
On Hardware Implementation of
Discrete-Time Cellular Neural

Networks

Ph.D. thesis

Suleyman Malki

Department of Electrical and Information Technology,
Faculty of Engineering, 2008

© Suleyman Malki, 2008.

Circuits and Systems
Department of Electrical and Information Technology
Lund University
Box 118
S-221 00 Lund, Sweden
http://www.eit.lth.se/
e-mail: suleyman@eit.lth.se, suleyman.malki@gmail.com

ISSN 1654-790X
NR 11

Printed by Tryckeriet i E-huset, Lund 2008.

To my parents
Gabriel and Suad

and my wife
Abeer

i

Abstract

Cellular Neural Networks are characterized by simplicity of operation. The
network consists of a large number of nonlinear processing units; called cells;
that are equally spread in the space. Each cell has a simple function (sequence of
multiply-add followed by a single discrimination) that takes an element of a
topographic map and then interacts with all cells within a specified sphere of
interest through direct connections. Due to their intrinsic parallel computing
power, CNNs have attracted the attention of a wide variety of scientists in, e.g.,
the fields of image and video processing, robotics and higher brain functions.

Simplicity of operation together with the local connectivity gives CNNs
first-hand advantages for tiled VLSI implementations with very high speed and
complexity. The first VLSI implementation has been based on analogue
technology but was small and suffered from parasitic capacitances and
resistances leading to undesired behaviour. Later implementations focus on
larger network and higher level of robustness. Mixed full-custom chips are most
famous and widely considered as a roadmap for advanced realizations. The
digital counter parts have focused on emulating the functionality of the CNN
rather than providing real-time performance. Furthermore, they are totally
dependent on a host PC to function properly. In spite of being less sensitive to
parasitic noise and fabrication artefacts beside providing a quasi-infinite
accuracy, fully digital implementations are, however, still not available. In other
words, the exploitation of a stand-alone fully-digital approach is highly desired,
which this thesis aims to tackle.

Macro enriched Field-Programmable Gate-Arrays (FPGAs) are used to
realize such systems on silicon. At first glance a pipelined approach, based on

ii Abstract

circuit switching, seems promising. Two different approaches are investigated;
Spatial and Temporal, of which the former is to prefer. Later on, in order to
overcome design limitations and thus enhance performance, the benefits of
packet-based switching have been explored. Although circuit switching is still
employed, the enhancement is achieved by adopting the concept of Network-on-
Chip (NoC), where packets are transmitted in a predefined communication
pattern. The choice is between Serialized and Switched broadcasting schemes.
The digital implementation of the Switched broadcasting is performed using
Xilinx Virtex-II Pro P30 and the advantages over the pipelined approach are
discussed by means of clock rate, area utilization and memory considerations. A
serial communication approach shows, however, that network size can be
increased further by a clear decrease in the size of communication interface. The
thesis illustrates the power of the different implementations experimentally. It is
shown how the digital CNN can be used to estimate velocity from images or to
facilitate authentication by means of vein feature extractions. Furthermore, the
issue of robustness is discussed from a different point of view. Here, the limited
accuracy is compensated by gradual adjustment of the operative parameters, i.e.
template coefficients. Finally, the thesis discusses main ingredients in system
architecture to achieve the goal of a stand-alone fully-digital design.

Keywords

Cellular Neural Network, Discrete-Time Cellular Neural Network, Field-

Programmable Gate-Array, Circuit switching, Network on Chip, Serialized
broadcast, Switched broadcast, Velocity measurement, Vein feature extraction,
Image processing.

iii

Contents

Abstract .. i

Preface ... vii

Acknowledgements .. ix

List of Abbreviations ... xi

List of Figures ... xv

List of Tables .. xxiii

Chapter 1

Introduction .. 3

1.1 Why Image Processing? .. 5
1.2 Objectives .. 6
1.3 Thesis Outline .. 9

Chapter 2

Cellular Neural Networks ... 15

2.1 Sphere of Influence (Neighbourhood) ... 16
2.2 Standard CNN Equations ... 17
2.3 Cloning Template .. 20
2.4 Boundary Conditions ... 21
2.5 Discrete-Time CNN ... 23

iv Contents

2.6 Multilayer CNN and Multiple Layer DT-CNN 24
2.7 Analogue Realizations ... 25
2.8 Illustrative Examples ... 28

2.8.1 Isolated Pixel Removal .. 28
2.8.2 Hole Filling .. 29
2.8.3 Hole Extraction .. 32

2.9 Summary .. 32

Chapter 3

Hardware Implementations .. 37

3.1 DSP-based CNN Emulators .. 38
3.2 CNN Universal Machine ... 41
3.3 Full-Custom Mixed-Signal Chips ... 44
3.4 Digital CNN-UM Emulators ... 49
3.5 Summary .. 52

Chapter 4

Unrolling CNN on FPGA .. 57

4.1 Mapping CNN on FPGA ... 59
4.2 Abstract Execution Models ... 61
4.3 In The Footsteps of The Forerunners (Pipelining) 64
4.4 NoC-based Implementations ... 69
4.5 Discussion .. 72

Chapter 5

Stretching The Communication.. 77

5.1 Keeping The Control Local ... 78
5.2 The Nodal Design .. 82
5.3 Boundary Nodes .. 84
5.4 Discussion .. 88

Chapter 6

Memory Considerations .. 93

6.1 Off-Chip and On-Chip Storage ... 94
6.2 Computational Efficiency .. 96
6.3 Moving Away from Slicing ... 101
6.4 Discussion .. 104

Chapter 7

Applications .. 109

7.1 Game of Life .. 110
7.1.1 Implementation .. 111

7.2 Velocity Measurement ... 112
7.2.1 Considerations on the Velocity Estimation Algorithm 114

Contents v

7.2.2 The algorithm in basic CNN operations 116
7.2.3 Verification and Test ... 119

7.3 Vein Feature Extraction ... 121
7.3.1 Image Pre-processing .. 123
7.3.2 Feature Extraction .. 123
7.3.3 Analysis and Verification .. 127
7.3.4 Experimental Set-Up ... 128

7.4 Discussion .. 130

Chapter 8

Template Optimization .. 137

8.1 Design of Robust Templates ... 138
8.2 Chip-Independent Template Optimization 142

8.2.1 Discrete-time implementations ... 142
8.2.2 Continuous-time implementations .. 143

8.3 Chip-Specific Template Design .. 144
8.3.1 LMS-based approach ... 144
8.3.2 ASA-based approach ... 147

8.4 Optimization of Digtial Implementations 148
8.5 Influence of Boundary Conditions .. 152
8.6 Extended Template Optimization Algorithm 153
8.7 Discussion .. 155

Chapter 9

System Architecture ... 165

9.1 Design Automation .. 166
9.2 Architectural Overview ... 168
9.3 System Components .. 170

9.3.1 Host Interface Unit (HIU) ... 170
9.3.2 Image Management Unit (IMU) ... 171
9.3.3 Control Unit (CU) .. 171

9.4 Discussion .. 172

Chapter 10

Further Considerations ... 177

10.1 Discussion .. 182

Appendix A ... 185

Bibliography .. 191

vii

Preface

This thesis aims on presenting the results of my research at the Department
of Electrical and Information Technology at Lund University. The different
parts of the material have been published in the publications listed below.
References to the publications throughout the thesis are made using numbering
convention adopted in the list.

[I] S. Malki. “Discrete-Time Cellular Neural Networks Implemented on

Field-Programmable Gate-Arrays to Build a Virtual Sensor System.” Lic.
Thesis, Lund University, Lund, ISBN 91-7167-040-8, 2006, 98 pages.

[II] S. Malki, G. Deepak, V. Mohanna, M. Ringhofer and L. Spaanenburg.
“Velocity Measurement by a Vision Sensor,” in Proc. IEEE
International Conference on Computational Intelligence for
Measurement Systems and Applications (CIMSA’06), La Coruna, Spain,
2006, pp.135-140.1

[III] S. Malki, Y. Fuqiang and L. Spaanenburg. “Vein Feature Extraction
Using DT-CNNs,” in Proc. 10th International Workshop on Cellular
Neural Networks and Their Applications (CNNA’06), Istanbul, Turkey,
2006, pp. 307-312.

1 Best Student Paper Award

viii Preface

[IV] S. Malki and L. Spaanenburg. “Efficiency Considerations for DT-CNN
Hardware,” in Proc. IEEE Northeast Workshop on Circuits and Systems
(NEWCAS’07), Montréal, Canada, 2007, pp. 1038-1041.

[V] S. Malki and L. Spaanenburg. “Design Space Exploration for a DT-
CNN,” in Proc. 11th International Workshop on Cellular Neural
Networks and Their Applications (CNNA’08), Santiago de Compostela,
Spain, ISBN 978-1-4244-2090-2, Jul. 2008, pp. 69 -74.

[VI] S. Malki and L. Spaanenburg. “A DT-CNN Data-flow Implementation,”
in Proc. 11th International Workshop on Cellular Neural Networks and
Their Applications (CNNA’08), Santiago de Compostela, Spain, ISBN
978-1-4244-2090-2, Jul. 2008, pp. 17 - 22.

[VII] S. Malki and L. Spaanenburg. “Soft DT-CNN core implementations,” in
Proc. 15th IEEE International Conference on Electronics, Circuits, and
Systems, (ICECS 2008), ISBN 978-1-4244-2182-4, Aug. 2008, pp. 1183
– 1186.

[VIII] S. Malki and L. Spaanenburg. “Design Space Exploration for the
integrated digital CNN camera,” in Proc. 1st Int. Conference on
Information Technology (IT2008), Gdansk, Poland, 2008, pp. 107-110.

[IX] S. Malki and L. Spaanenburg. “A CNN-Specific Integrated Processor.”
under review, EUROSIP Journal on Advances in Signal Processing,
2008.2

[X] S. Malki and L. Spaanenburg. “Algorithmic optimization of CNN
computational hardware.” under review, Journal of Embedded
Computing, IOS Press.

2 This paper is invited for submission in the special issue of the stated journal. The

paper is composed of publications [V] and [VI].

ix

Acknowledgements

First and foremost, my gratitude goes to my supervisor Lambert
Spaanenburg, not only because of his efforts in guiding me but even for being
understanding and patient. It is through his knowledge and kindness I stand at
this stage of my research.

Further, I wish to express my appreciation to the many students of VLSI
courses that, in different ways, helped to carry out the research work presented
in this thesis.

I would also like to express my gratitude to staff and colleagues from the
Department of Electrical and Information Technology, especially Koraljka
Golub for being such a good and supporting friend.

My parents Gabriel and Suad, your have always supported and helped me,
in different and creative ways, to have my dreams come true. Without your love,
care, understanding and belief in me throughout the years, I would never be able
to overcome the hindrances in my way.

Great parents cannot give you less than wonderful brothers. Thank you, Jan
and Michael, for your support and love throughout my life. I’m also thankful for
your families, Maria & Nicole, and Iman & Gabriel, for being around and
bringing joy to our gatherings.

My mother in law, Samira, thank you for all the preyers, they certainly
helped! Haneen, thanks for filling the atmosphere with joy when you visit us.
Mousa and Majed, I found two new brouthers in you.

Special thank to all my friends who helped to make my time in Lund as
master student and researcher enjoyable. I mention with great gratitude Ahmad,

x Acknowledgements

Duja, Abeer, Nabaz, Faten, Hafez, Malek, Rola, Khalil, Enas, Majed, Chafik,
and Esma.

Finally, there are no words that can express my gratitude to the woman of
my life, Abeer, for her continuous encouragement, understanding and belief in
me, and for her endless love.

Lund September 22, 2008,
Suleyman Malki

xi

List of Abbreviations

ACE Analogic CNN Emulator Engine
APR Analogue Program Register
ASIC Application-Specific Integrated Circuit
BRAM Block Select RAM
CLB Configurable Logic Block
CMOS Complementary Metal Oxide Semiconductor
CNN Cellular Neural Network
CNN-HAC CNN Hardware Accelerator
CNN-UC CNN Universal Chip
CNN-UM CNN Universal Machine
CPA Cellular Processor Array
CT-CNN Continuous-Time CNN
CU Control Unit
DDR Double Data Rate
DMA Direct Memory Access
DRAM Dynamic Random Access Memory
DSP Digital Signal Processor
DT-CNN Discrete-Time CNN
ECAD Electronic computer-aided design

xii List of Abbreviations

FIFO First-In First-Out
FPGA Field-Programmable Gate-Array
FSR Full Signal Range
GACU Global analogic control unit
GAPU Global Analogic Programming Unit
HIB Host Interface Bus
HIU Host Interface Unit
ILP Instruction Level Parallelsim
IMB Image Memory Bus
IMU Image Management Unit
IOMMU Input/Output Memory Management Unit
ISA Instruction Set Architecture
ISU Instruction Store Unit
LAM Local Analogue Memory
LAOU Local Analogue Output Unit
LCCU Local Communication and Control Unit
LED Light-emitting diod
LLM Local Logic Memory
LLU Local Logic Unit
LPR Logic Program Register
LUT Look-up table
MAC Multiply-Accumulate
MOS Metal Oxide Semiconductor
NI Network Interface
NoC Network on Chip
OoI Object of Interest
PAL Phase Alternating Line
PC Personal Computer
PCI Peripheral Component Interconnect
PE Processing Element
RAM Random Access Memory
RISC Reduced Instruction Set Computing
RoI Region of Interest
SCR Switch Configuration Register
SCSI Smaller Computer System Interface
SDRAM Synchronous Dynamic Random Access Memory
SIMD Single Instruction Multiple Data

List of Abbreviations xiii

SoC System on Chip
SPE Synergetic Processor Entity
SRAM Static Random Access Memory
VHDL Very high-speed integrated circuit Hardware Description

Language
VLIW Very Long Instruction Word

xv

List of Figures

Figure 1.1 The vertical lines are actually parallel but appear to diverge. 6
Figure 1.2 Efficiency versus performance of different implementation platforms

 [6] 8
Figure 2.1 Cellular neural networks with different dimensions, where the globes

represent cells and the links represent direct coupling. Far from all
interconnections are seen in the 3-dimensional case (left). In the 2-
dimensional finite-size case (right) each cell C(i,j) is indexed according to
row i and column j. .. 16

Figure 2.2 Different r-neighbourhoods for the centre cell (black circle). To avoid
clutter all interconnections are dropped. ... 17

Figure 2.3 Sigmoid function (a) and piece-wise linear function (b). 18
Figure 2.4 Band structure of matrices and 19 .. .
Figure 2.5 When ݎ ൌ 1, boundary cells coincide with edge cells (a) but for

ݎ 1 boundary cells (light grey) are not located on the edges only (b). ... 22
Figure 2.6 In periodic boundary condition the CNN is joined onto itself. 22
Figure 2.7 A schematic diagram illustrating a DT-CNN cell. The data comes in

over the ݀ݑ input and is modified through the control template ࣜ, while the
interaction with the neighbouring cells is gathered through the ݀ݕinput and
modified through the feedback template ࣛ. All modified input values are
summed and discriminated after application of the bias i. 24

Figure 2.8 Basic interconnection modes for multiple layer DT-CNNs as
presented in [40]. (a) input cascade (b) output cascade (c) feedback loop
and (d) parallel. A more complex mode, parallel cascade, is presented in
(e).. 26

xvi List of Figures

Figure 2.9 A schematic view of the standard CT-CNN cell. 26
Figure 2.10 An analogue realization of a DT-CNN cell. The iterations are

substituted by discrete-time instances ݇ܶ and the variables ܿݑ, ሺ݇ܶሻ andܿݔ
,ܿݑݒ ሺ݇ܶሻ by voltagesܿݕ respectively. ܶis the duration ܶ݇ܿݕݒ ሺ݇ܶሻ andܿݔݒ
of one clock cycle. ... 28

Figure 2.11 Properties of Isolated Pixel Removal applied on a centre cell with 1-
neighbourhood. Grey-coloured squares represent don’t-care pixels. The 4-
isolated black pixel becomes white in (b), while in all other cases the
presence of at least one black orthogonal neighbour helps the centre pixel
to remain black. .. 29

Figure 2.12 A number of holes with different sizes in (a) (b) and (c), while the
absence of one black pixel makes a hole incomplete in (d) and (e). 30

Figure 2.13 Given an input image ݑ, the process of hole filling is initialized with
a black output ݕሺ0ሻ and ends up, after five iterations, with filled holes in
 ሺ5ሻ. ... 31ݕ

Figure 2.14 Different state values of the fixed boundary condition force the
white wave to propagate differently. ... 32

Figure 2.15 Resulting output after applying the operation of hole extraction on
the input image of Figure 2.13. .. 33

Figure 2.16 Dark gray cells along with the black cell constitute the 1-
neighborhood, while adding light gray cells build the 2-neighborhood. The
arrows represent the dual communication lines. ... 34

Figure 3.1 The architecture of the ACE board (a) and a single DSP with
corresponding storage and control units (b). ... 40

Figure 3.2 Local logic memory cells are combined using a local logic unit
(LLU). The B/U converter converts a bipolar analogue signal into a
unipolar signal. The small black square connected to the LLU indicates
instruction path from a global controller. .. 42

Figure 3.3 The analogue part of the extended cell. Dashed lines show the
possible paths that are controlled by switches (not shown here) whose
configuration is coded in LCCU. ... 43

Figure 3.4 The tuning D/A interface is located at the periphery of the cell array.
It uses the digital weights wd to generate the corresponding analogue
weights wa that are brought into each cell in the array using global routing
channels. ... 45

Figure 3.5 A conceptual architecture of ACE16k. .. 47
Figure 3.6 Left: a schematic view of the processing unit in CASTLE, where

dashed lines represent control signals and continuous lines shows data path.
Right: the belt of pixels stored on chip for 1-neighborhood where the black
square indicates the current position of the convolution operation. 50

Figure 3.7 The arithmetic unit in CASTLE ... 51
Figure 3.8 The amount of allocated logic for each of the blocks relative to the

entire size of a single PE. Putting together the bars representing state
values, constant values and template selection gives the total area of
register arrays. .. 51

List of Figures xvii

Figure 4.1 The configuration of a Virtex-II 6000 (left) and Virtex-II Pro P30
(right) from Xilinx. Grey columns represent bundling logic in form of
CLBs, while the vertical boxes represent pairs of multiplier and BRAM
macros. The placement of PowerPCs disturbs the matrix-style in the Pro
P30 device. ... 60

Figure 4.2 Mapping a CNN cell on FPGA primitives. Vertical arrows show
possible data flow among different functional blocks/ FPGA primitives. . 60

Figure 4.3 Consumer (a) and producer (b) cell to node mapping. 62
Figure 4.4 Value routing in the consumer node by multiplexing in space (a) and

in time (b). .. 62
Figure 4.5 Another value routing in the consumer node by multiplexing in space

(a) and in time (b). ... 63
Figure 4.6 Different adder trees to obtain the state of the producer node 64
Figure 4.7 Dimensionality of DT-CNN image processing. 65
Figure 4.8 Data dependencies for a pipeline in a naive temporal state-flow

architecture. Only the pipeline corresponding for the middle node is shown.
White boxes represent functional blocks; consisting of a multiplier and an
adder, while grey boxes represent registers. The middle node corresponds
to a pixel sequence B. For sequences A and C, functional blocks are
dropped for clarity. Identical architecture is used to calculate the
contribution of pixel inputs. ... 66

Figure 4.9 Mixed spatial-temporal state-flow architecture operating directly on
the pixel pipeline. ... 67

Figure 4.10 Numbering of CNN cells (b), lexicographically ordered pixels (a)
and in combination (c). .. 68

Figure 4.11 Snapshot of data flow between consecutive columns in ILVA. The
design consists of six columns corresponding to one initial stage and five
subsequent iterations. The notation of inputs u, outputs y and intermediate
constants const follows the lexicographical ordering presented in Figure
 4.10. The data flows from a node in a certain stage to a node, allocated in
the same row, in the successor iteration stage. Arrows between two
columns illustrate data flow originating from all nodes in a column. 68

Figure 4.12 Packet transfer scheme in a 2-neighbourhood. A packet, originating
in the middle cell in the left iteration column, is transmitted to all cells
within the neighbourhood in the right iteration column. 70

Figure 4.13 Switched broadcasting schemes: word-serial (a) and word-parallel
(b). Nodes are activated at knight-jump distance in word-parallel
broadcasting (c). ... 71

Figure 4.14 A node communicates with the neighbourhood through four
switches. ... 71

Figure 4.15 The state-scan architecture uses a network of CNN nodes with a
Network-on-Chip, while the pixels are transported over a distributed FIFO.
 .. 72

Figure 4.16 Caballero nodes are divided into active and non-active nodes in
accordance with the knight-jump distance. Each activation group consists
of 5 nodes that are activated in sequence A-B-C-D-E-A. 73

xviii List of Figures

Figure 4.17 Distribution time for 2-neighbourhood in KJL (a) and SSL (b) 74
Figure 5.1 Switched broadcasting schemes: Semi-parallel (a) and Serial (b). ... 78
Figure 5.2 Address space of the nodal template memory 79
Figure 5.3 A FIFO packet is divided into 5 fields of different widths. V,T and S

stand for VALID, TYPE and SUBTYPE respectively. 80
Figure 5.4 A schematic view of the serial CNN node. 82
Figure 5.5 The nodal controller is built as a simple FSM. The ITERATE state

tself consists i of a number of states. ... 83
Figure 5.6 A schematic view of the nodal processor. ... 83
Figure 5.7 A schematic view of the nodal discriminator 83
Figure 5.8 Boundary nodes have an incomplete communication cycle (from step

1 to 8). Squares represent nodes while the dotted lines show which part of
the packet path is missing. The receiveing node is shaded. 84

Figure 5.9 Boundary nodes located at the corners suffer more of the incomplete
communication pattern. ... 85

Figure 5.10 Broadcasting scheme of close-to-boundary nodes is incomplete
(left), but the situation is salvaged by adding a single layer of virtual nodes
(right). Virtual nodes are shown as circles. .. 86

Figure 5.11 One layer of virtual nodes does not complete the broadcasting
scheme of top boundary nodes. ... 87

Figure 5.12 Swing broadcasting allows distributing of boundary conditions in
two steps clock-wise (a) and anti-clock wise (c). For proper functionality
on the duplex lines a separating idle step is introduced (b). 88

Figure 5.13 Area utilization per node compared to state-flow and state-scan
architectures shows that nodal interface is kept at minimum which
improves the overall logic utilization. ... 89

Figure 5.14 Area utilization of the different components with serial broadcasting
scheme. ... 89

Figure 5.15 Semi-global control requires one controller per group of nodes. 90
Figure 6.1 Data fetch time versus memory bandwidths. 95
Figure 6.2 Data fetch time as function of the number of CNN rows when DDR-

200 is used. The time increases linearly with the number of columns in
Caballero while it is independent of pipeline depth in ILVA. 100

Figure 6.3 Frame execution time for ILVA with different CNN sizes, when
slicing is required. The legends, 6 to 10, represent the number of pipelines,
i.e. the number of columns in the design. .. 100

Figure 6.4 Frame execution time for Caballero with different CNN sizes, when
slicing is required. .. 101

Figure 6.5 Frame execution time of Caballero is reduced when all the iterations
are performed on a slice before next slice is brought in! 102

Figure 6.6 Frame execution time using DDR-266. ... 103
Figure 6.7 Task execution time for different SDRAMs according to Eq. (6.22).

 .. 104
Figure 6.8 Task execution time with reduced data fetch. Compared to Figure

 6.7, time reduction is obvious for larger networks. 105

List of Figures xix

Figure 7.1 A Game of Life that never stops. A black cell is alive and turns white
when it dies. ... 110

Figure 7.2 A schematic view of final design testing. .. 112
Figure 7.3 Reading the text from the E-building at Faculty of Engineering

(LTH), Lund University (Sweden). ... 113
Figure 7.4 After edge detection on an image of Lund Railway Station, the text

on the moving train can still not be read. .. 113
Figure 7.5 A schematic view of the design. Arrows represent data transmission

between few units, but far from all data lines are shown in the figure. 114
Figure 7.6 Mapping of the image on the pixel map. ... 115
Figure 7.7 Pixel displacement versus observation distance for several object

velocities. ... 116
Figure 7.8 Template flow diagram in velocity measurement approach. 118
Figure 7.9 Measuring the displacement of an object moving from right to left in

the scenery. Displacement (shown in (c)) of the moving object is the
difference between the black boxes in (a) and (b). 119

Figure 7.10 First two frames (f1 and f2) of the video sequence after applying the
averaging template for a number of iterations. ... 120

Figure 7.11 (a) Resulting image of | f1 - f2 |. Darkest pixels are observed where
the two frames differ as most. (b) Intermediate result after skeletonization,
where the isolated pixels can easily be noticed. .. 120

Figure 7.12 Applying the template of IPR removes all isolated pixels (a).
Procedure of segmentation is completed once the binary mask is created
(b). .. 120

Figure 7.13 The intermediate results of all steps as obtained from the post place
and route simulation. .. 121

Figure 7.14 Typical biometric patterns; (a) fingerprint, (b) hand vein [97] and
(c) human retinal angiograph [98]. .. 122

Figure 7.15 Image Pre-processing. .. 123
Figure 7.16 Vein features: endings and bifurcations ... 123
Figure 7.17 Bifurcation detection may give rise to false features. 124
Figure 7.18 Block diagram of the vein feature extraction. 124
Figure 7.19 Different types of Junction Points: regular bifurcation (a), T-form

(b) and Corner-form (c) ... 125
Figure 7.20 Bifurcation detection uses three different templates in addition to a

Logic OR operation .. 125
Figure 7.21 Operations involved in False Feature Elimination. Number of

iterations, n/2, depends on the distance, n, between two false features. ... 127
Figure 7.22 Original image containing vein pattern (a) and a black and white

image after binarization (b). .. 127
Figure 7.23 Result of skeletonization (a) and Isolated Pixel Removal (b) 128
Figure 7.24 Endings (a) and bifurcations (b). ... 128
Figure 7.25 Adding the images with ending and bifurcation points by applying

the operation of Logical OR (a) before eliminating the false features (b).
Reconstruction of endings (c) and bifurcations (d). 129

Figure 7.26 FPGA test set-up .. 129

xx List of Figures

Figure 7.27 Separation between blobs due to different speeds: “slow” object in
(a) and a “fast” one in (b). The arrows indicate the direction of the
movement. .. 131

Figure 7.28 Extended algorithm for handling fast moving objects. The direction
of movement is from right to left... 132

Figure 7.29 A certain order of skeletonization templates applied on (a), results in
a false feature (b) instead of the real one (c). .. 132

Figure 7.30 The non-crossing veins (marked with circle) give rise to false
bifurcation in the 2-dimesional image. .. 133

Figure 8.1 Flowchart of the design steps of coupled templates. The dashed box
marks the steps of uncoupled templates [63]. ... 140

Figure 8.2 Graphical example of the Solution of the Relation System step. Here,
only two free parameters, b and i, are involved. The arrows indicate in
which half of the space a relation (the line) are satisfied [63]. 141

Figure 8.3 The nominal template is the origin of a circle containing all real
templates. Dashed lines mark the technical limitation of the employed
analogue CNN chip. ... 142

Figure 8.4 Template optimization set-up [69]. .. 146
Figure 8.5 Block diagram of fault-tolerant template decomposition [69]. 146
Figure 8.6 Block diagram of a single DT-CNN cell. The numbers represent the

width of each line in a 1-neighborhood digital implementation. 149
Figure 8.7 Input image used in template optimization algorithm. 149
Figure 8.8 Template optimization through truncation. 151
Figure 8.9 The number of robust templates remains unchanged at the beginning

of the descending approach before it decreases strongly at then end. In the
ascending approach, the number of robust templates is already very low
and decreases slightly until it reaches the same value as for the descending
approach. .. 152

Figure 8.10 Software model of template optimization approach, where only
most important classes and functions are shown. Dashed ellipses indicate
MATLABs own functions. The function compConst computes the constant
corresponding to control and offset contribution as stated in section 4.2,
while compY computes the feedback contribution. 154

Figure 8.11 Structure of the modified Caballero node. Communication interface
and nodal controller are not shown. .. 154

Figure 8.12 The inter-nodal communication is modified to allow the usage of
two multipliers. Two values are received /submitted simultaneously. 155

Figure 8.13 Number of robust templates for different boundary conditions in the
ascending approach. No robust templates are obtained for boundary values
in the range [0.6, +1] for all precisions. .. 156

Figure 8.14 Number of robust template for different boundary conditions in the
descending optimization approach. No robust templates are obtained for
boundary values in the range [0.6, +1] for all precisions. 157

Figure 8.15 A 3-D view of the outcome of the descending approach. First line of
columns represents obtained robust templates for each boundary condition
on the final optimization step. ... 158

List of Figures xxi

Figure 8.16 A 3-D view of the outcome of the ascending approach. . First line of
columns represents obtained robust templates for each boundary condition
on the final optimization step. ... 158

Figure 8.17 Iteration count of robust templates obtained in the descending
approach (top) and the ascending approach (bottom) for boundary
condition -0.1. Other conditions show a similar behaviour. Note that the
horizontal axis is flipped to emphasize the direction of optimization. 159

Figure 8.18 Complete overlapping of sets of robust templates is found from
boundary condition -1 down to -0.1 (left) while positive boundary
conditions give rise to a different situation (right). 161

Figure 9.1 Moving from algorithm to hardware. .. 167
Figure 9.2 External View of the CNN Architecture .. 168
Figure 9.3 The HIU consists of two FIFOs for communication with the host,

IOMMU for address translation and a bus master to communicate with
other units in the system. ... 170

Figure 9.4 A host request is subdivided into flag, address and data fields. 170
Figure 9.5 Area Utilization for HIU and two of the sub-components. 171
Figure 9.6 Control Unit schematic view. ... 172
Figure 9.7 Memory address space as used by the control unit. 172
Figure 9.8 Area utilization for the Control Unit and the sub-components

Instruction Fetch and Instruction Decoder. ... 173
Figure 9.9 Precision versus accuracy .. 174
Figure 10.1 A serial architecture for bit-serial communication. Variables v and

w represent the width of u/y-values the width of template coefficients
respectively. ... 179

Figure 10.2 Series/parallel architecture for bit-serial communication. Variables
v and w represent the width of u/y-values the width of template coefficients
respectively. ... 180

Figure 10.3 The 4-dimentional design space spectrum {V, I, N, D} of CNN
architectures. The Time-multiplexed architecture employs the bit-serial
technique. ... 181

Figure 10.4 Design trade-offs in digital CNN implementations without
(hollowed shapes) and with inter-nodal communication overhead in form
of Network Interface (filled shapes). ... 181

Figure 10.5 Area utilization for different neighbourhoods. 182

xxiii

List of Tables

Table 3.1 The main components in the extended CNN-UM cell. 42
Table 3.2 Comparison of mixed-signal full-custom CNN universal chips. All

chips use a modified CNN model, i.e. the FSR model. 48
Table 4.1 Comparison of the two state-flow architectures. Logic counts are

obtained after synthesis with Synplify, while throughput is obtained by
simulating the designs using ModelSim. In ILVA, different depths (i.e.
number of rows) yield different throughputs. ... 73

Table 5.1 Semi-parallel broadcasting scheme ... 78
Table 5.2 Serial broadcasting scheme ... 79
Table 5.3 Additional actions in boundary nodes remove the need of virtual

nodes. .. 87
Table 6.1 DDR/DDR2 SDRAM JEDEC standards [91] 94
Table 6.2 The actual number of rows in ILVA as a function of the number of

pipelines and number of columns in Caballero. Parameter r represents the
total number of rows in Caballero. .. 99

Table 7.1 ‘Truth table’ for the game of life where all values follow the binary
representation. .. 111

Table 7.2 Different skeletonization templates corresponding to the direction of
“peeling”. ... 117

Table 7.3 A comparison of the Gaussian model and the CNN-based approach
when applied on a human retinal image. FFE stands for False Feature
Extraction. .. 134

Table 8.1 Feedback matrix ऋ in coupled and uncoupled CNN templates. 139

xxiv List of Tables

Table 8.2 Range of template values in the gm-C implementation of the CNN-UM
 [68]. .. 142

Table 8.3 Typical data representation of a digital DT-CNN. The notation <n:m>
means that the number consists of n-bits integer part and m-bits fractional
part. ... 149

Table 8.4 Hole filling template. ... 150
Table 8.5 Tuning ranges for the Hole filling template. 150
Table A.1 Number of robust templates obtained for each boundary condition

and precision level in the ascending approach. Boundary values [0.4, 1.0]
are omitted as they do not result in any robust template 186

Table A.2 Number of robust templates obtained for each boundary condition
and precision level in the descending approach. Boundary values [0.4, 1.0]
are omitted as they do not result in any robust template. 187

Table A.3 ܵ݅ ݆ܵ in the ascending approache for precision <5:11> where
݅, ݆ א ሼെ1, 0.4ሽ. Same results are obtained for the descending approach
with precision <5:2>. ... 188

Table A.4 ܵ݅ ת ݆ܵ in the ascending approache for precision <5:11> where
݅, ݆ א ሼെ1, 0.4ሽ. Same results are obtained for the descending approach
with precision <5:2>. ... 189

Table A.5 ܵ݅ ᇞ ݆ܵ in the ascending approache for precision <5:11> where
݅, ݆ א ሼെ1, 0.4ሽ. Same results are obtained for the descending approach
with precision <5:2>. ... 190

Chapter 1

3

Introduction

lthough different aspects of computational complexity have given rise
to different complex computer architectures, the concept of scientific

computing has not changed during the last 50-60 years. A computer is still built
as a Turing machine with stored programmability, i.e. with the algorithm as the
underlying mechanism [40]. When Alan Turing introduced his abstract machine
in 1936 it was meant to consist of a tape of symbols from a finite alphabet, a
header to read/write the symbols, a state register and finally an action table that
tells the machine what to do next. About ten years later, the foundation that has
been established by Turing is adopted in von Neumann’s computer architecture.
In general, a von Neumann machine stores both the program and the data in a
memory that can be unified as in a Princeton architecture or separate as in a
Harvard architecture. A control unit features a program counter and keeps track
of how instructions are executed on the arithmetic and logic units. The program
is executed sequentially in line with human thinking, which is the main reason
for von Neumann machine to gain worldwide acceptance and to quickly become
the fundament of future digital computing devices [2].

Being sequential, architectures based on von Neumann machine are
characterized by low utilization of the computational components. As the
execution of each instruction is divided into a number of stages, only those
components belonging to the current stage are active while all other units in the
architecture remain idle! This is partially remedied in Harvard architectures by
introducing the concept of instruction level parallelism (ILP), where the
different stages are combined into a single pipeline. The maximum throughput

A

4 Chapter 1 Introduction

is, however, still dictated by the impact of hazards in the computation due to
memory access conflicts [81].

Actually, nowadays engineering tasks are characterized by the high
complexity of the underlying algorithms. Here, large amounts of information are
handled in real-time and therefore require a ’close to perfect’ memory
management. In order to achieve that, a number of enhancement techniques
have seen the daylight, where both hardware and software approaches have been
tested. The focus of hardware developers have been on filling the performance
gap between processor and memory which still dominates classical computer
architectures [81]. Through intense utilization of the pipelining technique and
advances in micro-electronic fabrication technology, the speed of processors has
increased far more than the speed of semiconductor memory. This has caused
the Reduced Instruction-Set Architecture (RISC) to reduce the amount of
memory access per instruction and caching to raise virtual memory
performance. Still the execution of data-intensive algorithms suffered and new
architectures for image processing have been proposed [85]. Moreover, most
algorithms overcome the intrinsic complexity of a certain problem through
parallel execution of sub-operations, which opens for actual real-time
performance. In light of the performance that software high-level languages
provide, especially in real time applications, specialised hardware architectures
are unavoidable.

The popularity of Digital Signal Processors (DSPs) illustrates the need for
domain-specific processors with reduced memory access. Here, the data path is
tailored for an optimal execution of a common set of repetitive and numerically
intensive operations. However, DSPs still incorporate the von Neumann
approach and remain, thus, sequential machines [2]. Consequently, moving
toward parallel computing has become a dominant approach in computer
architecture, mainly in the form of multi-core processors such as IBMs Cell [3].
Like all other coarse-grain parallel processing systems, such architectures come,
however, with a large and complex instruction set [4]. Apparently, an increased
granularity level will help to reduce the complexity. Beside, it is well-known
that the smaller the granularity, the greater the potential for parallelism and
hence speed-up. Cellular processor arrays (CPAs), that implement data
processing at a fine-grain level of parallelism, are often comprised of simpler
processors, with specific computational ability [4]. In one of the popular
paradigms, Single Instruction Multiple Data (SIMD), each processor executes
the same instruction, but operates on data residing in local memories [4].
Locality of storage removes most data hazards that are usually connected to
access of common memories. This is preferable as most CPA architectures find
application in the field of image processing and are usually considered as
“vision chips”. Here, low-level image processing tasks are executed on a
processor-per-pixel arrangement. The intrinsic pixel-parallelism is inherited
which enables real-time processing speeds without wasting any resources on
long-distance transfers [5]. Together with the relaxed I/O demands comes the
reduction in size, cost and power dissipation. It is reported that the power
consumption is several orders of magnitude lower than for an equivalently

 1.1 Why Image Processing? 5

performing sequential system [4]. Due to the clear benefits, the analogue SIMD
approach is incorporated in many vision chips, such as ACE16k [28]. What
makes this chip interesting in our case is that it combines SIMD with the
paradigm of Cellular Neural Network (CNN) [7]. The ACE16K has been
introduced as the most promising vision chip that implements a CNN as parallel
computing core.

This thesis focuses on the implementation of CNNs on hardware. But before
digging deeper into technical details, section 1.1 explains the importance of
image processing as a target for many CPAs in general and CNNs in particular.
Subsequently, the objectives of the thesis are presented in section 1.2 where the
concept of Cellular Neural Networks is briefly introduced. The choice of
realization platform is discussed as well. Finally, the chapter is closed with
outlining this thesis in section 1.3.

1.1 WHY IMAGE PROCESSING?
The focus of CPA architectures on image processing tasks is well-founded. One
of the features distinguishing humans from other creatures is the dependence on
our vision as main source of acquiring information. Indeed, vision is our most
important sense as we rely on it for more than 99% of the information about our
surrounding [1]. In contrast to a wide range of animals, humans have, apart from
eyes, poorly developed sense organs. Consequently, it’s not surprising that
scientific instruments commonly communicate their results to the user by
producing images, rather than generating audible tones or emitting smells. Even
waves beyond the visible portion of the electromagnetic spectrum are presented
visually, usually displayed with false colours to emphasise suitable variations in
signal brightness [1].

Computer-based image processing applications usually apply algorithms
based on human vision methods, but are not confined to it. Important
differences between human vision and imaging devices implies considering
other methods. The ability of a human judging colour or brightness of features
within images depends on the possibility of comparing adjacent details.
Furthermore, humans deal with images as a whole, rather than by breaking them
down to constituent parts, which usually gives rise to many visual illusion
phenomena, e.g. parallel lines appear to diverge if they cross different sets of
parallel lines with different gradients (Figure 1.1). Hence, grouping parts within
images is central to our understanding of images [1].

Each image can be considered as a container of signals that change value
over time. These signals, seen as conveyors of data, are nothing else than all
pixels constituting the image. Consequently, understanding the meaning of an
image requires a mechanism for retrieving knowledge from the pixels within the
image. A good example is in the on-line quality control of production streets.
Here, we find high-end cameras with off-line high-performance computers to
detect defects in the production and diagnose the probable cause. The challenge
is to replace these by large amounts of cheap, virtual sensors [58] that can
capture images but also feed back knowledge about the imaged situation; this

6 Chapter 1 Introduction

should lower the cost of inspection, improve the quality of production and
provide reliable support. The advent of such vision sensors is made possible by
the rapid decrease in price and size of the camera and the ongoing increase in
performance and capacity of modern microelectronics. A vision sensor is based
on the standard camera but extended with intelligent hardware and software to
alleviate the communication demands that originate from full image transfer to a
central computing service. Typical examples are (a) the remote temperature
sensor that finds the flame within an image and checks colour, size and
movement to quantify the burning conditions, (b) the microphonic imager to
locate and analyse sound sources, and (c) the intelligent pen, that produces the
equivalent character string.

Figure 1.1 The vertical lines are actually parallel but appear to diverge.

Current applications range from velocity measurement to product inspection
and are based on software personalization of Commercially-of-the-shelf (COTS)
microprocessors. A migration toward vision sensors on basis of dedicated
hardware is already established. The Xetal processor from Philips Research
Laboratories [105] is a clear example. As the focus is on the Region of Interest
(ROI), there is a natural clustering of data dependencies that can be utilized by
introducing local operations on the locally stored ensemble of data. Very Long
Instruction Word (VLIW) architectures are implemented to achieve the desired
utilization, but other approaches are still demanded. In coming is, e.g., the Eye-
RIS vision sensor [106] that employs a bio-inspired architecture where image
acquistion and the fully parallel processing are combined. The key component
of the Eye-RIS vision system is the retina-like front-end, which is a continuation
from predecessing CNN-based chips, e.g. ACE4k [27] and ACE16k [28].

1.2 OBJECTIVES
In line with the previous section, it is not surprising that most experimental
CNN systems have been proposed in image processing, in spite of the general
nature of the CNN paradigm. CNNs have been introduced as a novel class of
information-processing systems for solving complex real-time problems in
space, like partial differential equations (PDEs). Due to their inherent potential,
CNNs have attracted the attention of a wide variety of scientists. Over the years,
the concept of CNN has shown to be multi-disciplinary: it has found application
in robotics, bio-inspired vision issues and higher brain functions in addition to

 1.2 Objectives 7

image and video processing. Further, CNNs have been used to generate static
and dynamic patterns, autowaves and spiral waves [11].

The paradigm is built on reformulating of many complex computational
problems into well-defined tasks characterized by the fact that the information
necessary to compute the solution at a certain point in space is within finite
distance to that point. A CNN is made of a regular geometric 2-D or 3-D grid of
cells that are connected locally.

After the introduction of the CNN model by Chua and Yang in 1988,
different considerations for cell complexity, cell dynamics and network
topology have led to the emergence of different generalized models. The reason
has been to enhance both the capability and efficiency of the original CNN
model. A list of the most common models includes: (a) Nonlinear CNNs where
template coefficients are nonlinear functions and (b) Delay-type CNNs where
cell dynamics are dependent on previous input/output pairs [15]. In order to
reflect features found in neurobiological structures, Non-uniform CNNs with
more than one type of cell and Multiple Neighbourhood Size CNNs have been
studied [11]. Of all generalizations, this thesis focuses on employment and
implementation of Discrete-Time CNNs (DT-CNNs) only [39], [41]. These
different models have delivered a sound basis for the design of algorithm-
specific analogue implementations. Even the discrete-time version has been
introduced as analogue realization [39], in spite of the intrinsic favour for digital
designs.

Obviously, CNNs give first-hand advantages for VLSI implementations due
to their powerful parallelism and strict locality of operation. But the need for
large numbers of multiplications has precluded efficient digital hardware
realizations, leaving the stage to either analogue realizations or software
implementations on highly pipelined hardware. Actually, the first CNN
hardware has been almost completely in analogue. This has probably to do with
that the first conceptual design proposed Chua and Roska, i.e. the CNN-
Universal Machine (CNN-UM) [20], is analogue. So far impressive advances
have been made in analogue realizations only [23]- [30], while the best attempt
toward a digital realization emulates the functionality of a CNN rather than
providing real-time performance [42]. Hence, the potential of a fully digital
approach has never been exploited, which this thesis aims to change.

Digital CNN emmelators have followed the same development path as in
classical computer architectures. The first publication [42] uses pipeline
techniques to improve performance. The network is operated in step with the
provision of image map elements, and the network is tuned such that it works
exactly at the speed of the image stream. As such the architecture resembles that
of a stream processor [86], a vector processor on images. Such architectures do
not support the intense interaction that is required for the less trivial CNN
operations.

Of late, the Network on Chip (NoC) architecture has been proposed to get
away from the pipelining harness [9]. It is stated that a cellular architecture will
be the way of the future. In general, a NoC consists of a number of switches and

8 Chapter 1 Introduction

network interfaces (NI). Network interfaces translate the view that components
attached to the NoC have on communication, and the internal view switches
have. By using multiple switches a NoC scales both in the number of
components (such as cells) that can be attached to the NoC, and in the
performance the NoC can deliver. NoCs are therefore modular, scalable
interconnects [87]. A switch receives data on its inputs and sends it to its
outputs, taking care that each output is used by only one input at any point in
time. Data can be moved around a NoC in two ways: circuit switching [88], and
packet switching [83].

Overall NoCs fit well with digital implementations (or models) of CNNs
because they allow an arbitrary (programmable) neighbourhood of cells.
Moreover, NoCs decouple the communication from computation, i.e. rates of
computation of the individual cells may differ from each other, as well as the
rate of inter-cell data transport between the cells. Hence no global notion of time
or synchronization is required between the system components (cells/CNNs and
NoC), taking any global interconnections out of the critical path. Still the system
as a whole converges to a well-defined output for a given input if the
components are continuous functions.

A major issue in application-specific hardware design is the time-
consuming and costly fabrication process. As different architectures are to be
built and tested in a relatively short time, there is need for a realization platform
that provides a close-to-full-custom performance while retaining a high degree
of flexibility and reusability. Furthermore, such a platform must allow for
decreased granularity at least to the fine-grain level employed in SIMD-based
CPAs. In this sense, Field-Programmable Gate-Arrays (FPGAs) seem the only
choice (Figure 1.2). Actually, one of the greatest advantages of using FPGAs is
the ability of using spatial computing rather than temporal or sequential
computing. Higher throughput is then achieved as more parallelism per time
unit is exploited.

Figure 1.2 Efficiency versus performance of different implementation platforms [6] .

FPGAs have been commercially introduced in 1985 by Xilinx to replace
standard gate arrays such as programmable logic arrays (PLA), programmable
array logics (PAL) and complex programmable logic devices (CPLD) [2]. Over

 1.3 Thesis Outline 9

time, FPGAs gained increased popularity as they allowed developers to bypass
the costly fabrication process of application-specific chips [6]. Rapid
prototyping is certainly the most common – but not the only – attraction of
FPGAs. This allow for in system customization of non-accessible systems [2].
Another, and maybe the most important, feature of modern FPGAs is the ability
for partial reconfiguration. Swapping modules into and out of the device without
the need of a complete reset brings the FPGA a level of adaptability that
reconfigurable devices never reached [2]. This innovation is unfortunately less
utilized, though the potential benefits have been already illustrated early in [45] .

The ongoing improvements in modern FPGAs have led them away from
being application-specific containers for logic circuitry to the algorithm-specific
integrated circuit. An over-mass of flip-flops and logic-mapped memory is
supplemented by high-density, multifunctional macros, such as Block Select
RAM (BRAM) and Multiplier, while the supplementary handlers are easily
accommodated in the microprocessor cores. Moreover, though being slower
than Application-Specific Integrated Circuits (ASICs), FPGAs are gaining a
foothold in speed. The newest devices for Xilinx, e.g., break the 500 MHz
barrier [38], which theoretically paves the way to reach higher speed than what
most CNN chips achieve.

Having all that in mind, the following questions need to be answered:
 Is a fully digital realization possible?
 Are FPGAs able to satisfactorily host such a realization?
 Which communication patterns are needed to meet the connectivity

requirements?
 Can we accommodate already known approaches, or have new

concepts to be developed from scratch?
 Is the ‘limited’ accuracy provided by digital implementation enough for

real-life tasks?
Throughout the thesis, full digital approaches are explored by introducing a

number of design implementations. Such implementations focus on the pattern
of communication as the main consideration. The functionality and efficiency of
the proposed designs are validated by means of different applications. The
applications vary in the degree of difficulty from simple cases that test basic
functionality to more advanced problems where the complex behaviour of the
whole system is verified. In all cases, the implementations rely on the FPGA,
more precisely on Virtex – II and Virtes – II Pro 30 from Xilinx [38].

1.3 THESIS OUTLINE
In Chapter 2, the concept of Cellular Neural Network is introduced. This thesis
is restricted to the discrete-time version, where a number of basic examples are
treated in detail, as the focus is on hardware implementations, Chapter 3 gives a
brief overview of state-of-the-art of CNN chips. First of all, DSP-based
emulators are covered, before the conceptual CNN-UM is discussed.
Furthermore, both full-custom mixed-signal designs and pure digital emulators

10 Chapter 1 Introduction

of the CNN-UM are briefly described. It is meant that provided information
serves as a solid base for the understanding of design approaches introduced
later on.

Subsequently, the first digital implementations of DT-CNNs on FPGAs, as
carried out by the author of this thesis, are discussed in Chapter 4. Here, two
different unrollment schemes, temporal and spatial, are presented. Both employ
pipelining with different degrees of success. The spatial scheme is discussed in
detail as it serves as a start-up for later implementations. With the CNN
hardware realization come the demands on inter-modular connectivity.
Incorporating the concept of Network on Chip takes the hardware architecture
one step further. The hard-wired communication is replaced by a packet-based
communication pattern. The path is still pre-defined but the packets belonging to
two different communication cycles (different source-target pairs) share one or
more communication channels (inter-node connections). In this sense, we mix
circuit switching with packet-switching techniques. Even here, two different
implementations exist. One of them employs the idea of pipelining with
moderate modifications on the internal design. In the other, the benefit of packet
switching comes to full blossom in a broadcast architecture. Here, the CNN is
divided into sets of active nodes with a totally different inter-node
communication pattern.

A different approach is presented in Chapter 5 to overcome the enormous
demands of internal communication. The approach is thought of as a revision of
communication patterns already discussed in the previous chapters.

 Chapter 6 takes the discussion one step further and covers memory
considerations for the two main architectures. Chapter 7 shows how the variety
of design implementations, presented throughout the thesis, is of benefit to
different applications. It starts with a simple realization of the famous Game-of-
Life, and moves to more advanced problems where the basics for a velocity
meaturement system are verified. The power and suitability of performing
biometric measures is then demonstrated by means of vein feature extraction.

One of the disadvantages of currently available analogue CNN chips is
parameter deviation. The robustness of the system is easily disturbed due to
noise in the electrical components as well as to parameter scattering introduced
during the fabrication process. This leads to misbehaviour and often requires a
laborious effort to tweak the parameter to the desirable range of operation.
 Chapter 8 tackles the problem from a different point of view. The precision of
internal signals is gradually reduced while the system is guaranteed to perform
well. The idea is that less bits in the internal representation compensates for the
artefacts found in analogue chips, which allows finding a set of system
parameters that guarantee the desired degree of robustness in all chips. Though
inspired by the problems in analogue systems, it also has relevance to digitial
ones. Pruning the internal representation helps to reduce word width and
therefore reduce the size of the CNN nodes and the width of the communication
paths

 1.3 Thesis Outline 11

 Chapter 9 proposes a methodology for design automation starting from a
problem description and ending in a system architecture.

In Chapter 10 other design alternatives are introduced to the benefit of
larger networks. The different architectures presented throughout the thesis are
compared by means of area utilization and frequency. The chapter is closed with
a concluding discussion.

Chapter 2

15

Cellular Neural Networks
The Concept

n 1988, Chua and Yang introduce a new architecture to efficiently perform
large time-consuming tasks in real-time by using an array of simple, non-

linearly coupled dynamic circuits. A novel class of information-processing
systems is then born, and carries the name of Cellular Neural Network (CNN) [7].

The concept rests on two major sources of inspiration. The architecture
possesses some of the key features of Neural Networks [8], such as continuous-
time dynamics and global interaction of the network elements, which allows for
real-time signal processing. On the other hand, it inherits the feature of local
interconnectivity from the world of Cellular Automata [10], which makes it
suitable for VLSI implementations.

In this chapter a brief description of two models is given: Chua and Yang
model that is sometimes referered to as Continuous-Time CNN (CT-CNN) and
the counterpart Discrete-Time CNN (DT-CNN). The aim is to give an intuitive
understanding of the concept, rather than discussing the theory in detail. In
section 2.1 the network structure is introduced as it eases the understanding of
CNNs basic equations in section 2.2. Consequently, sections 2.3 discusses the
effects of different parameter set-ups, while the importance of boundary cell
handling is illustrated in section 2.4. The Discrete-Time CNN is presented in
section 2.5, while section 2.6 shows that both presented models gain in power
when more than one layer is used. Section 2.7 reintroduces the first analogue
realizations of the two models. In order to increase the understanding for the
functionality of DT-CNN model, a number of illustrative examples are presented
in section 2.8. The chapter is closed with a summary in section 2.9.

I

16 Chapter 2 Cellular Neural Networks

2.1 SPHERE OF INFLUENCE (NEIGHBOURHOOD)
The CNN is a massive aggregate of regularly spaced processing units, called
cells. Similar to Cellular Automata [10], any cell is connected only to its
neighbour cells, where direct interaction only occurs among adjacent cells. Other
cells are, however, indirectly affected due the propagation effect of the
continuous-time dynamics. Theoretically, a cellular neural network of any
dimension can be defined, as illustrated in Figure 2.1, which allows a CNN to
handle spatial relations such as topographic maps. As the focus of this thesis is on
2-dimentional image processing, the discussion will be restricted to the 2-
dimensional case.

Figure 2.1 Cellular neural networks with different dimensions, where the globes represent
cells and the links represent direct coupling. Far from all interconnections are seen in the
3-dimensional case (left). In the 2-dimensional finite-size case (right) each cell C(i,j) is
indexed according to row i and column j.

Considering a finite-size two-dimensional CNN, cells are arranged in M rows
and N columns. Each cell is identified by its position in the grid, denoted C(i, j),
and communicates directly with its sphere of influence ܵሺ݅, ݆ሻ of radius r , also
called r-neighbourhood. Such a neighbourhood is defined as the set of cells
within a certain distance r to C(i j), where ݎ 0 (Eq. (2.1)).

ܵሺ݅, ݆ሻ ൌ ሼܥሺ݇, ݈ሻ|max ሺ|݇ െ ݅|, |݈ െ ݆|ሻ ;ݎ 1 ݇ ,ܯ 1 ݆ ܰሽ (2.1)

For instance, if ݎ ൌ 1 we have a 1-neighbourhood. It is also common
practice to talk about 3 ൈ 3 neighbourhood when ݎ ൌ 1, and 5 ൈ 5
neighbourhood when ݎ ൌ 2 and so on. In general, for certain ݎ 0 a
neighbourhood of size ሺ2ݎ 1ሻଶ is obtained. Different neighbourhood examples,
with ݎ ൌ 1,2 and 3 are shown in Figure 2.2. Observe that when ݎ ܰ/2,
and ܯ ൌ ܰ, a fully connected CNN is obtained, i.e. ܵሺ݅, ݆ሻ is the entire network.

 2.2 Standard CNN Equations 17

This extreme case, that is apparently impractical to build in a VLSI chip for
large ܰ, corresponds to the classical Hopfield Net [8].

r = 1 r = 2 r = 3
Figure 2.2 Different r-neighbourhoods for the centre cell (black circle). To avoid clutter all
interconnections are dropped.

2.2 STANDARD CNN EQUATIONS
Let’s first consider a cell with no coupling to any other cell in the grid. Such a
cell, called an isolated cell, is associated with four variables: input ݑ א Թ௨,
threshold ݖ א Թ௭, state ݔ א Թ௫, and output ݕ א Թ௬, which are, in general,
functions of the continuous time t. The cell consumes the input value together
with the threshold in order to produce the output value, which depends on the
current state. Assuming further a given initial state ݔሺݐሻ at ݐ ൌ , a thresholdݐ
 ሻ evolves via the state equation givenݐሺݔ ሻ, the stateݐሺݑ ሻ and an inputݐሺݖ
in Eq. (2.2) where the “dot” denotes the time derivate and ࣠ is an ordinary non-
linear differential function.

Recall that an unknown function : Թ ՜ Թ is ordinary differential if the nth
derivative of with respect to a variable ࣺ is a function of the lower-order
derivatives, i.e. ࣠൫ࣺ, , ᇱ, ᇱᇱ, ڮ , ሺିଵሻ൯ ൌ ሺሻ. Furthermore, if the
differential function is not dependent on the variable ࣺ, it is then considered
autonomous. In this sense, Eq. (2.2) is simply a non-autonomous system of
ordinary differential equations [11]. In general, different non-linear functions ࣠
can be used for different cells, but in almost all known applications the cells are
identical and therefore employ the same function.

ሶݔ ൌ ࣠ሺݔሺݐሻ, ,ሻݐሺݖ ሻሻݐሺݑ (2.2)

The operative description of a cell is concluded by the determination of the
output ݕሺݐሻ by means of a nonlinear function. This function may depend on
,ሻݐሺݕ ሻ, but in this thesis, as in most literature, it is assumed toݐሺݖ ሻ andݐሺݔ
depend only on the state of the cell, as depicted in Eq. (2.3).

ሻݐሺݕ ൌ ݃ ቀݔሺݐሻቁ (2.3)

The choice of function ݃ is crucial for the quality of the obtained output and
the speed it is achieved. Three different types of nonlinear functions are
frequently used [41]: (a) threshold, (b) hyperbolic tangent and (c) piece-wise
linear functions. The threshold function, commonly referred to as Heaviside (or

18 Chapter 2 Cellular Neural Networks

hardlimiter) function, is only binary-valued and performs a binary decision. The
hyperbolic tangent function, shown in Figure 2.3.a and mathematically described
in Eq. (2.4), is a special case of the sigmoid function that is generally defined as a
strictly increasing continuous s-shaped function. By varying the slope
parameter ߜ, different sigmoid functions are obtained. An important observation
from Eq. (2.4) is that the sigmoid function becomes simply a threshold function
as the slope parameter approaches infinity. Even though, the sigmoid function
maintains, opposing to the threshold function, the characteristic of being
differentiable. Finally, the most widely used discrimination function is the piece-
wise linear function that is totally linear with positive slope within a certain
interval ሾെܽ, ܽሿ and saturates outside this interval as illustrated in Figure 2.3.b.
The function is mathematically described in Eq. (2.5).

݂ሺݔሻ ൌ tanh ሺݔߜሻ (2.4)

݂ሺݔሻ ൌ ൝
1, ݔ ܽ

,ݔߜ |ݔ| ൏ ܽ
െ1, ݔ െܽ

 (2.5)

Figure 2.3 Sigmoid function (a) and piece-wise linear function (b).

The contributions of state and input variables are achieved by means of two
weightings coefficients, ܽ and ܾ, while the threshold is simply assumed to be a
constant scalar [11]. The coefficient ܽ mirrors the effect of the previous output
value, while ܾ only scales the current input value. Hence, they are called
feedback and control coefficients respectively. A threshold Zij is used to adjust
the obtained state value into a desired range. This introduces the standard
isolated CNN cell, claimed to be the most widely used in the literature. State
equation of a standard isolated cell is given in Eq. (2.6); while the output is
usually obtained by using the piece-wise linear function introduced in Eq. (2.5)
with the interval ሾെ1, 1ሿ, with slope ߜ ൌ 1, resulting in Eq. (2.7). Assuming all
coefficients are linear, the dynamics of the isolated CNN cell are due to the non-
linear output function only.

ሶݔ ൌ െݔ ܽݕ ܾݑ ݖ (2.6)

ݕ ൌ ݂൫ݔ൯
1
2

൫หݔ 1ห െ หݔ െ 1ห൯ ൌ ቐ
1, ݔ 1

,ݔ หݔห ൏ 1
െ1, ݔ െ1

 (2.7)

 2.2 Standard CNN Equations 19

Equation (2.6) explains how the state of the cell evolves over time and is
therefore commonly referred to as ‘cell dynamics’. These dynamics are
dependent on two constraints: initial condition constraint where the state variable
is assumed equal a certain value upon start, and input constraint where input
value ݑ א ሾെ1, 1ሿ.

In a general CNN architecture, each cell is directly coupled to all other cells
within the sphere of influence. Both input ݑ and output ݕ of all neighbouring
cells are available and therefore consumed to produce the new output. Similar to
the isolated cell, inputs and outputs from cells belonging to ܵ of the cell are
weighted as ܾ and ܽ respectively. By simply summing the contributions of all
cells in the sphere of influence, the state equation of a standard CNN cell can be
written as in Eq. (2.8). The output value is still obtained according to Eq. (2.7).

ሶݔ ൌ െݔ ܽ
אௌೝሺሻ

ሻݐሺݕ ܾ
אௌೝሺሻ

ݑ (2.8)ݖ

݅ ൌ 1, 2, ڮ , ݆ ,ܯ ൌ 1, 2, ڮ , ܰ

Almost all theorems and numerical techniques for solving ordinary
differential equation systems are formulated in vector form [12]. Hence, it is
desirable to express the state equation given in Eq. (2.8) in vector form. For a
ܯ ൈ ܰ CNN, ݊ ൌ vector systems are obtained as depicted in (2.9), where ܰܯ
the new indexing of state, output, input and the coefficients is obtained by a row-
wise packing of the original matrices. The matrices and ۰ are ݊ ൈ ݊ matrices
whose nonzero entries are the weighting coefficients ܽ and ܾ respectively. As
the coefficients are placed in a band along the main diagonal (Figure 2.4), each
matrix is quite sparse where most of entries are zero. The vector form of the state
equation is given in Eq. (2.10).

൦

ሶଵݔ
ሶଶݔ
ڭ

ሶ୬ݔ

൪ ൌ െ ൦

ଵݔ
ଶݔ
ڭ

୬ݔ

൪ ൦

ଵݕ
ଶݕ
ڭ

୬ݕ

൪ ۰ ൦

ଵݑ
ଶݑ
ڭ

୬ݑ

൪ ൦

ଵݖ
ଶݖ
ڭ

୬ݖ

൪ (2.9)

ሶ࢞ ൌ െ࢞ ࢟ ܝ۰ ܢ (2.10)

Figure 2.4 Band structure of matrices and .

One may conclude that each CNN cell in the mesh is a dynamic system
whose state evolves according to a prescribed state equation. The dynamics of a
cell are coupled to neighbouring cells lying within the sphere of influence that is
centred at the location of the cell itself. The behaviour of the entire CNN is,
however, highly sensitive to the dynamics of cells located at the boundary as will

20 Chapter 2 Cellular Neural Networks

be discussed in section 2.4. But first, a concise form of the state equation is
introduced in the following section.

2.3 CLONING TEMPLATE
In general, all feedback and control coefficients in Eq. (2.8) can be represented by
time-dependent nonlinear operators of the coupled values, but in this thesis they
are assumed to be time-invariant and real-valued scalars. Furthermore, these
coefficients are identical for all cells in the grid, which provide the CNN with one
of its important features, i.e. space invariance.

In order to simplify the notation, the state equation (2.8) is written in a more
compact form by using the two-dimensional convolution operator *, defined in
 [7],and reintroduction below.

Definition: For any 3 ൈ 3 matrix ࣧ that, the convolution operator * is
defined by (2.11), where ࣧሺ݉, ݊ሻ denotes the entry in the mth row and the nth
column of the matrix, and ݉, ݊ א ሼെ1,0, 1ሽ.

ࣧ כ ݒ ࣧሺ݇ െ ݅, ݈ െ ݆ሻݒ
אௌೝሺ,ሻ

 (2.11)

Now, the weighting coefficients can be grouped in two square matrices: ࣛ
and ࣜ. The former holds all feedback coefficients and is accordingly called
feedback template, while the latter is called control template. Together with the
real-valued threshold (even called bias), they constitutes a so-called cloning
template ࣮ ൌ ,ࣛۃ ࣜ, ऊۄ. The latter term is commonly used to emphasize the
property of space-invariance [14]. The compact form of the state equation is
introduced in Eq. (2.12). Observe that Eq. (2.10) looks similar to Eq. (2.12), but
the meaning of the involved parameters do differ, as the former deal with vectors
while all parameters are scalars in the latter. The obtained result should, however,
be the same. It is now obvious that cloning template ࣮ in addition to given input
and the initial conditions, completely determine the dynamic behaviour of the
cell.

ሶݔ ൌ െݔ ࣛ כ ݕ ࣜ כ ݑ ऊ (2.12)

The matrices in Eq. (2.13) show the common notation of feedback and
control templates respectively, for the case of 1-neighbourhood. This notation is
adopted later on (section 2.8) to index all input and output values of a cell.
Furthermore, it is worth mentioning that the term kernel is widely used instead of
template in image processing applications; see e.g. [13].

ࣛ ൌ
ܽିଵ,ିଵ ܽିଵ, ܽିଵ,ଵ
ܽ,ିଵ ܽ, ܽ,ଵ
ܽଵ,ିଵ ܽଵ, ܽଵ,ଵ

൩ , ࣜ ൌ
ܾିଵ,ିଵ ܾିଵ, ܾିଵ,ଵ
ܾ,ିଵ ܾ, ܾ,ଵ
ܾଵ,ିଵ ܾଵ, ܾଵ,ଵ

 (2.13)

The centre entry of the feedback template, also called self-feedback, is of
significance importance for the stability of operation of a CNN. In this sense, it is,
in many cases, desired to decompose the ࣛ template in Eq. (2.13) as shown in

 2.4 Boundary Conditions 21

Eq. (2.14). Matrices ࣛand ҧࣛ are called centre and surround feedback template
respectively [12].

ࣛ ൌ ࣛ ҧࣛൌ
0 0 0
0 ܽ, 0
0 0 0

൩
ܽିଵ,ିଵ ܽିଵ, ܽିଵ,ଵ
ܽ,ିଵ 0 ܽ,ଵ
ܽଵ,ିଵ ܽଵ, ܽଵ,ଵ

൩ (2.14)

The number of the real-valued template coefficient is dependent on the
neighbourhood. We have 19 coefficients for 1-neighbourhood and 51 coefficients
for 2-neighbourhood. Hence, the space of CNN templates consists of an infinite
number of templates. Three simple classes are, however, of special importance
and are worth mentioning [12]. These classes are briefly introduced below.

♦ Zero-feedback template: All feedback coefficients are zero. The
dynamics of each cell of a zero-feedback CNN is described by Eq.
(2.15).

ሶݔ ൌ െݔ ࣜ כ ݑ ऊ (2.15)

♦ Zero-input template: All control coefficients are zero. The dynamics of
each cell of a zero-input CNN is described by Eq. (2.16). Zero-input
CNNs, also called autonomous CNNs, are widely used in pattern
formation applications and autowave generation.

ሶݔ ൌ െݔ ࣛ כ ݕ ऊ (2.16)

♦ Uncoupled template: All surround control coefficients are zero, i.e.
ࣛ ൌ ࣛ. The dynamics of each cell of uncoupled CNN is described by
a scalar nonlinear ordinary differential equation as shown in Eq. (2.17)

ሶݔ ൌ െݔ ܽ,݂ሺݔሻ ࣜ כ ݑ ऊ (2.17)

2.4 BOUNDARY CONDITIONS
The observant reader must have noticed that no restrictions have been imposed on
the size of the CNN grid. Actually, the conceptual discussion carried out so far is
valid for infinite CNN grids, but it suffers from a number of complications when
CNNs of finite size are considered. Equations (2.8) and (2.12) are not completely
defined for cells whose sphere of interest ܵሺ݅, ݆ሻ extends outside of the boundary
of the grid. In this sense, CNN cells can be divided into two different categories:
regular and boundary cells. For a certain neighbourhood, r, a regular cell has
ሺ2ݎ 1ሻଶ neighbour cells. All other cells with less than ሺ2ݎ 1ሻଶ neighbours are
called boundary cells. Note that not all boundary cells are edge cells if ݎ 1
(Figure 2.5). Edge cells are the outermost boundary cells, i.e. they lie on the
perimeter. The absence of neighbouring cells doesn’t affect the boundary cells
only, but it has, due to the nature of indirect propagation, a great impact on the
dynamic behaviour of the entire network, which calls for different interpretation
of boundary cell employment. Traditionally, this problem is remedied by
introducing virtual CNN cells around the grid, which completes the sphere of
influence of all boundary cells. Each virtual cell is associated with a virtual state,
a virtual input, a virtual output and a virtual threshold [12]. These virtual

22 Chapter 2 Cellular Neural Networks

parameters are specified via various boundary conditions. In the following, three
of the most commonly used boundary conditions for 1-neighborhood, as
described in [14], are rephrased.

Figure 2.5 When ݎ ൌ 1, boundary cells coincide with edge cells (a) but for ݎ
1 boundary cells (light grey) are not located on the edges only (b).

♦ Fixed (Dirichlet) boundary condition: The boundaries of the network
are tied to fixed values. In other words, virtual state and input of each
virtual cell are assigned predefined constant values. This approach has
been used in the first analogue realization of the basic CNN cell, which
will be presented later, where the boundary is uniformly at ground.

♦ Zero-flux (Neumann) boundary condition: In this case virtual cells are
considered to have the same state and input values as their direct
neighbouring boundary cells. This condition applies usually to CNNs
with no input, i.e. ݑ ൌ 0. In principle, this corresponds to the class of
autonomous CNNs (Eq. (2.16)).

♦ Periodic (Toroidal) boundary condition: Here the first and last rows
(resp., columns) of the network are identical, as shown in Figure 2.6.
Thus, the CNN behaves as if it is joined onto itself forming a torus.

Figure 2.6 In periodic boundary condition the CNN is joined onto itself.

 2.5 Discrete-Time CNN 23

2.5 DISCRETE-TIME CNN
A DT-CNN poses a regular grid of locally connected cells. Once again, this grid
may, theoretically, have any dimension, but in this thesis the focus is on the 2-
dimensional case only. Contrary to CT-CNNs, the DT-CNN is a clocked system;
whose dynamics are described by a set of discrete equations. This enforces the
introduction of slightly different notations; the notations used in [40] are adopted
in this thesis. It is important to emphasize that the feature of space invariance is
assumed here as well. Furthermore, the size of the grid is assumed to be finite,
unless it is explicitly pointed out not being the case.

A cell ܿ is identified by the coordinate of its position in the grid, i.e. row ܿ
and column ܿ and communicates directly with all the neighbour cells belonging
to the r-neighbourhood. The definition of r-neighbourhood given in Eq. (2.1) is
slightly modified to reflect the new notation of the cell but the relation remains
unchanged, as depicted in (2.18). The character ݀ represents any cell belonging to
the neighbourhood of cell ܿ, including ܿ itself.

ܰሺܿሻ ൌ ൛݀ א Ժଶ|max ሺ|݀ െ ܿ|, ห ݀ െ ܿหሻ ൟ (2.18)ݎ

The state of a cell ܿ, denoted ݔ, depends mainly on the contribution of the
time-independent input ݑௗ and the time-variant output ݕௗ. Equation (2.19)
depicts these dependencies at a discrete time ݇.

ሺ݇ሻݔ ൌ ܽௗ

ௗאேೝሺሻ

y݀ሺ݇ሻ ܾௗ

ௗאேೝሺሻ

݀ݑ ݅ (2.19)

The real-valued coefficients ܽௗ
 , ܾௗ

 and ݅ represent the feedback
coefficients, the control coefficients and the threshold/bias respectively. While
feedback coefficients ܽௗ

 reflect the contribution from the output of all cells in the
neighbourhood, control coefficients ܾௗ

 describe the dependency on the inputs of
the neighbours. The bias ݅ is added to adjust a cell’s threshold. Similar to CT-
CNN, coefficients are commonly expressed in a compact form by means of
matrices. Spatially invariant DT-CNNs are thus specified by the cloning template
࣮ ൌ ,ࣛۃ ࣜ, -that is often thought of as an elementary DT-CNN program or DT ۄ݅
CNN instruction [40].

By substituting (2.11) into (2.19), a compact state equation is obtained in Eq.
(2.20), which is obviously equivalent to Eq. (2.12). Because all cells in the DT-
CNN have identical functionality, cell subscripts can be omitted as shown in Eq.
(2.21).

ሺ݇ሻݔ ൌ ࣛ כ ௗሺ݇ሻݕ ࣜ כ ௗݑ ݅ (2.20)

ሺ݇ሻݔ ൌ ࣛ כ ሺ݇ሻݕ ࣜ כ ݑ ݅ (2.21)

In the case of non-zero feedback coefficients, an initial output ݕሺ0ሻ is of
crucial importance for the dynamic behaviour of the network (compare with the
initial condition constraint in section 2.2). On the other hand, if all feedback
coefficients are equal to zero, the output of the system remains constant after the
first time step.

24 Chapter 2 Cellular Neural Networks

In accordance to CT-CNN, the functionality of the system is defined by the
cloning template ࣮ that, together with the activation pattern ݑ and the initial
output ݕሺ0ሻ, completely determines the dynamic behaviour of a DT-CNN.
Figure 2.7, that illustrates the functionality of a cell, explains schematically the
influence of all involved parameters [40].

)(cNd r∈

)(cNd r∈

∑i

Figure 2.7 A schematic diagram illustrating a DT-CNN cell. The data comes in over the
 ௗ input and is modified through the control template ࣜ, while the interaction with theݑ
neighbouring cells is gathered through the ݕௗ input and modified through the feedback
template ࣛ. All modified input values are summed and discriminated after application of
the bias i.

2.6 MULTILAYER CNN AND MULTIPLE LAYER DT-CNN
So far, only the single-layer CNN model has been considered. In this model

each cell contributes with one state variable ݔ only. A multilayer CNN boosts
the concept further where cells have several state variables, one for each layer.
The emphasis is on the interaction between different state variables of the same
cell. The cell-to-cell interaction is still restricted by means of the r-
neighbourhood. Any layer may perform different processing tasks, whereas layers
work in parallel. The set of different state variables enables the existence of
concurrent multiple dynamic rules, which increases the flexibility of cellular
neural networks and gives them the ability to tackle complicated signal
processing problems [7].

The dynamic equations can be expressed in a compact vector form (Eq.
(2.22)), where m denotes the number of layers, i.e. the number of state variables
in each cell [14]. Here the operator ٘ is to be interpreted as matrix multiplication
but with the convolution operator כ (as defined in Eq. (2.11)) inserted between
each entry of the (block triangular) matrices and ۰ and of the vectors ࢟ and ࢛
respectively.

CT-CNNs and DT-CNNs differ in the interpretation of the concept of
multiple layers. Hence, we distinguish between the notations multilayer and
multiple layer networks. In a multilayer CT-CNN, each cell has a number of state
variables corresponding to the number of layers. In a multiple-layer DT-CNN
each layer has different inputs, outputs and template coefficients. In addition to
the outputs, both inputs and template coefficients are now time-variant.
Obviously, employing multiple states for each DT-CNN cell is equally feasible,
but this possibility is surprisingly never discussed in the literature!

 2.7 Analogue Realizations 25

ሶ࢞ ൌ െ࢞ ٘ ࢟ ۰ ٘ ࢛ ा (2.22)

where

ܣ ൌ ൦

ଵଵܣ 0 ڮ 0
ଶଵܣ

ڭ ڰ ڭ
0

ଵܣ ଶܤ ڮ ܣ

൪ , ܤ ൌ ൦

ଵଵܤ 0 ڮ 0
ଶଵܤ

ڭ ڰ ڭ
0

ଵܤ ଶܤ ڮ ܤ

൪ , ࢠ ൌ

ۏ
ێ
ێ
ۍ

ଵݖ

ڭ

ےݖ
ۑ
ۑ
ې

࢞ ൌ

ۏ
ێ
ێ
ێ
ۍ

ଵݔ

ڭ

ےݔ
ۑ
ۑ
ۑ
ې

, ࢟ ൌ

ۏ
ێ
ێ
ێ
ۍ

ଵݕ

ڭ

ےݕ
ۑ
ۑ
ۑ
ې

, ࢛ ൌ

ۏ
ێ
ێ
ێ
ۍ

ଵݑ

ڭ

ےݑ
ۑ
ۑ
ۑ
ې

Complex problems are divided into simpler subtasks where each layer of the
network is allotted one subtask, which give rise to different coupling modes. In
Figure 2.8 each layer is represented by a building block with two inputs, ݑሺ݇ሻ
and ݕሺ0ሻ, and one output ݕሺ݇ሻ. The layers are interconnected in such a way that
the output of one layer serves as an input or initial output to another layer, Figure
 2.8.a-c. In the parallel mode, Figure 2.8.d, an additional logical function ݂
combines the outputs of the layers and results in the overall network output. The
function ݂ is commonly realized using the AND or the EXOR operation. More
complex multiple-layer systems can be constructed by combining these
interconnection modes, Figure 2.8.e.

Since each layer in a multiple-layer DT-CNN corresponds to a single subtask,
template coefficients are not changed during the processing. A question rises
then: why are template coefficients time-variant? The only reason for introducing
time-variant templates is hardware reduction and speed gain! The idea is easily
understood when the output cascade mode, Figure 2.8.c, is considered. The
system shown in the figure can be simply replaced by one layer, where output is
fed back to the initial output, using time-variant templates to perform the
operation of two layers. Using one layer with time-variant templates instead of
two time-invariant layers reduces the exploited hardware and eliminates the
overhead of transferring data between the layers [40].

2.7 ANALOGUE REALIZATIONS
In this section, the analogue realization of the standard CNN cell, as

presented in [7], is reintroduced. Each cell, at location ሺ݅, ݆ሻ, consists mainly of
linear circuit elements: a capacitor ܥ, two resistors ܴ௫ and ܴ௬, an independent
current source I (that corresponds to the threshold of the cell) and a group of
voltage-controlled current sources, e.g. ܫ௫௨ሺ݅, ݆; ݇, ݈ሻ and. ܫ௫௬ሺ݅, ݆; ݇, ݈ሻ. A
schematic view of the basic cell with all circuit elements is shown in Figure 2.9.

Voltages ݒ௨, and theݕ , the outputݑ ௫ represent the inputݒ ௬ andݒ
state variable ݔ respectively. Initially, the magnitude of the state variable is

26 Chapter 2 Cellular Neural Networks

assumed to be less than or equal to 1; this is the initial condition constraint.
Similarly, the magnitude of the input, that is obtained by the independent voltage
source ܧ is assumed to be less than or equal to 1, but this value remains constant
over time; this is the input constraint.

)(ky

)0(ly)(kul)0(my)(kum

)0(ly)(kul

)0(my)()(kyku lm =

)(kym

)(ky

)0(ly)0(my

)()(kyku lm =

)(kym

)()(kyku ml =

)(kym)(kyl

)(kyl

)(ky

)0(ly)(kul

)()0(kyy lm =)(kum

)(kym

)(ky

)0(ly)(kul

)()(kyku mn =

)(kyn

)(ky

)0(my)(kum

)()0(kyy ln =
Lf

Figure 2.8 Basic interconnection modes for multiple layer DT-CNNs as presented in [40].
(a) input cascade (b) output cascade (c) feedback loop and (d) parallel. A more complex
mode, parallel cascade, is presented in (e).

uijv xijv yijv

+
-

ijE I C xR),;,(lkjiI xu),;,(lkjiI xy yxI yR

Figure 2.9 A schematic view of the standard CT-CNN cell.

 2.7 Analogue Realizations 27

The output voltage ݒ௬ depends on the only non-linear element in the cell,
i.e. the piecewise-linear voltage-controlled current source ܫ௬௫ (Eq. (2.23)) with
characteristic ݂ as given in Eq. (2.7). In other words, the output of the cell is a
non-linear function of the state voltage ݒ௫ as depicted in Eq. (2.24).

௬௫ܫ ൌ
1

ܴ௬
݂ሺݒ௫ሻ (2.23)

௬ݒ ൌ ܴ௬ܫ௫௬ (2.24)

A cell is coupled to all cells belonging to its neighbourhood via the
controlling voltage ݒ௨, and the feedback from the output voltage ݒ௬. In fact,
the influence of any neighbouring cell on the state is obtained by means of two
voltage-controlled current sources, defined by equations Eq. (2.25) and Eq.
(2.26), where the coupling coefficients ܣሺ݅, ݆; ݇, ݈ሻ, ,ሺ݅ܤ ݆; ݇, ݈ሻ א Թ correspond to
feedback coefficients and the control coefficients respectively.

,௫௬ሺ݅ܫ ݆; ݇, ݈ሻ ൌ ,ሺ݅ܣ ݆; ݇, ݈ሻݒ௬ (2.25)

,௫௨ሺ݅ܫ ݆; ݇, ݈ሻ ൌ ,ሺ݅ܤ ݆; ݇, ݈ሻݒ௨ (2.26)

A formal description of the dynamics of a single cell is obtained by applying
nodal analysis to the basic cell in Figure 2.9. This description, given in Eq. (2.27),
represents the state equation of the analogue CNN cell.

ܥ
௫ݒ݀

ݐ݀
ൌ െ

1
ܴ௫

ሻݐ௫ሺݒ ,ሺ݅ܣ ݆; ݇, ݈ሻ · ሻݐ௬ሺݒ
אS౨ሺ,ሻ

 ,ሺ݅ܤ ݆; ݇, ݈ሻ · ሻݐ௨ሺݒ
אS౨ሺ,ሻ

 ܫ

1 ݁ݎ݄݁ݓ ݅ ,ܯ 1 ݆ ܰ

(2.27)

In practice, the values of circuit elements ܥ, ܴ௫ and ܴ௬ are conveniently
chosen by the designer. ܴ௫ and ܴ௬ determine the power dissipation in the circuit
and are usually chosen to 1݇Ω െ Ω. In fact, the dynamics of the circuit areܯ1
simply scaled in time by changing the value of ܥ only, as these dynamics are
determined by ܴ௫ܥ, which is usually chosen to be 10ି଼ െ 10ିହ seconds [14] [7].
Currents and voltages are also scaled to fit the real design specifications.
Equation (2.27) is then rewritten in order to describe the dynamics in a
normalized and dimensionless manner. If the terminology of convolution
described in Eq. (2.11) is adopted here as well, the resulting state equation is then
identical to the one presented earlier in Eq. (2.12).

The DT-CNN cell, proposed in 1992 by Harrer and Nossek [39], is analogue
as well (Figure 2.10). Similar to the basic cell introduced by Chua and Yang, it
contains a number of linear circuit elements, such as capacitors, resistors and
current sources. Voltages ݒ௨

, ௫ݒ
ሺ݇ܶሻ and ݒ௬

ሺ݇ܶሻ correspond to variables
,ݑ .ሺ݇ܶሻ respectively, whereas ݇ܶ represents time instancesݕ ሺ݇ܶሻ andݔ
Linear voltage-controlled current sources, such as ݒ௨

ௗ and ݒ௬
ௗሺ݇ܶሻ are used to

multiply the inputs and outputs of the neighbour cells by template coefficients.

28 Chapter 2 Cellular Neural Networks

Figure 2.10 An analogue realization of a DT-CNN cell. The iterations are substituted by
discrete-time instances ݇ܶ and the variables ݑ, ሺ݇ܶሻ by voltagesݕ ሺ݇ܶሻ andݔ
௨ݒ

, ௫ݒ
ሺ݇ܶሻ and ݒ௬

ሺ݇ܶሻ respectively. ܶis the duration of one clock cycle.

2.8 ILLUSTRATIVE EXAMPLES
In this section, the functionality of DT-CNN is illustrated by using a number of
simple templates. These, and other examples, have been presented in [40], but are
described with the authors’ own words. In the first two examples, the single-
layered DT-CNN is used, while the third example involves the multiple-layered
model. Due to the fact that grey-scale level is commonly used in image
processing problems, an input constraint (compare section 2.2) is usually defined
by restricting the input range of a cell that ݑௗ א ሾെ1, 1ሿ, where a value of –1
represents a white pixel, a value of +1 represents a black pixel and all other
values represent grey levels in-between [40]. Here, the examples use binary
images only, i.e. ݑ א ሼെ1, 1ሽ.

2.8.1 Isolated Pixel Removal
The iterative nature of the dynamic behaviour, as stated in Eq. (2.19) and

Figure 2.7, is crucial to achieve the desired mapping of an input image onto an
output image. However, there are few problems that can be solved by one step
only. The simplest one is the Isolated Pixel Removal, where the aim is to remove
all so-called 4-isolated pixels: a black pixel whose orthogonal neighbours are
white. In other words, the problem is characterized by a number of properties that
can be summarized as: A black pixel that has at least one black orthogonal
neighbour remains black, otherwise it becomes white. Because one picture tells
more than a thousand words, the different situations are illustrated in Figure 2.11.

The aforementioned behaviour is achieved by applying the cloning template
in Eq. (2.28) on a given input image ݑ. As noticed, feedback coefficients are
zero-valued, which eliminates the need of the initial output ݕሺ0ሻ in Eq. (2.19).

ࣛ ൌ
0 0 0
0 0 0
0 0 0

൩ , ࣜ ൌ
0 1 0
1 4 1
0 1 0

൩ , ݅ ൌ െ1 (2.28)

 2.8 Illustrative Examples 29

(a) (b)

(c) (d)

(e) (f)
Figure 2.11 Properties of Isolated Pixel Removal applied on a centre cell with 1-
neighbourhood. Grey-coloured squares represent don’t-care pixels. The 4-isolated black
pixel becomes white in (b), while in all other cases the presence of at least one black
orthogonal neighbour helps the centre pixel to remain black.

If the orthogonal neighbours in Figure 2.11.c-f are indexed according to the
convention in Eq. (2.13), the state equation of the centre cell at time k = 0 is
obtained by substituting the coefficients from Eq. (2.28) as follows:

ሺ0ሻݔ ൌ ݑ4 ܵ െ 1 (2.29)

where ܵ ൌ ଵ,ିݑ ଵ,ݑ ,ଵݑ ,ିଵݑ
Since input values are restricted to ሼെ1, 1ሽ, we have ܵ א ሼെ4, െ2, 2, 4ሽ,

which implies the following cases:
Case 1: When ݑ ൌ െ1 (Figure 2.11.a) then ݔሺ0ሻ ൌ ܵ െ 5, which,

regardless of ܵ, implies that ݔሺ0ሻ െ1. Assuming a threshold function is in
use, the output ݕሺ1ሻ ൌ െ1, which proves the case.

Case 2: For the 4-isolated pixel in Figure 2.11.b we have ܵ ൌ െ4,
Since ݑ ൌ 1 then ݔሺ0ሻ ൌ ܵ 3 ൌ െ1, which results in ݕሺ1ሻ ൌ െ1, and
thus the pixel becomes white as shown in the figure.

Case 3: If at least one of the orthogonal neighbours is black,
e.g. ݑ,ିଵ ൌ 1, we have ݔሺ0ሻ ൌ ܵ 3 where ܵ െ2. Consequently, ݔሺ0ሻ
1 and ݕሺ1ሻ ൌ 1.

2.8.2 Hole Filling
One of the simplest image-processing problems whose solution still requires
considering the contribution from cells beyond the r-neighbourhood, and thus
involves iterative computations, is the problem of Hole Filling. Different
definitions of a hole appear in literature. In [40], a hole is defined as the area that
is completely enclosed by at least one 8-connected object, as shown in Figure
 2.12.a-c. The aim is to make the pixels, belonging to the hole, black, by the end of
the iterative procedure.

30 Chapter 2 Cellular Neural Networks

Obviously, the operation requires more than a set of local pixel transition
rules as in Isolated Pixel Removal. A neighbourhood that may be as large as the
whole image determines the colour of the pixel. A final solution is achieved by
applying a set of local actions repeatedly, thus making use of the iterative nature
of the dynamic behaviour of a cell, Eq. (2.19). The network is initialized with a
black image, i.e. ݕௗሺ0ሻ ൌ 1 for all cells in the network, whereas the iterative
process of local actions generates a wave of changing cell-outputs into white
colour. The wave that propagates from the edges to the centre of the image is
stopped by black input pixels, preventing it from penetrating enclosed objects, i.e.
holes. Figure 2.13 illustrates the propagation of the wave step by step.

Based on the definition of the “8-connected object”, terBrugge presents the
following three properties for the hole filling behaviour [40].

Property 1: A white output remains white.
Property 2: A black output becomes white if the corresponding input is

white and it has at least one 4-neighbour, i.e. an orthogonal neighour, whose
output is white.

Property 3: In all other cases a black output will remain black.
Further, it is proposed that these properties are met by using the following

cloning template:

ࣛ ൌ
0 1 0
1 2 1
0 1 0

൩ , ࣜ ൌ
0 0 0
0 4 0
0 0 0

൩ , ݅ ൌ െ1 (2.30)

(a) (b) (c)

(d) (e)

Figure 2.12 A number of holes with different sizes in (a) (b) and (c), while the absence of
one black pixel makes a hole incomplete in (d) and (e).

Again, the cell state equation is obtained by substituting the template into Eq.
(2.19) yielding:

 2.8 Illustrative Examples 31

ሺ0ሻݔ ൌ ݑ4 ܵ ሺkሻݕ2 െ 1 (2.31)

where ܵ ൌ ଵ,ሺ݇ሻିݕ ଵ,ሺ݇ሻݕ ,ଵሺ݇ሻݕ ,ିଵሺ݇ሻݕ

u y(0) y(1) y(2)

y(3) y(4) y(5)
Figure 2.13 Given an input image ݑ, the process of hole filling is initialized with a black
output ݕሺ0ሻ and ends up, after five iterations, with filled holes in ݕሺ5ሻ.

It remains to proof that Eq. (2.31) meets the three properties mentioned
before, which is easily done by following the same approach presented in section
 2.8.1. This is left for the interested reader to solve or look up at [40].

The behaviour of the template of Hole Filling presented above is coupled to
the boundary condition in use. Simple tests show that the format of the white
wave started at boundary cells depends on the boundary condition.

In the case of a fixed boundary condition, the following behaviour is
observed with ݑ௩௧௨ ൌ െ1:

 If ݔ௩௧௨ ൌ െ1, a black rectangle that is as big as the network upon
start, shrinks toward the centre of the CNN (Figure 2.14.a).

 If ݔ௩௧௨ ൌ 0, the rectangle becomes an ellipse (Figure 2.14.b).
 If 0 ൏ ௩௧௨ݔ ൏ 0.5, the wave gives rise to a black rhomb that shrinks

toward the centre. It is obvious that the wave starts from the four corners
(Figure 2.14.c).

Starting from ݔ௩௧௨ 0, the sides of the rhomb get more convex as
 ௩௧௨ increases until it equals 0.5. No wave is then generated and the templateݔ
does not function at all, while changing input values of the virtual cells does not
have any impact on the operation. Furthermore, the speed of convergence

32 Chapter 2 Cellular Neural Networks

decreases with increasing ݔ௩௧௨. It seems that the states of the boundary cells
become closer to the black value of ݕሺ0ሻ. On the other hand, a Zero-flux
boundary condition makes the template ineffective, regardless input and state
values in use. The effect of boundary conditions is discussed in detail in Chapter
8.

(a) (b) (c)
Figure 2.14 Different state values of the fixed boundary condition force the white wave to
propagate differently.

2.8.3 Hole Extraction
As the name implies, the problem consists of extracting the holes of an object.
Using the input image ݑ from Figure 2.13, the output of the Hole Extraction
operation is given in Figure 2.15. The problem cannot be solved by a single-layer
DT-CNN. The desired output is obtained by either using time-variant template
coefficients or by adding a second layer with a time-invariant cloning template.
Regardless the used approach, the problem demonstrates the expressive power of
the concept of multiple-layer DT-CNN, presented in section 2.6.

In line with [41], the approach of time-variant template coefficients is used.
The first phase of the solution consists of filling the hole by using cloning
template (2.30). After the network has converged, the output contains the image
in which all holes are filled. Applying another cloning template, presented in Eq.
(2.32), a selection of all black pixels in the output image that are white in input
image completes the task. The initial output, ݕሺ0ሻ, equals the resulting image of
hole filling template, while the input, ݑ, is the original image in Figure 2.13.

ࣛ ൌ
0 0 0
0 1 0
0 0 0

൩ , ࣜ ൌ
0 0 0
0 െ1 0
0 0 0

൩ , ݅ ൌ െ1 (2.32)

2.9 SUMMARY
A CNN is a regular array of many identical cells. Each cell has a simple

function that takes an element of a topographic map and then interacts with all
cells within a specified neighbourhood, each corresponding with neighbouring
map elements. An isolated cell ܿ at position ሺ݅, ݆ሻ in the grid consumes an input
 represents time step, in order ݐ ሻ, whereݐሺݕ together with a previous outputݑ
to produce a new output value. In a standard CNN, the current output of each cell
depends on input and output values, denoted ݑ and ݕ respectively, from the

 2.9 Summary 33

surrounding cells as well. This is achieved by simple additions of weighted
contributions ruled by parameters called template. The key feature in a CNN is
the direct interaction with the 8 neighbouring cells: value passing occurs in two
directions. This defines the 1-neighborhood of the centre cell ܿ, denoted ܵሺ݆݅ሻ.
The concept can be intuitively extended to the next level of neighbouring cells,
which leads to 2-neighborhood (Figure 2.16). The union of all neighbourhoods
gives the entire network. In DT-CNN, the notation is slightly different to reflect
the discrete-time nature. Input and output values are denoted ݑ and ݕሺ݇ െ 1ሻ
for cell ܿ, where ݇ represents disrcete time step. The neighourhood is denoted

ܰሺܿሻ.

Figure 2.15 Resulting output after applying the operation of hole extraction on the input
image of Figure 2.13.

The state of a cell, denoted ݔ or ݔ, depends mainly on the time-
independent input u to its neighbours and the time-variant output y of these
neighbours. Equation (2.33) describes this dependence in a continuous time t,
while Eq. (2.34) describes the discrete counterpart. In both equations a CNN of ܯ
rows and ܰ columns is considered. The control coefficients ܾ only “scale” the
inputs, while the feedback coefficients ܽ are responsible for the non-linear
dynamical behaviour. A real valued cell bias ݖ (or ݅) is added to adjust the
threshold. These coefficients are usually combined to compose matrices, which
results in a so-called cloning template ࣮ ൌ ,ࣛۃ ࣜ, ऊۄ (or ࣛۃ, ࣜ, ,In general .(.ۄ݅
the template may differ for different cells in the network, but the majority of
CNN applications use space-invariant templates.

݆݅ݔ݀

ݐ݀
ൌ െ݆݅ݔሺݐሻ ݈ܽ݇

ሺ݆݅ሻݎܵא݈݇

ሻݐሺ݈݇ݕ ܾ݈݇
ሺ݆݅ሻݎܵא݈݇

݈݇ݑ ݖ

1 ݁ݎ݄݁ݓ ݅ , ܯ 1 ݆ ܰ

(2.33)

ሺ݇ሻݔ ൌ ܽௗ

ௗאேೝሺሻ

ௗݕ ܾௗ

ௗאேೝሺሻ

ௗݑ ݅ (2.34)

The main advantage of both continuous-time and discrete-time CNNs relies
on the local interconnectivity of the simple cells. This feature makes CNNs, in
general, suitable for VLSI implementations. Though the elementary operations
are very simple, this does not necessarily mean that the circuit should be
correspondingly simplified. For instance, ter Brugge concludes in [40] that it
could be more meaningful to use more complex operators.

34 Chapter 2 Cellular Neural Networks

State

input
output

Figure 2.16 Dark gray cells along with the black cell constitute the 1-neighborhood, while
adding light gray cells build the 2-neighborhood. The arrows represent the dual
communication lines.

Finally, the feature of full parallelism (considered as one of the most
important advantages of CNNs) is captured by means of hardware realizations
only. Software implementations running on a standard PC, even those considered
as real-time implementations, loose the benefits of real parallelism, and are, thus,
used for simulation purposes only [40].

Chapter 3

37

Hardware Implementations
State of The Art

he ability of solving real-life problems has always been desired but not
fully possible as these problems are characterized by being too complex

and time-consuming tasks for classical digital computers. The partial success
that regular analogue processing arrays face in a number of fields such as neural
networks [8] has attracted interest worldwide and encouraged to take the step
toward the implementation of programmable analogue arrays that can handle
general real-time problems. A CNN is practically able to perform all types of
convolutions/correlations due to its programmability in term of different cloning
templates. Many physical phenomena can be translated into CNN algorithms
and thus performed in a finite spatial window [17]. In this sense, the CNN
seems to be an ideal framework for programmable analogue array computers.
The first step has already been made by, e.g., the analogue implementation of
the CT-CNN standard cell (section 2.7).

Fully connected analogue neural networks suffer from the number of
connections and the distance that these connections need to propagate, which
makes them very difficult to fabricate. In contrary to neural networks, CNNs are
characterized by local connectivity. The adoption of the concept of nearest
neighbour interactions found in Cellular Automata [10] allows for the
arrangement of the cells in regular grid with equidistance. The routing and
layout problems usually faced in traditional analogue circuits are then easier
tackled in analogue CNN VLSI implementations. A cell is designed and
replicated to form a regular network that is placed and routed rapidly. The first
VLSI implementation of a CNN [16] has, naturally, been based on the analogue
model of the standard cell as presented by Chua (section 2.7). Fabricated circuits

T

38 Chapter 3 Hardware Implementations

come usually with parasitic capacitances and resistances, which in many cases
leads to undesired behaviour. In order to reduce the sensitivity of the cell to such
fabrication deviations, the dynamics of the cell are dominated by large state
capacitor. Furthermore, the state capacitors affect the initialization procedure.
All cells cannot be loaded with initial states simultaneously, but a single row of
state capacitors (cells) is loaded at a time. While initialized, the state capacitors
have to be disconnected from the remainder of the cells in order to prevent their
voltages from dropping to such a level that it may affect the processing. Another
issue has to do with the degree of adaptability. The experience gained from
neural network VLSI implementations shows that high flexibility is difficult to
achieve. Hence, the CNN array is not ‘programmable’, i.e. the array is designed
to perform one or a related set of processing functions using fixed coefficients.
Complex tasks are proposed to be solved by cascading or paralleling multiple
CNN VLSI devices! This is, apparently, not practical and removes most of the
attraction of the CNN VLSI implementation as time and cost are then much
higher in comparison to other established systems. Next, due to fabrication and
the available VLSI technology issues, only small CNN chips (20 ൈ 20) were
realized, although larger and more sophisticated chips were expected to appear
in due time.

Soon enough, advanced hardware technology allowed a wide range of
concepts, models and architectures to see the daylight. Thus, introducing these
forerunners and highlighting the pros and cons of their hardware
implementations is highly desired. The aim is to open for better understanding
of the deployment of the solutions that are discussed later on in the thesis. In
this chapter, a brief description of the implementation of the most important
concepts is given. First, CNN emulators that are built around of-the-shelf DSPs
are introduced in section 3.1. CNN Universal Machine (CNN-UM) that provides
a roadmap toward exploiting the intrinsic supercomputing features of the CNN
is discussed briefly in section 3.2. Subsequently, a chronological review of the
most known full-custom mixed-signal realizations of the CNN-UM is given in
section 3.3. Section 3.4 emphasizes the need of fully digital implementations by
presenting a number of digital CNN-UM emulators. Finally, the chapter is
closed by a concluding summary in section 3.5.

3.1 DSP-BASED CNN EMULATORS
As mentioned above, the first attempt toward a VLSI implementation of a CNN
has been presented by Yang and Chua [16]. Meanwhile, Roska et al. [17] have
developed a hardware accelerator board (CNN-HAC), mainly for hardware
simulation. The reported performance exceeds the one provided by any, at time,
available software simulation due to the claimed ability of hosting around 1
million processing elements (PEs). Further, it is claimed that the flexible
programmability enables handling of complex tasks. For instance, performing
nonlinear and delay-type templates [15] is now possible. Thus, the proposed
design provides an interest trade-off between speed, programmability and
complexity. It is based on emulating the parallelism of operation using a number

 3.1 DSP-based CNN Emulators 39

of DSPs, each performing the functionality of a number of virtual digital
processors corresponding to the actual cells in the grid.

The usage of digital processors requires a transformation of the analogue
values into digital ones. This requires a discretization of the state equation (Eq.
(2.8)) in the discrete time ݊, which is carried out using the forward Euler
formula with a step size ݄ 1.5 as shown in Eq. (3.1). After analysis and
extensive software experimentation a 16 bits fixed-point representation of
values shows to be the best choice. A local memory per digital processor stores
input and state values (ݒ௨ and ݒ௨ respectively) for all cells within the
neighbourhood. Output values ݒ௬ are not stored as they are easily obtained
using the local piece-wise discrimination function.

௫ሺ݊ݒ 1ሻ ൌ ሺ1 െ ݄ሻ · ௫ሺ݊ሻݒ ݄ · ,ሺ݅ܣ ݆; ݇, ݈ሻ · ௬ሺ݊ሻݒ
אௌೝሺ,ሻ

 ݄ · ,ሺ݅ܤ ݆; ݇, ݈ሻ · ௨ሺ݊ሻݒ
אௌೝሺ,ሻ

 ݄ · ܫ

1 ݁ݎ݄݁ݓ ݅ ,ܯ 1 ݆ ܰ

(3.1)

The focus is on using the accelerator for image processing purposes. Thus,
the network has to contain a large number of cells, which is contrasted with the
limited number of digital processors that a chip may contain. Each physical
processing element, i.e. the DSP, performs the functionality of a large number of
cells or more precise their corresponding virtual digital processors. This requires
the local memory storage to be so large that it can hold the data needed for all
virtual processors. An indirect effect is a separation of communication and
calculation needs for the group of virtual processors that is mapped on a single
DSP. The simultaneous two-ways communication between the virtual groups
constitutes still a performance bottleneck. Therefore, the grid of cells is
decomposed such that a vertical band of virtual processors are assigned to a
single physical processor (DSP). In this case, communication is reduced from 8
down to 2 directions only, i.e. right and left.

The actual hardware implementation is based on a PC add-on board with 4
DSPs from Texas Instruments [18]. Each DSP has a dynamic memory to store
processor program code in addition to the cloning templates and the appropriate
data values as signed 16 bit numbers. All parts of the board are supervised and
controlled through a PCI bus that is responsible for the interfacing to an IBM
PC bus. Two FIFO blocks, each having 512 ൈ 16 byte effective storage
capacity, provide the communication path between each pair of DSPs. Next to
components hardware, the accelerator consists of a software part. The software
is allocated both to the host, e.g. data acquisition and visualization of the results,
and to the board, e.g. iterating Eq. (3.1). Communication routines and interrupt
handlers are necessary on both sides. The accelerator shows an average
computing speed of 200 msec/iteration when images of size 20,000 pixels are
processed.

The experience gained from building the CNN-HAC in addition to the fact
that analogue VLSI implementations provide limited accuracy only has

40 Chapter 3 Hardware Implementations

encouraged to develop the Analogic CNN Emulator Engine (ACE) [22], a new
emulator based on floating-point digital signal processors. Similar to CNN-
HAC, the ACE accelerator is built as a PC add-on board that is connected via a
SCSI (Small Computer System Interface) to a host PC, where data and results of
the simulation are stored and displayed. The choice of a 16 bit wide SCSI
interface is essential to guarantee a high speed, flexible and versatile
communication. Further, the architecture is based on a number of built-in
floating-point DSPs from Texas Instruments, where every two DSPs are
grouped in a single computational unit with appropriate memory modules and
control logic (Figure 3.1). This allows for emulation of large dynamical systems
with a 4-bytes floating-point accuracy, with the ultimate goal of achieving quasi
real-time performance. In line with CNN-HAC, the usage of digital processors
requires here as well a discretization of the state equation as carried out in Eq.
(3.1).

Figure 3.1 The architecture of the ACE board (a) and a single DSP with corresponding
storage and control units (b).

The computation is made efficient through employment of two hierarchical
levels of parallelism: the multiprocessor level and the operational level. The
former exploits a data type parallelism where individual processors (DSPs)
compute new values independent of the others. The computational power of this
level is directly proportional to the number of processors and the inter-processor
communication due to virtual processors mapping. A horizontal band
decomposition of the 2-dimensional input array, similar to the one used in CNN-
HAC, is adopted here to minimize the communication among the processors.
The operational level is directly supported by the complex pipeline architecture
of the used DSPs. Special attention should be paid to avoid address register and
memory conflicts (most frequent pipeline conflicts [18]) during the internal loop
of the calculation of the state equations.

Each physical processor (DSP) has two types of local storages: a large
capacity DRAM, of size 4-32 MByte, that stores input and output data arrays,
and a smaller SRAM module that serves as program memory and temporary
storage for calculation results (Figure 3.1.b). During computation, the current
data block is moved from the DRAM to a high speed internal memory (not
shown in the figure) or to the local SRAM.

 3.2 CNN Universal Machine 41

The ACE comes together with a library of CNN routines containing cloning
templates, inter-processor communication routines, DRAM-SRAM-caching
routines, floating number format conversions, and local and status report
routines. The routines are written in C where the most time-sensitive ones are
manually optimized and checked for pipeline conflicts in assembly level. With a
user interface, a menu-controlled CNN-simulation environment and other
monitoring features, the ACE board is easily controlled and accessed from the
host PC. Due to the combined memory storage of maximum 512 MByte (16 32-
MByte DRAM modules), the engine is able to store a CNN cube of size
512 ൈ 512 ൈ 512 (virtual) cells, thus, providing a promising computation
power that is able to handle large dynamical systems in quasi real-time [22].

3.2 CNN UNIVERSAL MACHINE
The CNN Universal Machine (CNN-UM) has been introduced in 1992 by Chua
and Roska as the first algorithmically programmable analogue array computer
having real time and supercomputer power on a single chip [20]. The system is
universal in the sense of a Turing machine, with the stored programmability, i.e.
the algorithm, as the underlying mechanism.

The concept of stored programmability is usually built on a number of
assumptions. First, all the transients stabilize within a specific clock cycle, and
all the signals remain within a prescribed range of dynamics [15]. This can,
obviously, be assured in a CNN. The complete stability of the CNN has been
guaranteed by most of the useful cloning templates found in literature. Even if
the functionality is dependent on the size of the network, e.g. propagation type
templates, the convergence time can be estimated independently of the input
data. Furthermore, the area needed for storing an instruction is much less than
the area occupied by the processing unit, while changing an instruction requires
a negligible time compared to the instruction execution time [19]. For regular
analogue arrays, e.g. neural networks, this is feasible only if the number of
processing units is small. When the size of the array grows, the number of
weights increases more than linear. A large-scale realization is, obviously,
impractical from the storage area point of view. In contrary, the number of
“weights” in a CNN is ruled by the size of the neighbourhood; 19 for ݎ ൌ 1 or
51 for ݎ ൌ 2; regardless of the size of the array. The capacity required by the
global analogue program storage in a CNN-UM is therefore affordable.

A key feature in the CNN-UM is the “dual computing” paradigm. Analogue
array processing is combined with logic operations that only involve the
symbolic variables YES/NO; therefore denoted analogic computing. All signals
and operators are either analogue or logic, which in principle removes the need
for A/D and D/A conversions. In order to achieve this, the standard CNN cell
that has been presented in section 2.2 is modified. Each cell is programmable by
means of a number of switches that are, together with some logic elements,
added to the analogue core resulting in a so-called CNN nucleus. The nucleus is
conceptually divided into two parts: analogue and logic. These parts are
connected by a binary converter (B/U) converting a bipolar analogue signal in

42 Chapter 3 Hardware Implementations

interval ሼെ1,1ሽ into a unipolar signal in interval ሼ0,1ሽ. To keep the global I/O
interaction at a minimum, local analogue memory (LAM) and local logic
memory (LLM) components are added. Hence, intermediate analogue and logic
values are locally stored, which facilitates the implementation of algorithms
consisting of a sequence of cloning templates to be performed. Analogue values
stored in different LAMs can be combined into a single value by means of a
local analogue output unit (LAOU). In a multilayer CNN, the LAOU can be
used to combine the results from the different layers. Similarly, the logic values
are combined using a local logic unit (LLU). An illustrative view of the usage of
an LLU is given in Figure 3.2 where the B/U converter is seen as well while
Figure 3.3 illustrates the analogue part as presented in [19]. Apparently, the
existence of local storages is the cause for the reported extreme computing
power of the CNN-UM.

LLU

1
LijY 2

LijY p
LijY......Analogue

part
B/U LLM

*
ijy

I1 I2 Ip

ijYProgram
from GAPU

Figure 3.2 Local logic memory cells are combined using a local logic unit (LLU). The
B/U converter converts a bipolar analogue signal into a unipolar signal. The small black
square connected to the LLU indicates instruction path from a global controller.

The nucleus receives programming instructions through a local
communication and control unit (LCCU). These instructions include the
analogue values of the cloning template, logic function codes for the LLU and
switch configuration specifying signal paths internally in each nucleus and the
settings of thresholding function unit and the LAOU. The combined architecture
of the nucleus and the surrounding components is called the extended CNN-UM
cell. Table 3.1 summarizes the notation and functionality of the main
components of the extended cell.
Table 3.1 The main components in the extended CNN-UM cell.

Acronym Description
LAM

The local analogue memory stores intermediate analogue
values locally.

LLM

The local logic memory stores intermediate logic values
locally.

LAOU

The local analogue output unit combines the different local
analogue values to a single output value.

LLU

The local logic unit combines the different local logic values
to a single logic value.

LCCU

The local communication and control unit receive the global
programming instructions and decode them. It is, e.g.,
responsible for keeping the switches opened/closed

 3.2 CNN Universal Machine 43

*
yijv

k
yijv

yijvxijv)0(xijvuijv

Figure 3.3 The analogue part of the extended cell. Dashed lines show the possible
paths that are controlled by switches (not shown here) whose configuration is coded in
LCCU.

Each extended cell in the grid is programmed and controlled by a global
analogic programming unit (GAPU) as already has been indicated in Figure 3.2
and Figure 3.3. The GAPU consists of 4 sub-units: the analogue program
register (APR) stores all cloning templates in an analogic algorithm, while the
logic functions are stored in the logic program register (LPR). The switch
configuration register (SCR) stores the configurations that are later coded by
LCCU in each cell to control the internal switches. The LPR and SCR control
the multi-input single-output units LLU and LAOU respectively. Finally, the
sequence of analogic instructions, indicating in which order the different
templates and logic functions are applied, is stored in the global analogic control
unit (GACU) that constitute the fourth sub-unit of the GAPU.

Theoretically, any implementation of the CNN-UM will be characterized by
an unprecedented computing power due to the inherited massive parallelism.
The performance of the obtained CNN Universal Chip (CNN-UC) may however
be degraded due to the distribution of global input and output signals. There is a
one-to-one geometric correspondence between input (and output) signals and
the cells. For a large-scale implementation, the time needed to bring input
signals into the individual cells must be at minimum. Otherwise, the desired
high throughput rate will be never achieved. The authors in [19] propose that a
fully parallel input is possible by allowing each cell to have its own sensory
input integrated on the chip. Light intensity, temperature and chemical
properties are possibly captured by the sensors. Electromagnetic detection, e.g.,
can be used to detect certain output features captured by means of antennas
connected to each cell.

Similar to the relationship between a classical digital processor and an
operating system, the promised computation power of a (CNN-UC) is heavily
dependent on the analogic CNN software. Not surprisingly, the implementation

44 Chapter 3 Hardware Implementations

of an analogic algorithm on a CNN-UC or any of its digital emulators follows
then the traditional methodology in classical software. One starts with defining
the algorithm by means of a flow diagram that makes use of an analogic
language, e.g. the ACL [21]. Such a language must specify names and values of
signals, instructions and parameters, subroutines, and programs. Now a CNN
analogic compiler (e.g. Alpha Compiler [37]) produces codes for the target
platform (emulators or simulators).

3.3 FULL-CUSTOM MIXED-SIGNAL CNN-UM CHIPS
Since the introduction in 1992, the concept of CNN-UM has been considered
extremely attractive to realize electronically due to its universality and ability of
implementing the most complex CNN applications. Several realizations have
seen the light of day, some focusing on analogue only or mixed-signal
implementation in CMOS, while others following the footprints of predecessor
emulators CNN-HAC and ACE. In this section, the mixed-signal type is
considered with focus on a specific chip series mainly developed by a group at
Centro Nacional de Microelectónica at University of Seville in Spain [23]- [30],
while the next section introduces two of the most famous fully digital emulators.

A number of drawbacks in previous CNN implementations have been
reported [24]. One has to do with the difficulty of electrical cell design due to
the various ranges for the internal voltages and currents. These ranges have to be
considered in order to reduce the influence of MOS transistor nonlinearities.
Another issue is that input signals are always voltages while internal signals
may be voltages or currents. This is crucial in focal plane architectures where
sensors provide the signals in form of currents. Incorporation of the sensory and
the processing circuitry on the same semiconductor substrate is pretty common
 [33] as CMOS technologies offer good photo transduction devices [34]. A
conversion into voltages is then needed, which complicates the CNN interface
design. Finally, the combination of internal voltage and current signals leads to
internal high-impedance nodes and, hence, large time constants. This results in a
lower operation speed than desired.

Attempting to overcome these limitations, a new CNN model, i.e. Full
Signal Range (FSR), has been introduced [31] [32]. Here, all variables are in the
form of currents, thus, eliminating the need of current-to-voltage conversion.
The main difference compared to CT- and DT-CNNs is found in the way state
variables evolve. State variables have the same variation range as input and
output variables, i.e. ݔ א ሾെ1, 1ሿ independently of the application (Eq. (3.2)).
This results in a reduced cell complexity for both CT and DT cases and, thus,
reduces area and power consumption in VLSI implementations. Stability and
convergence properties are guaranteed and proven to be similar to the original
models. It is further shown that uniform variations of the coefficients of the
cloning template affect only the time constant of the network [32].

As has been mentioned before, the flexibility and generality of the CNN-
UM lies in the ability to freely reprogram the system using distinct analogic
parameters, i.e. different cloning templates and logic functions. This is

 3.3 Full-Custom Mixed-Signal CNN-UM Chips 45

guaranteed in the proposed design in [23] through a synergy of analogue and
digital programmability. Internally, all cells are equipped with an analogue-
programmable multiplier, while digital control signals are provided externally,
i.e. outside of the cell array. A specific interface circuitry is required to generate
the internal weights from the corresponding external digital signals. The
interface is located at the periphery of the cell array and behaves as a nonlinear
D/A converter. The analogue weights are gradually adapted to the desired level
and then used to control the analogue multiplier within the cells in the array.
Each peripheral weight tuning stage consists of an analogue controlled
multiplier and a digital controlled multiplier connected in a feedback loop
through an integrator. Figure 3.4 illustrates the functionality of the tuning
interface and shows the global lines. For this purpose, global routing channels
are used. Notably, only 10 global channels are needed, 9 for control/feedback
coefficients and 1 for the bias. The gained benefits are many: low area as only
one tuning interface is needed for the whole array, fewer control lines because
analogue weights require less lines compared to the digital weights with same
accuracy, and the simplified realization of the APR (section 3.2) using a digital
RAM memory. Consequently, the external management of the chip can be
completely digital.

ሻݐሺݔ݀
ݐ݀ ൌ ቐ

 ሼܽԢௗ
 ௗݕ ܾௗ

ݕௗሽ
ௗאேೝሺሻ

 ݅ ݎ݂ ݈݈ܽ |ݔ| ൏ 1

0 |ݔ| ݈݈ܽ ݎ݂ ൌ 1

Ԣௗܽ ݄ݐ݅ݓ
 ൌ ൜

ܽௗ
 ܿ ് ݀

ܽௗ
 െ 1 ܿ ൌ ݀

(3.2)

∑ τ
1

∫
×

× ×

×

×

Figure 3.4 The tuning D/A interface is located at the periphery of the cell array. It uses
the digital weights wd to generate the corresponding analogue weights wa that are
brought into each cell in the array using global routing channels.

The cells can be initialized optically through photo-sensors or electrically,
while output values are downloaded in electrical form only. In the first realized
chip [23] that is fabricated in 1 µm CMOS technology and contains 32 ൈ 32
cells, input or/and output values are downloaded and uploaded through 32 I/O
bonding pads, on a row by row basis. Apart from that, the realization follows the

46 Chapter 3 Hardware Implementations

main lines defined in the conceptual CNN-UM. The digital circuitry at each cell
includes a four-bit static memory LLM (storing 4 pixels belonging to 4 different
images as each pixel is represented by a binary value), a completely
programmable two-input digital LLU in addition to the LCCU. Notably, the
LLM memory replaces the LAM memory in the general CNN-UM as only
binary values are handled. The APR and LPR reside in a single on-chip RAM
with a capacity of 8 instructions. Each instruction contains 19 8-bit template
coefficients (7 bits plus sign), 2 2-bit boundary-condition values and one 4-bit
local logic truth table.

It is worth mentioning that the computational part of the cell, performing
the local convolutions in Eq. (3.2), is totally analogue and occupies about 70%
of the cell area. It consists of different functional blocks: 9 programmable
interconnection synapses (multipliers), an integrator, nonlinearity and a
memory. The synaptic inputs are voltages, which eases the distribution of
analogue template coefficients through the global lines, and the internal
distribution of the cell’s own state to all synapses. As synapses are connected to
the integrator, their output is a current instead [24].

In time, CMOS technology allowed for accommodation of more cells
and/or higher complexity on a single chip. In a chip fabricated in 0.8 µm CMOS
technology [24], both global instruction memory and local data memory are
made dynamic in order to increase the flexibility of operation. This leads
however to a smaller array, where only 20 ൈ 20 cells are available. Moving to
0.5 µm CMOS technology increased the size to 64 ൈ 64 cells [25], in spite of
the added ability of handling both analogue (greyscale) and digital (binary)
inputs. Further improvements include simpler intracellular analogue synapses,
i.e. multipliers, a more complex but highly accurate non-linearity device to
obtain the cellular output, and a 4 fold larger global instruction memory. This
chip has gotten the name CNNUC3 in [26], but is later on renamed to ACE4k in
 [27] to reflect the total number of accommodated cells. For same reason, the 0.8
µm chip is renamed ACE400 in [28]! The used notation is somewhat confusing
as the architectures do not have any relation to the previously discussed ACE
engine (section 3.1)!

Few years later, 2002, a new chip is fabricated using 0.35 µm CMOS
technology. Following the latest naming convention, the chip is called ACE16k
 [28] because it accommodates 128 ൈ 128 cells. The ACE16k (illustrated in
Figure 3.5) is proudly introduced by the authors being a clear advance in a
roadmap toward flexible vision systems on chips (VSoCs) [28]. The major
improvements of the new chip compared to the previous ACE4k are:

♦ Digital buses are incorporated for greyscale input values, which allows
for a fully digital interfacing.

♦ A hand-shaking protocol eliminates timing constraints.
♦ An internal bus, ACE-BUS, simplifies the communication among

functional blocks within the cell.

 3.3 Full-Custom Mixed-Signal CNN-UM Chips 47

♦ Two out of the four LLMs in ACE4k are replaced by 4 additional
LAMs.

♦ Dynamic, instead of static, digital memories are used to store templates.
♦ The optical input module is reconfigurable and is flexible enough to

operate under very different illumination conditions.
♦ The capacity of the chip is 4 times larger than the ACE4k with larger

functional capabilities.
♦ Finally, blocks can be switched to idle in order to save power.
Moreover, ACE16k employs a modified interaction pattern among cells.

The number of synaptic analogue multipliers in each cell is increased to 12
instead of 8 used in ACE4k. The additional four multipliers are introduced to
increase robustness in templates where the central entry is much larger than off-
centre coefficients. In this case, the synaptic multiplier corresponding to the
centre coefficient has to be driven by a quite higher voltage, which will give rise
to mismatch-induced errors. Each of the central multipliers is actually a parallel
aggregation of two regular synaptic multipliers allowing for double strength
and, thus, increasing the difference between weight voltages.

Figure 3.5 A conceptual architecture of ACE16k.

Table 3.2 presents a summary of the most relevant features of mixed-signal
chip realizations. When it comes to the first two implementations, later
publications of the same authors in Seville show slightly different figures (see
e.g. [27] and [28]). This may depend on more exhaustive testing and more exact
measuring of the different parameters of the fabricated chips. The table reveals

48 Chapter 3 Hardware Implementations

that all chips are far too small to handle a single frame. This drawback is
important as all chips were developed with image processing capability in mind.
The problem is solved by adopting the concept of windowing and time
multiplexing, where large images are divided into sub-frames that are handled in
sequence.
Table 3.2 Comparison of mixed-signal full-custom CNN universal chips. All chips use a
modified CNN model, i.e. the FSR model.

 CNNUC1
3 [23]

ACE400
 [24]

ACE4k [26] ACE16k
 [28]

CMOS technology 1 µm 0.8 µm 0.5 µm 0.35 µm
Density (cells/mm2) 33 27.5 82 180
Array size 32 ൈ 32 20 ൈ 22 64 ൈ 64 128 ൈ 128
Input Type Binary Binary Binary &

Greyscale
Binary &
Greyscale

Optical √ √ √ √
Electrical √ √ √

Output Type Binary Binary
Electrical √ √

Global instr. memory Static Dynamic Static Dynamic
Ana. instructions 8 8 32 32
Dig. instructions 0 64 64 ൈ 64
Local
memory

Type Digital Digital Dig.&Ana.
Dynamic √ √
amount 4 Binary

(1-bit)
4 Binary 4 Binary

4 Grey
2 Binary
8 Grey

Ana.
Acc.

Input െ 8 bits 8 bits

 + bits 7 ܤ & ࣛ
sign

7 bits + sign 7 bits 7 bits + sign

bias 7 bits +
sign

8 bits + sign N/A 7 bits + sign

Ana. circuit area/cell N/A 70% N/A
Cell array area/chip N/A 53% 58%
Cell area 180 ൈ 170

µm2
190 ൈ 190
µm2

120 ൈ 102.2
µm2

73.3 ൈ 75.7
µm2

Power Entire chip N/A 1.1W @ 5V 1.2W @ 3.3V < 4W@
3.3V [29]

Per cell N/A N/A 370 µW 180 µW

3 This architecture was not given any name in [23], but is called CNNUC1 here to emphasize

that it was the first Universal Chip of the series.

 3.4 Digital CNN-UM Emulators 49

It is worth mentionening that there are SIMD-based CPAs that are capable
to compete with the ACE-serises in both size, accuaracy and power
consumptions. For instance, the SCAMP vision chip [5] that is fabricated in
0.6 μ݉ technology accommodates 21 ൈ 21 PEs. It has a peak power dissipation
of 40 ܹ݉ at 3.3ܸ, while the maximum power per PE is as low as 85 μܹ. This
is to be compared to the 180 μܹ for the ACE16k chip that is implemented in
0.35 μ݉ technology. It is further claimed in [5] that ‘future’ chips are estimated
to have a 256 ൈ 256 array fabricated in 0.18 μ݉ technology. With a total chip
area of 76 ݉ଶ and power dissipataion of 2 ܹ per chip, this seems to make a
milestone that all CNN chips have to beat!

3.4 DIGITAL CNN-UM EMULATORS
There is no doubt that the previously presented full-custom chips provide a
powerful framework to handle CNN operations. The impressive computational
speed of 330 GOPS in the ACE16k chip is comparable with the capability of
modern supercomputers. But theses chips suffer from the ‘limited’ accuracy of
the analogue signals (7-8 bits only). Another issue is the high cost as few chips
only are fabricated. In addition, the development time window is wide which
increases the cost further. Furthermore, analogue devices in general are known
to be sensitive to fabrication artefacts, which in the case of CNNs may lead to
complete failure. In this sense, fully digital architectures provide a good trade-
off between computational speed on one side and versatility and cost on the
other side. Such architectures have a much shorter design cycle as they utilize
standard digital CMOS technology.

With confidence, one may consider the CASTLE architecture [35] as a
representative of the class of fully digital emulators. The architecture is capable
of performing 500 CNN iterations using 3 ൈ 3 templates on a video stream
with frequency of 25 fps taking 240 ൈ 320 pixels each. This is valid for a
system with 24 processing units (PEs) with precision of 12 bits. CASTLE makes
use of the FSR model where the absolute value of the state variable is never
allowed to exceed the value of +1. Recall that the value of the output and state
values always coincide. The discretized state equation is obtained by applying
the forward Euler formula as shown in Eq. (3.1).

Loading input pixels on-the-fly from an external memory into the
processing array constitutes a performance bottleneck. On the other hand,
storing the entire image on chip is impossible due to the limited resources.
Instead, the image is divided into a number of belts with a height of 2ݎ 1
pixels where ݎ represents the neighbourhood. Each belt is then fed to a single
PE (Figure 3.6 right). In this case, the I/O requirements of the processing entity,
i.e. the cell, are reduced to two inputs and two outputs per cell update. Each pair
consists of one state value and one constant value corresponding to the
combined contribution of control template together with the bias (Figure 3.6
left). The main memory unit in the PE consists of 3 layers of equally sized
circular shift-register arrays for the state input and 2 layers for each of constant

50 Chapter 3 Hardware Implementations

and template selection inputs. Inputs from left and right neighbouring PEs are
directly connected to the corresponding ends of the shift-register arrays.

Figure 3.6 Left: a schematic view of the processing unit in CASTLE, where dashed lines
represent control signals and continuous lines shows data path. Right: the belt of pixels
stored on chip for 1-neighborhood where the black square indicates the current position
of the convolution operation.

The high throughput of the system is due to the accommodation of 3
multipliers performing, in parallel, 3 multiplications that use pixels and
corresponding template coefficients as operands. Multiplication results are
shifted 1-bit in the LSB direction before they are forwarded to a tree of adders to
accumulate the results with previous intermediate result. In order to improve the
accuracy, rounding units are introduced between the shifters and the following
adders. A limiter unit brings the final sum into the operational region. Figure 3.7
depicts the structural architecture of the arithmetic unit. It is obvious that the
reduction of communication demands comes on the cost of larger arithmetic
units with more functional blocks.

In line with the proposed approach in the CNN-UM, the functionality of the
CASTLE architecture is ruled by means of a global control unit. One of the
most important features of this unit is the selection of the employed precision.
Data precision is variable and can be set to 1, 6 or 12 bits. The lower the
accuracy the faster is the system.

An important issue is the amount of logic occupied by the register arrays
constituting the internal memory units (Figure 3.6). In the first experimental
chip that has been fabricated in 0.35 µm CMOS [36] technology, about 50% of
the total area of a single PE is allocated to register arrays, while the arithmetic
block occupies not more than 21% of the area (Figure 3.8). Furthermore,
experiments show that a CASTLE emulator with 24 processors outperforms the
DSP-based ACE engine (section 3.1) only when the rate of logic operations is
high enough [36].

The CASTLE architecture suffers from a number of drawbacks. One has to
do with the inability of emulating complex dynamic systems where operative
parallelism is a key feature. The single layered architecture handles only one

 3.4 Digital CNN-UM Emulators 51

operation at time. Other drawbacks include the limited template size, cell array
size and accuracy. Hence, a new architecture called FALCON has been
developed to provide higher flexibility and to allow for multilayer
accommodation [42]. The implementation is based on the FSR model with
discretized state equations. In contrast to all CNN-UM inspired implementation
discussed so far, the design is hosted on a Xilinx Virtex series FPGA. This
increases the ability for reconfiguration, brings down developing time cycle and
decreases the overall cost.

Figure 3.7 The arithmetic unit in CASTLE

Figure 3.8 The amount of allocated logic for each of the blocks relative to the entire size
of a single PE. Putting together the bars representing state values, constant values and
template selection gives the total area of register arrays.

The arithmetic uses a fixed-point representation where both word width and
displacement of the radix point for the state, constant and template values are
configurable. Possible value widths are 2-64 bits. Other configurable parameters
are: number of templates, neighbourhood size, size of the cell array and number
of layers. Configurability is essential to allow accommodation of flexible
precision when needed. But for the highest possible precision the cell array will

0%
5%
10%
15%
20%
25%
30%
35%
40%

States Arithmetic
Unit

Constants Template
Selection

Template
Memory

Timing &
Control
Unit

52 Chapter 3 Hardware Implementations

consist of not more than 4 processing cells! The configuration is unfortunately
not dynamic but the entire design has to be re-synthesized and loaded on the
FPGA every time a new configuration is required! Apparently, for algorithms
with alternating operations of low and high precision the FPGA has to be
reconfigured several times in order to provide accurate results. Moreover, the
FALCON architecture comes with no possibility of algorithmic control on chip.
All algorithmic steps, as well as local logical operations and programs, are
executed on a host PC. This reveals that the system cannot stand alone, but is
always dependent on the host PC! Obviously, all the benefits of performing
complex tasks on the CNNs are lost. To remedy these problems, the architecture
is extended with a global control unit GAPU [43] in line with the conceptual
CNN-UM.

In addition to on-chip memories and some peripheral blocks, the GAPU is
built using an embedded MircoBlaze processor core with 32-bit RISC
architecture [38]. Most modern FPGAs provide at least one of these processor
cores on chip. The extended FALCON architecture is implemented on a Xilinx
Virtex-II 3000 FPGA. Apart from the embedded processor core, the GAPU
occupies about 10% of the available logic, which can be compared to the area of
a single CNN processor that requires about 2.8% of the logic. It is worth
mentioning that the GAPU runs on lower clock frequency than the processing
units (PEs), thus, setting a higher limit of the overall speed.

3.5 SUMMARY
In the light of previous advances made in design of analogue neural networks,
researchers and developers have been encouraged to build analogue CNNs using
VLSI implementation techniques. The first attempt yields in a too small chip
with 20 ൈ 20 cells only and lacks the feature of programmability. This is not
enough to handle complex tasks, so developers have looked for use of available
DSP technology to emulate the functionality of a CNN. The CNN-HAC shows a
promising computing power but is mainly suffering from low accuracy. The
successor ACE engine accommodates floating-point DSP to overcome the
limitation. Both designs are dependent on a host PC where algorithmic
programming is performed.

Meanwhile the conceptual CNN-UM is introduced to serve as a standard
platform for real-time CNN realizations. The CNN-UM architecture contains a
minimum number of component types. It provides stored programmable
spatiotemporal array computing with real-time and supercomputer power. The
stored programmability in form of cloning templates gives a minimal
representation of a complex spatiotemporal dynamics. The machine supports
both linear and nonlinear cloning templates and allows for implementation of
multilayer CNNs. Many chips have been built to implement parts of the concept
with varying success. Most interesting is the series of full-custom mixed-signal
ACE-series. The characteristic drawback is again the limited analogue accuracy.
In addition, the issue of sensitivity toward fabrication artefacts attracts special

 3.5 Summary 53

attention and requires careful parameter tweaking to achieve the desired
functionality. This time-consuming approach raises the overall cost per chip.

Naturally, the focus has moved toward fully digital implementations
instead, as these provide an acceptable trade-off between computation power,
accuracy, versatility and cost. Mainly, two architectures are available: full-
custom CASTLE and FPGA-based FALCON. Both provide quasi real-time
performance through a pipelining of the processed input values and are therefore
considered as CNN-UM emulators. The former is, however, only single-layered
whereas handling multi-tasks in parallel is not possible. Moreover, it has a
limited, although flexible, accuracy of 12 bits. The FALCON architecture is
extended to enable multilayer accommodation, and allow higher accuracy up to
64 bits. One of most important drawbacks is that FALCON cannot stand alone
as is totally dependent on the host PC to perform the different steps of a certain
algorithm. Moreover, the computational speed exceeds certainly the one
provided by general-purpose computers, but is far less than the efficiency
experienced in mixed-signal chips.

An important issue is the usage of the FSR model in both mixed-signal and
fully-digital approaches. Here, the need of discrimination is removed as state
and output values coincide. This saves a considerable amount of logic and
makes the design simpler and smaller than general.

Furthermore, all architectures are heavily dependent on global control
instruction in order to perform properly, which is affordable for small networks.
For larger networks, long global control wires affect logic unitization negatively
and slow down the system to such a level that the benefits of a CNN are lost. In
 [84] it is stated that a cellular architecture will be the way of the future, but that
the performance advantages will soon dwindle “in the presence of global
interconnections”. This seems to indicate the need for local connections only.

Finally, the question of communication with external storage units to bring
in/move out values to/from the CNN array has never been answered
satisfactorily. In the conceptual CNN-UM the problem is solved by photo
transduction for input values while the proposed electromagnetic detection
approach remains theoretical only. Practical employment is still conspicuous by
its absence.

Chapter 4

57

Unrolling CNN on FPGA

he strict local connectivity gives CNNs first-hand advantages for tiled
VLSI implementations with very high speed and complexity. This is

tightly coupled to the simplicity of operation as it allows for implementation of
a large number of simple units performing the same simple operation in parallel.
A single chip is then able to accommodate multiple CNN layers, where a
complex and time consuming task is divided into much simpler subtasks that are
performed simultaneously; one subtask per CNN layer. Paradoxically, the
strength of a CNN, i.e. simplicity of operation and local connectivity, constitutes
the main hindrance toward efficient hardware implementation. The
simultaneous activity of cells requires an instantaneous availability of input and
output pairs (u and y-values) for each of the neighbouring cells. Consequently, 8
pairs of values have to be communicated for the minimal 1-neighborhood, one
pair for each neighbouring cell. This is affordable in an analogue realization as it
will result in 16 wires only. In a digital counterpart, a value is represented by an
arbitrary number of bits, each requiring a wire on which a signal is carried. Even
in the simple case of 8-bit values, the simultaneous interconnection will need 64
wires to be routed. Obviously, the interconnection requirements are severely
increased for larger neighbourhood. Actually, establishing the connections
within an arbitrary neighbourhood is so area and/or time demanding that little
research on large neighbourhoods is made. Almost all known CNN templates
are for a 1-neighbourhood, and all realizations are effectively restricted to that.

Parts of this chapter have been presented in [I] and [V].

T

58 Chapter 4 Unrolling CNN on FPGA

As the CNN architecture is so wiring dominated, most of the available logic
is used to render the inter-cell communication possible, yielding in a smaller
network and therefore decreased throughput. Smaller networks do not contain
the amount of cells that is needed to satisfactorily perform complex tasks. For
instance, in the domain of image processing, where most CNN systems find
their target applications, a frame has far more pixels than it can be handled by
the largest available CNN chip (ACE16). One way to remedy this is by moving
from one-to-one mapping between the actual operating unit and the theoretical
CNN cell into a one-to-many correspondence. We have seen in Chapter 3 that
the functional units, denoted PEs or virtual processors, in many CNN chips
operate in-order on a large number of pixels. This, in itself, is a widely used
methodology among system developers. For instance, André de Hon [44] has
posed that the archetypical phase of hardware design is characterized by severe
limitations on computing resources, making it necessary to use every hardware
element as much as possible. This is called temporal computing as the operation
is unravelled in time where the computational process is scheduled to execute-
in-order on the few computational elements. On the other hand, spatial
computing, where the process is unravelled in space, is preferred as it reduces
spurious latency. In fact, the more efficient full-custom mixed-signal chips
(section 3.3) employ the spatial approach and limit thereby the size of the
processed topography (mainly 2-dimensional images) effectively to the amount
of available PEs. In this thesis, the processing unit that performs the operation of
a CNN cell is called node, and consequently is the state equation of a cell
sometimes called the nodal equation. A node may, however, correspond to a
number of cells that each corresponds to one element in the topographic map.
Consequently, a node that performs the nodal equation in-order in a temporal
architecture can be exported to a spatial architecture with almost no
modifications.

Thus, a CNN architecture is able to efficiently handle a complex general
task only if the number of nodes is large enough. How many nodes are enough
is dependent on the application domain, the size of the topographic map and the
amount of operational parallelism that is required. Consequently, smaller inter-
nodal interface is crucial to achieve the goal. In this sense, an analogue approach
is preferred, which explains why so far impressive advances have been made in
analogue realizations only. The best attempt toward a digital realization
emulates the functionality of a CNN rather than providing real-time
performance [42]. These digital emulators are dependent on a host PC in order
to perform the algorithmic steps in the desired order (section 3.4). This
dependence is decisive for the dominance of the analogue realizations so far. In
other words, the exploitation of a stand-alone fully-digital approach is highly
desired, which this thesis aims to tackle.

On the other hand, analogue implementations keep up with high throughput
and low latency by using array of photo sensors for data acquisition. This works
fine for image processing applications where pixels are captured and processed
directly, but imposes high latency if the topographic maps have to be pre-stored.
When pre-storing is involved, network capacity can easily become limited by

 4.1 Mapping CNN on FPGA 59

the available bandwidth, not only inside the network itself, but even towards the
external memory that holds the topographic map.

This chapter starts with a brief discussion on how CNNs are mapped on
FPGAs. In section 4.2 two abstract execution models are introduced in order to
highlight the importance of different communication and computation styles on
the overall performance of any CNN architecture. Then, a brief description of
previously, by the author, published architectures is given in sections 4.3 and
 4.4. Finally, the chapter is closed with a discussion of the main pros and cons of
the presented architectures.

4.1 MAPPING CNN ON FPGA
The desired stand-alone fully-digital approach can benefit from the achievement
of the digital emulators in mapping a CNN on FPGA. We recall that both
digital CNN-UM emulators (section 3.4) are realized on a Xilinx Virtex, i.e. 2nd
generation macro-less FPGA. As the major arithmetic blocks are mapped on
logic blocks provided on the FPGA, it is concluded in [42] that a further
increase in packing density can be achieved in future generations. Indeed, in
modern FPGAs, the over-mass of flip-flops and logic-mapped memory is
supplemented by high-density, multifunctional macros such as Block Select
RAMs and Multipliers. However, the most important feature of an FPGA is its
modular construction, where the physical placement of the different components
simplifies bundling logic and macros to easily form CNN nodes. Additionally,
the eventual existence of Embedded Processor cores, denoted PowerPC in the
terminology adopted by Xilinx, increases the power of computation and allows
for a suitable mixture of hardware and software. Hence, flexibility and
parallelism, provided by the specialized macros together with the modular
construction, and the facility of spatial computing have made FPGAs already
very popular as hardware accelerators and efficiently equipped to map modular
structures, i.e. CNNs. .

The thesis stresses the exploitation of the built-in macros to spatially unroll
the local feedback. The presented implementations rely on Xilinx Virtex-II 6000
and Xilinx Virtex-II Pro 20/30 [38]. These FPGAs are characterized by the
richness of multiplier and RAM built-in macros that are closely placed pair-wise
in a number of columns, whereas logic blocks are almost equally spread
between the columns (Figure 4.1) . The functional blocks are available in a
matrix-style floor plan which simplifies the mapping of the CNN mesh. In
Virtex-II Pro 30, part of the matrix is obscured by the insertion of one or more
PowerPC cores, yielding in a non-regular floor plan (Figure 4.1 right). This
demands a careful placement of the nodes and may therefore complicate the
procedure of floor planning the design.

A proposed mapping of the arithmetic blocks in a cell is illustrated in Figure
 4.2. The different template coefficients need to be locally available as they are
used in the nodal computational procedure. Thus, the coefficients are stored in a
BRAM whose adjacent multiplier macro performs the multiplications, while

60 Chapter 4 Unrolling CNN on FPGA

remaining computational operations such as addition as well as thresholding are
suitably mapped on Configurable Logic Blocks (CLBs).

Figure 4.1 The configuration of a Virtex-II 6000 (left) and Virtex-II Pro P30 (right) from
Xilinx. Grey columns represent bundling logic in form of CLBs, while the vertical boxes
represent pairs of multiplier and BRAM macros. The placement of PowerPCs disturbs
the matrix-style in the Pro P30 device.

Template
Coefficients Block Select RAM

Multiplier Multiplier Macro

Adder

Discriminator

Configurable Logic
Blocks
 (CLBs)

Figure 4.2 Mapping a CNN cell on FPGA primitives. Vertical arrows show possible data
flow among different functional blocks/ FPGA primitives.

 4.2 Abstract Execution Models 61

4.2 ABSTRACT EXECUTION MODELS
Looking back at the basic nodal equation of a single node (Eq. (2.19)), three
contributions can be distinguished:

 The feedback contribution, ∑ ܽௗ
 ௗሺ݇ሻ, is involved in the iterationsݕ

towards convergence.
 The control contribution, ∑ ܾௗ

ݑௗ, is valid for the current topographic
map and does not depend on the iterations.

 The offset contribution, i, simply replaces the summed contributions to
the right position for the final discrimination.

In this sense, the functionality of any node in the network is as follows. For
each topographic map, the control contribution is first computed together with
the bias, which results in a constant value that remains unchanged for the current
map. This constant is preferably stored locally in the nodes. Then, the feedback
contribution is calculated and added to the stored constant, resulting in a new
nodal state that is discriminated to obtain the first iterative nodal output. For
successor iterations, only the feedback contribution is computed, and the new
state is discriminated and so on until convergence is reached or the iterative
procedure is explicitly stopped. The calculation of control and feedback
contributions is identical by means of number and nature of the performed
computational operations. The series of multiply-and-add operations have,
however, to be explicitly scheduled in order to guarantee correctness of
functionality and achieve the desired performance. The need for explicit
scheduling on nodal activities works out differently for different CNN to
Network mappings. Two main categories can be distinguished:

 The consumer node is fully in accordance with the nodal equation. The
discriminated output of a node is also the nodal output. It is broadcasted
to all connected nodes, where it will be weighted with the coefficients of
the applied template before the combined effect is determined through
summation (Figure 4.3.a).

 The producer node discriminates the already weighted inputs and passes
to each connected node a separate value that corresponds to the cell
output but weighted according to the applied template (Figure 4.3.b).

Ideally all nodes are directly coupled and therefore bandwidth is maximal.
In practice, the space is limited and the value transfer has to be sequenced over a
more limited bandwidth. This problem kicks first in with the producer-type of
network, where we have 2݊ connections for ݊ neighbours. The network-on-chip
approach is meant to solve such problems. However, as the Cellular Neural
Network is a special case for such networks, being fully symmetric in the
structure and identical in the nodal function, such a NoC comes in various
disguises.

In the consumer architecture, scheduling is needed to more optimally use
the limited communication bandwidth. Switches are inserted to handle the
incoming values one-by-one. To identify the origin of each value, one can either

62 Chapter 4 Unrolling CNN on FPGA

schedule this hard to local controllers that simply assume the origins from the
local state of the scheduler (circuit switching, Figure 4.4.b), or provide the
source address as part of the message (packet switching, Figure 4.4.a). The
former technique is simple. It gives a guaranteed performance as the symmetry
of the system allows for an analytical solution of the scheduling mechanism.
The latter is more complicated, but allows also for best effort.

Figure 4.3 Consumer (a) and producer (b) cell to node mapping.

Figure 4.4 Value routing in the consumer node by multiplexing in space (a) and in time
(b).

The counterpart of consumption is distribution. Every node produces values
that have to broadcast to all the neighbours. Again where the communication
has a limited bandwidth, we need to sequence the broadcast and this can be done
in the same way as for the value consumption (Figure 4.5).

In a word-serial/bit-parallel approach, all nodes are broadcasting packaged
values simultaneously over a set of ‘rotating wheels’ (Figure 4.5.b). For a 1-
neighborhood, the cells execution time is ܿ ݀, where ܿ is the amount of
neighbouring cells and ݀ is the core cell cycle. The packet that passed through
the network is comprised by the values and for both the row and the column
address 2 bits each. So, for an 8-bit value, a packet of 12 bits is needed. The
network interface comprises of the packet switch, an input buffer and an output

 4.2 Abstract Execution Models 63

register. The core node will iterate a parallel multiplication plus addition,
followed by discrimination. Characteristic for this approach is the need for a
parallel multiplier; furthermore it can only work on fixed-point integer.

Figure 4.5 Another value routing in the consumer node by multiplexing in space (a) and
in time (b).

The state of a cell is contained in the output register. For a multi-layer CNN
implementation, the state is salvaged in the local memory. Therefore the
overhead in performing the same operation on an image sequence or different
operations on a CNN sequence is moderate.

In the case of producer architectures, the nodal output is already
differentiated for the different target nodes. Each target node will combine such
signals to a single contribution. This combining network is an adder tree that
will reduce the ݊ values to 1 in a pipeline fashion. Consequently, this tree can
also be distributed, allowing for a spatial reduction in bandwidth. This can be
seen from the simple re-write of the CNN equation as in Eq. (4.1). The content
of the bracket is produced in neighbouring cells d before transmitted to cell c.

ሺ݇ሻݔ ൌ ሾܽݕሺ݇ሻሿௗ
ௗאேೝሺሻ

 ሾܾݑሿௗ
ௗאேೝሺሻ

 ݅ (4.1)

The overall processing scheme as shown in Figure 4.6 is then similar to
what has been discussed for the consumer architecture. The main difference is
that the communicated values will be larger as they represent products and are
therefore of double length. Where the consumer architecture is characterized by
‘transfer and calculate’, the producer architecture is more ‘calculate and
transfer’. Furthermore they both rely on a strict sequencing of the
communication, simultaneously loosing a lot of the principle advantage of
having a cellular structure.

Also here, we have to look at the way values are broadcast. In contrast to
the consumer architecture, we have as many output values as there are
neighbours. This makes for an identical situation and no additional measures are
needed, except for the fact that we will not be able to generate all the different
products at the same and the sequencing issue pops up again.

64 Chapter 4 Unrolling CNN on FPGA

Figure 4.6 Different adder trees to obtain the state of the producer node

In word-parallel/bit-serial approach, all nodes are serially forwarding their
values to all neighbours directly (Figure 4.6.b). Being circuit switched rather
than packet-switched, no addresses are transmitted. For a 1-neighborhood, the
cell execution time is given by ݊ ݀ ሺܿሻଶ݈݃ , where ݊ is the number of
bits, ݀ is the core cell cycle and ܿ is the amount of neighbouring cells. There is
no network interface. The local multiplications are done bit-wise and are
followed by an adder tree that gradually increases in size. Characteristic for this
approach is the reduction of the multiplier to a mere AND-gate; furthermore it
can be easily adapted to scaled arithmetic and therefore allows a large dynamic
range with limited precision.

It appears that the two architectural varieties differ mostly in the balance
between wiring and logic, and are therefore dependent on the realization
technology. They both show the ability to pass state and output data via the local
memory, effectively mapping a levelled hierarchy of CNNs into a single
implementation.

4.3 IN THE FOOTSTEPS OF THE FORERUNNERS (PIPELINING)
Analogue realizations have a larger capacity but suffer from limited accuracy, in
contrast to digital realizations that have a smaller capacity but can in principle
operate at a quasi-infinite accuracy. In fact, accuracy is limited due to amount of
available resources. In the case of 8-bit precision for input values and template
coefficients, the multiplicative adding of 19 contributions (1-neighbourhood)
will lead to a 21-bit internal result; for a larger neighbourhood this will grow
drastically. The amount of logic each node may occupy is not affordable!

The architectural characteristics emanate from a routing problem that occurs
when information is sent to each of the 8 nodes in the direct neighbourhood. A
local congestion can clearly not be avoided. This problem is attempted to be
solved by not feeding all values simultaneously to the node. In the extreme case,
values are fed in series creating a kind of systolic array as originally suggested
by [42] (section 3.4). This is the state-flow architecture [50], where nodal

 4.3 In The Footsteps of The Forerunners (Pipelining) 65

state/output values flows together with corresponding input data in the
topographic map over array of cellular nodes coupled in series. In this way,
FPGA resources such as multipliers, adders and other logic blocks are
temporally exploited. Multiplicative additions are executed in-order on the
limited computational elements. The architecture is developed with image
processing in mind. As it will operate on images out of a stream, captured by a
camera, it must be able to deal with many degrees of freedom in real-time:
width and height of the image, the sequence of images in the stream, and the
temporal dimension due to the iterative nature of the nodal equation.
Apparently, the implementation medium, i.e. FPGA, offers only two dimensions
and the others have to be masked away, which is easiest done by usage of local
memory. The main architectural issue is then which two dimensions will rule
the floor plan. Furthermore, the size of the frame is usually larger than the
network, which implies partitioning of the image; passing the image in stripes
over the system (Figure 4.7). This widely employed approach is called
windowing (see e.g. [42]). Thus, the local operation is performed in 2-
dimensional plane (width and length), of which one is masked away by stripe
flow, and iterates in time. This is repeated over image slices and iterates over the
surface to handle potential wave propagation. Finally, the operation is
performed on a sequence of images.

Image
stream

stripe

line

DT-CNN

Figure 4.7 Dimensionality of DT-CNN image processing.

In a naive realization4 of the state-flow architecture, employed for image
processing applications only, data dependencies between scan-lines in an image
are stretched over a pipeline of single multiply-accumulate units (Figure 4.8).
Each performs only one operation on a single coefficient/input pair and then
moves the result to the next unit. Pixels needed to perform the desired
computation of the output for one node, are fetched from three series of registers
connected to the pipeline. In this sense, each neighbouring pixel is evaluated
separately in a pipelined fashion, doing in series as many multiply-accumulates
as there are cells in the neighbourhood.

4 A student project implemented and presented in the course VLSI Architecture at

Dept. Information Technology, Lund Univeristy, 2003. For further details see [49].

66 Chapter 4 Unrolling CNN on FPGA

x
+

x
+

x
+

x
+

x
+

x
+

x
+

biasA B C

x
+

x
+

)(ky A)(ky B)(kyC

)1(−ky A

)2(−ky A

)3(−ky A

)4(−ky A

)5(−ky A

)6(−ky A

)7(−ky A

)8(−ky A)8(−kyB

)7(−kyB

)6(−kyB

)5(−kyB

)4(−kyB

)3(−kyB

)2(−kyB

)1(−kyB

)8(−kyC

)7(−kyC

)6(−kyC

)5(−kyC

)4(−kyC

)3(−kyC

)2(−kyC

)1(−kyC

Figure 4.8 Data dependencies for a pipeline in a naive temporal state-flow architecture.
Only the pipeline corresponding for the middle node is shown. White boxes represent
functional blocks; consisting of a multiplier and an adder, while grey boxes represent
registers. The middle node corresponds to a pixel sequence B. For sequences A and C,
functional blocks are dropped for clarity. Identical architecture is used to calculate the
contribution of pixel inputs.

Based on the observation that both multiplication sequences are
independent, the desired network behaviour is implemented as two 9-stage
pipelines per one DT-CNN node. The output is obtained by thresholding the
sum. Thus, one pipeline, consisting of 18 multipliers and additional logic, is
needed for every column of the image. Due to the organisation of multiplier
macros in the target FPGA, i.e. Virtex-II 6000, in 6 columns and 24 rows
(Figure 4.1), only six nodes can be mapped. Additionally, a node on each side of
the image stripe is needed to eliminate boundary effects, which reduces the
actual number of image columns processed in parallel to four only.

Apparently, the throughput of this, so-called temporal, approach is way
lower than it can be accepted in spite of, or especially due to, using large
amount or resources on the FPGA. To overcome this drawback, spatial and
temporal elements are mixed by interweaving three pipelines corresponding to a
row of three pixels (Figure 4.9). This reduces the latency and makes better

 4.3 In The Footsteps of The Forerunners (Pipelining) 67

utilization of the available resources. The nodes are grouped in columns where
each column holds a scan-line in the image stripe. The columns will then form
iterations performed on the image. In this way, one dimension (width or length)
of the image frame together with the number of iterations are implemented as
columns of nodes while the other dimension of the frame is handled by slicing
as illustrated in Figure 4.7. One of the resulting realizations is a design called
ILVA [49].

Timing & ControlCNN topologyScan-lines

4

3

2

3

2

1

Iteration 1

Iteration 2

Figure 4.9 Mixed spatial-temporal state-flow architecture operating directly on the pixel
pipeline.

The principle of operation is as follows. Each image stripe is entered to the
CNN on scan-line-by-scan-line basis, as depicted in Figure 4.10.a. Here the
sequence of scan-lines is numbered lexicographically using characters each
representing a scan-line. Then, if a column in the CNN structure contains scan-
line B, the column to the left will contain the next scan-line C and the column to
the right will contain the previous scan-line A. Bringing the cell numbering
(Figure 4.10.b) and the pixel numbering (Figure 4.10.a) together, we come to
represent a pixel by triplets, where pixel A and C are orthogonal neighbours to
pixel B but so are the upper Bu and the lower Bl (Figure 4.10.c). Consequently,
at any given moment the network contains a part of the image as seen by
viewing the picture.

Functionality of the architecture, as illustrated in Figure 4.11 can be
algorithmatically described as:

for (a pixel line of limited length) do{
compute the constant contribution ܤ ൈ ݑ ݅
pass ܤ ൈ ݑ ݅ and y to the next stage

 perform an iteration
while (there are more stages) do{

pass ܤ ൈ ݑ ݅ and the iteration result to the next stage
perform an iteration

}
send the local outputs to the image store

}

68 Chapter 4 Unrolling CNN on FPGA

uB

lC
lB lA

uAuC

C

C B

B A

ADEFG

Figure 4.10 Numbering of CNN cells (b), lexicographically ordered pixels (a) and in
combination (c).

)0(Ky

Mu Kconst

)1(Ly

Lconst Gconst

)2(Gy

Econst Cconst

)3(Ey)4(Cy)5(Ay

Figure 4.11 Snapshot of data flow between consecutive columns in ILVA. The design
consists of six columns corresponding to one initial stage and five subsequent iterations.
The notation of inputs u, outputs y and intermediate constants const follows the
lexicographical ordering presented in Figure 4.10. The data flows from a node in a
certain stage to a node, allocated in the same row, in the successor iteration stage.
Arrows between two columns illustrate data flow originating from all nodes in a column.

The underlying idea is that a 2-dimensional computation of the local cell is
flattened into a series of 1-dimensional computations by dropping intermediate
results on the computational path. In this way, the requirement of each node to
have data from eight neighbours for finding the output is met. In other words,
we let every node in the network contain image data from three pixels, i.e. pixel
values for the cell itself and for its left and right neighbours are stored in each
node. A direct connection with the two nodes above and below completes the
communication between a node and its neighbourhood. In short, one node
contains three pixels and calculates the new value for one pixel and one
iteration.

 4.4 NoC-based Implementations 69

The prescheduled broadcasting in ILVA keeps the communication interface
at minimum, which allows for a large number of nodes on chip. The
performance is high as the system directly follows the line accessing speed, but
the design suffers from a number of weaknesses. It supports 1-neighborhood
only, where extension to larger neighbourhood requires, due to the hardwired
communication interface, a total overhaul. The iterations are flattened on the
pipeline, one iteration per pipeline stage, making the number of possible
iterations not only restricted due to the availability of logic, but also fixed.
Operations that require a single iteration only, have still to go through all
pipeline stages. Output data has to be fed back to the pipelined system in order
to perform additional iterations, making it far from trivial to handle larger
iterations without accessing the external image memory. This requires additional
logic for loading and uploading pixel data and therefore adds overhead for
timing control and thereby severely slows down the system.

Though the architecture is very efficient for a single image operation, the
handling of image streams (Figure 4.7) is less trivial. This is foremost because
the pixel line flow does not support localized storage related to the original
image. In effect, only the first array of nodes operates directly on pixel
information. Consequently it becomes hard to store past information about more
than a couple of pixel lines. Therefore this architecture seems unsuited for Wave
Computing, i.e. manipulating streams of images.

The dilemma is resolved through packet switching techniques based on the
concept of Network on Chip [9] [87]. By splitting the node into a processor and a
router, local timing becomes uncoupled. Actually, the path is still pre-defined as
circuit switching with packet-switching techniques are mixed by replacing the
hardwired communication with a packet-based communication pattern. By
actively sending information to addressed nodes it becomes possible to create
temporary storage out of line with the strict matrix topology. In this way, more
iterations and more history may be accommodated. In the following, we explore
two alternative architectures. The former serves as an extension to ILVA, where
some of design limitations are removed. The latter explores a totally different
approach of dealing with the problem.

4.4 NOC-BASED IMPLEMENTATIONS
Sleipner [49] is introduced as an improvement of ILVA architecture, where

limitations experienced with the hardwired communication pattern are to be
overcome. A generalization of the network system in order to support templates
of an arbitrary size, i.e. neighbourhood size larger than 1, is the main issue.
Similar to the flow pattern shown in Figure 4.11, sending a packet one column
to the right means passing the value one iteration ahead. Pixel data is “kept” in
each column for 3 iteration cycles before it gets modified and passed further.
Consequently, data will never pass across more than one column at a time,
regardless the neighbourhood in use. Neighbourhood size, however, dictates the
number of rows the packet has to cross. Figure 4.12 illustrates transferring a
packet in a 2-neighbourhood.

70 Chapter 4 Unrolling CNN on FPGA

Figure 4.12 Packet transfer scheme in a 2-neighbourhood. A packet, originating in the
middle cell in the left iteration column, is transmitted to all cells within the neighbourhood
in the right iteration column.

In spite of the clear improvements Sleipner brings, it still inherits the
limitation of 5-iteration steps from ILVA. This originates from the pipelined
nature of both designs. An alternative architecture has simply to have a large
network of simple nodes, each performing the entire iteration according to the
CNN nodal equation. The equation is not unrolled in time but in space, and the
nodes retain the result of the equation evaluation so that next iterations do not
involve access to the external data memory. In this state-scan architecture [50],
the neighbourhood is actively scanned for the input values. The coefficient/input
pairs are sequentially fed through a single multiply-accumulate unit in a
predetermined schedule. Such a schedule is totally decoupled from the inter-
nodal communication scheme where nodes transfer their values within the
neighbourhood in parallel. The aspect of being completely local is crucial to
achieve high performance. Otherwise, a global communication scheme will lead
to many bus conflicts and will therefore require additional bus arbitration. The
local broadcasting scheme can be carried out in two different ways: word-serial
or word-parallel. In the former, each node communicates its input/output value
to a single neighbour, whereupon the message starts on a circular trip (Figure
 4.13.a). After 8 time-steps, all nodes within 1-nieghbourhood have received a
copy. Doing so for all nodes in the neighbourhood simultaneously, all u/y values
become locally available in each node (This model is covered in Chapter 5). The
word-parallel scheme (Figure 4.13.b) follows a more symmetric distribution,
where the node passes its value first to the orthogonal neighbours at west, north,
east and south. Next, the orthogonal neighbours duplicate this value in one
sideway direction perpendicular on the former direction. Doing so for all nodes,
at the same time, duplex orthogonal connections among all nodes have to be
available (instantaneously). Instead, the broadcast is parallelized by
simultaneously activating nodes at a knight-jump distance (think Chess!) as
depicted in Figure 4.13.c, which brings the number of passes to 10 for the full 1-
neighbourhood.

Both communication schemes make use of a simple router that consists of
four switches on the orthogonal directions in line with well-known wormhole
set-up. The router basically receives a data-packet originating from one of the
neighbouring nodes, regularly refreshes a local buffer with new information, and
eventually forwards the packet further while the local processor keeps on

 4.4 NoC-based Implementations 71

computing. Figure 4.14 shows a schematic view of the architecture of a single
node. The set-up is rather classical where the template memory takes the role of
the program store.

Figure 4.13 Switched broadcasting schemes: word-serial (a) and word-parallel (b).
Nodes are activated at knight-jump distance in word-parallel broadcasting (c).

Processor

Data Memory

Templates

Switch

Switch

Switch

Switch

Figure 4.14 A node communicates with the neighbourhood through four switches.

The state-scan approach with word-parallel scheme has been embodied in a
design called Caballero [49]. The inner architecture of the node is similar to the
one in ILVA with common sub-units such as data memory, template memory,
multiplier-accumulator (MAC) and local controller. A Caballero node is further
equipped with a FIFO element to bring in global data, i.e. input and initial
output values. The principle of operation depicted in Figure 4.15 is as follows.
Pixel lines come into the FIFO till it is fully filled. Then these values are copied
into the CNN nodes that subsequently start computing and communicating.
Meanwhile new pixel lines come in over the FIFO. When the FIFO is filled
again and the CNN nodes have completed all local iterations, the results are
exchanged with the new inputs. This leaves the CNN nodes with fresh
information to work on and the FIFO can take new pixel lines while moving the
results out.

Upon start, nodes are provided with pixel values over the FIFO-structure.
The first set of active nodes then start delivering u-values within the
neighbourhood. Activation is moved among cells until all cells contain complete
information about neighbours’ u-values. Next time a node gets active, it will

72 Chapter 4 Unrolling CNN on FPGA

eventually have the calculated value ready to be transmitted. Once a node
completes the transmission cycle, the successor node in the activation group
(Figure 4.16) is turned on. Hence, a mechanism that assures a smooth exchange
of activation is required.

FIFO element

Router

Switch

CNN node

Figure 4.15 The state-scan architecture uses a network of CNN nodes with a Network-
on-Chip, while the pixels are transported over a distributed FIFO.

A global control algorithm that groups the CNN into active and non-active
nodes seems easy to implement. But the impact of a global control unit on
wiring and timing overhead is not acceptable as the overall performance is
negatively affected. A better solution is making the desired controlling local
within each activation group. The activation pattern consists of 5 steps for the
case of 1-neighbourhood. Once the node completes transmitting a packet, it
notifies the successor node to get active by asserting an activation signal. Note
that the activation pattern is incomplete for boundary nodes, i.e. edge and corner
nodes, as these nodes lack certain neighbours. For further details about
Caballero the reader is asked to look at [49].

4.5 DISCUSSION
Mixed (ILVA) and pure temporal architectures differ in a number of ways.

First, the modular structure of the spatial design offers a better usage of the
distributed memory than the sliced structure of the temporal design. Second, the
temporal design with pipelines in the succession of multiplying-adder operations
for a single DT-CNN node needs a frequent access to the external memory,
while the spatial design allows unrolling the design for the required
computational iterations. This eases the demands on external memory access
and therefore leads to an intrinsically better performance. Furthermore, a single

 4.5 Discussion 73

node in the temporal design occupies at least 18 multiplier-adder pairs, which
leads to imperfect floor plan and thus decreases the degree of resource
utilization, while the modular nodes of the spatial design allows 24 nodes per
column. The maximum capacity of a spatial architecture in terms of parallelized
pixels is about 5-6 times higher than that of a temporal architecture (Table 4.1).
The low clock rate of 17 MHz, mainly caused by the complexity of the pixel
address generation, is a major drawback for the temporal architecture. There is
of course room for more optimization, but the gap to the implementation in the
spatial architecture, i.e. at least a factor of 40, is too large to bridge. This fact,
together with the observations listed above, leads to the conclusion that the
mixed architecture brings clear benefits.

Figure 4.16 Caballero nodes are divided into active and non-active nodes in
accordance with the knight-jump distance. Each activation group consists of 5 nodes
that are activated in sequence A-B-C-D-E-A.

The most important disadvantage of the pipelined design, ILVA, is the
restriction of the number of iterations into 5, which leads to decreased
convergence and thus contributes with a tangible loss in performance. The
packet-based distribution scheme overcomes this limitation and allows for user-
defined level of convergence, which makes it preferable.
Table 4.1 Comparison of the two state-flow architectures. Logic counts are obtained
after synthesis with Synplify, while throughput is obtained by simulating the designs
using ModelSim. In ILVA, different depths (i.e. number of rows) yield different
throughputs.

 ILVA Temporal
Slice utilization 37% 13%
LUT utilization 28% 12%
Multipliers 132 78
BRAMs 132 0
Max. frequency (MHz) 100 17.3
Cycles per iteration 10 17
Throughput Mpixel/sec 205-220 4.1

Word-serialized broadcasting scheme (Figure 4.13.a) can be easily
expanded to a higher neighbourhood than 1 without significant modifications in
the strategy. Active nodes are simply chosen with equidistance depending on the

74 Chapter 4 Unrolling CNN on FPGA

neighbourhood in use. This ability is not valid for the switched broadcasting
scheme (Figure 4.13.b). On the other hand, the switched approach provides a
symmetric distribution of packets in the neighbourhood (Figure 4.17).

3

1

(a) (b)

2

2

4

3

17

13

6

15

18 19

23

5

8
7

249

13
4

16
14

20

21
22

2

11 1012

Figure 4.17 Distribution time for 2-neighbourhood in KJL (a) and SSL (b)

Due to the use of packet-based switching, communication and computation
needs are decoupled, which removes the hard timing constraints found in ILVA.
This allows for fetching new input data independently of the operational status
of the nodes. While the nodes compute and communicate, new template
coefficients can be sent using the FIFO structure. This releases a considerable
amount of storage logic that can be used for other purposes, e.g. keeping a
number of nodal values. Each node corresponds then to different pixels in
different image frames in a stream. By storing a pixel value from successive
frames, Wave Computing is within reach.

Chapter 5

77

Stretching The Communication

 n a switched broadcasting, as introduced in the state-scan architecture,
all nodes send their own values to the orthogonal neighbours that copy the

data and forward it in a perpendicular direction to the received one.
Theoretically, all nodes will have access to the values of the entire
neighbourhood after two steps only but the group-based scheduling adds a
latency as large as a 10 clock cycles. Hence, the actual communication cycle,
during which a node is idle, is coupled to the number of cells in each subgroup.
In other words, the short communication pattern of two steps does not boost the
performance. On the contrary, it affects the final throughput negatively due to
larger routing units and thereby smaller network. By stretching the
communication cycle of a 1-neighborhood to 10 clock cycles, the routing
demands are reduced, which in turns leads to simplified control. This is the
semi-parallel broadcasting scheme (Figure 5.1.a), where the possible directions
are always: North, East, South and West. Received packets are labelled in
accordance to the position of the source node with respect to the current
(destination) node. Obviously, the computation needs can be plaited together
with the communication cycle. Table 5.1 shows how this can be done with
sending and forwarding packets.

In this chapter a serial scheme (Figure 5.1.b) is proposed. The values are
sent out in one direction only, but are forwarded to all nodes within the
neighbourhood serially. Table 5.1 and Table 5.2 show that stretching the

Most of the material in this chapter has been published in [VI].

I

78 Chapter 5 Stretching The Communication

broadcasting of packets yields the same sequence of computation calculation,
regardless of the broadcasting scheme. The received packets are consumed
directly and overridden by subsequent packets. Consequently, the need of a
local memory to hold the values of all neighbouring nodes is removed. A single
register is used to hold the current packet before it is multiplied by
corresponding template coefficient that resides in a local memory. Traditionally,
the same memory is used to hold a look-up table representing the discrimination
function.
Table 5.1 Semi-parallel broadcasting scheme

Clock cycle Send Receive Forward Hold Calculate

௪ ܽ௪ݕ 1 · ௪ݕ

2 N S E ݕ௦ ܽ௦ · ௦ݕ

3 W ---- ܽ௦௪ · ௦௪ݕ

4 E W S ݕ௪ ܽ௪ · ௪ݕ

5 N ---- ܽ௪ · ௪ݕ

6 S N W ݕ ܽ · ݕ

7 E ---- ܽ · ݕ

8 W E N ݕ ܽ · ݕ

9 S ---- ܽ௦ · ௦ݕ

10 ݂ሺ·ሻ

Figure 5.1 Switched broadcasting schemes: Semi-parallel (a) and Serial (b).

The chapter is organised as follows. First, a simple network interface that
can remove the need for global synchronization is introduced in section 5.1. As
the design is realized on a Virtex-II FPGA from Xilinx, the internal design of
the node aims on a best utilization of the available functional units. Section 5.2
describes how this is carried out. Complications that rise in connection to
handling boundary conditions are demonstrated in section 5.3. Finally, the
chapter is closed with a discussion on how the performance can be boosted
further.

5.1 KEEPING THE CONTROL LOCAL
Looking back at Eq. (2.34), we see that the part involving ݑௗ-values together
with the bias remains unchanged during the iterative process of computing the
new nodal state and thereby the new output. Thus the broadcast will first handle

 5.1 Keeping The Control Local 79

the inputs ݑௗ and the bias and the resulting constant is locally stored. On every
next iteration, the result of broadcasting the cell outputs will be added to the
stored constant to give the new cell output. There is no need anymore for a
global control and the network interface is very simple.
Table 5.2 Serial broadcasting scheme

Clock cycle Send Receive Forward Hold Calculate

௪ ܽ௪ݕ 1 · ௪ݕ

2 N S ݕ௦ ܽ௦ · ௦ݕ

3 W E ݕ௦௪ ܽ௦௪ · ௦௪ݕ

4 N S ݕ௪ ܽ௪ · ௪ݕ

5 N S ݕ௪ ܽ௪ · ௪ݕ

6 E W ݕ ܽ · ݕ

7 E W ݕ ܽ · ݕ

8 S N ݕ ܽ · ݕ

9 S N ݕ௦ ܽ௦ · ௦ݕ

10 ݂ሺ·ሻ

In order to simplify the control demands, the addressing of template
coefficients is obtained through a base-address register that holds the higher
address part, and indexing of the lower address part that is carried out by the
nodal controller itself. As the BRAM has the configuration of a 2K entries
memory, the base-address register does not need to be wider than 6 bits. The
address space is arranged as shown in Figure 5.2. For a 1-neighbourhood 19
coefficients need to be stored for each template: 9 control coefficients, 9
feedback coefficients and a bias. As the control coefficients and the bias are
used in the first iteration to compute the constant, they are stored sequentially
and can be addressed by 4 bits. A u/y-flag, set by the nodal controller, allows the
addressing of the corresponding feedback coefficients. The base address picks
out the correct template.

Figure 5.2 Address space of the nodal template memory

80 Chapter 5 Stretching The Communication

Also a number of templates are pre-stored in the local memory. But other
templates can be sent by the user to every node in the network through the
FIFO-elements. These FIFO-elements have served originally to bring the
external inputs u into the nodes, but their functionality can easily be extended to
cover the handling of template transmission. At first glance, this additional
mechanism seems to add on the complexity of the nodal controller, but a proper
usage of information stored in the header of the received FIFO-packets keeps
the complexity at a minimum.

Two main types of FIFO packet do exist. These can be divided further into
subtypes:

• Value packet
o U packet
o Y packet

• Template packet
o Coefficient packet: used to store template coefficients properly in

the BRAM.
o Base-address packet: indicating the starting address from which

the coefficients of the currently used template are fetched.
A FIFO packet contains two main fields: DATA and CTRL. The former is

always 8 bits wide. It holds ݕ/ݑ value in the Value packet or coefficients and
base address in the Template packet. The control field is further divided into 4
fields of different widths. These are, starting from the most significant bit:
VALID, TYPE, SUBTYPE and INDEX fields (Figure 5.3). The first three fields
are 1 bit wide each, while the width of the INDEX field varies depending on
subtype and size of the network. FIFO elements are arranged in a grid, one
element per CNN node. These elements are numbered row-wise, i.e. all FIFO
elements that are aligned along row r are labelled with the row index ݎ. In other
words, in a Value packet the INDEX field will contain CNN-row number of the
corresponding node to which the packet is intent. In a Coefficient packet, this
field holds the sequential index of template coefficients, but it does not have any
significance in a Base-address packet. The base address occupies normally the
DATA field. Apparently, the size of the INDEX field varies with the number of
rows in the network and the neighbourhood size. Packets are distinguished by
using TYPE and SUBTYPE fields. The VALID field indicates the validity of
the FIFO-packet.

Figure 5.3 A FIFO packet is divided into 5 fields of different widths. V,T and S stand for
VALID, TYPE and SUBTYPE respectively.

 5.1 Keeping The Control Local 81

 The importance of packet division into fields is obvious when the FIFO
packet is used to control the functionality of a node. In the following, this is
demonstrated by a simple sequence of actions performed on a certain
topographic map.

(1) Use pre-stored template: The first action is to compute a new output by
applying a pre-stored template. As templates are pre-stored in a BRAM
locally in each node, a base address serves as a pointer to the template
to be used. This starting address is set explicitly through a base address
packet. Each node computes new y values iteratively until a new ݑ
packet is received. The content of the FIFO-element is then swapped
with the current ݕ-value that is flushed out to the user.

(2) Receive new template: For 1-neighbourhood 19 coefficients have to be
sent which yields in a TEM-INDEX field of at least 4 bits (Figure 5.3).
This is carried out using a set of template coefficient packets as
demonstrated below:
a. The procedure starts with sending a Base-address template in

order to point out the position in the template memory where the
new template is to be stored.

TYPE = 1
SUBTYPE =1
INDEX = XXXX
DATA= base address

b. The nodal controller waits for the current iteration to be
completed before the computation is halted. Most important is
that the u/y register is disabled to prevent the obtained y-value
from being overridden. One node of the last row sends then a
ready signal out to the user.

c. When all nodes have completed the current iteration and updated
the base address, a Coefficient-packet containing the value of the
bias is sent. The index field is used to address the BRAM where
the coefficients are stored. This packet is forwarded to all the
nodes through the FIFO-structure.

TYPE = 1
SUBTYPE = 0
INDEX = bias index
DATA = bias value

d. The template coefficients are sent one by one. These will
gradually reach all the nodes in the system.

e. The procedure ends when last Coefficient packet is received. The
nodal controller waits for the new u-value to be received before
new calculation round is initiated.

TYPE = 0
SUB-TYPE = 0
INDEX = CNN-ROW

82 Chapter 5 Stretching The Communication

5.2 THE NODAL DESIGN
In principle, control demands are reduced down to a mux-enable signal and
addressing of the template memory. A single register is used to hold one value
only according to Table 5.2. The content of the register is overwritten as a new
value is received or locally produced. The schematic design of the node is
shown in Figure 5.4. Here the local memory is merged with the discriminator, as
it also holds a table of pre-computed values to map the state onto a certain
output.

T coeff

FIFO

constant

c reg (16 bits)
Proc.

Discr.
&

BRAM

Router

Controller (FSM)

router_ctrl
ce

y

u/y reg (8 bits)

sel

base (6 bits)6

8

16
21 8 8

8

16

16

swap & ce

8

proc_ctrl

11

ce
ce

16
3

ram_ctrl

address
data
control

8

Figure 5.4 A schematic view of the serial CNN node.

The nodal controller has the full responsibility for all computation and
communication activities. It is built as a simple state machine consisting of 3
main states as shown in Figure 5.5. Upon start the controller is IDLE and awaits
a FIFO-packet. From here it can take two different paths: it may ITERATE on
the received input value or LOAD new template coefficients. In the latter state,
the controller enables the writing to certain addresses in the local memory. The
addressing of the memory is combined using the content of the base address
register, the u/y flag and template indexing field in the received FIFO-packet.
Both computation and communication are performed in the ITERATE state.
Here, the same sequence of sub-states perform constant- and new y-value
calculation flattened with distribution of data packets within the neighbourhood.

Apart from the multiplexer in front of the u/y register, there is a need to use
3 other 2-to-1 multiplexers internally in some components: 2 in the processor
and 1 in the discriminator. In the former (Figure 5.6), one multiplexer provides
the accumulator with the proper data, constant value on one side and ݑ · ݕ ,ܾ · ܽ
or bias values on the other side. The second multiplexer is used when the bias is

 5.2 The Nodal Design 83

loaded into the accumulator. Here the bias is multiplied by 1 and send to the
accumulator.

Figure 5.5 The nodal controller is built as a simple FSM. The ITERATE state tself
consists i of a number of states.

Figure 5.6 A schematic view of the nodal processor.

In the Discriminator (Figure 5.7), template coefficients are addressed
differently. In the ITERATE state the controller indexes the lower part of the
address, while this is obtained directly from the FIFO-packet during the
LOADing of the new template.

Figure 5.7 A schematic view of the nodal discriminator

84 Chapter 5 Stretching The Communication

5.3 BOUNDARY NODES
The functional correctness of any CNN system depends on the handling of the
boundary nodes as these lack complete neighbourhood. Traditionally, the effect
of boundary conditions is modelled by adding virtual nodes on the edge of the
network. The problem here is further complicated by the asymmetry of the pre-
scheduled communication pattern: boundary nodes experience different needs
depending on their position in the network. Figure 5.8 illustrates the disturbed
communication cycle for edge boundary nodes. The situation is even worse for
the corner nodes (Figure 5.9). Actually, not only boundary nodes are affected by
the incompleteness of broadcasting but even close-to-boundary nodes as well
(Figure 5.10 left).

Figure 5.8 Boundary nodes have an incomplete communication cycle (from step 1 to 8).
Squares represent nodes while the dotted lines show which part of the packet path is
missing. The receiveing node is shaded.

 5.3 Boundary Nodes 85

 Figure 5.9 Boundary nodes located at the corners suffer more of the incomplete
communication pattern.

Employing the traditional approach of adding virtual nodes is not as simple
as it may seem. Besides being unable to solve the problem completely, it adds
on the network size. In any prescheduled communication scheme, virtual nodes
should follow the sequence of sending (and eventually forwarding) of values
that is accommodated by all regular nodes in the network. This works fine for
close-to-boundary nodes (Figure 5.10 right), but the communication path is still

86 Chapter 5 Stretching The Communication

incomplete for boundary nodes. It is clear from Figure 5.11 that top boundary
nodes will not receive any data in steps (4), (5) and (6), even when virtual nodes
are added. In other words, the partially asymmetric transfer cycle necessitates
the existence of two (!) layers of virtual nodes to achieve completion. This holds
for all boundary nodes except non-corner left edge nodes (Figure 5.8 and Figure
 5.9). Hence, for an ܯ ൈ ܰ CNN, the number of virtual nodes is equal to
4ܰ ܯ3 12. Each virtual node needs a router to send and forward packets, a
local register and a simplified controller, which will affects area utilization
negatively! We aim here for a total removal of the need for virtual nodes. This is
possible by slightly changing the communication pattern of boundary nodes.
Let’s consider top and bottom boundary nodes. Then, the actions listed in Table
 5.3 have to be performed in addition to the regular functionality of the node,
mainly when a zero-flux boundary condition is used. For fixed boundary
condition most of the sending/forwarding is redundant as all boundary nodes
will need to store a single fixed value only that can be used instead of the
received value.

Figure 5.10 Broadcasting scheme of close-to-boundary nodes is incomplete (left), but
the situation is salvaged by adding a single layer of virtual nodes (right). Virtual nodes
are shown as circles.

 5.3 Boundary Nodes 87

Figure 5.11 One layer of virtual nodes does not complete the broadcasting scheme of
top boundary nodes.
Table 5.3 Additional actions in boundary nodes remove the need of virtual nodes.

Step Top boundary node Bottom boundary node

(1) Send E (instead of N).
Store W-value locally.

Use own value.
u/y register shouldn’t be updated

(2) ---- -----

(3) Use W-value (instead of u/y-
register value) -----

(4) Use W-value -----

(5) Use own value -----

(6) Forward own value W -----

(7) Forward own value S Forward W; Receive E (instead of S).

(8) ----- Forward own value W; Receive E
(instead of S).

Implementing the actions in Table 5.3 introduces the need for boundary
nodes to, sometimes, send or receive two packets simultaneously, which
requires a remarkable redesign of the nodal controller and the router.
Furthermore, there is need for an additional register that keeps one value (W-
value in the table). Once again, different boundary nodes will require different
refinements. This is of course better than the virtual nodes approach, but still
increases the area considerably. A better solution makes use of the existing
routing mechanism to forward boundary conditions. It is here denoted swing
boundary broadcasting as each boundary node will send its own value to one

88 Chapter 5 Stretching The Communication

neighbouring boundary node and then to the other boundary node in the
opposite direction. Due to the use of duplex lines between the nodes, the inter-
nodal connections have to be idle for one time step in between (Figure 5.12). In
this case, all boundary nodes will have the value of their neighbouring boundary
nodes available locally. This requires two additional buffering elements to store
the values, but the effect on area utilization is kept at a minimum. Overall, 3
time steps are introduced for each newly calculated y-value.

5.4 DISCUSSION
The moral of the serialized broadcasting approach is that the transfer needs

to be sequenced when the communication bandwidth is limited due to area
restrictions. The nodal control demands are kept at a minimum by interlacing
communication and computation needs. Local storage needs are reduced as well,
due to the need of holding one value only locally at any time step. A realization
of the serial broadcasting approach, hosted on a Xilinx Virtex-II FPGA, shows
reduced area utilization (Figure 5.13). Special attention should be paid to the
smaller network interface of the switched serial approach compared to the two-
steps approach employed in Caballero. The simplicity of the serial scheme
eliminates the complexity of the router, which affects the total size of the node!
Note that the serial architecture occupies fewer slices than the almost-interface-
less state-flow architecture in spite of that the latter requires less flip-flops and
equal number of LUTs. This has probably to do with a more balanced logic
usage among the functional components (Figure 5.14).

Figure 5.12 Swing broadcasting allows distributing of boundary conditions in two steps
clock-wise (a) and anti-clock wise (c). For proper functionality on the duplex lines a
separating idle step is introduced (b).

It is also found that by doing so by state machines not only leads to
architectural rigidity but also to degraded performance. For instance, 30% of the
utilized area in the serial broadcasting scheme is occupied by the controller, i.e.
state machine, (Figure 5.14). One way to eliminate the need of the nodal
controller, at least partially, is by transferring all values in a source-addressed
packet. The original data-only packet used previously is padded with a small
header containing the position of the source node in the grid. Hence, the packets
carry their addressing information in the header, which can be exploited in two
different ways.

 5.4 Discussion 89

In a traditional approach the packets will be stored in distinct destination
registers accordingly. In this case, as many registers as there are neighbouring
nodes are required. For the minimal 1-neighborhood, this means 9 registers.
This is not as bad as it sounds. Registers are mapped on Flip-flops only and no
LUTs are used. The present imbalance in the number of LUTs and Flip-flops,
shown in Figure 5.14, allows for more Flip-flops without affecting the overall
number of slices. In this way, an eventual architectural rigidity is removed with
no impact on area utilization.

Figure 5.13 Area utilization per node compared to state-flow and state-scan
architectures shows that nodal interface is kept at minimum which improves the overall
logic utilization.

Figure 5.14 Area utilization of the different components with serial broadcasting
scheme.

A better approach makes use of the intrinsic positioning information carried
in the header to address the local template memory of the current node. The
nodal equation, as given in Eq. (2.34), is then performed in the manner the

0
50

100
150
200
250
300
350

St
at
e‐
flo

w

St
at
e‐
sc
an

Se
ria

l

St
at
e‐
flo

w

St
at
e‐
sc
an

Se
ria

l

St
at
e‐
flo

w

St
at
e‐
sc
an

Se
ria

l

Flip‐flops # LUTs # Slices

Interface

Core

0

50

100

150

200

Router Ctrl Proc. Discr. FIFO Node

Flip‐flops LUTs Slices

90 Chapter 5 Stretching The Communication

packets are received. The logic required for the addressing of the
value/coefficient pairs is greatly reduced through the use of a mirrored binary
numbers of both the rows and the columns. In case of a 1-neighborhood only 2
bits for the row and 2 bits for the column address are required. In general we
need only 2ሺݎ 1ሻ bits, where ݎ is the neighbourhood.

It is also possible to merge the local controllers. The network is divided into
small groups with each a single controller (Figure 5.15). This semi-global
control approach does not affect the guaranteed performance but will lead to
logic optimization. It adds some wiring overhead and therefore slow down the
system but the gained amount of logic from reducing the number of nodal
controllers is far much larger. Attention has to be paid so the average wire
length is not increased to such a limit that the potential benefits of the CNN are
lost [84]. The rate of one controller per neighbourhood seems to be a good
trade-off.

Figure 5.15 Semi-global control requires one controller per group of nodes.

The complexity of communication control is reduced in the serial scheme
due to the pre-scheduled sequential arrival of neighbouring nodes’ packets. A
side effect is a simplified switching mechanism in the router, which saves in
area. An additional register is, however, needed to store the constant obtained
from computing the contribution of the control template and the bias. This
constant is kept unchanged for all subsequent iterations. Finally, the usage of
BRAM to implement the discrimination look-up table constitutes a main
hindrance for accommodating more nodes on FPGA. It couples the number of
nodes tightly to the availability of BRAM components on chip, even if area
utilization allows for more functional units.

In a typical vein feature extraction application [51] we find that different
templates need to be applied to the same image, and the two results need to be
used in a next dyadic operation to bring a single result on which again two
different templates are applied, and so on. With the current implementation, we
can reduce the amount of external memory access, as each frame only has to be
loaded once. Additional registers are simply added for each sub-operation.
Factually, in this application we need to go through 7 subsequent CNN layers
and never have to re-load from external memory. This provides us with an
amazing 20 ൈ higher performance, making real-world, real-time and real-power
product applications possible.

Chapter 6

93

Memory Considerations

fter the introduction of Cellular Neural Networks as a generic solver of
non-linear differential equations, most of the work has been in image

processing. An image-processing task applies a sequence of simple templates to
each image in succession. Assuming that a single iteration of a given template
requires ݐ௧ time units, the question is how this relates to the time needed to
complete the whole task ݐ௧௦. Apparently, it depends on the CNN architecture.
In the Bi-i camera [89], the core of system is an analogue chip supported by a
DSP for non-CNN functionality and embedded in a digital programming
environment [28]. In line with the earlier discussion in Chapter 3, the employed
core is analogue in order to achieve the high network density that is required to
handle image of sufficient size. Digital implementations were simply
disregarded as the massive amount of multiplications in a typical CNN
computation would otherwise be too area consuming.

As we already have seen, even if this is true for current techniques and
technologies, the situation is far from impossible to change. The series of digital
implementations discussed in Chapter 4 shows that a notable increase in
network density can be obtained by careful handling of the internal
communication. The problem remains to make choices in the wealth of
architectural alternatives.

However, three bottlenecks have to be removed for the digital CNN camera
to become reality. The first issue is the memory bandwidth. In contrast to the

Major parts of this chapter have been published in [V] and [VIII].

A

94 Chapter 6 Memory Considerations

focal-plane approach, digital implementations are bounded by availability of, at
least, one frame of the image stream on external storage. The second issue is the
on-chip storage requirements as such storage alleviates the effect of processor-
to-memory band gap. Lastly, the computational efficiency of the network
implementation needs attention. The chapter presents these aspects and points
out what makes the digital CNN camera viable. In section 6.1, two formulas that
express the influence of data fetch from memory are derived. Then section 6.2
looks into the processor/memory band gap and how this works out for two of
the digital implementations, i.e. ILVA and Caballero. The main issue here is the
effect of slicing (windowing) on the overall performance. Subsequently, the
situation when slicing is not required is discussed in section 6.3. Finally, the
chapter is closed with a discussion.

6.1 OFF-CHIP AND ON-CHIP STORAGE
Nowadays most development boards use Double Data Rate (DDR) SDRAMs
for main memory. Their name is derived from the fact that they transfer the data
on both rising and falling edges of the bus clock. The DDR2 standard adds to
that a doubling of bus versus memory clock so that effectively four data words
are transferred per memory cell cycle. This is collectively measured in “data
transfers per second per pin”, which means that the bandwidth is related to both
the data rates per pin and the width of the data bus (Table 6.1). Memory
bandwidth is calculated as data transfers per second multiplied by the number of
bits in a data word.
Table 6.1 DDR/DDR2 SDRAM JEDEC standards [90]

SDRAM
Standard

Memory
clock (MHz)

Cycle time
(ns)

I/O Bus
clock (MHz)

Mega data transfers
per second

DDR-200 100 10 100 200
DDR-266 133 7.5 133 266
DDR-333 166 6 166 333
DDR-400 200 5 200 400
DDR2-400 100 10 200 400
DDR2-533 133 7.5 266 533
DDR2-667 166 6 333 667

If memory bandwidth (in bits) and speed grade are denoted ݓ and ݏ
respectively, then the time required to fetch a frame of values is given by Eq.
(6.1). Here, ݓௗ stands for the width in bits of input/output values in the CNN,
while ݎ and ܿ represent the number of rows and columns in the CNN
respectively.

௧ݐ ൌ
ௗݓ · ݎ · ܿ

ݓ · ݏ
(6.1)

From Eq. (6.1), one may conclude that the wider the memory is the smaller
the data fetch time, which reduces the overall execution time as will be seen

 6.1 Off-Chip and On-Chip Storage 95

later. Figure 6.1 illustrates how the choice of DDR memory affects data fetch
time. The figure is valid for a CNN with 100 nodes and with ݓௗ ൌ 8 bits.

Figure 6.1 Data fetch time versus memory bandwidths.

Where the image is entered line-by-line, there are two basic approaches: the
lines are buffered (state-scan approach), or the network is fitted to consume the
lines as they come in (state-flow approach). In the former approach, the relation
in Eq. (6.1) can be used straight forward, but it needs modification when the
state-flow approach is considered. Here, a fetched scan-line is consumed
directly, which has great influence on the overall performance of the system as
will be seen soon. In this sense, if a scan-line is mapped on a column of nodes
(as in ILVA), the time needed to fetch one line from the external memory is
obtained according to Eq. (6.2).

_௧ݐ ൌ
ௗݓ · ݎ

ݓ · ݏ
(6.2)

Intuitively, the basic constraint that every CNN realization should take into
consideration is that memory latency becomes a bottleneck of the performance
if the inequality given in Eq. (6.3) is valid. In other words, the time needed to
fetch the desired amount of data from the external memory should not exceed
the time it takes to perform the entire sequence of templates on data currently
available in the CNN. Otherwise, the system must be halt waiting for the
fetching procedure to be completed. In fact, this is valid for state-scan
architectures only. For the state-flow approach, memory latency is taken care of
intrinsically by the pipeline itself. Here, the requirement is as given in Eq. (6.4).

ݐ ௧௦ݐ (6.3)

_௧ݐ ௦௧ (6.4)ݐ

0,0

0,2

0,4

0,6

0,8

1,0

1,2

Ti
m
e
(µ
s)

8 16 32 64

96 Chapter 6 Memory Considerations

For the state-scan architecture this enforces the need for on-chip buffering.
The idea is to fetch the next image from memory and store it locally on chip,
while the CNN processes the current image. This has to be replicated for the
resulting output as it has to be buffered before it is sent to the external memory.
This will clearly bind a large amount of the available logic on chip as storage
elements.

The NoC-based approach, Caballero, resolves the need of pre-buffering
partially through the employment of a FIFO-structure. Once the input values are
brought in, the template is iteratively applied. The number of iterations, ݊௧, is
in principle infinite. The time needed to apply a certain template for a number of
iterations on one frame depends on time to exchange information between the
nodes in addition to template execution time. The time needed to perform the
whole task is assumed enough to bring in the data of the next image from the
external memory locally to each node. The number of templates and the
complexity of each template, i.e. the number of iterations, are crucial to
overcome the memory-band gap. The basic performance constraint given in Eq.
(6.3) is then fulfilled.

This is however true if and only if a whole image can be accommodated on
the CNN. This memory limitation is crucial for certain choices of FPGA chips.
For XC2VP30, the maximum available BRAM is 306 KB. The additional
storage provided as distributed memory is of marginal importance as it can
accommodate 53 KB maximum! Assuming a pixel is represented by 8 bits
(greyscale), accommodating one PAL image on CNN will need 720 ൈ 576 =
414720 bytes to be available on chip, i.e. at least 405 KB of RAM is required.
This assumes that RAM is not needed for storing any kind of data apart from
pixel information; one pixel per node.

We may therefore rightfully assume that the CNN network can handle only
a part of the image at a time. It has been suggested earlier, that striping the
image may solve this problem. Now, a smaller part of the image is fetched from
memory which decreases the latency, but not more than one template out of the
given sequence can be applied before the next slice of the stripe has to be
fetched. Furthermore, handling the edges of slices adds to the complexity as a
certain degree of overlapping is required.

In the following, a frame execution formula is derived to evaluate the effect
of slicing for each of the digital realizations. We aim for a unified notation and
make the following assumptions:

 Input values are brought per pixel line into a CNN column. Subsequent
pixel lines will take subsequent columns.

 Inter-nodal broadcasting is instantaneous, i.e. it doesn’t add any delay
to the system.

6.2 COMPUTATIONAL EFFICIENCY
In general, the nodal output execution time, ݐ௧, can be further divided into 2
parts:

 6.2 Computational Efficiency 97

௦௧ݐ ♦ : the time needed to calculate the control contribution along with
the bias, i.e. ∑ ݑܤ ݅, once per input pattern.

 ,௬: the time needed to calculate the iterative part of the state equationݐ ♦
i.e. ∑ .followed by discrimination ,ݕܣ

The first part needs to be performed only once for the given input-pattern,
while the second part is repeatedly performed depending on the required number
of iterations. Obviously, ݐ௦௧ and

 ௬ depend on the r-neighbourhood, and soݐ

does ݐ௧ as well. For all digital realizations carried out so far it shows
that ݐ௦௧ ൌ is used when noݐ ௬. Therefore the common notationݐ
ambiguity rises. Hence, template execution time is basically obtained according
to Eq. (6.5)

௧ݐ ൌ ௦௧ݐ ݊௧ · ௬ݐ ൌ ሺ1 ݊௧ሻ · ݐ (6.5)

In a state-scan architecture with a 1-to-1 mapping between digital nodes and
CNN cells, the time needed to initially fill the network with data depends on the
total number of columns in the design, ܿ, and the time needed to fetch one
line of the frame, ݐ_௧ , as illustrated in Eq. (6.6). Hence, frame execution
time is calculated according to Eq. (6.7).

௧ݐ
 ൌ ܿ · _௧ (6.6)ݐ

ݐ
 ൌ ௧ݐ

 ௧ݐ
 ൌ ሺ1 ݊௧ሻ · ݐ ܿ · _௧ (6.7)ݐ

This is, however, true only if the size of network is large enough to
accommodate the whole frame. Slicing the frame introduces a number of
complications. The number of slices depends on the size of both frame and CNN
as shown in Eq. (6.8), where ݎ, ܿ and ݎ stand for the number of
rows and columns in the processed frame, and the number of rows in the CNN
respectively.

݊௦
 ൌ

݁ݖ݅ݏ ݁݉ܽݎ݂
݁ݖ݅ݏ ܰܰܥ ൌ

ݎ · ܿ

ݎ · ܿ
 (6.8)

 Two cases may rise depending on the relation between template execution
time and data fetch time:

 If ݐ௧
 ௧, frame execution time is then dependent on theݐ

number of slices and template execution time. All output values
corresponding to the inputs of the entire frame have to be available
before next iteration is performed. In other words, a single iteration has
to be completed on each slice until the whole frame is processed before
the next iteration is performed on the first slice of the next frame and so
on. As the procedure of fetching overlaps with the computational part,
due to the usage of FIFO-structure, Caballero is idle only when the first
slice is brought in and the last slice is moved out. In Eq. (6.9), frame
execution time is given as function of frame size, CNN size, number of
iterations, and data fetch time. Note that the obtained formula differs
from the one in Eq. (6.7).

98 Chapter 6 Memory Considerations

ݐ
 ൌ ݊௦

 · ݊௧ · ൫ݐ௦௧ ௬൯ݐ 2 · ௧ݐ
 ൌ

ൌ 2 ൬
ݎ · ܿ

ݎ · ܿ
· ݊௧ · ݐ ܿ · _௧൰ݐ (6.9)

 If ݐ௧
 ௧, frame execution time depends only on data fetchݐ

time as shown below.

ݐ
 ൌ ݊௦

 · ݊௧ · ௧ݐ
 ൌ

ൌ
ݎ · ܿ

ݎ · ܿ
· ݊௧ · ܿ · _௧ݐ

(6.10)

In contrast to Caballero, ILVA has an implicit bound on the number of
iterations by the size of the implementation. As the nodes are arranged in
pipeline stages, and the iterations are mapped on the pipeline stages; the
maximum number of performed iterations is one shorter than the number of
pipelines ݊. The first pipeline stage is used to calculate the constant part,
while each of the following stages completes the computation of state and
corresponding output. In all stages, the operation is accomplished during time
 . Therefore, ILVA’s template execution time (Eq. (6.11)) differs from theݐ
one previously obtained for Caballero (Eq. (6.5)). The calculated time is precise
in Caballero, while it is on average in ILVA.

௧ݐ
ூ ൌ

݊ · ݐ

݊ െ 1
 (6.11)

The pipelining mechanism requires only one (sub-) line of the frame to be
present prior to computation start. ILVA consumes the fetched line directly but
still experiences a latency that equals three times ݐ. An overall latency rises
from the fact that the pipeline has to be filled before the first output values are
produced. This is reflected in Eq. (6.12). However, when the pipeline is filled, a
new output value is produced each ݐ. In other words, pipeline execution
time ݐ can be replaced by ݐ without loss of generality.

ݐ
ூ ൌ ܿݐ௧

ூ ݐ ݕܿ݊݁ݐ݈ܽ ൌ

ൌ ܿ
݊ · ݐ

݊ െ 1
 _௧ݐ 3 ݐ · ݊

(6.12)

Slicing of the processed frame is required when ݎ . Number ofݎ
slices is then given as:

݊௦
ூ ൌ

ݎ

ݎ
 (6.13)

In line with the earlier discussion, two different cases are distinguished:
_௧ݐ ௧, frame execution time depends mainly on theݐ

 and ݊௦ݐ
ூ as shown in (6.14).

ݐ
ூ ൌ ݊௦

ூ ቆ ܿ · ݊ · ݐ

݊ െ 1
ቇ _௧ݐ 3 ݐ · ݊ (6.14)

 6.2 Computational Efficiency 99

 ൌ
ݎ

ݎ
ቆ ܿ · ݊ · ݐ

݊ െ 1
ቇ _௧ݐ 3 ݐ · ݊

_௧ݐ ௧, frame execution time depends mostly on data fetchݐ
time:

ݐ
ூ ൌ ݊௦

ூ · _௧ݐ 3 ݐ · ݊ ൌ

 ൌ
ݎ

ݎ
· _௧ݐ 3 ݐ · ݊ (6.15)

Due to the different mechanisms employed in state-flow and state-scan
architectures, a straightforward comparison of frame execution times, as given
in equations (6.9) and (6.14) respectively, is not feasible. A key factor is the
number of iterations a given template is performed. In ILVA, this number is
tightly coupled to the number of realized columns, i.e. ݊௧ ൌ ݊ െ 1.
Allowing more iterations will render the comparison unfair as it violates the
intrinsic limit of functionality in ILVA. However, if less iterations are required,
i.e. ݊௧ ൏ ݊ െ 1, the superfluous pipeline stages should be removed and
replaced, if possible, by nodes in such a way that the total number of rows in
ILVA is increased. Equation (6.16) explains the relation between the number of
rows in ILVA and Caballero.

ݎ
ூ ൌ ቐ

ݎ
 ݂݅ ܿ

 ݊௧

ݎ
 ·

ܿ

݊
 ݁ݏ݅ݓݎ݄݁ݐ

 (6.16)

In the following, the comparison is arranged such that first a single iteration,
݊௧ ൌ 1, and then several iterations, up to ݊௧ ൌ ܿ െ 1, are performed on
both architectures. This will, with respect to Eq. (6.16), yield the different
settings given in Table 6.2.
Table 6.2 The actual number of rows in ILVA as a function of the number of pipelines
and number of columns in Caballero. Parameter r represents the total number of rows in
Caballero.

Iter # Pipelines Number of rows in ILVA

ݎ
 6 7 8 9 10 11 12

1 2 3r 3r 4r 4r 5r 5r 6r
2 3 2r 2r 2r 3r 3r 3r 4r
3 4 r r 2r 2r 2r 2r 3r
4 5 r r r r 2r 2r 2r
5 6 r r r r r r 2r
6 7 r r r r r r r

Given a DDR-200 SDRAM with ݓ ൌ 16 bits, Figure 6.2 illustrates the
difference in data fetch time between ILVA and Caballero when ݓௗ ൌ 8. We
know from Eq. (6.6) that data fetch time for Caballero depends on the number of
columns as well, which is reflected in the figure.

100 Chapter 6 Memory Considerations

Figure 6.2 Data fetch time as function of the number of CNN rows when DDR-200 is
used. The time increases linearly with the number of columns in Caballero while it is
independent of pipeline depth in ILVA.

In order to express frame execution times in seconds, both ILVA and
Caballero are assumed to run on 100MHz, resulting in ݐ ൌ 10ିݏ in both
realizations. We assume further that a PAL frame of size 720 ൈ 576 is stored on
an external storage of type DDR266 with ݏ ൌ 266 ൈ 10 and ݓ ൌ 16
bits. With respect to equations (6.16) and (6.2), Figure 6.3 and Figure 6.4
illustrate frame execution times with different sizes of the realized CNN. To
fulfil the condition ݐ௧

 .௧, a DDR-266 or higher should be usedݐ

Figure 6.3 Frame execution time for ILVA with different CNN sizes, when slicing is
required. The legends, 6 to 10, represent the number of pipelines, i.e. the number of
columns in the design.

0

0,05

0,1

0,15

0,2

0,25

0,3

10 15 20 25 30

D
at
a
fe
tc
h
ti
m
e
(µ
s)

CNN rows

ILVA 6 7 8 9 10 11 12

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9Fr
am

e
ex
ec
ut
io
n
ti
m
e
(m

s)

Iteration

6 7 8 9 10Columns

 6.3 Moving Away from Slicing 101

Figure 6.4 Frame execution time for Caballero with different CNN sizes, when slicing is
required.

The figures show clearly that the state-flow architecture outperforms the
state-scan architecture for all CNN-sizes when larger number of iterations per
template is required. Caballero is better when 1 or 2 iterations are needed. This
is caused by the need to swap all slices in and out for each iteration. On the
other hand, if a sequence of iterations is allowed on the same slice before next
slice is brought in, a different situation arises. This requires a slight modification
of Eq. (6.9) as shown in Eq. (6.17). The resulting execution time is reflected in
Figure 6.5. Here, it is noticed that for more accommodated columns Caballero
performs better, almost regardless of the number of iterations.

ݐ
 ൌ ݊௦

 · ௧ݐ 2 ܿ · _௧ݐ

 ൌ
ݎ · ܿ

ݎ · ܿ
· ሺ݊௧ 1ሻ · ݐ 2 ܿ · _௧ (6.17)ݐ

6.3 MOVING AWAY FROM SLICING
The alternative to slicing is pixel sampling, where each CNN cell will
correspond to the average of a pixel block rather than just one pixel. This can
initially be done for the entire image and then repeated for smaller parts thereby
gradually focusing in to the region of interest. Template sequencing is not a
problem, nor have boundary conditions to be communicated between the
handling of different image parts. To make this work requires a reasonable CNN
network size to limit the overhead in reaching the region of interest. On the
other hand, it has only to be done once in the task as the region of interest will
be the same for all templates in succession.

The conclusion is that a Caballero-like architecture overcomes memory
latency if and only if

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9

Fr
am

e
ex
ec
ut
io
n
ti
m
e
(m

s)

Iteration

6 7 8 9 10Columns

102 Chapter 6 Memory Considerations

♦ the size of the CNN allows for a rapid determination of the region of
interest, on which the succession of templates is applied. In this sense, a
number of approaches can be used, such as pixel averaging and texture
analysis algorithms.

♦ the task consists of a number of templates, with a total number of iterations
such that the total elapsed time exceeds, or at least, equals the time needed
to fill the FIFO-structure.

Figure 6.5 Frame execution time of Caballero is reduced when all the iterations are
performed on a slice before next slice is brought in!

Having that in mind, the overall task execution time depends partially on
how fast the region of interest is found, but mostly on the template set and the
clock frequency of the digital design itself. Equation (6.18) provides a simple
formula to calculate task execution time.

௧௦ݐ ൌ ିି௧௦௧ݐ ௧ݐ (6.18)

The first part of the formula is independent of the architectural approach.
The template computational part is, however, dependent on the efficiency of
implementation and requires further attention. In the following, we focus on the
contribution of this part only.

Consequently, the time required to perform a single frame is expressed in
Eq. (6.19). The CNN is idle while the frame is brought into chip and moved out
to memory, therefore the contribution of ݐ௧. Apparently, frame execution
time increases linearly with iteration count for a given network size, but data
fetch time is dominant for larger networks (Figure 6.6)

ݐ ൌ 2 · ௧ݐ ௧ݐ (6.19)

0
1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8 9

Fr
am

e
ex
ec
ut
io
n
ti
m
e
(m

s)

Iteration

6 7 8 9 10Columns

 6.3 Moving Away from Slicing 103

Figure 6.6 Frame execution time using DDR-266.

A task consists of a number of templates that are applied sequentially. In the
extreme case a new frame need to be fetched from memory for each applied
template. The overlapping between template execution and data fetching, which
rises when two or more templates are sequentially performed, may complicate
the derivation of task execution time formula. Intuitively, execution time of a
task that consists of ݊௧ templates is expressed as:

௧௦ݐ ൌ 2 · ௧ݐ ௧ሺ݅ሻݐ

ୀଵ

(6.20)

Substituting Eq. (6.5) in Eq. (6.20) gives

௧௦ݐ ൌ 2 · ௧ݐ ݐ · ݊௧ ݊௧ሺ݅ሻ

ୀଵ

(6.21)

Equations (6.20) and (6.21) are valid if and only if the condition in Eq.
(6.22) is satisfied.

௧ݐ ݇ ௧ሺ݇ሻݐ ൌ 1, 2, ڮ , ݊௧ (6.22)

On the other hand, if the inequality given in Eq. (6.22) is not valid for any
of the sequentially performed templates, term ݐ௧ሺ݅ሻ in Eq. (6.20) has to be
replaced by term ݐ௧, and task execution time becomes:

௧௦ݐ ൌ ሺ2 ݊௧ሻ · ௧ݐ (6.23)

Figure 6.7 illustrates the effect of Eq. (6.22) for different DDR standards
with memory word width of 8 bits. The task is assumed to consist of 6 templates
that are performed sequentially with different iteration count; 2, 2, 1, 2, 2, 1 and
4 respectively. Obviously, the slower the memory the more dominant is data
fetch time when the network gets larger.

0,00

0,50

1,00

1,50

2,00

2,50

64 81 100 144 225 256 400

Ti
m
e
(µ
s)

Network size

1 2 3 4 5Iter. count

104 Chapter 6 Memory Considerations

Figure 6.7 Task execution time for different SDRAMs according to Eq. (6.22).

For a given digital CNN implementation ݐ is fixed for a certain
neighborhood. As most simple templates require a single iteration only, Eq.
(6.20) and (6.21) are more likely to be considered as representative for task
execution time. It is worth mentioning that, in most applications, the result of
one template in the task serves as input for the subsequent template. The relation
between ݐ௧ and ݐ௧ is not important then, and Eq. (6.21) is always valid.

6.4 DISCUSSION
The development of classical computer architecture has shown an emphasis on
computing acceleration by pipelining the central processing unit [81]. More and
more the memory bottleneck becomes a concern. Of late, has attention moved to
more spatially distributed methods, such as networked tiles, which offer
inherent parallelism and local storage. The underlying assumption is that
sequencing instructions over the local node takes the pressure away from the
memory access by the many parallel executing tasks.

We see the same principle back in the research reported in this thesis. On
one hand, we aim to have as much nodes executing in parallel as possible. This
poses a severe burden on the memory bandwidth. Therefore it is required to do
more locally. From inspection of existing CNN applications, one finds that data
is accessed in memory more than once. Therefore bringing the amount of
accesses down to 1 or less will easily pay the bill.

Actually, the question of communication with external storage units to bring
in/move out values to/from the CNN array has never been answered
satisfactorily in all available hardware realizations of CNN. In the conceptual
CNN-UM [20] the problem is solved by photo transduction for input values
while the proposed electromagnetic detection approach remains theoretical only.
Factually, most famous mixed-signal architectures [24]- [30] incorporate the

0,0
2,0
4,0
6,0
8,0

10,0
12,0
14,0
16,0
18,0

64 81 100 144 225 256 400

Ti
em

 (µ
s)

Network size

DDR‐200

DDR‐266

DDR‐333

DDR‐400

DDR2‐400

DDR2‐533

DDR2‐677

 6.4 Discussion 105

optical input approach to overcome the memory access bottleneck and provide
the promised computational speed when greyscale 8-bit input values are used.

Supporting more operations on the same data has two consequences. Firstly
we need to maintain local copies. Then data can be used from the local store
rather than from the external memory. Secondly we need to have a CNN cell
that can easily change state and therefore implement a multi-level structure. A
time-multiplexed node is such a cell.

The benefits will appear most clearly when the application is designed to
optimize data re-usage. In [40] it is discussed how a CNN implementation can
be derived by a morphological specification, such that operations are either in
sequence (passing results from operation to operation) or in reconvergent
parallel paths (using the same data and combining the individual outcomes into
a single result). For instance, the typical image understanding algorithm, such
as used for velocity measurement [52], runs all templates on the same set of
frames (RoI) or on the result of a previous template. In slight modification of
Eq. (6.22) fetching 2 frames must be done before a set of 7 templates is
completely executed. As shown in Figure 6.8, this reduces the task execution
time considerably for larger networks, read images.

Figure 6.8 Task execution time with reduced data fetch. Compared to Figure 6.7, time
reduction is obvious for larger networks.

0

1

2

3

4

5

6

7

8

64 81 100 144 225 256 400

Ti
m
e
(µ
s)

Network size

DDR‐200

DDR‐266

DDR‐333

DDR‐400

DDR2‐400

DDR2‐533

DDR2‐677

Chapter 7

109

Applications

his chapter aims to discuss the different systems and to present some
testing results. As image processing has always been a popular field of

CNN applications, it feels natural to verify the significance of the different
digital implementations presented in the previous chapters, by realizing a
number of experimental systems to solve certain image processing tasks. Some
of these tasks require, however, slight modifications in the system design to
make the testing feasible. The popular Game of Life is implemented for the first
time on FPGA in section 7.1. The interest in this game comes from the fact that
it is especially this game that has brought glamour to the Cellular Automata
 [10]. In section 7.2 the link between picture enhancement and Object Oriented
Image Analysis scheme is stressed, where the latter is employed to measure
velocity of an OoI in a video sequence. Finally, a concluding discussion is
given in section 7.4.

The hardware platform is an FPGA from Xilinx, particularly Virtex-II Pro
P30, which is installed on a development board from Memec [46] that provides
4 external SDRAM memory blocks with a size of 32 MB. Additionally, the
board is equipped with both serial and parallel communication ports, allowing
for different communication schemes with a PC.

Parts of this chapter have been presented in [I], [II] and [III].

T

110 Chapter 7 Applications

7.1 GAME OF LIFE
The Game of Life is not just an example of artificial life, but also an abstraction
of a typical predator/prey situation. The Cambridge mathematician John Horton
Conway, who spent a lot of time in manually finding the proper rules, has
originally proposed it in 1970 but the game is popularised by Martin Gardner
 [53].

The game is played on an arbitrary board. The cells can be either populated
or not (black or white). According to specific rules, a cell can change the
population under influence of the neighbours. For instance:

A cell that is populated dies if at most one or at least four of the neighbours
are populated (respectively loneliness and overpopulation), while it will become
populated when three of its neighbours are.

Important is therefore the initial situation. For a number of starts, the effect
has been recorded in literature. In Figure 7.1, one of the many ways to get into
pattern oscillation is shown. As the Game of Life is a cellular automaton, it
ought to be possible to accelerate the game by means of a CNN. The purpose of
the project is therefore to demonstrate this acceleration. This is not a first in
general, as the Game of Life has been demonstrated in analogue hardware [54]
and in software, both on general-purpose as in vision hardware [55]. There are
also conventional solutions implemented on FPGAs [56]; therefore the project
aims to be the first System-on-Chip (SoC) on FPGA, taking the other solutions
as quantitative references.

Figure 7.1 A Game of Life that never stops. A black cell is alive and turns white when it
dies.

 7.1 Game of Life 111

In the black-and-white version, only one convergence iteration is necessary
per game step. The state of a cell changes between white (-1) and black (+1),
with no other grey-levels in between. As the operation is local, it can, similar to
e.g. the template of Logic Not, be performed by calculating the nodal formula
only once. This pleads for the pipelined architecture, configured with a minimal
depth. On the other hand, when the game is played with grey-level population,
the choice of architecture is not straightforward and additional experience is
required.

The actual operation is performed on the input values only. Because no
feedback occurs, the need of feedback template ऋ is eliminated. As the
contribution of neighbouring cells inputs is already normalized, a simple
summation suffices for making a decision whether a cell is to be populated or
not. Hence, the bias term is not needed either. Consequently, based on the
cloning template, given in (7.1), a necessary condition for a cell to
become/remain populated is that the state of the cell, ݔ, equals 2 or 3,
otherwise it is considered dead. However, the current state of the cell is decisive
to obtain the proper output (Table 7.1).

0,
111
101
111

,
000
000
000

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
= iBA (7.1)

Table 7.1 ‘Truth table’ for the game of life where all values follow the binary
representation.

Input value ࢉ࢛ State ࢉ࢞ Output value ࢟

0 0010 0
1 0010 1
- 0011 1
- Otherwise 0

7.1.1 Implementation
A slimmed-down version of the Sleipner architecture has been chosen to
perform the game. It has one column only, containing nodes that perform the
control contribution, ∑ only. The internal design per node is slightly ,ݑܤ
modified to enable the realization of the truth table (Table 7.1). The nodal input
that is one bit only is buffered and concatenated together with the computed
state. The obtained word is then used to address a small memory providing the
final output. Pixel data of the entire game board is saved on chip, using two
BRAMs. This eliminates the need of communication with external SDRAM
units and, thus, simplifies timing control. An input buffer is used to bring the
pixels into the network from one RAM, and an output buffer to send the results
back to the other RAM.

112 Chapter 7 Applications

For simplicity, the procedure of testing the final hardware is replaced with a
simple visualization mechanism. The target board is equipped with 8 light-
emitting diods (LEDs) for verification purpose only [46]. Instead of sending the
outputs of the network to a PC, the LEDs are fed with output values. A turned-
on LED indicates a populated cell (black pixel value in the network). As only 8
LEDs are available the size of the network is decreased to consist of one column
with 8 nodes as shown in Figure 7.2.

The initial state of the game enters the network according to the scheme
described in section 4.3, i.e. a scan-line-by-scan-line. The LEDs show then a
sequence of scan-lines, where each light combination corresponds to one output
line. After all, the purpose of this project is to demonstrate the acceleration a
CNN implementation can provide. Thus, replacing the procedure of testing with
the simple visualization mechanism is acceptable.

Node
1u y

Block Select
RAM

Node
2u y

Node
3u y

u

LEDs

Node
3u y

Figure 7.2 A schematic view of final design testing.

7.2 VELOCITY MEASUREMENT
In a typical CNN-based system as Vehicle License Plate Recognition

(VLPR) [48], a character string of a well-defined composition is available on a
clean background. Factors such as limited resolution and dirty surfaces
complicate the situation. However, It is of increasing interest to determine and
read text on arbitrary locations, i.e. not only license plates. Figure 7.3 gives an
easy but common example. The same template set as in VLPR can be used for
this purpose, but the consistency check is a bit more complicated. Once the
image is extracted by means of a pre-processing system, a standard optical
character recognizer (OCR) package in the loop will generally suffice for
performing the desired recognition.

In professional VLPR systems, complications arise due to the speed of the
car versus the angle, and quality of the camera. But such complications can also

 7.2 Velocity Measurement 113

appear in other situations, as exemplified in Figure 7.4. Here one wants to read
the text on a passing train, as required for train management systems.

Figure 7.3 Reading the text from the E-building at Faculty of Engineering (LTH), Lund
University (Sweden).

The problem has different aspects, each with their own importance. The
first is movement detection: which object in the image actually moves, and with
which speed and in which direction. Once such objects are found and labelled,
the next issue is to track such an object, while diagnosing the reason for and
character of the movement. A related aspect, for which we want to check the
feasibility in this experiment, is whether the rendering of the moving object can
be improved by using knowledge about the actual movement.

Figure 7.4 After edge detection on an image of Lund Railway Station, the text on the
moving train can still not be read.

There are of course other (and maybe better) ways to measure object
velocity than by smart vision. The subject was chosen because velocity
estimation is crucial to dynamic face recognition [107]. A good CNN system
must be stream-oriented: all the processing needs to be on the single image flow
while reconfiguring the hardware. As literature only shows mixed
hardware/software approaches, the focus is on showing how velocity
measurement can be efficiently realized in hardware only.

For the application described in this section we use the NoC-based CNN
implementation Caballero. The core of the design is a grid of regularly spread
cells building the DT-CNN. In order to provide the core with image pixels, a
serial-to-parallel unit makes use of an SDRAM controller to read data from one

114 Chapter 7 Applications

of the external SDRAMs, where image frames are “pre-loaded “. The actual size
of a frame, delivered by a PAL video camera, is 720x576 pixels. Hence, with 8-
bits pixel width, each SDRAM is able to hold up to 80 frames, which is
sufficient to complete the task of velocity estimation. However, two different
SDRAM units are used; one for input image frames and one for storing resulting
image frames. Output pixels are directed to the SDRAM by a parallel-to-serial
unit that captures these pixels from several FIFO units aligned between the
columns of the CNN. Figure 7.5 shows a schematic view of the complete
design.

Figure 7.5 A schematic view of the design. Arrows represent data transmission between
few units, but far from all data lines are shown in the figure.

In the following, the concept of velocity estimation is first introduced in
 7.2.1 before the implementation of the algorithm using CNN basic operations is
presented in 7.2.2. In subsection 7.2.3, the reliability of the algorithm is ensured
by performing MATLAB verification, before the hardware design is tested.

7.2.1 Considerations on the Velocity Estimation Algorithm
Motion detection is a central scheme in various areas of vision sensing, both in
industrial as in consumer applications. The concept is based on the simple
observation that moving objects carry the most important features, in
comparison to other details contained in background and still parts. Thus,
detecting and coding the moving objects is essential for image understanding.
The typical image-analysis algorithm consists of four main steps: 1)
segmentation 2) parameter (motion) estimation 3) image synthesis and 4)
consistency observation [107]. The most important and computationally most
complex one of these steps is the task of segmentation, which is accomplished
by cutting a scene into different moving objects (regions). These objects have to

 7.2 Velocity Measurement 115

be labelled and measured. Furthermore, consistency of object segmentation is an
essential aspect to guarantee quality of the result. Therefore, maintaining a
global uniform velocity is crucial to recognize the segmented objects [109].

The object-oriented image analysis scheme is widely accepted as an
interesting and sophisticated approach for future video coding systems with very
low bit-rate. By transferring the moving objects only, the transmission rate is
greatly reduced [107]. In [109] the emphasis is on achieving object-oriented
image compression for videoconferencing purposes on a CNN-UM hardware
platform. The modelling of the motion can be eased from the understanding that
labelled objects can only move within a Region of Interest: the remarkable
features of a human face are the areas containing eye, nose, mouth and ear.
However, any deterioration of facial expressions decreases image quality
drastically. Thus different “quality enhancing” steps are needed, which makes
the segmentation algorithm rather complex.

In our work, the nature of the problem is fundamentally different. A moving
object is also changing location in its RoI and needs therefore also to be
distinguished in every frame from a sequence of consecutive images. Once the
object is segmented into a number of frames, the displacement of the object
between two image frames must be extracted. Wrapping the moving object in an
encapsulation box, eases the computation of the displacement. The displacement
of the box corresponds to the distance covered by the object in reality. The
establishment of this correspondence is a problem by itself and often forces a
need for calibration. When the whole object is observed in one of the frames, the
difference between two consecutive frames shows two leftovers instead of one.
Additional effort is then required to relate these two as belonging to a single
object.

The process of velocity measurement depends on a number of parameters,
mainly coupled to the camera in use, such as image resolution, frame frequency

݂ and view angle ߠ. Another parameter of importance is the distance between
the camera and the moving object, ݀. Given ݂ in frames/seconds, ݀ in meters
and ߠ in degrees, the width of the captured scenery is ݀ ൌ 2݀ · ߠሺ ݊ܽݐ 2⁄ ሻ.
Figure 7.6 illustrates a camera where the involved parameters are pointed.

da
dp2/θ

Camera

Figure 7.6 Mapping of the image on the pixel map.

An object with velocity v (meter/seconds) will cover the distance ݀
(meters) in ݐ ൌ ݀ ⁄ݒ (seconds). During this time, the camera takes ܰ ൌ ݐ ·

݂ ൌ ሺ݀ · ݂ሻ ⁄ݒ frames. In other words, if all the frames are super-imposed,
there will be N instances of the moving object on a single frame. If ܹ, in pixels,

116 Chapter 7 Applications

denotes the width of frames delivered by the camera, the movement of the
object corresponds to a displacement in pixels given by Eq. (7.2)

݊ ൌ ܹ ܰ⁄ ൌ ሺܹ · ሻݒ ሺ݀ · ݂ሻ⁄ (7.2)

The minimum velocity that can be detected corresponds to a single pixel
displacement of the object. The nature of the applied template complicates the
calculation of maximum speed when the object is close to the edge of the frame.
In order to overcome this limitation, a 5% margin of the total frame-width is
provided on both vertical edges. Obviously, the maximum displacement by
means of pixels is correlated to the maximum object-velocity that can be
detected. Typical PAL camera specifications like: horizontal view angle of 60˚,
720 pixel wide frames, and frame-rate of 25 frames/s are utilized in Figure 7.7,
where the displacements of a 3 meter long object are shown for different speeds.
Obviously, the displacement depends on the distance ݀ of the camera from the
captured scenery in which the object moves. The size of the blob is dependent
on ݀ as well.

Figure 7.7 Pixel displacement versus observation distance for several object velocities.

7.2.2 The algorithm in basic CNN operations
The segmentation quality is significantly increased by pre-processing image-
frames in order to remove disturbing noise. Noise filtering is achieved by
iteratively applying the averaging template (Eq. (7.3)) to the image. The next
step is to create a mask around the Object of Interest (OoI), i.e. the moving
object. In order to extract the RoI, all background information has to be

 7.2 Velocity Measurement 117

removed. Calculating the absolute value of the subtraction of two consecutive
frames in the image sequence completes the task. In other words, if f1 and f2 are
first and second frames respectively, the result is given by | ଵ݂ െ ଶ݂|. The
resulting output map has its darkest pixels where both frames differ, while
background information is covered in grey.

ࣛ ൌ
0 0 0
0 0 0
0 0 0

൩ , ࣜ ൌ ሺ1 8⁄ ሻ כ
1 1 1
1 0 1
1 1 1

൩ , ݅ ൌ 0 (7.3)

Although the output map includes all necessary contour pixels for
segmentation, further contour enhancement is needed to achieve sufficiently
exact segmentation. Contour lines vary in thickness due to the sharpness of
object edges. An appropriate choice of the gradient threshold reduces the effect
of sharp/smooth edges, but we follow the proposition made in [109] and apply
the approach of skeletonization (Table 7.2). It performs iteratively in 8
subsequent steps, where each step peels one layer of pixels in a certain direction.
As one iteration is accomplished, the pattern is one pixel thinner in all
directions. The algorithm stops when no difference between the input and the
output is obtained. Applying this powerful line-thinning algorithm iteratively
reduces lines of arbitrary and varying thickness to their centre pixels.
Table 7.2 Different skeletonization templates corresponding to the direction of “peeling”.

Direction ऋ ऌ भ
North

0 0 0
0 1 0
0 0 0

൩
1 1 1
0 7 0

െ0.5 െ1 െ0.5
൩

െ3

Northeast

0 0 0
0 1 0
0 0 0

൩
0 1 1

െ1 7 1
0 െ1 0

൩
െ3

East

0 0 0
0 1 0
0 0 0

൩
െ0.5 0 1
െ1 7 1

െ0.5 0 1
൩

െ3

Southeast

0 0 0
0 1 0
0 0 0

൩
0 െ1 0

െ1 7 1
0 1 1

൩
െ3

South

0 0 0
0 1 0
0 0 0

൩
െ0.5 െ1 െ0.5

0 7 0
1 1 1

൩
െ3

Southwest

0 0 0
0 1 0
0 0 0

൩
0 െ1 0
1 7 െ1
1 1 0

൩
െ3

West

0 0 0
0 1 0
0 0 0

൩
1 0 െ0.5
1 7 െ1
1 0 െ0.5

൩
െ3

Northwest

0 0 0
0 1 0
0 0 0

൩
1 1 0
1 7 െ1
0 െ1 0

൩
െ3

118 Chapter 7 Applications

Quality of the intermediate result is however still reduced due to the
presence of some isolated pixels that might even inhibit the creation of the
encapsulation box around the moving object. These pixels are easily removed by
applying the template of Isolated Pixel Removal (Eq. (7.4))

ࣛ ൌ
0 0 0
0 0 0
0 0 0

൩ , ࣜ ൌ
0 1 0
1 4 1
0 1 0

൩ , ݅ ൌ െ1 (7.4)

The resulting output map is now free of disturbing information and the task
of segmentation is accomplished by thresholding the value of all pixels using a
hard-limiter. A binary mask is then created and combining the corners of that
mask easily creates a black box covering the object of interest. Figure 7.8
summarises all steps of the creation of the encapsulation box starting from two
consecutive video frames. As the differences between the frames are not
necessarily co-located, they must be linked in order to establish the OoI.

21 ff −

Figure 7.8 Template flow diagram in velocity measurement approach.

In the general case any blob that appears in both frames must be checked.
The problem is eased when the direction of movement can be predicted from the
past or by hypothesis. For instance a train will move along a track and its
direction will be clear from the outset. As the early movement will show co-

 7.2 Velocity Measurement 119

located blobs (Figure 7.9.a and b), the direction can be predicted when the speed
rises and object splitting occurs. Verification of the hypothesis can be achieved
by enlarging the blob in the frames in the direction of the movement, followed
by an AND operation. This supplies us already with a box at length of the
displacement. We will see this extended algorithm in section 7.4.

When the blob has not split, we have to repeat the same segmentation
procedure with the following pair of frames, i.e. ଷ݂ and ସ݂, creating another
black box. Two different facts are extracted by comparing the position of the
boxes: motion direction and, most important, displacement of the moving object
between frames ଷ݂ and ସ݂. As time between consecutive frames is known, we
only need metric information about one of the details in the scenery (preferably
the moving object itself) to determine the velocity of the moving object. In
Figure 7.9.c, the displacement of the moving object is illustrated with the
difference ∆ of the two black boxes.

Δ

Figure 7.9 Measuring the displacement of an object moving from right to left in the
scenery. Displacement (shown in (c)) of the moving object is the difference between the
black boxes in (a) and (b).

7.2.3 Verification and Test
MATCNN is one of many software tools for CNN simulation provided in [59].
It is a flexible and easy-to-use test environment for single-layer CNNs.
Although basically built to simulate analogue CNN implementations, it provides
a very good toolbox (for MATLAB) to verify the approach. The toolbox is
equipped with a library of many 3 ൈ 3 templates.

In the following, all steps in the flow diagram in Figure 7.8 are applied to a
number of frames captured from a video sequence of a locomotive of type SJR6.
First of all, the averaging template is iteratively applied on the first two frames
of the video sequence. Figure 7.10 shows the results after 25 iterations with a
time step of 0.019߬.

The background is then faded in order to outline the moving object, which
is achieved by calculating | ଵ݂ െ ଶ݂|. As seen in Figure 7.11.a, the background is
replaced with grey pixels.

Assuming the object moves horizontally only, applying the templates of
skeletonization for two directions only, i.e. west and east (Table 7.2), is
sufficient. The templates are applied iteratively for 25 iterations each, with time
step of 0.019τ . The result is shown in Figure 7.11.b, where isolated pixels are
easily noticed. Isolated Pixel Removal is applied iteratively for 25 iterations

120 Chapter 7 Applications

with time step 0.04τ to remove these pixels. Figure 7.12.a depicts the resulting
image.

f2f1
Figure 7.10 First two frames (f1 and f2) of the video sequence after applying the
averaging template for a number of iterations.

(a) (b)
Figure 7.11 (a) Resulting image of | f1 - f2 |. Darkest pixels are observed where the two
frames differ as most. (b) Intermediate result after skeletonization, where the isolated
pixels can easily be noticed.

Segmentation of the moving object is accomplished by creating a binary
mask using the hard-limiter function. Figure 7.12.b depicts the final result with
the binary mask. Finally, the object of interest is covered with a black box, as
shown in Figure 7.9.b.

(a) (b)
Figure 7.12 Applying the template of IPR removes all isolated pixels (a). Procedure of
segmentation is completed once the binary mask is created (b).

Caballero performs all steps of the algorithm of velocity estimation from
averaging to isolated pixel removal through skeletonization. Subsequent steps of
the algorithm, i.e. creation of both the binary mask and the black box covering

 7.3 Vein Feature Extraction 121

the moving object, are performed on a PC by, preferably, using MATLAB
toolbox. The task of post-processing is completed by calculating the value of Δ
(see Figure 7.9.c) and, thus, estimating the velocity of the moving object. This
design maintains the regularity of a CNN and paves the way for future
modification, e.g. usage of two-layered CNN [108] needed for implementation
of steps 2, 3 and 4 in image analysis algorithm mentioned before (section 7.2.1).

The design performs on the same video sequence used for verification. The
intermediate result obtained after skeletonization (Figure 7.13) differs, however,
from the expected result noticed in Figure 7.11.b. Quality reduction is due to the
use of another squashing function compared to MATCNN. This indicates,
however, the need for adjustment of the parameters in the table look-up. Instead,
the error is attempted to be overcome by using the template of averaging (Figure
 7.8) again between the operation of skeletonization and IPR. Figure 7.13 shows
the intermediate result after each step. It is obvious that the quality of images is
still much lower than obtained in software simulation, but as the aim of the
experiment is to test the basic functionality of the design no further actions are
taken.

Skeletonization Averaging

Isolated Pixel Removal Binary mask
Figure 7.13 The intermediate results of all steps as obtained from the post place and
route simulation.

7.3 VEIN FEATURE EXTRACTION
Modern security systems have to provide fast, accurate and robust personal
identification, which implies moving away from traditional and unreliable
methods such as PIN codes and smart cards. The use of electronically stored
records of human biometrics features seems promising. The US Department of
Defense started an experiment to replace existing ID-badges for 4.3 million

122 Chapter 7 Applications

employees by using fingerprint readers from Precise Biometrics already in 2001
 [92]. Recently, some European states have accepted a biometric signature as
legally binding, and the UK government has placed in November 2005
biometrics identification technology on the short list of its Science and
Innovation Strategy [93].

As the identification process is based on the unique patterns of the users,
biometrics technologies are expected to provide highly secure authentication
systems. However, the existing systems are very vulnerable. One’s fingerprints
are accessible as soon as the person touches a surface, while a high resolution
camera easily captures the retina pattern. Thus, both patterns can easily be
“stolen” and forged [93]. Beside, technical considerations decrease the usability
for these methods. Due to the direct contact with the finger, the sensor gets
dirty, which decreases the authentication success ratio. Aligning the eye with a
camera to capture the retina pattern gives an uncomfortable feeling. On the other
hand, vein patterns of either a palm of the hand or a single finger offer stable,
unique and repeatable biometrics features.

Already in 2001, an experiment was reported where hand vein images were
recognized with 99.45% success [94]. Images were cleaned and compared
within 150 msec. The main bottleneck was the cost and performance of the
sensor. Meanwhile Fujitsu has built a biometric palm vein scanner, while
Hitachi presents a finger vein identification system [95]. In both cases, a thermal
imager acquires vein images. Near-infrared rays generated by means of LEDs
penetrate the hand and are absorbed by the hemoglobin in the blood. Thus, the
veins (where the blood flows) appear as dark areas in an image taken by a CCD
camera (Figure 7.14.b). Then image processing reconstructs a hand-vein pattern
from the camera image. Finally, appropriate processing extracts the vein
patterns from the images and performs a feature matching against reference
images.

(a) (b) (c)
Figure 7.14 Typical biometric patterns; (a) fingerprint, (b) hand vein [96] and (c) human
retinal angiograph [97].

In [97], it has been concluded that a Gaussian model for feature extraction is
fairly successful; here we check the quality of a CNN-based feature extraction
that has previously been demonstrated by Gao for fingerprints [98]. This section
will go in phases through the feature extraction algorithm of Gao, while making
modifications for handling veins. The pre-processing [99] is handled in
subsection 7.3.1, and the extraction [98] & matching [100] in subsection 7.3.2.
Subsequently we discuss the quality of the vein feature extraction (subsection
 7.3.3) and give some details on an experimental realization (subsection 7.3.4).

 7.3 Vein Feature Extraction 123

7.3.1 Image Pre-processing
Normally, the captured vein pattern is greyscale and subject to noise. Noise
Reduction and Contrast Enhancement are crucial to ensure the quality of the
subsequent steps of feature extraction [101]. This is achieved by means of three
operations: Binarization that transforms the gray-scale pattern into a black and
white image, Skeletonization (Table 7.2) that reduces the width of lines to one
pixel and finally Isolated Pixel Removal (Eq. (7.4)) that eliminates the unwanted
isolated points. These three steps constitute the procedure of image pre-
processing (Figure 7.15). Upon start, the original image is fed as input ݑ, and
the initial output ݕሺ0ሻ equals 0, while the intermediate results constitute the
input of the the templates in the successive steps.

Figure 7.15 Image Pre-processing.

7.3.2 Feature Extraction
Blood vessels are characterized by means of length, thickness, shape and
distribution of the veins. Only the length and distribution are taken into
consideration as this enables a feasible matching of the overall pattern. As the
operation of skeletonization masks out the shape and thickness, the thinned vein
pattern has, similar to fingerprints, two main features: ending and bifurcation
(Figure 7.16). The former is the end point of a thinned line, which reflects the
length of the veins, while the latter is the cross section of three lines, which
reveals the distribution of the veins.

Figure 7.16 Vein features: endings and bifurcations

It is important to point out the existence of false features due to the noise in
the original image and artefacts that may be introduced during the procedure of
image pre-processing. As two false features are normally close to each other,
they are handled in pairs. Actually, three different types exist: a pair with two
false endings, a pair with two false bifurcations and a pair with one false ending
and one false bifurcation [98]. Figure 7.17 depicts one of the cases that may
arise during bifurcation detection.

124 Chapter 7 Applications

Figure 7.17 Bifurcation detection may give rise to false features.

The algorithm consists mainly of 4 different operations (Figure 7.18). First
of all both bifurcations and endings in the pre-processed image are detected.
This can be carried out in parallel. The intermediate results are added together
by means of a simple logical OR operation [102] that is given in Eq. (7.6). In
order to remove all pairs of false features the operation of False Feature
Elimination is applied. Furthermore, two new bifurcation and ending images are
created by subtracting the false features from the images originating from the
previous steps of bifurcation and ending detection. This is simply achieved by
applying the operation of logical AND [102] that is given in Eq. (7.5). These
new images are target of the final operation, Figure Reconstruction, where two
instances of the operation are applied in parallel. The final result consists of two
images containing the placement and direction of endings and bifurcations.

ࣛ ൌ
0 0 0
0 2 0
0 0 0

൩ , ࣜ ൌ
0 0 0
0 1 0
0 0 0

൩ , ݅ ൌ െ1 (7.5)

ࣛ ൌ
0 0 0
0 2 0
0 0 0

൩ , ࣜ ൌ
0 0 0
0 1 0
0 0 0

൩ , ݅ ൌ 1 (7.6)

Figure 7.18 Block diagram of the vein feature extraction.

 7.3 Vein Feature Extraction 125

The end of a thinned line has only one black pixel within its neighbourhood.
As all isolated pixels are already removed during the pre-processing, ending
points are easily extracted by applying the template of Ending Detection (Eq.
(7.7)) once. The input image u is the pre-processed picture, while initial output
values, ݕሺ0ሻ, are set to zero.

ࣛ ൌ
0 0 0
0 0 0
0 0 0

൩ , ࣜ ൌ
െ1 െ1 െ1
െ1 2 െ1
െ1 െ1 െ1

൩ , ݅ ൌ െ7 (7.7)

Similarly, Bifurcation Detection extracts all points that have at least 3 black
pixels within the neighbourhood. Three different types of junctions do exist:
“real” points, T- and Corner-forms (Figure 7.19). Extracting real bifurcations
from the T- and Corner-forms needs further treatment. To do that, the approach
introduced in [98] is employed. The template of Junction Point Extraction (Eq.
(7.8)) that extracts the real junction points but keeps the T- and Corner-forms.
Once again, the initial output values, ݕሺ0ሻ, are set zero.

(a) (b) (c)
Figure 7.19 Different types of Junction Points: regular bifurcation (a), T-form (b) and
Corner-form (c)

Junction points in T- and Corner-forms are extracted by means of the
template given in Eq. (7.9), which removes all real bifurcations that have been
detected using Eq. (7.8). The template of Isolated Point Extraction (Eq. (7.8)) is
applied in parallel and the result is added to the outcome of Eq. (7.9) by means
of a logical OR operation. Obviously, the initial output values equal zero here as
well. The order of operation in the procedure of bifurcation detection is depicted
in Figure 7.20.

Figure 7.20 Bifurcation detection uses three different templates in addition to a Logic
OR operation

126 Chapter 7 Applications

ࣛ ൌ
0 0 0
0 0 0
0 0 0

൩ , ࣜ ൌ
1 1 1
1 6 1
1 1 1

൩ , ݅ ൌ െ3 (7.8)

ࣛ ൌ
0 0 0
0 0 0
0 0 0

൩ , ࣜ ൌ
0 1 0
1 4 1
0 1 0

൩ , ݅ ൌ െ3 (7.9)

ࣛ ൌ
0 0 0
0 0 0
0 0 0

൩ , ࣜ ൌ
െ1 െ1 െ1
െ1 1 െ1
െ1 െ1 െ1

൩ , ݅ ൌ െ8 (7.10)

In order to remove all false points that are separated by a distance d ≤ n, it
performs the dilation and erosion operations for n/2 iterations each. The dilation
operation connects all features, with distance d ≤ n in between, together. As
conventional erosion operation will bring the disconnected objects in the dilated
image back to the original size, the erosion has to be applied in two diagonal
directions. Thus the templates “Erosion \” and “Erosion /” are employed. The
former, Erosion \, erodes all pixels inserted in the dilated image except those
belonging to the centre of diagonal lines with direction “\”. Erosion / works
similarly for all diagonal lines with direction “/”. The block diagram in Figure
 7.21 shows the sequence of the different operations. The applied templates of
Dilation, Erosion / and Erosion \ are given in equations (7.11), (7.12) and (7.13)
respectively.

ࣛ ൌ
0 0 0
0 0 0
0 0 0

൩ , ࣜ ൌ
1 1 1
1 1 1
1 1 1

൩ , ݅ ൌ 8 (7.11)

ࣛ ൌ
0 0 0
0 0 0
0 0 0

൩ , ࣜ ൌ
0 0 1
0 1 0
1 0 0

൩ , ݅ ൌ െ2 (7.12)

ࣛ ൌ
0 0 0
0 0 0
0 0 0

൩ , ࣜ ൌ
1 0 0
0 1 0
0 0 1

൩ , ݅ ൌ െ2 (7.13)

The fact that two false features are usually close to each other [98], implies
the use of a low value of n. Actually, experiments show that n=2 is sufficient in
our case. Thus, one iteration is enough for each of the operations, which
explains all feedback templates being equal to zero. Consequently, the values of
initial output are all set to zero as well.

So far, the extracted bifurcations and endings are represented as single
points. Thus, only the location of every ending and bifurcation is obtained so
far. In order to perform the procedure of Feature Matching, the direction of each
feature needs to be known. The template of Figure Reconstruction (Eq. (7.14))
takes the original image as input and the intermediate image (with the extracted
feature) as initial output in order to reconstruct the feature to the limit that
makes it comparable. The number of iterations determines the number of pixels

 7.3 Vein Feature Extraction 127

that are restored of the three lines leaving a bifurcation and the only line leaving
an ending.

Figure 7.21 Operations involved in False Feature Elimination. Number of iterations, n/2,
depends on the distance, n, between two false features.

ࣛ ൌ
0 0 0
0 8 0
0 0 0

൩ , ࣜ ൌ
1 1 1
1 1 1
1 1 1

൩ , ݅ ൌ 0 (7.14)

7.3.3 Analysis and Verification
MATLAB provides an easy-to-use and feasible environment, on which

verification of the aforementioned algorithm is carried out. We start with the
image in Figure 7.22.a, where a pattern of veins is captured. Applying the first
operation of pre-processing, i.e. Binarization, yields in a black and white image
(Figure 7.22.b). The binary image serves as input to the sequence of
Skeletonization templates (Table 7.2) that is applied iteratively 7 times to get the
line-thinned image shown in Figure 7.23.a. As this image undergoes the
operation of Isolated Pixel Removal (7.4), all unwanted isolated points are
removed, which is depicted in Figure 7.23.b.

(a) (b)
Figure 7.22 Original image containing vein pattern (a) and a black and white image after
binarization (b).

128 Chapter 7 Applications

As the stage of pre-processing is accomplished, we move on to the first
stage of feature extraction. Ending Detection produces the image shown in
Figure 7.24.a, while Figure 7.24.b is obtained by means of Bifurcation
Detection. The subsequent stages from eliminating false feature in the ORed
image to the reconstruction of bifurcations and endings result in the images
shown in Figure 7.25.

(a) (b)
Figure 7.23 Result of skeletonization (a) and Isolated Pixel Removal (b)

(a) (b)
Figure 7.24 Endings (a) and bifurcations (b).

7.3.4 Experimental Set-Up
The project adopts the NoC-based architecture, Caballero. All templates

introduced previously are preloaded in the BRAM internally in each node,
which also serves as temporary storage for the intermediate outputs. Apparently,
this is not feasible if the entire greyscale image (Figure 7.22) is used. The size
of the image is 261 ൈ 261 and will require about 67 kB of memory storage,
which occupies almost 22% of the available on-chip memory (see section 6.2).
Therefore, only a smaller portion of the original frame that equals the size of the
network itself is used. As the feedback coefficients in all templates, except Eq.
(7.14), equal zero, the contribution of y-values in the calculation of the nodal
equation is removed. The accumulator is initialized with the value of the bias,
whereas the subsequent control contributions performed on the multiplier are
accumulated. The need of multiplication by 8 in Eq. (7.14) is resolved by a
simple 3-bits left-shift. Thus, the computational stage of the nodal operation is
brought down to 10 clock cycles only instead of 19 cycles originally.

 7.3 Vein Feature Extraction 129

Only 78 nodes are realized. Thus, 78 pairs of Multiplier/RAM out of 136
are used. The utilization of the logic shows to be 64% of the available slices,
which opens for accommodating additional functionality. The design runs on a
clock frequency of 100 MHz.

(a) (b)

(c) (d)
Figure 7.25 Adding the images with ending and bifurcation points by applying the
operation of Logical OR (a) before eliminating the false features (b). Reconstruction of
endings (c) and bifurcations (d).

CNN
Correct
Result

Generator

O
utput

M
atlab result

enable

Comparison

LED
Figure 7.26 FPGA test set-up

The experiment is kept simple by removing the need for interaction with
MATLAB. The original image and the MATLAB result are included in the
programming file as BS-RAM content. Then the CNN will work on the image
and the result is compared with the stored MATLAB result. If these results are
in agreement, a LED on the Memec board is lighted (Figure 7.26).

130 Chapter 7 Applications

7.4 DISCUSSION
In the previous sections a number of CNN-based experimental systems have
been discussed to get guidance about the practical significance of the FPGA
implementations that have been developed so far. The key questions are whether
there is a need for different architectures and to which degree a generic
architecture is helpful in creating such systems.

The Game-of-Life seems a first step in the direction of Artificial Life, but it
is actually a very simple game. The accuracy requirements are not very high; the
conventional game can even be played by a binary implementation. It then
becomes questionable to go for a digital implementation: analogue will be faster
and the gap with a software solution (using bit parallelism) is unusually small.
In turn, a grey-level implementation may open new possibilities when available,
and also closes the gap to predator/prey situations.

A careful look at Figure 7.7 tells that displacements captured with parts of
the blob (object) outside the scenery (Figure 7.10) guarantees obtaining one
solid box after the step of background suppression. On the other hand,
separation between blobs occurs for all displacement values above maximum
blob size. Furthermore, two leftovers are observed when one of the frames
contains the whole object and the displacement is above the maximum size of
the blob (Figure 7.27). The size of the obtained blobs is highly dependent on the
speed of the object and the frame frequency ݂. In the extreme case, one of the
ends of the object is seen in one frame while the other end only appears in the
successive frame. This case is discarded, as no measurements are possible. The
alternative is to operate so fast that co-location still exists between subsequent
images.

Taking the difference between frames will not suffice, when there is
separation between blobs. The separation between the blobs has to be bridged.
This case can be taken care of in the algorithm by including more steps.

The templates for thickening only the right hand side (Eq. (7.15)) and left
hand side (Eq. (7.16)) are applied on the first and second image frames
respectively. The logical AND template (Eq. (7.5)) is applied to the resulting
image frames to get an intermediate image frame. Now the operation is
performed on the other sides i.e. the templates for thickening left hand side and
right hand side are applied on the first and second frames respectively. The
resulting image frames are again logical ANDed to get another intermediate
image frame. These two intermediate frames are logical ORed (Eq. (7.6)).
Hence, the image frame derived from this operation will be free of pixel
separation between the two blobs. The value of ∆ can be calculated by taking
the difference between the separation-free frame and the first frame. An
illustrative diagram of the different steps is shown in Figure 7.28.

 7.4 Discussion 131

Figure 7.27 Separation between blobs due to different speeds: “slow” object in (a) and a
“fast” one in (b). The arrows indicate the direction of the movement.

ࣛ ൌ
0 0 0
1 1 0
0 0 0

൩ , ࣜ ൌ
0 0 0
0 0 0
0 0 0

൩ , ݅ ൌ 0 (7.15)

ࣛ ൌ
0 0 0
0 1 1
0 0 0

൩ , ࣜ ൌ
0 0 0
0 0 0
0 0 0

൩ , ݅ ൌ 0 (7.16)

In the case of velocity measurements, hardware requirements differ with the
objective. Initially a single template needs to be applied to the entire image to
find objects of interest. This favours the pixel pipeline. For more complex
operations such as the matching of moving objects, the focal plane approach is
more effective. It seems appropriate to reconfigure the board, but preferably not
for the total design. In other words, more product-level experience is required to
make sensible decisions.

It has been illustrated that the algorithms described in [99] [100] can also be
used for vein identification. In comparison with the algorithm presented in [98],
the operation of False Feature Elimination is applied only once instead of 3
times. Furthermore, the design is simplified by restricting the number of
iterations to 1 for all used templates. This allows for comparison with solutions,
based on layers of feed-forward networks [103]. Where this paper performs
detection based on pre-learned physical features, here such features are pre-
defined through the template application.

Pre-processing is achieved by applying the template of skeletonization that
masks out the features of shape and thickness of the veins. The order in which
the templates of skeletonization are applied influences the type, the number and
the direction of extracted features. Figure 7.29 shows the output of bifurcation

132 Chapter 7 Applications

detection as the templates in Table 7.2 are applied in the order: NW, N, NE, E,
SE, S, SW and W.

Δ
Figure 7.28 Extended algorithm for handling fast moving objects. The direction of
movement is from right to left.

(a) (b) (c)
Figure 7.29 A certain order of skeletonization templates applied on (a), results in a false
feature (b) instead of the real one (c).

The algorithm is restricted to 2-dimensional black and white images. This
limitation increases unfortunately the rate of false detection, as vessels passing
over each other in reality will be treated as a cross-section in the 2-dimensional
image (Figure 7.30). The operation of False Feature Elimination is crucial for
the accuracy of the overall algorithm, as the number of false features as well as

 7.4 Discussion 133

the total number of extracted features is affected. Unfortunately, the current
algorithm proves to be sensitive for image resolution.

2-dimensional
image

False
bifurcation

Figure 7.30 The non-crossing veins (marked with circle) give rise to false bifurcation in
the 2-dimesional image.

 The functionality of vein feature extraction approach is demonstrated on a
human retinal angiographic image used in [97], as this enables comparison
between the methods. As the algorithm in [97], a Gaussian model, does not
distinguish between true junctions and corners (points of high curvature), many
of the detected junctions are neither bifurcations nor end-points. It is reported
that the Gaussian algorithm extracts 60 out of the actual 65 junctions in the
original image. In addition, it has a false-positive rate of 80 junctions! A manual
count shows the existence of 43 real bifurcations in the binarized image. The
CNN-based approach presented here extracts 30 bifurcations of which 2 shows
to be false features (Figure 7.25.d). This is caused by the 2-dimensional
mapping that has already been discussed (Figure 7.30). By mean of comparison
with the Gaussian extraction model, we focus on the rate of detection rather than
the number of extracted junctions. Here, two rate numbers are of importance:
the detection rate of 65% and the false-positive rate of 5%. The former is much
lower, while the latter is a bit higher than in the Gaussian model. By removing
the False Feature Elimination, the detection rate is raised to 100% but the false-
positive detection rate is also increased. It appears therefore that this algorithm
is not fully adequate, although it easily matches the Gaussian model (Table 7.3).
The reason seems to be a lack in image resolution. As claimed in [103], this can
be solved by re-introducing feedback to adapt the resolution before
skeletonization is performed, similar to the bio-inspiration claimed in [104].
This confirms the setting of different block sizes in [97] and the variety of 2nd
layer networks in [103]. Another issue that needs more attention is the accuracy
of the binarization procedure as a simple visual inspection reveals a difference
in the number of bifurcations and ending between the original and the binarized
images.

Feature matching of two vein patterns depends on the type, the location and
the direction of endings and bifurcations. It is debatable, whether with all the
existing variety it is really required to find all the existing bifurcations and
endings to limit the images that need to be inspected on per pixel basis. A larger
experiment seems required to decide how much is enough.

For realistic image databases, the many images require more pixels to be
discriminated, leading to a more than quadratic increasing search time. One may

134 Chapter 7 Applications

conclude that image comparison is accurate [94], given a repeatable capture
mechanism [95], but the number of images to be compared is simply too large.
One way to ease the problem is by providing a content-based selection
mechanism. The automatic provision of such ‘features’ allows determining the
small number of images to search through. For this purpose the reduction of
False Acceptance Rate (FAR) will be dominant.
Table 7.3 A comparison of the Gaussian model and the CNN-based approach when
applied on a human retinal image. FFE stands for False Feature Extraction.

 Detected
junctions

False-
positive

False-
negative

Gaussian Model [97] 92% 123% 8%

CNN-based approach
With FFE 65% 4.7% 35%
Without FFE 100% 21% 0%

The implementation stresses the exploitation of the FPGA as realization
target. We have aimed at the best detection using few resources, as a realistic
product will be based on bi-spectral imaging. The merging of features from two
sources will definitively raise the performance figures but poses additional
computational demands. Hence, the computational need of the feedback
contribution is removed. This provides for a good starting position to extend the
hardware with variable resolution and 3-dimensional modelling.

In all, generic VHDL descriptions are feasible in the sense that parameters
can be scaled. But experience shows that the diversity is even larger and a
deliberate customisation of the original generic set-up will be inescapable. For
instance, the Game-of-Life can be implemented at least 6 times denser than the
Sleipner template on the target FPGA as only one pipeline is required.
Consequently the designs are derived from the same base, but made unique in
implementation.

Chapter 8

137

Template Optimization

he functionality of both continuous- and discrete-time CNNs is defined
by the cloning template ࣮ that, together with the input pattern ݑ and an

initial output pattern ݕሺ0ሻ, completely determines the dynamic behavior of the
system. In a 1-neighbourhood, a template consists of 19 free parameters, while
51 free parameters constitute the template in a 2-neighbourhood. Any deviation
in template parameters will have a tangible effect on the dynamic behaviour and
may lead to malfunctioning. Thus, any template design method has to guarantee
the robustness of the CNN. A CNN is said to be robust if it operates as desired
even when subjected to implementation inaccuracies [61]. More attention has to
be paid to parameter deviation when designing templates for analogue CNN
chips. Template robustness is easily disturbed due to the noise in the electrical
components as well as parameter scattering introduced during the fabrication
process [80].

The simplicity of CNN operation, given in Equations (2.33) and (2.34) is
deceptive. The dynamics can be extremely complex, even for relatively small
networks [11]. The feedback coefficients, i.e. template ࣛ, give rise to a non-
linear dynamic behavior that leads to the existence of different interesting
phenomena such as oscillation and chaos. Most CNN applications require,
however, complete stability and strive to eliminate the chaotic tendency instead.
In his book [11], Chua presents the mathematical criteria that guarantee such
complete stability, which is rephrased below.

Major parts of this chapter are published in [X].

T

138 Chapter 8 Template Optimization

Theorem 7.1: Complete Stability Criterion
For a standard CNN with constant inputs, constant bias and an arbitrary

neighbourhood, all trajectories converge to an equilibrium state, which in
general depends on the initial states, if the following three conditions are
fulfilled:

♦ The feedback template, ࣛ, is symmetric with respect to the center of
the template

♦ The squashing function fሺ·ሻ is differentiable with positive slopes, and
bounded.

♦ All equilibrium points are isolated, i.e. there exists an open set around
any equilibrium point that contains no other equilibrium
point. ז

The piece-wise function in Eq. (2.7) does not fulfil condition (ii) above, but
can be approximated by an injective function that does fulfil it. Furthermore, the
three conditions are sufficient but not necessary. For instance, many CNNs with
non-symmetric templates are completely stable [11].

By increasing the slope of the piece-wise function in Eq. (2.7) such that it
approaches infinity, a step function is obtained. This leads to two distinct output
values for each cell, +1 or -1. The cells are then bistable. Below, we reintroduce
the bistability theorem as stated in [11].

Theorem 7.2: Bistability Criterion
The output of every cell at any stable equilibrium point of a completely

stable standard CNN is equal to either +1 or -1, if the centre element of the ࣛ
template satisfies ܽ ז .1

8.1 DESIGN OF ROBUST TEMPLATES
Different design methods can be applied to find the desired template [62]. The
most difficult one is design by intuition as it requires a long experience in the
applicable field. For the experienced designer this method is fast, but it does not
guarantee a satisfactory result. The second method is design by learning, where
classical neural network training techniques are employed. Both local and global
learning algorithms have been tried [63] [64], where the idea is to design the
desired template by gradual enhancement of the robustness. The problem is that
for some application the template either exists or does not exist. The gradual
enhancement approach is then not possible and the template may never be
found! The third method requires the desired function to be exactly determined;
this is the direct template design. According to [62], the popularity of the
method lies in the fact that it finds a template class rather a single or few
working templates. The obtained template class is guaranteed to contain the
most robust template, while time and computational power needed are much
smaller than in the two other methods.

 8.1 Design of Robust Templates 139

In his strive to give a practical survey of template design in bipolar CNNs,
i.e. ݕሺݐሻ ൌ ሻ൯, Zarándy [62] divides CNN templates from theݐሺݔ൫݊݃݅ݏ
interconnection point of view into two sets: uncoupled and coupled. In the
uncoupled templates, a cell is not at all affected by the current output of the
neighbouring cells but only of the input pattern, while coupled templates takes
the contribution of neighbouring cells’ output values into account. In other
words, all the entries in the ࣛ matrix of an uncoupled template are set to zero
apart from the self-feedback coefficient ܽ00. Table 8.1 illustrates the idea for a
1-neighborhood.
Table 8.1 Feedback matrix ऋ in coupled and uncoupled CNN templates.

Uncoupled Template Coupled Template

0 0 0
0 ܽ 0
0 0 0

൩
ܽିଵିଵ ܽିଵ ܽିଵାଵ
ܽିଵ ܽ ܽାଵ

ܽାଵିଵ ܽାଵ ܽାଵାଵ

൩

The simplicity of uncoupled templates lies in the fact that analyzing the
dynamic behaviour of a single cell is enough to understand the functionality of
the whole network. The state equation of a single cell is merely a simplification
of Eq. (2.33), as shown in Eq. (8.1) below.

ሻݐሶሺݔ ൌ െݔሺݐሻ ܽݕሺݐሻ ݓ
ݓ ݁ݎ݄݁ݓ ൌ ܾݑ

אௌೝሺሻ

 ܫ
(8.1)

The robustness of uncoupled templates is mainly dependent on the value
of ܽ00. For a zero valued self-feedback coefficient, the final output is
independent of the initial state and depends only on the contribution of the
input. On the other hand, when ܽ ൌ 1, the CNN acts as an integrator with the
state in the linear region (|x| < 1). Here two options are possible: (i) ݓ ് 0, the
final output is then only binary, i.e. ݕሺ∞ሻ ൌ ݓ ሻ and (ii)ݓሺ݊݃݅ݏ ൌ 0, the final
output depends on the initial state, i.e. ݕሺ∞ሻ ൌ ሺ0ሻ. In a third case, ܽݔ 1,
the final output is always binary regardless of the initial state and the
contribution of control template (Eq.(8.2)).

ሺ∞ሻݕ ൌ ሺሺܽ݊݃݅ݏ െ 1ሻ · ሺ0ሻݔ ሻݓ (8.2)

Similarly, the dynamics of coupled templates are described in Eq. (8.3). In
line with Theorem 2, the self-feedback coefficient ܽ is assumed to always be
larger than 1. The contribution of neighbouring cells in the feedback loop gives
coupled templates their characteristic feature, i.e. propagation phenomenon.
Propagation occurs due to the interaction between active and inactive cells. An
active cell is always in the linear region of the activation function, i.e. the output
of an active cell changes over time. An inactive cell remains in the saturation
region unless it is explicitly activated. At the beginning of propagation, some
cells are active. These cells might activate neighbouring inactive cells, a
procedure that continues for a while. At the end of the operation all the cells are
inactive.

140 Chapter 8 Template Optimization

ሻݐሶሺݔ ൌ െݔሺݐሻ ௨ (8.3)ݓ

where ݓ௨ ൌ ∑ ܽݕאௌೝሺሻ ∑ ܾݑאௌೝሺሻ ܫ
Equation (8.3) reveals that stability of an output is only possible in the

saturation region. For instance, if ݔሺݐሻ ൌ 1 and ݓ௨ 1 then the stable
equilibrium point ݔ ൌ ݔ ௨ is in the positive saturation region. The stateݓ
reaches equilibrium without changing the output ݕ. On the other hand, if
ሻݐሺݔ ൌ 1 and ݓ௨ ൏ 1 then the current output resides in the positive
saturation region, but it moves gradually toward the linear region as y becomes
smaller than +1, and hence ݓ௨ decreases. This is due to the decreasing value
of term ܽݕ. The positive feedback brings the state for the cell to the negative
saturation region. Similar discussion is valid when the state initially resides in
the negative saturation region.

Now the design of the robust template can begin. Zarándy gives in [62] a
detailed description of the entire procedure (Figure 8.1) accompanied with a
number of examples. We will reintroduce the methodology briefly.

Figure 8.1 Flowchart of the design steps of coupled templates. The dashed box marks
the steps of uncoupled templates [62].

In the first step, the global task is described verbally with some input-output
pairs. The global description eases the derivation of local rules (on the pixel
level) of the propagation. A local rule prescribes if the output of a bipolar cell
has to remain constant or to change sign, depending on the input and output
values of the neighbouring cells [65]. Furthermore, a 3 x 3 binary activation
pattern is generated against which a matching of the input image is performed.
This completes the second step. The classification step determines whether the
propagation is constrained/unconstrained and symmetric/asymmetric, which
helps to perform the next step. The propagation is symmetric if the activation

 8.1 Design of Robust Templates 141

condition is symmetric to the sign of the cell, i.e. in image processing
applications, black and white cells are affected in a similar (but opposite) way.
If the input contains a mask that limits the propagation, the template is
constrained (e.g. hole filling). In an unconstrained template ࣜ ൌ 0, while a
symmetric template has ܫ ൌ 0. Now, the number of free parameters is known
and the template form can be determined. In this step, the aim is to reduce the
free parameters in the searched template as much as possible, e.g. from 11 down
to 3-4 parameters in the uncoupled templates. This is crucial to successfully
design a robust template. Depending on the task and with help of the previous
discussion about Eq. (8.2) and Eq. (8.3) a number of inequality relations are
generated. This is simple since input-output pairs are already known. Each
relation defines a hyperplane that divides the template space into two halves,
where the relation is satisfied in one half and not in the other. The intersection of
all satisfying halves gives the subspace in which all correct templates are found.
See Figure 8.2 for an illustrative description. What remains is only to select the
most robust template that resides in the centre of the specified template
subspace. In the case of uncoupled templates, the design procedure consists only
of the last four steps in Figure 8.1.

Figure 8.2 Graphical example of the Solution of the Relation System step. Here, only
two free parameters, b and i, are involved. The arrows indicate in which half of the
space a relation (the line) are satisfied [62].

A rule of thumb in template design is that the larger the template values are
the faster the transient is (it reaches stability faster). But the analogue realization
of the CNN limits the maximal absolute value to 3 for template coefficients and
6 for the bias [62], which bounds the inifite subspace obtained in Figure 8.2. In
another modularly extendable gm-C implementation of the CNN-UM [66], the
maximal absolute values are a bit larger but have more strict precision
characteristics (Table 8.2). Thus, the values of control template ࣜ and bias i in
Figure 8.2 are chosen from the middle of the subspace (dashed lines in Figure
 8.3). This yields the so-called nominal template. Due to parameter deviations in
the analogue realization, each cell is considered to have its own template. These
real templates are located in a circle around the nominal template, but the circle
should be completely within the obtained subspace.

142 Chapter 8 Template Optimization

Figure 8.3 The nominal template is the origin of a circle containing all real templates.
Dashed lines mark the technical limitation of the employed analogue CNN chip.
Table 8.2 Range of template values in the gm-C implementation of the CNN-UM [67].

Parameter Interval
ऋ and ऌ off-center entries േሼ0, 1, 2, 3, 4ሽ
ऋ and ऌ center entries േሼ0, 0.5, 1, 1.5, 2, … , 4ሽ
Bias േሼ0, 0.5, 1, 1.5, 2, … , 7.5ሽ

8.2 CHIP-INDEPENDENT TEMPLATE OPTIMIZATION
Analogue CNN-UM chips, such as ACE4k [27] and ACE16k [29] perform
image-processing tasks with extremely high throughput data rates in the order of
tera operations per second. However, non-ideal functionality of the chip may
occur due to erroneous behaviour in some cells. These analogue
implementations can guarantee only a rough accuracy of 5%-10% in relation to
ideal parameter values [68] [67]. Additionally, template parameters have a
discrete range of implementable values of about 7 bits for the actual chips.
Having this in mind, fabrication imperfections may lead to undesirable and
unavoidable parameter variations. Other sources of erroneous behaviour are:
noise in the electrical components of the cells, imperfect or noisy loading of the
input and initial state from off-chip to on-chip memory, and temperature
variations. Beside, saturation at exactly േ1 cannot be guaranteed which affects
the characteristics of the piece-wise function and, hence, leads to erroneous
behavior. The best way to overcome these restrictions is by adjusting template
parameters, which makes the CNN more tolerant against inherent chip-
parameter deviations and noise in the analogue implementation. At first, chip-
independent template design methods have been developed, as they are thought
to generate templates robust enough to be employed on all chips. We discuss
two methods: one is targeting continuous-time CNN implementations and the
second covers discrete-time CNN models.

8.2.1 Discrete-time implementations
In the finite iteration DT-CNN approach [69], the network performs a fixed
number of iterations. The standard feature of convergence is not taken into
account and the achievement of a steady state is not required. The main feature
is that different templates are used for different iterations; the DT-CNN is then
called non-stationary. In this way all the demands on symmetry and stability,

 8.2 Chip-Independent Template Optimization 143

discussed in Theorem 1 and Theorem 2, are removed. Each cell in the network
will have a set of states according to the applied number of iterations. In line
with the standard CNN, the state corresponding to the current template is tightly
coupled to the previous state through the feedback of previous output. For
iterations ݐ ൌ 0, … , ܶ െ 1 the states evolve according to Eq.(8.4). ܴ stands for
the number of rows in ࣛ and ࣜ matrices.

ݔ
௧ାଵ ൌ ൫ܣ,

௧ ା,ାݕ
௧ ,ܤ

௧ ା,ାݑ
௧ ൯ ݅௧

ோିଵ
ଶ

,ୀିோିଵ
ଶ

 (8.4)

The template is designed through a constructive learning strategy based on
back-propagation. Input and output pairs ሺݕ, ሻ are presented to the networkݑ
upon which the template weights are adjusted. The method is concerned with
using the DT-CNN as a classifier. The training process aims on minimizing the
training error that depends on the training data (input/output pairs) and the
template. For each template, a certain absolute loss function simply measures
the deviation of the actual CNN output from the desired output. An ߳-insensitive
absolute loss function [71] is used due to the higher accuracy of resulting
derivatives. The actual output has zero loss and zero gradient if it lies inside the
߳-margin of the desired output. In this way, the algorithm learns misclassified
training patterns rather than adjusting the weights with gradient steps of already
correctly classified patterns

For verification purposes, the system is used to classify normalized
handwritten digits, i.e. recognition of digits 0,1, 2, … ,9, where 16 x 16 grayscale
images have served as inputs. Classification rates increased from 80% for a
single template to around 97% for 10 templates. In a later work [70], the effects
of finite-word length have been studied, where the design of templates with
limited precision is demonstrated. Input images are represented as double-
precision floating-point values with an effective precision of eight bits (covering
256 greyscale levels). The template weights by the training algorithm are then
reduced to two decimal digits (at least 8 bits). The algorithm is adjusted to the
limited precision through truncation of the weights after each training epoch.
The final weights fall into the interval [-2,+2] and are 9 bits wide; 8 bits for the
value and 1 sign bit. In both [69] and [70], the simulation is confined to ܭ ൌ 5
only, i.e. 2-neighborhood, as adequate classification performance cannot be
achieved for ܭ ൌ 3, while ܭ ൌ 7 leads to overfitting. It is interesting that both
stationary and non-stationary DT-CNNs lead to the same classification rate!

8.2.2 Continuous-time implementations
The proposed analytical method in [61] and [67] considers robustness with
respect to template errors only. Approximation errors of the piece-wise function
are taken into account by choosing sufficiently large fractional errors for the
template parameters; larger than the errors that the parameters actually
experience. The analysis are further restricted to the case of binary initial state
and input values.

144 Chapter 8 Template Optimization

The approach provides robust templates for accomplishing different tasks,
e.g. horizontal line detection and shadowing, but the obtained template
parameters are derived through an intensive mathematical analysis of the
proposed solution for each of the tasks. Additionally, for tasks requiring a high
degree of connectivity, e.g. edge detection, the approach leads to relatively large
template values. The CNN system has then to be able to accommodate larger
template values than needed in other templates. One way to remedy this is to use
other algorithms to permit template values remaining in a small range, which
adds to the already high complexity of the approach! Furthermore, the proposed
analytical approach guarantees template robustness only for so-called locally
regular CNNs. Locally regular CNNs are a subclass of bipolar CNNs [65]. They
contain two subgroups: uncoupled and a subclass of the coupled CNNs, i.e.
propagation-type CNNs. The template set consists of not more than 11 non-zero
coefficients; otherwise the template will not function properly. One of the strong
features of the proposed method is that the optimal robust template is obtained
directly without any need for iterative enhancement.

8.3 CHIP-SPECIFIC TEMPLATE DESIGN
The main drawback in chip-independent optimization methods is that even if
some templates show to be robust enough, the degree of robustness for different
operations is obviously not the same. Actually, noise of the electrical
components as well as parameter scattering introduced during the fabrication
process, lead to space-variant differences in template parameters from the ideal
values. There is no guarantee that two cells within a single chip will react
identically on the same stimuli, even when the most robust template is used! If
the tolerance range of the template is smaller than the inherent parameter
deviation of a given chip, the template works improperly. Consequently, the
functionality of a robust template is not guaranteed on different chips of the
same type. In this case improvements can only be achieved by readjusting the
templates [80]. Errors of actual chips are then eliminated or at least minimized
for a certain operation. The ultimate solution in this case would be to manually
and empirically tune the template for a given chip, which should be avoided as it
tend to be tedious and require very long time. An automatic approach that tunes
the template parameter for a specific chip is needed. Two adaptive template
optimization methods are presented in [80] [68], where the template is not
redesigned but optimized. In the following subsections we describe these two
methods briefly.

8.3.1 LMS-based approach
The approach starts with the theoretically most robust template for the given
task and ends with the optimal template for the given chip. Thus, the obtained
templates are optimal but not necessarily the most robust ones for the given chip
and task

The method assumes uncoupled CNNs with space-invariant templates and
binary output, where the self-feedback entry is always larger than 1 to guarantee
stability (Theorem 1). Both binary and analogue inputs can be handled. For

 8.3 Chip-Specific Template Design 145

simplicity, the initial state of all cells is set to zero, i.e. ݔሺ0ሻ ൌ 0. Then, any
task is defined by the control vector (corresponding to control ࣜ template)
and the bias ݖ.

The optimization aims on eliminating, or at least minimizing, the average
error of the entire CNN, denoted ܧሺ, .࢛ ሻ, when presented an input vectorݖ
Usually, the average error is obtained by calculating the normalized sum of the
mean square errors of all cells in the grid. Then the gradient descent approach is
employed to minimize the error and thus find the optimum solution on the error
surface. The main hindrance is that the exact form of ܧሺ, ሻ is not known for aݖ
given chip. This makes the attempt to find a solution analytically very difficult.
Instead, the proposed method is based on a cumulative single-cell model of the
chip for which an optimum is found through iterative optimization. The gradient
descent approach is still employed, but the average (or cumulative) response of
the entire chip to input ݑ א is obtained according Eq. (8.5) instead. ܰ is the ࢛
number of rows and ܯ is the number of columns of the CNN, while ݕത
represents the desired output value.

ݕු ؠ
1

ܯܰ ത,ݕ

ெ

ୀଵ

ே

ୀଵ

 (8.5)

Accordingly, the average error of the entire chip is given by Eq.(8.6), where
ܭ .is the number of input vectors, i.e ܭ ൌ 2ଽ for 1-neighborhood and ܭ ൌ
2ଶହ for 2-neibhborhood.

,ෘሺܧ ሻݖ ൌ
1
ܭ

ሺݕ െ ሻଶݕු

ୀଵ

 (8.6)

The cumulative output carries information about the number of erroneous
cells rather than about their exact location. This is of course desirable as the
changes in template parameters should not be cell dependent due to the space-
invariant nature of the template. The minimum on the error surface is found by
means of gradient descent using Least Mean Square (LMS) learning.
Furthermore, a piece-wise linear output function is chosen to model the
noisiness instead of the sharp threshold function. The linear model is
advantageous due to its simplicity, but for more accurate results, using the
sigmoid function should be considered [68].

Figure 8.4 illustrates the template optimization set-up. The ideal values
ሺ۰כ, zכሻ are used to initialize the CNN-UM chip and are used by the simulator to
produce the desired values. New template values are adapted gradually as they
are calculated by the LMS component.

There is no guarantee that the global minimum will be found since the LMS
method will find the local minima on the error surface. Actually, the
optimization method may fail in finding any template for which ܧሺ, ሻݖ ൌ 0. In
this case, the template is decomposed into more robust child templates through
iterative replacement of nonzero template coefficients by zeros. It is well-known
that increasing the number of zero-valued entries enhances the robustness [72].

146 Chapter 8 Template Optimization

A logical combination of all child templates yields an expression that is
functionally equivalent to the original non-robust template. The conclusion is
that templates having a robustness lower than approximately 0.5 require
decomposition. The approach, illustrated in Figure 8.5, is fully automated in the
sense that it stops nt before all obtained child templates are robust enough.

Figure 8.4 Template optimization set-up [68].

Figure 8.5 Block diagram of fault-tolerant template decomposition [68].

 8.3 Chip-Specific Template Design 147

8.3.2 ASA-based approach
The main critique to the previous method is that the local optimization approach
needs information on the gradient of the cost function, which leads to a poor
minimum and forces to decomposition into simpler templates. Applying a global
optimization method such as the adaptive simulated annealing algorithm (ASA)
 [73] overcomes this limitation and enables template optimization for coupled
CNNs as well. This brings the most interesting feature of CNNs, i.e. global
interaction, into play, which compensates for the main disadvantage of the ASA
algorithm of being slower than local optimization methods. In [68], the ASA
algorithm constitutes the cornerstone in the proposed template optimization
method. The method is composed of two steps: in the first step the optimal
tuning of the nominal template is found, while the second step aims on finding
the robust optimum starting from the tuned template. The target is, as in the
previously discussed method [80], the two analogue chips ACE4k and ACE16k.

For a given training set consisting of input ࢛, initial state ࢞ and desired
output ݕത (all values belonging to range [0,1]), the cost function of certain,
randomly generated, template parameter vector ൌ ሺଵ, ,ଶ … , ሻ is given by
Eq. (8.7) where k is the number of cells in the chip and ݕሺ∞ሻ is the value of the
steady-state output of the ith cell. As the objective of the approach is tuning, not
learning, an initial approximation ௧ is imposed to set the boundaries of the
search (these initial parameters compose the initially proposed template for the
given operation under assumption that this template is fully correct on a
simulator). The allowed search boundaries should be larger than parameter
deviations of the chip. The search space can be minimized, which makes the
approach faster, by applying additional constraints on the template, such as
symmetry or dependence between the values.

݃ሺ, ,ݑ ,ݔ ത ሻݕ ൌ
1

√݇
ඩሺݕത െ ሺ∞ሻሻଶݕ

ୀଵ

 (8.7)

The ASA algorithm is performed recursively where the constraints are
gradually removed and the boundaries are made narrower between subsequent
iterations. The procedure is considered successful and stopped when the cost
function becomes smaller than a certain tolerance value, otherwise the enforced
constraints are relaxed to the next level and another ASA optimization is
initiated. The result of this new optimization round is considered to be optimal.
In other words, the wider boundaries and the harder constraints upon start
allows for a fast and rough localization of a global optimum that is iteratively
refined.

In the LMS-based approach, the optimization is concerned only with
minimizing the error, while here robust improvement is involved as well. As
discussed earlier (Figure 8.3), robust templates have their parameters in the
middle of a correct operation interval. Similarly, the tuned template of a given
template resides in the middle of an interval that is shifted together with the
nominal values due to parameter deviations. It is clear that a more robust version

148 Chapter 8 Template Optimization

of the tuned template may be found only in this interval. To do that, a method
similar to statistical circuit design is employed. A Gaussian noise vector of
random variables with zero mean and small variance, denoted
ࢋ ൌ ሺ݁ଵ, ݁ଶ, … , ݁ሻ, represents chip parameter deviations. The cost function now
contains several different embedded measurements instead of only one (Eq.
(8.8)). The parameter ݎ denotes the number of runs executed.

,ሺܩ ,ݑ ,ݔ ഥ,ݕ eሻ ൌ
1
ݎ

 ݃൫ ݁, ,ݑ ,ݔ ത൯ݕ

ୀଵ

 (8.8)

The optimizations are performed using the Aladdin system in connection
with a MATLAB environment where the main features of the ASA algorithm
are run. Target chips are: ACE4k of size 64 ൈ 64 cells, and ACE16k of size
128 ൈ 128 cells. The input and initial state for each optimized template
operation have been generated randomly, except for few operations such as
binary edge detection. The desired output values are obtained from simulators of
ideal CNN-UM using robust templates. No slicing of the images is needed as
those are always chosen to have the same size as the given chip. Each
optimization round requires in average tens of thousands iterations, where each
iteration takes about 50 ms. Performance bottleneck resides on the execution of
the MATLAB part. Be aware that the obtained templates are robust and/or
optimal for the given chip only. For use in a different chip, a proper repetition of
the whole procedure must be performed.

8.4 OPTIMIZATION OF DIGTIAL IMPLEMENTATIONS
The noise in digital circuits is primarily of numerical origin, where the finite
word width causes a degree of value crisping that gradually impacts the intended
behaviour [60]. The main difference with respect to analogue realizations is that
the word width is a design aspect rather than a chip parameter aberration. For
instance, internal values in [74] use just a single bit, while most applications
need 8 bits and only few functions take considerably more than 8 [75] [76].
Word size translates immediately into system size. Computational precision that
is theoretically unlimited becomes rapidly a design bottleneck as the digital
circuits grow rapidly and dissipate more power with larger words.

In his attempt to improve the design of a DT-CNN and lift it to a higher and
more formal level, ter Brugge [40] has used the rules of Mathematical
Morphology to systematically derive complex templates. Actually, the approach
flows in the opposite direction of what other developers and researchers try to
achieve; simpler templates! This results in a highly efficient CNN architecture
as it simplifies the overall structure but it introduces a number of complications
when a digital realization is considered. One has to do with the increasing
internal word width. An 8-bit wide data word will lead to 21-bits wide internal
word (Figure 8.6), which takes an appreciable amount of processing capacity
away. Obviously, the problem is even more severe when the number of
multiplicative additions increases, i.e. when a larger neighbourhood is
employed. However, an iterative optimization approach presented by Fang et al.

 8.4 Optimization of Digtial Implementations 149

 [60] shows that the internal word width can be reduced down as low as 7 bits
with no effect on the overall functionality. In this way, employment of
composed complex templates can be accomplished with limited impact on the
hardware implementation.

∑i

Figure 8.6 Block diagram of a single DT-CNN cell. The numbers represent the width of
each line in a 1-neighborhood digital implementation.

The effectiveness of the approach is demonstrated by applying the template
of hole filling (Table 8.4) on a small black and white image (Figure 8.7). In line
with the digital implementations introduced previously, a fixed-point
representation is assumed for all values, internally and externally. Table 8.3
shows the placement of the decimal comma for the different values. The
proposed approach reduces the internal values (after the multiplication)
systematically from 16 to, at least, 7 bits. In this way, word size of the state is
brought down to 12 bits only, of which 7 bits are used to address a table
representing the final discrimination.
Table 8.3 Typical data representation of a digital DT-CNN. The notation <n:m> means
that the number consists of n-bits integer part and m-bits fractional part.

Value Fixed-point notation
 <value <1:7- ࢟ value and- ࢛
ऋ and ऌ coefficients <4:4>
Bias <5:3>
Multiplication results <5:11>
State <10:11>

Figure 8.7 Input image used in template optimization algorithm.

150 Chapter 8 Template Optimization

Upon start the range, in which the search is performed, has to be defined.
This is heavily dependent on the number of free parameters that the initial
template has. For instance, the template shown in Table 8.4 that is usually used
to perform hole filling operation has 4 degrees of freedom only. These are
denoted ܽଵ for the center ऋ-coefficient, ܽଶ for the non-zero off-center ऋ-
coefficients, ܾ for the centre ऌ-coefficient and ݅ for the bias.
Table 8.4 Hole filling template.

ऋ Template ऌ Template bias

0 1 0
1 3 1
0 1 0

൩
0 0 0
0 4 0
0 0 0

൩
‐1

In [60] the search of robust templates is ruled by the tuning ranges given in
Table 8.5. Obviously, the range ܽଶ is not symmetrically spread around the
nominal value of 3, while the value of 4 is not at all included in the adjustement
range of ܾ! These tuning ranges are, however, employed here as well to make
the comparison with the approach in [60] possible. The number of robust
templates is dependent on the performed operation, word size and the employed
representation of values. For the hole filling template, and with the value
representation given in Table 8.3 , the smallest step between two consecutive
values of ऋ- or ऌ-entries is 0.0625, while it is 0.125 for the bias. In all cases, 11
levels for each of the parameters do exist, which results in a total number of 114
= 14 641 templates to be tested.
Table 8.5 Tuning ranges for the Hole filling template.

࢈ ࢇ ࢇ
Decimal [2.625, 3.25] [1, 1.625] [3.125, 3.75] [‐1.375, ‐0.125]
Binary [0010.1010,

0011.0100]
[0001.0000,
0001.1010]

[0011.0010,
0011.1100]

[11110.101,
11111.111]

The method evolves as follows. At the beginning, the system runs on full
precision without any truncation (16 bits for the multiplication results with
notation <5:11>). All templates obtained for the given tuning ranges are tested,
where each template executes until one of the stopping conditions is fulfilled:
equilibrium is established or a predefined upper bound of iteration count is
reached. If the obtained output matches exactly a desired output, the template is
considered robust for the tested truncation level. The set of robust templates is
then tested on the next truncation level, i.e. <5:10> for multiplication results. In
other words, the robust templates from a certain optimization round are tested in
the successor round where additional bit of the decimal part is truncated. This
continues until truncation level <5:2> is reached. The methodology is
schematically illustrated in Figure 8.8.

 8.4 Optimization of Digtial Implementations 151

Figure 8.8 Template optimization through truncation.

The algorithm is executed on a CNN model that is first built in software,
before it is digitally emulated on an FPGA. The software model is written in
pure MATLAB functions, while the digital emulator is implemented using
VHDL. Due to hardware limitations on the FPGA, mainly memory space, the
algorithm is slightly modified. Instead of checking the entire set of templates for
robustness on one truncation level as in Figure 8.8, one template is tested with
all truncation levels for which the template shows to be robust before the next
template is tested. If a template passes through all truncation levels and still
provides the desired output, it is then considered fully robust. Both software and
hardware models find the same final set of robust templates consisting of 466
templates, i.e. about 3.2% of the entire template space. An interest observation
is that changing the order of optimization, i.e. starting from heavily truncated
values <5:2> and gradually ending in full precision <5:11>, still provides the
same robust templates. For clarity of the following discussion, the approaches
are here named as descending and ascending. The former employs the intuitive
understanding of truncation and starts from higher precision, i.e. <5.11>, and
ends with lowest precision, i.e. <5:2>, while the latter follows the opposite
order. While both approaches find the same 466 robust templates, they differ,
however, greatly in the number of robust templates found in the intermediate

152 Chapter 8 Template Optimization

optimization steps (Figure 8.9). It is further observed that far more iterations per
template are generally required in the ascending approach. Recall that the
number of iterations toward convergence is mainly application dependent. Some
applications, e.g. the Logical NOT, require a single iteration, independent of the
network size. Other applications, e.g. hole filling, require more iterations
dependent on the number of rows/columns in the network. However, the
combination of template coefficients is desicive for how soon convergence is
reached, i.e. how many iterations are required before the network converges.
Thus, it is not surprising that the obtained robust templates differ in iteration
count, making them less or more ‘suitable’ to perform the operation. On
average, the ascending approach requires 26.3991 iterations for the robust
templates in the last optimization level while the descending approach requires
12.5601 iterations. This advantage of the descending approach disappears
quickly when other aspects are taken into account as will be discussed in section
 8.7.

Figure 8.9 The number of robust templates remains unchanged at the beginning of the
descending approach before it decreases strongly at then end. In the ascending
approach, the number of robust templates is already very low and decreases slightly
until it reaches the same value as for the descending approach.

8.5 INFLUENCE OF BOUNDARY CONDITIONS
The effect of boundary conditions on the quality of the applied approach
requires special attention. It is well known that the choice of boundary condition
is essential for the overall functionality of most templates. Mainly three
conditions are used in literature: zero-flux, fixed (with different values) and
periodic. Which one to use is operation dependent and is, thus, coupled to the
derived template. In [77], the influence of boundary conditions on space-
invariant coupled templates is discussed in detail. Only 1-neighborhood
templates with zero ࣜ-coefficients and bias are considered. The width of the
added frame of boundary cells is equal to the neighborhood size. It is here
proved that for any two-dimensional infinite CNN that has a stable equilibrium

0
1000
2000
3000
4000
5000
6000

5:11 5:10 5:9 5:8 5:7 5:6 5:5 5:4 5:3 5:2

ro
bu

st
 te

m
pl
at
es

Precision

Descending Ascending

 8.6 Extended Template Optimization Algorithm 153

point, there are boundary conditions such that the resulting finite CNN, defined
by the same template, also has a stable equilibrium. The conclusion is that
CNNs can be divided into three different groups with respect to the influence of
boundary conditions on their stability.

 CNNs that always have stable equilibrium, e.g. such that ܽ 1
∑ |ܽ|,ஷ, because there is a stable equilibrium in every point of the
state space where all states are saturated. Loss of stable equilibrium is
independent of the boundary conditions.

 Always completely unstable CNNs regardless the boundary conditions. The
instability is “intrinsic” and is easily unveiled by analyzing the templates
locally. The size of neighbourhood is at least 2.

 Stable with some boundary conditions but not with others: for instance
some linear finite one-dimensional CNNs with opposite-sign templates are
unstable if the boundary conditions are set to zero and stable if they are set
to ±1. The instability of this group of CNNs depends more on boundary
conditions than on the template that defines them. The instability is
therefore “extrinsic”, which force to examine the whole CNN globally
before discovering the instability.
It is then natural to take the accuracy of boundary condition into

consideration in an effort to obtain the robust templates. Hence, a revision and
modification of the approach of template optimization in section 8.4 is desired.
The influence of boundary conditions is the main target of a Master thesis [78]
that the author of this thesis has co-supervised. The algorithm shown in Figure
 8.8 is extended with a loop that takes into account all possible boundary
condition values between -1 and +1 with step size of 0.1. Section 8.6 discuss the
implementation of the extended algorithm and presents the obtained results.

8.6 EXTENDED TEMPLATE OPTIMIZATION ALGORITHM
In line with the original work presented in the previous section, the algorithm is
implemented in two models: a software model using both Java and MATLAB
(Figure 8.10), and hardware model that digitally emulates the algorithm on an
FPGA. In the former, an indexed set of all possible templates is generated by
means of Java classes. The number of templates in the set depends on the
number of free parameters in the model, i.e. non-zero template coefficients
(Table 8.3), their data representation (Table 8.4) and the tuning ranges to be
covered (Table 8.5). The MATLAB cluster performs the actual optimization and
provides a table with the robust templates corresponding to each truncation
level. One of the distinguishing characteriscs of the software model is that it is
consuming. For the nominal set of templates (14641 templates), the MATLAB
cluster requires more than 130 hours for the ascending approach and 223 hours
for the descending approach before all options are checked. The search is
performed on a PC with Pentium 4, 2.4GHz and 1 GB RAM, equipped with
Microsoft XP Professional service pack 3. This is mainly caused by using fixed-
point objects to perform the actual truncation in MATLAB. Implementing the
model in hardware seems the only way to salvage time constraints.

154 Chapter 8 Template Optimization

Figure 8.10 Software model of template optimization approach, where only most
important classes and functions are shown. Dashed ellipses indicate MATLABs own
functions. The function compConst computes the constant corresponding to control and
offset contribution as stated in section 4.2, while compY computes the feedback
contribution.

The hardware model is based on the scan-architecture embodiment
Caballero. Here, the size of network is, however, less important as the input
image is small, 7 ൈ 6 pixels only (Figure 8.7), which opens for denser macro
utilization as more components can be accommodated per node. Two multipliers
per node allow for handling two input values in parallel, which reduces the
clock count per iteration and boosts the overall throughput. This is desirable in
order to shorten the execution time of the software model. The node is further
equipped with a dynamic truncation unit to perform the actual optimization
(Figure 8.11).

Figure 8.11 Structure of the modified Caballero node. Communication interface and
nodal controller are not shown.

As two values need to be available simultaneously, the communication
scheme is modified. Figure 8.12 shows how data is first send to East and North
neighbours, of which each forwards it perpendicularly on a counter-clockwise
manner within the neighbourhood. Then, data is broadcasted South and West
and further forwarded West and North respectively. Doing so, all nodes in the

 8.7 Discussion 155

neighbourhood receive their neighbours’ values in 4 steps and produce the
output in the fifth step. This reduces the communication time-overhead by 50%
compared to the original approach employed in Caballero.

8.7 DISCUSSION
Computing reliability of a circuit is usually decreased due to a number of errors.
The errors originate from different sources: during the manufacturing process,
internal noise, e.g. thermal noise, and external noise such as electrostatic
discharge. Therefore, the existence of error sources is accepted, and the focus in
fault-tolerant computing is on minimizing the influence of these errors on the
processing results [79]. Thus, it is not at all surprising that existing CNN chips
suffer from parameter scattering. Different approaches have been tried to tackle
the problem for both continuous-time and discrete-time systems. Of these
approaches, some are targeting a specific chip, while others are chip
independent. The focus has been on retaining stability of the system with a solid
mathematical analysis of the proposed algorithms. However, the influence of
boundary conditions seems to have sunk into oblivion, which this chapter tries
to salvage. The proposed approach is general and is adaptable to any digital
design.

Figure 8.12 The inter-nodal communication is modified to allow the usage of two
multipliers. Two values are received /submitted simultaneously.

A completely software-based model is compared to software-aided HW
model by means of number of robust templates each model finds and the time
needed to achieve that. Both software and hardware models find the same robust
templates, where both ascending and descending approaches are tried. None of
the approaches finds any robust template in the range [0.6, +1] at any precision
level, while at least one truncation level results in robust templates in the range
[0.4, 0.5]. Figure 8.13 and Figure 8.14 give an illustrative view of the situation
while the complete tables are given in Table A.1 and Table A.2 in Appendix A.

For the descending approach, far more robust templates are found with
boundary condition 0 than with boundary condition -1 for all truncation levels.
About 6 times more robust templates are found for full truncation <5:2>.

In order to gain a better understanding of the dependencies between
boundary conditions, precision and template robustness, 3-D views are shown in
Figure 8.15 and Figure 8.16. Here, the absence of robust templates for boundary
conditions in the range ሾ0.6, 1ሿ is clearly seen. A visual inspection of the 3-D
diagrams reveals two significant differences in how the approaches evolve. In
general, the ascending approach finds less robust templates for all intermediate
steps, but finds exactly the same number of robust templates as the descending

156 Chapter 8 Template Optimization

approach in the final step. The peak of robustness is shifted a bit compared to
the descending approach and is located at boundary condition െ0.1 instead of 0
for all precision levels.

Figure 8.13 Number of robust templates for different boundary conditions in the
ascending approach. No robust templates are obtained for boundary values in the range
[0.6, +1] for all precisions.

0 1000 2000 3000 4000 5000 6000

5:2

5:3

5:4

5:5

5:6

5:7

5:8

5:9

5:10

5:11

Number of robust templates

0.5
0.4
0.3
0.2
0.1
0
‐0.1
‐0.2
‐0.3
‐0.4
‐0.5
‐0.6
‐0.7
‐0.8
‐0.9
‐1.0

Precision

 8.7 Discussion 157

Figure 8.14 Number of robust template for different boundary conditions in the
descending optimization approach. No robust templates are obtained for boundary
values in the range [0.6, +1] for all precisions.

0 2000 4000 6000 8000 10000

5:11

5:10

5:9

5:8

5:7

5:6

5:5

5:4

5:3

5:2

Number of robust templates

0.5
0.4
0.3
0.2
0.1
0
‐0.1
‐0.2
‐0.3
‐0.4
‐0.5
‐0.6
‐0.7
‐0.8
‐0.9
‐1.0

PrecisioPrecision

158 Chapter 8 Template Optimization

Figure 8.15 A 3-D view of the outcome of the descending approach. First line of
columns represents obtained robust templates for each boundary condition on the final
optimization step.

Figure 8.16 A 3-D view of the outcome of the ascending approach. . First line of
columns represents obtained robust templates for each boundary condition on the final
optimization step.

 8.7 Discussion 159

An important issue has to do with the number of iterations required for
achieving convergence for each of the robust templates. Looking at Figure 8.17
we can see that the iteration count increases for each precision level in the
ascending approach, while it decreases successively in the descending approach.
Notably, some of the robust templates require far more iterations than the input
image theoretically needs due to its size (Figure 8.7). However, as more
templates are found in the descending approach in the intermediate truncation
levels, the overall require time is longer than for the ascending approach. In
other words, the ascending approach is preferred as it is faster and provides the
same result at the last optimization level.

Figure 8.17 Iteration count of robust templates obtained in the descending approach
(top) and the ascending approach (bottom) for boundary condition -0.1. Other conditions
show a similar behaviour. Note that the horizontal axis is flipped to emphasize the
direction of optimization.

The question is whether both approaches find the same templates to be
robust at least in the last optimization level. To ease the comparison, notions

0

10

20

30

40

50

60

70

5:115:10 5:9 5:8 5:7 5:6 5:5 5:4 5:3 5:2

It
er
. C
ou

nt

min avearge max

0

10

20

30

40

50

60

70

5:2 5:3 5:4 5:5 5:6 5:7 5:8 5:9 5:10 5:11

It
er
. C
ou

nt

min avearge max

160 Chapter 8 Template Optimization

from set theory, such as intersection, union and symmetric difference of two
sets, are employed. The definitions of these set operations are given below.

Definition 7.1: Laws of Set Theory [110]
For a given universe ࣯ and for ܣ, ܤ ك ࣯:

• The union of ܣ and ܤڂܣ : ܤ ൌ ሼݔ|ݔ א ݔڀܣ א .ሽܤ
• The intersection of ܣ and ܤځܣ : ܤ ൌ ሼݔ|ݔ א ݔ ٿܣ א .ሽܤ
• The symmetric difference of ܣ and ܣ : ܤ ᇞ ܤ ൌ ሼݔ|ݔ א ݔ ٿܤڂܣ ב .ሽܤځܣ
• The cardinality of ܣ| :ܣ| ൌ number of elements in ז .ܣ

Let’s first consider the ascending approach and focus on the final
optimization level, i.e. precision <5:11>. A set of robust templates is denoted S୧,
where i א ሼെ1, 1ሽ stands for the boundary condition in use. Looking at Table
A.3- Table A.5, the following is observed for sets ܵିଵand ܵି.ଽ

|ܵିଵ ܵି.ଽ| ൌ 630
|ܵିଵ ת ܵି.ଽ| ൌ 466 ൌ |ܵିଵ|

|ܵିଵ ᇞ ܵି.ଽ| ൌ 164
ቑ ֜ ܵିଵ ؿ ܵି.ଽ (8.9)

Performing the same comparison reveals the relation in Eq. (8.10). In other
words the templates that show to be robust for boundary condition ݃ are also
robust for boundary conditions ݃ 0.1, ݃ א ሼെ1, െ0.2ሽ. The relationships
among robust template sets ܵିଵ െ ܵି.ଵ are illustrated in Figure 8.18 left.

ܵିଵ ؿ ܵି.ଽ ؿ ܵି.଼ ؿ ڮ ؿ ܵି.ଷ ؿ ܵି.ଶ ؿ ܵି.ଵ (8.10)

For positive boundary conditions, i.e. ሼ0, 0.3ሽ as other conditions do not
result in any robust template for precision level <5:11>, a different story holds.
Eq. (8.11) depicts the relation between ܵ.ଵ and ܵ.ଶ. Similar discussion leads to
the situation illustrated in Figure 8.18 right.

|ܵ.ଵ ܵ.ଶ| ൌ 1658
|ܵ.ଵ ת ܵ.ଶ| ൌ 469 ് |ܵ.ଵ| ് |ܵ.ଶ|

|ܵ.ଵ ᇞ ܵ.ଶ| ൌ 1189
ቑ ֜ ܵ.ଵ م ܵ.ଶ ר ܵ.ଶ م ܵ.ଵ (8.11)

It remains to examine the relation between the template sets corresponding
to positive and negative boundary conditions. Comparing the sets that are
closest to each other from both groups, i.e. ଵܵ and ܵି.ଵ, seems a good idea (Eq.
(8.12)). The chain of proper subset relations as given in Eq. (8.10) is broken at
the transition between negative and positive boundary conditions.

|ܵି.ଵ ܵ| ൌ 4296
|ܵି.ଵ ת ܵ| ൌ 2427 ് |ܵି.ଵ| ് |ܵ|

|ܵି.ଵ ᇞ ܵ| ൌ 1869
ቑ ֜ ܵ م ܵି.ଵ ר ܵି.ଵ م ܵ (8.12)

A careful look at Table A.3, Table A.4 and Table A.5 shows further that
only a small amount of robust templates found with positive boundary
conditions work properly with negative boundary conditions. Eq. (8.13) makes a
good example.

 8.7 Discussion 161

|ܵ.ଷ ת ܵି.ଵ| ൌ 45
|ܵ.ଷ ת ܵି.ଶ| ൌ 44
|ܵ.ଷ ת ܵି.ଷ| ൌ 44
|ܵ.ଷ ת ܵି.ସ| ൌ 1
|ܵ.ଷ ת ܵି.ହ| ൌ 1
|ܵ.ଷ ת ܵି.| ൌ 0

 (8.13)

Figure 8.18 Complete overlapping of sets of robust templates is found from boundary
condition -1 down to -0.1 (left) while positive boundary conditions give rise to a different
situation (right).

To summarise, all templates in ܵିଵ show to be robust for all boundary
conditions down to െ0.1, but none of the templates א ܵିଵ is robust for boundary
conditions that equal or are larger than 0. On the other hand, a subset of robust
templates with boundary condition 0.3 are also robust for some conditions less
than 0. The overlapp between positive and negative boundary conditions
decreases further when we move away from 0 toward െ1. The same observation
is completely valid for the descending approach as exactly the same sets of
robust templates are obtained for all boundary conditions.

Chapter 9

165

System Architecture
A proposal

t is well known that strongly nonlinear systems give rise to chaotic
oscillation. In fact, , the universal CNN is inspired by Chua’s earlier work

on chaotic oscillators [7], which gives the clear advantage of employing CNNs
to handle nonlinear systems. Obviously oscillation effects easily hamper typical
dynamic behaviour of a CNN when feedback is activated, while feedback-less
settings such as for erosion and dilation will not be affected. A CNN is
considered completely stable if all cells converge to equilibrium states. But
complete stability is sensitive to parameter settings, mainly in feedback template
A. This sensitivity leads to, e.g., the occurrence of reaction/diffusion phenomena
in higher levels of integration, i.e. when 2 CNN layers are coupled.

Due to parameter sensitivity, hardware implementation of a CNN turns to
be application dependent. We have seen in Chapter 8 that a comprehensive
evaluation in MATLAB is crucial to achieve a reliable digital design that
performs the basic operation of hole filling. This experimental approach tends to
be harder and, thus, requires more time to perform if template complexity is
higher. In many other cases, an analytical approach is considered. For instance,
in [61], template parameters are first mathematically derived and then checked
for robustness through extensive simulation. The conclusion is that templates
with high connectivity, e.g. edge detection, result in large template values,
which implies the need of further optimization by using algorithmic approaches.
Obviously, design automation will reduce time and save effort while reliability

Parts of this chapter have been published in [IV] and [VII].

I

166 Chapter 9 System Architecture

is clearly increased. In other words, there is a need for an automated system that
extracts information from a user-supplied processing recipe and then builds the
CNN system. In such a system, robustness is a key issue.

The newest digital implementations, e.g. word-serial approach, pave the
way for improvement of network capacity by merging temporal distribution of
many cells inside a single node and spatial distribution of many nodes within the
network. This allows entire CNN programs to be handled with minimal memory
access. This invites to the definition of a system architecture and an appropriate
application programming interface.This chapter proposes such an architecture in
sections 9.2 and 9.3, but first section 9.1 discusses how an automated system for
CNN implementation is generated starting from the basic elements.

9.1 DESIGN AUTOMATION
Ter Brugge discusses the front-end in [40], where algebraic expressions are
interpreted and converted to a normalized notation, from which different CNN
architectures can be derived. Technology mapping takes care of various system
optimizations, notably in the processor/memory balance, in different ways. The
amount of parallelism is reduced as operations are performed on the previous
results without saving and reloading data. Furthermore, transformations produce
templates in an arbitrary (also larger than 1) neighbourhood. Overall, the front-
end produces a CNN architecture that is efficient by large but has not
necessarily taken the technological restrictions of an eventual hardware
realization into account.

The back-end has therefore to be extended to take care of hardware
requirements. For instance, data representation has great impact on both
computation and communication schemes of the different values within a CNN.
A proper choice of arithmetic will, thus, largely affect both area and time
overhead. Another issue is the size of CNN needed to facilitate a proper
information processing systems. In image processing, e.g., an image is therefore
sliced into sub-frames that are small enough to be accommodated on the
network. The subsequent snapshots of the image have to be overlapped over a
pixel thickness equal to the size of the neighbourhood. Unfortunately, this works
only for templates with locality of operation. Furthermore, it takes an
appreciable amount of processing capacity away. The larger the neighbourhood
is, the harder are the demands.

In short, an automated design system will start with algebraic expressions
and end in a fully functional full custom design on ASIC. The overall system
development procedure is depicted in Figure 9.1. The algebraic expressions
allow for separating the processing steps from the flow control and are easily
described using MATLAB instructions. The aim is to bring as much of the
expressions together in single functions as this provides a basis to generate an
efficient set of CNN templates This step is independent of hardware
implementation needs such as data representation, word-length and
communication schemes. By now, the obtained result constitutes a minimal
solution of the processing application in terms of CNN operations, i.e. a

 9.1 Design Automation 167

minimal sequence of consecutive templates. The number of templates in use has
a direct impact on the amount of external memory access, as reloading of
intermediate results may be required. In this sense, the MATLAB model
provides us with optimal performance in terms of operation latency and memory
access overhead.

Figure 9.1 Moving from algorithm to hardware.

The next development stage uses an FPGA platform, for a number of
reasons. Firstly, the step toward a full custom ASIC becomes shorter when
technology and design changes are easily accommodated. This reduces both cost
and time. Secondly, modern FPGAs combine the over-mass of flip-flops with
high-density and multifunctional macros such as multipliers and memory
blocks. Moreover, modular construction is simplified due to the physical
placement of the functional units. This allows bundling logic and macros to
easily form CNN nodes and makes the FPGA technology to first-hand choice of
programmable devices.

MATLAB works with double-precision floating-point numbers, the largest
number representation supported on nowadays general-purpose computing
platforms. This is not feasible for resource-critical digital platforms. Hence,
float-to-fix conversion is needed. On the FPGA platform, functions are applied
on basis of fixed-point values represented as arbitrary long bit-strings. The
limited resources on an FPGA force, however, to focus on making the
functional components as small as possible. One way is to accommodate shorter
word-length for the internal numbers. This is achieved through gradual decrease
of the internal precision in line with the approach used in section 8.6. This is
not only aimed to make the functional macros smaller, but also to evaluate
whether a precision can be achieved that is as low as inherently coupled to
analogue implementations. MATLAB is very useful here as well.

The question on the required transfer characteristics that next needs to be
answered cannot be handled in MATLAB anymore. The aim is to reduce the
traffic density as much as possible. This, in combination with the allowance of
medium-size precision, shows that also a realization of analogue function
macros, embedded in a digital network-on-chip, can be afforded. Through

168 Chapter 9 System Architecture

combining small cores with small inter-nodal communication interface, a larger
network can be accommodated on single FPGA.

At the last stage, we further question the value transfer by the digital
network that was originally introduced to allow for a smooth design flow.
Having subsequently reduced the computation and the communication
requirements, we may find ourselves in the situation that a fully digital
realization proves to be feasible.

9.2 ARCHITECTURAL OVERVIEW
The CNN Instruction Set Architecture (ISA) defines the exterior of the CNN
Image Processor in terms of signals and visible memory locations. The overall
CNN ISA is depicted in Figure 9.2. Overall we find four modes of operation and
their respective instructions using two separate bus systems: the Image Memory
Bus (IMB) and the Host Interface Bus (HIB), both with a R/W signal and
strobed address and data bus.

Figure 9.2 External View of the CNN Architecture

Window
The window operations influence the image management unit only. It

converts physical into virtual pixels and will autonomously fill the CNN with
pixel information with respect to the designated Region of Interest (RoI) for any
frame format using the Image Memory Bus (IMB). Using the window settings it
is possible to repeat the CNN program on a steadily smaller part of the image
while increasing the resolution.

Frame Size: the width and height of a frame in pixels
Centre coordinate: the non-sampled centre of the first frame to be handled.

Configuration
The internal operation is governed by a number of tables, downloaded over

the HIB. They all start with a preamble that gives the general table information

 9.2 Architectural Overview 169

and then subsequently provides the table entries. The template and
discrimination table will be distributed to all nodes, while the program table is
saved in the Instruction Store Unit (ISU).

Discrimination: table for discrimination function
Program: Instruction Store (opt.)
Template: label and content of a template
The discrimination function lists the transformation from internal node

status to external data result. The length of the table is therefore given by the
table size divided by the table step.

The program tells the successive applications of pixel operations that can be
either templates or hard-coded linear instructions. It implicitly relates the use of
various layers and how they are combined either in time or in space. A template
gives each CNN function. Templates can be downloaded and stored in every
CNN node for use later on. The pixel operations can be selected from a number
of linear (hardwired) and non-linear (downloadable) options. The instructions
will be placed into a separate ISU.

Logical: NOT, AND, OR, EXOR.
Arithmetic: Sum, Minus per pixel or horizontal or vertical
CNN: refers to downloaded templates

Run
Run: none, per clock, per iteration, per template till a specified breakpoint in

the program.
Boundary: the boundary conditions as stated in the templates can be

overwritten for debug purposes.
Sample Size: the amount of physical pixels represented by one virtual (CNN

internal) pixel as implied by the window can be overwritten for debug purposes.
Mode: only this window, or a stripe of the entire image

Debug
The ISA makes the CNN network architecture invisible to the host program

and therefore allows a late binding of the actual structure to an application at
hand. More often than not, the development network is different from the
production network. Starting from a MATLAB model with values represented
in a double floating-point format, a gradual conversion into fixed-point numbers
is needed (section 9.1). The length of the internal words is application
dependent, though accuracy can be easily guaranteed by block-based scaling
with a factor derived by inspection of the templates. In practice we have not
seen the need for more than 8 bits precision, but for simple templates a smaller
length can be accepted.

In line with this, we have inserted a number of in-line debug facilities. The
system can be run in various time step size, inspected for network data, while
allowing to overwrite the network status and to continue from the existing
status.

170 Chapter 9 System Architecture

9.3 SYSTEM COMPONENTS
In our reference system we assume that the network is configured separate from
the rest. Consequently we have to ensure that the system components can handle
appropriate network architectures.

9.3.1 Host Interface Unit (HIU)
A host must be able to control the overall functionality of the system by sending
instructions and cloning templates and by setting a number of configuration
parameters. The communication is handled by the HIU that receives the requests
from the host over the HIB and forwards them to the system using a wishbone
bus. The HIU is as well responsible for data delivery to the host. Figure 9.3
shows the main components. Two different FIFOs are used, one for acquiring
host requests and one for putting out data to the host.

Figure 9.3 The HIU consists of two FIFOs for communication with the host, IOMMU for
address translation and a bus master to communicate with other units in the system.

A host request is 25 bits long and is divided into 3 fields: a Read/Write flag
that determines the type of the request, a virtual address field and a data field
that is of interest only in write-requests (Figure 9.4). Once a request is captured
by the FIFO, the virtual address is translated into a system memory address by
the Input/Output Memory Managemet Unit (IOMMU). This address will serve
as a base address for all incoming data as long as the virtual address field in the
subsequently received requests remains unchanged. The bus master acts
partially as a Direct Memory Access (DMA); it generates the proper addresses
from the base address and put it on the address port of the wishbone bus. In
case of a read request, once data are available, the wishbone bus raises an
acknowledgement signal notifying the bus master that reads the data and put it
on the output FIFO. Write requests are handled similarly. Here the
acknowledgement signal notifies the bus master that the writing of data is
accomplished so next pair of address/data can be handled.

Figure 9.4 A host request is subdivided into flag, address and data fields.

 9.3 System Components 171

Looking into area utilization for the different components in HIU, Figure
 9.5 gives an impression of the incurred overhead. We take here a FIFO of only 1
deep. Most of the logic is hence devoted for IOMMU and Bus Master only. It
can be clearly seen that the bus master requires more slices and FFs than the
HIU itself! This is due to the fact that some of the signals in the bus master are
not used at all and therefore optimized away.

Figure 9.5 Area Utilization for HIU and two of the sub-components.

9.3.2 Image Management Unit (IMU)
The camera captures images and stores them in an external memory. The 8-bit
greyscale pixels are then retrieved and converted by the IMU to a signed fixed-
point notation with a precision of 7 bits for the fractional part. One of the main
operations of the IMU is the windowing operation. As the size of the network is
far much smaller than the processed image frame, a gradual zooming toward the
RoI is required. At the beginning the RoI covers the entire frame, where each
CNN node on the chip is mapped onto a virtual pixel that corresponds to a group
of real pixels in the image. The virtual pixel is suitably obtained through a
conventional averaging of all pixels in the corresponding group. In a next round
the RoI covers a smaller part of the frame depending on the output of the
previous round.

9.3.3 Control Unit (CU)
The unit has direct communication to the CNN core and the HIU through
wishbone buses. It is built with the concept of pipelining in mind and consists of
two main components: Instruction Fetch and a Controller (acts as instruction
decoder). The naming convention is somehow misleading as the former
pipelining stage generates two additional signals; control (used by the Controller
pipeline stage) and iteration; in addition to the instruction that is fetched from a
dual-port RAM. The controller consists of two major components. One is the
actual instruction decoder and provides the proper template, while the other
generates CNN-enable and instruction-done signals depending on the number of
iterations and whether equilibrium is reached or not. Figure 9.6 shows a
schematic view of the control unit.

0

20

40

60

80

100

HIU Bus Master IOMMU

LUTs

FF

Slices

172 Chapter 9 System Architecture

Figure 9.6 Control Unit schematic view.

The instruction memory (ISU) is arranged as shown in Figure 9.7 with
space for 64 instructions, while Figure 9.8 illustrates the area utilization for the
main components. Taking a Xilinx Virtex-II 6000 as reference which
accommodates 34,000 slices, we find from Figure 9.5 and Figure 9.8 that the
overhead incurred by turning a CNN network into a system ranges from 1% for
a limited edition to 5% for a complete one with large buffers.

Figure 9.7 Memory address space as used by the control unit.

9.4 DISCUSSION
Design automation tools such as ECAD (electronic computer-aided design) have
rapidly gained popularity with the continuous scaling in semiconductor
technology. The aim is to make the translation from graphics to electronics
smoother, more reliable and less time consuming. We have seen in this thesis
how application may steer the implementation of a CNN on hardware.
Furthermore, it has been proved that pruning of internal signals is possible
without any effect on the obtained result. Obviously, selection of a proper
architecture already at the beginning is important, but performing the desired
adjustments is also critical. Doing so manually is not feasible, which implies the

 9.4 Discussion 173

need to automate the search for the perfect set-up. The belief is that such an
automated system will be highly appreciated.

Figure 9.8 Area utilization for the Control Unit and the sub-components Instruction Fetch
and Instruction Decoder.

The choice of floating-point and fixed-point representations in hardware
implementations has so far been ruled by the desired precision and accuracy in
the target application. As one of the major goals in CNN hardware design is
accommodation of as many nodes as possible on a single chip, fixed-point
representation is prefered. Addition of two floating-point numbers is rather
complex and requires additional control for alignment and postnormalization.
The longer latency for each accumulation operation leads to performance
degradation. In contrast, fixed-point addition is straightforward and requires
minimal control, which even results in smaller needs of logic resources. In the
proposed automated system a migration from float- to fixed-point is thus
crucial.

It is worth mentioning that the first emulator ACE is based on a floating-
point computation core. The decision is based on the observation that the
‘limited’ accuracy obtained in fixed-point representation is not enough to solve
partial differential equations. But even in ACE16K, the obtained results of these
equations are not accurate enough to be used in engineering applications [111].
Actually, moving from floating-point to fixed-point numbers is not merely a
question of reducing the value scope, but a careful arbitration between precision
and accuracy. Precision is addressed by the smallest step in the value space,
such that small variations in the value space have little significance in the
problem space. Accuracy on the other hand has to do with the degree by which
the computation can achieve the desired result. Figure 9.9 tries to visualize the
difference between these two notions. It is shown that if one is precise the result
will be consistent but may still be off target. There is evidently enough
discriminatory power in the value space. If one is accurate, the average over
repeated calculations will be in order but the individual readings must be precise
to get to the target. The representation range of floating-point numbers
outperforms the one obtained in fixed-point numbers but it comes at the expense

0

20

40

60

80

100

120

CU IF ID

LUTs

FF

Slices

174 Chapter 9 System Architecture

of a smaller precision [112]. On the other hand, it is now proved that a digital
CNN performs properly even with less accurate fixed-point internal signals.

Not accurate Accurate

Not precise

Precise

Crisping to physical units

N
um

ber Space

Figure 9.9 Precision versus accuracy

Furthermore, the large variation in digital CNN implementation shares a
number of common principles. Such principles can be used to define an
Instruction Set Architecture that interfaces host programs from CNN
phenomena, allowing a soft core based implementation.

The system architecture is founded on the recognition that larger networks
pose an increasing demand on memory access. Applying more templates to the
once loaded data alleviates these demands. The more templates can be handled,
the larger networks can be allowed. The development of an effectively small
node by employment of time multiplexing has made this possible.

In the Bi-i system [89], we find a potentially large but analogue network.
However, for a typical application we need both CNN and non-CNN operations.
An example is motion detection, a central scheme in various areas of vision
sensing, both in industrial as in consumer applications (section 7.2). For the
non-CNN operations, the Bi-i system needs an additional digital signal
processor. In a fully digital system, as presented here, such functionality can be
integrated into the basic node. This relieves the Host Interface Bus from a lot of
bandwidth problems.

This leaves the issue of the Program Store. This is solved by having a
configurable Stored Program Architecture. The first reason is the separation
between scope and function. With a Stored Program we cannot only operate on
subsequent images but also on several sample sizes within the same image
without burdening the host computer.

The ISA is especially helpful when the actual parameterization for the
network is not clear during development, but should not influence the
application at hand. It has become practical because the virtual network size has
been raised from a meager 144 nodes to 4096, and can probably be raised even
higher. This makes a digital CNN a practical alternative for image processing.
As such networks do not have a global control, their intrinsic speed ought to be
much higher than usual.

Chapter 10

177

Further Considerations

here is a lot of information concealed in the sequencing of frames, but it
is not easy to get it out. A pixel-wise comparison is not easy to compute.

It will be slow which defies the purpose of dynamic knowledge extraction or
uses specialized hardware. Cellular Neural Networks can be used for this
purpose, as shown in [47]. For the digital implementation, where the dimensions
of the problem (Figure 4.7) are mapped on the two dimensions of a Field-
Programmable Gate-Array, not all potential architectures permit such
applications in an efficient way.

The key issue seems to be whether access to image information stored off-
chip can be kept outside the inner loops of the computation. This is clearly
exemplified in the original ILVA architecture, where the computation is
unrolled on the nodal iteration dimension at the expense of the on-chip image
salvage. The consequence is that image stream manipulations will involve a
bandwidth problem with respect to the external image RAM.

The principle of broadcasting processing elements, loosely coupled through
a NoC-based architecture retains the potential of image stream handling. Of
course, in the present generation of FPGAs, the amount of on-chip memory is
not large enough to store the desired number of frames. However, the ongoing
increase of storage capability of modern FPGAs indicates that the newer
generations will be the better platform for real Wave Computing.

Parts of this chapter have been published in [IV].

T

178 Chapter 10 Further Considerations

The fundamental critique on the implementations presented earlier is that
the discrete-time formulation as given in the CNN nodal equation is not handled
cycle-true as the implementations are based on the communication of converged
results. For instance, simultaneous transfer of values within a neighbourhood
gives rise to bus conflicts in the state-scan approach. In order to avoid such
conflicts, nodes in Caballero are activated at a Knight Jump distance, which
burdens the design with additional activity control and severely reduces the
amount of potential parallelism (Figure 4.16). The special treatment of the
activation pattern of edge nodes complicates the control further. Apparently, this
adds heavily on the control and severely reduces the amount of potential
parallelism. The amount of additionallt required logic is so big that a larger
neighbourhood is basically precluded. Admittedly, all previous implementations
emulate the functionality of CNN rather than providing real-time performance.
One way to overcome interconnect limitations is to use a bit-serial
communication scheme, which allows all nodes to immediately consume the
values that are currently produced at the neighbouring cells. This will be part of
the Network Interface (NI) that wraps any design part to become accessible
through the network standard. It brings out the basic advantages of the time-
multiplexed communication and is fully in-line with the original Æthereal
systematic [83]. But it also presents a degree of overhead that needs to be
minimized [91]. Therefore it demands investigation, how the concept of serial
processing can be moved further into the node. Furthermore, as all nodes can be
active simultaneously, the activation cycle employed in Caballero is not needed
anymore, which saves a global controller. Such a scheme has a small footprint
and scales well with increasing neighbourhood.

As communication schemes are strongly coupled with the usage of word-
level arithmetic, arithmetical constraints are of crucial importance even when
optimized communication schemes, e.g. bit-serial, are used. For instance,
connecting the bit-serial approach to the existing Caballero node, whose
computation performance is built on word-level arithmetic, requires buffering to
create series/parallel conversion and vice versa. Apparently, this introduces both
time and logic-overhead such that the benefits of a bit-serial communication
scheme are lost. One way to remedy this is to use serial arithmetic together with
bit-serial communication. The operation of a fully serial approach is illustrated
in Figure 10.1. For every step, the coefficient bits multiply the single-bit input
from each neighbour; the results are added and accumulated. It requires the
coefficients to be locally available in a ring-buffer. This is not as bad as it
seems, because a serial shifter can be implemented in a single LUT per 4 bits.
For longer coefficients one may consider to build the ring-buffer in the Block
RAM, but usually coefficients are not long. Together with the bit-register for the
input and the bit multiplier, a 4-bits base unit takes just a slice. The outputs are
tree-wise added and give a 4-bit result to be added to the shifting accumulator.
This final addition has to be in parallel because long carry propagation may
occur. Also the result has to be available in parallel, because a final table lookup
is needed for the output discrimination.

 Chapter 10 Further Considerations 179

As usual in bit-serial logic, the data-path becomes small but at the expense
of a more complicated control. Furthermore we can expect a higher latency, as
more clock ticks are needed to get to the result. But that is only true for the
single node. The basic 10 clock cycles for a single node in Caballero have to be
repeated for 5 neighbouring nodes due to bus contention. It does not seem likely
that a serial solution that eliminates such bus contention problems will need
more. As the small serial node allows for a larger network to be implemented on
a single chip, it is worthwhile to evaluate its potential. This provides not only
for high density but also supports a further higher density increase at the
expense of a moderate deterioration in latency, which is usually affordable in
commercial applications. .

+

+

+

1

2

3

5

1

x
1

1

x
1

+
1

+

+

+

2

v.w+3

3

+

1

0 w
Control scheme:

0 v-1

1 cycle

Figure 10.1 A serial architecture for bit-serial communication. Variables v and w
represent the width of u/y-values the width of template coefficients respectively.

 The overview of the alternative designs, presented so far, shows a rich
variety of compromises between speed and area. Starting from the bit-serial
structure, even more alternatives can be created by logic transformation. A
typical example of such a derivative implementation is in series/parallel
computation (Figure 10.2). Every single input bit multiplies the entire
coefficient. The outputs are tree-wise added and give a ݓ 3-bit result to be
added to the shifting accumulator, where ݓ represents the width of template
coefficients. This reduces the latency and the control significantly, but at the
expense of wider adders. Connected to this comes the implementation of
buffering. Where in the pure bit-serial approach, the buffers are directly created
in hardware; in the derivatives it becomes worthwhile to implement the buffers
in the local memory.

180 Chapter 10 Further Considerations

+

+

+

w

w+1

w+2

w+3

1

x

1

x

+
w

+

+

+

w+1

w

w

v.w+3
+

1

Control scheme:
0 v-1

1 cycle

Figure 10.2 Series/parallel architecture for bit-serial communication. Variables v and w
represent the width of u/y-values the width of template coefficients respectively.

An overview of the CNN implementation spectrum (VIND) is given in
Figure 10.3. The similarity to Corporaal’s 4-dimensional diagram about
Architecture Design Spectrum [82] reveals the importance of optimizing control
and data flows in order to achieve a well performing CNN system, as the case
always is with hardware design. The temporal state-flow architecture can be
found on the D-axis, while multithreaded improvements like ILVA and
Sleipner, reside on the surface between D- and N-axes. ILVA covers the gap to
memory by flattening a 2-dimensional computation of nodal equation into a 1-
dimensional computation by dropping the intermediate results on the
computational path (Figure 4.9). Pipelining is then, like in RISC architectures, a
consequence rather than a target. Sleipner opens for larger neighbourhood
through rearrangement of internal data flow to achieve better utilization of
memory resources, which reminds of the concept of super-pipelining where
extra pipeline stages come from decomposing the memory access.

At this stage, the state-flow architecture seems to reach the edge of its
performance and a total overhaul is needed. Allowing larger numbers of
iterations for each transfer of input values from the neighbourhood will boost
the performance in the same way VLIW architecture increases the number of
operations per instruction. The state-scan architecture, Caballero, brings this into
reality by de-coupling intra-node computation from inter-node communication
needs. The same sequence of multiply-accumulate operations is performed
repeatedly in each node independently of the state of all other nodes. The state-
scan architectures that are originally on the I-axis move with the bit-serial
technique closer to the V-axis where the number of simultaneously transferred
values is in focus.

 Chapter 10 Further Considerations 181

Figure 10.3 The 4-dimentional design space spectrum {V, I, N, D} of CNN architectures.
The Time-multiplexed architecture employs the bit-serial technique.

In order to get a better feeling for the design trade-offs, the effects of
different implementations are shown in Figure 10.4. The basic clock speed of
these designs differs considerably. An improved ILVA architecture exhibits a
clock frequency of 144 MHz, which sets the lower clock rate. This is taken into
account by normalizing the performance of all other implementations, expressed
in clock cycles (cc) per iteration. The figure illustrates the impact of inter-nodal
communication as well, i.e. when network interface is considered. The
pipelined approach (ILVA) has the larger core, but the communication interface
is slim. On the other hand, the parallel approach (Caballero) uses a smaller core,
but the benefit disappears quickly when the communication interface is taken
into account. The bit-serial approach is superior with small core and little
communication overhead.

Figure 10.4 Design trade-offs in digital CNN implementations without (hollowed shapes)
and with inter-nodal communication overhead in form of Network Interface (filled
shapes).

0

50

100

150

200

250

300

0 10 20 30

A
re
a
ut
ili
za
tio

n
(#
 L
U
Ts
)

Normalized cc/iteration

ILVA core

ILVA core + NI

Caballero core

Caballero core + NI

Bit‐serial core

Bit‐serial core + NI

182 Chapter 10 Further Considerations

For a proper evaluation, we also need to look into the impact of larger
templates. Figure 10.5 shows the effect of larger neighbourhood on the required
logic. Caballero exhibits the smallest increase in area (9%) due to the reuse of
routing paths. Main impact is on the control mechanism. Unrolling the nodal
behaviour into time, as done in ILVA, shows somewhat larger increase in area
(30%). In contrast, the bit-serial approach tends to grow super-linear with
template size, about 300% increase. Noteworthy is the version with serial
communication and parallel nodes (denoted word-parallel/bit-serial), where the
Caballero performance is merged with a slim-line communication. However, the
bit-serial approach still has smallest footprint of all other implementations for
both neighbourhoods. Going from 1- to 2-neighborhood has a marginal impact
on the normalized performance for all approaches except Caballero, where the
latency is almost 7 times higher!

Figure 10.5 Area utilization for different neighbourhoods.

10.1 DISCUSSION
Connecting to the abstract execution models in section 4.2, we see that

almost all architectures in the VIND spectrum benefits from the consumer node
model only. In the producer node model, 8 distinct values are transmitted
simultaneously equipped with different target addresses. This requires additional
control compared to the consumer node where a single value is broadcasted with
same source address. Apart from that, the bandwidth is doubled in the producer
model which makes the interface eat up more logic. This kicks directly in
Caballero but even Sleipner is in the danger zone. ILVA is the one that suffers
less. Apparently, these architectures are typical consumers. The producer model
makes sense only when the bandwidth is kept at absolute minimum, which is
possible only in the bit-serial approach.

All state-flow and state-scan architecures are developed in VHDL using
generic notations and configuration options. This creates in principle a high
degree of portability, which unfortunately has not been exploited yet. Instead the
parameters are instantiated for 8-bits. One reason is that the 18-bits multiplier

0
100
200
300
400
500

1 2

A
re
a
(in

 L
U
Ts
)

r‐neighbourhood

ILVA Caballero Bit‐serial word‐parallel/bit‐serial

 Chapter 10 Further Considerations 183

macros are tightly coupled to the Block RAM, which enforces the address space
to be divided between the two macros. As the 8-bits parameters lead to larger
internal values, a balance between input value size and fan-in per node is at
stake. The other reason is that CNNs will in general work adequately with 8-bits
parameters. Moving to a larger word width is feasible but it will not be easy
without major structural changes. Most important, it will require a not fully
parallel arithmetic. For the moment, it is not clear whether this can be done
without consequences to the current packing density and this will therefore
require additional investigation.

Another issue for future research is the effect of architectural choices in the
problem space. Of the many degrees of freedom, mentioned in section 4.3, two
selections only have been experimented with. Many more are possible and will
probably have different consequences in the efficiency of exploiting the local
storage potential through the BRAMs. In both pipelined designs, ILVA and
Sleipner, the handling of the image stripe sequences does not require much
support but has a fundamental limitation in the number of iterations to find
locally stable solutions. In the state-scan architecures the limitation on iteration
count is removed though at the expense of the ease of handling the image
stripes.

The discussed applications have shown to be very diverse in their
implementation requirements. Image processing is by its nature very
demanding, as the desired ‘locality of operation’ in the geometry domain does
not agree with the underlying principles of the superscalar computing
architecture [57]. This is caused by the temporal character of such architectures,
where a small number of large resources are scheduled in time for optimal
usage. Spatial architectures, where the process is divided over many small
resources, provide an alternative, as illustrated in this thesis.

A further boost in performance can be derived from the use of complex
templates. TerBrugge gives an example of skeletonization, where the previously
published hand-derived solutions can be mechanically improved to a really
optimal, single template solution [40]. This is especially relevant to the
pipelined approach, where the image is written back to external memory after
every template application. Having fewer templates will then clearly raise
performance.

One of the most important features of an FPGA is the innovation of partial
reconfiguration of hard-wired modules. This innovation has always been kept in
mind while designing the different approaches. Actually, the ability of
dynamically reconfiguring (parts of) the FPGA is one of the main reasons for
adopting the NoC-based architectures. For instance, in all implementations, as
presented here, on-line programming can change the nature of the sensor. The
integrated intelligence serves to extract knowledge from the image about
physical conditions or objects that otherwise require a dedicated sensor. This
virtualization of the sensory function is especially of advantage, where such
measurements are only occasionally needed. Re-programming the sensor at need
replaces the installation of a hardly used sensor, such as for diagnostics.

184 Chapter 10 Further Considerations

However, this ability has unfortunately never been tried! Future research is
ought to take this feature into consideration.

Appendix A

186 Appendix

Table A.1 Number of robust templates obtained for each boundary condition and
precision level in the ascending approach. Boundary values [0.4, 1.0] are omitted as
they do not result in any robust template

 5:2 5:3 5:4 5:5 5:6 5:7 5:8 5:9 5:10 5:11

‐1.0 736 673 583 519 483 483 473 469 468 466

‐0.9 976 877 764 692 648 648 638 634 632 630

‐0.8 1264 1096 941 833 761 759 746 740 738 736

‐0.7 1780 1509 1297 1145 1051 1049 1031 1025 1022 1018

‐0.6 2344 1927 1627 1453 1347 1344 1323 1317 1314 1310

‐0.5 3300 2730 2338 2113 1968 1963 1938 1929 1923 1919

‐0.4 3572 2902 2457 2200 2028 2022 1997 1984 1978 1974

‐0.3 4892 4034 3454 3140 2928 2921 2889 2876 2867 2861

‐0.2 4892 4034 3454 3140 2928 2921 2889 2876 2867 2861

‐0.1 5944 4993 4328 3955 3692 3682 3648 3631 3621 3615

0 5720 4512 3830 3414 3214 3214 3139 3131 3108 3108

0.1 5720 3484 2533 1997 1741 1677 1613 1593 1582 1582

0.2 3776 2006 1180 831 641 611 577 561 550 545

0.3 3256 642 268 137 104 91 73 73 72 72

0.4 1116 74 21 5 1 1 1 1 0 0

0.5 381 0 0 0 0 0 0 0 0 0

Appendix 187

Table A.2 Number of robust templates obtained for each boundary condition and
precision level in the descending approach. Boundary values [0.4, 1.0] are omitted as
they do not result in any robust template.

 5:2 5:3 5:4 5:5 5:6 5:7 5:8 5:9 5:10 5:11

‐1.0 466 2653 4221 5361 5538 5538 5538 5538 5538 5538

‐0.9 630 3001 4634 5844 6162 6186 6187 6201 6205 6210

‐0.8 736 3497 5314 6569 6833 6912 6957 6967 6983 6993

‐0.7 1018 4071 5996 7275 7563 7646 7658 7696 7703 7705

‐0.6 1310 4760 6671 7945 8262 8308 8320 8352 8366 8373

‐0.5 1919 5453 7410 8623 8846 8932 8949 8949 8949 8949

‐0.4 1974 5984 7875 9015 9287 9312 9342 9361 9361 9363

‐0.3 2861 6636 8339 9382 9629 9655 9655 9685 9689 9690

‐0.2 2861 7070 8663 9596 9841 9867 9867 9873 9873 9873

‐0.1 3615 7406 8875 9716 9945 9951 9957 9966 9966 9966

0 3108 6274 7447 8224 8452 8452 8452 8452 8452 8452

0.1 1582 4238 5338 6097 6325 6325 6325 6325 6325 6325

0.2 545 2107 3105 3862 4090 4090 4090 4090 4090 4090

0.3 72 585 1262 2012 2240 2240 2240 2240 2240 2240

0.4 0 29 166 621 833 833 833 833 833 833

0.5 0 0 0 15 54 54 54 54 54 54

188 Appendix

Table A.3 ห ܵ ܵห in the ascending approache for precision <5:11> where ݅, ݆ א
ሼെ1, 0.4ሽ. Same results are obtained for the descending approach with precision
<5:2>.

 ‐1

0.
9

‐0
.8

‐0
.7

‐0
.6

‐0
.5

‐0
.4

‐0
.3

‐0
.2

‐0
.1

0 0.
1

0.
2

0.
3

0.
4

‐1

46
6

63
0

73
6

10
18

13
10

19
19

19
74

28
61

28
61

36
15

32
76

19
31

99
8

53
8

46
6

‐0
.9

63
0

63
0

73
6

10
18

13
10

19
19

19
74

28
61

28
61

36
15

33
50

20
90

11
62

70
2

63
0

‐0
.8

73
6

73
6

73
6

10
18

13
10

19
19

19
74

28
61

28
61

36
15

34
41

21
96

12
68

80
8

73
6

‐0
.7

10
18

10
18

10
18

10
18

13
10

19
19

19
74

28
61

28
61

36
15

34
92

23
65

15
41

10
90

10
18

‐0
.6

13
10

13
10

13
10

13
10

13
10

19
19

19
74

28
61

28
61

36
15

36
17

26
30

18
33

13
82

13
10

‐0
.5

19
19

19
19

19
19

19
19

19
19

19
19

19
74

28
61

28
61

36
15

38
08

30
24

23
90

19
90

19
19

‐0
.4

19
74

19
74

19
74

19
74

19
74

19
74

19
74

28
61

28
61

36
15

38
62

30
79

24
45

20
45

19
74

‐0
.3

28
61

28
61

28
61

28
61

28
61

28
61

28
61

28
61

28
61

36
15

41
06

35
68

31
42

28
89

28
61

‐0
.2

28
61

28
61

28
61

28
61

28
61

28
61

28
61

28
61

28
61

36
15

41
06

35
68

31
42

28
89

28
61

‐0
.1

36
15

36
15

36
15

36
15

36
15

36
15

36
15

36
15

36
15

36
15

42
96

40
63

38
44

36
42

36
15

0 32
76

33
50

34
41

34
92

36
17

38
08

38
62

41
06

41
06

42
96

31
08

31
08

31
84

31
08

31
08

0.
1

19
31

20
90

21
96

23
65

26
30

30
24

30
79

35
68

35
68

40
63

31
08

15
82

16
58

15
82

15
82

0.
2

99
8

11
62

12
68

15
41

18
33

23
90

24
45

31
42

31
42

38
44

31
84

16
58

54
5

54
5

54
5

0.
3

53
8

70
2

80
8

10
90

13
82

19
90

20
45

28
89

28
89

36
42

31
08

15
82

54
5

72

72

0.
4

46
6

63
0

73
6

10
18

13
10

19
19

19
74

28
61

28
61

36
15

32
76

19
31

99
8

53
8

0

Appendix 189

Table A.4 ห ܵ ת ܵห in the ascending approache for precision <5:11> where ݅, ݆ א
ሼെ1, 0.4ሽ. Same results are obtained for the descending approach with precision
<5:2>.

‐1

0.
9

‐0
.8

‐0
.7

‐0
.6

‐0
.5

‐0
.4

‐0
.3

‐0
.2

‐0
.1
 0

0.
1

0.
2

0.
3

0.
4

‐1

46
6

46
6

46
6

46
6

46
6

46
6

46
6

46
6

46
6

46
6

29
8

11
7 13
 0 0

‐0
.9

46
6

63
0

63
0

63
0

63
0

63
0

63
0

63
0

63
0

63
0

38
8

12
2 13
 0 0

‐0
.8

46
6

63
0

73
6

73
6

73
6

73
6

73
6

73
6

73
6

73
6

40
3

12
2 13
 0 0

‐0
.7

46
6

63
0

73
6

10
1

10
1

10
1

10
1

10
1

10
1

10
1

63
4

23
5 22
 0 0

‐0
.6

46
6

63
0

73
6

10
1

13
1

13
1

13
1

13
1

13
1

13
1

80
1

26
2 22
 0 0

‐0
.5

46
6

63
0

73
6

10
1

13
1

19
1

19
1

19
1

19
1

19
1

12
1

47
7 74
 1 0

‐0
.4

46
6

63
0

73
6

10
1

13
1

19
1

19
7

19
7

19
7

19
7

12
2

47
7 74
 1 0

‐0
.3

46
6

63
0

73
6

10
1

13
1

19
1

19
7

28
6

28
6

28
6

18
6

87
5

26
4 44
 0

‐0
.2

46
6

63
0

73
6

10
1

13
1

19
1

19
7

28
6

28
6

28
6

18
6

87
5

26
4 44
 0

‐0
.1

46
6

63
0

73
6

10
1

13
1

19
1

19
7

28
6

28
6

36
1

24
2

11
3

31
6 45
 0

0

29
8

38
8

40
3

63
4

80
1

12
1

12
2

18
6

18
6

24
2

31
0

15
8

46
9 72
 0

0.
1

11
7

12
2

12
2

23
5

26
2

47
7

47
7

87
5

87
5

11
3

15
8

15
8

46
9 72
 0

0.
2 13

13

13

22

22

74

74

26
4

26
4

31
6

46
9

46
9

54
5 72
 0

0.
3 0 0 0 0 0 1 1 44

44

45

72

72

72

72
 0

0.
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

190 Appendix

Table A.5 ห ܵ ᇞ ܵห in the ascending approache for precision <5:11> where ݅, ݆ א
ሼെ1, 0.4ሽ. Same results are obtained for the descending approach with precision
<5:2>.

‐1

0.
9

‐0
.8

‐0
.7

‐0
.6

‐0
.5

‐0
.4

‐0
.3

‐0
.2

‐0
.1
 0

0.
1

0.
2

0.
3

0.
4

‐1
 0

16
4

27
0

55
2

84
4

14
5

15
0

23
9

23
9

31
4

29
7

18
1

98
5

53
8

46
7

‐0
.9

16
4 0

10
6

38
8

68
0

12
8

13
4

22
3

22
3

29
8

29
6

19
6

11
4

70
2

63
1

‐0
.8

27
0

10
6 0

28
2

57
4

11
8

12
3

21
2

21
2

28
7

30
3

20
7

12
5

80
8

73
7

‐0
.7

55
2

38
8

28
2 0

29
2

90
1

95
6

18
4

18
4

25
9

28
5

21
3

15
1

10
9

10
1

‐0
.6

84
4

68
0

57
4

29
2 0

60
9

66
4

15
5

15
5

23
0

28
1

23
6

18
1

13
8

13
1

‐0
.5

14
5

12
8

11
8

90
1

60
9 0 55

94
2

94
2

16
9

25
8

25
4

23
1

19
8

19
2

‐0
.4

15
0

13
4

12
3

95
6

66
4 55
 0

88
7

88
7

16
4

26
4

26
0

23
7

20
4

19
7

‐0
.3

23
9

22
3

21
2

18
4

15
5

94
2

88
7 0 0

75
4

22
4

26
9

28
7

28
4

28
6

‐0
.2

23
9

22
3

21
2

18
4

15
5

94
2

88
7 0 0

75
4

22
4

26
9

28
7

28
4

28
6

‐0
.1

31
4

29
8

28
7

25
9

23
0

16
9

16
4

75
4

75
4 0

18
6

29
2

35
2

35
9

36
1

0

29
7

29
6

30
3

28
5

28
1

25
8

26
4

22
4

22
4

18
6 0

15
2

27
1

30
3

31
0

0.
1

18
1

19
6

20
7

21
3

23
6

25
4

26
0

26
9

26
9

29
2

15
2 0

11
8

15
1

15
8

0.
2

98
5

11
4

12
5

15
1

18
1

23
1

23
7

28
7

28
7

35
2

27
1

11
8 0

47
3

54
6

0.
3

53
8

70
2

80
8

10
9

13
8

19
8

20
4

28
4

28
4

35
9

30
3

15
1

47
3 0 73

0.
4

46
7

63
1

73
7

10
1

13
1

19
2

19
7

28
6

28
6

36
1

31
0

15
8

54
6 73
 0

191

Bibliography

[1] J. C. Russ. The Image Processing Handbook. Boca Raton, CRC, 4th edition,
2002.

[2] C. Bobda. Introduction to Reconfigurable Computing: Architectures,
Algorithms, and Applications. Springer, e-ISBN 978-1-4020-6100-4, 2007.

[3] J. A. Kahle et al. (Jul./Sep. 2005). “Introduction to the Cell multiprocessor.”
IBM J. RES. & DEV. [online]. vol. 49, no. 4/5. Available:
http://www.research.ibm.com/journal/rd/494/kahle.pdf [Sep. 18, 2008]

[4] D. R. W. Barr and P. Dudek “A Cellular Processor Array Simulation and
Hardware Prototyping Tool,” in Proc. 11th IEEE International Workshop on
Cellular Neural Networks and their Applications (CNNA2008), Santiago de
Compostela, Spain, 2008, pp. 213-218.

[5] P. Dudek and P. Hicks. “A General-Purpose Processor-per-Pixel Analog SIMD
Vision Chip.” IEEE Transactions on Circuits and Systems – I: Regular papers,
vol. 52, no. 1, pp. 13-20, Jan. 2005.

[6] D. Soudris (editor). Fine- and Coarse-grain reconfigurable computing.
Springer, e-ISBN: 978-1-4020-6505-7, 2007.

[7] L.O. Chua and L. Yang. “Cellular Neural Networks: Theory.” IEEE
Transactions on Circuits and Systems, vol. 35, no. 10, pp. 1257-1272, 1273-
1280, 1988.

[8] S. Haykin. Neural Networks: a comprehensive foundation. Prentice Hall,
second edition, 1999.

192 Bibliography

[9] F. Moraes. “A low area overhead packet-switched network on chip:
architecture and prototyping,” in Proc. IFIP Conference on Very Large Scale
Integration, Darmstadt, Germany, 2003, pp. 318-323.

[10] J. Kari. “Theory of cellular automata: A survey.” Elsevier, Theoretical
Computer Science, vol. 334, pp. 3-33, 2005.

[11] L.O. Chua. CNN: A Paradigm for Complexity. World Scientific Series on
Nonlinear Science, Series A, vol. 31, ISBN 981-02-3483-X, 1998.

[12] L. O. Chua and T. Roska. Cellular neural networks and visual computing –
Foundation and applications. Cambridge University Press, ISBN 13 978-0-
521-01863-0, 2002.

[13] A. Lundgren. “Design of a Co-processor that Implements Several Specific
Smart Imaging Algorithms.” M.Sc. thesis, Lund University, Lund, Sweden,
2004.

[14] G. Manganaro, P. Arena and L. Fortuna. Cellular Neural Networks, Chaos,
Complexity and VLSI Processing. Springer-Verlag, Berlin Heidelberg, 1999.

[15] T. Roska and L. O. Chua. “Cellular Neural Networks with non-linear and
delay-type template elements and non-uniform grids.” International Journal of
circuit theory and applications, vol. 20, pp. 469-481, 1992.

[16] L. Yang, L. O. Chua and K. R. Krieg. “VLSI Implementation of Cellular
Neural Networks,” in Proc. IEEE International Symposium on Circuits and
Systems (ISCAS-90), vol.3, 1990, pp. 2425-2427.

[17] T. Roska et al. “A hardware accelerator board for Cellular Neural Networks:
CNN-HAC,” in Proc. IEEE Int. Workshop on Cellular Neural Networks and
their Applications (CNNA-90), 1990, pp. 160-168.

[18] Second Generation TMS320 User’s Guide. Texas Instruments Inc., 1989.
Internet: http://www.ti.com [Sep. 18, 2008].

[19] T. Roska, L.O. Chua. “The CNN universal machine: An analogic array
computer.” IEEE Transactions on Circuits and Systems—Part II: Analog and
Digital Signal Processing, vol. 40, no. 3, pp. 163-173, 1993.

[20] L.O. Chua and T. Roska. “The CNN universal machine – Part I: The
architecture,” in Proc. 2nd IEEE International Workshop on Cellular Neural
Networks and their Applications (CNNA-92, 1992), pp. 1-10.

[21] T. Roska et al. “On a CNN chip-prototyping system,” in Proc. of 3rd IEEE
International Workshop on Cellular Neural Networks and their Applications
(CNN-94), Rome, 1994, pp. 378-379.

[22] B. Fehér et al.. “ACE: A digital Floating Point CNN Emulator Engine,” in
Proc. Fourth IEEE International Workshop on Cellular Neural Networks and
their Applications (CNN-96), Seville, Spain, 1996, pp. 273- 278.

[23] R. Domínguez-Castro, S. Espejo, A. Rodríguez-Vázquez and R. Carmona. “A
CNN Universal Chip in CMOS technology,” in Proc. 3rd IEEE Int. Workshop
on Cellular Neural Networks and their Applications (CNN-94), Rome, Dec.
1994, pp. 91-96.

Bibliography 193

[24] R. Domínguez-Castro et al. “A 0.8 µm CMOS Two-Dimensional
Programmable Mixed-Signal Focal-Plane Array Processor with On-Chip
Binary Imaging and Instructions Storage.” IEEE Journal of Solid-State
Circuits, vol. 32, no. 7, pp. 1013-1026, Jul. 1997.

[25] S. Espejo, R. Domínguez-Castro, G. Liñán and A. Rodríguez-Vázquez. “A
64x64 CNN Universal Chip with analog and digital I/O,” in Proc. IEEE
International Conference on Electronics, Circuits and Systems (ICECS98),
Lisbon, 1998, pp. 203-206.

[26] G. Liñán, S. Espejo, R. Domínguez-Castro, E. Roca and A. Rodríguez-
Vázquez. “CNNUC3: A Mixed-Signal 64 x 64 CNN Universal Chip,” in Proc.
7th Int. Conf. on Microelectronics for Neural, Fuzzy and Bio-Inspired Systems
(MicroNeuro-99, 1999), pp. 61-68.

[27] G. Liñán, S. Espejo, R. Domínguez-Castro and A. Rodríguez-Vázquez.
“ACE4k: An analog I/O 64x64 visual microprocessor chip with 7-bit analog
accuracy.” International Journal of Circuit Theory and Applications, vol. 30,
2002, pp. 89-116.

[28] A. Rodríguez-Vázquez et al. “ACE16k: The Third Generation of Mixed-Signal
SIMD-CNN ACE Chips Toward VSoCs” IEEE Transactions on Circuits and
Systems Part I: Regular Papers, vol. 51, no. 5, pp. 851–863, 2004.

[29] G. Liñán, A. Rodríguez-Vázquez, S. Espejo, and R. Domínguez-Castro.
“ACE16k: A128x128 Focal Plane Analog Processor with Digital I/O,” in Proc.
7th IEEE Int. Workshop on Cellular Neural Networks and their Applications
(CNN-02, 2002.), pp.132-139

[30] G. Liñán, S. Espejo, R. Domínguez-Castro, E. Roca and A. Rodríguez-
Vázquez. “A 0.5 µm CMOS 106 transistors Analog Programmable Array
Processor for Real-Time Image Processing,” in Proc. 25th European Solid-
State Circuits Conference (ESSCIRC-99), 1999, pp. 358-361.

[31] A. Rodríguez-Vázquez, S. Espejo, R. Domínguez-Castro and J. L. Huertas.
“Current-Mode Techniques for the Implementation of Continuous- and
Discrete-Time Cellular Neural Networks.” IEEE Transactions on Circuits and
Systems—II: Analog and Digital Signal Processing, vol. 40, no. 3, pp. 132-
146, Mar. 1993.

[32] S. Espejo, A. Rodríguez-Vázquez, R. Domínguez-Castro and R. Carmona.
“Convergence and Stability of the FSR CNN Model,” in Proc. 3rd IEEE Int.
Workshop on Cellular Neural Networks and their Applications (CNNA-94,
Rome, 1994), pp. 411-416.

[33] C. Koch and H. Li. Vision Chips: Implementing Vision Algorithms Using
Analog VLSI Circuits. New York: IEEE Press, 1994.

[34] T. Delbrück and C. A. Mead. “Analog VLSI phototransduction by continuous-
time, adaptive, logarithmic photoreceptor circuits,” Cal. Inst. Technol.,
Computation and Neural Systems Program, Tech. Rep., CNS Memo, no. 30,
May 1994.

[35] Á. Zarándy et al.. “An emulated digital architecture implementing the CNN
Universal Machine,” in Proc. 5th International Workshop on Cellular Neural

194 Bibliography

Networks and their Applications (CNNA-98), London, England, 1998, pp. 249-
252.

[36] P. Keresztes et al. “An Emulated Digital CNN Implementation.” Journal of
VLSI Signal Processing, 23, pp. 291-303, 1999.

[37] S. Zöld. “CNN Alpha Language and Compiler,” Report DNS-10-1997,
Computer and Automation Research Institute, Budapest, 1997.

[38] Xilinx Inc., Xilinx Products Homepage, Xilinx products. [Online]. Available:
http://www.xilinx.com [Sep. 18, 2008].

[39] H. Harrer and J.A. Nossek. “Discrete-Time Cellular Neural Networks,”
International Journal of Circuit theory and Applications, vol. 20, pp. 453-467,
1992.

[40] M.H. terBrugge. “Morphological Design of Discrete-Time Cellular Neural
Networks.” Ph.D. thesis, Rijksuniversiteit Groningen, Groningen, The
Netherlands, 2005.

[41] H. Harrer. “Discrete-Time Cellular Neural Networks.” Ph.D. thesis, Verlag
Shaker, ISBN 3-86111-286-8, Aachen, 1992.

[42] Z. Nagy and P. Szolgay. “Configurable Multilayer CNN-UM Emulator on
FPGA.” IEEE Transactions on Circuits and Systems –I: Fundamental Theory
and Applications, vol. 50, no. 6, pp.774 – 778, June 2003.

[43] Z. Vörösházi, Z. Nagy, A. Kiss and P. Szolgay. “An embedded CNN-UM
Global Analogic Programming Unit Implementation on FPGA,” in Proc. 10th
International Workshop on Cellular Neural Networks and Their Applications,
Istanbul, Turkey, Aug. 2006, pp. 1-5.

[44] A. deHon. “Reconfigurable Architectures for General-Purpose Computing,”
Ph.D. Thesis, MIT, Cambridge (USA), 1996.

[45] J. Villasenor, C. Jones and B. Schoner. “Video Communications Using
Rapidly Reconfigurable Hardware.” IEEE Transactions on Circuits and
Systems for Video Processing, vol. 5, pp. 565-567, Dec. 1995.

[46] Memec Design. “Virtex-II Pro FF 1152.” Internet:
http://www.memec.com/uploaded/VirtexIIPro_FF1152_1.pdf, [Jun. 15, 2006].

[47] T. Roska “Computational and Computer Complexity of Analogic Cellular
Wave Computers,” in Proc. 7th IEEE Workshop on CNNs and their
Applications, R. Tetzlaff (ed.), World Scientific (Singapore), pp. 323-338,
2002.

[48] M.H. terBrugge et al. “CNN Applications in toll driving.” Journal of VLSI
Signal Processing, vol. 23, no. 2/3, pp. 465-477, 1999.

[49] S. Malki. “Discrete-Time Cellular Neural Networks Implemented on Field-
Programmable Gate-Arrays to Build a Virtual Sensor System.” Lic. thesis,
Lund University, Lund, ISBN 91-7167-040-8, 2006, 98 pages.

[50] S. Malki and L. Spaanenburg. “Efficiency Considerations for DT-CNN
Hardware,” in Proc. IEEE Northeast Workshop on Circuits and Systems
(NEWCAS’07), Montréal, Canada, 2007, pp. 1038-1041.

Bibliography 195

[51] S. Malki, Y. Fuqiang and L. Spaanenburg. “Vein Feature Extraction Using
DT-CNNs,” in Proc. 10th International Workshop on Cellular Neural
Networks and Their Applications (CNNA’06), Istanbul, Turkey, 2006, pp. 307-
312.

[52] S. Malki, G. Deepak, V. Mohanna, M. Ringhofer and L. Spaanenburg.
“Velocity Measurement by a Vision Sensor,” in Proc. IEEE International
Conference on Computational Intelligence for Measurement Systems and
Applications (CIMSA’06), La Coruna, Spain, 2006, pp.135-140.

[53] M. Gardner. “Mathematical Games: The fantastic combinations of John
Conway's new solitaire game “life”.” Scientific American, vol. 223, pp. 120-
123, 1970.

[54] P. Julian. “Simplicial RTD-based cellular nonlinear networks.” IEEE
Transaction on Circuits and Systems - part I, vol. 50, no. 4, pp. 500-509, 2003.

[55] P. Dudek and P.J. Hicks. “A general-purpose CMOS vision chip with a
Processor-per-pixel SIMD array,” in Proc. ESSCIRC’01, Villach (Austria),
2001, pp. 228-231.

[56] Trenz Electronic. Internet: www.trenz-electronic.de, [Sep. 18, 2008].

[57] N. Tredennick and B. Shimamoto. “Go Reconfigure”, IEEE Spectrum, vol. 40,
no. 12, pp. 36-40, 2003.

[58] H.F. Durrant-Whyte. “Sensor Fusion: when more means better.” In: K.T.V.
Grattan (ed.) Sensors: technology, systems and applications, Adam Hilger,
Bristol, 1991.

[59] Analogical and Neural Computing Laboratory. Computer and Automation
Research Institute of the Hungarian Academy of Science, MTA-SzTAKI,
Budapest, Hungary. Intenet: http://lab.analogic.sztaki.hu, 2003-2005 [2006-05-
16].

[60] W. Fang, C. Wang, and L. Spaanenburg, “In Search for a Robust Digital CNN
System,” in Proc. 10th IEEE Workshop on CNNA and their Applications,
Istanbul, Turkey, 2006, pp. 328 – 333.

[61] B. Mirzai, D. Lím and G. S. Moschytz. “Robust CNN Templates: Theory and
Simulation,” in Proc. Fourth IEEE International Workshop on Cellular Neural
Networks and their Applications, Seville, Spain, 1996, pp. 393-398.

[62] Á. Zarándy. “The Art of CNN Template Design.” Int. J. Circuit Theory and
Applications, vol. 27, no. 1, pp. 5-23, 1999.

[63] J. A. Nossek. “Design and Learning with Cellular Neural Networks.” Int. J.
Circuit Theory and Applications, vol. 24, no. 1, pp. 15-24, 1996.

[64] T. Kozek, T. Roska and L.O. Chua. “Genetic Algorithm for CNN Template
Learning.” IEEE Trans. on Circuits and Systems – I, vol. 40, no. 6, pp. 392-
402, 1993.

[65] M. Hänggi. “On Locally Regular Cellular Neural Networks.” IEEE Trans. on
Circuits and Systems – I: Fundamental Theory and Applications, vol. 48, no. 5,
pp. 513-520, 2001.

196 Bibliography

[66] D. Lím and G. S. Moschytz. “A programmable gm-C CNN implementation.”
IEEE Int. Workshop on Cellular Neural Networks and their Applications, V.
Tavsanoglu (Ed.), pp. 294-299, London, 1998, pp. 294-299.

[67] M. Hänggi and G. S. Moschytz. “Analytic and VLSI Specific Design of
Robust CNN Templates.” J. VLSI Signal Processing, 23, pp. 415-417, 1999.

[68] S. Xavier-de-Souza, M. Yalcin and J. Suykens. “Toward CNN Chip-Specific
Robustness.” IEEE transactions on Circuits and Systems – I: Regular Papers,
vol. 51, no. 5, pp. 892-902, 2004.

[69] C. Merkwirth et al. “Finite Iteration DT-CNN – New Design and Operating
Principle,” in Proc. ISCAS, Vancouver, Canada, 2004, pp. 504-507.

[70] J. Wichard, M. Ogorzalek and C. Merkwirth. “Peformance of Finite Iteration
DTCNN with Truncated Stationary Templates,” in Proceedings ISCAS, 2005,
pp. 4657-4660.

[71] V. Vapnik. The Nature of Statistical Learning Theory. Springer Verlag, New
York, 1999.

[72] J. M. Cruz, L. O. Chua and T. Roska. “A Fast, Complex, and Efficient Test
Implementation of the CNN Universal Machine,” in Proc. IEEE Int. Workshop
on Cellular Neural Networks and their Applications (CNNA-94), Italy, 1994,
pp. 61-66.

[73] Ingber L. “Adaptive Simulated Annealing (ASA) version 24.1” Internet:
http://www.ingber.com, [Sep. 17, 2008].

[74] V. Brea et al. “A One Quadrant Discrete-Time Cellular Neural Network
Architecture for Pixel-Level Snakes,” in Proc. ISCAS, Kobe, Japan, pp. 3922-
3925, 2005.

[75] Z. Vöröshazi, Z. Nagy and P. Szolgay. “An advanced emulated digital retina
model on FPGA to implement a real-time test environment,” in Proc. ISCAS,
Kos, Greece, 2006, pp. 1949-1952.

[76] Chr. Niederhöfer and R. Tetzlaff. “Detection of a preseizure state in epilepsy,”
in Proc. ISCAS, Kos, Greece, pp. 165-168, 2006.

[77] P. Thiran. “Influence of Boundary Conditions on the Behavior of Cellular
Neural Networks.” IEEE trans. on Circuits and Systems –I: Fundamental
Theory and Applications, vol. 40, no. 3, pp. 207-212, Mar. 1993.

[78] E. Planas. “CNN Template Optimization.” M.Sc. Thesis, Lund University,
Lund, Sweden. 2007.

[79] J. Flak, M. Laiho and A. Paasio. “Scalable fault-tolerant logic system based on
regular array of locally interconnected gates,” in Proc. 11th Int. Workshop on
Cellular Neural Networks and their Applications (CNNA2008), Santiago de
Compostela, Spain, Jul. 2008, pp. 116-119.

[80] P. Földesy et al. “Fault-Tolerant Design of Analogic CNN Templates and
Algorithms — Part I: The Binary Output Case.” IEEE Transactions on
Circuits and Systems – I: Fundamental Theory and Applications, vol. 46, no. 2,
pp. 312-322, 1999.

Bibliography 197

[81] J. L. Hennessy and D. A. Patterson. Computer architecture: A quantitative
approach. Morgan Kaufmann, 4th edition, 2007.

[82] H. Corporaal. “Transport triggered architectures used for Embedded Systems.”
Internet: http://www.elis.rug.ac.be/ntca/announcement.html#Corporaal, Dec.
16, 1999 [Sept. 18, 2008].

[83] K. Goossens, J. Dielissen and A. Radulescu. “The Æthereal Network on Chip:
concepts, architectures, and implementations.” IEEE Design & Test of
Computers, 22(5), pp. 21-31, 2005.

[84] V. Zhirnov, R. Cavin, G. Leeming and K. Galatsis. “An Assessment of
Integrated Digital Cellular Automate Architectures.” IEEE Computer, vol. 41,
no. 1, pp. 38 – 44, 2008.

[85] D.A. Patterson et al., “A Case for Intelligent RAM: IRAM.” IEEE Micro, vol.
17, no. 2, pp. 34 – 44, 1993.

[86] B. Khailany et al. “Imagine: media processing with streams.” IEEE Micro, vol.
21, no. , pp. 35 – 462, 2001.

[87] L. Benini and G. De Micheli. “Networks on Chip: A new SoC Paradigm.”
IEEE Computer, 35(1), pp. 70-80, 2002.

[88] D. Wiklund and D. Liu. “SoCBUS: Circuit-switched Network on Chip for
Hard Real Time Embedded Systems,” in Proc. Int. Parallel and Distributed
Syposium, 2003, pp. 78-85.

[89] A Zarandy and C. Rekeczky. “Bi-i: a stand-alone ultra high-speed cellular
vision system.” IEEE Circuits and Systems Magazine, vol. 5, no. 2, pp. 36 –
45, 2005.

[90] JEDEC Solid State Technology Association, “Double Data Rate (DDR)
SDRAM Specification”. JESD79E. Internet:
http://www.jedec.org/download/search/JESD79E.pdf, 2005 [Sep. 21,
2008].

[91] Benny Åkesson. “An analytical model for a memory controller offering hard
real-time guarantees.” M.Sc. thesis, Lund University, Lund, Sweden, 2005.

[92] Press Release, Precise Biometrics. Internet:
http://cws.huginonline.com/P/131387/PR/200112/844226_5.html, Mar. 2006
[Sep. 18, 2008]

[93] K. Munro “Biometrics: attack of the clones.” Infosecurity Today, vol. 3, issue.
1, pp. 45, Jan./Feb. 2006.

[94] S.-K. Im et al. “A Biometric Identification System by Extracting Hand Vein
Patterns.” Journal of the Korean Physical Society, vol. 38, no. 3, pp. 268-272,
Mar. 2001.

[95] Hitachi Engineering Co. Ltd. “About Finger Vein.” Internet:
http://www.hitachi-hec.co.jp/english/about_fv.htm, [Mar. 20, 2006]

[96] Jean-François Mainguet. “Vein, Vascular pattern.” Internet:
http://perso.orange.fr/fingerchip/biometrics/types/vein.htm, [Sep. 18, 2008].

198 Bibliography

[97] L. Wang and A. Bhalerao. “Detecting branching structures using local
Gaussian models.” in Proc. IEEE Symposium on Biomedical Imaging, 2002,
pp. 161-164.

[98] Q Gao and G. S. Moschytz. “Fingerprint Feature Extraction Using CNNs,” in
Proc. European Conference on Circuit Theory and Design, Espoo, Finland,
2001, pp. 97-100.

[99] Q Gao, P. Förster, K. R. Möbus and G. S. Moschytz “Fingerprint Recognition
Using CNNs: Fingerprint Preprocessing,” in Proc. IEEE International
Symposium on Circuits and Systems, vol. 2, 2001, pp. 433-436.

[100] Q Gao and G. S. Moschytz. “Fingerprint Feature Matching Using CNNs,” in
Proc. ISCAS, 2004, pp. 73-76.

[101] A. Jain, R. Bolle and S. Pankanti. Biometrics: Personal Identification in
Networked Society, Kluwer Academic Publishers, 1999.

[102] Tamás Roska et al. “CNN software Library (templates and algorithms), vers.
7.3,” Tech. Rep. DNS-CADET-15, Analogical and Neural Computing
Laboratory, Computer and Automation Research Institute, Hungarian
Academy of Science, 1999.

[103] C. Grunditz, M. Walder, and L. Spaanenburg. “Constructing a neural system
for surface inspection,” in Proc. IJCNN, vol. III, Budapest, July 2004, pp. 1881
- 1886.

[104] E. Alpaydin and P. Marchal. “Why an ‘A’ is an ‘A’,” in Proc. Journées
d’Électronique, Lausanne, Switzerland, 1989, pp. 88-103.

[105] H. Fatemi et al. “Real-Time Face Recognition on a mixed SIMD VLIW
Architecture,” in Proc. Progress, Nieuwegein, The Netherlands, Oct. 2003, pp.
78-83.

[106] Á. Rodríguez-Vázquez et al. (2008) “The Eye-RIS CMOS Vision System,” in
Analog Circuit Design. [online]. Springer Netherlands, pp. 15-32 Available:
http://www.springerlink.com/content/w717717wnltr63r3/ [Sep. 18, 2008].

[107] G. Grassi and L. A. Grieco. “Object-oriented image analysis via analogic CNN
algorithms- part I: Motion Estimation,” in Proc. of 7th IEEE Int. Workshop on
CNNs and Their Applications, Frankfurt/M, Germany, 2002, pp. 172-179.

[108] P. Arena et al. “Complexity in Two-Layer CNN,” in Proc. Fourth IEEE
International Workshop on CNNs and their Applications, Seville, Spain, 1996,
pp. 127-132.

[109] A. Stoffels, T. Roska and L. O. Chua. “An Object-Oriented Approach to Video
Coding via the CNN Universal Machine,” in Proc. Fourth IEEE International
Workshop on CNNs and their Applications, Seville, Spain, 1996, pp. 13-18.

[110] R. P. Grimaldi. Discrete and Combinatorial Mathematics: An Applied
Introduction. 3rd addition, Addison-Wesley Publishing Company Inc, ISBN 0-
201-60044-7, 1994.

[111] Z. Nagy, Z. Vörösházi and P. Szolgay. “Emulated digital CNN-UM solution of
partial differential equations.” Int. Journal of Circuit Theory and Applications,
no 34, pp. 445-470, 2006.

Bibliography 199

[112] I. Koren. Computer Arithmetic Algorithms. University of Massachusetts,
Amherst, A K Peters Ltd., 2002, ISBN 1568811608.

