On Hardware Implementation of
Discrete-Time Cellular Neural
Networks

Ph.D. thesis

Suleyman Malki

LUND UNIVERSITY

Department of Electrical and Information Technology,
Faculty of Engineering, 2008

© Suleyman Malki, 2008.

Circuits and Systems

Department of Electrical and Information Technology
Lund University

Box 118

S-221 00 Lund, Sweden

http://www.eit.Ith.se/

e-mail: suleyman@eit.lIth.se, suleyman.malki@gmail.com

ISSN 1654-790X
NR 11

Printed by Tryckeriet i E-huset, Lund 2008.

To my parents

Gabriel and Suad
and my wife
Abeer

Abstract

Cellular Neural Networks are characterized by simplicity of operation. The
network consists of a large number of nonlinear processing units; called cells;
that are equally spread in the space. Each cell has a simple function (sequence of
multiply-add followed by a single discrimination) that takes an element of a
topographic map and then interacts with all cells within a specified sphere of
interest through direct connections. Due to their intrinsic parallel computing
power, CNNs have attracted the attention of a wide variety of scientists in, e.g.,
the fields of image and video processing, robotics and higher brain functions.

Simplicity of operation together with the local connectivity gives CNNs
first-hand advantages for tiled VLSI implementations with very high speed and
complexity. The first VLSI implementation has been based on analogue
technology but was small and suffered from parasitic capacitances and
resistances leading to undesired behaviour. Later implementations focus on
larger network and higher level of robustness. Mixed full-custom chips are most
famous and widely considered as a roadmap for advanced realizations. The
digital counter parts have focused on emulating the functionality of the CNN
rather than providing real-time performance. Furthermore, they are totally
dependent on a host PC to function properly. In spite of being less sensitive to
parasitic noise and fabrication artefacts beside providing a quasi-infinite
accuracy, fully digital implementations are, however, still not available. In other
words, the exploitation of a stand-alone fully-digital approach is highly desired,
which this thesis aims to tackle.

Macro enriched Field-Programmable Gate-Arrays (FPGAs) are used to
realize such systems on silicon. At first glance a pipelined approach, based on

i Abstract

circuit switching, seems promising. Two different approaches are investigated;
Spatial and Temporal, of which the former is to prefer. Later on, in order to
overcome design limitations and thus enhance performance, the benefits of
packet-based switching have been explored. Although circuit switching is still
employed, the enhancement is achieved by adopting the concept of Network-on-
Chip (NoC), where packets are transmitted in a predefined communication
pattern. The choice is between Serialized and Switched broadcasting schemes.
The digital implementation of the Switched broadcasting is performed using
Xilinx Virtex-II Pro P30 and the advantages over the pipelined approach are
discussed by means of clock rate, area utilization and memory considerations. A
serial communication approach shows, however, that network size can be
increased further by a clear decrease in the size of communication interface. The
thesis illustrates the power of the different implementations experimentally. It is
shown how the digital CNN can be used to estimate velocity from images or to
facilitate authentication by means of vein feature extractions. Furthermore, the
issue of robustness is discussed from a different point of view. Here, the limited
accuracy is compensated by gradual adjustment of the operative parameters, i.e.
template coefficients. Finally, the thesis discusses main ingredients in system
architecture to achieve the goal of a stand-alone fully-digital design.

Keywords

Cellular Neural Network, Discrete-Time Cellular Neural Network, Field-
Programmable Gate-Array, Circuit switching, Network on Chip, Serialized
broadcast, Switched broadcast, Velocity measurement, Vein feature extraction,
Image processing.

Contents

ADSEFACT ... i
PEEIACE ..ot vii
ACKNOWIEAGEMENTS ... iX
List Of ADDIeviations..........coviiriiciccceee e Xi
LISt OF FIQUIES ..ottt XV
LiSt OF TADIES......oececeiiee e Xxiii
Chapter 1
INEFOAUCTION ...t bbb 3
1.1 Why Image Processing?cccoeveereneneeienenieinenieneeeseneeesienienes 5
1.2 ODBJECLIVES w.vviniiiiiiciiictceeteteetette et 6
1.3 ThesiS OULHNEeoveuiieeieieiiieie et e 9
Chapter 2
Cellular Neural NEtWOIKSocviieeiiiiieinnsi e 15
2.1 Sphere of Influence (Neighbourhood)........c..ccecererieirenieincnennnne. 16
2.2 Standard CNN EqQUAtiONS.........ccveererieirienieieiineieceee e 17
2.3 Cloning Templatecccceeueuiinirieinieiiirieicineneeere e 20
2.4 Boundary Conditionsccceceeuerieerereneeinenieise et 21
2.5 Discrete-Time CNN......ocoviiririiieieeeee et 23

iv Contents
2.6 Multilayer CNN and Multiple Layer DT-CNNccccccceinieueunnnne 24
2.7 Analogue Realizations..........ccccoeoueerenieieniineinineneeereeesee 25
2.8 Illustrative EXamplescccccovieieiieniiniiieiee e 28

2.8.1 Isolated Pixel Removal..........cccocovininininieinenenceseeene 28
2.8.2 HOIe FilliNg.c..cueiiiieiiiiieieieieeeeee e 29
2.8.3 Hole EXtractioncccoevveieueriiieirienieiceierieiee e 32
2.9 SUIMIMATY ..ottt sttt be s e 32
Chapter 3
Hardware Implementationscccoeeiiieiiieieniseesesse e 37
3.1 DSP-based CNN Emulatorscccccevevieerininieinineneeeneneieenen 38
3.2 CNN Universal Machineccocoeveeriinereeinienieieireneeeeseenene 41
3.3 Full-Custom Mixed-Signal Chipsccccceeerierieineneeeeneceeeienen 44
3.4 Digital CNN-UM Emulatorscccecorereireneininieieeseneeceeeeienes 49
3.5 SUMIMATY .ttt ettt s 52
Chapter 4
UNrolling CNN 0N FPGA ..ottt 57
4.1 Mapping CNN on FPGAccooeiiieeeeeee e 59
4.2 Abstract Execution Modelscoeovrerinienieineieineneeeeeeeen 61
4.3 In The Footsteps of The Forerunners (Pipelining)..........cccccccvveneeee. 64
4.4 NoC-based Implementationsccecereeeeererieireneieeeeeeeee e 69
4.5 DISCUSSION c.uitenieiietieteieiteteteeete e ee e see ettt et eeesbe e esesseseneesensens 72
Chapter 5
Stretching The CoMMUNICALION.........ccovvirirrriiceeeeeee e 77
5.1 Keeping The Control Localcccecevereniiininieiniineceeececieee 78
5.2 The Nodal DeSignceceeuiieiririeieiriereeee e 82
5.3 Boundary NOAESccceevueiririenieieiiieieie et 84
54 DISCUSSION .uetiniiieieetiieicetiie ettt ese st et eseste st e e seseeneesesseneas 88
Chapter 6
MemOry CONSIABIALIONScouoiiriiiririresesieieie ettt 93
6.1 Off-Chip and On-Chip Storagecccceeveeerrerieereneeeeneeeecsenes 94
6.2 Computational Efficiency.......c.ccoeeeeirenieciienieieereeeeeeceene 96
6.3 Moving Away from SHCING.......ccevvrverieirereieieeeee e 101
6.4 DISCUSSION ..uevitinieieetieieiietieie ettt sse st saesse e eneeseneeneesens 104
Chapter 7
APPHICATIONS ... 109
7.1 Game Of Life ...ooueieiiiiieieiee e 110
7.1.1 Implementationcoecueeererieirienieieeee e 111
7.2 Velocity MEaSUIreMENt.........erueueeeerueieirienieieeenieeeeeseeeeeeeeeneenens 112

7.2.1 Considerations on the Velocity Estimation Algorithm......... 114

Contents v

7.2.2 The algorithm in basic CNN operationsccceeeeeeruenee. 116
7.2.3 Verification and TeStcceoererreirenienieiineneneeenereeee e 119
7.3 Vein Feature EXtraction..........coccoeveeenenieeniinenieeneneesesieeeeenens 121
7.3.1 Image Pre-processingccccceervereeerenieneeinenieiseseeeeneniens 123
7.3.2 Feature EXtraction......ccccoceeeeivierieinenieieiesieiscsie e 123
7.3.3 Analysis and Verification..........cccoceeeeirereinienenecneecnne 127
7.3.4 Experimental Set-Upcccceveoirinenieieiieieereeeeeeee e 128
T4 DISCUSSION ..uviviieiietieieitetieieie ettt e et ssese e ssesse e eneesenseneesens 130
Chapter 8
Template Optimization..........cccoveiriiinnee e 137
8.1 Design of Robust Templatesccceceeererirereneeninieeereneenenns 138
8.2 Chip-Independent Template Optimization............ccecovveveeereenenene 142
8.2.1 Discrete-time implementationsc..coceeeeverierirerieneeennns 142
8.2.2 Continuous-time implementationsccceeeeerereererrenuenens 143
8.3 Chip-Specific Template Designccccervevieenrerierieirieieeeseeieeenns 144
8.3.1 LMS-based approach..........cccecevveiririenieineieieereeeeeene 144
8.3.2 ASA-based approach.........cccoceeveivieiecinenieciieeieeeeeene 147
8.4 Optimization of Digtial Implementationsc.cecevueverirenennnn 148
8.5 Influence of Boundary Conditionscccceceeerieeerinieieeneeeennn 152
8.6 Extended Template Optimization Algorithm..........ccccecevererennenes 153
8.7 DISCUSSION ...ttt sttt sttt ee e 155
Chapter 9
SyStEM AFCHITECTUNEcviviiice s 165
9.1 Design AUtOMALIONcvevieeiieeieeieieieisiesieeereeteaereseseeesesesaeeens 166
9.2 Architectural OVEIVIEWccceeieerieieieienieieeereiesieessresseeeeseaens 168
9.3 System COMPONENLSc.ecuerrieierieerieieieriesieeteaensesseeeessessesseeseens 170
9.3.1 Host Interface Unit (HIU)ccoeoeviieiiieieiecieieeeeeeeee 170
9.3.2 Image Management Unit (IMU)ccccceeveninvinincnnenene. 171
9.3.3 Control Unit (CU)....ccceeieriierieiieieierieceeieeesre e 171
0.4 DISCUSSION ..uvintinieiietirieiieteetete ettt ettt sbe et sbe e eneenens 172
Chapter 10
Further Considerationscooorreueecceeeeie e 177
10.1 DISCUSSION .veuteniiiieieiirienieteieet ettt er ettt st ene e saen 182
APPENAIX A .o e 185

BiblIOgGraphy.....ccoi i 191

Preface

This thesis aims on presenting the results of my research at the Department

of Electrical and Information Technology at Lund University. The different
parts of the material have been published in the publications listed below.
References to the publications throughout the thesis are made using numbering
convention adopted in the list.

(1]

(1]

[111]

S. Malki. “Discrete-Time Cellular Neural Networks Implemented on
Field-Programmable Gate-Arrays to Build a Virtual Sensor System.” Lic.
Thesis, Lund University, Lund, ISBN 91-7167-040-8, 2006, 98 pages.

S. Malki, G. Deepak, V. Mohanna, M. Ringhofer and L. Spaanenburg.
“Velocity Measurement by a Vision Sensor,” in Proc. IEEE
International Conference on Computational Intelligence for
Measurement Systems and Applications (CIMSA’06), La Coruna, Spain,
2006, pp.135-140."

S. Malki, Y. Fuqiang and L. S%Jaanenburg. “Vein Feature Extraction
Using DT-CNNs,” in Proc. 10" International Workshop on Cellular
Neural Networks and Their Applications (CNNA’06), Istanbul, Turkey,
2006, pp. 307-312.

! Best Student Paper Award

Vil

viii

Preface

(IV]

[Vl

(V1]

[VII]

[VII]

[IX]

S. Malki and L. Spaanenburg. “Efficiency Considerations for DT-CNN
Hardware,” in Proc. IEEE Northeast Workshop on Circuits and Systems
(NEWCAS’07), Montréal, Canada, 2007, pp. 1038-1041.

S. Malki and L. Spaanenburg. “Design Space Exploration for a DT-
CNN,” in Proc. 11" International Workshop on Cellular Neural
Networks and Their Applications (CNNA’08), Santiago de Compostela,
Spain, ISBN 978-1-4244-2090-2, Jul. 2008, pp. 69 -74.

S. Malki and L. Spaanenburg. “A DT-CNN Data-flow Implementation,”
in Proc. 11" International Workshop on Cellular Neural Networks and
Their Applications (CNNA’08), Santiago de Compostela, Spain, ISBN
978-1-4244-2090-2, Jul. 2008, pp. 17 - 22.

S. Malki and L. Spaanenburg. “Soft DT-CNN core implementations,” in
Proc. 15™ IEEE International Conference on Electronics, Circuits, and
Systems, (ICECS 2008), ISBN 978-1-4244-2182-4, Aug. 2008, pp. 1183
—1186.

S. Malki and L. Spaanenburg. “Design Space Exploration for the
integrated digital CNN camera,” in Proc. 1% Int. Conference on
Information Technology (1T2008), Gdansk, Poland, 2008, pp. 107-110.

S. Malki and L. Spaanenburg. “A CNN-Specific Integrated Processor.”
under review, EUROSIP Journal on Advances in Signal Processing,
2008.”

S. Malki and L. Spaanenburg. “Algorithmic optimization of CNN
computational hardware.” under review, Journal of Embedded
Computing, I0S Press.

2 This paper is invited for submission in the special issue of the stated journal. The
paper is composed of publications [V] and [VI].

Acknowledgements

First and foremost, my gratitude goes to my supervisor Lambert
Spaanenburg, not only because of his efforts in guiding me but even for being
understanding and patient. It is through his knowledge and kindness I stand at
this stage of my research.

Further, I wish to express my appreciation to the many students of VLSI
courses that, in different ways, helped to carry out the research work presented
in this thesis.

I would also like to express my gratitude to staff and colleagues from the
Department of Electrical and Information Technology, especially Koraljka
Golub for being such a good and supporting friend.

My parents Gabriel and Suad, your have always supported and helped me,
in different and creative ways, to have my dreams come true. Without your love,
care, understanding and belief in me throughout the years, I would never be able
to overcome the hindrances in my way.

Great parents cannot give you less than wonderful brothers. Thank you, Jan
and Michael, for your support and love throughout my life. I’'m also thankful for
your families, Maria & Nicole, and Iman & Gabriel, for being around and
bringing joy to our gatherings.

My mother in law, Samira, thank you for all the preyers, they certainly
helped! Haneen, thanks for filling the atmosphere with joy when you visit us.
Mousa and Majed, I found two new brouthers in you.

Special thank to all my friends who helped to make my time in Lund as
master student and researcher enjoyable. I mention with great gratitude Ahmad,

Acknowledgements

Duja, Abeer, Nabaz, Faten, Hafez, Malek, Rola, Khalil, Enas, Majed, Chafik,
and Esma.

Finally, there are no words that can express my gratitude to the woman of
my life, Abeer, for her continuous encouragement, understanding and belief in
me, and for her endless love.

Lund September 22, 2008,
Suleyman Malki

List of Abbreviations

ACE Analogic CNN Emulator Engine

APR Analogue Program Register

ASIC Application-Specific Integrated Circuit
BRAM Block Select RAM

CLB Configurable Logic Block

CMOS Complementary Metal Oxide Semiconductor
CNN Cellular Neural Network

CNN-HAC CNN Hardware Accelerator

CNN-UC CNN Universal Chip

CNN-UM CNN Universal Machine

CPA Cellular Processor Array

CT-CNN Continuous-Time CNN

CU Control Unit

DDR Double Data Rate

DMA Direct Memory Access

DRAM Dynamic Random Access Memory
DSP Digital Signal Processor

DT-CNN Discrete-Time CNN

ECAD Electronic computer-aided design

Xi

Xii List of Abbreviations

FIFO First-In First-Out

FPGA Field-Programmable Gate-Array
FSR Full Signal Range

GACU Global analogic control unit

GAPU Global Analogic Programming Unit
HIB Host Interface Bus

HIU Host Interface Unit

ILP Instruction Level Parallelsim

IMB Image Memory Bus

MU Image Management Unit

IOMMU Input/Output Memory Management Unit
ISA Instruction Set Architecture

ISU Instruction Store Unit

LAM Local Analogue Memory

LAOU Local Analogue Output Unit
LCCU Local Communication and Control Unit
LED Light-emitting diod

LLM Local Logic Memory

LLU Local Logic Unit

LPR Logic Program Register

LUT Look-up table

MAC Multiply-Accumulate

MOS Metal Oxide Semiconductor

NI Network Interface

NoC Network on Chip

Ool Object of Interest

PAL Phase Alternating Line

PC Personal Computer

PCI Peripheral Component Interconnect
PE Processing Element

RAM Random Access Memory

RISC Reduced Instruction Set Computing
Rol Region of Interest

SCR Switch Configuration Register
SCSI Smaller Computer System Interface
SDRAM Synchronous Dynamic Random Access Memory

SIMD Single Instruction Multiple Data

List of Abbreviations Xiii

SoC
SPE
SRAM
VHDL

VLIW

System on Chip

Synergetic Processor Entity

Static Random Access Memory

Very high-speed integrated circuit Hardware Description
Language

Very Long Instruction Word

List of Figures

Figure 1.1 The vertical lines are actually parallel but appear to diverge.............. 6
Figure 1.2 Efficiency versus performance of different implementation platforms
[6] - ettt 8

Figure 2.1 Cellular neural networks with different dimensions, where the globes
represent cells and the links represent direct coupling. Far from all
interconnections are seen in the 3-dimensional case (left). In the 2-
dimensional finite-size case (right) each cell C(i,j) is indexed according to

TOW 1 and COIUMI J. eoveruiiiniiiiieicic e 16
Figure 2.2 Different r-neighbourhoods for the centre cell (black circle). To avoid
clutter all interconnections are dropped.cceevevierieieienieiieieneneerens 17
Figure 2.3 Sigmoid function (a) and piece-wise linear function (b)................... 18
Figure 2.4 Band structure of matrices A and B..........ccccceveinnecnneninnccnnne. 19

Figure 2.5 When r = 1, boundary cells coincide with edge cells (a) but for
r > 1 boundary cells (light grey) are not located on the edges only (b)....22
Figure 2.6 In periodic boundary condition the CNN is joined onto itself. 22
Figure 2.7 A schematic diagram illustrating a DT-CNN cell. The data comes in
over the ud input and is modified through the control template B, while the
interaction with the neighbouring cells is gathered through the ydinput and
modified through the feedback template A. All modified input values are
summed and discriminated after application of the bias i.........c.ccccecevueneeee. 24
Figure 2.8 Basic interconnection modes for multiple layer DT-CNNs as
presented in [40]. (a) input cascade (b) output cascade (c) feedback loop
and (d) parallel. A more complex mode, parallel cascade, is presented in

XV

Xvi List of Figures

Figure 2.9 A schematic view of the standard CT-CNN cell.ccccoeeinencnnne 26
Figure 2.10 An analogue realization of a DT-CNN cell. The iterations are
substituted by discrete-time instances kT and the variables uc, xc(kT) and
yc(kT) by voltages vuc, vxc(kT) and vyckT respectively. Tis the duration
0f 0NE CLOCK CYCLL. ..oeiiiiiieiiciee e 28
Figure 2.11 Properties of Isolated Pixel Removal applied on a centre cell with 1-
neighbourhood. Grey-coloured squares represent don’t-care pixels. The 4-
isolated black pixel becomes white in (b), while in all other cases the
presence of at least one black orthogonal neighbour helps the centre pixel

0 1€MAIN BIACK.vviiieiiicic e 29
Figure 2.12 A number of holes with different sizes in (a) (b) and (c), while the
absence of one black pixel makes a hole incomplete in (d) and (e). 30

Figure 2.13 Given an input image u, the process of hole filling is initialized with
a black output y(0) and ends up, after five iterations, with filled holes in
() ettt 31

Figure 2.14 Different state values of the fixed boundary condition force the
white wave to propagate differently.c.ccoceeiverieeiiineiieciceeeeeeeeae 32

Figure 2.15 Resulting output after applying the operation of hole extraction on
the input image of Figure 2.13. ..ot 33

Figure 2.16 Dark gray cells along with the black cell constitute the 1-
neighborhood, while adding light gray cells build the 2-neighborhood. The

arrows represent the dual communication lines.cocceeveeevinerencnennene 34
Figure 3.1 The architecture of the ACE board (a) and a single DSP with
corresponding storage and control units (b)........cccceeivvcinneinnciininens 40

Figure 3.2 Local logic memory cells are combined using a local logic unit
(LLU). The B/U converter converts a bipolar analogue signal into a
unipolar signal. The small black square connected to the LLU indicates
instruction path from a global controller.coovirerierirenierieieeseeeen 42

Figure 3.3 The analogue part of the extended cell. Dashed lines show the
possible paths that are controlled by switches (not shown here) whose
configuration is coded in LCCU.........cccceoiviinieieiieicceeieeieiee e 43

Figure 3.4 The tuning D/A interface is located at the periphery of the cell array.
It uses the digital weights wy to generate the corresponding analogue
weights w, that are brought into each cell in the array using global routing
channels

Figure 3.5 A conceptual architecture of ACELOK.ccccoeiniicinnininnccnnne 47

Figure 3.6 Left: a schematic view of the processing unit in CASTLE, where
dashed lines represent control signals and continuous lines shows data path.
Right: the belt of pixels stored on chip for 1-neighborhood where the black
square indicates the current position of the convolution operation. 50

Figure 3.7 The arithmetic unit in CASTLE........ccoooiiiiiiniceeeeen 51

Figure 3.8 The amount of allocated logic for each of the blocks relative to the
entire size of a single PE. Putting together the bars representing state
values, constant values and template selection gives the total area of
FEISET AITAYS. .euveuveriereresietitesteseesessestesessessesessesseseesassessasessessesessessessesessansans 51

List of Figures Xvii

Figure 4.1 The configuration of a Virtex-II 6000 (left) and Virtex-II Pro P30
(right) from Xilinx. Grey columns represent bundling logic in form of
CLBs, while the vertical boxes represent pairs of multiplier and BRAM
macros. The placement of PowerPCs disturbs the matrix-style in the Pro
P30 dEVICE. .ttt 60

Figure 4.2 Mapping a CNN cell on FPGA primitives. Vertical arrows show
possible data flow among different functional blocks/ FPGA primitives. . 60

Figure 4.3 Consumer (a) and producer (b) cell to node mapping...................... 62
Figure 4.4 Value routing in the consumer node by multiplexing in space (a) and

I HINE (D). 1everieeieiiieiee ettt ettt ettt b et se s be b essese s e s seesens 62
Figure 4.5 Another value routing in the consumer node by multiplexing in space

(2) and in tME (D). .oovevieieieiecieieeee ettt e 63
Figure 4.6 Different adder trees to obtain the state of the producer node 64
Figure 4.7 Dimensionality of DT-CNN image processing.ccceeveevueuenenee 65

Figure 4.8 Data dependencies for a pipeline in a naive temporal state-flow
architecture. Only the pipeline corresponding for the middle node is shown.
White boxes represent functional blocks; consisting of a multiplier and an
adder, while grey boxes represent registers. The middle node corresponds
to a pixel sequence B. For sequences A and C, functional blocks are
dropped for clarity. Identical architecture is used to calculate the
contribution Of PIXel INPULS.ccererieieirierieieieeeeeee e 66

Figure 4.9 Mixed spatial-temporal state-flow architecture operating directly on
the PIXel PIPELINE.eoveieeietiieeieieeeee ettt 67

Figure 4.10 Numbering of CNN cells (b), lexicographically ordered pixels (a)
and in COMDINALION (C). vvveveverieririeieiieieieieeste st eeesieae e eee b eteesesse e esesseneens 68

Figure 4.11 Snapshot of data flow between consecutive columns in ILVA. The
design consists of six columns corresponding to one initial stage and five
subsequent iterations. The notation of inputs u, outputs y and intermediate
constants const follows the lexicographical ordering presented in Figure
4.10. The data flows from a node in a certain stage to a node, allocated in
the same row, in the successor iteration stage. Arrows between two
columns illustrate data flow originating from all nodes in a column. 68

Figure 4.12 Packet transfer scheme in a 2-neighbourhood. A packet, originating
in the middle cell in the left iteration column, is transmitted to all cells
within the neighbourhood in the right iteration column.c..cccvevevennnnene 70

Figure 4.13 Switched broadcasting schemes: word-serial (a) and word-parallel
(b). Nodes are activated at knight-jump distance in word-parallel

DIOAACASTING (C)..vevrrveierieiirieieietieieietietesiestesessesaeestesaesaesesesaeseesesseseesesseneas 71
Figure 4.14 A node communicates with the neighbourhood through four
SWILCRHIES. ..ot 71

Figure 4.15 The state-scan architecture uses a network of CNN nodes with a
Network-on-Chip, while the pixels are transported over a distributed FIFO.

Figure 4.16 Caballero nodes are divided into active and non-active nodes in
accordance with the knight-jump distance. Each activation group consists
of 5 nodes that are activated in sequence A-B-C-D-E-A.......cccccocevveireene 73

xviii List of Figures

Figure 4.17 Distribution time for 2-neighbourhood in KJL (a) and SSL (b) 74
Figure 5.1 Switched broadcasting schemes: Semi-parallel (a) and Serial (b)....78

Figure 5.2 Address space of the nodal template memoryccceceveveeeenncnne. 79
Figure 5.3 A FIFO packet is divided into 5 fields of different widths. V,T and S
stand for VALID, TYPE and SUBTYPE respectively.cccoceverrerennene. 80

Figure 5.4 A schematic view of the serial CNN node
Figure 5.5 The nodal controller is built as a simple FSM. The ITERATE state
tself consists 1 of a number of states.cccoecerrreccrnnenne
Figure 5.6 A schematic view of the nodal processor.
Figure 5.7 A schematic view of the nodal discriminatorccocoeevvevenennene.
Figure 5.8 Boundary nodes have an incomplete communication cycle (from step
1 to 8). Squares represent nodes while the dotted lines show which part of

the packet path is missing. The receiveing node is shaded......................... 84
Figure 5.9 Boundary nodes located at the corners suffer more of the incomplete
COMMUNICAtION PALECTIL ...veveeeiereerieieieieeeeeeteteeteeeeeesaeeseeseensensessesssesensens 85

Figure 5.10 Broadcasting scheme of close-to-boundary nodes is incomplete
(left), but the situation is salvaged by adding a single layer of virtual nodes

(right). Virtual nodes are shown as circles.cocovevireerereniecnienenecenn 86
Figure 5.11 One layer of virtual nodes does not complete the broadcasting
scheme of top boundary nodes.ccceeveererieieeineeee e 87

Figure 5.12 Swing broadcasting allows distributing of boundary conditions in
two steps clock-wise (a) and anti-clock wise (c). For proper functionality
on the duplex lines a separating idle step is introduced (b).ccceeevrueneee 88
Figure 5.13 Area utilization per node compared to state-flow and state-scan
architectures shows that nodal interface is kept at minimum which

improves the overall logic UtiliZation.oecevveeeinieiicinerinniieccenns &9
Figure 5.14 Area utilization of the different components with serial broadcasting
SCREIIC. ...t 89
Figure 5.15 Semi-global control requires one controller per group of nodes..... 90
Figure 6.1 Data fetch time versus memory bandwidths.........c..ccccveceniccnecnnn. 95

Figure 6.2 Data fetch time as function of the number of CNN rows when DDR-
200 is used. The time increases linearly with the number of columns in
Caballero while it is independent of pipeline depth in ILVA.................. 100

Figure 6.3 Frame execution time for ILVA with different CNN sizes, when
slicing is required. The legends, 6 to 10, represent the number of pipelines,

i.e. the number of columns in the design...........cccoeceveircirencinceeeee 100
Figure 6.4 Frame execution time for Caballero with different CNN sizes, when
SHCING 1S TEQUITEA. ...ovveviienieeieieieeee ettt eaas 101
Figure 6.5 Frame execution time of Caballero is reduced when all the iterations
are performed on a slice before next slice is brought in!........c..cccceeuenee. 102
Figure 6.6 Frame execution time using DDR-266.ccccoceinnennecnnnuenns 103
Figure 6.7 Task execution time for different SDRAMs according to Eq. (6.22).
.. 104

Figure 6.8 Task execution time with reduced data fetch. Compared to Figure
6.7, time reduction is obvious for larger networks...........ccceceveneceinennn. 105

List of Figures Xix

Figure 7.1 A Game of Life that never stops. A black cell is alive and turns white

WHEN Tt dIES. . 110
Figure 7.2 A schematic view of final design testing.cccceceveveeerereninenen 112
Figure 7.3 Reading the text from the E-building at Faculty of Engineering

(LTH), Lund University (SWeden).ccceeerueererenieinenieieeeeseeeeceee e 113
Figure 7.4 After edge detection on an image of Lund Railway Station, the text

on the moving train can still not be read.cccoceevieirereciieneeeeeee 113

Figure 7.5 A schematic view of the design. Arrows represent data transmission
between few units, but far from all data lines are shown in the figure..... 114

Figure 7.6 Mapping of the image on the pixel map.ccccocveeveeriecieireienenne. 115
Figure 7.7 Pixel displacement versus observation distance for several object

VEIOCILIES. ..ttt sttt 116
Figure 7.8 Template flow diagram in velocity measurement approach. 118

Figure 7.9 Measuring the displacement of an object moving from right to left in
the scenery. Displacement (shown in (c)) of the moving object is the

difference between the black boxes in (a) and (b).ccoecevvevieriirveiennnne. 119
Figure 7.10 First two frames (f; and f,) of the video sequence after applying the
averaging template for a number of iterations.cccccevevereccrerencennn 120

Figure 7.11 (a) Resulting image of | f; - f, |. Darkest pixels are observed where
the two frames differ as most. (b) Intermediate result after skeletonization,
where the isolated pixels can easily be noticed...........ccceevrereeirenereeennnns 120

Figure 7.12 Applying the template of IPR removes all isolated pixels (a).
Procedure of segmentation is completed once the binary mask is created

(D) ettt 120
Figure 7.13 The intermediate results of all steps as obtained from the post place
and 1oute SIMUIALION.ocueuevirieiiiicciececce e 121
Figure 7.14 Typical biometric patterns; (a) fingerprint, (b) hand vein [97] and
(c) human retinal angiograph [98].c.coveverereiieniicnerceeee e 122
Figure 7.15 Image Pre-processing.coevereeererieinenieniecsieneieeeeesieeeeesee e 123
Figure 7.16 Vein features: endings and bifurcations...........cccceceveeverereneneencnne. 123
Figure 7.17 Bifurcation detection may give rise to false features.124
Figure 7.18 Block diagram of the vein feature extraction.ccccoceveveennee 124
Figure 7.19 Different types of Junction Points: regular bifurcation (a), T-form
(b) and Corner-form (€)cevveeeirierieirieieiee et 125
Figure 7.20 Bifurcation detection uses three different templates in addition to a
LOogic OR OPETatioN.......ceeuieeirieieiieieieiieie ettt eee ettt eeees 125

Figure 7.21 Operations involved in False Feature Elimination. Number of
iterations, n/2, depends on the distance, n, between two false features.... 127
Figure 7.22 Original image containing vein pattern (a) and a black and white

image after binarization (b).ccccoevverirenenieineieeeeee e 127
Figure 7.23 Result of skeletonization (a) and Isolated Pixel Removal (b)....... 128
Figure 7.24 Endings (a) and bifurcations (b).c.ccceveverirenerenenerineneneeen 128

Figure 7.25 Adding the images with ending and bifurcation points by applying
the operation of Logical OR (a) before eliminating the false features (b).
Reconstruction of endings (c) and bifurcations (d) 129

Figure 7.26 FPGA test SEt-UD ..c.covrveienireeieieesieieeeeieseeeeeeens 129

XX List of Figures

Figure 7.27 Separation between blobs due to different speeds: “slow” object in
(a) and a “fast” one in (b). The arrows indicate the direction of the

TOVEIIIEHL. ...ttt bbb ne 131
Figure 7.28 Extended algorithm for handling fast moving objects. The direction
of movement is from right to 1eft............cocoiniiiininie 132
Figure 7.29 A certain order of skeletonization templates applied on (a), results in
a false feature (b) instead of the real one (€).ccoevveerereeeeeneieieeeene 132
Figure 7.30 The non-crossing veins (marked with circle) give rise to false
bifurcation in the 2-dimesional image.ccoeeeeeirereeirereieeeeeeens 133
Figure 8.1 Flowchart of the design steps of coupled templates. The dashed box
marks the steps of uncoupled templates [63].cecveeeerieieirieieirieieenn 140

Figure 8.2 Graphical example of the Solution of the Relation System step. Here,
only two free parameters, b and i, are involved. The arrows indicate in
which half of the space a relation (the line) are satisfied [63].................. 141

Figure 8.3 The nominal template is the origin of a circle containing all real
templates. Dashed lines mark the technical limitation of the employed
analogue CNIN CHIP. ...oouiieiiiieeeee e 142

Figure 8.4 Template optimization set-up [69]........ccceeeeverinerrineneinereeeen 146

Figure 8.5 Block diagram of fault-tolerant template decomposition [69]. 146

Figure 8.6 Block diagram of a single DT-CNN cell. The numbers represent the

width of each line in a 1-neighborhood digital implementation................ 149
Figure 8.7 Input image used in template optimization algorithm.................... 149
Figure 8.8 Template optimization through truncation.cc.ceeeevevrerennne. 151

Figure 8.9 The number of robust templates remains unchanged at the beginning
of the descending approach before it decreases strongly at then end. In the
ascending approach, the number of robust templates is already very low
and decreases slightly until it reaches the same value as for the descending
APPIOACK. L.ttt et b et ens 152

Figure 8.10 Software model of template optimization approach, where only
most important classes and functions are shown. Dashed ellipses indicate
MATLABs own functions. The function compConst computes the constant
corresponding to control and offset contribution as stated in section 4.2,

while compY computes the feedback contribution.c..ccceceeevririeenee 154
Figure 8.11 Structure of the modified Caballero node. Communication interface
and nodal controller are NOt SNOWN.ccoeveeererieieenieieieieieee e 154

Figure 8.12 The inter-nodal communication is modified to allow the usage of
two multipliers. Two values are received /submitted simultaneously...... 155
Figure 8.13 Number of robust templates for different boundary conditions in the
ascending approach. No robust templates are obtained for boundary values
in the range [0.6, +1] for all precisions.c.ceevvecevereneeeneneineneneeeenne 156
Figure 8.14 Number of robust template for different boundary conditions in the
descending optimization approach. No robust templates are obtained for
boundary values in the range [0.6, +1] for all precisions.........c.cceceeveuennee 157
Figure 8.15 A 3-D view of the outcome of the descending approach. First line of
columns represents obtained robust templates for each boundary condition
on the final Optimization StEP.ccceerreeeieirieeireeee e 158

List of Figures XXi

Figure 8.16 A 3-D view of the outcome of the ascending approach. . First line of
columns represents obtained robust templates for each boundary condition
on the final Optimization StEP.cccovevveiriririeririree e 158
Figure 8.17 Iteration count of robust templates obtained in the descending
approach (top) and the ascending approach (bottom) for boundary
condition -0.1. Other conditions show a similar behaviour. Note that the
horizontal axis is flipped to emphasize the direction of optimization...... 159
Figure 8.18 Complete overlapping of sets of robust templates is found from
boundary condition -1 down to -0.1 (left) while positive boundary

conditions give rise to a different situation (right).........ccccoevevveieenreeennne. 161
Figure 9.1 Moving from algorithm to hardware.ccccooovvreeieienineieienen. 167
Figure 9.2 External View of the CNN Architecture...........cccevveeveeerenieeeennennnn 168

Figure 9.3 The HIU consists of two FIFOs for communication with the host,
IOMMU for address translation and a bus master to communicate with

other units in the SYSTEIM. ...c..cevviviiiriirieirrieececee e 170
Figure 9.4 A host request is subdivided into flag, address and data fields....... 170
Figure 9.5 Area Utilization for HIU and two of the sub-components. 171
Figure 9.6 Control Unit SChematic VIEW.........cceeveeruirieerinienieenesieeecsie e 172
Figure 9.7 Memory address space as used by the control unit.c.ccee..... 172
Figure 9.8 Area utilization for the Control Unit and the sub-components

Instruction Fetch and Instruction Decoder.c.coeveneerincinicrccniecnnnn 173
Figure 9.9 Precision VErsuS QCCUTACYeoveverueruereererieeeeeseeeeeenesseseeseesessennens 174

Figure 10.1 A serial architecture for bit-serial communication. Variables v and
w represent the width of u/y-values the width of template coefficients
TESPECTIVELY. wovitinieiieiieieietietie ettt ettt es et se s se s e 179

Figure 10.2 Series/parallel architecture for bit-serial communication. Variables
v and w represent the width of u/y-values the width of template coefficients
TESPECTIVELY. 1vtivtiiieiieieeit ettt ettt ettt s ae st sbesbesbeeseeneesesaeeneens 180

Figure 10.3 The 4-dimentional design space spectrum {V, I, N, D} of CNN
architectures. The Time-multiplexed architecture employs the bit-serial
LECHNIQUE. ..vieteiiiietet ettt st sttt 181

Figure 10.4 Design trade-offs in digital CNN implementations without
(hollowed shapes) and with inter-nodal communication overhead in form
of Network Interface (filled Shapes).........ccocereeerirenieiiereeceeeeeeee 181

Figure 10.5 Area utilization for different neighbourhoods.cccoevvvveneeneee. 182

List of Tables

Table 3.1 The main components in the extended CNN-UM cell. 42
Table 3.2 Comparison of mixed-signal full-custom CNN universal chips. All
chips use a modified CNN model, i.e. the FSR model.cccoererennnen. 48

Table 4.1 Comparison of the two state-flow architectures. Logic counts are
obtained after synthesis with Synplify, while throughput is obtained by
simulating the designs using ModelSim. In ILVA, different depths (i.e.
number of rows) yield different throughputs.cccocvevieinininninnenne 73

Table 5.1 Semi-parallel broadcasting scheme

Table 5.2 Serial broadcasting SChEMEccooereirenieiineneieree e

Table 5.3 Additional actions in boundary nodes remove the need of virtual

Table 6.1 DDR/DDR2 SDRAM JEDEC standards [91]......c.cccoeeevrieineininencne 94
Table 6.2 The actual number of rows in ILVA as a function of the number of
pipelines and number of columns in Caballero. Parameter r represents the
total number of rows in Caballero.ccovveieirieieiiirieeeeeeeee e 99
Table 7.1 ‘Truth table’ for the game of life where all values follow the binary
TEPTESCNTALION. ...veuveititeeietitesieteeeestesteseesesteseesessessesessesseseesessessesasenseseesenes 111
Table 7.2 Different skeletonization templates corresponding to the direction of
PEEIING”. ettt ettt sttt a et bt et s e s e 117
Table 7.3 A comparison of the Gaussian model and the CNN-based approach
when applied on a human retinal image. FFE stands for False Feature
EXITACTION.eeniiiiiicieiietciec et 134
Table 8.1 Feedback matrix A in coupled and uncoupled CNN templates....... 139

XXiii

XXivV List of Tables

Table 8.2 Range of template values in the g,-C implementation of the CNN-UM
[O8T. et 142
Table 8.3 Typical data representation of a digital DT-CNN. The notation <n:m>
means that the number consists of n-bits integer part and m-bits fractional
PATT. e ettt ettt e h et et be et 149
Table 8.4 Hole filling template.ccceovverenenenineiecresene
Table 8.5 Tuning ranges for the Hole filling template
Table A.1 Number of robust templates obtained for each boundary condition
and precision level in the ascending approach. Boundary values [0.4, 1.0]
are omitted as they do not result in any robust template.............c.ccoouene..e. 186
Table A.2 Number of robust templates obtained for each boundary condition
and precision level in the descending approach. Boundary values [0.4, 1.0]
are omitted as they do not result in any robust template.............c.ccocuene.e. 187
Table A.3 SiUSj in the ascending approache for precision <5:11> where
i,j € {—1,+0.4}. Same results are obtained for the descending approach
With Precision <5:2>. ..ottt 188
Table A.4 SinSj in the ascending approache for precision <5:11> where
i,j € {—1,+0.4}. Same results are obtained for the descending approach
With Precision <5:2>. ..ottt 189
Table A.5 Si ASj in the ascending approache for precision <5:11> where
i,j € {—1,+0.4}. Same results are obtained for the descending approach
WIth PreciSion <5:2>. .ot 190

Introduction

/‘4 [tﬁougﬁ different aspects of computational complexity have given rise

to different complex computer architectures, the concept of scientific
computing has not changed during the last 50-60 years. A computer is still built
as a Turing machine with stored programmability, i.e. with the algorithm as the
underlying mechanism [40]. When Alan Turing introduced his abstract machine
in 1936 it was meant to consist of a tape of symbols from a finite alphabet, a
header to read/write the symbols, a state register and finally an action table that
tells the machine what to do next. About ten years later, the foundation that has
been established by Turing is adopted in von Neumann’s computer architecture.
In general, a von Neumann machine stores both the program and the data in a
memory that can be unified as in a Princeton architecture or separate as in a
Harvard architecture. A control unit features a program counter and keeps track
of how instructions are executed on the arithmetic and logic units. The program
is executed sequentially in line with human thinking, which is the main reason
for von Neumann machine to gain worldwide acceptance and to quickly become
the fundament of future digital computing devices [2].

Being sequential, architectures based on von Neumann machine are
characterized by low utilization of the computational components. As the
execution of each instruction is divided into a number of stages, only those
components belonging to the current stage are active while all other units in the
architecture remain idle! This is partially remedied in Harvard architectures by
introducing the concept of instruction level parallelism (ILP), where the
different stages are combined into a single pipeline. The maximum throughput

4 Chapter 1 Introduction

is, however, still dictated by the impact of hazards in the computation due to
memory access conflicts [81].

Actually, nowadays engineering tasks are characterized by the high
complexity of the underlying algorithms. Here, large amounts of information are
handled in real-time and therefore require a ’close to perfect’” memory
management. In order to achieve that, a number of enhancement techniques
have seen the daylight, where both hardware and software approaches have been
tested. The focus of hardware developers have been on filling the performance
gap between processor and memory which still dominates classical computer
architectures [81]. Through intense utilization of the pipelining technique and
advances in micro-electronic fabrication technology, the speed of processors has
increased far more than the speed of semiconductor memory. This has caused
the Reduced Instruction-Set Architecture (RISC) to reduce the amount of
memory access per instruction and caching to raise virtual memory
performance. Still the execution of data-intensive algorithms suffered and new
architectures for image processing have been proposed [85]. Moreover, most
algorithms overcome the intrinsic complexity of a certain problem through
parallel execution of sub-operations, which opens for actual real-time
performance. In light of the performance that software high-level languages
provide, especially in real time applications, specialised hardware architectures
are unavoidable.

The popularity of Digital Signal Processors (DSPs) illustrates the need for
domain-specific processors with reduced memory access. Here, the data path is
tailored for an optimal execution of a common set of repetitive and numerically
intensive operations. However, DSPs still incorporate the von Neumann
approach and remain, thus, sequential machines [2]. Consequently, moving
toward parallel computing has become a dominant approach in computer
architecture, mainly in the form of multi-core processors such as IBMs Cell [3].
Like all other coarse-grain parallel processing systems, such architectures come,
however, with a large and complex instruction set [4]. Apparently, an increased
granularity level will help to reduce the complexity. Beside, it is well-known
that the smaller the granularity, the greater the potential for parallelism and
hence speed-up. Cellular processor arrays (CPAs), that implement data
processing at a fine-grain level of parallelism, are often comprised of simpler
processors, with specific computational ability [4]. In one of the popular
paradigms, Single Instruction Multiple Data (SIMD), each processor executes
the same instruction, but operates on data residing in local memories [4].
Locality of storage removes most data hazards that are usually connected to
access of common memories. This is preferable as most CPA architectures find
application in the field of image processing and are usually considered as
“vision chips”. Here, low-level image processing tasks are executed on a
processor-per-pixel arrangement. The intrinsic pixel-parallelism is inherited
which enables real-time processing speeds without wasting any resources on
long-distance transfers [5]. Together with the relaxed I/O demands comes the
reduction in size, cost and power dissipation. It is reported that the power
consumption is several orders of magnitude lower than for an equivalently

1.1 Why Image Processing? 5

performing sequential system [4]. Due to the clear benefits, the analogue SIMD
approach is incorporated in many vision chips, such as ACE16k [28]. What
makes this chip interesting in our case is that it combines SIMD with the
paradigm of Cellular Neural Network (CNN) [7]. The ACE16K has been
introduced as the most promising vision chip that implements a CNN as parallel
computing core.

This thesis focuses on the implementation of CNNs on hardware. But before
digging deeper into technical details, section 1.1 explains the importance of
image processing as a target for many CPAs in general and CNNs in particular.
Subsequently, the objectives of the thesis are presented in section 1.2 where the
concept of Cellular Neural Networks is briefly introduced. The choice of
realization platform is discussed as well. Finally, the chapter is closed with
outlining this thesis in section 1.3.

1.1 WHY IMAGE PROCESSING?

The focus of CPA architectures on image processing tasks is well-founded. One
of the features distinguishing humans from other creatures is the dependence on
our vision as main source of acquiring information. Indeed, vision is our most
important sense as we rely on it for more than 99% of the information about our
surrounding [1]. In contrast to a wide range of animals, humans have, apart from
eyes, poorly developed sense organs. Consequently, it’s not surprising that
scientific instruments commonly communicate their results to the user by
producing images, rather than generating audible tones or emitting smells. Even
waves beyond the visible portion of the electromagnetic spectrum are presented
visually, usually displayed with false colours to emphasise suitable variations in
signal brightness [1].

Computer-based image processing applications usually apply algorithms
based on human vision methods, but are not confined to it. Important
differences between human vision and imaging devices implies considering
other methods. The ability of a human judging colour or brightness of features
within images depends on the possibility of comparing adjacent details.
Furthermore, humans deal with images as a whole, rather than by breaking them
down to constituent parts, which usually gives rise to many visual illusion
phenomena, e.g. parallel lines appear to diverge if they cross different sets of
parallel lines with different gradients (Figure 1.1). Hence, grouping parts within
images is central to our understanding of images [1].

Each image can be considered as a container of signals that change value
over time. These signals, seen as conveyors of data, are nothing else than all
pixels constituting the image. Consequently, understanding the meaning of an
image requires a mechanism for retrieving knowledge from the pixels within the
image. A good example is in the on-line quality control of production streets.
Here, we find high-end cameras with off-line high-performance computers to
detect defects in the production and diagnose the probable cause. The challenge
is to replace these by large amounts of cheap, virtual sensors [58] that can
capture images but also feed back knowledge about the imaged situation; this

6 Chapter 1 Introduction

should lower the cost of inspection, improve the quality of production and
provide reliable support. The advent of such vision sensors is made possible by
the rapid decrease in price and size of the camera and the ongoing increase in
performance and capacity of modern microelectronics. A vision sensor is based
on the standard camera but extended with intelligent hardware and software to
alleviate the communication demands that originate from full image transfer to a
central computing service. Typical examples are (a) the remote temperature
sensor that finds the flame within an image and checks colour, size and
movement to quantify the burning conditions, (b) the microphonic imager to
locate and analyse sound sources, and (c) the intelligent pen, that produces the
equivalent character string.

- ~ 7 ~

N 7N
Figure 1.1 The vertical lines are actually parallel but appear to diverge.

Current applications range from velocity measurement to product inspection
and are based on software personalization of Commercially-of-the-shelf (COTS)
microprocessors. A migration toward vision sensors on basis of dedicated
hardware is already established. The Xetal processor from Philips Research
Laboratories [105] is a clear example. As the focus is on the Region of Interest
(ROY)), there is a natural clustering of data dependencies that can be utilized by
introducing local operations on the locally stored ensemble of data. Very Long
Instruction Word (VLIW) architectures are implemented to achieve the desired
utilization, but other approaches are still demanded. In coming is, e.g., the Eye-
RIS vision sensor [106] that employs a bio-inspired architecture where image
acquistion and the fully parallel processing are combined. The key component
of the Eye-RIS vision system is the retina-like front-end, which is a continuation
from predecessing CNN-based chips, e.g. ACE4k [27] and ACE16k [28].

1.2 OBJECTIVES

In line with the previous section, it is not surprising that most experimental
CNN systems have been proposed in image processing, in spite of the general
nature of the CNN paradigm. CNNs have been introduced as a novel class of
information-processing systems for solving complex real-time problems in
space, like partial differential equations (PDEs). Due to their inherent potential,
CNN s have attracted the attention of a wide variety of scientists. Over the years,
the concept of CNN has shown to be multi-disciplinary: it has found application
in robotics, bio-inspired vision issues and higher brain functions in addition to

1.2 Objectives 7

image and video processing. Further, CNNs have been used to generate static
and dynamic patterns, autowaves and spiral waves [11].

The paradigm is built on reformulating of many complex computational
problems into well-defined tasks characterized by the fact that the information
necessary to compute the solution at a certain point in space is within finite
distance to that point. A CNN is made of a regular geometric 2-D or 3-D grid of
cells that are connected locally.

After the introduction of the CNN model by Chua and Yang in 1988,
different considerations for cell complexity, cell dynamics and network
topology have led to the emergence of different generalized models. The reason
has been to enhance both the capability and efficiency of the original CNN
model. A list of the most common models includes: (a) Nonlinear CNNs where
template coefficients are nonlinear functions and (b) Delay-type CNNs where
cell dynamics are dependent on previous input/output pairs [15]. In order to
reflect features found in neurobiological structures, Non-uniform CNNs with
more than one type of cell and Multiple Neighbourhood Size CNNs have been
studied [11]. Of all generalizations, this thesis focuses on employment and
implementation of Discrete-Time CNNs (DT-CNNs) only [39],[41]. These
different models have delivered a sound basis for the design of algorithm-
specific analogue implementations. Even the discrete-time version has been
introduced as analogue realization [39], in spite of the intrinsic favour for digital
designs.

Obviously, CNNs give first-hand advantages for VLSI implementations due
to their powerful parallelism and strict locality of operation. But the need for
large numbers of multiplications has precluded efficient digital hardware
realizations, leaving the stage to either analogue realizations or software
implementations on highly pipelined hardware. Actually, the first CNN
hardware has been almost completely in analogue. This has probably to do with
that the first conceptual design proposed Chua and Roska, i.e. the CNN-
Universal Machine (CNN-UM) [20], is analogue. So far impressive advances
have been made in analogue realizations only [23]-[30], while the best attempt
toward a digital realization emulates the functionality of a CNN rather than
providing real-time performance [42]. Hence, the potential of a fully digital
approach has never been exploited, which this thesis aims to change.

Digital CNN emmelators have followed the same development path as in
classical computer architectures. The first publication [42] uses pipeline
techniques to improve performance. The network is operated in step with the
provision of image map elements, and the network is tuned such that it works
exactly at the speed of the image stream. As such the architecture resembles that
of a stream processor [86], a vector processor on images. Such architectures do
not support the intense interaction that is required for the less trivial CNN
operations.

Of late, the Network on Chip (NoC) architecture has been proposed to get

away from the pipelining harness [9]. It is stated that a cellular architecture will
be the way of the future. In general, a NoC consists of a number of switches and

8 Chapter 1 Introduction

network interfaces (NI). Network interfaces translate the view that components
attached to the NoC have on communication, and the internal view switches
have. By using multiple switches a NoC scales both in the number of
components (such as cells) that can be attached to the NoC, and in the
performance the NoC can deliver. NoCs are therefore modular, scalable
interconnects [87]. A switch receives data on its inputs and sends it to its
outputs, taking care that each output is used by only one input at any point in
time. Data can be moved around a NoC in two ways: circuit switching [88], and
packet switching [83].

Overall NoCs fit well with digital implementations (or models) of CNNs
because they allow an arbitrary (programmable) neighbourhood of cells.
Moreover, NoCs decouple the communication from computation, i.e. rates of
computation of the individual cells may differ from each other, as well as the
rate of inter-cell data transport between the cells. Hence no global notion of time
or synchronization is required between the system components (cells/CNNs and
NoC), taking any global interconnections out of the critical path. Still the system
as a whole converges to a well-defined output for a given input if the
components are continuous functions.

A major issue in application-specific hardware design is the time-
consuming and costly fabrication process. As different architectures are to be
built and tested in a relatively short time, there is need for a realization platform
that provides a close-to-full-custom performance while retaining a high degree
of flexibility and reusability. Furthermore, such a platform must allow for
decreased granularity at least to the fine-grain level employed in SIMD-based
CPAs. In this sense, Field-Programmable Gate-Arrays (FPGAs) seem the only
choice (Figure 1.2). Actually, one of the greatest advantages of using FPGAs is
the ability of using spatial computing rather than temporal or sequential
computing. Higher throughput is then achieved as more parallelism per time
unit is exploited.

A

@ General-purpose (von Neumann)

@ bDsP

@ Application-Specific Integrated Processor

Flexibiltiy

@ FPGA

@ AsiC

_
-

Efficiency
(performance, area, power consumption)
Figure 1.2 Efficiency versus performance of different implementation platforms [6] .

FPGAs have been commercially introduced in 1985 by Xilinx to replace
standard gate arrays such as programmable logic arrays (PLA), programmable
array logics (PAL) and complex programmable logic devices (CPLD) [2]. Over

1.3 Thesis Outline 9

time, FPGAs gained increased popularity as they allowed developers to bypass
the costly fabrication process of application-specific chips [6]. Rapid
prototyping is certainly the most common — but not the only — attraction of
FPGAs. This allow for in system customization of non-accessible systems [2].
Another, and maybe the most important, feature of modern FPGAs is the ability
for partial reconfiguration. Swapping modules into and out of the device without
the need of a complete reset brings the FPGA a level of adaptability that
reconfigurable devices never reached [2]. This innovation is unfortunately less
utilized, though the potential benefits have been already illustrated early in [45] .

The ongoing improvements in modern FPGAs have led them away from
being application-specific containers for logic circuitry to the algorithm-specific
integrated circuit. An over-mass of flip-flops and logic-mapped memory is
supplemented by high-density, multifunctional macros, such as Block Select
RAM (BRAM) and Multiplier, while the supplementary handlers are easily
accommodated in the microprocessor cores. Moreover, though being slower
than Application-Specific Integrated Circuits (ASICs), FPGAs are gaining a
foothold in speed. The newest devices for Xilinx, e.g., break the 500 MHz
barrier [38], which theoretically paves the way to reach higher speed than what
most CNN chips achieve.

Having all that in mind, the following questions need to be answered:
v Is a fully digital realization possible?
v' Are FPGAs able to satisfactorily host such a realization?

v" Which communication patterns are needed to meet the connectivity
requirements?

v Can we accommodate already known approaches, or have new
concepts to be developed from scratch?

v Is the ‘limited’ accuracy provided by digital implementation enough for
real-life tasks?

Throughout the thesis, full digital approaches are explored by introducing a
number of design implementations. Such implementations focus on the pattern
of communication as the main consideration. The functionality and efficiency of
the proposed designs are validated by means of different applications. The
applications vary in the degree of difficulty from simple cases that test basic
functionality to more advanced problems where the complex behaviour of the
whole system is verified. In all cases, the implementations rely on the FPGA,
more precisely on Virtex — I and Virtes — II Pro 30 from Xilinx [38].

1.3 THESIS OUTLINE

In Chapter 2, the concept of Cellular Neural Network is introduced. This thesis
is restricted to the discrete-time version, where a number of basic examples are
treated in detail, as the focus is on hardware implementations, Chapter 3 gives a
brief overview of state-of-the-art of CNN chips. First of all, DSP-based
emulators are covered, before the conceptual CNN-UM is discussed.
Furthermore, both full-custom mixed-signal designs and pure digital emulators

10 Chapter 1 Introduction

of the CNN-UM are briefly described. It is meant that provided information
serves as a solid base for the understanding of design approaches introduced
later on.

Subsequently, the first digital implementations of DT-CNNs on FPGAs, as
carried out by the author of this thesis, are discussed in Chapter 4. Here, two
different unrollment schemes, temporal and spatial, are presented. Both employ
pipelining with different degrees of success. The spatial scheme is discussed in
detail as it serves as a start-up for later implementations. With the CNN
hardware realization come the demands on inter-modular connectivity.
Incorporating the concept of Network on Chip takes the hardware architecture
one step further. The hard-wired communication is replaced by a packet-based
communication pattern. The path is still pre-defined but the packets belonging to
two different communication cycles (different source-target pairs) share one or
more communication channels (inter-node connections). In this sense, we mix
circuit switching with packet-switching techniques. Even here, two different
implementations exist. One of them employs the idea of pipelining with
moderate modifications on the internal design. In the other, the benefit of packet
switching comes to full blossom in a broadcast architecture. Here, the CNN is
divided into sets of active nodes with a totally different inter-node
communication pattern.

A different approach is presented in Chapter 5 to overcome the enormous
demands of internal communication. The approach is thought of as a revision of
communication patterns already discussed in the previous chapters.

Chapter 6 takes the discussion one step further and covers memory
considerations for the two main architectures. Chapter 7 shows how the variety
of design implementations, presented throughout the thesis, is of benefit to
different applications. It starts with a simple realization of the famous Game-of-
Life, and moves to more advanced problems where the basics for a velocity
meaturement system are verified. The power and suitability of performing
biometric measures is then demonstrated by means of vein feature extraction.

One of the disadvantages of currently available analogue CNN chips is
parameter deviation. The robustness of the system is easily disturbed due to
noise in the electrical components as well as to parameter scattering introduced
during the fabrication process. This leads to misbehaviour and often requires a
laborious effort to tweak the parameter to the desirable range of operation.
Chapter 8 tackles the problem from a different point of view. The precision of
internal signals is gradually reduced while the system is guaranteed to perform
well. The idea is that less bits in the internal representation compensates for the
artefacts found in analogue chips, which allows finding a set of system
parameters that guarantee the desired degree of robustness in all chips. Though
inspired by the problems in analogue systems, it also has relevance to digitial
ones. Pruning the internal representation helps to reduce word width and
therefore reduce the size of the CNN nodes and the width of the communication
paths

1.3 Thesis Outline 11

Chapter 9 proposes a methodology for design automation starting from a
problem description and ending in a system architecture.

In Chapter 10 other design alternatives are introduced to the benefit of
larger networks. The different architectures presented throughout the thesis are
compared by means of area utilization and frequency. The chapter is closed with
a concluding discussion.

Chapter 2

Cellular Neural Networks
The Concept

I 1 1988, Chua and Yang introduce a new architecture to efficiently perform

large time-consuming tasks in real-time by using an array of simple, non-
linearly coupled dynamic circuits. A novel class of information-processing
systems is then born, and carries the name of Cellular Neural Network (CNN) [7].

The concept rests on two major sources of inspiration. The architecture
possesses some of the key features of Neural Networks [8], such as continuous-
time dynamics and global interaction of the network elements, which allows for
real-time signal processing. On the other hand, it inherits the feature of local
interconnectivity from the world of Cellular Automata [10], which makes it
suitable for VLSI implementations.

In this chapter a brief description of two models is given: Chua and Yang
model that is sometimes referered to as Continuous-Time CNN (CT-CNN) and
the counterpart Discrete-Time CNN (DT-CNN). The aim is to give an intuitive
understanding of the concept, rather than discussing the theory in detail. In
section 2.1 the network structure is introduced as it eases the understanding of
CNNs basic equations in section 2.2. Consequently, sections 2.3 discusses the
effects of different parameter set-ups, while the importance of boundary cell
handling is illustrated in section 2.4. The Discrete-Time CNN is presented in
section 2.5, while section 2.6 shows that both presented models gain in power
when more than one layer is used. Section 2.7 reintroduces the first analogue
realizations of the two models. In order to increase the understanding for the
functionality of DT-CNN model, a number of illustrative examples are presented
in section 2.8. The chapter is closed with a summary in section 2.9.

15

16 Chapter 2 Cellular Neural Networks

2.1 SPHERE OF INFLUENCE (NEIGHBOURHOOD)

The CNN is a massive aggregate of regularly spaced processing units, called
cells. Similar to Cellular Automata [10], any cell is connected only to its
neighbour cells, where direct interaction only occurs among adjacent cells. Other
cells are, however, indirectly affected due the propagation effect of the
continuous-time dynamics. Theoretically, a cellular neural network of any
dimension can be defined, as illustrated in Figure 2.1, which allows a CNN to
handle spatial relations such as topographic maps. As the focus of this thesis is on
2-dimentional image processing, the discussion will be restricted to the 2-
dimensional case.

IR
)

9.9:0)

19}) ’lﬂ) [X I K T T X
0:0:0:¢ ENENENEDED
m’o X)) '0 -6'0-0'0-0'0-6'0
‘ 00000
NN N

O DSS)

0000E

DD

EVENENENE)

Figure 2.1 Cellular neural networks with different dimensions, where the globes represent
cells and the links represent direct coupling. Far from all interconnections are seen in the
3-dimensional case (left). In the 2-dimensional finite-size case (right) each cell C(i,j) is
indexed according to row i and column j.

Considering a finite-size two-dimensional CNN, cells are arranged in M rows
and N columns. Each cell is identified by its position in the grid, denoted C(i, j),
and communicates directly with its sphere of influence S,.(i, j) of radius r , also
called r-neighbourhood. Such a neighbourhood is defined as the set of cells
within a certain distance r to C(i j), where r = 0 (Eq. (2.1)).

S,(i,)) ={Ck,Dimax (|k —il,|l—j) <r1<k<M1<j<N} (2.1)

For instance, if r =1 we have a 1-neighbourhood. It is also common
practice to talk about 3 X 3 neighbourhood whenr =1, and 5 X 5
neighbourhood when r =2and so on. In general, for certain r>0a
neighbourhood of size (21 + 1)? is obtained. Different neighbourhood examples,
with r = 1,2 and 3 are shown in Figure 2.2. Observe that whenr > N/2,
and M = N, a fully connected CNN is obtained, i.e. S,.(i,) is the entire network.

2.2 Standard CNN Equations 17

This extreme case, that is apparently impractical to build in a VLSI chip for
large N, corresponds to the classical Hopfield Net [8].

OO00O0O0O 0000000

@
@
@
@
@
@
@

O0O00O0O0O0O 0000000 000COCDOCDOO

O00000O0 0000000 0O0O0CDOCDODOCO

OC0O0000O0O 0000000 000000

OC00000O0O 0000000 0O00O0CDOCDODOO

O0O00O0O0O0L 0000000 000CDOCDODOO

O0O00O0O0O0O O00OOOOLOLOLO 0000000
r=1 r=2 r=3

Figure 2.2 Different r-neighbourhoods for the centre cell (black circle). To avoid clutter all
interconnections are dropped.

2.2 STANDARD CNN EQUATIONS

Let’s first consider a cell with no coupling to any other cell in the grid. Such a
cell, called an isolated cell, is associated with four variables: inputu;; € R¥,
threshold z;; € R, state x;; € R*, and outputy;; € R”, which are, in general,
functions of the continuous time t. The cell consumes the input value together
with the threshold in order to produce the output value, which depends on the
current state. Assuming further a given initial state x;;(t,) att = to, a threshold
2;;(to) and an input u;;(t,), the state x;;(t) evolves via the state equation given
in Eq. (2.2) where the “dot” denotes the time derivate and F is an ordinary non-
linear differential function.

Recall that an unknown function #£: R — R is ordinary differential if the nth
derivative of H with respect to a variable £ is a function of the lower-order
derivatives, ie F(A,H,H' K", -, HO®D) =3 ™ Furthermore, if the
differential function is not dependent on the variable 4, it is then considered
autonomous. In this sense, Eq. (2.2) is simply a non-autonomous system of
ordinary differential equations [11]. In general, different non-linear functions F
can be used for different cells, but in almost all known applications the cells are
identical and therefore employ the same function.

Xij = F(x5(8), 2 (), u; (8)) (2.2)

The operative description of a cell is concluded by the determination of the
output y;;(t) by means of a nonlinear function. This function may depend on
i (£), x;5(t) and z;;(t), but in this thesis, as in most literature, it is assumed to
depend only on the state of the cell, as depicted in Eq. (2.3).

yij(t) =g (xij(f)) (2.3)

The choice of function g is crucial for the quality of the obtained output and
the speed it is achieved. Three different types of nonlinear functions are
frequently used [41]: (a) threshold, (b) hyperbolic tangent and (c) piece-wise
linear functions. The threshold function, commonly referred to as Heaviside (or

18 Chapter 2 Cellular Neural Networks

hardlimiter) function, is only binary-valued and performs a binary decision. The
hyperbolic tangent function, shown in Figure 2.3.a and mathematically described
in Eq. (2.4), is a special case of the sigmoid function that is generally defined as a
strictly increasing continuous s-shaped function. By varying the slope
parameter &, different sigmoid functions are obtained. An important observation
from Eq. (2.4) is that the sigmoid function becomes simply a threshold function
as the slope parameter approaches infinity. Even though, the sigmoid function
maintains, opposing to the threshold function, the characteristic of being
differentiable. Finally, the most widely used discrimination function is the piece-
wise linear function that is totally linear with positive slope within a certain
interval [—a, a] and saturates outside this interval as illustrated in Figure 2.3.b.
The function is mathematically described in Eq. (2.5).

f(x) = tanh (6x) 2.4)
1, x=a
flx)= {Sx, |x] < a (2.5)
-1, x<-—a
f(x) f(x)
1 1
Increasing &
ﬂ roT %
-1
(a) (b)

Figure 2.3 Sigmoid function (a) and piece-wise linear function (b).

The contributions of state and input variables are achieved by means of two
weightings coefficients, a;; and b;;, while the threshold is simply assumed to be a
constant scalar [11]. The coefficient a;; mirrors the effect of the previous output
value, while b;; only scales the current input value. Hence, they are called
feedback and control coefficients respectively. A threshold Zij is used to adjust
the obtained state value into a desired range. This introduces the standard
isolated CNN cell, claimed to be the most widely used in the literature. State
equation of a standard isolated cell is given in Eq. (2.6); while the output is
usually obtained by using the piece-wise linear function introduced in Eq. (2.5)
with the interval [—1, +1], with slope § = 1, resulting in Eq. (2.7). Assuming all
coefficients are linear, the dynamics of the isolated CNN cell are due to the non-
linear output function only.

Xij = =xij + aijyij + by + i (2.6)
1, xL-]- > 1

1
vij = f(x) 2 5 (e + 1] = Py = 1) = § x| <1 2.7
—1, xij <-1

2.2 Standard CNN Equations 19

Equation (2.6) explains how the state of the cell evolves over time and is
therefore commonly referred to as ‘cell dynamics’. These dynamics are
dependent on two constraints: initial condition constraint where the state variable
is assumed equal a certain value upon start, and input constraint where input
value u € [—1, +1].

In a general CNN architecture, each cell is directly coupled to all other cells
within the sphere of influence. Both input u;; and output y;; of all neighbouring
cells are available and therefore consumed to produce the new output. Similar to
the isolated cell, inputs and outputs from cells belonging to S, of the cell are
weighted as by, and a;; respectively. By simply summing the contributions of all
cells in the sphere of influence, the state equation of a standard CNN cell can be
written as in Eq. (2.8). The output value is still obtained according to Eq. (2.7).

Xij = —x + Z A Vi (t) + Z by ug + 24 (2.8)
KLES (i) KLES, (i)

i= 112I‘.‘IMIj= 1I2"'.IN

Almost all theorems and numerical techniques for solving ordinary
differential equation systems are formulated in vector form [12]. Hence, it is
desirable to express the state equation given in Eq. (2.8) in vector form. For a
M X N CNN, n = MN vector systems are obtained as depicted in (2.9), where
the new indexing of state, output, input and the coefficients is obtained by a row-
wise packing of the original matrices. The matrices A and B are n X n matrices
whose nonzero entries are the weighting coefficients a;; and by, respectively. As
the coefficients are placed in a band along the main diagonal (Figure 2.4), each
matrix is quite sparse where most of entries are zero. The vector form of the state
equation is given in Eq. (2.10).

X1 X1 V1 Uy Z
X X u Z
e EEE R IR 2.9)
JICn Xn Vn Up Zn

Xx=-x+Ay+Bu+z (2.10)

Figure 2.4 Band structure of matrices 4 and B.

One may conclude that each CNN cell in the mesh is a dynamic system
whose state evolves according to a prescribed state equation. The dynamics of a
cell are coupled to neighbouring cells lying within the sphere of influence that is
centred at the location of the cell itself. The behaviour of the entire CNN is,
however, highly sensitive to the dynamics of cells located at the boundary as will

20 Chapter 2 Cellular Neural Networks

be discussed in section 2.4. But first, a concise form of the state equation is
introduced in the following section.

2.3 CLONING TEMPLATE

In general, all feedback and control coefficients in Eq. (2.8) can be represented by
time-dependent nonlinear operators of the coupled values, but in this thesis they
are assumed to be time-invariant and real-valued scalars. Furthermore, these
coefficients are identical for all cells in the grid, which provide the CNN with one
of its important features, i.e. space invariance.

In order to simplify the notation, the state equation (2.8) is written in a more
compact form by using the two-dimensional convolution operator *, defined in
[7],and reintroduction below.

Definition: For any 3 X 3 matrix M that, the convolution operator * is
defined by (2.11), where M (m, n) denotes the entry in the mth row and the nth
column of the matrix, and m,n € {—1,0, +1}.

Mouvy 2 Z Mk —i,l— vy @.11)
kleS,-(i,j)

Now, the weighting coefficients can be grouped in two square matrices: A
and B. The former holds all feedback coefficients and is accordingly called
feedback template, while the latter is called control template. Together with the
real-valued threshold (even called bias), they constitutes a so-called cloning
template T = (A, B, z). The latter term is commonly used to emphasize the
property of space-invariance [14]. The compact form of the state equation is
introduced in Eq. (2.12). Observe that Eq. (2.10) looks similar to Eq. (2.12), but
the meaning of the involved parameters do differ, as the former deal with vectors
while all parameters are scalars in the latter. The obtained result should, however,
be the same. It is now obvious that cloning template T in addition to given input
and the initial conditions, completely determine the dynamic behaviour of the
cell.

The matrices in Eq. (2.13) show the common notation of feedback and
control templates respectively, for the case of 1-neighbourhood. This notation is
adopted later on (section 2.8) to index all input and output values of a cell.
Furthermore, it is worth mentioning that the term kernel is widely used instead of
template in image processing applications; see e.g. [13].

b_y-1 b_yp b_1s
,B=|bo-1 boo bo1 (2.13)
bl,—l bl,O bl,l

Ap,—1 Qo0 Ao 1

A-1,-1 Q-10 Q-1
A =
a;—1 a0 a1

The centre entry of the feedback template, also called self-feedback, is of
significance importance for the stability of operation of a CNN. In this sense, it is,
in many cases, desired to decompose the A template in Eq. (2.13) as shown in

2.4 Boundary Conditions 21

Eq. (2.14). Matrices A%and A are called centre and surround feedback template
respectively [12].

0O 0 O a1 Q10 Q-11
A=A+ A=|0 agy Of+]ao-1 0 aO,l] (2.14)
o 0 O a;,—1 @10 Q11

The number of the real-valued template coefficient is dependent on the
neighbourhood. We have 19 coefficients for 1-neighbourhood and 51 coefficients
for 2-neighbourhood. Hence, the space of CNN templates consists of an infinite
number of templates. Three simple classes are, however, of special importance
and are worth mentioning [12]. These classes are briefly introduced below.

¢ Zero-feedback template: All feedback coefficients are zero. The
dynamics of each cell of a zero-feedback CNN is described by Eq.
(2.15).

J'cijz—x,-]-+73*uij+z (215)

¢ Zero-input template: All control coefficients are zero. The dynamics of
each cell of a zero-input CNN is described by Eq. (2.16). Zero-input
CNNs, also called autonomous CNNs, are widely used in pattern
formation applications and autowave generation.

XU =—x,]+a‘l*yu+z (216)

¢ Uncoupled template: All surround control coefficients are zero, i.e.
A = A°. The dynamics of each cell of uncoupled CNN is described by
a scalar nonlinear ordinary differential equation as shown in Eq. (2.17)

Xij = =X+ aoof (Xij)) + Bru; + 3 (2.17)

2.4 BOUNDARY CONDITIONS

The observant reader must have noticed that no restrictions have been imposed on
the size of the CNN grid. Actually, the conceptual discussion carried out so far is
valid for infinite CNN grids, but it suffers from a number of complications when
CNNss of finite size are considered. Equations (2.8) and (2.12) are not completely
defined for cells whose sphere of interest S,.(i, j) extends outside of the boundary
of the grid. In this sense, CNN cells can be divided into two different categories:
regular and boundary cells. For a certain neighbourhood, r, a regular cell has
(27 + 1)2 neighbour cells. All other cells with less than (27 + 1)?2 neighbours are
called boundary cells. Note that not all boundary cells are edge cells if r > 1
(Figure 2.5). Edge cells are the outermost boundary cells, i.e. they lie on the
perimeter. The absence of neighbouring cells doesn’t affect the boundary cells
only, but it has, due to the nature of indirect propagation, a great impact on the
dynamic behaviour of the entire network, which calls for different interpretation
of boundary cell employment. Traditionally, this problem is remedied by
introducing virtual CNN cells around the grid, which completes the sphere of
influence of all boundary cells. Each virtual cell is associated with a virtual state,
a virtual input, a virtual output and a virtual threshold [12]. These virtual

22

Chapter 2 Cellular Neural Networks

parameters are specified via various boundary conditions. In the following, three
of the most commonly used boundary conditions for 1-neighborhood, as
described in [14], are rephrased.

00000000
@O00OOOOO
@OO000OOOO0O
@OO000OOOO
@OO00O0OOOO
@O000OOOO
@OO000OOOO
@O000OOOO
00000000

00000000
0000000
@e0000OO0OO
0000000
@e0000OOOO
0000000
@000 0OO0OO
0000000
00000000

—~
Y
-

b

~

Figure 2.5 When r =1, boundary cells coincide with edge cells (a) but for r >
1 boundary cells (light grey) are not located on the edges only (b).

*

Fixed (Dirichlet) boundary condition: The boundaries of the network
are tied to fixed values. In other words, virtual state and input of each
virtual cell are assigned predefined constant values. This approach has
been used in the first analogue realization of the basic CNN cell, which
will be presented later, where the boundary is uniformly at ground.

Zero-flux (Neumann) boundary condition: In this case virtual cells are
considered to have the same state and input values as their direct
neighbouring boundary cells. This condition applies usually to CNNs
with no input, i.e. u;; = 0. In principle, this corresponds to the class of
autonomous CNNs (Eq. (2.16)).

Periodic (Toroidal) boundary condition: Here