated in Section 5.3. The asymptotically optimal solution is derived in Section 5.4. Next,

the sub-optimal scheme is presented and the computational complexity is discussed in Section

5.5. Section 5.6 demonstrates selected numerical results.Finally, Section 5.7 concludes the

chapter.

5.2 System Model

In this chapter, a multicarrier based relayed CR system is considered. Non-overlapping portions

of the primary system bands are available to the CR system. The CR frequency spectrum

accommodatesN subcarriers each of them has∆f bandwidth. The CR system can use this

frequency spectrum under the condition of not inducing severe interference to primary system,

i.e. lower than the maximum interference the can be tolerated by the primary systemIth. As

shown in Fig. 5.1, The CR system consists of source, destination andM relays. The source can

transmit to the destination directly or through relays where each subcarrier can be used either

for the relayed or direct transmission. The relayed transmission is used when it can improve

the system performance. This enhancement occurs when the direct link is blocked due to the

exitance of an obstacle or when the direct link has severe channel attenuation. The relays are

assumed to operate in half-duplex mode with DF-protocol, thus receiving and transmitting in

two different time slots. In the first time slot, the source transmits to the different relays over

the subcarriers selected for the relayed transmission or tothe destination over the subcarriers

selected for the direct transmission. In the second time slot, the source remains silent in the

second time slot, and the relays decode the received messages in the first time slot, re-encode it,
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Figure 5.1: Cooperative relay cognitive radio network.

and then forward it to the destination. Thejth subcarrier in the source side which is selected for

relayed transmission should be paired with only one subcarrier k in the destination side which

may not be the same asj to form the(j, k) pair that should be assigned to only one relaym.

The maximum total transmission powers that can be used in thesource and the different relays

arePS andPRm
respectively.

Let Ωi represents the interference factor experienced by the transmission of the CR over

theith subcarrier and can be expressed by [31]

Ωi =

di+B/2∫

di−B/2

|gi|2Φi (f) df (5.1)

whereΦi is the power spectrum density (PSD) of theith subcarrier, anddi is the spectral

distance between theith subcarrier and the primary band.gi denotes the channel gain between

theith subcarrier and the primary band. Accordingly, the mutual interference power generated

by the subcarrieri of the CR system to the primary band is

Ii = PiΩi (5.2)

The expression of the PSD, i.e.Φi, depends on the used multicarrier technique and can be
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expressed as follows

Φi =





Ts + 2
Ts−1∑
r=1

(Ts − r) cos (2πfr) OFDM

|Hi (f)|2 FBMC

(5.3)

where|Hi (f)| = h [W/2] + 2
W/2−1∑
r=1

h [(W/2)− r] cos (2πfr), whereW is the length of each

polyphase component andh [·] are the filter coefficients defined by the PHYDYAS [32, 33]

prototype filter defined by equations (2.16)-(2.17).Ts denotes the length of the OFDM symbol

in number of samples.

By the same way, the interference power introduced by primary signal with PSDψ (ejω)

into the band of theith subcarrier is [31]

Ji =

di+∆f/2∫

di−∆f/2

|yi|2 ψ
(
ejω
)
dω (5.4)

whereyi is the channel gain between theith subcarrier and the primary signal.

5.3 Problem Formulation

The relayed transmission rate of thejth subcarrier in the source coupled with thekth subcarrier

in the destination and assigned to themth relay,RRelayed(j, k,m), can be evaluated as follows

RRelayed(j, k,m) =
1

2
min





log2

(
1 +

P
j
S
H

j
SRm

σ2
j,m

)

log2

(
1 +

P k
RmD

Hk
RmD

σ2
k,m

) (5.5)

whereP j
S is the power transmitted over thejth subcarrier while inP k

RmD is the power trans-

mitted over thekth in the Rm to Destination link. Rm means themth relay. Moreover,

Hj
SRm

(Hk
RmD)1is the square of thejth(kth) subcarrier fading gain over source toRm(Rm to

destination) link. σ2
j,m(k,m) = σ2

AWGNj,m(k,m)
+ Jj(k), whereσ2

AWGNj,m(k,m)
is the variance of

the additive white Gaussian noise (AWGN) on the source toRm(Rm to destination) link, and

Jj(k) is the interference introduced by the PU signal into thejth(kth) subcarrier which is eval-

uated using (5.4) and can be modeled as AWGN as described in [34]. If the source transmits to

1This notation is used in this chapter to indicate that the sentence is valid for the terms inside and outside the

parentheses, i.e. the sentence can be read with the terms inside the parentheses and also the meaning is correct

when it is read with the terms outside the parentheses.
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the destination over the direct link, the transmission rateof thejth subcarrier is given by

RDirect(j) =
1

2
log2

(
1 +

P j
SH

j
SD

σ2
j,D

)
(5.6)

whereHj
SD is the square of thejth subcarrier fading gain over source to destination link.σ2

j,D

is the variance of the noise in the direct link. The factor1
2

in (5.5) and (5.6) accounts for the

two time slots in each transmission frame.

To make the analysis more clear and without loss of generality, the following variables

substitutions are considered:Hj
SRm

=
H

j
SRm

σ2
j,m

,Hk
RmD =

Hk
RmD

σ2
k,m

, andHj
SD =

H
j
SD

σ2
j,D

.

Our objective is to maximize the CR system throughput by determining the subcarriers

that will be used for the direct transmission and those whichwill be used for relayed trans-

mission, and optimize the subcarrier pairing and relays assignment for the subcarriers used

for relayed transmission. The available power budgets in the source and the different relays

should be distributed among the subcarriers so that the instantaneous interference introduced

to the primary system is below the maximum limit. Therefore,the optimization problem can

be formulated as follows

max
P

j
S
≥0,P k

RmD
≥0,αj ,π

m
j,k

,tj,k

R

s.t.

- (C1: Source power constraint):
N∑
j=1

P j
S ≤ PS

- (C2: Relays individual power constraints):
N∑
k=1

P k
RmD ≤ PRm

, ∀m

- (C3: Interference at the first time slot):
N∑
j=1

P j
SΩj ≤ Ith

- (C4: Interference at the second time slot):
M∑

m=1

N∑
k=1

P k
RmDΩk,m ≤ Ith

- (C5: Relayed/Direct transmission constraint):αj ∈ {0, 1}, ∀j

- (C6: Subcarrier pairing constraint):
N∑
k=1

tj,k ≤ 1, ∀j;
N∑
j=1

tj,k ≤ 1, ∀k

- (C7: Relay Assignment constraint):
M∑

m=1

πm
j,k = 1 ∀j, k

(5.7)

where

R ,

[
M∑

m=1

N∑

j=1

N∑

k=1

1

2
αjπ

m
j,ktj,kRRelayed(j, k,m) +

N∑

j=1

1

2
(1− αj)RDirect(j)

]
(5.8)
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andN denotes the total number of subcarriers whileIth is the interference threshold prescribed

by PU.PS andPRm
are the available power budgets in the source and themth relay respectively.

Ωj andΩk,m are thejth(kth) subcarrier interference factor to the PU band from the source and

themth relay respectively.αj ∈ {0, 1} is the subcarrier transmission mode indicator which has

a value of one when the subcarrier is used for relayed transmission while equals zero if the sub-

carrier is used for the direct transmission. The subcarrierpairing constraint ensures that each

relayed transmission subcarrier in the source is paired with only one subcarrier in the destina-

tion wheretj,k ∈ {0, 1} is the subcarrier pairing indicator, i.e.tj,k = 1 if the jth subcarrier in

the source is paired with thekth in the destination, and zero otherwise. Additionally,πm
j,k is the

relay assignment indicator which equals to one when the pair(j, k) is assigned to themth relay

and zero otherwise. The source performs the resource allocation where all the instantaneous

fading gains are assumed to be perfectly known. The assumption of perfect knowledge of all

the channels is a typical assumption for researchers in thisarea [34–36] and it is assumed in

this chapter too. The result of the ideal case can serve as an upper-bound for the work include

another assumption or relaxation. Remark that the channel gains between the CR system nodes

can be obtained practically by the classical channel estimation techniques, while the channel

gains between the CR system and the PU can be obtained by estimating the received signal

power from the primary terminal when it transmits; under theassumptions of pre-knowledge

on the primary transmit power levels and the channel reciprocity [37].

Assume that the subcarrierj is used for the relayed transmission, i.e.αj = 1, and paired

with the kth subcarrier in the destination side. From (5.5), the maximumcapacity over the

(j, k) subcarrier pair which is allocated to themth relay can be achieved whenP j
SH

j
SRm

=

P k
RmDH

k
RmD. Therefore, the power allocated atRm can be expressed as function of the power

at the source asP k
RmD =

P
j
S
H

j
SRm

Hk
RmD

. Hence, the optimization problem in (5.7) can be re-written

as follows
max

P
j
S
≥0,αj ,π

m
j,k

,tj,k

R̂

s.t. (C1), (C3), (C5), (C6), (C7)

- Ĉ2:
N∑
j=1

N∑
k=1

αjπ
m
j,ktj,k

P
j
S
H

j
SR

Hk
RD

≤ PRm
; ∀m

- Ĉ4:
M∑

m=1

N∑
j=1

N∑
k=1

αjπ
m
j,ktj,k

P
j
S
H

j
SR

Hk
RD

Ωk,m ≤ Ith

(5.9)
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where

R̂ ,

[
M∑

m=1

N∑

j=1

N∑

k=1

1

2
αjπ

m
j,ktj,k log2

(
1 + P j

SH
j
SRm

)
+

N∑

j=1

1

2
(1− αj) log2

(
1 + P j

SH
j
SD

)
]

(5.10)

5.4 Asymptotically Optimal Solution Using Dual Decompo-

sition Technique

Finding the optimization variablesP j
S, αj , tj,k andπm

j,k in (5.9) is a mixed-integer programming

problem where the complexity is prohibitive for large number of subcarriers. The problem in

(5.9) is satisfying the time sharing condition described in[38] and hence, the duality gap of the

problem is negligible as the number of subcarrier is sufficiently large, i.e.N > 8, regardless

of the convexity of the problem. (refer to Section 2.4.4 for more details about the time sharing

condition). The solution obtained by the dual method is asymptotically optimal [38].

The dual problem associated with the primal problem (5.9) can be written as

min
β≥0;γm≥0;λ≥0;µ≥0

g (β, γm, λ, µ) (5.11)

whereβ and γm are the dual variables associated with the power constraints at the source

and at the different relays respectively. Moreover, the dual variablesλ andµ are related to

the interference constraints at the first and second time slots respectively. The dual function

g (β, γm, λ, µ) is defined as follows

g (β, γm, λ, µ) , max
P

j
S
>0,αj ,tj,k,π

m
j,k

L

s.t. (C5), (C6), (C7)
(5.12)

where the LagrangianL is given by

L =
M∑

m=1

N∑
j=1

N∑
k=1

1
2
αjπ

m
j,ktj,k log2

(
1 + P j

SH
j
SRm

)
+

N∑
j=1

(1− αj) log2
(
1 + P j

SH
j
SD

)
+

β

(
PS −

M∑
m=1

N∑
j=1

P j
S

)
+

M∑
m=1

γm

(
PRm

−
N∑
j=1

N∑
k=1

αjπ
m
j,ktj,k

P
j
S
H

j
SRm

Hk
RmD

)
+

λ

(
Ith −

M∑
m=1

N∑
j=1

P j
SΩj

)
+ µ

(
Ith −

M∑
m=1

N∑
j=1

N∑
k=1

αjπ
m
j,ktj,k

P
j
S
H

j
SRm

Hk
RmD

Ωk,m

)

(5.13)
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The dual function in (5.12) can be rewritten as follows

g (β, γm, λ, µ) = max
P

j
S
>0,αj ,tj,k,π

m
j,k

[
M∑

m=1

N∑
j=1

N∑
k=1

αjπ
m
j,ktj,kDrelay

(
P j
S, k,m

)
+

N∑
j=1

(1− αj)Ddirect (j) + βPS +
M∑

m=1

γmPRm
+ Ith (λ+ µ)

]

s.t. (C5), (C6), (C7)

(5.14)

where
Drelay

(
P j
S, k,m

)
= 1

2
log2

(
1 + P j

SH
j
SRm

)
− βP j

S − λP j
SΩj−

γm
P

j
S
H

j
SRm

Hk
RmD

− µ
P

j
S
H

j
SRm

Hk
RmD

Ωk,m

(5.15)

and

Ddirect (j) =
1
2
log2

(
1 + P j

SH
j
SD

)
− βP j

S − λP j
SΩj (5.16)

Therefore, to get the solution, we can start by assuming any initial values for the different

dual variables and also assuming that the value of the variable αj is known. Hence, (5.14) is

decomposed intoN(NM + 1) independent power allocation sub-problems. Depending on the

value of the variableαj , we have the following two cases:

• Case 1: when thejth subcarrier is used for relayed transmission, i.e.αj = 1

Assume(j, k) to be a valid subcarrier pair and is already matched and allocated to themth

relay. Hence, the optimal power allocation can be determined by solving the following

sub-problem for every(j, k,m) assignment

max
P

j
S

Drelay

(
P j
S, k,m

)
s.t. P j

S ≥ 0 (5.17)

Equating
∂Drelay(P j

S
,k,m)

∂P
j
S

= 0, the optimal power in (5.17) is expressed as follows

P ∗j
S =




1

β + γm
H

j
SRm

Hk
RmD

+ λΩj + µ
H

j
SRm

Hk
RmD

Ωk,m

− 1

Hj
SRm




+

(5.18)

where[x]+ = max (0, x). As the value of the variableαj is assumed to be one in this

case, the optimal power allocation found by (5.18) can be substituted in the first part of

(5.14) to eliminate the power variable and hence the following problem should be solved
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for every(j, k) pair

g (β, γm, λ, µ) = max
πm
j,k

[
M∑

m=1

N∑
j=1

N∑
k=1

πm
j,ktj,kDrelay(P

∗j
S , k,m)

+βPS +
M∑

m=1

γmPRm
+ Ith (λ+ µ)

]

s.t. (C7)

(5.19)

Therefore, the optimal relay assignment strategy is achieved by allocating the(j, k) pair

to the relay which maximizes the functionDrelay

(
P ∗j
S , k,m

)
, i.e. πm∗

j,k = 1 if m =

argmax
m

Drelay

(
P ∗j
S , k,m

)
and zero otherwise. By performing this allocation, the best

relay is determined for every possible subcarrier pair .

• Case 2: when thejth subcarrier is used for direct transmission, i.e.αj = 0

The following sub-problem should be solved for every subcarrier j

max
P

j
S

Ddirect (j) s.t. P j
S ≥ 0 (5.20)

Solving (5.20) for the optimal power we can find

P ∗j
S =

[
1

β + λΩj

− 1

Hj
SD

]+
(5.21)

Using the previous analysis, and for given dual variables values, we can find the optimal

power levels and relay assignment of the pair(j, k) when the subcarrier is used for relayed

transmission, and we can evaluate the optimal power allocation when it is used for direct trans-

mission. The last remaining step is to determine the optimalsubcarrier pairs and to decide

whether thejth subcarrier should be used for direct transmission or for relayed one. Therefore,

the following problem should be solved

g (β, γm, λ, µ) = max
αj ,tj,k

[
N∑
j=1

N∑
k=1

αjtj,kDrelay

(
P ∗j
S , k,m

∗) +

N∑
j=1

(1− αj)Ddirect (j) + βPS +
M∑

m=1

γmPRm
+ Ith (λ+ µ)

]

s.t. (C5), (C6)

(5.22)

wherem∗ in Drelay

(
P ∗j
S , k,m

∗) denotes the best relay selected for the(j, k) pair as described

previously. For a possible(j, k,m∗) assignment, i.e.tj,k = 1 andπm∗

j,k = 1, (5.22) is reduced to

max
αj

αjDrelay

(
P j
S, k,m

∗)+ (1− αj)Ddirect (j) (5.23)
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whereP ∗j
S in Drelay is given by (5.17) whileP ∗j

S in Ddirect is given by (5.20). By solving

problem (5.23), we found

αj =





1 if Drelay

(
P ∗j
S , k,m

∗) ≥ Ddirect (j)

0 otherwise
(5.24)

Accordingly, the maximum value betweenDdirect (j) andDrelay

(
P ∗j
S , k,m

∗) decides whether

the subcarrierj should be used for direct transmission or for relayed transmission based on to

the assignment(j, k,m∗). Therefore, (5.22) can rewritten as follows

g (β, γm, λ, µ) , max
tj,k

[
N∑
j=1

N∑
k=1

tj,kDmax(P
∗j
S , k,m

∗) + βPS+

M∑
m=1

γmPRm
+ Ith (λ+ µ)

]

s.t. (C6)

(5.25)

whereDmax(P
∗j
S , k,m

∗) = max{Drelay

(
P j
S, k,m

∗) ,Ddirect (j)}. The problem in (5.25) is

a linear assignment problem that can be solved efficiently bythe Hungarian method with a

complexity ofO (N3) [39]. Note that the set of subcarriers used for direct transmission can

be determined from the optimal solutiont∗j,k when the profit value associated with the optimal

pair (j, k) with t∗j,k = 1 isDmax(P
∗j
S , k,m

∗) = Ddirect (j).

The subgradient method can be used to solve the dual problem with guaranteed conver-

gence. After finding the optimal solution, i.e.P ∗j
S , πm

j,k, t
∗
j,k andαj of the dual function at a

given dual pointsβ, γm, λ andµ, the dual variables at the(i+ 1)th iteration are updated as

β(i+1) = β(i) − δ(i)

(
PS −

N∑
j=1

P ∗j
S

)

γ
(i+1)
m = γ

(i)
m − δ(i)

(
PRm

−
N∑
k=1

N∑
j=1

α∗
j t

∗
j,k

P
∗j
S

H
j
SRm

Hk
RmD

)
; ∀m

λ(i+1) = λ(i) − δ(i)

(
Ith −

N∑
j=1

P ∗j
S Ωj

)

µ(i+1) = µ(i) − δ(i)

(
Ith −

M∑
m=1

N∑
k=1

N∑
j=1

α∗
jπ

m∗

j,k t
∗
j,k

P
∗j
S

H
j
SRm

Hk
RmD

Ωk,m

)

(5.26)

whereδ(i) is the step size that can be updated according to the nonsummable diminishing step

size policy [40].

153



Chapter 5. Resource Allocation in Multicarrier Based Relayed Cognitive Radio Systems

5.5 Suboptimal Algorithm and Complexity Comparison

In order to solve the problem efficiently, we propose in this section a suboptimal greedy algo-

rithm by which the different system resources are allocatedjointly with lower computational

complexity than that of the optimal solution.

We commence the description of the suboptimal algorithm by defining the setsA andB
to include all the non-assigned subcarriers in the source and the destination sides respectively.

Moreover, define the setM to contain all the relays in the network. In the source side, assume

that the available source power is distributed uniformly over the subcarriers, i.e.P uni
j = PS

N
,

and also assume that the interference introduced to the primary system by every subcarrier is

equal and hence from (5.2), the maximum allowable power thatcan be allocated to thejth

subcarrier isPmax
j = Ith

NΩj
. Therefore, the allocated power to thejth subcarrier in the source

side isP j
S = min(P uni

j , Pmax
j ). The assigning procedures of a particular subcarrierj ∈ A are

detailed in Algorithm 5.6.

Algorithm 5.6 Sub-optimal Algorithm

1. For every relaym ∈ M, evaluate the rateRSource
j,m = 1

2
log2

(
1 + P j

SH
j
SRm

)
achieved by

allocating the subcarrierj to themth relay.

2. For every relaym ∈ M and subcarrierk ∈ B, compute the required power to achieve a

rate in the relay to destination link equal to that in the source to relay link, i.e.P rate
j,k,m =

(

2(2R
Source
j,m )−1

)

Hk
RmD

. Then, evaluateP uni
k,m =

PRm

|B| andPmax
k,m = Ith

NΩk,m
where|B| means the

cardinality of the setB. Afterwards, setPowerj,k,m = min
(
P rate
j,k,m, P

uni
k,m, P

max
k,m

)
.

3. Findk∗ andm∗ satisfying(k∗, m∗) = argmaxk,m
(
Powerj,k,mH

k
RmD

)
. If P j

SH
j
SD >

Powerj,k∗,m∗Hk
Rm∗D, the direct link is selected. Otherwise, settj,k∗ = 1, πm∗

(j,k∗) and

P k
RmD = Powerj,k∗,m∗ and update them∗th relay power budget asPR∗

m
= PR∗

m
−

Powerj,k∗,m∗.

4. Remove the subcarriersj andk∗ (in case of relayed transmission) from the setsA andB
respectively and repeat the procedures until the setA is empty.

The first step in the proposed algorithm determines the achieved capacity by allocating a
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given subcarrierj in the source side to a specific relay. From (5.5), the rate achieved on the

relay to destination link should be equal to that in the source to relay link in order to avoid the

capacity imbalance. Therefore, the amount of power required to achieve this equality is evalu-

ated in the second step. The limitation of the power and interference constraints are considered

by the third step where the relayed or direct transmission isdetermined. The subcarrier pairing

and relay selection indicators as well as the remaining relays power are updated in the last step.

In the optimal solution derived in the previous section,(M + 3) dual variables are updated

in every iteration. Using these values,N (NM + 1) function evaluations are performed to find

the power allocation. Afterwards,M function evaluations are performed for every possible

subcarrier pair where there areN ! subcarrier matching possibilities. By including the com-

putational complexity of the Hungarian method and theN functions evaluations required to

classify the subcarrier into the direct or relayed transmission, the optimal solution derived in

the previous section has a complexity ofO (T (MN2 +M(N !) + 2N +N3)) whereT is the

number of iterations required to converge which is usually high [38]. In the proposed scheme,

every subcarrier in the source side requires no more than(M +MN) function evaluations to

be paired and assigned to the relay or selected for the directtransmission. Therefore, the com-

plexity of the proposed algorithm isO(MN +MN2). Table. 5.1 summarizes the complexity

of the algorithms.

If the direct link between the source and the destination is blocked in all the subcarriers due

to large distance or existence of an obstacle, the dual decomposition technique is adopted after

assuming that all the subcarrier are used for relayed transmission, i.e.αj = 1, ∀j. Moreover,

the third step in Algorithm 5.6 should be modified accordingly by removing the part related to

direct transmission selection. Additionally, if the CR system has only one relay, i.e.M = 1,

the relay selection step in the optimal solution should be omitted. The Algorithm 5.6 is still

valid and can be used to find jointly the subcarrier pairs and the allocated powers. However,

in case of single relay CR system, the scheme used in non-cognitive system can be adapted.

Table 5.1: Computational complexity comparison

Algorithm Complexity

Asymptotically Optimal O (T (MN2 +M(N !) + 2N +N3))

Proposed suboptimal O(MN +MN2)
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Specifically, the optimal subcarrier pairing strategy in non-cognitive DF networks is achieved

by ordering the subcarriers in the source and the destination sides according to their signal to

noise ratio (SNR), and pair the subcarriers with the same order together [5]. Conversely, this

strategy is not optimal in CR systems due to the existence of the interference constraints and

can be modified to get a suboptimal solution as follows

1. Fix the subcarriers powers:assume that the interference induced to the primary system

is divided uniformly on the subcarriers, i.e. every subcarrier is able to induce interference

to PU equal toIth
N

. Therefore, from (5.2), the maximum power that can be allocated to

thejth(kth) subcarrier in source(destination) side is

Pmax
j (Pmax

k ) =
Ith

NΩj(Ωk)
(5.27)

Remark that the subscriptm is removed since we are considering the single relay case.

Similarly, the power constraints can be distributed uniformly on the different subcarriers

to get

P uni
j (P uni

k ) =
PS(PR)

N
(5.28)

and hence, the allocated power to thejth(kth) subcarrier is

P j
S(P

k
RD) = min

(
Pmax
j (Pmax

k ), P uni
j (P uni

k )
)

(5.29)

2. Match the subcarriers: The already fixed powers in (5.29) are considering the inter-

ference and the power constraints, therefore, the channel qualities should be considered

also in order to achieve a good subcarrier matching criteria. Hence, the subcarriers in the

source and destination sides are ordered according to the product of the powers found

using (5.29) and the channel gains, i.e.P j
S(P

k
RD) × Hj

SR(H
k
RD). Afterwards, every

subcarrier in the source side is matched with the subcarrierwith the same order in the

destination side.

3. Re-adjust the assigned powers:given the subcarrier matching found by the previous

step, the original optimization problem can be solved to findthe optimal power allocation

vector according to this matching. In the case when the transmit powers of the CR system

is limited by the interference constraints only where the available power budgets is high

enough, the algorithm described in chapter3 can be adopted in this step in order to find

the solution efficiently as described in Appendix 5.A.1.
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5.6 Simulation Results

The simulations are performed under the scenario given in Fig.5.1. A multicarrier system of

N = 64 subcarriers is assumed. The values ofTs and∆f are assumed to be4µ seconds and

0.3125 MHz respectively. The OFDM system is assumed to have a6.67% of its symbol time

as cyclic prefix (CP). For FBMC system, the prototype coefficients are assumed to be equal to

PHYDYAS coefficients with overlapping factorK = 4 and are defined by (2.16) and (2.17).

The channel gains are outcomes of independent Rayleigh distributed random variables with

mean equal to1. All the results have been averaged over1000 iterations. In the simulations,

the following algorithms are considered

1. Optimal with direct : apply the solution based on the dual decomposition technique

presented in Sec. 5.3.

2. Optimal without direct : apply the solution based on the dual decomposition technique

presented in Sec. 5.3 when the relayed transmission is allowed only while the direct

link is always blocked, i.e. the direct/relayed transmission indicatorαj is assumed to be

αj = 1, ∀j.

3. Suboptimal: apply the proposed suboptimal algorithm described in Sec.5.5.

4. SNR: the subcarriers are paired and assigned to the relays basedon their SNR. The

powers are evaluated by solving (5.9) with the known values of αj , tj,k andπm
j,k.

5. Random: the subcarriers are paired and assigned to the relays randomly. The powers are

evaluated by solving (5.9) with the known values ofαj, tj,k andπm
j,k.

The simulation considers two different cases, the first casedeal with multi-relay system

which is able to use either the relayed or direct transmission while the second case consid-

ers the relayed transmission in single relay CR system underboth the interference and power

constraint, and under the interference constraint only.
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5.6.1 Case 1: Multi-relay CR System with Direct Link Transmission Abil-

ity

Consider an OFDM based CR system withM = 5 relays. Fig. 5.2 depicts the achieved

capacity of the optimal and suboptimal schemes vs. the interference constraint. The solid lines

plots the case whenPS = PR = 0 dBm, while the dashed ones whenPS = PR = 20 dBm. The

achieved capacity is compared with that when only one of interference or power constraint is

applied. The interference (power) only performance forms an upper bound for that with both

constraints. To that end, the performance of the optimal solution under both constraints has

three different regions. Considering the case ofPS = PR = 0 dBm, the three region could be

explained as follows

1. If Ith ≤ −30 dBm : the performance is equal to that of the interference only case.

The limited effect of the power constraints comes from the small value of the allowed

interference since only a small quantity of the available power can induce the maximum

allowed interference.

2. If Ith ≥ −20 dBm : the performance is equal to that of the power only. The system in

this region performs like a non-cognitive one since the available power budgets cannot

induce the maximum allowed interference threshold.

3. If −30 < Ith ≤ −20 dBm : in this region both the power and interference constraints

are affecting the optimization problem. The optimal solution performs close to the upper

bound formed by the interference (power) only curves.

The same observations can be applied on the case ofPS = PR = 20 dBm but with different

ranges of the regions.

To more clarify the different regions, Fig. 5.3 plots theoptimal with directachieved ca-

pacity for different interference and power constraints. By fixing one of the constraints, one

can see that the achieved capacity increases with the other up to certain point. After this point,

the change of the constraint value does not affect the achieved capacity. This is can be justified

as follows

1. With fixed power constraint, the CR capacity become constant because the induced in-

terference to the primary system using the fixed power budgetis equal or lower than the
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maximum interference specified by the interference constraint.

2. With fixed interference constraint, the CR capacity become constant because the incre-

ment in the available power will not be used by the CR system where the maximum

power that can be used without violating the interference constraint is reached at this

point.

Fig. 5.4 shows the achieved capacity of the different algorithms vs. the interference thresh-

old. It can be noticed that the capacity is increased by considering the relayed transmission with

ability of using the direct link in some subcarriers. Moreover, the CR system capacity increases

with the interference threshold as the CR system become ableto use more power on the differ-

ent subcarriers. Additionally, the throughput increases -as expected- with the increase of the

available power budgets. However, the increment in the throughput by changing the available

power from0 dBm to20 dBm is very small when the interference threshold is low since both

systems use approximately the same amount of power to inducethe maximum allowed inter-

ference to the PU. Moreover, thesuboptimalalgorithm with low computational complexity has

a near optimal performance and outperformsSNRandrandomalgorithms. It is worth mention-
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ing that the performance loss of thesuboptimalalgorithm relative to theoptimal with directone

is caused by different factors. In thesuboptimalalgorithm, the available power budgets in the

source and the destination are distributed equally betweenthe subcarrier which is not always

optimal depending on whether the system is operating on highor low SNR. Moreover, the step

ladder power allocation in which every subcarrier is assumed to induce the same amount of

interference to the PU is shown to create some performance degradation as presented in [34].

Additionally, thesuboptimalalgorithm performs the subcarrier pairing and the power allocation

in sequential way starting from the first subcarrier up to thelast one. When a given subcarrier

in the source side is paired with another one in destination side, the latter cannot be used any-

more for the next steps. Hence, the order of the subcarrier assignment process may slightly

degrades the performance of thesuboptimalscheme. In the low interference thresholds region,

theSNR-based matching criteria applied in the non-cognitive system has limited performance

in comparison withoptimalbecause it does not take the interference to the primary system into

account. Furthermore, the gap between theoptimal algorithm and theSNRalgorithm is de-

creased with the interference threshold as the system behaves closer to the non-cognitive one.

The same interpretation can be applied on Fig. 5.5 in which the achieved capacities are plotted

vs. the available power budgets in the source and the relays.In this figure, the non-cognitive

behavior lies on the low power region where the available power budgets are not able to induce

the pre-specified interference threshold.

To compare the performance of OFDM and FBMC based system in cooperative relay

networks, Fig. 5.6 and Fig. 5.7 plot the achieved capacity ofthe algorithms against different

interference thresholds and different power constraints,respectively. In Fig. 5.6, two different

performance regions can be identified as follows

1. WhenIth ≤ −30 dBm: the capacity of the FBMC based CR systems is more that that

of the OFDM based ones. This is because of the small sidelobesof the FBMC systems

as well as because of loss of the spectrum efficiency in OFDM due to the use of the CP.

Therefore, the interference constraint generally has small effect on the performance of

the FBMC based systems which is not the case in OFDM ones.

2. WhenIth > −30 dBm: both of the system has almost the same performance when

operating with high interference thresholds or low power budgets. This is can be justified

by noting that the systems in this region operate in noncognitive-like environment.
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Similarly, in Fig. 5.7, the region whenPS = PRm
≤ −5 dBm represents the noncognitive-

like environment; where the available power budget is not able to introduce high interference.

When the power constraints increase more than this value, FBMC system has significantly

improves the CR capacity since FBMC based systems can use more transmission power which

increase the total system capacity.

5.6.2 Case 2: Single-relay CR System with Blocked Direct Link Trans-

mission

In this case, only one relay is considered to assist the transmission where the direct link between

the source and the destination is blocked. In addition to thesuboptimalandSNRwhich is

defined previously in the beginning of this section, the following algorithms are considered

1. Optimal: apply the solution based on the dual decomposition technique presented in

Sec. 5.3 considering one relay and relayed transmission only.

2. Adapted-classical: apply the scheme proposed at the end of Sec. 5.5 by adapting the
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scheme used in non-cognitive systems.

3. Without pairing: assume that the data transmitted by the source over a given subcarrier

in the first time slot is forwarded by the relay over the same subcarrier in the second time

slot. The powers are evaluated by solving the optimization problem with tj,k = 1 for

everyj = k and zero otherwise.

Fig. 5.8 and Fig. 5.9 show the achieved capacity of the different algorithms vs. the in-

terference threshold and the available power budgets respectively. In addition to the comments

about the previous figures, we can notice that the performance of theadapted-classicalhas

more computational complexity than thesuboptimalalgorithm and its performance lies be-

tween theoptimal and thesuboptimalalgorithms. Moreover, the limited performance of the

without pairingalgorithm confirms the performance enhancement that gainedby allowing the

subcarrier pairing. Remark that as the interference constraint increases, the SNR algorithm and

the adapted-classicalalgorithms become very close to the optimal solution. This is because

the system with high interference constraint work in the noncognitve-like region, where the

subcarrier paring according the channel qualities is optimal.
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Fig. 5.10 plots the average capacity of the CR system vs. the interference threshold

when there is no power budget limit, i.e. interference constraint only. Theadapted-classical

−30 −20 −10 0 10 20 30 40
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Source and Relay power budget P
S
=P

R
 (dBm)

C
ap

ac
ity

 (
B

it/
H

z/
S

ec
)

Optimal
Adapted−classical
Without pairing
Suboptimal
SNR

I
th

= − 30 dBm

I
th

= − 10 dBm

Figure 5.9: Achieved capacity vs available power budget withPS = PRm
in single-relay CR

system. The solid lines whenIth = −30 dBm while the dashed ones whenIth = −10 dBm.

−60 −50 −40 −30 −20 −10 0 10
0

1

2

3

4

5

6

7

8

Interference threshold I
th

 (dBm)

C
ap

ac
ity

 (
B

it/
H

z/
se

c)

Optimal
Without pairing
Adapted−classical
SNR

Figure 5.10: Achieved capacity vs the interference threshold in single-relay CR system with

interference constraint only.

165



Chapter 5. Resource Allocation in Multicarrier Based Relayed Cognitive Radio Systems

here apply the scheme proposed at the end of Sec. 5.5 and use the power allocation strategy

described in Appendix 5.A.1. Theadapted-classicalalgorithm has a close performance to

optimal algorithm and performs better than the other algorithms which confirm the efficiency

of the applied scheme. Thewithout pairingalgorithm has the worst performance which reveals

the importance of the subcarrier matching in the relay networks. Remark that the performance

of the SNR algorithm is enhanced by increasing the interference constraint due to the optimality

of this scheme in the non-cognitive radio scenario.

5.7 Chapter Summary and Conclusions

In this chapter, we have considered the resource allocationproblem in multi-relay multicar-

rier based CR system. Two time slot transmission is considered where the relays employs the

DF strategy. The objective is to maximize the CR achieved capacity while maintain the inter-

ference introduced to the primary system in every time slot below a pre-specified threshold.

Additionally, the separate source and per-relay power constraints are considered. The source

can transmit to the destination directly or via relay. The problem is a mixed integer program-

ming problem which is hard to solve. Therefore, the dual decomposition technique is used to

find jointly the subcarrier pairing , relay assignment and power allocation. Based on the result

that when the time sharing constraint is satisfied, and the number of subcarrier is high enough,

the duality gap between the solution of the primal and the dual problems is zero regardless

of the convexity of the problem. Accordingly, the solution of the dual problem is asymptoti-

cally optimal. The dual decomposition technique evaluatesiteratively the solution where the

subgradient method is used to update the different dual variables. In each iteration, the power

levels are determined firstly for every relay and subcarrierpair in case of relayed transmission

and for every subcarrier in the source side in case of direct transmission. Afterwards, the best

relay is selected for a given subcarrier pair in the relayed transmission. Based on that, the profit

of the relayed and direct transmission is compared and finally the Hungarian method is used

to find the optimal subcarrier pairs as well as to determine the subcarriers used for the direct

transmission. The iterations are repeated until convergence.

To reduce the computational complexity of the dual decomposition technique, a greedy

suboptimal algorithm is proposed to allocate the differentresources jointly. The suboptimal
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algorithm starts with evaluating the achieved capacity by allocating a given subcarrier in the

source side to a specific relay. To avoid the capacity imbalance in the source to relay and the re-

lay to destination links, the power required to achieve the same rate in both sides is determined.

Afterwards, the limitation of the power and interference constraint is considering by choosing

the minimum allowable power and then the best subcarrier pair and relay are determined for

every subcarrier and relay. Finally, the direct transmission is selected if its achieved capacity

is better that the relayed one. The suboptimal algorithm achieves a near optimal performance

with much less complexity and outperforms the SNR and randombased methods. The subop-

timal algorithm reduces the complexity fromO (T (MN2 +M(N !) + 2N +N3)) required by

the dual decomposition technique toO(MN +MN2). The performance of the different algo-

rithms as well as the impact of the different constraints on the system capacity is discussed in

the simulation part. Additionally, the capacities achieved by OFDM and FBMC based systems

is compared to prove the efficiency of using FBMC in the CR systems.

167



Chapter 5. Resource Allocation in Multicarrier Based Relayed Cognitive Radio Systems

5.A Appendix

5.A.1 Power Allocation Under the Interference Constraint Only with Known

Subcarrier Pairs

By applying the subcarrier pairing step and ordering the subcarriers in the source and the relay

sides, the subcarrier index in both sides can be changed fromj andk to i for notation simplicity,

i.e. theith subcarrier in the source side is paired with theith subcarrier in destination side.

Therefore, the power optimization problem can be written asfollows

max
P i
S
>0

N∑
i=1

1
2
log2 (1 + P i

SH
i
SR)

s.t. - (Interference in the first time slot ):
N∑
i=1

P i
SΩ

i
S ≤ Ith;

- (Interference in the second time slot ):
N∑
i=1

P i
SH

i
SR

Hi
RD

Ωi
R ≤ Ith;

(5.30)

The above problem is a convex optimization problem. Applying the KKT conditions and solv-

ing for the optimal power, we can get

P i∗
S =


 1

ηΩi
S + γ

Hi
SR

Hi
RD

Ωi
R

− 1

H i
SR




+

(5.31)

whereη, γ are the non-negative Lagrange multipliers. Solving for multiple Lagrange multipli-

ers is still computationally complex. To develop a computationally efficient power allocation

algorithm, the following stages can be performed

• Maximum power determination: we can commence by assuming that the maximum

power that can be allocated to each subcarrierP i
max is determined subject to the interfer-

ence constraint in the first time slot only. Therefore, the following problem is addressed

max
P i
S(T1)

>0

N∑
i=1

1
2
log2

(
1 + P i

S(T1)H
i
SR

)

s.t.
N∑
i=1

P i
S(T1)Ω

i
S ≤ Ith

(5.32)

where(T1) stands for optimization under the interference constraintin the first time slot
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only. Following the analysis given in [34], we get

P i
S(T1) =

[
1

λ1Ωi
S

− 1
Hi

SR

]+

λ1 =
|N |

Ith+
N
∑

i=1

Ωi
S

Hi
SR

(5.33)

whereλ1 is the non-negative Lagrange multiplier.

• Interference in the second time slot testing:once the maximum allowed power is

determined, i.e.P i
max = PS(T1), the interference in the second time slot is tested to

check whether
N∑
i=1

(P i
maxH

i
SRΩ

i
R)/H

i
RD ≤ Ith holds or not. If the relation holds, then the

solution is found whereP i∗
S = P i

max. Otherwise, the next step is performed.

• Interference in the second time slot consideration:the power should be distributed

according to the interference in the second time slot only given that the power allocated

to each subcarrier is lower than or equal toP i
max. Hence, the following problem should

be solved

max
P i
S(W.F )

N∑
i=1

1
2
log2

(
1 + P i

S(W.F )H
i
SR

)

s.t.
N∑
i=1

P i
S(W.F )

Hi
SR

Hi
RD

Ωi
R ≤ Ith

0 ≤ P i
S(W.F ) ≤ P i

max

(5.34)

The former problem can be solved efficiently by using the concept of the”cap-limited”

waterfilling [41]. If the interference in the second time slot in considered only, the fol-

lowing optimization problem is formulated

max
P i
S(T2)

>0

N∑
i=1

1
2
log2

(
1 + P i

S(T2)H
i
SR

)

s.t.
N∑
i=1

P i
S(T2)

Hi
SR

Hi
RD

Ωi
R ≤ Ith

(5.35)

where(T2) stands for optimization under the interference constraintin the second time

slot only. The solution can be given as follows

P i
S(T2) =

[
1

(λ2H
i
SR

Ωi
R)/Hi

RD

− 1
Hi

SR

]+

λ2 =
|N |

Ith+
N
∑

i=1

Ωi
R

Hi
SR

(5.36)

whereλ2 is the non-negative Lagrange multiplier. Given the initialsolution evaluated

by (5.36), the channels that violate the maximum powerP i
max are determined and upper
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bounded withP i
max. The total interferenceIth is reduced by subtracting the interference

induced by the powers assigned so far. At the next step, the algorithm proceeds to suc-

cessive applying of (5.36) over the subcarriers that did notviolate the maximum power

P i
max in the last step. These procedures are repeated until the allocated powerP i

S(W.F )

doesn’t violate the maximum powerP i
max in any of the subcarriers in the new iteration.

• Power levels re-adjustment:The solutionP i
S(W.F ) satisfies the interference constraint in

the second time slot with equality which is not the case for the interference constraint in

the first time slot. Since it’s assumed thatP i
S(W.F ) ≤ P i

max, some of the powers allocated

to subcarriers is not reaching the maximum allowable valueswhich make the interference

introduced to the PU system in the first time slot below the thresholdIth. In order to take

advantage of the allowable interference, some power can be taken from one subcarrier

and given to another hoping to increase the total system capacity. Therefore, the values

of the maximum power that can be allocated to each subcarrierP i
max should be updated

depending on the left interference. The left interference can be determined as follows

ILeft = Ith −
N∑

i=1

P i
S(W.F )Ω

i
S (5.37)

Assuming thatS ⊂ N is the set of the subcarriers whose powerPS(W.F ) that reach the

maximumP i
max, i.e.P i

S(W.F ) = P i
max, ∀i ∈ S, then,P i

max, ∀i ∈ S can be updated by

applying (5.33) on the subcarriers in the setS with the following interference constraints

Iupdated = ILeft +
∑

i∈S
P i
S(W.F )Ω

i
S (5.38)

After determining the updated values ofP i
max, (5.34) is solved again to find the final

solutionP i∗
S = P i

S(W.F ).
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Chapter 6
General Conclusions and Future Work

”Not knowing when the dawn will come, I open every door”Emily Dickinson.
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This dissertation has tackled the resource management problem in multicarrier based cog-

nitive radio (CR) systems. Specifically, three scenarios have been considered: downlink trans-

mission, uplink transmission, and relay assisted transmission. For the different scenarios, the

optimal solution of the problem is investigated and low complexity efficient algorithms are

proposed. Furthermore, the impact of the different constraints is studied. Eventually, the per-

formance of using orthogonal frequency division multiplexing (OFDM) and filter bank multi-

carrier (FBMC) in the CR physical layer is compared. The following assumptions are always

considered in this dissertation:i) the channel state information (CSI) is known at the cognitive

base station (CBS) -or at the source in the relayed transmission- which is in charge of perform-

ing the resource allocation process.ii) the CSI as well as the channel occupancy status are

assumed to be constant during the frame transmission. In thefollowing, the main results of

each chapter and some future work points are summarized.
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6.1 Conclusions

Chapter 3

In this chapter, the downlink scenario is considered. The objective is to maximize the

capacity achieved by the CBS subject to the total power and interference constraints. As the

problem is formulated as a mixed-integer optimization problem which is hard to solve, a two

step algorithm is applied in order to reduce the computational complexity. The subcarriers are

assigned sequentially to the user with the maximum signal tonoise ratio (SNR) in the first step,

while the available power budget is allocated to different subcarriers in the second step. To

further reduce the computational complexity of the power allocation part, every subcarrier is

assumed to be belong to the nearest primary band and introduces interference to it only. Ac-

cordingly, PI-algorithm is proposed to solve the power allocation problem efficiently. As a

result, the two steps separation reduces the original problem complexity to be solvable with

O (N3) complexity whereN is the number of subcarriers. Moreover, thePI-algorithm in ad-

dition to the assumption of the nearest primary band assignment further reduce the complexity

fromO (N3) toO (N logN) +O (L) whereL is the number of primary bands. By simulating

the different algorithms, the following results are outlined:

• The proposedPI-algorithmapproaches the optimal solution and outperforms the previ-

ously proposed algorithms in the literature.

• The assumption that every subcarrier is belonging to the nearest primary band is rea-

sonable as the maximum interference constraints are slightly violated. This implies that

when such an assumption is applied, the considered interference constraints should be

marginally lower than the pre-specified one by the primary system.

• While respecting the interference constraints, it is verified that transmitting over both

active and non-active primary bands simultaneously achieves higher capacity than trans-

mitting over active bands only, i.e. overlay spectrum access. The difference is highly

dependent on the channel status between primary and secondary users. Channels with

high attenuation result less interference to the primary system and allow the secondary

users (SUs) to use more powers which improves the overall CR capacity.

• Due to its small sidelobes and due to the loss caused by the cyclic prefix (CP) insertion

in the OFDM symbols, FBMC achieves higher performance than OFDM. It is worth
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mentioning that using FBMC with the assumption of that the subcarrier is introducing

interference to the nearest primary band only will not probably violate the interference

constraints due to the almost negligible interference introduced by the FBMC.

Chapter 4

This chapter considers the resource management problem in uplink scenario. Therefore,

the global power constraint in the downlink case is replacedby multiple per-user power con-

straints. Additionally, the interference to the primary bands is not only induced by one source,

i.e. CBS, as in the case of downlink but it is induced from different SUs. The channel con-

ditions between each SU and the primary bands are different.The consideration of fairness

constraint between the SUs complicates more the problem. Asthe problem is a mixed-integer

optimization problem, efficient low complexity algorithm is proposed. The algorithm performs

the allocation in two sperate steps. The subcarrier to usersallocation is performed first and

followed by the power allocation on the subcarriers. Unlikethe downlink case, allocating the

subcarrier to the user with the best channel condition is notoptimal in uplink. Accordingly, we

developed an algorithm that performing the subcarrier allocation taking into account the differ-

ent constraints. The fairness is considered in the first stepby reducing the outage probability

of having users whose instantaneous rate is below the minimum required rate. After that, the

per-user power is distributed among the subcarriers by modifying thePI-algorithm to fit into

the uplink configuration. The following results are outlined:

• The capacity achieved by the proposed algorithm is near the optimal one evaluated by the

exhaustive search algorithm. Additionally, the proposed algorithm outperforms the algo-

rithms presented in literature. The proposed algorithm reduces the computational com-

plexity fromO
(
N3MN

)
required in the exhaustive search toO (N logN) + O (NM)

whereN is the number of subcarriers andM is the number of SUs.

• By comparing the achieved capacities of the proposed algorithm with and without ap-

plying the fairness constraints and also comparing the outage probability curves of them,

one can notice that although the capacity loss from introducing the fairness constraint is

small, the proposed algorithm with fairness can maintain the fairness between the users

which reveals the excellent overall performance of the proposed algorithm.

• Simulations show that the resource allocation used in the conventional (non-cognitive)
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multicarrier systems is inefficient in the cognitive ones except in the cases when the CR

system is acting similar to the non-cognitive system. This happens when the interference

constraint is high or when the power constraints are low. This is because the available

power is not able to induce interference to the primary bandsmore than the maximum

allowable limit. Additionally, since the number of subcarriers allocated to every SU is

inversely related with the number of SUs, the CR system with few SUs might be close to

the non-cognitive one because less power is allocated to each subcarrier and consequently

small amount of interference is introduced to the primary bands.

Chapter 5

Unlike the previous chapters, this chapter deals with the relayed transmission scenario.

The resource management problem in a dual-hop multi-relay decode-and-forward (DF) mul-

ticarrier based CR system is tackled. The transmission fromthe source to destination is per-

formed in two time slots. The interference introduced to theprimary system at every time slot

should not exceeds the maximum interference temperature limit that can be tolerated by the

primary system. The source can transmit directly to the destination or via relays. If the relayed

transmission is selected, the subcarrier in the source should be paired with another one in the

destination side. This subcarrier pair has to be assigned toone relay exclusively. Therefore,

to decide the transmission way, i.e. direct or relayed, and to find the subcarrier pairs, relay

assignment and power levels, the problem is formulated as anoptimization problem. Although

that the formulated problem is not convex, the problem satisfies the time sharing condition and

hence, the dual decomposition technique is applied to obtain asymptotically optimal solution

with zero duality gap in the limit of having sufficiently large number of subcarriers. By the dual

decomposition technique, the power is evaluated for every possible subcarrier pair and relay

assignment and for the direct transmission as well. Afterwards, the best relay is determined

when the subcarrier is used for the relayed transmission. Eventually, the Hungarian method is

adopted to determine the best transmission way for every subcarrier and to find the final sub-

carrier pairs. The subgradient method is applied to update the dual variables in every iteration.

As the subgradient algorithm requires high numbers of iterations to converge to the optimal

solution, a heuristic suboptimal algorithm is proposed to reduce the complexity. The following

results are outlined

• By applying the dual decomposition technique, the originalmixed-integer problem can
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be solved in polynomial time. The suboptimal algorithm further reduces the the computa-

tional complexity of the dual decomposition scheme and has anear optimal performance

and outperform the algorithm used in the non-cognitive systems. The suboptimal algo-

rithm reduces the complexity fromO (T (MN2 +M(N !) + 2N +N3)) required by the

dual decomposition technique toO(MN +MN2) whereT denotes the number of iter-

ations required to converge,M denotes the number of relays, andN is the number of

subcarriers.

• The capacity of the system which is able to transmit over the direct link is more than that

when the direct link is blocked for all the subcarriers in thesource side. This is expected

since the source has more flexibility to choose the best transmission way.

• A special case of having single-relay is studied. The algorithm used in non-cognitive

systems is adapted to solve the cognitive one. This can be done by assuming that the

power budgets is distributed uniformly on the subcarriers and the subcarriers are able to

induce the same amount of interference. The minimum betweentheses two quantities

is selected and the subcarriers are paired according to the order of multiplication of the

powers and channel gains in the source and the relay. This algorithm has excellent per-

formance compared with the optimal and outperform the case when there is no subcarrier

pairing, i.e. the relay have to forward the information on the same subcarriers used by

the source.

6.2 Future Work

Different CR scenarios has been considered in this dissertation. However, there are still many

open issues to analyze. In the following, some important future research directions are listed

• The work presented in chapter 3 and chapter 4 considers that the primary and secondary

systems are located in the same cell and there is only one CBS.Considering the multi-

cell scenario is a possible future work extension where the subcarrier, powers and users

should be distributed properly between the different BSs. Me et al. in [1] studied the co-

existence between the primary and cognitive networks in multicell orthogonal frequency

division multiple access (OFDMA) systems. Each CBS is assumed to be collocated with
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one primary BS and transmitting in different frequencies (overlay access). Addition-

ally, CR system can use overlapping channels with the neighboring cells. One of the

limitation of this work is that it assumes that the CR can transmit only when the pri-

mary network is operating in the uplink mode. This assumption is used by the authors

to limit the interference constraint to be related only to the primary BS and not to the

users. Although this assumption simplifies the problem, it introduces more limitations

on the time of the spectrum usage. More work should be performed to consider the case

where all/part of the primary BSs are operating in the downlink mode where more careful

resource allocation is required to avoid the interference.This relaxation requires more

deep study on the way of reducing the coordination communications between the nodes.

Additionally, the inter-cell overlay access should consider the out of band interference

to adjacent bands which is not considered by the authors. More recent work has been

presented by Choi et al. in [2] to consider the downlink subchannel and power allocation

in multi-cell OFDMA CR networks. The proposed scheme consists of three different

blocks: 1) fairness block which allocates more resources tothe cell with high data rate

requirements, 2) power allocation block to allocate the powers to different users in such

a way that limited interference is induced to the primary users (PUs), and 3) subchannel

allocation block to distribute the available frequency bands between cells. The authors

assume an exclusive channel allocation, i.e. the channel allocated to one cell is not used

by any of the nearby cells. The PUs use point-to-point communication and the interfer-

ence constraints to them are converted into several maximumtransmit power constraints

for every CBS and subchannel. Extension of this work to consider the uplink scenario

is not trivial. In uplink, the interference induced by everyuser should be considered in

the scheduling process which is different from the downlinkcase where the selection of

users does not affect the interference constraints. Additionally, adaptive frequency reuse

factor might be applied. Specifically, the spectrum can be shared between the cells when

there is no users in the cell edges while exclusive allocation is preferred when severe

inter-cell interference is expected. The door is still openfor developing low complexity

and efficient algorithms in both downlink and uplink scenarios.

• In this dissertation, it is considered that the resource management is performed in a cen-

tralized way. Distributed resource allocation algorithmsis of greet interest. Depending
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on the problem formulation, the distributed algorithms might be derived from the cen-

tralized one as given by [3–5]. In [3, 4], the dual decomposition framework is adopted

to find the centralized solution which gives rise to the realization of the distributed solu-

tions. Limited coordination is assumed between the participating network elements and

the opportunistic scheduling can be performed by using the concept of virtual clock by

which every user estimates its channel information during the sensing slot which is equal

for all the users. Afterwards, a virtual timer starts at the beginning of the scheduling slot.

The timer of the best user on a certain subchannel has the the smallest timer value and

expires first. The user reserves the channel by sending a flag packet to all the users. Al-

ternatively, game theoretic approaches can be used in the design of the algorithms [6–8].

• The assumption of perfect knowledge of CSI as well as the channel occupancy infor-

mation is not realistic. There always exists some uncertainty in this information due to

unreliable feedback channel or due to the sensing errors. The impact of the lack of the

perfect information should be analyzed and appropriate algorithms are required accord-

ingly. The imperfect CSI and sensing information is considered by Ruan et al. in [9]

to find the optimal power allocation in OFDM based CR systems.The extensions of

these results to consider the OFDMA case is a good step forward. In [10] and [11], the

OFDMA based CR system is considered. In [10], the imperfect CSI is considered by ap-

plying a simple back-off scheme. The estimated channel gains are multiplied by a factor

to consider the estimation errors while the interference constraint is multiplied by another

factor to avoid that the actual interference exceeds the threshold value. In [11], Almal-

fouh et al. consider imperfect channel sensing informationby modifying the value of the

interference introduced in the perfect case. The modification is performed by adding a

term represents the average interference that will introduced to the primary system due to

the false alarm probability. The imperfection issue and theway of exchanging the chan-

nel information between the primary system and the CR nodes are still an open problems

and need more investigation.

• In chapter 5, we considered the dual-hop DF scenario. The multiple-hop network is a

natural extension. Additionally, more relaying protocolsmay be studied like the two-

way relaying and the adaptive relaying. In the two-way relaying [12–14], bidirectional

transmission is established between the end nodes where therelay receives from the end
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nodes simultaneously in the first time slot, and broadcast these messages in the second

time slot. This doubles the spectrum efficiency of the one-way relying. In the adaptive

relying [15–17], the relay decides the forwarding technique based on the instantaneous

channel quality and the decoding ability. To the best of our knowledge, there is no

significant work in the resource allocation in multicarrierbased CR system with two-

way relaying or adaptive relying. Eventually, the adaptation of the time slot duration in

CR environment is a possible future work extension.

• The amount of research devoted to OFDM system is not comparable to that devoted

to FBMC system which receives less attention. Although several studies highlights the

powerfulness of the FBMC physical layer in CR environment, alot of effort has to be

performed in order to implement a real FBMC based system. We will keep working on

developing the FBMC techniques and highlighting its advantages in the systems.
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