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Abstract

Cellular Neural Networks are characterized by simplicity of operation. The
network consists of a large number of nonlinear processing units; called cells;
that are equally spread in the space. Each cell has a simple function (sequence of
multiply-add followed by a single discrimination) that takes an element of a
topographic map and then interacts with all cells within a specified sphere of
interest through direct connections. Due to their intrinsic parallel computing
power, CNNs have attracted the attention of a wide variety of scientists in, e.g.,
the fields of image and video processing, robotics and higher brain functions.

Simplicity of operation together with the local connectivity gives CNNs
first-hand advantages for tiled VLSI implementations with very high speed and
complexity. The first VLSI implementation has been based on analogue
technology but was small and suffered from parasitic capacitances and
resistances leading to undesired behaviour. Later implementations focus on
larger network and higher level of robustness. Mixed full-custom chips are most
famous and widely considered as a roadmap for advanced realizations. The
digital counter parts have focused on emulating the functionality of the CNN
rather than providing real-time performance. Furthermore, they are totally
dependent on a host PC to function properly. In spite of being less sensitive to
parasitic noise and fabrication artefacts beside providing a quasi-infinite
accuracy, fully digital implementations are, however, still not available. In other
words, the exploitation of a stand-alone fully-digital approach is highly desired,
which this thesis aims to tackle.

Macro enriched Field-Programmable Gate-Arrays (FPGAs) are used to
realize such systems on silicon. At first glance a pipelined approach, based on



i Abstract

circuit switching, seems promising. Two different approaches are investigated;
Spatial and Temporal, of which the former is to prefer. Later on, in order to
overcome design limitations and thus enhance performance, the benefits of
packet-based switching have been explored. Although circuit switching is still
employed, the enhancement is achieved by adopting the concept of Network-on-
Chip (NoC), where packets are transmitted in a predefined communication
pattern. The choice is between Serialized and Switched broadcasting schemes.
The digital implementation of the Switched broadcasting is performed using
Xilinx Virtex-II Pro P30 and the advantages over the pipelined approach are
discussed by means of clock rate, area utilization and memory considerations. A
serial communication approach shows, however, that network size can be
increased further by a clear decrease in the size of communication interface. The
thesis illustrates the power of the different implementations experimentally. It is
shown how the digital CNN can be used to estimate velocity from images or to
facilitate authentication by means of vein feature extractions. Furthermore, the
issue of robustness is discussed from a different point of view. Here, the limited
accuracy is compensated by gradual adjustment of the operative parameters, i.e.
template coefficients. Finally, the thesis discusses main ingredients in system
architecture to achieve the goal of a stand-alone fully-digital design.

Keywords

Cellular Neural Network, Discrete-Time Cellular Neural Network, Field-
Programmable Gate-Array, Circuit switching, Network on Chip, Serialized
broadcast, Switched broadcast, Velocity measurement, Vein feature extraction,
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Introduction

/‘4 [tﬁougﬁ different aspects of computational complexity have given rise

to different complex computer architectures, the concept of scientific
computing has not changed during the last 50-60 years. A computer is still built
as a Turing machine with stored programmability, i.e. with the algorithm as the
underlying mechanism [40]. When Alan Turing introduced his abstract machine
in 1936 it was meant to consist of a tape of symbols from a finite alphabet, a
header to read/write the symbols, a state register and finally an action table that
tells the machine what to do next. About ten years later, the foundation that has
been established by Turing is adopted in von Neumann’s computer architecture.
In general, a von Neumann machine stores both the program and the data in a
memory that can be unified as in a Princeton architecture or separate as in a
Harvard architecture. A control unit features a program counter and keeps track
of how instructions are executed on the arithmetic and logic units. The program
is executed sequentially in line with human thinking, which is the main reason
for von Neumann machine to gain worldwide acceptance and to quickly become
the fundament of future digital computing devices [2].

Being sequential, architectures based on von Neumann machine are
characterized by low utilization of the computational components. As the
execution of each instruction is divided into a number of stages, only those
components belonging to the current stage are active while all other units in the
architecture remain idle! This is partially remedied in Harvard architectures by
introducing the concept of instruction level parallelism (ILP), where the
different stages are combined into a single pipeline. The maximum throughput
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is, however, still dictated by the impact of hazards in the computation due to
memory access conflicts [81].

Actually, nowadays engineering tasks are characterized by the high
complexity of the underlying algorithms. Here, large amounts of information are
handled in real-time and therefore require a ’close to perfect’” memory
management. In order to achieve that, a number of enhancement techniques
have seen the daylight, where both hardware and software approaches have been
tested. The focus of hardware developers have been on filling the performance
gap between processor and memory which still dominates classical computer
architectures [81]. Through intense utilization of the pipelining technique and
advances in micro-electronic fabrication technology, the speed of processors has
increased far more than the speed of semiconductor memory. This has caused
the Reduced Instruction-Set Architecture (RISC) to reduce the amount of
memory access per instruction and caching to raise virtual memory
performance. Still the execution of data-intensive algorithms suffered and new
architectures for image processing have been proposed [85]. Moreover, most
algorithms overcome the intrinsic complexity of a certain problem through
parallel execution of sub-operations, which opens for actual real-time
performance. In light of the performance that software high-level languages
provide, especially in real time applications, specialised hardware architectures
are unavoidable.

The popularity of Digital Signal Processors (DSPs) illustrates the need for
domain-specific processors with reduced memory access. Here, the data path is
tailored for an optimal execution of a common set of repetitive and numerically
intensive operations. However, DSPs still incorporate the von Neumann
approach and remain, thus, sequential machines [2]. Consequently, moving
toward parallel computing has become a dominant approach in computer
architecture, mainly in the form of multi-core processors such as IBMs Cell [3].
Like all other coarse-grain parallel processing systems, such architectures come,
however, with a large and complex instruction set [4]. Apparently, an increased
granularity level will help to reduce the complexity. Beside, it is well-known
that the smaller the granularity, the greater the potential for parallelism and
hence speed-up. Cellular processor arrays (CPAs), that implement data
processing at a fine-grain level of parallelism, are often comprised of simpler
processors, with specific computational ability [4]. In one of the popular
paradigms, Single Instruction Multiple Data (SIMD), each processor executes
the same instruction, but operates on data residing in local memories [4].
Locality of storage removes most data hazards that are usually connected to
access of common memories. This is preferable as most CPA architectures find
application in the field of image processing and are usually considered as
“vision chips”. Here, low-level image processing tasks are executed on a
processor-per-pixel arrangement. The intrinsic pixel-parallelism is inherited
which enables real-time processing speeds without wasting any resources on
long-distance transfers [5]. Together with the relaxed I/O demands comes the
reduction in size, cost and power dissipation. It is reported that the power
consumption is several orders of magnitude lower than for an equivalently
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performing sequential system [4]. Due to the clear benefits, the analogue SIMD
approach is incorporated in many vision chips, such as ACE16k [28]. What
makes this chip interesting in our case is that it combines SIMD with the
paradigm of Cellular Neural Network (CNN) [7]. The ACE16K has been
introduced as the most promising vision chip that implements a CNN as parallel
computing core.

This thesis focuses on the implementation of CNNs on hardware. But before
digging deeper into technical details, section 1.1 explains the importance of
image processing as a target for many CPAs in general and CNNs in particular.
Subsequently, the objectives of the thesis are presented in section 1.2 where the
concept of Cellular Neural Networks is briefly introduced. The choice of
realization platform is discussed as well. Finally, the chapter is closed with
outlining this thesis in section 1.3.

1.1 WHY IMAGE PROCESSING?

The focus of CPA architectures on image processing tasks is well-founded. One
of the features distinguishing humans from other creatures is the dependence on
our vision as main source of acquiring information. Indeed, vision is our most
important sense as we rely on it for more than 99% of the information about our
surrounding [1]. In contrast to a wide range of animals, humans have, apart from
eyes, poorly developed sense organs. Consequently, it’s not surprising that
scientific instruments commonly communicate their results to the user by
producing images, rather than generating audible tones or emitting smells. Even
waves beyond the visible portion of the electromagnetic spectrum are presented
visually, usually displayed with false colours to emphasise suitable variations in
signal brightness [1].

Computer-based image processing applications usually apply algorithms
based on human vision methods, but are not confined to it. Important
differences between human vision and imaging devices implies considering
other methods. The ability of a human judging colour or brightness of features
within images depends on the possibility of comparing adjacent details.
Furthermore, humans deal with images as a whole, rather than by breaking them
down to constituent parts, which usually gives rise to many visual illusion
phenomena, e.g. parallel lines appear to diverge if they cross different sets of
parallel lines with different gradients (Figure 1.1). Hence, grouping parts within
images is central to our understanding of images [1].

Each image can be considered as a container of signals that change value
over time. These signals, seen as conveyors of data, are nothing else than all
pixels constituting the image. Consequently, understanding the meaning of an
image requires a mechanism for retrieving knowledge from the pixels within the
image. A good example is in the on-line quality control of production streets.
Here, we find high-end cameras with off-line high-performance computers to
detect defects in the production and diagnose the probable cause. The challenge
is to replace these by large amounts of cheap, virtual sensors [58] that can
capture images but also feed back knowledge about the imaged situation; this
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should lower the cost of inspection, improve the quality of production and
provide reliable support. The advent of such vision sensors is made possible by
the rapid decrease in price and size of the camera and the ongoing increase in
performance and capacity of modern microelectronics. A vision sensor is based
on the standard camera but extended with intelligent hardware and software to
alleviate the communication demands that originate from full image transfer to a
central computing service. Typical examples are (a) the remote temperature
sensor that finds the flame within an image and checks colour, size and
movement to quantify the burning conditions, (b) the microphonic imager to
locate and analyse sound sources, and (c) the intelligent pen, that produces the
equivalent character string.

- ~ 7 ~

N 7N
Figure 1.1 The vertical lines are actually parallel but appear to diverge.

Current applications range from velocity measurement to product inspection
and are based on software personalization of Commercially-of-the-shelf (COTS)
microprocessors. A migration toward vision sensors on basis of dedicated
hardware is already established. The Xetal processor from Philips Research
Laboratories [105] is a clear example. As the focus is on the Region of Interest
(ROY)), there is a natural clustering of data dependencies that can be utilized by
introducing local operations on the locally stored ensemble of data. Very Long
Instruction Word (VLIW) architectures are implemented to achieve the desired
utilization, but other approaches are still demanded. In coming is, e.g., the Eye-
RIS vision sensor [106] that employs a bio-inspired architecture where image
acquistion and the fully parallel processing are combined. The key component
of the Eye-RIS vision system is the retina-like front-end, which is a continuation
from predecessing CNN-based chips, e.g. ACE4k [27] and ACE16k [28].

1.2 OBJECTIVES

In line with the previous section, it is not surprising that most experimental
CNN systems have been proposed in image processing, in spite of the general
nature of the CNN paradigm. CNNs have been introduced as a novel class of
information-processing systems for solving complex real-time problems in
space, like partial differential equations (PDEs). Due to their inherent potential,
CNN s have attracted the attention of a wide variety of scientists. Over the years,
the concept of CNN has shown to be multi-disciplinary: it has found application
in robotics, bio-inspired vision issues and higher brain functions in addition to
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image and video processing. Further, CNNs have been used to generate static
and dynamic patterns, autowaves and spiral waves [11].

The paradigm is built on reformulating of many complex computational
problems into well-defined tasks characterized by the fact that the information
necessary to compute the solution at a certain point in space is within finite
distance to that point. A CNN is made of a regular geometric 2-D or 3-D grid of
cells that are connected locally.

After the introduction of the CNN model by Chua and Yang in 1988,
different considerations for cell complexity, cell dynamics and network
topology have led to the emergence of different generalized models. The reason
has been to enhance both the capability and efficiency of the original CNN
model. A list of the most common models includes: (a) Nonlinear CNNs where
template coefficients are nonlinear functions and (b) Delay-type CNNs where
cell dynamics are dependent on previous input/output pairs [15]. In order to
reflect features found in neurobiological structures, Non-uniform CNNs with
more than one type of cell and Multiple Neighbourhood Size CNNs have been
studied [11]. Of all generalizations, this thesis focuses on employment and
implementation of Discrete-Time CNNs (DT-CNNs) only [39],[41]. These
different models have delivered a sound basis for the design of algorithm-
specific analogue implementations. Even the discrete-time version has been
introduced as analogue realization [39], in spite of the intrinsic favour for digital
designs.

Obviously, CNNs give first-hand advantages for VLSI implementations due
to their powerful parallelism and strict locality of operation. But the need for
large numbers of multiplications has precluded efficient digital hardware
realizations, leaving the stage to either analogue realizations or software
implementations on highly pipelined hardware. Actually, the first CNN
hardware has been almost completely in analogue. This has probably to do with
that the first conceptual design proposed Chua and Roska, i.e. the CNN-
Universal Machine (CNN-UM) [20], is analogue. So far impressive advances
have been made in analogue realizations only [23]-[30], while the best attempt
toward a digital realization emulates the functionality of a CNN rather than
providing real-time performance [42]. Hence, the potential of a fully digital
approach has never been exploited, which this thesis aims to change.

Digital CNN emmelators have followed the same development path as in
classical computer architectures. The first publication [42] uses pipeline
techniques to improve performance. The network is operated in step with the
provision of image map elements, and the network is tuned such that it works
exactly at the speed of the image stream. As such the architecture resembles that
of a stream processor [86], a vector processor on images. Such architectures do
not support the intense interaction that is required for the less trivial CNN
operations.

Of late, the Network on Chip (NoC) architecture has been proposed to get

away from the pipelining harness [9]. It is stated that a cellular architecture will
be the way of the future. In general, a NoC consists of a number of switches and
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network interfaces (NI). Network interfaces translate the view that components
attached to the NoC have on communication, and the internal view switches
have. By using multiple switches a NoC scales both in the number of
components (such as cells) that can be attached to the NoC, and in the
performance the NoC can deliver. NoCs are therefore modular, scalable
interconnects [87]. A switch receives data on its inputs and sends it to its
outputs, taking care that each output is used by only one input at any point in
time. Data can be moved around a NoC in two ways: circuit switching [88], and
packet switching [83].

Overall NoCs fit well with digital implementations (or models) of CNNs
because they allow an arbitrary (programmable) neighbourhood of cells.
Moreover, NoCs decouple the communication from computation, i.e. rates of
computation of the individual cells may differ from each other, as well as the
rate of inter-cell data transport between the cells. Hence no global notion of time
or synchronization is required between the system components (cells/CNNs and
NoC), taking any global interconnections out of the critical path. Still the system
as a whole converges to a well-defined output for a given input if the
components are continuous functions.

A major issue in application-specific hardware design is the time-
consuming and costly fabrication process. As different architectures are to be
built and tested in a relatively short time, there is need for a realization platform
that provides a close-to-full-custom performance while retaining a high degree
of flexibility and reusability. Furthermore, such a platform must allow for
decreased granularity at least to the fine-grain level employed in SIMD-based
CPAs. In this sense, Field-Programmable Gate-Arrays (FPGAs) seem the only
choice (Figure 1.2). Actually, one of the greatest advantages of using FPGAs is
the ability of using spatial computing rather than temporal or sequential
computing. Higher throughput is then achieved as more parallelism per time
unit is exploited.

A

@ General-purpose (von Neumann)

@ bDsP

@ Application-Specific Integrated Processor

Flexibiltiy

@ FPGA

@ AsiC

_
-

Efficiency
(performance, area, power consumption)
Figure 1.2 Efficiency versus performance of different implementation platforms [6] .

FPGAs have been commercially introduced in 1985 by Xilinx to replace
standard gate arrays such as programmable logic arrays (PLA), programmable
array logics (PAL) and complex programmable logic devices (CPLD) [2]. Over
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time, FPGAs gained increased popularity as they allowed developers to bypass
the costly fabrication process of application-specific chips [6]. Rapid
prototyping is certainly the most common — but not the only — attraction of
FPGAs. This allow for in system customization of non-accessible systems [2].
Another, and maybe the most important, feature of modern FPGAs is the ability
for partial reconfiguration. Swapping modules into and out of the device without
the need of a complete reset brings the FPGA a level of adaptability that
reconfigurable devices never reached [2]. This innovation is unfortunately less
utilized, though the potential benefits have been already illustrated early in [45] .

The ongoing improvements in modern FPGAs have led them away from
being application-specific containers for logic circuitry to the algorithm-specific
integrated circuit. An over-mass of flip-flops and logic-mapped memory is
supplemented by high-density, multifunctional macros, such as Block Select
RAM (BRAM) and Multiplier, while the supplementary handlers are easily
accommodated in the microprocessor cores. Moreover, though being slower
than Application-Specific Integrated Circuits (ASICs), FPGAs are gaining a
foothold in speed. The newest devices for Xilinx, e.g., break the 500 MHz
barrier [38], which theoretically paves the way to reach higher speed than what
most CNN chips achieve.

Having all that in mind, the following questions need to be answered:
v Is a fully digital realization possible?
v' Are FPGAs able to satisfactorily host such a realization?

v" Which communication patterns are needed to meet the connectivity
requirements?

v Can we accommodate already known approaches, or have new
concepts to be developed from scratch?

v Is the ‘limited’ accuracy provided by digital implementation enough for
real-life tasks?

Throughout the thesis, full digital approaches are explored by introducing a
number of design implementations. Such implementations focus on the pattern
of communication as the main consideration. The functionality and efficiency of
the proposed designs are validated by means of different applications. The
applications vary in the degree of difficulty from simple cases that test basic
functionality to more advanced problems where the complex behaviour of the
whole system is verified. In all cases, the implementations rely on the FPGA,
more precisely on Virtex — I and Virtes — II Pro 30 from Xilinx [38].

1.3 THESIS OUTLINE

In Chapter 2, the concept of Cellular Neural Network is introduced. This thesis
is restricted to the discrete-time version, where a number of basic examples are
treated in detail, as the focus is on hardware implementations, Chapter 3 gives a
brief overview of state-of-the-art of CNN chips. First of all, DSP-based
emulators are covered, before the conceptual CNN-UM is discussed.
Furthermore, both full-custom mixed-signal designs and pure digital emulators
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of the CNN-UM are briefly described. It is meant that provided information
serves as a solid base for the understanding of design approaches introduced
later on.

Subsequently, the first digital implementations of DT-CNNs on FPGAs, as
carried out by the author of this thesis, are discussed in Chapter 4. Here, two
different unrollment schemes, temporal and spatial, are presented. Both employ
pipelining with different degrees of success. The spatial scheme is discussed in
detail as it serves as a start-up for later implementations. With the CNN
hardware realization come the demands on inter-modular connectivity.
Incorporating the concept of Network on Chip takes the hardware architecture
one step further. The hard-wired communication is replaced by a packet-based
communication pattern. The path is still pre-defined but the packets belonging to
two different communication cycles (different source-target pairs) share one or
more communication channels (inter-node connections). In this sense, we mix
circuit switching with packet-switching techniques. Even here, two different
implementations exist. One of them employs the idea of pipelining with
moderate modifications on the internal design. In the other, the benefit of packet
switching comes to full blossom in a broadcast architecture. Here, the CNN is
divided into sets of active nodes with a totally different inter-node
communication pattern.

A different approach is presented in Chapter 5 to overcome the enormous
demands of internal communication. The approach is thought of as a revision of
communication patterns already discussed in the previous chapters.

Chapter 6 takes the discussion one step further and covers memory
considerations for the two main architectures. Chapter 7 shows how the variety
of design implementations, presented throughout the thesis, is of benefit to
different applications. It starts with a simple realization of the famous Game-of-
Life, and moves to more advanced problems where the basics for a velocity
meaturement system are verified. The power and suitability of performing
biometric measures is then demonstrated by means of vein feature extraction.

One of the disadvantages of currently available analogue CNN chips is
parameter deviation. The robustness of the system is easily disturbed due to
noise in the electrical components as well as to parameter scattering introduced
during the fabrication process. This leads to misbehaviour and often requires a
laborious effort to tweak the parameter to the desirable range of operation.
Chapter 8 tackles the problem from a different point of view. The precision of
internal signals is gradually reduced while the system is guaranteed to perform
well. The idea is that less bits in the internal representation compensates for the
artefacts found in analogue chips, which allows finding a set of system
parameters that guarantee the desired degree of robustness in all chips. Though
inspired by the problems in analogue systems, it also has relevance to digitial
ones. Pruning the internal representation helps to reduce word width and
therefore reduce the size of the CNN nodes and the width of the communication
paths
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Chapter 9 proposes a methodology for design automation starting from a
problem description and ending in a system architecture.

In Chapter 10 other design alternatives are introduced to the benefit of
larger networks. The different architectures presented throughout the thesis are
compared by means of area utilization and frequency. The chapter is closed with
a concluding discussion.
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Cellular Neural Networks
The Concept

I 1 1988, Chua and Yang introduce a new architecture to efficiently perform

large time-consuming tasks in real-time by using an array of simple, non-
linearly coupled dynamic circuits. A novel class of information-processing
systems is then born, and carries the name of Cellular Neural Network (CNN) [7].

The concept rests on two major sources of inspiration. The architecture
possesses some of the key features of Neural Networks [8], such as continuous-
time dynamics and global interaction of the network elements, which allows for
real-time signal processing. On the other hand, it inherits the feature of local
interconnectivity from the world of Cellular Automata [10], which makes it
suitable for VLSI implementations.

In this chapter a brief description of two models is given: Chua and Yang
model that is sometimes referered to as Continuous-Time CNN (CT-CNN) and
the counterpart Discrete-Time CNN (DT-CNN). The aim is to give an intuitive
understanding of the concept, rather than discussing the theory in detail. In
section 2.1 the network structure is introduced as it eases the understanding of
CNNs basic equations in section 2.2. Consequently, sections 2.3 discusses the
effects of different parameter set-ups, while the importance of boundary cell
handling is illustrated in section 2.4. The Discrete-Time CNN is presented in
section 2.5, while section 2.6 shows that both presented models gain in power
when more than one layer is used. Section 2.7 reintroduces the first analogue
realizations of the two models. In order to increase the understanding for the
functionality of DT-CNN model, a number of illustrative examples are presented
in section 2.8. The chapter is closed with a summary in section 2.9.

15
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2.1 SPHERE OF INFLUENCE (NEIGHBOURHOOD)

The CNN is a massive aggregate of regularly spaced processing units, called
cells. Similar to Cellular Automata [10], any cell is connected only to its
neighbour cells, where direct interaction only occurs among adjacent cells. Other
cells are, however, indirectly affected due the propagation effect of the
continuous-time dynamics. Theoretically, a cellular neural network of any
dimension can be defined, as illustrated in Figure 2.1, which allows a CNN to
handle spatial relations such as topographic maps. As the focus of this thesis is on
2-dimentional image processing, the discussion will be restricted to the 2-
dimensional case.
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Figure 2.1 Cellular neural networks with different dimensions, where the globes represent
cells and the links represent direct coupling. Far from all interconnections are seen in the
3-dimensional case (left). In the 2-dimensional finite-size case (right) each cell C(i,j) is
indexed according to row i and column j.

Considering a finite-size two-dimensional CNN, cells are arranged in M rows
and N columns. Each cell is identified by its position in the grid, denoted C(i, j),
and communicates directly with its sphere of influence S,.(i, j) of radius r , also
called r-neighbourhood. Such a neighbourhood is defined as the set of cells
within a certain distance r to C(i j), where r = 0 (Eq. (2.1)).

S,(i,)) ={Ck,Dimax (|k —il,|l—j) <r1<k<M1<j<N} (2.1)

For instance, if r =1 we have a 1-neighbourhood. It is also common
practice to talk about 3 X 3 neighbourhood whenr =1, and 5 X 5
neighbourhood when r =2and so on. In general, for certain r>0a
neighbourhood of size (21 + 1)? is obtained. Different neighbourhood examples,
with r = 1,2 and 3 are shown in Figure 2.2. Observe that whenr > N/2,
and M = N, a fully connected CNN is obtained, i.e. S,.(i, ) is the entire network.
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This extreme case, that is apparently impractical to build in a VLSI chip for
large N, corresponds to the classical Hopfield Net [8].
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Figure 2.2 Different r-neighbourhoods for the centre cell (black circle). To avoid clutter all
interconnections are dropped.

2.2 STANDARD CNN EQUATIONS

Let’s first consider a cell with no coupling to any other cell in the grid. Such a
cell, called an isolated cell, is associated with four variables: inputu;; € R¥,
threshold z;; € R, state x;; € R*, and outputy;; € R”, which are, in general,
functions of the continuous time t. The cell consumes the input value together
with the threshold in order to produce the output value, which depends on the
current state. Assuming further a given initial state x;;(t,) att = to, a threshold
2;;(to) and an input u;;(t,), the state x;;(t) evolves via the state equation given
in Eq. (2.2) where the “dot” denotes the time derivate and F is an ordinary non-
linear differential function.

Recall that an unknown function #£: R — R is ordinary differential if the nth
derivative of H with respect to a variable £ is a function of the lower-order
derivatives, ie F(A,H,H' K", -, HO®D) =3 ™ Furthermore, if the
differential function is not dependent on the variable 4, it is then considered
autonomous. In this sense, Eq. (2.2) is simply a non-autonomous system of
ordinary differential equations [11]. In general, different non-linear functions F
can be used for different cells, but in almost all known applications the cells are
identical and therefore employ the same function.

Xij = F(x5(8), 2 (), u; (8)) (2.2)

The operative description of a cell is concluded by the determination of the
output y;;(t) by means of a nonlinear function. This function may depend on
i (£), x;5(t) and z;;(t), but in this thesis, as in most literature, it is assumed to
depend only on the state of the cell, as depicted in Eq. (2.3).

yij(t) =g (xij(f)) (2.3)

The choice of function g is crucial for the quality of the obtained output and
the speed it is achieved. Three different types of nonlinear functions are
frequently used [41]: (a) threshold, (b) hyperbolic tangent and (c) piece-wise
linear functions. The threshold function, commonly referred to as Heaviside (or
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hardlimiter) function, is only binary-valued and performs a binary decision. The
hyperbolic tangent function, shown in Figure 2.3.a and mathematically described
in Eq. (2.4), is a special case of the sigmoid function that is generally defined as a
strictly increasing continuous s-shaped function. By varying the slope
parameter &, different sigmoid functions are obtained. An important observation
from Eq. (2.4) is that the sigmoid function becomes simply a threshold function
as the slope parameter approaches infinity. Even though, the sigmoid function
maintains, opposing to the threshold function, the characteristic of being
differentiable. Finally, the most widely used discrimination function is the piece-
wise linear function that is totally linear with positive slope within a certain
interval [—a, a] and saturates outside this interval as illustrated in Figure 2.3.b.
The function is mathematically described in Eq. (2.5).

f(x) = tanh (6x) 2.4)
1, x=a
flx)= {Sx, |x] < a (2.5)
-1, x<-—a
f(x) f(x)
1 1
Increasing &
ﬂ roT %
-1
(a) (b)

Figure 2.3 Sigmoid function (a) and piece-wise linear function (b).

The contributions of state and input variables are achieved by means of two
weightings coefficients, a;; and b;;, while the threshold is simply assumed to be a
constant scalar [11]. The coefficient a;; mirrors the effect of the previous output
value, while b;; only scales the current input value. Hence, they are called
feedback and control coefficients respectively. A threshold Zij is used to adjust
the obtained state value into a desired range. This introduces the standard
isolated CNN cell, claimed to be the most widely used in the literature. State
equation of a standard isolated cell is given in Eq. (2.6); while the output is
usually obtained by using the piece-wise linear function introduced in Eq. (2.5)
with the interval [—1, +1], with slope § = 1, resulting in Eq. (2.7). Assuming all
coefficients are linear, the dynamics of the isolated CNN cell are due to the non-
linear output function only.

Xij = =xij + aijyij + by + i (2.6)
1, xL-]- > 1

1
vij = f(x) 2 5 (e + 1] = Py = 1) = § x| <1 2.7
—1, xij <-1
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Equation (2.6) explains how the state of the cell evolves over time and is
therefore commonly referred to as ‘cell dynamics’. These dynamics are
dependent on two constraints: initial condition constraint where the state variable
is assumed equal a certain value upon start, and input constraint where input
value u € [—1, +1].

In a general CNN architecture, each cell is directly coupled to all other cells
within the sphere of influence. Both input u;; and output y;; of all neighbouring
cells are available and therefore consumed to produce the new output. Similar to
the isolated cell, inputs and outputs from cells belonging to S, of the cell are
weighted as by, and a;; respectively. By simply summing the contributions of all
cells in the sphere of influence, the state equation of a standard CNN cell can be
written as in Eq. (2.8). The output value is still obtained according to Eq. (2.7).

Xij = —x + Z A Vi (t) + Z by ug + 24 (2.8)
KLES (i) KLES, (i)

i= 112I‘.‘IMIj= 1I2"'.IN

Almost all theorems and numerical techniques for solving ordinary
differential equation systems are formulated in vector form [12]. Hence, it is
desirable to express the state equation given in Eq. (2.8) in vector form. For a
M X N CNN, n = MN vector systems are obtained as depicted in (2.9), where
the new indexing of state, output, input and the coefficients is obtained by a row-
wise packing of the original matrices. The matrices A and B are n X n matrices
whose nonzero entries are the weighting coefficients a;; and by, respectively. As
the coefficients are placed in a band along the main diagonal (Figure 2.4), each
matrix is quite sparse where most of entries are zero. The vector form of the state
equation is given in Eq. (2.10).

X1 X1 V1 Uy Z
X X u Z
e EEE R IR 2.9)
JICn Xn Vn Up Zn

Xx=-x+Ay+Bu+z (2.10)

Figure 2.4 Band structure of matrices 4 and B.

One may conclude that each CNN cell in the mesh is a dynamic system
whose state evolves according to a prescribed state equation. The dynamics of a
cell are coupled to neighbouring cells lying within the sphere of influence that is
centred at the location of the cell itself. The behaviour of the entire CNN is,
however, highly sensitive to the dynamics of cells located at the boundary as will
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be discussed in section 2.4. But first, a concise form of the state equation is
introduced in the following section.

2.3 CLONING TEMPLATE

In general, all feedback and control coefficients in Eq. (2.8) can be represented by
time-dependent nonlinear operators of the coupled values, but in this thesis they
are assumed to be time-invariant and real-valued scalars. Furthermore, these
coefficients are identical for all cells in the grid, which provide the CNN with one
of its important features, i.e. space invariance.

In order to simplify the notation, the state equation (2.8) is written in a more
compact form by using the two-dimensional convolution operator *, defined in
[7],and reintroduction below.

Definition: For any 3 X 3 matrix M that, the convolution operator * is
defined by (2.11), where M (m, n) denotes the entry in the mth row and the nth
column of the matrix, and m,n € {—1,0, +1}.

Mouvy 2 Z Mk —i,l— vy @.11)
kleS,-(i,j)

Now, the weighting coefficients can be grouped in two square matrices: A
and B. The former holds all feedback coefficients and is accordingly called
feedback template, while the latter is called control template. Together with the
real-valued threshold (even called bias), they constitutes a so-called cloning
template T = (A, B, z). The latter term is commonly used to emphasize the
property of space-invariance [14]. The compact form of the state equation is
introduced in Eq. (2.12). Observe that Eq. (2.10) looks similar to Eq. (2.12), but
the meaning of the involved parameters do differ, as the former deal with vectors
while all parameters are scalars in the latter. The obtained result should, however,
be the same. It is now obvious that cloning template T in addition to given input
and the initial conditions, completely determine the dynamic behaviour of the
cell.

The matrices in Eq. (2.13) show the common notation of feedback and
control templates respectively, for the case of 1-neighbourhood. This notation is
adopted later on (section 2.8) to index all input and output values of a cell.
Furthermore, it is worth mentioning that the term kernel is widely used instead of
template in image processing applications; see e.g. [13].

b_y-1 b_yp b_1s
,B=|bo-1 boo bo1 (2.13)
bl,—l bl,O bl,l

Ap,—1 Qo0 Ao 1

A-1,-1 Q-10 Q-1
A =
a;—1 a0 a1

The centre entry of the feedback template, also called self-feedback, is of
significance importance for the stability of operation of a CNN. In this sense, it is,
in many cases, desired to decompose the A template in Eq. (2.13) as shown in
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Eq. (2.14). Matrices A%and A are called centre and surround feedback template
respectively [12].

0O 0 O a1 Q10 Q-11
A=A+ A=|0 agy Of+]ao-1 0 aO,l] (2.14)
o 0 O a;,—1 @10 Q11

The number of the real-valued template coefficient is dependent on the
neighbourhood. We have 19 coefficients for 1-neighbourhood and 51 coefficients
for 2-neighbourhood. Hence, the space of CNN templates consists of an infinite
number of templates. Three simple classes are, however, of special importance
and are worth mentioning [12]. These classes are briefly introduced below.

¢ Zero-feedback template: All feedback coefficients are zero. The
dynamics of each cell of a zero-feedback CNN is described by Eq.
(2.15).

J'cijz—x,-]-+73*uij+z (215)

¢ Zero-input template: All control coefficients are zero. The dynamics of
each cell of a zero-input CNN is described by Eq. (2.16). Zero-input
CNNs, also called autonomous CNNs, are widely used in pattern
formation applications and autowave generation.

XU =—x,]+a‘l*yu+z (216)

¢ Uncoupled template: All surround control coefficients are zero, i.e.
A = A°. The dynamics of each cell of uncoupled CNN is described by
a scalar nonlinear ordinary differential equation as shown in Eq. (2.17)

Xij = =X+ aoof (Xij)) + Bru; + 3 (2.17)

2.4 BOUNDARY CONDITIONS

The observant reader must have noticed that no restrictions have been imposed on
the size of the CNN grid. Actually, the conceptual discussion carried out so far is
valid for infinite CNN grids, but it suffers from a number of complications when
CNNss of finite size are considered. Equations (2.8) and (2.12) are not completely
defined for cells whose sphere of interest S,.(i, j) extends outside of the boundary
of the grid. In this sense, CNN cells can be divided into two different categories:
regular and boundary cells. For a certain neighbourhood, r, a regular cell has
(27 + 1)2 neighbour cells. All other cells with less than (27 + 1)?2 neighbours are
called boundary cells. Note that not all boundary cells are edge cells if r > 1
(Figure 2.5). Edge cells are the outermost boundary cells, i.e. they lie on the
perimeter. The absence of neighbouring cells doesn’t affect the boundary cells
only, but it has, due to the nature of indirect propagation, a great impact on the
dynamic behaviour of the entire network, which calls for different interpretation
of boundary cell employment. Traditionally, this problem is remedied by
introducing virtual CNN cells around the grid, which completes the sphere of
influence of all boundary cells. Each virtual cell is associated with a virtual state,
a virtual input, a virtual output and a virtual threshold [12]. These virtual
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parameters are specified via various boundary conditions. In the following, three
of the most commonly used boundary conditions for 1-neighborhood, as
described in [14], are rephrased.
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Figure 2.5 When r =1, boundary cells coincide with edge cells (a) but for r >
1 boundary cells (light grey) are not located on the edges only (b).

*

Fixed (Dirichlet) boundary condition: The boundaries of the network
are tied to fixed values. In other words, virtual state and input of each
virtual cell are assigned predefined constant values. This approach has
been used in the first analogue realization of the basic CNN cell, which
will be presented later, where the boundary is uniformly at ground.

Zero-flux (Neumann) boundary condition: In this case virtual cells are
considered to have the same state and input values as their direct
neighbouring boundary cells. This condition applies usually to CNNs
with no input, i.e. u;; = 0. In principle, this corresponds to the class of
autonomous CNNs (Eq. (2.16)).

Periodic (Toroidal) boundary condition: Here 