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Abstract 
 

Cellular Neural Networks are characterized by simplicity of operation. The 
network consists of a large number of nonlinear processing units; called cells; 
that are equally spread in the space. Each cell has a simple function (sequence of 
multiply-add followed by a single discrimination) that takes an element of a 
topographic map and then interacts with all cells within a specified sphere of 
interest through direct connections. Due to their intrinsic parallel computing 
power, CNNs have attracted the attention of a wide variety of scientists in, e.g., 
the fields of image and video processing, robotics and higher brain functions. 

Simplicity of operation together with the local connectivity gives CNNs 
first-hand advantages for tiled VLSI implementations with very high speed and 
complexity. The first VLSI implementation has been based on analogue 
technology but was small and suffered from parasitic capacitances and 
resistances leading to undesired behaviour. Later implementations focus on 
larger network and higher level of robustness. Mixed full-custom chips are most 
famous and widely considered as a roadmap for advanced realizations. The 
digital counter parts have focused on emulating the functionality of the CNN 
rather than providing real-time performance. Furthermore, they are totally 
dependent on a host PC to function properly. In spite of being less sensitive to 
parasitic noise and fabrication artefacts beside providing a quasi-infinite 
accuracy, fully digital implementations are, however, still not available. In other 
words, the exploitation of a stand-alone fully-digital approach is highly desired, 
which this thesis aims to tackle.  

Macro enriched Field-Programmable Gate-Arrays (FPGAs) are used to 
realize such systems on silicon. At first glance a pipelined approach, based on 
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circuit switching, seems promising. Two different approaches are investigated; 
Spatial and Temporal, of which the former is to prefer. Later on, in order to 
overcome design limitations and thus enhance performance, the benefits of 
packet-based switching have been explored. Although circuit switching is still 
employed, the enhancement is achieved by adopting the concept of Network-on-
Chip (NoC), where packets are transmitted in a predefined communication 
pattern. The choice is between Serialized and Switched broadcasting schemes. 
The digital implementation of the Switched broadcasting is performed using 
Xilinx Virtex-II Pro P30 and the advantages over the pipelined approach are 
discussed by means of clock rate, area utilization and memory considerations. A 
serial communication approach shows, however, that network size can be 
increased further by a clear decrease in the size of communication interface. The 
thesis illustrates the power of the different implementations experimentally. It is 
shown how the digital CNN can be used to estimate velocity from images or to 
facilitate authentication by means of vein feature extractions. Furthermore, the 
issue of robustness is discussed from a different point of view. Here, the limited 
accuracy is compensated by gradual adjustment of the operative parameters, i.e. 
template coefficients. Finally, the thesis discusses main ingredients in system 
architecture to achieve the goal of a stand-alone fully-digital design. 
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Introduction 
 

lthough different aspects of computational complexity have given rise 
to different complex computer architectures, the concept of scientific 

computing has not changed during the last 50-60 years. A computer is still built 
as a Turing machine with stored programmability, i.e. with the algorithm as the 
underlying mechanism  [40]. When Alan Turing introduced his abstract machine 
in 1936 it was meant to consist of a tape of symbols from a finite alphabet, a 
header to read/write the symbols, a state register and finally an action table that 
tells the machine what to do next.  About ten years later, the foundation that has 
been established by Turing is adopted in von Neumann’s computer architecture.  
In general, a von Neumann machine stores both the program and the data in a 
memory that can be unified as in a Princeton architecture or separate as in a 
Harvard architecture.  A control unit features a program counter and keeps track 
of how instructions are executed on the arithmetic and logic units. The program 
is executed sequentially in line with human thinking, which is the main reason 
for von Neumann machine to gain worldwide acceptance and to quickly become 
the fundament of future digital computing devices  [2].  

Being sequential, architectures based on von Neumann machine are 
characterized by low utilization of the computational components. As the 
execution of each instruction is divided into a number of stages, only those 
components belonging to the current stage are active while all other units in the 
architecture remain idle! This is partially remedied in Harvard architectures by 
introducing the concept of instruction level parallelism (ILP), where the 
different stages are combined into a single pipeline. The maximum throughput 

A 
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is, however, still dictated by the impact of hazards in the computation due to 
memory access conflicts  [81].  

Actually, nowadays engineering tasks are characterized by the high 
complexity of the underlying algorithms. Here, large amounts of information are 
handled in real-time and therefore require a ’close to perfect’ memory 
management. In order to achieve that, a number of enhancement techniques 
have seen the daylight, where both hardware and software approaches have been 
tested. The focus of hardware developers have been on filling the performance 
gap between processor and memory which still dominates classical computer 
architectures  [81]. Through intense utilization of the pipelining technique and 
advances in micro-electronic fabrication technology, the speed of processors has 
increased far more than the speed of semiconductor memory. This has caused 
the Reduced Instruction-Set Architecture (RISC) to reduce the amount of 
memory access per instruction and caching to raise virtual memory 
performance. Still the execution of data-intensive algorithms suffered and new 
architectures for image processing have been proposed  [85]. Moreover, most 
algorithms overcome the intrinsic complexity of a certain problem through 
parallel execution of sub-operations, which opens for actual real-time 
performance. In light of the performance that software high-level languages 
provide, especially in real time applications, specialised hardware architectures 
are unavoidable.  

The popularity of Digital Signal Processors (DSPs) illustrates the need for 
domain-specific processors with reduced memory access. Here, the data path is 
tailored for an optimal execution of a common set of repetitive and numerically 
intensive operations. However, DSPs still incorporate the von Neumann 
approach and remain, thus, sequential machines  [2]. Consequently, moving 
toward parallel computing has become a dominant approach in computer 
architecture, mainly in the form of multi-core processors such as IBMs Cell  [3]. 
Like all other coarse-grain parallel processing systems, such architectures come, 
however, with a large and complex instruction set  [4]. Apparently, an increased 
granularity level will help to reduce the complexity. Beside, it is well-known 
that the smaller the granularity, the greater the potential for parallelism and 
hence speed-up. Cellular processor arrays (CPAs), that implement data 
processing at a fine-grain level of parallelism, are often comprised of simpler 
processors, with specific computational ability [4]. In one of the popular 
paradigms, Single Instruction Multiple Data (SIMD), each processor executes 
the same instruction, but operates on data residing in local memories [4]. 
Locality of storage removes most data hazards that are usually connected to 
access of common memories. This is preferable as most CPA architectures find 
application in the field of image processing and are usually considered as 
“vision chips”. Here, low-level image processing tasks are executed on a 
processor-per-pixel arrangement. The intrinsic pixel-parallelism is inherited 
which enables real-time processing speeds without wasting any resources on 
long-distance transfers  [5]. Together with the relaxed I/O demands comes the 
reduction in size, cost and power dissipation. It is reported that the power 
consumption is several orders of magnitude lower than for an equivalently 
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performing sequential system  [4]. Due to the clear benefits, the analogue SIMD 
approach is incorporated in many vision chips, such as ACE16k  [28].  What 
makes this chip interesting in our case is that it combines SIMD with the 
paradigm of Cellular Neural Network (CNN)  [7]. The ACE16K has been 
introduced as the most promising vision chip that implements a CNN as parallel 
computing core.  

This thesis focuses on the implementation of CNNs on hardware. But before 
digging deeper into technical details, section  1.1 explains the importance of 
image processing as a target for many CPAs in general and CNNs in particular. 
Subsequently, the objectives of the thesis are presented in section  1.2 where the 
concept of Cellular Neural Networks is briefly introduced. The choice of 
realization platform is discussed as well. Finally, the chapter is closed with 
outlining this thesis in section  1.3. 

1.1 WHY IMAGE PROCESSING? 
The focus of CPA architectures on image processing tasks is well-founded. One 
of the features distinguishing humans from other creatures is the dependence on 
our vision as main source of acquiring information. Indeed, vision is our most 
important sense as we rely on it for more than 99% of the information about our 
surrounding  [1]. In contrast to a wide range of animals, humans have, apart from 
eyes, poorly developed sense organs. Consequently, it’s not surprising that 
scientific instruments commonly communicate their results to the user by 
producing images, rather than generating audible tones or emitting smells. Even 
waves beyond the visible portion of the electromagnetic spectrum are presented 
visually, usually displayed with false colours to emphasise suitable variations in 
signal brightness  [1]. 

Computer-based image processing applications usually apply algorithms 
based on human vision methods, but are not confined to it. Important 
differences between human vision and imaging devices implies considering 
other methods. The ability of a human judging colour or brightness of features 
within images depends on the possibility of comparing adjacent details. 
Furthermore, humans deal with images as a whole, rather than by breaking them 
down to constituent parts, which usually gives rise to many visual illusion 
phenomena, e.g. parallel lines appear to diverge if they cross different sets of 
parallel lines with different gradients (Figure  1.1). Hence, grouping parts within 
images is central to our understanding of images  [1].  

Each image can be considered as a container of signals that change value 
over time. These signals, seen as conveyors of data, are nothing else than all 
pixels constituting the image. Consequently, understanding the meaning of an 
image requires a mechanism for retrieving knowledge from the pixels within the 
image. A good example is in the on-line quality control of production streets. 
Here, we find high-end cameras with off-line high-performance computers to 
detect defects in the production and diagnose the probable cause. The challenge 
is to replace these by large amounts of cheap, virtual sensors  [58] that can 
capture images but also feed back knowledge about the imaged situation; this 
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should lower the cost of inspection, improve the quality of production and 
provide reliable support. The advent of such vision sensors is made possible by 
the rapid decrease in price and size of the camera and the ongoing increase in 
performance and capacity of modern microelectronics. A vision sensor is based 
on the standard camera but extended with intelligent hardware and software to 
alleviate the communication demands that originate from full image transfer to a 
central computing service. Typical examples are (a) the remote temperature 
sensor that finds the flame within an image and checks colour, size and 
movement to quantify the burning conditions, (b) the microphonic imager to 
locate and analyse sound sources, and (c) the intelligent pen, that produces the 
equivalent character string. 

 
Figure  1.1 The vertical lines are actually parallel but appear to diverge. 

Current applications range from velocity measurement to product inspection 
and are based on software personalization of Commercially-of-the-shelf (COTS) 
microprocessors. A migration toward vision sensors on basis of dedicated 
hardware is already established. The Xetal processor from Philips Research 
Laboratories  [105] is a clear example. As the focus is on the Region of Interest 
(ROI), there is a natural clustering of data dependencies that can be utilized by 
introducing local operations on the locally stored ensemble of data. Very Long 
Instruction Word (VLIW) architectures are implemented to achieve the desired 
utilization, but other approaches are still demanded. In coming is, e.g., the Eye-
RIS vision sensor  [106] that employs a bio-inspired architecture where image 
acquistion and the fully parallel processing are combined. The key component 
of the Eye-RIS vision system is the retina-like front-end, which is a continuation 
from predecessing CNN-based chips, e.g. ACE4k  [27] and ACE16k  [28].  

1.2 OBJECTIVES 
In line with the previous section, it is not surprising that most experimental 
CNN systems have been proposed in image processing, in spite of the general 
nature of the CNN paradigm. CNNs have been introduced as a novel class of 
information-processing systems for solving complex real-time problems in 
space, like partial differential equations (PDEs). Due to their inherent potential, 
CNNs have attracted the attention of a wide variety of scientists. Over the years, 
the concept of CNN has shown to be multi-disciplinary: it has found application 
in robotics, bio-inspired vision issues and higher brain functions in addition to 
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image and video processing. Further, CNNs have been used to generate static 
and dynamic patterns, autowaves and spiral waves  [11].  

The paradigm is built on reformulating of many complex computational 
problems into well-defined tasks characterized by the fact that the information 
necessary to compute the solution at a certain point in space is within finite 
distance to that point. A CNN is made of a regular geometric 2-D or 3-D grid of 
cells that are connected locally.  

After the introduction of the CNN model by Chua and Yang in 1988, 
different considerations for cell complexity, cell dynamics and network 
topology have led to the emergence of different generalized models. The reason 
has been to enhance both the capability and efficiency of the original CNN 
model. A list of the most common models includes: (a) Nonlinear CNNs where 
template coefficients are nonlinear functions and (b) Delay-type CNNs where 
cell dynamics are dependent on previous input/output pairs  [15]. In order to 
reflect features found in neurobiological structures, Non-uniform CNNs with 
more than one type of cell and Multiple Neighbourhood Size CNNs have been 
studied [11]. Of all generalizations, this thesis focuses on employment and 
implementation of Discrete-Time CNNs (DT-CNNs) only  [39], [41]. These 
different models have delivered a sound basis for the design of algorithm-
specific analogue implementations. Even the discrete-time version has been 
introduced as analogue realization  [39], in spite of the intrinsic favour for digital 
designs.   

Obviously, CNNs give first-hand advantages for VLSI implementations due 
to their powerful parallelism and strict locality of operation. But the need for 
large numbers of multiplications has precluded efficient digital hardware 
realizations, leaving the stage to either analogue realizations or software 
implementations on highly pipelined hardware.  Actually, the first CNN 
hardware has been almost completely in analogue. This has probably to do with 
that the first conceptual design proposed Chua and Roska, i.e. the CNN-
Universal Machine (CNN-UM)  [20], is analogue. So far impressive advances 
have been made in analogue realizations only  [23]- [30], while the best attempt 
toward a digital realization emulates the functionality of a CNN rather than 
providing real-time performance  [42]. Hence, the potential of a fully digital 
approach has never been exploited, which this thesis aims to change.  

Digital CNN emmelators have followed the same development path as in 
classical computer architectures. The first publication  [42] uses pipeline 
techniques to improve performance. The network is operated in step with the 
provision of image map elements, and the network is tuned such that it works 
exactly at the speed of the image stream. As such the architecture resembles that 
of a stream processor  [86], a vector processor on images. Such architectures do 
not support the intense interaction that is required for the less trivial CNN 
operations. 

Of late, the Network on Chip (NoC) architecture has been proposed to get 
away from the pipelining harness  [9]. It is stated that a cellular architecture will 
be the way of the future. In general, a NoC consists of a number of switches and 
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network interfaces (NI). Network interfaces translate the view that components 
attached to the NoC have on communication, and the internal view switches 
have. By using multiple switches a NoC scales both in the number of 
components (such as cells) that can be attached to the NoC, and in the 
performance the NoC can deliver. NoCs are therefore modular, scalable 
interconnects  [87]. A switch receives data on its inputs and sends it to its 
outputs, taking care that each output is used by only one input at any point in 
time. Data can be moved around a NoC in two ways: circuit switching  [88], and 
packet switching  [83]. 

Overall NoCs fit well with digital implementations (or models) of CNNs 
because they allow an arbitrary (programmable) neighbourhood of cells. 
Moreover, NoCs decouple the communication from computation, i.e. rates of 
computation of the individual cells may differ from each other, as well as the 
rate of inter-cell data transport between the cells. Hence no global notion of time 
or synchronization is required between the system components (cells/CNNs and 
NoC), taking any global interconnections out of the critical path. Still the system 
as a whole converges to a well-defined output for a given input if the 
components are continuous functions. 

A major issue in application-specific hardware design is the time-
consuming and costly fabrication process. As different architectures are to be 
built and tested in a relatively short time, there is need for a realization platform 
that provides a close-to-full-custom performance while retaining a high degree 
of flexibility and reusability. Furthermore, such a platform must allow for 
decreased granularity at least to the fine-grain level employed in SIMD-based 
CPAs. In this sense, Field-Programmable Gate-Arrays (FPGAs) seem the only 
choice (Figure  1.2). Actually, one of the greatest advantages of using FPGAs is 
the ability of using spatial computing rather than temporal or sequential 
computing. Higher throughput is then achieved as more parallelism per time 
unit is exploited.  

 
Figure  1.2  Efficiency versus performance of different implementation platforms  [6] . 

FPGAs have been commercially introduced in 1985 by Xilinx to replace 
standard gate arrays such as programmable logic arrays (PLA), programmable 
array logics (PAL) and complex programmable logic devices (CPLD)  [2]. Over 
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time, FPGAs gained increased popularity as they allowed developers to bypass 
the costly fabrication process of application-specific chips  [6]. Rapid 
prototyping is certainly the most common – but not the only – attraction of 
FPGAs. This allow for in system customization of non-accessible systems  [2].  
Another, and maybe the most important, feature of modern FPGAs is the ability 
for partial reconfiguration. Swapping modules into and out of the device without 
the need of a complete reset brings the FPGA a level of adaptability that 
reconfigurable devices never reached  [2]. This innovation is unfortunately less 
utilized, though the potential benefits have been already illustrated early in  [45] .  

The ongoing improvements in modern FPGAs have led them away from 
being application-specific containers for logic circuitry to the algorithm-specific 
integrated circuit. An over-mass of flip-flops and logic-mapped memory is 
supplemented by high-density, multifunctional macros, such as Block Select 
RAM (BRAM) and Multiplier, while the supplementary handlers are easily 
accommodated in the microprocessor cores. Moreover, though being slower 
than Application-Specific Integrated Circuits (ASICs), FPGAs are gaining a 
foothold in speed. The newest devices for Xilinx, e.g., break the 500 MHz 
barrier  [38], which theoretically paves the way to reach higher speed than what 
most CNN chips achieve.  

Having all that in mind, the following questions need to be answered:  
 Is a fully digital realization possible?  
 Are FPGAs able to satisfactorily host such a realization?  
 Which communication patterns are needed to meet the connectivity 

requirements?  
 Can we accommodate already known approaches, or have new 

concepts to be developed from scratch?  
 Is the ‘limited’ accuracy provided by digital implementation enough for 

real-life tasks? 
Throughout the thesis, full digital approaches are explored by introducing a 

number of design implementations. Such implementations focus on the pattern 
of communication as the main consideration. The functionality and efficiency of 
the proposed designs are validated by means of different applications. The 
applications vary in the degree of difficulty from simple cases that test basic 
functionality to more advanced problems where the complex behaviour of the 
whole system is verified. In all cases, the implementations rely on the FPGA, 
more precisely on Virtex – II and Virtes – II Pro 30 from Xilinx  [38]. 

1.3 THESIS OUTLINE 
In  Chapter 2, the concept of Cellular Neural Network is introduced. This thesis 
is restricted to the discrete-time version, where a number of basic examples are 
treated in detail, as the focus is on hardware implementations,  Chapter 3 gives a 
brief overview of state-of-the-art of CNN chips. First of all, DSP-based 
emulators are covered, before the conceptual CNN-UM is discussed. 
Furthermore, both full-custom mixed-signal designs and pure digital emulators 
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of the CNN-UM are briefly described. It is meant that provided information 
serves as a solid base for the understanding of design approaches introduced 
later on. 

Subsequently, the first digital implementations of DT-CNNs on FPGAs, as 
carried out by the author of this thesis, are discussed in  Chapter 4. Here, two 
different unrollment schemes, temporal and spatial, are presented. Both employ 
pipelining with different degrees of success. The spatial scheme is discussed in 
detail as it serves as a start-up for later implementations. With the CNN 
hardware realization come the demands on inter-modular connectivity. 
Incorporating the concept of Network on Chip takes the hardware architecture 
one step further. The hard-wired communication is replaced by a packet-based 
communication pattern. The path is still pre-defined but the packets belonging to 
two different communication cycles (different source-target pairs) share one or 
more communication channels (inter-node connections). In this sense, we mix 
circuit switching with packet-switching techniques. Even here, two different 
implementations exist. One of them employs the idea of pipelining with 
moderate modifications on the internal design. In the other, the benefit of packet 
switching comes to full blossom in a broadcast architecture. Here, the CNN is 
divided into sets of active nodes with a totally different inter-node 
communication pattern.  

A different approach is presented in  Chapter 5 to overcome the enormous 
demands of internal communication. The approach is thought of as a revision of 
communication patterns already discussed in the previous chapters. 

 Chapter 6 takes the discussion one step further and covers memory 
considerations for the two main architectures.  Chapter 7 shows how the variety 
of design implementations, presented throughout the thesis, is of benefit to 
different applications. It starts with a simple realization of the famous Game-of-
Life, and moves to more advanced problems where the basics for a velocity 
meaturement system are verified. The power and suitability of performing 
biometric measures is then demonstrated by means of vein feature extraction. 

One of the disadvantages of currently available analogue CNN chips is 
parameter deviation. The robustness of the system is easily disturbed due to 
noise in the electrical components as well as to parameter scattering introduced 
during the fabrication process. This leads to misbehaviour and often requires a 
laborious effort to tweak the parameter to the desirable range of operation. 
 Chapter 8 tackles the problem from a different point of view. The precision of 
internal signals is gradually reduced while the system is guaranteed to perform 
well. The idea is that less bits in the internal representation compensates for the 
artefacts found in analogue chips, which allows finding a set of system 
parameters that guarantee the desired degree of robustness in all chips. Though 
inspired by the problems in analogue systems, it also has relevance to digitial 
ones. Pruning the internal representation helps to reduce word width and 
therefore reduce the size of the CNN nodes and the width of the communication 
paths 
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 Chapter 9 proposes a methodology for design automation starting from a 
problem description and ending in a system architecture.   

In  Chapter 10 other design alternatives are introduced to the benefit of 
larger networks. The different architectures presented throughout the thesis are 
compared by means of area utilization and frequency. The chapter is closed with 
a concluding discussion. 
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Cellular Neural Networks  
The Concept 

n 1988, Chua and Yang introduce a new architecture to efficiently perform 
large time-consuming tasks in real-time by using an array of simple, non-

linearly coupled dynamic circuits. A novel class of information-processing 
systems is then born, and carries the name of Cellular Neural Network (CNN)  [7]. 

The concept rests on two major sources of inspiration. The architecture 
possesses some of the key features of Neural Networks  [8], such as continuous-
time dynamics and global interaction of the network elements, which allows for 
real-time signal processing. On the other hand, it inherits the feature of local 
interconnectivity from the world of Cellular Automata  [10], which makes it 
suitable for VLSI implementations. 

In this chapter a brief description of two models is given: Chua and Yang 
model that is sometimes referered to as Continuous-Time CNN (CT-CNN) and 
the counterpart Discrete-Time CNN (DT-CNN). The aim is to give an intuitive 
understanding of the concept, rather than discussing the theory in detail. In 
section  2.1 the network structure is introduced as it eases the understanding of 
CNNs basic equations in section  2.2. Consequently, sections  2.3 discusses the 
effects of different parameter set-ups, while the importance of boundary cell 
handling is illustrated in section  2.4. The Discrete-Time CNN is presented in 
section  2.5, while section  2.6 shows that both presented models gain in power 
when more than one layer is used. Section  2.7 reintroduces the first analogue 
realizations of the two models. In order to increase the understanding for the 
functionality of DT-CNN model, a number of illustrative examples are presented 
in section  2.8. The chapter is closed with a summary in section  2.9. 

I 
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2.1 SPHERE OF INFLUENCE (NEIGHBOURHOOD) 
The CNN is a massive aggregate of regularly spaced processing units, called 
cells. Similar to Cellular Automata  [10], any cell is connected only to its 
neighbour cells, where direct interaction only occurs among adjacent cells. Other 
cells are, however, indirectly affected due the propagation effect of the 
continuous-time dynamics. Theoretically, a cellular neural network of any 
dimension can be defined, as illustrated in Figure  2.1, which allows a CNN to 
handle spatial relations such as topographic maps. As the focus of this thesis is on 
2-dimentional image processing, the discussion will be restricted to the 2-
dimensional case. 

 
Figure  2.1 Cellular neural networks with different dimensions, where the globes represent 
cells and the links represent direct coupling. Far from all interconnections are seen in the 
3-dimensional case (left). In the 2-dimensional finite-size case (right) each cell C(i,j) is 
indexed according to row i and column j. 

Considering a finite-size two-dimensional CNN, cells are arranged in M rows 
and N columns. Each cell is identified by its position in the grid, denoted C(i, j), 
and communicates directly with its sphere of influence ܵሺ݅, ݆ሻ of radius r , also 
called r-neighbourhood. Such a neighbourhood is defined as the set of cells 
within a certain distance r to C(i j), where ݎ  0 (Eq. ( 2.1)).  

ܵሺ݅, ݆ሻ ൌ ሼܥሺ݇, ݈ሻ|max ሺ|݇ െ ݅|, |݈ െ ݆|ሻ  ;ݎ 1  ݇  ,ܯ 1  ݆  ܰሽ ( 2.1) 

For instance, if ݎ ൌ 1 we have a 1-neighbourhood. It is also common 
practice to talk about 3 ൈ  3 neighbourhood when ݎ ൌ 1, and 5 ൈ  5 
neighbourhood when ݎ ൌ 2 and so on. In general, for certain ݎ  0 a 
neighbourhood of size ሺ2ݎ  1ሻଶ is obtained. Different neighbourhood examples, 
with ݎ ൌ 1,2 and 3 are shown in Figure  2.2. Observe that when ݎ  ܰ/2, 
and ܯ ൌ ܰ, a fully connected CNN is obtained, i.e. ܵሺ݅, ݆ሻ is the entire network. 
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This extreme case, that is apparently impractical to build in a VLSI chip for 
large ܰ, corresponds to the classical Hopfield Net  [8]. 

r = 1 r = 2 r = 3  
Figure  2.2 Different r-neighbourhoods for the centre cell (black circle). To avoid clutter all 
interconnections are dropped.  

2.2 STANDARD CNN EQUATIONS 
Let’s first consider a cell with no coupling to any other cell in the grid. Such a 
cell, called an isolated cell, is associated with four variables: input ݑ א Թ௨, 
threshold ݖ א Թ௭, state ݔ א Թ௫, and output ݕ א Թ௬, which are, in general, 
functions of the continuous time t. The cell consumes the input value together 
with the threshold in order to produce the output value, which depends on the 
current state. Assuming further a given initial state  ݔሺݐሻ at ݐ ൌ  , a thresholdݐ
 ሻ evolves via the state equation givenݐሺݔ  ሻ, the stateݐሺݑ ሻ and an inputݐሺݖ 
in Eq. ( 2.2) where the “dot” denotes the time derivate and ࣠ is an ordinary non-
linear differential function.  

Recall that an unknown function : Թ ՜ Թ is ordinary differential if the nth 
derivative of  with respect to a variable ࣺ is a function of the lower-order 
derivatives, i.e. ࣠൫ࣺ, , ᇱ, ᇱᇱ, ڮ , ሺିଵሻ൯ ൌ ሺሻ. Furthermore, if the 
differential function is not dependent on the variable ࣺ, it is then considered 
autonomous. In this sense, Eq. ( 2.2) is simply a non-autonomous system of 
ordinary differential equations  [11]. In general, different non-linear functions ࣠ 
can be used for different cells, but in almost all known applications the cells are 
identical and therefore employ the same function.  

ሶݔ ൌ ࣠ሺݔሺݐሻ, ,ሻݐሺݖ ሻሻݐሺݑ ( 2.2) 

The operative description of a cell is concluded by the determination of the 
output ݕሺݐሻ by means of a nonlinear function. This function may depend on 
,ሻݐሺݕ   ሻ, but in this thesis, as in most literature, it is assumed toݐሺݖ ሻ andݐሺݔ
depend only on the state of the cell, as depicted in Eq. ( 2.3).  

ሻݐሺݕ ൌ ݃ ቀݔሺݐሻቁ ( 2.3) 

The choice of function ݃ is crucial for the quality of the obtained output and 
the speed it is achieved. Three different types of nonlinear functions are 
frequently used  [41]: (a) threshold, (b) hyperbolic tangent and (c) piece-wise 
linear functions. The threshold function, commonly referred to as Heaviside (or 
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hardlimiter) function, is only binary-valued and performs a binary decision. The 
hyperbolic tangent function, shown in Figure  2.3.a and mathematically described 
in Eq. ( 2.4), is a special case of the sigmoid function that is generally defined as a 
strictly increasing continuous s-shaped function. By varying the slope 
parameter ߜ, different sigmoid functions are obtained. An important observation 
from Eq. ( 2.4) is that the sigmoid function becomes simply a threshold function 
as the slope parameter approaches infinity. Even though, the sigmoid function 
maintains, opposing to the threshold function, the characteristic of being 
differentiable. Finally, the most widely used discrimination function is the piece-
wise linear function that is totally linear with positive slope within a certain 
interval ሾെܽ, ܽሿ and saturates outside this interval as illustrated in Figure  2.3.b. 
The function is mathematically described in Eq. ( 2.5). 

݂ሺݔሻ ൌ tanh ሺݔߜሻ ( 2.4) 

݂ሺݔሻ ൌ ൝
1, ݔ  ܽ

,ݔߜ |ݔ| ൏ ܽ
െ1, ݔ  െܽ

 ( 2.5) 

 
Figure  2.3 Sigmoid function (a) and piece-wise linear function (b). 

The contributions of state and input variables are achieved by means of two 
weightings coefficients, ܽ and ܾ, while the threshold is simply assumed to be a 
constant scalar  [11]. The coefficient ܽ mirrors the effect of the previous output 
value, while ܾ only scales the current input value. Hence, they are called 
feedback and control coefficients respectively. A threshold Zij is used to adjust 
the obtained state value into a desired range. This introduces the standard 
isolated CNN cell, claimed to be the most widely used in the literature. State 
equation of a standard isolated cell is given in Eq. ( 2.6); while the output is 
usually obtained by using the piece-wise linear function introduced in Eq. ( 2.5) 
with the interval ሾെ1, 1ሿ, with slope ߜ ൌ 1, resulting in Eq. ( 2.7). Assuming all 
coefficients are linear, the dynamics of the isolated CNN cell are due to the non-
linear output function only. 

ሶݔ ൌ െݔ  ܽݕ  ܾݑ  ݖ ( 2.6) 

ݕ ൌ ݂൫ݔ൯ 
1
2

൫หݔ  1ห െ หݔ െ 1ห൯ ൌ ቐ
1, ݔ  1

,ݔ หݔห ൏ 1
െ1, ݔ  െ1

 ( 2.7) 
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Equation ( 2.6) explains how the state of the cell evolves over time and is 
therefore commonly referred to as ‘cell dynamics’. These dynamics are 
dependent on two constraints: initial condition constraint where the state variable 
is assumed equal a certain value upon start, and input constraint where input 
value ݑ א ሾെ1, 1ሿ.  

In a general CNN architecture, each cell is directly coupled to all other cells 
within the sphere of influence. Both input  ݑ and output ݕ of all neighbouring 
cells are available and therefore consumed to produce the new output. Similar to 
the isolated cell, inputs and outputs from cells belonging to ܵ of the cell are 
weighted as ܾ and ܽ respectively. By simply summing the contributions of all 
cells in the sphere of influence, the state equation of a standard CNN cell can be 
written as in Eq. ( 2.8). The output value is still obtained according to Eq. ( 2.7). 

ሶݔ ൌ െݔ   ܽ
אௌೝሺሻ

ሻݐሺݕ   ܾ
אௌೝሺሻ

ݑ    ( 2.8)ݖ

݅ ൌ 1, 2, ڮ , ݆  ,ܯ ൌ 1, 2, ڮ , ܰ  

Almost all theorems and numerical techniques for solving ordinary 
differential equation systems are formulated in vector form  [12]. Hence, it is 
desirable to express the state equation given in Eq. ( 2.8) in vector form. For a 
ܯ ൈ ܰ CNN,  ݊ ൌ  vector systems are obtained as depicted in ( 2.9), where ܰܯ
the new indexing of state, output, input and the coefficients is obtained by a row-
wise packing of the original matrices. The matrices  and ۰ are ݊ ൈ ݊ matrices 
whose nonzero entries are the weighting coefficients ܽ and ܾ respectively. As 
the coefficients are placed in a band along the main diagonal (Figure  2.4), each 
matrix is quite sparse where most of entries are zero. The vector form of the state 
equation is given in Eq. ( 2.10). 

൦

ሶଵݔ
ሶଶݔ
ڭ

ሶ୬ݔ

൪ ൌ െ ൦

ଵݔ
ଶݔ
ڭ

୬ݔ

൪   ൦

ଵݕ
ଶݕ
ڭ

୬ݕ

൪  ۰ ൦

ଵݑ
ଶݑ
ڭ

୬ݑ

൪  ൦

ଵݖ
ଶݖ
ڭ

୬ݖ

൪ ( 2.9) 

ሶ࢞ ൌ െ࢞  ࢟  ܝ۰  ܢ ( 2.10) 

 

 
Figure  2.4 Band structure of matrices  and . 

One may conclude that each CNN cell in the mesh is a dynamic system 
whose state evolves according to a prescribed state equation. The dynamics of a 
cell are coupled to neighbouring cells lying within the sphere of influence that is 
centred at the location of the cell itself.  The behaviour of the entire CNN is, 
however, highly sensitive to the dynamics of cells located at the boundary as will 
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be discussed in section  2.4. But first, a concise form of the state equation is 
introduced in the following section. 

2.3 CLONING TEMPLATE 
In general, all feedback and control coefficients in Eq. ( 2.8) can be represented by 
time-dependent nonlinear operators of the coupled values, but in this thesis they 
are assumed to be time-invariant and real-valued scalars. Furthermore, these 
coefficients are identical for all cells in the grid, which provide the CNN with one 
of its important features, i.e. space invariance. 

In order to simplify the notation, the state equation ( 2.8) is written in a more 
compact form by using the two-dimensional convolution operator *, defined in 
 [7],and reintroduction below.  

Definition: For any 3 ൈ 3 matrix ࣧ that, the convolution operator * is 
defined by ( 2.11), where ࣧሺ݉, ݊ሻ denotes the entry in the mth row and the nth 
column of the matrix, and ݉, ݊ א ሼെ1,0, 1ሽ. 

ࣧ כ ݒ   ࣧሺ݇ െ ݅, ݈ െ ݆ሻݒ
אௌೝሺ,ሻ

 ( 2.11) 

Now, the weighting coefficients can be grouped in two square matrices: ࣛ 
and ࣜ. The former holds all feedback coefficients and is accordingly called 
feedback template, while the latter is called control template. Together with the 
real-valued threshold (even called bias), they constitutes a so-called cloning 
template ࣮ ൌ ,ࣛۃ ࣜ, ऊۄ. The latter term is commonly used to emphasize the 
property of space-invariance  [14]. The compact form of the state equation is 
introduced in Eq. ( 2.12). Observe that Eq. ( 2.10) looks similar to Eq. ( 2.12), but 
the meaning of the involved parameters do differ, as the former deal with vectors 
while all parameters are scalars in the latter. The obtained result should, however, 
be the same. It is now obvious that cloning template ࣮ in addition to given input 
and the initial conditions, completely determine the dynamic behaviour of the 
cell. 

ሶݔ ൌ െݔ  ࣛ כ ݕ  ࣜ כ ݑ  ऊ ( 2.12) 

The matrices in Eq. ( 2.13) show the common notation of feedback and 
control templates respectively, for the case of 1-neighbourhood. This notation is 
adopted later on (section  2.8) to index all input and output values of a cell. 
Furthermore, it is worth mentioning that the term kernel is widely used instead of 
template in image processing applications; see e.g.  [13]. 

ࣛ ൌ 
ܽିଵ,ିଵ ܽିଵ, ܽିଵ,ଵ
ܽ,ିଵ ܽ, ܽ,ଵ
ܽଵ,ିଵ ܽଵ, ܽଵ,ଵ

൩ , ࣜ ൌ 
ܾିଵ,ିଵ ܾିଵ, ܾିଵ,ଵ
ܾ,ିଵ ܾ, ܾ,ଵ
ܾଵ,ିଵ ܾଵ, ܾଵ,ଵ

 ( 2.13) 

The centre entry of the feedback template, also called self-feedback, is of 
significance importance for the stability of operation of a CNN. In this sense, it is, 
in many cases, desired to decompose the ࣛ template in Eq. ( 2.13) as shown in 
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Eq. ( 2.14). Matrices ࣛand ҧࣛ  are called centre and surround feedback template 
respectively  [12]. 

ࣛ ൌ ࣛ  ҧࣛൌ
0 0 0
0 ܽ, 0
0 0 0

൩  
ܽିଵ,ିଵ ܽିଵ, ܽିଵ,ଵ
ܽ,ିଵ 0 ܽ,ଵ
ܽଵ,ିଵ ܽଵ, ܽଵ,ଵ

൩ ( 2.14) 

The number of the real-valued template coefficient is dependent on the 
neighbourhood. We have 19 coefficients for 1-neighbourhood and 51 coefficients 
for 2-neighbourhood. Hence, the space of CNN templates consists of an infinite 
number of templates. Three simple classes are, however, of special importance 
and are worth mentioning  [12].  These classes are briefly introduced below. 

♦ Zero-feedback template: All feedback coefficients are zero. The 
dynamics of each cell of a zero-feedback CNN is described by Eq. 
( 2.15).  

ሶݔ ൌ െݔ  ࣜ כ ݑ  ऊ ( 2.15) 

♦ Zero-input template: All control coefficients are zero. The dynamics of 
each cell of a zero-input CNN is described by Eq. ( 2.16). Zero-input 
CNNs, also called autonomous CNNs, are widely used in pattern 
formation applications and autowave generation. 

ሶݔ ൌ െݔ  ࣛ כ ݕ  ऊ ( 2.16) 

♦ Uncoupled template: All surround control coefficients are zero, i.e. 
ࣛ ൌ ࣛ. The dynamics of each cell of uncoupled CNN is described by 
a scalar nonlinear ordinary differential equation as shown in Eq. ( 2.17) 

ሶݔ ൌ െݔ  ܽ,݂ሺݔሻ  ࣜ כ ݑ  ऊ ( 2.17) 

2.4 BOUNDARY CONDITIONS 
The observant reader must have noticed that no restrictions have been imposed on 
the size of the CNN grid. Actually, the conceptual discussion carried out so far is 
valid for infinite CNN grids, but it suffers from a number of complications when 
CNNs of finite size are considered. Equations ( 2.8) and ( 2.12) are not completely 
defined for cells whose sphere of interest ܵሺ݅, ݆ሻ extends outside of the boundary 
of the grid. In this sense, CNN cells can be divided into two different categories: 
regular and boundary cells. For a certain neighbourhood, r, a regular cell has 
ሺ2ݎ  1ሻଶ neighbour cells. All other cells with less than ሺ2ݎ  1ሻଶ neighbours are 
called boundary cells. Note that not all boundary cells are edge cells if ݎ  1 
(Figure  2.5). Edge cells are the outermost boundary cells, i.e. they lie on the 
perimeter. The absence of neighbouring cells doesn’t affect the boundary cells 
only, but it has, due to the nature of indirect propagation, a great impact on the 
dynamic behaviour of the entire network, which calls for different interpretation 
of boundary cell employment. Traditionally, this problem is remedied by 
introducing virtual CNN cells around the grid, which completes the sphere of 
influence of all boundary cells. Each virtual cell is associated with a virtual state, 
a virtual input, a virtual output and a virtual threshold  [12]. These virtual 
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parameters are specified via various boundary conditions. In the following, three 
of the most commonly used boundary conditions for 1-neighborhood, as 
described in  [14], are rephrased.  

 
Figure  2.5 When ݎ ൌ 1, boundary cells coincide with edge cells (a) but for ݎ 
1 boundary cells (light grey) are not located on the edges only (b). 

♦ Fixed (Dirichlet) boundary condition: The boundaries of the network 
are tied to fixed values. In other words, virtual state and input of each 
virtual cell are assigned predefined constant values. This approach has 
been used in the first analogue realization of the basic CNN cell, which 
will be presented later, where the boundary is uniformly at ground. 

♦ Zero-flux (Neumann) boundary condition: In this case virtual cells are 
considered to have the same state and input values as their direct 
neighbouring boundary cells. This condition applies usually to CNNs 
with no input, i.e. ݑ ൌ 0. In principle, this corresponds to the class of 
autonomous CNNs (Eq. ( 2.16)). 

♦ Periodic (Toroidal) boundary condition: Here the first and last rows 
(resp., columns) of the network are identical, as shown in Figure  2.6. 
Thus, the CNN behaves as if it is joined onto itself forming a torus. 

 
Figure  2.6 In periodic boundary condition the CNN is joined onto itself. 



 2.5  Discrete-Time CNN 23 
 

 

2.5 DISCRETE-TIME CNN 
A DT-CNN poses a regular grid of locally connected cells. Once again, this grid 
may, theoretically, have any dimension, but in this thesis the focus is on the 2-
dimensional case only. Contrary to CT-CNNs, the DT-CNN is a clocked system; 
whose dynamics are described by a set of discrete equations.  This enforces the 
introduction of slightly different notations; the notations used in  [40] are adopted 
in this thesis. It is important to emphasize that the feature of space invariance is 
assumed here as well. Furthermore, the size of the grid is assumed to be finite, 
unless it is explicitly pointed out not being the case. 

A cell ܿ is identified by the coordinate of its position in the grid, i.e. row ܿ 
and column ܿ and communicates directly with all the neighbour cells belonging 
to the r-neighbourhood. The definition of r-neighbourhood given in Eq. ( 2.1) is 
slightly modified to reflect the new notation of the cell but the relation remains 
unchanged, as depicted in ( 2.18). The character ݀ represents any cell belonging to 
the neighbourhood of cell ܿ, including ܿ itself.  

ܰሺܿሻ ൌ ൛݀ א Ժଶ|max ሺ|݀ െ ܿ|, ห ݀ െ ܿหሻ   ൟ ( 2.18)ݎ

The state of a cell ܿ, denoted ݔ, depends mainly on the contribution of the 
time-independent input ݑௗ and the time-variant output ݕௗ. Equation ( 2.19) 
depicts these dependencies at a discrete time ݇.  

ሺ݇ሻݔ ൌ  ܽௗ


ௗאேೝሺሻ

y݀ሺ݇ሻ   ܾௗ


ௗאேೝሺሻ

݀ݑ  ݅ ( 2.19) 

The real-valued coefficients ܽௗ
 , ܾௗ

  and ݅ represent the feedback 
coefficients, the control coefficients and the threshold/bias respectively. While 
feedback coefficients ܽௗ

  reflect the contribution from the output of all cells in the 
neighbourhood, control coefficients ܾௗ

  describe the dependency on the inputs of 
the neighbours. The bias ݅ is added to adjust a cell’s threshold. Similar to CT-
CNN, coefficients are commonly expressed in a compact form by means of 
matrices. Spatially invariant DT-CNNs are thus specified by the cloning template 
࣮ ൌ ,ࣛۃ ࣜ, -that is often thought of as an elementary DT-CNN program or DT ۄ݅
CNN instruction  [40].  

By substituting ( 2.11) into ( 2.19), a compact state equation is obtained in Eq. 
( 2.20), which is obviously equivalent to Eq. ( 2.12). Because all cells in the DT-
CNN have identical functionality, cell subscripts can be omitted as shown in Eq. 
( 2.21).  

ሺ݇ሻݔ ൌ ࣛ כ ௗሺ݇ሻݕ  ࣜ כ ௗݑ  ݅ ( 2.20) 

ሺ݇ሻݔ ൌ ࣛ כ ሺ݇ሻݕ  ࣜ כ ݑ  ݅ ( 2.21) 

In the case of non-zero feedback coefficients, an initial output ݕሺ0ሻ is of 
crucial importance for the dynamic behaviour of the network (compare with the 
initial condition constraint in section  2.2). On the other hand, if all feedback 
coefficients are equal to zero, the output of the system remains constant after the 
first time step.  
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In accordance to CT-CNN, the functionality of the system is defined by the 
cloning template ࣮ that, together with the activation pattern ݑ and the initial 
output ݕሺ0ሻ, completely determines the dynamic  behaviour of a DT-CNN.  
Figure  2.7, that illustrates the functionality of a cell, explains schematically the 
influence of all involved parameters  [40]. 

)(cNd r∈

)(cNd r∈

∑i

 
Figure  2.7 A schematic diagram illustrating a DT-CNN cell. The data comes in over the 
 ௗ input and is modified through the control template ࣜ, while the interaction with theݑ
neighbouring cells is gathered through the ݕௗ input and modified through the feedback 
template ࣛ. All modified input values are summed and discriminated after application of 
the bias i. 

2.6 MULTILAYER CNN AND MULTIPLE LAYER DT-CNN 
So far, only the single-layer CNN model has been considered. In this model 

each cell contributes with one state variable ݔ only. A multilayer CNN boosts 
the concept further where cells have several state variables, one for each layer. 
The emphasis is on the interaction between different state variables of the same 
cell. The cell-to-cell interaction is still restricted by means of the r-
neighbourhood. Any layer may perform different processing tasks, whereas layers 
work in parallel. The set of different state variables enables the existence of 
concurrent multiple dynamic rules, which increases the flexibility of cellular 
neural networks and gives them the ability to tackle complicated signal 
processing problems  [7].   

The dynamic equations can be expressed in a compact vector form (Eq. 
( 2.22)), where m denotes the number of layers, i.e. the number of state variables 
in each cell  [14]. Here the operator ٘ is to be interpreted as matrix multiplication 
but with the convolution operator כ (as defined in Eq. ( 2.11)) inserted between 
each entry of the (block triangular) matrices  and ۰ and of the vectors ࢟ and ࢛ 
respectively.  

CT-CNNs and DT-CNNs differ in the interpretation of the concept of 
multiple layers. Hence, we distinguish between the notations multilayer and 
multiple layer networks. In a multilayer CT-CNN, each cell has a number of state 
variables corresponding to the number of layers. In a multiple-layer DT-CNN 
each layer has different inputs, outputs and template coefficients. In addition to 
the outputs, both inputs and template coefficients are now time-variant. 
Obviously, employing multiple states for each DT-CNN cell is equally feasible, 
but this possibility is surprisingly never discussed in the literature!  
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ሶ࢞  ൌ െ࢞   ٘ ࢟  ۰ ٘ ࢛  ा ( 2.22) 

where 

ܣ ൌ ൦

ଵଵܣ 0 ڮ 0
ଶଵܣ

ڭ ڰ ڭ
0

ଵܣ ଶܤ ڮ ܣ

൪ , ܤ ൌ ൦

ଵଵܤ 0 ڮ 0
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ڭ ڰ ڭ
0
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Complex problems are divided into simpler subtasks where each layer of the 
network is allotted one subtask, which give rise to different coupling modes. In 
Figure  2.8 each layer is represented by a building block with two inputs, ݑሺ݇ሻ 
and ݕሺ0ሻ, and one output ݕሺ݇ሻ. The layers are interconnected in such a way that 
the output of one layer serves as an input or initial output to another layer, Figure 
 2.8.a-c. In the parallel mode, Figure  2.8.d, an additional logical function ݂ 
combines the outputs of the layers and results in the overall network output. The 
function ݂ is commonly realized using the AND or the EXOR operation. More 
complex multiple-layer systems can be constructed by combining these 
interconnection modes, Figure  2.8.e. 

Since each layer in a multiple-layer DT-CNN corresponds to a single subtask, 
template coefficients are not changed during the processing. A question rises 
then: why are template coefficients time-variant? The only reason for introducing 
time-variant templates is hardware reduction and speed gain! The idea is easily 
understood when the output cascade mode, Figure  2.8.c, is considered. The 
system shown in the figure can be simply replaced by one layer, where output is 
fed back to the initial output, using time-variant templates to perform the 
operation of two layers. Using one layer with time-variant templates instead of 
two time-invariant layers reduces the exploited hardware and eliminates the 
overhead of transferring data between the layers  [40]. 

2.7 ANALOGUE REALIZATIONS 
In this section, the analogue realization of the standard CNN cell, as 

presented in  [7], is reintroduced. Each cell, at location ሺ݅, ݆ሻ, consists mainly of 
linear circuit elements: a capacitor ܥ, two resistors ܴ௫ and ܴ௬, an independent 
current source I (that corresponds to the threshold of the cell) and a group of 
voltage-controlled current sources, e.g. ܫ௫௨ሺ݅, ݆; ݇, ݈ሻ and. ܫ௫௬ሺ݅, ݆; ݇, ݈ሻ. A 
schematic view of the basic cell with all circuit elements is shown in Figure  2.9.  

Voltages ݒ௨,   and theݕ , the outputݑ ௫ represent the inputݒ ௬ andݒ
state variable ݔ respectively. Initially, the magnitude of the state variable is 
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assumed to be less than or equal to 1; this is the initial condition constraint. 
Similarly, the magnitude of the input, that is obtained by the independent voltage 
source ܧ is assumed to be less than or equal to 1, but this value remains constant 
over time; this is the input constraint.  
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Figure  2.8 Basic interconnection modes for multiple layer DT-CNNs as presented in  [40]. 
(a) input cascade (b) output cascade (c) feedback loop and (d) parallel. A more complex 
mode, parallel cascade, is presented in (e). 
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Figure  2.9 A schematic view of the standard CT-CNN cell. 
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The output voltage ݒ௬ depends on the only non-linear element in the cell, 
i.e. the piecewise-linear voltage-controlled current source ܫ௬௫ (Eq. ( 2.23)) with 
characteristic ݂ as given in Eq. ( 2.7). In other words, the output of the cell is a 
non-linear function of the state voltage ݒ௫ as depicted in Eq. ( 2.24). 

௬௫ܫ ൌ
1

ܴ௬
݂ሺݒ௫ሻ ( 2.23) 

௬ݒ ൌ ܴ௬ܫ௫௬ ( 2.24) 

A cell is coupled to all cells belonging to its neighbourhood via the 
controlling voltage ݒ௨, and the feedback from the output voltage ݒ௬. In fact, 
the influence of any neighbouring cell on the state is obtained by means of two 
voltage-controlled current sources, defined by equations Eq. ( 2.25) and Eq. 
( 2.26), where the coupling coefficients ܣሺ݅, ݆; ݇, ݈ሻ, ,ሺ݅ܤ ݆; ݇, ݈ሻ א Թ correspond to 
feedback coefficients and the control coefficients respectively. 

,௫௬ሺ݅ܫ ݆; ݇, ݈ሻ ൌ ,ሺ݅ܣ ݆; ݇, ݈ሻݒ௬ ( 2.25) 

,௫௨ሺ݅ܫ ݆; ݇, ݈ሻ ൌ ,ሺ݅ܤ ݆; ݇, ݈ሻݒ௨ ( 2.26) 

A formal description of the dynamics of a single cell is obtained by applying 
nodal analysis to the basic cell in Figure  2.9. This description, given in Eq. ( 2.27), 
represents the state equation of the analogue CNN cell.  

ܥ
௫ݒ݀

ݐ݀
ൌ െ

1
ܴ௫

ሻݐ௫ሺݒ   ,ሺ݅ܣ ݆; ݇, ݈ሻ · ሻݐ௬ሺݒ
אS౨ሺ,ሻ

  ,ሺ݅ܤ ݆; ݇, ݈ሻ · ሻݐ௨ሺݒ
אS౨ሺ,ሻ

  ܫ

1 ݁ݎ݄݁ݓ  ݅  ,ܯ 1  ݆  ܰ 

( 2.27) 

In practice, the values of circuit elements ܥ, ܴ௫ and ܴ௬ are conveniently 
chosen by the designer. ܴ௫ and ܴ௬ determine the power dissipation in the circuit 
and are usually chosen to 1݇Ω െ  Ω. In fact, the dynamics of the circuit areܯ1
simply scaled in time by changing the value of ܥ only, as these dynamics are 
determined by ܴ௫ܥ, which is usually chosen to be 10ି଼ െ 10ିହ seconds  [14]  [7]. 
Currents and voltages are also scaled to fit the real design specifications. 
Equation ( 2.27) is then rewritten in order to describe the dynamics in a 
normalized and dimensionless manner. If the terminology of convolution 
described in Eq. ( 2.11) is adopted here as well, the resulting state equation is then 
identical to the one presented earlier in Eq. ( 2.12). 

The DT-CNN cell, proposed in 1992 by Harrer and Nossek  [39], is analogue 
as well (Figure  2.10). Similar to the basic cell introduced by Chua and Yang, it 
contains a number of linear circuit elements, such as capacitors, resistors and 
current sources. Voltages ݒ௨

, ௫ݒ
ሺ݇ܶሻ and ݒ௬

ሺ݇ܶሻ correspond to variables 
,ݑ  .ሺ݇ܶሻ respectively, whereas ݇ܶ represents time instancesݕ ሺ݇ܶሻ andݔ
Linear voltage-controlled current sources, such as ݒ௨

ௗ and ݒ௬
ௗሺ݇ܶሻ are used to 

multiply the inputs and outputs of the neighbour cells by template coefficients. 
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Figure  2.10 An analogue realization of a DT-CNN cell. The iterations are substituted by 
discrete-time instances ݇ܶ and the variables ݑ,  ሺ݇ܶሻ by voltagesݕ ሺ݇ܶሻ andݔ
௨ݒ

, ௫ݒ
ሺ݇ܶሻ and ݒ௬

ሺ݇ܶሻ respectively. ܶis the duration of one clock cycle. 

2.8 ILLUSTRATIVE EXAMPLES 
In this section, the functionality of DT-CNN is illustrated by using a number of 
simple templates. These, and other examples, have been presented in  [40], but are 
described with the authors’ own words. In the first two examples, the single-
layered DT-CNN is used, while the third example involves the multiple-layered 
model. Due to the fact that grey-scale level is commonly used in image 
processing problems, an input constraint (compare section  2.2) is usually defined 
by restricting the input range of a cell that ݑௗ א ሾെ1, 1ሿ, where a value of –1 
represents a white pixel, a value of +1 represents a black pixel and all other 
values represent grey levels in-between  [40]. Here, the examples use binary 
images only, i.e. ݑ א ሼെ1, 1ሽ. 

2.8.1 Isolated Pixel Removal 
The iterative nature of the dynamic behaviour, as stated in Eq. ( 2.19) and 

Figure  2.7, is crucial to achieve the desired mapping of an input image onto an 
output image. However, there are few problems that can be solved by one step 
only. The simplest one is the Isolated Pixel Removal, where the aim is to remove 
all so-called 4-isolated pixels: a black pixel whose orthogonal neighbours are 
white. In other words, the problem is characterized by a number of properties that 
can be summarized as: A black pixel that has at least one black orthogonal 
neighbour remains black, otherwise it becomes white. Because one picture tells 
more than a thousand words, the different situations are illustrated in Figure  2.11.  

The aforementioned behaviour is achieved by applying the cloning template 
in Eq. ( 2.28) on a given input image ݑ. As noticed, feedback coefficients are 
zero-valued, which eliminates the need of the initial output ݕሺ0ሻ in Eq. ( 2.19).  

ࣛ ൌ 
0 0 0
0 0 0
0 0 0

൩ , ࣜ ൌ 
0 1 0
1 4 1
0 1 0

൩ , ݅ ൌ െ1 ( 2.28) 
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(a) (b)

(c) (d)

(e) (f)  
Figure  2.11 Properties of Isolated Pixel Removal applied on a centre cell with 1- 
neighbourhood. Grey-coloured squares represent don’t-care pixels. The 4-isolated black 
pixel becomes white in (b), while in all other cases the presence of at least one black 
orthogonal neighbour helps the centre pixel to remain black. 

If the orthogonal neighbours in Figure  2.11.c-f are indexed according to the 
convention in Eq. ( 2.13), the state equation of the centre cell at time k = 0 is 
obtained by substituting the coefficients from Eq. ( 2.28) as follows: 

ሺ0ሻݔ ൌ ݑ4  ܵ െ 1 ( 2.29) 

where  ܵ ൌ ଵ,ିݑ  ଵ,ݑ  ,ଵݑ   ,ିଵݑ
Since input values are restricted to ሼെ1, 1ሽ, we have ܵ א ሼെ4, െ2, 2, 4ሽ, 

which implies the following cases: 
Case 1: When ݑ ൌ െ1 (Figure  2.11.a) then ݔሺ0ሻ ൌ ܵ െ 5, which, 

regardless of ܵ, implies that ݔሺ0ሻ  െ1. Assuming a threshold function is in 
use, the output ݕሺ1ሻ ൌ െ1, which proves the case. 

Case 2: For the 4-isolated pixel in Figure  2.11.b we have  ܵ ൌ െ4, 
Since ݑ ൌ 1 then ݔሺ0ሻ ൌ ܵ  3 ൌ െ1, which results in  ݕሺ1ሻ ൌ െ1, and 
thus the pixel becomes white as shown in the figure. 

Case 3: If at least one of the orthogonal neighbours is black, 
e.g.  ݑ,ିଵ ൌ 1, we have ݔሺ0ሻ ൌ ܵ  3 where ܵ  െ2. Consequently, ݔሺ0ሻ 
1 and ݕሺ1ሻ ൌ 1. 

2.8.2 Hole Filling  
One of the simplest image-processing problems whose solution still requires 
considering the contribution from cells beyond the r-neighbourhood, and thus 
involves iterative computations, is the problem of Hole Filling. Different 
definitions of a hole appear in literature. In  [40], a hole is defined as the area that 
is completely enclosed by at least one 8-connected object, as shown in Figure 
 2.12.a-c. The aim is to make the pixels, belonging to the hole, black, by the end of 
the iterative procedure.  
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Obviously, the operation requires more than a set of local pixel transition 
rules as in Isolated Pixel Removal. A neighbourhood that may be as large as the 
whole image determines the colour of the pixel. A final solution is achieved by 
applying a set of local actions repeatedly, thus making use of the iterative nature 
of the dynamic behaviour of a cell, Eq. ( 2.19). The network is initialized with a 
black image, i.e. ݕௗሺ0ሻ ൌ 1 for all cells in the network, whereas the iterative 
process of local actions generates a wave of changing cell-outputs into white 
colour. The wave that propagates from the edges to the centre of the image is 
stopped by black input pixels, preventing it from penetrating enclosed objects, i.e. 
holes. Figure  2.13 illustrates the propagation of the wave step by step.  

Based on the definition of the “8-connected object”, terBrugge presents the 
following three properties for the hole filling behaviour  [40]. 

Property 1: A white output remains white. 
Property 2: A black output becomes white if the corresponding input is 

white and it has at least one 4-neighbour, i.e. an orthogonal neighour,  whose 
output is white. 

Property 3: In all other cases a black output will remain black.  
Further, it is proposed that these properties are met by using the following 

cloning template: 

ࣛ ൌ 
0 1 0
1 2 1
0 1 0

൩ , ࣜ ൌ 
0 0 0
0 4 0
0 0 0

൩ , ݅ ൌ െ1 ( 2.30) 

(a) (b) (c)

(d) (e)
 

Figure  2.12 A number of holes with different sizes in (a) (b) and (c), while the absence of 
one black pixel makes a hole incomplete in (d) and (e).  

Again, the cell state equation is obtained by substituting the template into Eq. 
( 2.19) yielding: 
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ሺ0ሻݔ ൌ ݑ4  ܵ  ሺkሻݕ2 െ 1 ( 2.31) 

where  ܵ ൌ ଵ,ሺ݇ሻିݕ  ଵ,ሺ݇ሻݕ  ,ଵሺ݇ሻݕ   ,ିଵሺ݇ሻݕ
 

u y(0) y(1) y(2)

y(3) y(4) y(5)  
Figure  2.13 Given an input image ݑ, the process of hole filling is initialized with a black 
output ݕሺ0ሻ and ends up, after five iterations, with  filled holes in ݕሺ5ሻ.  

It remains to proof that Eq. ( 2.31) meets the three properties mentioned 
before, which is easily done by following the same approach presented in section 
 2.8.1. This is left for the interested reader to solve or look up at  [40]. 

The behaviour of the template of Hole Filling presented above is coupled to 
the boundary condition in use. Simple tests show that the format of the white 
wave started at boundary cells depends on the boundary condition. 

In the case of a fixed boundary condition, the following behaviour is 
observed with ݑ௩௧௨ ൌ െ1: 

 If ݔ௩௧௨ ൌ െ1, a black rectangle that is as big as the network upon 
start, shrinks toward the centre of the CNN (Figure  2.14.a). 

 If ݔ௩௧௨ ൌ 0, the rectangle becomes an ellipse (Figure  2.14.b). 
 If 0 ൏ ௩௧௨ݔ ൏ 0.5, the wave gives rise to a black rhomb that shrinks 

toward the centre. It is obvious that the wave starts from the four corners 
(Figure  2.14.c). 

Starting from ݔ௩௧௨  0, the sides of the rhomb get more convex as 
 ௩௧௨ increases until it equals 0.5. No wave is then generated and the templateݔ
does not function at all, while changing input values of the virtual cells does not 
have any impact on the operation. Furthermore, the speed of convergence 
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decreases with increasing ݔ௩௧௨. It seems that the states of the boundary cells 
become closer to the black value of ݕሺ0ሻ. On the other hand, a Zero-flux 
boundary condition makes the template ineffective, regardless input and state 
values in use. The effect of boundary conditions is discussed in detail in  Chapter 
8. 

(a) (b) (c)  
Figure  2.14 Different state values of the fixed boundary condition force the white wave to 
propagate differently. 

2.8.3 Hole Extraction 
As the name implies, the problem consists of extracting the holes of an object. 
Using the input image ݑ from Figure  2.13, the output of the Hole Extraction 
operation is given in Figure  2.15. The problem cannot be solved by a single-layer 
DT-CNN. The desired output is obtained by either using time-variant template 
coefficients or by adding a second layer with a time-invariant cloning template. 
Regardless the used approach, the problem demonstrates the expressive power of 
the concept of multiple-layer DT-CNN, presented in section  2.6.   

In line with  [41], the approach of time-variant template coefficients is used. 
The first phase of the solution consists of filling the hole by using cloning 
template ( 2.30). After the network has converged, the output contains the image 
in which all holes are filled. Applying another cloning template, presented in Eq. 
( 2.32), a selection of all black pixels in the output image that are white in input 
image completes the task. The initial output, ݕሺ0ሻ, equals the resulting image of 
hole filling template, while the input, ݑ, is the original image in Figure  2.13. 

ࣛ ൌ 
0 0 0
0 1 0
0 0 0

൩ , ࣜ ൌ 
0 0 0
0 െ1 0
0 0 0

൩ , ݅ ൌ െ1 ( 2.32) 

2.9 SUMMARY 
A CNN is a regular array of many identical cells. Each cell has a simple 

function that takes an element of a topographic map and then interacts with all 
cells within a specified neighbourhood, each corresponding with neighbouring 
map elements. An isolated cell ܿ at position ሺ݅, ݆ሻ in the grid consumes an input 
 represents time step,  in order ݐ ሻ, whereݐሺݕ  together with a previous outputݑ
to produce a new output value. In a standard CNN, the current output of each cell 
depends on input and output values, denoted ݑ and ݕ respectively, from the 
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surrounding cells as well. This is achieved by simple additions of weighted 
contributions ruled by parameters called template. The key feature in a CNN is 
the direct interaction with the 8 neighbouring cells: value passing occurs in two 
directions. This defines the 1-neighborhood of the centre cell ܿ, denoted ܵሺ݆݅ሻ. 
The concept can be intuitively extended to the next level of neighbouring cells, 
which leads to 2-neighborhood (Figure  2.16 ). The union of all neighbourhoods 
gives the entire network. In DT-CNN, the notation is slightly different to reflect 
the discrete-time nature. Input and output values are denoted ݑ and ݕሺ݇ െ 1ሻ 
for cell ܿ, where ݇ represents disrcete time step. The neighourhood is denoted 

ܰሺܿሻ.  

 
Figure  2.15 Resulting output after applying the operation of hole extraction on the input 
image of Figure  2.13. 

The state of a cell, denoted ݔ or  ݔ, depends mainly on the time-
independent input u to its neighbours and the time-variant output y of these 
neighbours. Equation ( 2.33) describes this dependence in a continuous time t, 
while Eq. ( 2.34) describes the discrete counterpart. In both equations a CNN of ܯ 
rows and ܰ columns is considered. The control coefficients ܾ only “scale” the 
inputs, while the feedback coefficients ܽ are responsible for the non-linear 
dynamical behaviour. A real valued cell bias ݖ (or ݅) is added to adjust the 
threshold. These coefficients are usually combined to compose matrices, which 
results in a so-called cloning template ࣮ ൌ ,ࣛۃ ࣜ, ऊۄ (or ࣛۃ, ࣜ,  ,In general .(.ۄ݅
the template may differ for different cells in the network, but the majority of 
CNN applications use space-invariant templates. 

݆݅ݔ݀

ݐ݀
ൌ െ݆݅ݔሺݐሻ   ݈ܽ݇

ሺ݆݅ሻݎܵא݈݇

ሻݐሺ݈݇ݕ   ܾ݈݇
ሺ݆݅ሻݎܵא݈݇

݈݇ݑ   ݖ

1 ݁ݎ݄݁ݓ  ݅  , ܯ 1  ݆  ܰ

( 2.33) 

ሺ݇ሻݔ ൌ  ܽௗ


ௗאேೝሺሻ

ௗݕ   ܾௗ


ௗאேೝሺሻ

ௗݑ  ݅ ( 2.34) 

The main advantage of both continuous-time and discrete-time CNNs relies 
on the local interconnectivity of the simple cells. This feature makes CNNs, in 
general, suitable for VLSI implementations. Though the elementary operations 
are very simple, this does not necessarily mean that the circuit should be 
correspondingly simplified. For instance, ter Brugge concludes in  [40] that it 
could be more meaningful to use more complex operators. 
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Figure  2.16  Dark gray cells along with the black cell constitute the 1-neighborhood, while 
adding light gray cells build the 2-neighborhood. The arrows represent the dual 
communication lines. 

Finally, the feature of full parallelism (considered as one of the most 
important advantages of CNNs) is captured by means of hardware realizations 
only. Software implementations running on a standard PC, even those considered 
as real-time implementations, loose the benefits of real parallelism, and are, thus, 
used for simulation purposes only  [40]. 
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Hardware Implementations 
State of The Art 

he ability of solving real-life problems has always been desired but not 
fully possible as these problems are characterized by being too complex 

and time-consuming tasks for classical digital computers. The partial success 
that regular analogue processing arrays face in a number of fields such as neural 
networks  [8] has attracted interest worldwide and encouraged to take the step 
toward the implementation of programmable analogue arrays that can handle 
general real-time problems.  A CNN is practically able to perform all types of 
convolutions/correlations due to its programmability in term of different cloning 
templates. Many physical phenomena can be translated into CNN algorithms 
and thus performed in a finite spatial window  [17]. In this sense, the CNN 
seems to be an ideal framework for programmable analogue array computers. 
The first step has already been made by, e.g., the analogue implementation of 
the CT-CNN standard cell (section  2.7).  

Fully connected analogue neural networks suffer from the number of 
connections and the distance that these connections need to propagate, which 
makes them very difficult to fabricate. In contrary to neural networks, CNNs are 
characterized by local connectivity. The adoption of the concept of nearest 
neighbour interactions found in Cellular Automata  [10] allows for the 
arrangement of the cells in regular grid with equidistance. The routing and 
layout problems usually faced in traditional analogue circuits are then easier 
tackled in analogue CNN VLSI implementations. A cell is designed and 
replicated to form a regular network that is placed and routed rapidly. The first 
VLSI implementation of a CNN  [16] has, naturally, been based on the analogue 
model of the standard cell as presented by Chua (section  2.7). Fabricated circuits 

T 
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come usually with parasitic capacitances and resistances, which in many cases 
leads to undesired behaviour. In order to reduce the sensitivity of the cell to such 
fabrication deviations, the dynamics of the cell are dominated by large state 
capacitor. Furthermore, the state capacitors affect the initialization procedure. 
All cells cannot be loaded with initial states simultaneously, but a single row of 
state capacitors (cells) is loaded at a time. While initialized, the state capacitors 
have to be disconnected from the remainder of the cells in order to prevent their 
voltages from dropping to such a level that it may affect the processing. Another 
issue has to do with the degree of adaptability. The experience gained from 
neural network VLSI implementations shows that high flexibility is difficult to 
achieve. Hence, the CNN array is not ‘programmable’, i.e. the array is designed 
to perform one or a related set of processing functions using fixed coefficients. 
Complex tasks are proposed to be solved by cascading or paralleling multiple 
CNN VLSI devices! This is, apparently, not practical and removes most of the 
attraction of the CNN VLSI implementation as time and cost are then much 
higher in comparison to other established systems. Next, due to fabrication and 
the available VLSI technology issues, only small CNN chips (20 ൈ  20) were 
realized, although larger and more sophisticated chips were expected to appear 
in due time.  

Soon enough, advanced hardware technology allowed a wide range of 
concepts, models and architectures to see the daylight. Thus, introducing these 
forerunners and highlighting the pros and cons of their hardware 
implementations is highly desired. The aim is to open for better understanding 
of the deployment of the solutions that are discussed later on in the thesis.  In 
this chapter, a brief description of the implementation of the most important 
concepts is given. First, CNN emulators that are built around of-the-shelf DSPs 
are introduced in section  3.1. CNN Universal Machine (CNN-UM) that provides 
a roadmap toward exploiting the intrinsic supercomputing features of the CNN 
is discussed briefly in section  3.2. Subsequently, a chronological review of the 
most known full-custom mixed-signal realizations of the CNN-UM is given in 
section  3.3. Section  3.4 emphasizes the need of fully digital implementations by 
presenting a number of digital CNN-UM emulators. Finally, the chapter is 
closed by a concluding summary in section  3.5. 

3.1 DSP-BASED CNN EMULATORS 
As mentioned above, the first attempt toward a VLSI implementation of a CNN 
has been presented by Yang and Chua  [16]. Meanwhile, Roska et al.  [17] have 
developed a hardware accelerator board (CNN-HAC), mainly for hardware 
simulation. The reported performance exceeds the one provided by any, at time, 
available software simulation due to the claimed ability of hosting around 1 
million processing elements (PEs). Further, it is claimed that the flexible 
programmability enables handling of complex tasks. For instance, performing 
nonlinear and delay-type templates  [15] is now possible. Thus, the proposed 
design provides an interest trade-off between speed, programmability and 
complexity. It is based on emulating the parallelism of operation using a number 
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of DSPs, each performing the functionality of a number of virtual digital 
processors corresponding to the actual cells in the grid. 

The usage of digital processors requires a transformation of the analogue 
values into digital ones. This requires a discretization of the state equation (Eq. 
( 2.8)) in the discrete time ݊, which is carried out using the forward Euler 
formula with a step size ݄  1.5 as shown in Eq. ( 3.1). After analysis and 
extensive software experimentation a 16 bits fixed-point representation of 
values shows to be the best choice. A local memory per digital processor stores 
input and state values (ݒ௨ and ݒ௨ respectively) for all cells within the 
neighbourhood. Output values ݒ௬ are not stored as they are easily obtained 
using the local piece-wise discrimination function. 

௫ሺ݊ݒ  1ሻ ൌ ሺ1 െ ݄ሻ · ௫ሺ݊ሻݒ  ݄ ·  ,ሺ݅ܣ ݆; ݇, ݈ሻ · ௬ሺ݊ሻݒ
אௌೝሺ,ሻ

 ݄ ·  ,ሺ݅ܤ ݆; ݇, ݈ሻ · ௨ሺ݊ሻݒ
אௌೝሺ,ሻ

 ݄ ·  ܫ

1 ݁ݎ݄݁ݓ  ݅  ,ܯ 1  ݆  ܰ

( 3.1) 

The focus is on using the accelerator for image processing purposes. Thus, 
the network has to contain a large number of cells, which is contrasted with the 
limited number of digital processors that a chip may contain. Each physical 
processing element, i.e. the DSP, performs the functionality of a large number of 
cells or more precise their corresponding virtual digital processors. This requires 
the local memory storage to be so large that it can hold  the data needed for all 
virtual processors. An indirect effect is a separation of communication and 
calculation needs for the group of virtual processors that is mapped on a single 
DSP. The simultaneous two-ways communication between the virtual groups 
constitutes still a performance bottleneck. Therefore, the grid of cells is 
decomposed such that a vertical band of virtual processors are assigned to a 
single physical processor (DSP). In this case, communication is reduced from 8 
down to 2 directions only, i.e. right and left. 

The actual hardware implementation is based on a PC add-on board with 4 
DSPs from Texas Instruments  [18]. Each DSP has a dynamic memory to store 
processor program code in addition to the cloning templates and the appropriate 
data values as signed 16 bit numbers. All parts of the board are supervised and 
controlled through a PCI bus that is responsible for the interfacing to an IBM 
PC bus. Two FIFO blocks, each having 512 ൈ 16 byte effective storage 
capacity, provide the communication path between each pair of DSPs. Next to 
components hardware, the accelerator consists of a software part. The software 
is allocated both to the host, e.g. data acquisition and visualization of the results, 
and to the board, e.g. iterating Eq. ( 3.1). Communication routines and interrupt 
handlers are necessary on both sides. The accelerator shows an average 
computing speed of 200 msec/iteration when images of size 20,000 pixels are 
processed.  

The experience gained from building the CNN-HAC in addition to the fact 
that analogue VLSI implementations provide limited accuracy only has 
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encouraged to develop the Analogic CNN Emulator Engine (ACE)  [22], a new 
emulator based on floating-point digital signal processors. Similar to CNN-
HAC, the ACE accelerator is built as a PC add-on board that is connected via a 
SCSI (Small Computer System Interface) to a host PC, where data and results of 
the simulation are stored and displayed. The choice of a 16 bit wide SCSI 
interface is essential to guarantee a high speed, flexible and versatile 
communication. Further, the architecture is based on a number of built-in 
floating-point DSPs from Texas Instruments, where every two DSPs are 
grouped in a single computational unit with appropriate memory modules and 
control logic (Figure  3.1). This allows for emulation of large dynamical systems 
with a 4-bytes floating-point accuracy, with the ultimate goal of achieving quasi 
real-time performance. In line with CNN-HAC, the usage of digital processors 
requires here as well a discretization of the state equation as carried out in Eq. 
( 3.1).  

 
Figure  3.1 The architecture of the ACE board (a) and a single DSP with corresponding 
storage and control units (b). 

The computation is made efficient through employment of two hierarchical 
levels of parallelism: the multiprocessor level and the operational level. The 
former exploits a data type parallelism where individual processors (DSPs) 
compute new values independent of the others. The computational power of this 
level is directly proportional to the number of processors and the inter-processor 
communication due to virtual processors mapping. A horizontal band 
decomposition of the 2-dimensional input array, similar to the one used in CNN-
HAC, is adopted here to minimize the communication among the processors. 
The operational level is directly supported by the complex pipeline architecture 
of the used DSPs. Special attention should be paid to avoid address register and 
memory conflicts (most frequent pipeline conflicts  [18]) during the internal loop 
of the calculation of the state equations. 

Each physical processor (DSP) has two types of local storages: a large 
capacity DRAM, of size 4-32 MByte, that stores input and output data arrays, 
and a smaller SRAM module that serves as program memory and temporary 
storage for calculation results (Figure  3.1.b). During computation, the current 
data block is moved from the DRAM to a high speed internal memory (not 
shown in the figure) or to the local SRAM. 
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The ACE comes together with a library of CNN routines containing cloning 
templates, inter-processor communication routines, DRAM-SRAM-caching 
routines, floating number format conversions, and local and status report 
routines. The routines are written in C where the most time-sensitive ones are 
manually optimized and checked for pipeline conflicts in assembly level. With a 
user interface, a menu-controlled CNN-simulation environment and other 
monitoring features, the ACE board is easily controlled and accessed from the 
host PC. Due to the combined memory storage of maximum 512 MByte (16 32-
MByte DRAM modules), the engine is able to store a CNN cube of size 
512 ൈ 512 ൈ 512 (virtual) cells, thus, providing a promising computation 
power that is able to handle large dynamical systems in quasi real-time  [22]. 

3.2 CNN UNIVERSAL MACHINE 
The CNN Universal Machine (CNN-UM) has been introduced in 1992 by Chua 
and Roska as the first algorithmically programmable analogue array computer 
having real time and supercomputer power on a single chip  [20]. The system is 
universal in the sense of a Turing machine, with the stored programmability, i.e. 
the algorithm, as the underlying mechanism.  

The concept of stored programmability is usually built on a number of 
assumptions. First, all the transients stabilize within a specific clock cycle, and 
all the signals remain within a prescribed range of dynamics  [15]. This can, 
obviously, be assured in a CNN. The complete stability of the CNN has been 
guaranteed by most of the useful cloning templates found in literature. Even if 
the functionality is dependent on the size of the network, e.g. propagation type 
templates, the convergence time can be estimated independently of the input 
data. Furthermore, the area needed for storing an instruction is much less than 
the area occupied by the processing unit, while changing an instruction requires 
a negligible time compared to the instruction execution time  [19]. For regular 
analogue arrays, e.g. neural networks, this is feasible only if the number of 
processing units is small. When the size of the array grows, the number of 
weights increases more than linear. A large-scale realization is, obviously, 
impractical from the storage area point of view.  In contrary, the number of 
“weights” in a CNN is ruled by the size of the neighbourhood; 19 for ݎ ൌ 1 or 
51 for ݎ ൌ 2; regardless of the size of the array. The capacity required by the 
global analogue program storage in a CNN-UM is therefore affordable. 

A key feature in the CNN-UM is the “dual computing” paradigm. Analogue 
array processing is combined with logic operations that only involve the 
symbolic variables YES/NO; therefore denoted analogic computing. All signals 
and operators are either analogue or logic, which in principle removes the need 
for A/D and D/A conversions. In order to achieve this, the standard CNN cell 
that has been presented in section  2.2 is modified. Each cell is programmable by 
means of a number of switches that are, together with some logic elements, 
added to the analogue core resulting in a so-called CNN nucleus. The nucleus is 
conceptually divided into two parts: analogue and logic. These parts are 
connected by a binary converter (B/U) converting a bipolar analogue signal in 
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interval ሼെ1,1ሽ into a unipolar signal in interval ሼ0,1ሽ. To keep the global I/O 
interaction at a minimum, local analogue memory (LAM) and local logic 
memory (LLM) components are added. Hence, intermediate analogue and logic 
values are locally stored, which facilitates the implementation of algorithms 
consisting of a sequence of cloning templates to be performed. Analogue values 
stored in different LAMs can be combined into a single value by means of a 
local analogue output unit (LAOU). In a multilayer CNN, the LAOU can be 
used to combine the results from the different layers. Similarly, the logic values 
are combined using a local logic unit (LLU). An illustrative view of the usage of 
an LLU is given in Figure  3.2 where the B/U converter is seen as well while 
Figure  3.3 illustrates the analogue part as presented in  [19]. Apparently, the 
existence of local storages is the cause for the reported extreme computing 
power of the CNN-UM.  
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Figure  3.2 Local logic memory cells are combined using a local logic unit (LLU). The 
B/U converter converts a bipolar analogue signal into a unipolar signal. The small black 
square connected to the LLU indicates instruction path from a global controller.  

The nucleus receives programming instructions through a local 
communication and control unit (LCCU). These instructions include the 
analogue values of the cloning template, logic function codes for the LLU and 
switch configuration specifying signal paths internally in each nucleus and the 
settings of thresholding function unit and the LAOU. The combined architecture 
of the nucleus and the surrounding components is called the extended CNN-UM 
cell. Table 3.1 summarizes the notation and functionality of the main 
components of the extended cell.  
Table  3.1 The main components in the extended CNN-UM cell. 

Acronym Description 
LAM 
 

The local analogue memory stores intermediate analogue 
values locally. 

LLM 
 

The local logic memory stores intermediate logic values 
locally. 

LAOU 
 

The local analogue output unit combines the different local 
analogue values to a single output value.  

LLU 
 

The local logic unit combines the different local logic values 
to a single logic value. 

LCCU 
 

The local communication and control unit receive the global 
programming instructions and decode them. It is, e.g., 
responsible for keeping the switches opened/closed 
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Figure  3.3 The analogue part of the extended cell. Dashed lines show the possible 
paths that are controlled by switches (not shown here) whose configuration is coded in 
LCCU. 

Each extended cell in the grid is programmed and controlled by a global 
analogic programming unit (GAPU) as already has been indicated in Figure  3.2 
and Figure  3.3. The GAPU consists of 4 sub-units: the analogue program 
register (APR) stores all cloning templates in an analogic algorithm, while the 
logic functions are stored in the logic program register (LPR). The switch 
configuration register (SCR) stores the configurations that are later coded by 
LCCU in each cell to control the internal switches. The LPR and SCR control 
the multi-input single-output units LLU and LAOU respectively. Finally, the 
sequence of analogic instructions, indicating in which order the different 
templates and logic functions are applied, is stored in the global analogic control 
unit (GACU) that constitute the fourth sub-unit of the GAPU.   

Theoretically, any implementation of the CNN-UM will be characterized by 
an unprecedented computing power due to the inherited massive parallelism. 
The performance of the obtained CNN Universal Chip (CNN-UC) may however 
be degraded due to the distribution of global input and output signals. There is a 
one-to-one geometric correspondence between input (and output) signals and 
the cells. For a large-scale implementation, the time needed to bring input 
signals into the individual cells must be at minimum. Otherwise, the desired 
high throughput rate will be never achieved. The authors in  [19] propose that a 
fully parallel input is possible by allowing each cell to have its own sensory 
input integrated on the chip. Light intensity, temperature and chemical 
properties are possibly captured by the sensors. Electromagnetic detection, e.g., 
can be used to detect certain output features captured by means of antennas 
connected to each cell. 

Similar to the relationship between a classical digital processor and an 
operating system, the promised computation power of a (CNN-UC) is heavily 
dependent on the analogic CNN software. Not surprisingly, the implementation 
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of an analogic algorithm on a CNN-UC or any of its digital emulators follows 
then the traditional methodology in classical software. One starts with defining 
the algorithm by means of a flow diagram that makes use of an analogic 
language, e.g. the ACL  [21]. Such a language must specify names and values of 
signals, instructions and parameters, subroutines, and programs. Now a CNN 
analogic compiler (e.g. Alpha Compiler  [37]) produces codes for the target 
platform (emulators or simulators).  

3.3 FULL-CUSTOM MIXED-SIGNAL CNN-UM CHIPS 
Since the introduction in 1992, the concept of CNN-UM has been considered 
extremely attractive to realize electronically due to its universality and ability of 
implementing the most complex CNN applications. Several realizations have 
seen the light of day, some focusing on analogue only or mixed-signal 
implementation in CMOS, while others following the footprints of predecessor 
emulators CNN-HAC and ACE. In this section, the mixed-signal type is 
considered with focus on a specific chip series mainly developed by a group at 
Centro Nacional de Microelectónica at University of Seville in Spain  [23]- [30], 
while the next section introduces two of the most famous fully digital emulators. 

A number of drawbacks in previous CNN implementations have been 
reported  [24]. One has to do with the difficulty of electrical cell design due to 
the various ranges for the internal voltages and currents. These ranges have to be 
considered in order to reduce the influence of MOS transistor nonlinearities. 
Another issue is that input signals are always voltages while internal signals 
may be voltages or currents. This is crucial in focal plane architectures where 
sensors provide the signals in form of currents. Incorporation of the sensory and 
the processing circuitry on the same semiconductor substrate is pretty common 
 [33] as CMOS technologies offer good photo transduction devices  [34]. A 
conversion into voltages is then needed, which complicates the CNN interface 
design. Finally, the combination of internal voltage and current signals leads to 
internal high-impedance nodes and, hence, large time constants. This results in a 
lower operation speed than desired.  

Attempting to overcome these limitations, a new CNN model, i.e. Full 
Signal Range (FSR), has been introduced  [31] [32]. Here, all variables are in the 
form of currents, thus, eliminating the need of current-to-voltage conversion. 
The main difference compared to CT- and DT-CNNs is found in the way state 
variables evolve. State variables have the same variation range as input and 
output variables, i.e. ݔ א ሾെ1, 1ሿ independently of the application (Eq. ( 3.2)). 
This results in a reduced cell complexity for both CT and DT cases and, thus, 
reduces area and power consumption in VLSI implementations. Stability and 
convergence properties are guaranteed and proven to be similar to the original 
models. It is further shown that uniform variations of the coefficients of the 
cloning template affect only the time constant of the network  [32].  

As has been mentioned before, the flexibility and generality of the CNN-
UM lies in the ability to freely reprogram the system using distinct analogic 
parameters, i.e. different cloning templates and logic functions. This is 
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guaranteed in the proposed design in  [23] through a synergy of analogue and 
digital programmability. Internally, all cells are equipped with an analogue-
programmable multiplier, while digital control signals are provided externally, 
i.e. outside of the cell array. A specific interface circuitry is required to generate 
the internal weights from the corresponding external digital signals. The 
interface is located at the periphery of the cell array and behaves as a nonlinear 
D/A converter. The analogue weights are gradually adapted to the desired level 
and then used to control the analogue multiplier within the cells in the array. 
Each peripheral weight tuning stage consists of an analogue controlled 
multiplier and a digital controlled multiplier connected in a feedback loop 
through an integrator. Figure  3.4 illustrates the functionality of the tuning 
interface and shows the global lines. For this purpose, global routing channels 
are used. Notably, only 10 global channels are needed, 9 for control/feedback 
coefficients and 1 for the bias. The gained benefits are many: low area as only 
one tuning interface is needed for the whole array, fewer control lines because 
analogue weights require less lines compared to the digital weights with same 
accuracy, and the simplified realization of the APR (section  3.2) using a digital 
RAM memory. Consequently, the external management of the chip can be 
completely digital. 
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Figure  3.4 The tuning D/A interface is located at the periphery of the cell array. It uses 
the digital weights wd to generate the corresponding analogue weights wa that are 
brought into each cell in the array using global routing channels. 

The cells can be initialized optically through photo-sensors or electrically, 
while output values are downloaded in electrical form only. In the first realized 
chip  [23] that is fabricated in 1 µm CMOS technology and contains 32 ൈ  32 
cells, input or/and output values are downloaded and uploaded through 32 I/O 
bonding pads, on a row by row basis. Apart from that, the realization follows the 
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main lines defined in the conceptual CNN-UM. The digital circuitry at each cell 
includes a four-bit static memory LLM (storing 4 pixels belonging to 4 different 
images as each pixel is represented by a binary value), a completely 
programmable two-input digital LLU in addition to the LCCU. Notably, the 
LLM memory replaces the LAM memory in the general CNN-UM as only 
binary values are handled. The APR and LPR reside in a single on-chip RAM 
with a capacity of 8 instructions.  Each instruction contains 19 8-bit template 
coefficients (7 bits plus sign), 2 2-bit boundary-condition values and one 4-bit 
local logic truth table.  

It is worth mentioning that the computational part of the cell, performing 
the local convolutions in Eq. ( 3.2), is totally analogue and occupies about 70% 
of the cell area. It consists of different functional blocks: 9 programmable 
interconnection synapses (multipliers), an integrator, nonlinearity and a 
memory. The synaptic inputs are voltages, which eases the distribution of 
analogue template coefficients through the global lines, and the internal 
distribution of the cell’s own state to all synapses. As synapses are connected to 
the integrator, their output is a current instead  [24]. 

In time, CMOS technology allowed for accommodation of more cells 
and/or higher complexity on a single chip. In a chip fabricated in 0.8 µm CMOS 
technology  [24], both global instruction memory and local data memory are 
made dynamic in order to increase the flexibility of operation. This leads 
however to a smaller array, where only 20 ൈ  20 cells are available. Moving to 
0.5 µm CMOS technology increased the size to 64 ൈ 64 cells  [25], in spite of 
the added ability of handling both analogue (greyscale) and digital (binary) 
inputs. Further improvements include simpler intracellular analogue synapses, 
i.e. multipliers, a more complex but highly accurate non-linearity device to 
obtain the cellular output, and a 4 fold larger global instruction memory. This 
chip has gotten the name CNNUC3 in  [26], but is later on renamed to ACE4k in 
 [27] to reflect the total number of accommodated cells. For same reason, the 0.8 
µm chip is renamed ACE400 in  [28]! The used notation is somewhat confusing 
as the architectures do not have any relation to the previously discussed ACE 
engine (section  3.1)!  

Few years later, 2002, a new chip is fabricated using 0.35 µm CMOS 
technology. Following the latest naming convention, the chip is called ACE16k 
 [28] because it accommodates 128 ൈ  128 cells.  The ACE16k (illustrated in 
Figure  3.5) is proudly introduced by the authors being a clear advance in a 
roadmap toward flexible vision systems on chips (VSoCs)  [28]. The major 
improvements of the new chip compared to the previous ACE4k are: 

♦ Digital buses are incorporated for greyscale input values, which allows 
for a fully digital interfacing. 

♦ A hand-shaking protocol eliminates timing constraints. 
♦ An internal bus, ACE-BUS, simplifies the communication among 

functional blocks within the cell. 
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♦ Two out of the four LLMs in ACE4k are replaced by 4 additional 
LAMs. 

♦ Dynamic, instead of static, digital memories are used to store templates. 
♦ The optical input module is reconfigurable and is flexible enough to 

operate under very different illumination conditions. 
♦ The capacity of the chip is 4 times larger than the ACE4k with larger 

functional capabilities. 
♦ Finally, blocks can be switched to idle in order to save power. 
Moreover, ACE16k employs a modified interaction pattern among cells. 

The number of synaptic analogue multipliers in each cell is increased to 12 
instead of 8 used in ACE4k. The additional four multipliers are introduced to 
increase robustness in templates where the central entry is much larger than off-
centre coefficients. In this case, the synaptic multiplier corresponding to the 
centre coefficient has to be driven by a quite higher voltage, which will give rise 
to mismatch-induced errors. Each of the central multipliers is actually a parallel 
aggregation of two regular synaptic multipliers allowing for double strength 
and, thus, increasing the difference between weight voltages.  

 
Figure  3.5 A conceptual architecture of ACE16k. 

Table  3.2 presents a summary of the most relevant features of mixed-signal 
chip realizations. When it comes to the first two implementations, later 
publications of the same authors in Seville show slightly different figures (see 
e.g.  [27] and  [28]).  This may depend on more exhaustive testing and more exact 
measuring of the different parameters of the fabricated chips. The table reveals 
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that all chips are far too small to handle a single frame. This drawback is 
important as all chips were developed with image processing capability in mind. 
The problem is solved by adopting the concept of windowing and time 
multiplexing, where large images are divided into sub-frames that are handled in 
sequence. 
Table  3.2 Comparison of mixed-signal full-custom CNN universal chips. All chips use a 
modified CNN model, i.e. the FSR model. 

 CNNUC1
3  [23] 

ACE400 
 [24] 

ACE4k  [26]  ACE16k 
 [28]

CMOS technology 1 µm 0.8 µm 0.5 µm 0.35 µm 
Density (cells/mm2) 33  27.5  82  180  
Array size  32 ൈ 32 20 ൈ 22 64 ൈ 64 128 ൈ 128 
Input Type Binary Binary Binary & 

Greyscale 
Binary & 
Greyscale 

Optical √ √ √ √
Electrical √ √  √

Output  Type Binary Binary   
Electrical √ √   

Global instr. memory Static Dynamic Static Dynamic 
# Ana. instructions 8 8 32 32 
# Dig. instructions  0 64 64 ൈ 64 
Local 
memory  
 

Type Digital  Digital Dig.&Ana.
Dynamic  √  √
amount 4 Binary 

(1-bit) 
4 Binary 4 Binary 

4 Grey  
2 Binary 
8 Grey 

Ana. 
Acc. 

Input െ    8 bits 8 bits 

 + bits 7 ܤ & ࣛ
sign 

7 bits + sign 7 bits 7 bits + sign 

bias 7 bits + 
sign 

8 bits + sign N/A 7 bits + sign 

Ana. circuit area/cell N/A 70% N/A  
Cell array area/chip N/A 53% 58%  
Cell area 180 ൈ 170 

µm2 
190 ൈ 190 
µm2 

120 ൈ 102.2 
µm2 

73.3 ൈ 75.7 
µm2 

Power  Entire chip N/A 1.1W @ 5V 1.2W @ 3.3V < 4W@ 
3.3V  [29] 

Per cell N/A N/A 370 µW 180 µW 

                                                            
3 This architecture was not given any name in  [23], but is called CNNUC1 here to emphasize 

that it was the first Universal Chip of the series. 
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It is worth mentionening that there are SIMD-based CPAs that are capable 
to compete with the ACE-serises in both size, accuaracy and power 
consumptions. For instance, the SCAMP vision chip  [5] that is fabricated in 
0.6 μ݉ technology accommodates 21 ൈ 21 PEs. It has a peak power dissipation 
of 40 ܹ݉ at 3.3ܸ, while the maximum power per PE is as low as 85 μܹ. This 
is to be compared to the 180 μܹ for the ACE16k chip that is implemented in 
0.35 μ݉ technology. It is further claimed in  [5] that ‘future’ chips are estimated 
to have a 256 ൈ 256 array fabricated in 0.18 μ݉ technology. With a total chip 
area of 76 ݉ଶ and power dissipataion of  2 ܹ per chip, this seems to make a 
milestone that all CNN chips have to beat! 

3.4 DIGITAL CNN-UM EMULATORS 
There is no doubt that the previously presented full-custom chips provide a 
powerful framework to handle CNN operations. The impressive computational 
speed of 330 GOPS in the ACE16k chip is comparable with the capability of 
modern supercomputers. But theses chips suffer from the ‘limited’ accuracy of 
the analogue signals (7-8 bits only). Another issue is the high cost as few chips 
only are fabricated. In addition, the development time window is wide which 
increases the cost further. Furthermore, analogue devices in general are known 
to be sensitive to fabrication artefacts, which in the case of CNNs may lead to 
complete failure. In this sense, fully digital architectures provide a good trade-
off between computational speed on one side and versatility and cost on the 
other side. Such architectures have a much shorter design cycle as they utilize 
standard digital CMOS technology. 

With confidence, one may consider the CASTLE architecture  [35] as a 
representative of the class of fully digital emulators. The architecture is capable 
of performing 500 CNN iterations using 3 ൈ  3 templates on a video stream 
with frequency of 25 fps taking 240 ൈ 320 pixels each. This is valid for a 
system with 24 processing units (PEs) with precision of 12 bits. CASTLE makes 
use of the FSR model where the absolute value of the state variable is never 
allowed to exceed the value of +1. Recall that the value of the output and state 
values always coincide. The discretized state equation is obtained by applying 
the forward Euler formula as shown in Eq. ( 3.1).  

Loading input pixels on-the-fly from an external memory into the 
processing array constitutes a performance bottleneck. On the other hand, 
storing the entire image on chip is impossible due to the limited resources. 
Instead, the image is divided into a number of belts with a height of 2ݎ  1 
pixels where ݎ represents the neighbourhood. Each belt is then fed to a single 
PE (Figure  3.6 right). In this case, the I/O requirements of the processing entity, 
i.e. the cell, are reduced to two inputs and two outputs per cell update. Each pair 
consists of one state value and one constant value corresponding to the 
combined contribution of control template together with the bias (Figure  3.6 
left).  The main memory unit in the PE consists of 3 layers of equally sized 
circular shift-register arrays for the state input and 2 layers for each of constant 
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and template selection inputs. Inputs from left and right neighbouring PEs are 
directly connected to the corresponding ends of the shift-register arrays. 

 
Figure  3.6 Left: a schematic view of the processing unit in CASTLE, where dashed lines 
represent control signals and continuous lines shows data path.  Right: the belt of pixels 
stored on chip for 1-neighborhood where the black square indicates the current position 
of the convolution operation. 

The high throughput of the system is due to the accommodation of 3 
multipliers performing, in parallel, 3 multiplications that use pixels and 
corresponding template coefficients as operands. Multiplication results are 
shifted 1-bit in the LSB direction before they are forwarded to a tree of adders to 
accumulate the results with previous intermediate result. In order to improve the 
accuracy, rounding units are introduced between the shifters and the following 
adders. A limiter unit brings the final sum into the operational region. Figure  3.7 
depicts the structural architecture of the arithmetic unit. It is obvious that the 
reduction of communication demands comes on the cost of larger arithmetic 
units with more functional blocks.  

In line with the proposed approach in the CNN-UM, the functionality of the 
CASTLE architecture is ruled by means of a global control unit. One of the 
most important features of this unit is the selection of the employed precision. 
Data precision is variable and can be set to 1, 6 or 12 bits. The lower the 
accuracy the faster is the system. 

An important issue is the amount of logic occupied by the register arrays 
constituting the internal memory units (Figure  3.6). In the first experimental 
chip that has been fabricated in 0.35 µm CMOS  [36] technology, about 50% of 
the total area of a single PE is allocated to register arrays, while the arithmetic 
block occupies not more than 21% of the area (Figure  3.8). Furthermore, 
experiments show that a CASTLE emulator with 24 processors outperforms the 
DSP-based ACE engine (section  3.1) only when the rate of logic operations is 
high enough  [36].  

The CASTLE architecture suffers from a number of drawbacks. One has to 
do with the inability of emulating complex dynamic systems where operative 
parallelism is a key feature. The single layered architecture handles only one 
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operation at time. Other drawbacks include the limited template size, cell array 
size and accuracy. Hence, a new architecture called FALCON has been 
developed to provide higher flexibility and to allow for multilayer 
accommodation  [42]. The implementation is based on the FSR model with 
discretized state equations. In contrast to all CNN-UM inspired implementation 
discussed so far, the design is hosted on a Xilinx Virtex series FPGA. This 
increases the ability for reconfiguration, brings down developing time cycle and 
decreases the overall cost. 

 
Figure  3.7 The arithmetic unit in CASTLE 

 
Figure  3.8 The amount of allocated logic for each of the blocks relative to the entire size 
of a single PE. Putting together the bars representing state values, constant values and 
template selection gives the total area of register arrays. 

The arithmetic uses a fixed-point representation where both word width and 
displacement of the radix point for the state, constant and template values are 
configurable. Possible value widths are 2-64 bits. Other configurable parameters 
are: number of templates, neighbourhood size, size of the cell array and number 
of layers. Configurability is essential to allow accommodation of flexible 
precision when needed. But for the highest possible precision the cell array will 

0%
5%
10%
15%
20%
25%
30%
35%
40%

States Arithmetic 
Unit

Constants Template 
Selection

Template 
Memory

Timing & 
Control 
Unit



52  Chapter 3  Hardware Implementations
 

 

consist of not more than 4 processing cells! The configuration is unfortunately 
not dynamic but the entire design has to be re-synthesized and loaded on the 
FPGA every time a new configuration is required! Apparently, for algorithms 
with alternating operations of low and high precision the FPGA has to be 
reconfigured several times in order to provide accurate results. Moreover, the 
FALCON architecture comes with no possibility of algorithmic control on chip. 
All algorithmic steps, as well as local logical operations and programs, are 
executed on a host PC. This reveals that the system cannot stand alone, but is 
always dependent on the host PC! Obviously, all the benefits of performing 
complex tasks on the CNNs are lost. To remedy these problems, the architecture 
is extended with a global control unit GAPU  [43] in line with the conceptual 
CNN-UM.  

In addition to on-chip memories and some peripheral blocks, the GAPU is 
built using an embedded MircoBlaze processor core with 32-bit RISC 
architecture  [38]. Most modern FPGAs provide at least one of these processor 
cores on chip. The extended FALCON architecture is implemented on a Xilinx 
Virtex-II 3000 FPGA. Apart from the embedded processor core, the GAPU 
occupies about 10% of the available logic, which can be compared to the area of 
a single CNN processor that requires about 2.8% of the logic. It is worth 
mentioning that the GAPU runs on lower clock frequency than the processing 
units (PEs), thus, setting a higher limit of the overall speed. 

3.5 SUMMARY 
In the light of previous advances made in design of analogue neural networks, 
researchers and developers have been encouraged to build analogue CNNs using 
VLSI implementation techniques. The first attempt yields in a too small chip 
with 20 ൈ  20 cells only and lacks the feature of programmability. This is not 
enough to handle complex tasks, so developers have looked for use of available 
DSP technology to emulate the functionality of a CNN. The CNN-HAC shows a 
promising computing power but is mainly suffering from low accuracy. The 
successor ACE engine accommodates floating-point DSP to overcome the 
limitation. Both designs are dependent on a host PC where algorithmic 
programming is performed.  

Meanwhile the conceptual CNN-UM is introduced to serve as a standard 
platform for real-time CNN realizations. The CNN-UM architecture contains a 
minimum number of component types. It provides stored programmable 
spatiotemporal array computing with real-time and supercomputer power. The 
stored programmability in form of cloning templates gives a minimal 
representation of a complex spatiotemporal dynamics. The machine supports 
both linear and nonlinear cloning templates and allows for implementation of 
multilayer CNNs. Many chips have been built to implement parts of the concept 
with varying success. Most interesting is the series of full-custom mixed-signal 
ACE-series. The characteristic drawback is again the limited analogue accuracy. 
In addition, the issue of sensitivity toward fabrication artefacts attracts special 
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attention and requires careful parameter tweaking to achieve the desired 
functionality. This time-consuming approach raises the overall cost per chip.     

Naturally, the focus has moved toward fully digital implementations 
instead, as these provide an acceptable trade-off between computation power, 
accuracy, versatility and cost. Mainly, two architectures are available: full-
custom CASTLE and FPGA-based FALCON. Both provide quasi real-time 
performance through a pipelining of the processed input values and are therefore 
considered as CNN-UM emulators. The former is, however, only single-layered 
whereas handling multi-tasks in parallel is not possible. Moreover, it has a 
limited, although flexible, accuracy of 12 bits. The FALCON architecture is 
extended to enable multilayer accommodation, and allow higher accuracy up to 
64 bits. One of most important drawbacks is that FALCON cannot stand alone 
as is totally dependent on the host PC to perform the different steps of a certain 
algorithm. Moreover, the computational speed exceeds certainly the one 
provided by general-purpose computers, but is far less than the efficiency 
experienced in mixed-signal chips. 

An important issue is the usage of the FSR model in both mixed-signal and 
fully-digital approaches. Here, the need of discrimination is removed as state 
and output values coincide. This saves a considerable amount of logic and 
makes the design simpler and smaller than general. 

Furthermore, all architectures are heavily dependent on global control 
instruction in order to perform properly, which is affordable for small networks. 
For larger networks, long global control wires affect logic unitization negatively 
and slow down the system to such a level that the benefits of a CNN are lost. In 
 [84] it is stated that a cellular architecture will be the way of the future, but that 
the performance advantages will soon dwindle “in the presence of global 
interconnections”. This seems to indicate the need for local connections only. 

Finally, the question of communication with external storage units to bring 
in/move out values to/from the CNN array has never been answered 
satisfactorily. In the conceptual CNN-UM the problem is solved by photo 
transduction for input values while the proposed electromagnetic detection 
approach remains theoretical only. Practical employment is still conspicuous by 
its absence. 
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Unrolling CNN on FPGA 
  

he strict local connectivity gives CNNs first-hand advantages for tiled 
VLSI implementations with very high speed and complexity. This is 

tightly coupled to the simplicity of operation as it allows for implementation of 
a large number of simple units performing the same simple operation in parallel. 
A single chip is then able to accommodate multiple CNN layers, where a 
complex and time consuming task is divided into much simpler subtasks that are 
performed simultaneously; one subtask per CNN layer. Paradoxically, the 
strength of a CNN, i.e. simplicity of operation and local connectivity, constitutes 
the main hindrance toward efficient hardware implementation. The 
simultaneous activity of cells requires an instantaneous availability of input and 
output pairs (u and y-values) for each of the neighbouring cells. Consequently, 8 
pairs of values have to be communicated for the minimal 1-neighborhood, one 
pair for each neighbouring cell. This is affordable in an analogue realization as it 
will result in 16 wires only. In a digital counterpart, a value is represented by an 
arbitrary number of bits, each requiring a wire on which a signal is carried. Even 
in the simple case of 8-bit values, the simultaneous interconnection will need 64 
wires to be routed. Obviously, the interconnection requirements are severely 
increased for larger neighbourhood. Actually, establishing the connections 
within an arbitrary neighbourhood is so area and/or time demanding that little 
research on large neighbourhoods is made. Almost all known CNN templates 
are for a 1-neighbourhood, and all realizations are effectively restricted to that.  

                                                            
Parts of this chapter have been presented in  [I] and  [V].  

 

T 
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As the CNN architecture is so wiring dominated, most of the available logic 
is used to render the inter-cell communication possible, yielding in a smaller 
network and therefore decreased throughput. Smaller networks do not contain 
the amount of cells that is needed to satisfactorily perform complex tasks. For 
instance, in the domain of image processing, where most CNN systems find 
their target applications, a frame has far more pixels than it can be handled by 
the largest available CNN chip (ACE16). One way to remedy this is by moving 
from one-to-one mapping between the actual operating unit and the theoretical 
CNN cell into a one-to-many correspondence. We have seen in  Chapter 3 that 
the functional units, denoted PEs or virtual processors, in many CNN chips 
operate in-order on a large number of pixels. This, in itself, is a widely used 
methodology among system developers. For instance, André de Hon  [44] has 
posed that the archetypical phase of hardware design is characterized by severe 
limitations on computing resources, making it necessary to use every hardware 
element as much as possible. This is called temporal computing as the operation 
is unravelled in time where the computational process is scheduled to execute-
in-order on the few computational elements. On the other hand, spatial 
computing, where the process is unravelled in space, is preferred as it reduces 
spurious latency. In fact, the more efficient full-custom mixed-signal chips 
(section 3.3) employ the spatial approach and limit thereby the size of the 
processed topography (mainly 2-dimensional images) effectively to the amount 
of available PEs. In this thesis, the processing unit that performs the operation of 
a CNN cell is called node, and consequently is the state equation of a cell 
sometimes called the nodal equation. A node may, however, correspond to a 
number of cells that each corresponds to one element in the topographic map. 
Consequently, a node that performs the nodal equation in-order in a temporal 
architecture can be exported to a spatial architecture with almost no 
modifications. 

Thus, a CNN architecture is able to efficiently handle a complex general 
task only if the number of nodes is large enough. How many nodes are enough 
is dependent on the application domain, the size of the topographic map and the 
amount of operational parallelism that is required. Consequently, smaller inter-
nodal interface is crucial to achieve the goal. In this sense, an analogue approach 
is preferred, which explains why so far impressive advances have been made in 
analogue realizations only. The best attempt toward a digital realization 
emulates the functionality of a CNN rather than providing real-time 
performance  [42]. These digital emulators are dependent on a host PC in order 
to perform the algorithmic steps in the desired order (section  3.4). This 
dependence is decisive for the dominance of the analogue realizations so far. In 
other words, the exploitation of a stand-alone fully-digital approach is highly 
desired, which this thesis aims to tackle.  

On the other hand, analogue implementations keep up with high throughput 
and low latency by using array of photo sensors for data acquisition. This works 
fine for image processing applications where pixels are captured and processed 
directly, but imposes high latency if the topographic maps have to be pre-stored. 
When pre-storing is involved, network capacity can easily become limited by 
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the available bandwidth, not only inside the network itself, but even towards the 
external memory that holds the topographic map.  

This chapter starts with a brief discussion on how CNNs are mapped on 
FPGAs. In section  4.2 two abstract execution models are introduced in order to 
highlight the importance of different communication and computation styles on 
the overall performance of any CNN architecture. Then, a brief description of 
previously, by the author, published architectures is given in sections  4.3 and 
 4.4. Finally, the chapter is closed with a discussion of the main pros and cons of 
the presented architectures.  

4.1 MAPPING CNN ON FPGA 
The desired stand-alone fully-digital approach can benefit from the achievement 
of the digital emulators in mapping a CNN on FPGA.  We recall that both 
digital CNN-UM emulators (section  3.4) are realized on a Xilinx Virtex, i.e. 2nd 
generation macro-less FPGA. As the major arithmetic blocks are mapped on 
logic blocks provided on the FPGA, it is concluded in  [42] that a further 
increase in packing density can be achieved in future generations. Indeed, in 
modern FPGAs, the over-mass of flip-flops and logic-mapped memory is 
supplemented by high-density, multifunctional macros such as Block Select 
RAMs and Multipliers. However, the most important feature of an FPGA is its 
modular construction, where the physical placement of the different components 
simplifies bundling logic and macros to easily form CNN nodes. Additionally, 
the eventual existence of Embedded Processor cores, denoted PowerPC in the 
terminology adopted by Xilinx, increases the power of computation and allows 
for a suitable mixture of hardware and software. Hence, flexibility and 
parallelism, provided by the specialized macros together with the modular 
construction, and the facility of spatial computing have made FPGAs already 
very popular as hardware accelerators and efficiently equipped to map modular 
structures, i.e. CNNs. .  

The thesis stresses the exploitation of the built-in macros to spatially unroll 
the local feedback. The presented implementations rely on Xilinx Virtex-II 6000 
and Xilinx Virtex-II Pro 20/30  [38]. These FPGAs are characterized by the 
richness of multiplier and RAM built-in macros that are closely placed pair-wise 
in a number of columns, whereas logic blocks are almost equally spread 
between the columns (Figure  4.1) . The functional blocks are available in a 
matrix-style floor plan which simplifies the mapping of the CNN mesh. In 
Virtex-II Pro 30, part of the matrix is obscured by the insertion of one or more 
PowerPC cores, yielding in a non-regular floor plan (Figure  4.1 right). This 
demands a careful placement of the nodes and may therefore complicate the 
procedure of floor planning the design.  

A proposed mapping of the arithmetic blocks in a cell is illustrated in Figure 
 4.2. The different template coefficients need to be locally available as they are 
used in the nodal computational procedure. Thus, the coefficients are stored in a 
BRAM whose adjacent multiplier macro performs the multiplications, while 
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remaining computational operations such as addition as well as thresholding are 
suitably mapped on Configurable Logic Blocks (CLBs). 

  
Figure  4.1 The configuration of a Virtex-II 6000 (left) and Virtex-II Pro P30 (right) from 
Xilinx. Grey columns represent bundling logic in form of CLBs, while the vertical boxes 
represent pairs of multiplier and BRAM macros. The placement of PowerPCs disturbs 
the matrix-style in the Pro P30 device. 

Template 
Coefficients Block Select RAM

Multiplier Multiplier Macro

Adder

Discriminator

Configurable Logic 
Blocks
 (CLBs)

 
Figure  4.2 Mapping a CNN cell on FPGA primitives. Vertical arrows show possible data 
flow among different functional blocks/ FPGA primitives. 
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4.2 ABSTRACT EXECUTION MODELS 
Looking back at the basic nodal equation of a single node (Eq. ( 2.19)), three 
contributions can be distinguished: 

 The feedback contribution, ∑ ܽௗ
  ௗሺ݇ሻ, is involved in the iterationsݕ

towards convergence. 
 The control contribution, ∑ ܾௗ

ݑௗ, is valid for the current topographic 
map and does not depend on the iterations.  

 The offset contribution, i, simply replaces the summed contributions to 
the right position for the final discrimination.  

In this sense, the functionality of any node in the network is as follows. For 
each topographic map, the control contribution is first computed together with 
the bias, which results in a constant value that remains unchanged for the current 
map. This constant is preferably stored locally in the nodes. Then, the feedback 
contribution is calculated and added to the stored constant, resulting in a new 
nodal state that is discriminated to obtain the first iterative nodal output. For 
successor iterations, only the feedback contribution is computed, and the new 
state is discriminated and so on until convergence is reached or the iterative 
procedure is explicitly stopped. The calculation of control and feedback 
contributions is identical by means of number and nature of the performed 
computational operations. The series of multiply-and-add operations have, 
however, to be explicitly scheduled in order to guarantee correctness of 
functionality and achieve the desired performance. The need for explicit 
scheduling on nodal activities works out differently for different CNN to 
Network mappings. Two main categories can be distinguished:  

 The consumer node is fully in accordance with the nodal equation. The 
discriminated output of a node is also the nodal output. It is broadcasted 
to all connected nodes, where it will be weighted with the coefficients of 
the applied template before the combined effect is determined through 
summation (Figure  4.3.a).  

 The producer node discriminates the already weighted inputs and passes 
to each connected node a separate value that corresponds to the cell 
output but weighted according to the applied template (Figure  4.3.b). 

Ideally all nodes are directly coupled and therefore bandwidth is maximal. 
In practice, the space is limited and the value transfer has to be sequenced over a 
more limited bandwidth. This problem kicks first in with the producer-type of 
network, where we have 2݊ connections for ݊ neighbours. The network-on-chip 
approach is meant to solve such problems. However, as the Cellular Neural 
Network is a special case for such networks, being fully symmetric in the 
structure and identical in the nodal function, such a NoC comes in various 
disguises.  

In the consumer architecture, scheduling is needed to more optimally use 
the limited communication bandwidth. Switches are inserted to handle the 
incoming values one-by-one. To identify the origin of each value, one can either 
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schedule this hard to local controllers that simply assume the origins from the 
local state of the scheduler (circuit switching, Figure  4.4.b), or provide the 
source address as part of the message (packet switching, Figure  4.4.a). The 
former technique is simple. It gives a guaranteed performance as the symmetry 
of the system allows for an analytical solution of the scheduling mechanism. 
The latter is more complicated, but allows also for best effort.  

 
Figure  4.3  Consumer (a) and producer (b) cell to node mapping. 

 
Figure  4.4 Value routing in the consumer node by multiplexing in space (a) and in time 
(b). 

The counterpart of consumption is distribution. Every node produces values 
that have to broadcast to all the neighbours. Again where the communication 
has a limited bandwidth, we need to sequence the broadcast and this can be done 
in the same way as for the value consumption (Figure  4.5).  

In a word-serial/bit-parallel approach, all nodes are broadcasting packaged 
values simultaneously over a set of ‘rotating wheels’ (Figure  4.5.b). For a 1-
neighborhood, the cells execution time is ܿ   ݀, where ܿ is the amount of 
neighbouring cells and ݀ is the core cell cycle. The packet that passed through 
the network is comprised by the values and for both the row and the column 
address 2 bits each. So, for an 8-bit value, a packet of 12 bits is needed. The 
network interface comprises of the packet switch, an input buffer and an output 



 4.2  Abstract Execution Models 63 
 

 

register. The core node will iterate a parallel multiplication plus addition, 
followed by discrimination. Characteristic for this approach is the need for a 
parallel multiplier; furthermore it can only work on fixed-point integer. 

 
Figure  4.5 Another value routing in the consumer node by multiplexing in space (a) and 
in time (b). 

The state of a cell is contained in the output register. For a multi-layer CNN 
implementation, the state is salvaged in the local memory. Therefore the 
overhead in performing the same operation on an image sequence or different 
operations on a CNN sequence is moderate. 

In the case of producer architectures, the nodal output is already 
differentiated for the different target nodes. Each target node will combine such 
signals to a single contribution. This combining network is an adder tree that 
will reduce the ݊ values to 1 in a pipeline fashion. Consequently, this tree can 
also be distributed, allowing for a spatial reduction in bandwidth. This can be 
seen from the simple re-write of the CNN equation as in Eq. ( 4.1). The content 
of the bracket is produced in neighbouring cells d before transmitted to cell c.  

ሺ݇ሻݔ ൌ  ሾܽݕሺ݇ሻሿௗ
ௗאேೝሺሻ

  ሾܾݑሿௗ
ௗאேೝሺሻ

 ݅ ( 4.1) 

The overall processing scheme as shown in Figure  4.6 is then similar to 
what has been discussed for the consumer architecture. The main difference is 
that the communicated values will be larger as they represent products and are 
therefore of double length. Where the consumer architecture is characterized by 
‘transfer and calculate’, the producer architecture is more ‘calculate and 
transfer’. Furthermore they both rely on a strict sequencing of the 
communication, simultaneously loosing a lot of the principle advantage of 
having a cellular structure.  

Also here, we have to look at the way values are broadcast. In contrast to 
the consumer architecture, we have as many output values as there are 
neighbours. This makes for an identical situation and no additional measures are 
needed, except for the fact that we will not be able to generate all the different 
products at the same and the sequencing issue pops up again.  
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Figure  4.6 Different adder trees to obtain the state of the producer node 

In word-parallel/bit-serial approach, all nodes are serially forwarding their 
values to all neighbours directly (Figure  4.6.b). Being circuit switched rather 
than packet-switched, no addresses are transmitted. For a 1-neighborhood, the 
cell execution time is given by ݊   ݀  ሺܿሻଶ݈݃  , where ݊ is the number of 
bits, ݀ is the core cell cycle and ܿ is the amount of neighbouring cells. There is 
no network interface. The local multiplications are done bit-wise and are 
followed by an adder tree that gradually increases in size. Characteristic for this 
approach is the reduction of the multiplier to a mere AND-gate; furthermore it 
can be easily adapted to scaled arithmetic and therefore allows a large dynamic 
range with limited precision. 

It appears that the two architectural varieties differ mostly in the balance 
between wiring and logic, and are therefore dependent on the realization 
technology. They both show the ability to pass state and output data via the local 
memory, effectively mapping a levelled hierarchy of CNNs into a single 
implementation.  

4.3 IN THE FOOTSTEPS OF THE FORERUNNERS (PIPELINING) 
Analogue realizations have a larger capacity but suffer from limited accuracy, in 
contrast to digital realizations that have a smaller capacity but can in principle 
operate at a quasi-infinite accuracy. In fact, accuracy is limited due to amount of 
available resources. In the case of 8-bit precision for input values and template 
coefficients, the multiplicative adding of 19 contributions (1-neighbourhood) 
will lead to a 21-bit internal result; for a larger neighbourhood this will grow 
drastically. The amount of logic each node may occupy is not affordable! 

The architectural characteristics emanate from a routing problem that occurs 
when information is sent to each of the 8 nodes in the direct neighbourhood. A 
local congestion can clearly not be avoided. This problem is attempted to be 
solved by not feeding all values simultaneously to the node. In the extreme case, 
values are fed in series creating a kind of systolic array as originally suggested 
by  [42] (section  3.4). This is the state-flow architecture  [50], where nodal 
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state/output values flows together with corresponding input data in the 
topographic map over array of cellular nodes coupled in series. In this way, 
FPGA resources such as multipliers, adders and other logic blocks are 
temporally exploited. Multiplicative additions are executed in-order on the 
limited computational elements. The architecture is developed with image 
processing in mind. As it will operate on images out of a stream, captured by a 
camera, it must be able to deal with many degrees of freedom in real-time: 
width and height of the image, the sequence of images in the stream, and the 
temporal dimension due to the iterative nature of the nodal equation. 
Apparently, the implementation medium, i.e. FPGA, offers only two dimensions 
and the others have to be masked away, which is easiest done by usage of local 
memory. The main architectural issue is then which two dimensions will rule 
the floor plan.  Furthermore, the size of the frame is usually larger than the 
network, which implies partitioning of the image; passing the image in stripes 
over the system (Figure  4.7). This widely employed approach is called 
windowing (see e.g.  [42]). Thus, the local operation is performed in 2-
dimensional plane (width and length), of which one is masked away by stripe 
flow, and iterates in time. This is repeated over image slices and iterates over the 
surface to handle potential wave propagation. Finally, the operation is 
performed on a sequence of images.  

Image 
stream

stripe

line

DT-CNN 

 
Figure  4.7 Dimensionality of DT-CNN image processing. 

In a naive realization4 of the state-flow architecture, employed for image 
processing applications only, data dependencies between scan-lines in an image 
are stretched over a pipeline of single multiply-accumulate units (Figure  4.8). 
Each performs only one operation on a single coefficient/input pair and then 
moves the result to the next unit. Pixels needed to perform the desired 
computation of the output for one node, are fetched from three series of registers 
connected to the pipeline. In this sense, each neighbouring pixel is evaluated 
separately in a pipelined fashion, doing in series as many multiply-accumulates 
as there are cells in the neighbourhood.  

                                                            
4 A student project implemented and presented in the course VLSI Architecture at 

Dept. Information Technology, Lund Univeristy, 2003. For further details see  [49]. 
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Figure  4.8 Data dependencies for a pipeline in a naive temporal state-flow architecture. 
Only the pipeline corresponding for the middle node is shown. White boxes represent 
functional blocks; consisting of a multiplier and an adder, while grey boxes represent 
registers. The middle node corresponds to a pixel sequence B. For sequences A and C, 
functional blocks are dropped for clarity. Identical architecture is used to calculate the 
contribution of pixel inputs. 

Based on the observation that both multiplication sequences are 
independent, the desired network behaviour is implemented as two 9-stage 
pipelines per one DT-CNN node. The output is obtained by thresholding the 
sum. Thus, one pipeline, consisting of 18 multipliers and additional logic, is 
needed for every column of the image. Due to the organisation of multiplier 
macros in the target FPGA, i.e. Virtex-II 6000, in 6 columns and 24 rows 
(Figure  4.1), only six nodes can be mapped. Additionally, a node on each side of 
the image stripe is needed to eliminate boundary effects, which reduces the 
actual number of image columns processed in parallel to four only.  

Apparently, the throughput of this, so-called temporal, approach is way 
lower than it can be accepted in spite of, or especially due to, using large 
amount or resources on the FPGA. To overcome this drawback, spatial and 
temporal elements are mixed by interweaving three pipelines corresponding to a 
row of three pixels (Figure  4.9).  This reduces the latency and makes better 
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utilization of the available resources. The nodes are grouped in columns where 
each column holds a scan-line in the image stripe. The columns will then form 
iterations performed on the image. In this way, one dimension (width or length) 
of the image frame together with the number of iterations are implemented as 
columns of nodes while the other dimension of the frame is handled by slicing 
as illustrated in Figure  4.7. One of the resulting realizations is a design called 
ILVA  [49]. 

Timing & ControlCNN topologyScan-lines

4

3

2

3

2

1

Iteration 1

Iteration 2

 
Figure  4.9 Mixed spatial-temporal state-flow architecture operating directly on the pixel 
pipeline. 

The principle of operation is as follows. Each image stripe is entered to the 
CNN on scan-line-by-scan-line basis, as depicted in Figure  4.10.a. Here the 
sequence of scan-lines is numbered lexicographically using characters each 
representing a scan-line. Then, if a column in the CNN structure contains scan-
line B, the column to the left will contain the next scan-line C and the column to 
the right will contain the previous scan-line A. Bringing the cell numbering 
(Figure  4.10.b) and the pixel numbering (Figure  4.10.a) together, we come to 
represent a pixel by triplets, where pixel A and C are orthogonal neighbours to 
pixel B but so are the upper Bu and the lower Bl (Figure  4.10.c). Consequently, 
at any given moment the network contains a part of the image as seen by 
viewing the picture.  

Functionality of the architecture, as illustrated in Figure  4.11 can be 
algorithmatically described as: 

for (a pixel line of limited length) do{  
compute the constant contribution ܤ ൈ ݑ  ݅ 
pass ܤ ൈ ݑ  ݅  and y to the next stage  

 perform an iteration 
while (there are more stages)  do{  

pass ܤ ൈ ݑ  ݅ and the iteration result to the next stage 
perform an iteration 

} 
send the local outputs to the image store 

}   
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Figure  4.10 Numbering of CNN cells (b), lexicographically ordered pixels (a) and in 
combination (c). 
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Figure  4.11 Snapshot of data flow between consecutive columns in ILVA. The design 
consists of six columns corresponding to one initial stage and five subsequent iterations. 
The notation of inputs u, outputs y and intermediate constants const follows the 
lexicographical ordering presented in Figure  4.10. The data flows from a node in a 
certain stage to a node, allocated in the same row, in the successor iteration stage. 
Arrows between two columns illustrate data flow originating from all nodes in a column. 

The underlying idea is that a 2-dimensional computation of the local cell is 
flattened into a series of 1-dimensional computations by dropping intermediate 
results on the computational path. In this way, the requirement of each node to 
have data from eight neighbours for finding the output is met. In other words, 
we let every node in the network contain image data from three pixels, i.e. pixel 
values for the cell itself and for its left and right neighbours are stored in each 
node. A direct connection with the two nodes above and below completes the 
communication between a node and its neighbourhood. In short, one node 
contains three pixels and calculates the new value for one pixel and one 
iteration. 
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The prescheduled broadcasting in ILVA keeps the communication interface 
at minimum, which allows for a large number of nodes on chip. The 
performance is high as the system directly follows the line accessing speed, but 
the design suffers from a number of weaknesses. It supports 1-neighborhood 
only, where extension to larger neighbourhood requires, due to the hardwired 
communication interface, a total overhaul. The iterations are flattened on the 
pipeline, one iteration per pipeline stage, making the number of possible 
iterations not only restricted due to the availability of logic, but also fixed. 
Operations that require a single iteration only, have still to go through all 
pipeline stages. Output data has to be fed back to the pipelined system in order 
to perform additional iterations, making it far from trivial to handle larger 
iterations without accessing the external image memory. This requires additional 
logic for loading and uploading pixel data and therefore adds overhead for 
timing control and thereby severely slows down the system. 

Though the architecture is very efficient for a single image operation, the 
handling of image streams (Figure  4.7) is less trivial. This is foremost because 
the pixel line flow does not support localized storage related to the original 
image. In effect, only the first array of nodes operates directly on pixel 
information. Consequently it becomes hard to store past information about more 
than a couple of pixel lines. Therefore this architecture seems unsuited for Wave 
Computing, i.e. manipulating streams of images.  

The dilemma is resolved through packet switching techniques based on the 
concept of Network on Chip  [9] [87]. By splitting the node into a processor and a 
router, local timing becomes uncoupled. Actually, the path is still pre-defined as 
circuit switching with packet-switching techniques are mixed by replacing the 
hardwired communication with a packet-based communication pattern. By 
actively sending information to addressed nodes it becomes possible to create 
temporary storage out of line with the strict matrix topology. In this way, more 
iterations and more history may be accommodated. In the following, we explore 
two alternative architectures. The former serves as an extension to ILVA, where 
some of design limitations are removed. The latter explores a totally different 
approach of dealing with the problem. 

4.4 NOC-BASED IMPLEMENTATIONS 
Sleipner  [49] is introduced as an improvement of ILVA architecture, where 

limitations experienced with the hardwired communication pattern are to be 
overcome. A generalization of the network system in order to support templates 
of an arbitrary size, i.e. neighbourhood size larger than 1, is the main issue. 
Similar to the flow pattern shown in Figure  4.11, sending a packet one column 
to the right means passing the value one iteration ahead. Pixel data is “kept” in 
each column for 3 iteration cycles before it gets modified and passed further. 
Consequently, data will never pass across more than one column at a time, 
regardless the neighbourhood in use. Neighbourhood size, however, dictates the 
number of rows the packet has to cross. Figure  4.12 illustrates transferring a 
packet in a 2-neighbourhood.  
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Figure  4.12 Packet transfer scheme in a 2-neighbourhood. A packet, originating in the 
middle cell in the left iteration column, is transmitted to all cells within the neighbourhood 
in the right iteration column. 

In spite of the clear improvements Sleipner brings, it still inherits the 
limitation of 5-iteration steps from ILVA. This originates from the pipelined 
nature of both designs. An alternative architecture has simply to have a large 
network of simple nodes, each performing the entire iteration according to the 
CNN nodal equation. The equation is not unrolled in time but in space, and the 
nodes retain the result of the equation evaluation so that next iterations do not 
involve access to the external data memory. In this state-scan architecture  [50], 
the neighbourhood is actively scanned for the input values. The coefficient/input 
pairs are sequentially fed through a single multiply-accumulate unit in a 
predetermined schedule. Such a schedule is totally decoupled from the inter-
nodal communication scheme where nodes transfer their values within the 
neighbourhood in parallel. The aspect of being completely local is crucial to 
achieve high performance. Otherwise, a global communication scheme will lead 
to many bus conflicts and will therefore require additional bus arbitration. The 
local broadcasting scheme can be carried out in two different ways: word-serial 
or word-parallel. In the former, each node communicates its input/output value 
to a single neighbour, whereupon the message starts on a circular trip (Figure 
 4.13.a). After 8 time-steps, all nodes within 1-nieghbourhood have received a 
copy. Doing so for all nodes in the neighbourhood simultaneously, all u/y values 
become locally available in each node (This model is covered in  Chapter 5). The 
word-parallel scheme (Figure  4.13.b) follows a more symmetric distribution, 
where the node passes its value first to the orthogonal neighbours at west, north, 
east and south. Next, the orthogonal neighbours duplicate this value in one 
sideway direction perpendicular on the former direction. Doing so for all nodes, 
at the same time, duplex orthogonal connections among all nodes have to be 
available (instantaneously). Instead, the broadcast is parallelized by 
simultaneously activating nodes at a knight-jump distance (think Chess!) as 
depicted in Figure  4.13.c, which brings the number of passes to 10 for the full 1-
neighbourhood.  

Both communication schemes make use of a simple router that consists of 
four switches on the orthogonal directions in line with well-known wormhole 
set-up. The router basically receives a data-packet originating from one of the 
neighbouring nodes, regularly refreshes a local buffer with new information, and 
eventually forwards the packet further while the local processor keeps on 
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computing. Figure  4.14 shows a schematic view of the architecture of a single 
node. The set-up is rather classical where the template memory takes the role of 
the program store. 

 
Figure  4.13 Switched broadcasting schemes: word-serial (a) and word-parallel (b). 
Nodes are activated at knight-jump distance in word-parallel broadcasting (c). 
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Figure  4.14 A node communicates with the neighbourhood through four switches. 

The state-scan approach with word-parallel scheme has been embodied in a 
design called Caballero  [49]. The inner architecture of the node is similar to the 
one in ILVA with common sub-units such as data memory, template memory, 
multiplier-accumulator (MAC) and local controller. A Caballero node is further 
equipped with a FIFO element to bring in global data, i.e. input and initial 
output values. The principle of operation depicted in Figure  4.15 is as follows. 
Pixel lines come into the FIFO till it is fully filled. Then these values are copied 
into the CNN nodes that subsequently start computing and communicating. 
Meanwhile new pixel lines come in over the FIFO. When the FIFO is filled 
again and the CNN nodes have completed all local iterations, the results are 
exchanged with the new inputs. This leaves the CNN nodes with fresh 
information to work on and the FIFO can take new pixel lines while moving the 
results out.  

Upon start, nodes are provided with pixel values over the FIFO-structure. 
The first set of active nodes then start delivering u-values within the 
neighbourhood. Activation is moved among cells until all cells contain complete 
information about neighbours’ u-values. Next time a node gets active, it will 



72  Chapter 4  Unrolling CNN on FPGA
 

 

eventually have the calculated value ready to be transmitted. Once a node 
completes the transmission cycle, the successor node in the activation group 
(Figure  4.16) is turned on. Hence, a mechanism that assures a smooth exchange 
of activation is required. 

FIFO element

Router

Switch

CNN node

 
Figure  4.15 The state-scan architecture uses a network of CNN nodes with a Network-
on-Chip, while the pixels are transported over a distributed FIFO. 

A global control algorithm that groups the CNN into active and non-active 
nodes seems easy to implement. But the impact of a global control unit on 
wiring and timing overhead is not acceptable as the overall performance is 
negatively affected. A better solution is making the desired controlling local 
within each activation group. The activation pattern consists of 5 steps for the 
case of 1-neighbourhood. Once the node completes transmitting a packet, it 
notifies the successor node to get active by asserting an activation signal. Note 
that the activation pattern is incomplete for boundary nodes, i.e. edge and corner 
nodes, as these nodes lack certain neighbours. For further details about 
Caballero the reader is asked to look at  [49]. 

4.5 DISCUSSION 
Mixed (ILVA) and pure temporal architectures differ in a number of ways. 

First, the modular structure of the spatial design offers a better usage of the 
distributed memory than the sliced structure of the temporal design. Second, the 
temporal design with pipelines in the succession of multiplying-adder operations 
for a single DT-CNN node needs a frequent access to the external memory, 
while the spatial design allows unrolling the design for the required 
computational iterations. This eases the demands on external memory access 
and therefore leads to an intrinsically better performance. Furthermore, a single 
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node in the temporal design occupies at least 18 multiplier-adder pairs, which 
leads to imperfect floor plan and thus decreases the degree of resource 
utilization, while the modular nodes of the spatial design allows 24 nodes per 
column. The maximum capacity of a spatial architecture in terms of parallelized 
pixels is about 5-6 times higher than that of a temporal architecture (Table  4.1).  
The low clock rate of 17 MHz, mainly caused by the complexity of the pixel 
address generation, is a major drawback for the temporal architecture. There is 
of course room for more optimization, but the gap to the implementation in the 
spatial architecture, i.e. at least a factor of 40, is too large to bridge. This fact, 
together with the observations listed above, leads to the conclusion that the 
mixed architecture brings clear benefits.  

 
Figure  4.16  Caballero nodes are divided into active and non-active nodes in 
accordance with the knight-jump distance. Each activation group consists of 5 nodes 
that are activated in sequence A-B-C-D-E-A. 

The most important disadvantage of the pipelined design, ILVA, is the 
restriction of the number of iterations into 5, which leads to decreased 
convergence and thus contributes with a tangible loss in performance. The 
packet-based distribution scheme overcomes this limitation and allows for user-
defined level of convergence, which makes it preferable.  
Table  4.1 Comparison of the two state-flow architectures. Logic counts are obtained 
after synthesis with Synplify, while throughput is obtained by simulating the designs 
using ModelSim. In ILVA, different depths (i.e. number of rows) yield different 
throughputs. 

 ILVA Temporal 
Slice utilization 37% 13% 
LUT utilization 28% 12% 
Multipliers 132 78 
BRAMs 132 0 
Max. frequency (MHz) 100 17.3 
Cycles per iteration 10 17
Throughput Mpixel/sec 205-220 4.1 

Word-serialized broadcasting scheme (Figure  4.13.a) can be easily 
expanded to a higher neighbourhood than 1 without significant modifications in 
the strategy. Active nodes are simply chosen with equidistance depending on the 
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neighbourhood in use.  This ability is not valid for the switched broadcasting 
scheme (Figure  4.13.b). On the other hand, the switched approach provides a 
symmetric distribution of packets in the neighbourhood (Figure  4.17).  
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Figure  4.17 Distribution time for 2-neighbourhood in KJL (a) and SSL (b) 

Due to the use of packet-based switching, communication and computation 
needs are decoupled, which removes the hard timing constraints found in ILVA. 
This allows for fetching new input data independently of the operational status 
of the nodes. While the nodes compute and communicate, new template 
coefficients can be sent using the FIFO structure. This releases a considerable 
amount of storage logic that can be used for other purposes, e.g. keeping a 
number of nodal values. Each node corresponds then to different pixels in 
different image frames in a stream. By storing a pixel value from successive 
frames, Wave Computing is within reach. 
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Stretching The Communication 
  

 n a switched broadcasting, as introduced in the state-scan architecture, 
all nodes send their own values to the orthogonal neighbours that copy the 

data and forward it in a perpendicular direction to the received one. 
Theoretically, all nodes will have access to the values of the entire 
neighbourhood after two steps only but the group-based scheduling adds a 
latency as large as a 10 clock cycles. Hence, the actual communication cycle, 
during which a node is idle, is coupled to the number of cells in each subgroup. 
In other words, the short communication pattern of two steps does not boost the 
performance. On the contrary, it affects the final throughput negatively due to 
larger routing units and thereby smaller network. By stretching the 
communication cycle of a 1-neighborhood to 10 clock cycles, the routing 
demands are reduced, which in turns leads to simplified control. This is the 
semi-parallel broadcasting scheme (Figure  5.1.a), where the possible directions 
are always: North, East, South and West. Received packets are labelled in 
accordance to the position of the source node with respect to the current 
(destination) node.  Obviously, the computation needs can be plaited together 
with the communication cycle. Table  5.1 shows how this can be done with 
sending and forwarding packets.  

In this chapter a serial scheme (Figure  5.1.b) is proposed. The values are 
sent out in one direction only, but are forwarded to all nodes within the 
neighbourhood serially. Table  5.1 and Table  5.2 show that stretching the 

                                                            
Most of the material in this chapter has been published in  [VI].  
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broadcasting of packets yields the same sequence of computation calculation, 
regardless of the broadcasting scheme. The received packets are consumed 
directly and overridden by subsequent packets. Consequently, the need of a 
local memory to hold the values of all neighbouring nodes is removed. A single 
register is used to hold the current packet before it is multiplied by 
corresponding template coefficient that resides in a local memory. Traditionally, 
the same memory is used to hold a look-up table representing the discrimination 
function. 
Table  5.1 Semi-parallel broadcasting scheme 

Clock cycle Send Receive Forward Hold Calculate 

௪ ܽ௪ݕ    1 ·  ௪ݕ

2 N S E ݕ௦ ܽ௦ ·  ௦ݕ

3  W  ---- ܽ௦௪ ·  ௦௪ݕ

4 E W S ݕ௪ ܽ௪ ·  ௪ݕ

5  N  ---- ܽ௪ ·  ௪ݕ

6 S N W ݕ ܽ ·  ݕ

7  E  ---- ܽ ·  ݕ

8 W E N ݕ ܽ ·  ݕ

9  S  ---- ܽ௦ ·  ௦ݕ

10     ݂ሺ·ሻ 

 
Figure  5.1 Switched broadcasting schemes: Semi-parallel (a) and Serial (b). 

The chapter is organised as follows. First, a simple network interface that 
can remove the need for global synchronization is introduced in section  5.1. As 
the design is realized on a Virtex-II FPGA from Xilinx, the internal design of 
the node aims on a best utilization of the available functional units.  Section  5.2 
describes how this is carried out. Complications that rise in connection to 
handling boundary conditions are demonstrated in section  5.3. Finally, the 
chapter is closed with a discussion on how the performance can be boosted 
further. 

5.1 KEEPING THE CONTROL LOCAL 
Looking back at Eq. ( 2.34), we see that the part involving ݑௗ-values together 
with the bias remains unchanged during the iterative process of computing the 
new nodal state and thereby the new output. Thus the broadcast will first handle 



 5.1  Keeping The Control Local 79 
 

 

the inputs ݑௗ and the bias and the resulting constant is locally stored. On every 
next iteration, the result of broadcasting the cell outputs will be added to the 
stored constant to give the new cell output. There is no need anymore for a 
global control and the network interface is very simple.  
Table  5.2 Serial broadcasting scheme 

Clock cycle Send Receive Forward Hold Calculate 

௪ ܽ௪ݕ    1 ·  ௪ݕ

2 N S  ݕ௦ ܽ௦ ·  ௦ݕ

3  W E ݕ௦௪ ܽ௦௪ ·  ௦௪ݕ

4  N S ݕ௪ ܽ௪ ·  ௪ݕ

5  N S ݕ௪ ܽ௪ ·  ௪ݕ

6  E W ݕ ܽ ·  ݕ

7  E W ݕ ܽ ·  ݕ

8  S N ݕ ܽ ·  ݕ

9  S N ݕ௦ ܽ௦ ·  ௦ݕ

10     ݂ሺ·ሻ 

In order to simplify the control demands, the addressing of template 
coefficients is obtained through a base-address register that holds the higher 
address part, and indexing of the lower address part that is carried out by the 
nodal controller itself. As the BRAM has the configuration of a 2K entries 
memory, the base-address register does not need to be wider than 6 bits. The 
address space is arranged as shown in Figure  5.2. For a 1-neighbourhood 19 
coefficients need to be stored for each template: 9 control coefficients, 9 
feedback coefficients and a bias. As the control coefficients and the bias are 
used in the first iteration to compute the constant, they are stored sequentially 
and can be addressed by 4 bits. A u/y-flag, set by the nodal controller, allows the 
addressing of the corresponding feedback coefficients. The base address picks 
out the correct template.  

 
Figure  5.2 Address space of the nodal template memory 
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Also a number of templates are pre-stored in the local memory. But other 
templates can be sent by the user to every node in the network through the 
FIFO-elements. These FIFO-elements have served originally to bring the 
external inputs u into the nodes, but their functionality can easily be extended to 
cover the handling of template transmission. At first glance, this additional 
mechanism seems to add on the complexity of the nodal controller, but a proper 
usage of information stored in the header of the received FIFO-packets keeps 
the complexity at a minimum.  

Two main types of FIFO packet do exist. These can be divided further into 
subtypes: 

• Value packet 
o U packet 
o Y packet 

• Template packet 
o Coefficient packet: used to store template coefficients properly in 

the BRAM. 
o Base-address packet: indicating the starting address from which 

the coefficients of the currently used template are fetched. 
A FIFO packet contains two main fields: DATA and CTRL. The former is 

always 8 bits wide. It holds ݕ/ݑ value in the Value packet or coefficients and 
base address in the Template packet. The control field is further divided into 4 
fields of different widths. These are, starting from the most significant bit: 
VALID, TYPE, SUBTYPE and INDEX fields (Figure  5.3). The first three fields 
are 1 bit wide each, while the width of the INDEX field varies depending on 
subtype and size of the network. FIFO elements are arranged in a grid, one 
element per CNN node. These elements are numbered row-wise, i.e. all FIFO 
elements that are aligned along row r are labelled with the row index ݎ. In other 
words, in a Value packet the INDEX field will contain CNN-row number of the 
corresponding node to which the packet is intent.  In a Coefficient packet, this 
field holds the sequential index of template coefficients, but it does not have any 
significance in a Base-address packet. The base address occupies normally the 
DATA field. Apparently, the size of the INDEX field varies with the number of 
rows in the network and the neighbourhood size. Packets are distinguished by 
using TYPE and SUBTYPE fields. The VALID field indicates the validity of 
the FIFO-packet. 

 
Figure  5.3 A FIFO packet is divided into 5 fields of different widths. V,T and S stand for 
VALID, TYPE and SUBTYPE respectively. 
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 The importance of packet division into fields is obvious when the FIFO 
packet is used to control the functionality of a node. In the following, this is 
demonstrated by a simple sequence of actions performed on a certain 
topographic map.  

(1) Use pre-stored template: The first action is to compute a new output by 
applying a pre-stored template. As templates are pre-stored in a BRAM 
locally in each node, a base address serves as a pointer to the template 
to be used.  This starting address is set explicitly through a base address 
packet. Each node computes new y values iteratively until a new ݑ 
packet is received. The content of the FIFO-element is then swapped 
with the current ݕ-value that is flushed out to the user. 

(2) Receive new template: For 1-neighbourhood 19 coefficients have to be 
sent which yields in a TEM-INDEX field of at least 4 bits (Figure  5.3). 
This is carried out using a set of template coefficient packets as 
demonstrated below:  
a. The procedure starts with sending a Base-address template in 

order to point out the position in the template memory where the 
new template is to be stored. 

TYPE = 1 
SUBTYPE =1 
INDEX = XXXX 
DATA= base address 

b. The nodal controller waits for the current iteration to be 
completed before the computation is halted. Most important is 
that the u/y register is disabled to prevent the obtained y-value 
from being overridden.  One node of the last row sends then a 
ready signal out to the user. 

c. When all nodes have completed the current iteration and updated 
the base address, a Coefficient-packet containing the value of the 
bias is sent. The index field is used to address the BRAM where 
the coefficients are stored. This packet is forwarded to all the 
nodes through the FIFO-structure.  

TYPE = 1 
SUBTYPE = 0 
INDEX = bias index 
DATA = bias value 

d. The template coefficients are sent one by one. These will 
gradually reach all the nodes in the system.  

e. The procedure ends when last Coefficient packet is received. The 
nodal controller waits for the new u-value to be received before 
new calculation round is initiated. 

TYPE = 0 
SUB-TYPE = 0 
INDEX = CNN-ROW 
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5.2 THE NODAL DESIGN 
In principle, control demands are reduced down to a mux-enable signal and 
addressing of the template memory. A single register is used to hold one value 
only according to Table  5.2. The content of the register is overwritten as a new 
value is received or locally produced. The schematic design of the node is 
shown in Figure  5.4. Here the local memory is merged with the discriminator, as 
it also holds a table of pre-computed values to map the state onto a certain 
output. 
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Figure  5.4  A schematic view of the serial CNN node. 

The nodal controller has the full responsibility for all computation and 
communication activities. It is built as a simple state machine consisting of 3 
main states as shown in Figure  5.5. Upon start the controller is IDLE and awaits 
a FIFO-packet. From here it can take two different paths: it may ITERATE on 
the received input value or LOAD new template coefficients.  In the latter state, 
the controller enables the writing to certain addresses in the local memory. The 
addressing of the memory is combined using the content of the base address 
register, the u/y flag and template indexing field in the received FIFO-packet. 
Both computation and communication are performed in the ITERATE state. 
Here, the same sequence of sub-states perform constant- and new y-value 
calculation flattened with distribution of data packets within the neighbourhood.  

Apart from the multiplexer in front of the u/y register, there is a need to use 
3 other 2-to-1 multiplexers internally in some components: 2 in the processor 
and 1 in the discriminator. In the former (Figure  5.6), one multiplexer provides 
the accumulator with the proper data, constant value on one side and ݑ · ݕ ,ܾ · ܽ 
or bias values on the other side. The second multiplexer is used when the bias is 
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loaded into the accumulator. Here the bias is multiplied by 1 and send to the 
accumulator.  

 
Figure  5.5 The nodal controller is built as a simple FSM. The ITERATE state tself 
consists i of a number of states.  

 
Figure  5.6 A schematic view of the nodal processor.  

In the Discriminator (Figure  5.7), template coefficients are addressed 
differently. In the ITERATE state the controller indexes the lower part of the 
address, while this is obtained directly from the FIFO-packet during the 
LOADing of the new template. 

 
Figure  5.7 A schematic view of the nodal discriminator 
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5.3 BOUNDARY NODES 
The functional correctness of any CNN system depends on the handling of the 
boundary nodes as these lack complete neighbourhood. Traditionally, the effect 
of boundary conditions is modelled by adding virtual nodes on the edge of the 
network. The problem here is further complicated by the asymmetry of the pre-
scheduled communication pattern: boundary nodes experience different needs 
depending on their position in the network. Figure  5.8 illustrates the disturbed 
communication cycle for edge boundary nodes. The situation is even worse for 
the corner nodes (Figure  5.9). Actually, not only boundary nodes are affected by 
the incompleteness of broadcasting but even close-to-boundary nodes as well 
(Figure  5.10 left). 

 
Figure  5.8 Boundary nodes have an incomplete communication cycle (from step 1 to 8). 
Squares represent nodes while the dotted lines show which part of the packet path is 
missing. The receiveing node is shaded. 
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 Figure  5.9 Boundary nodes located at the corners suffer more of the incomplete 
communication pattern.  

Employing the traditional approach of adding virtual nodes is not as simple 
as it may seem. Besides being unable to solve the problem completely, it adds 
on the network size. In any prescheduled communication scheme, virtual nodes 
should follow the sequence of sending (and eventually forwarding) of values 
that is accommodated by all regular nodes in the network. This works fine for 
close-to-boundary nodes (Figure  5.10 right), but the communication path is still 



86  Chapter 5  Stretching The Communication
 

 

incomplete for boundary nodes. It is clear from Figure  5.11 that top boundary 
nodes will not receive any data in steps (4), (5) and (6), even when virtual nodes 
are added. In other words, the partially asymmetric transfer cycle necessitates 
the existence of two (!) layers of virtual nodes to achieve completion. This holds 
for all boundary nodes except non-corner left edge nodes (Figure  5.8 and Figure 
 5.9). Hence, for an ܯ ൈ  ܰ CNN, the number of virtual nodes is equal to 
4ܰ  ܯ3  12. Each virtual node needs a router to send and forward packets, a 
local register and a simplified controller, which will affects area utilization 
negatively! We aim here for a total removal of the need for virtual nodes. This is 
possible by slightly changing the communication pattern of boundary nodes. 
Let’s consider top and bottom boundary nodes. Then, the actions listed in Table 
 5.3 have to be performed in addition to the regular functionality of the node, 
mainly when a zero-flux boundary condition is used. For fixed boundary 
condition most of the sending/forwarding is redundant as all boundary nodes 
will need to store a single fixed value only that can be used instead of the 
received value. 

 

 
Figure  5.10 Broadcasting scheme of close-to-boundary nodes is incomplete (left), but 
the situation is salvaged by adding a single layer of virtual nodes (right).  Virtual nodes 
are shown as circles.  
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Figure  5.11 One layer of virtual nodes does not complete the broadcasting scheme of 
top boundary nodes. 
Table  5.3 Additional actions in boundary nodes remove the need of virtual nodes. 

Step Top boundary node Bottom boundary node 

(1) Send E (instead of N). 
Store W-value locally. 

Use own value.
u/y register shouldn’t be updated 

(2) ---- ----- 

(3) Use W-value (instead of u/y-
register value) ----- 

(4) Use W-value ----- 

(5) Use own value ----- 

(6) Forward own value W ----- 

(7) Forward own value S Forward W; Receive E (instead of S). 

(8) ----- Forward own value W; Receive E 
(instead of S). 

Implementing the actions in Table  5.3 introduces the need for boundary 
nodes to, sometimes, send or receive two packets simultaneously, which 
requires a remarkable redesign of the nodal controller and the router. 
Furthermore, there is need for an additional register that keeps one value (W-
value in the table). Once again, different boundary nodes will require different 
refinements. This is of course better than the virtual nodes approach, but still 
increases the area considerably. A better solution makes use of the existing 
routing mechanism to forward boundary conditions. It is here denoted swing 
boundary broadcasting as each boundary node will send its own value to one 
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neighbouring boundary node and then to the other boundary node in the 
opposite direction. Due to the use of duplex lines between the nodes, the inter-
nodal connections have to be idle for one time step in between (Figure  5.12). In 
this case, all boundary nodes will have the value of their neighbouring boundary 
nodes available locally. This requires two additional buffering elements to store 
the values, but the effect on area utilization is kept at a minimum. Overall, 3 
time steps are introduced for each newly calculated y-value.  

5.4 DISCUSSION 
The moral of the serialized broadcasting approach is that the transfer needs 

to be sequenced when the communication bandwidth is limited due to area 
restrictions. The nodal control demands are kept at a minimum by interlacing 
communication and computation needs. Local storage needs are reduced as well, 
due to the need of holding one value only locally at any time step. A realization 
of the serial broadcasting approach, hosted on a Xilinx Virtex-II FPGA, shows 
reduced area utilization (Figure  5.13). Special attention should be paid to the 
smaller network interface of the switched serial approach compared to the two-
steps approach employed in Caballero. The simplicity of the serial scheme 
eliminates the complexity of the router, which affects the total size of the node! 
Note that the serial architecture occupies fewer slices than the almost-interface-
less state-flow architecture in spite of that the latter requires less flip-flops and 
equal number of LUTs. This has probably to do with a more balanced logic 
usage among the functional components (Figure  5.14).  

 
Figure  5.12 Swing broadcasting allows distributing of boundary conditions in two steps 
clock-wise (a) and anti-clock wise (c). For proper functionality on the duplex lines a 
separating idle step is introduced (b). 

It is also found that by doing so by state machines not only leads to 
architectural rigidity but also to degraded performance. For instance, 30% of the 
utilized area in the serial broadcasting scheme is occupied by the controller, i.e. 
state machine, (Figure  5.14). One way to eliminate the need of the nodal 
controller, at least partially, is by transferring all values in a source-addressed 
packet. The original data-only packet used previously is padded with a small 
header containing the position of the source node in the grid. Hence, the packets 
carry their addressing information in the header, which can be exploited in two 
different ways.  
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In a traditional approach the packets will be stored in distinct destination 
registers accordingly. In this case, as many registers as there are neighbouring 
nodes are required. For the minimal 1-neighborhood, this means 9 registers. 
This is not as bad as it sounds. Registers are mapped on Flip-flops only and no 
LUTs are used. The present imbalance in the number of LUTs and Flip-flops, 
shown in Figure  5.14, allows for more Flip-flops without affecting the overall 
number of slices. In this way, an eventual architectural rigidity is removed with 
no impact on area utilization.  

 
Figure  5.13 Area utilization per node compared to state-flow and state-scan 
architectures shows that nodal interface is kept at minimum which improves the overall 
logic utilization. 

 
Figure  5.14 Area utilization of the different components with serial broadcasting 
scheme. 

A better approach makes use of the intrinsic positioning information carried 
in the header to address the local template memory of the current node. The 
nodal equation, as given in Eq. ( 2.34), is then performed in the manner the 
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packets are received. The logic required for the addressing of the 
value/coefficient pairs is greatly reduced through the use of a mirrored binary 
numbers of both the rows and the columns. In case of a 1-neighborhood only 2 
bits for the row and 2 bits for the column address are required. In general we 
need only 2ሺݎ  1ሻ bits, where ݎ is the neighbourhood.  

It is also possible to merge the local controllers. The network is divided into 
small groups with each a single controller (Figure  5.15). This semi-global 
control approach does not affect the guaranteed performance but will lead to 
logic optimization. It adds some wiring overhead and therefore slow down the 
system but the gained amount of logic from reducing the number of nodal 
controllers is far much larger. Attention has to be paid so the average wire 
length is not increased to such a limit that the potential benefits of the CNN are 
lost  [84]. The rate of one controller per neighbourhood seems to be a good 
trade-off. 

 
Figure  5.15 Semi-global control requires one controller per group of nodes. 

The complexity of communication control is reduced in the serial scheme 
due to the pre-scheduled sequential arrival of neighbouring nodes’ packets.  A 
side effect is a simplified switching mechanism in the router, which saves in 
area. An additional register is, however, needed to store the constant obtained 
from computing the contribution of the control template and the bias. This 
constant is kept unchanged for all subsequent iterations. Finally, the usage of 
BRAM to implement the discrimination look-up table constitutes a main 
hindrance for accommodating more nodes on FPGA. It couples the number of 
nodes tightly to the availability of BRAM components on chip, even if area 
utilization allows for more functional units.   

In a typical vein feature extraction application  [51] we find that different 
templates need to be applied to the same image, and the two results need to be 
used in a next dyadic operation to bring a single result on which again two 
different templates are applied, and so on. With the current implementation, we 
can reduce the amount of external memory access, as each frame only has to be 
loaded once. Additional registers are simply added for each sub-operation. 
Factually, in this application we need to go through 7 subsequent CNN layers 
and never have to re-load from external memory. This provides us with an 
amazing 20 ൈ higher performance, making real-world, real-time and real-power 
product applications possible. 
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Memory Considerations 
  

fter  the introduction of Cellular Neural Networks as a generic solver of 
non-linear differential equations, most of the work has been in image 

processing. An image-processing task applies a sequence of simple templates to 
each image in succession. Assuming that a single iteration of a given template 
requires ݐ௧ time units, the question is how this relates to the time needed to 
complete the whole task ݐ௧௦. Apparently, it depends on the CNN architecture. 
In the Bi-i camera  [89], the core of system is an analogue chip supported by a 
DSP for non-CNN functionality and embedded in a digital programming 
environment  [28]. In line with the earlier discussion in  Chapter 3, the employed 
core is analogue in order to achieve the high network density that is required to 
handle image of sufficient size. Digital implementations were simply 
disregarded as the massive amount of multiplications in a typical CNN 
computation would otherwise be too area consuming.  

As we already have seen, even if this is true for current techniques and 
technologies, the situation is far from impossible to change. The series of digital 
implementations discussed in  Chapter 4 shows that a notable increase in 
network density can be obtained by careful handling of the internal 
communication. The problem remains to make choices in the wealth of 
architectural alternatives. 

However, three bottlenecks have to be removed for the digital CNN camera 
to become reality. The first issue is the memory bandwidth. In contrast to the 

                                                            
Major parts of this chapter have been published in  [V] and  [VIII].  
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focal-plane approach, digital implementations are bounded by availability of, at 
least, one frame of the image stream on external storage. The second issue is the 
on-chip storage requirements as such storage alleviates the effect of processor-
to-memory band gap. Lastly, the computational efficiency of the network 
implementation needs attention. The chapter presents these aspects and points 
out what makes the digital CNN camera viable. In section  6.1, two formulas that 
express the influence of data fetch from memory are derived. Then section  6.2 
looks into the processor/memory band gap and how this works out for two of 
the digital implementations, i.e. ILVA and Caballero. The main issue here is the 
effect of slicing (windowing) on the overall performance. Subsequently, the 
situation when slicing is not required is discussed in section  6.3. Finally, the 
chapter is closed with a discussion.   

6.1 OFF-CHIP AND ON-CHIP STORAGE 
Nowadays most development boards use Double Data Rate (DDR) SDRAMs 
for main memory. Their name is derived from the fact that they transfer the data 
on both rising and falling edges of the bus clock. The DDR2 standard adds to 
that a doubling of bus versus memory clock so that effectively four data words 
are transferred per memory cell cycle. This is collectively measured in “data 
transfers per second per pin”, which means that the bandwidth is related to both 
the data rates per pin and the width of the data bus (Table  6.1). Memory 
bandwidth is calculated as data transfers per second multiplied by the number of 
bits in a data word.  
Table  6.1 DDR/DDR2 SDRAM JEDEC standards  [90] 

SDRAM 
Standard  

Memory 
clock (MHz) 

Cycle time 
(ns) 

I/O Bus 
clock (MHz) 

Mega data transfers 
per second 

DDR-200 100 10 100 200 
DDR-266 133 7.5 133 266 
DDR-333 166 6 166 333 
DDR-400 200 5 200 400 
DDR2-400 100 10 200 400 
DDR2-533 133 7.5 266 533 
DDR2-667 166 6 333 667 

If memory bandwidth (in bits) and speed grade are denoted ݓ and ݏ 
respectively, then the time required to fetch a frame of values is given by Eq. 
( 6.1). Here, ݓௗ stands for the width in bits of input/output values in the CNN, 
while ݎ and ܿ represent the number of rows and columns in the CNN 
respectively. 

௧ݐ ൌ
ௗݓ · ݎ · ܿ

ݓ · ݏ
( 6.1)

From Eq. ( 6.1), one may conclude that the wider the memory is the smaller 
the data fetch time, which reduces the overall execution time as will be seen 
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later. Figure  6.1 illustrates how the choice of DDR memory affects data fetch 
time. The figure is valid for a CNN with 100 nodes and with ݓௗ ൌ 8 bits. 

 
Figure  6.1 Data fetch time versus memory bandwidths. 

Where the image is entered line-by-line, there are two basic approaches: the 
lines are buffered (state-scan approach), or the network is fitted to consume the 
lines as they come in (state-flow approach). In the former approach, the relation 
in Eq. ( 6.1) can be used straight forward, but it needs modification when the 
state-flow approach is considered. Here, a fetched scan-line is consumed 
directly, which has great influence on the overall performance of the system as 
will be seen soon. In this sense, if a scan-line is mapped on a column of nodes 
(as in ILVA), the time needed to fetch one line from the external memory is 
obtained according to Eq. ( 6.2).  

_௧ݐ ൌ
ௗݓ · ݎ

ݓ · ݏ
( 6.2)

Intuitively, the basic constraint that every CNN realization should take into 
consideration is that memory latency becomes a bottleneck of the performance 
if the inequality given in Eq. ( 6.3) is valid. In other words, the time needed to 
fetch the desired amount of data from the external memory should not exceed 
the time it takes to perform the entire sequence of templates on data currently 
available in the CNN. Otherwise, the system must be halt waiting for the 
fetching procedure to be completed. In fact, this is valid for state-scan 
architectures only. For the state-flow approach, memory latency is taken care of 
intrinsically by the pipeline itself. Here, the requirement is as given in Eq. ( 6.4).  

ݐ  ௧௦ݐ ( 6.3)

_௧ݐ  ௦௧ ( 6.4)ݐ
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For the state-scan architecture this enforces the need for on-chip buffering. 
The idea is to fetch the next image from memory and store it locally on chip, 
while the CNN processes the current image. This has to be replicated for the 
resulting output as it has to be buffered before it is sent to the external memory. 
This will clearly bind a large amount of the available logic on chip as storage 
elements.  

The NoC-based approach, Caballero, resolves the need of pre-buffering 
partially through the employment of a FIFO-structure. Once the input values are 
brought in, the template is iteratively applied. The number of iterations, ݊௧, is 
in principle infinite. The time needed to apply a certain template for a number of 
iterations on one frame depends on time to exchange information between the 
nodes in addition to template execution time. The time needed to perform the 
whole task is assumed enough to bring in the data of the next image from the 
external memory locally to each node. The number of templates and the 
complexity of each template, i.e. the number of iterations, are crucial to 
overcome the memory-band gap. The basic performance constraint given in Eq. 
( 6.3) is then fulfilled. 

This is however true if and only if a whole image can be accommodated on 
the CNN. This memory limitation is crucial for certain choices of FPGA chips. 
For XC2VP30, the maximum available BRAM is 306 KB. The additional 
storage provided as distributed memory is of marginal importance as it can 
accommodate 53 KB maximum! Assuming a pixel is represented by 8 bits 
(greyscale), accommodating one PAL image on CNN will need 720 ൈ 576 = 
414720 bytes to be available on chip, i.e. at least 405 KB of RAM is required. 
This assumes that RAM is not needed for storing any kind of data apart from 
pixel information; one pixel per node.  

We may therefore rightfully assume that the CNN network can handle only 
a part of the image at a time. It has been suggested earlier, that striping the 
image may solve this problem. Now, a smaller part of the image is fetched from 
memory which decreases the latency, but not more than one template out of the 
given sequence can be applied before the next slice of the stripe has to be 
fetched. Furthermore, handling the edges of slices adds to the complexity as a 
certain degree of overlapping is required.  

In the following, a frame execution formula is derived to evaluate the effect 
of slicing for each of the digital realizations. We aim for a unified notation and 
make the following assumptions:  

 Input values are brought per pixel line into a CNN column. Subsequent 
pixel lines will take subsequent columns. 

 Inter-nodal broadcasting is instantaneous, i.e. it doesn’t add any delay 
to the system. 

6.2 COMPUTATIONAL EFFICIENCY 
In general, the nodal output execution time, ݐ௧, can be further divided into 2 
parts:  
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௦௧ݐ ♦  : the time needed to calculate the control contribution along with 
the bias, i.e. ∑ ݑܤ  ݅, once per input pattern. 

 ,௬:  the time needed to calculate the iterative part of the state equationݐ ♦
i.e. ∑  .followed by discrimination ,ݕܣ

The first part needs to be performed only once for the given input-pattern, 
while the second part is repeatedly performed depending on the required number 
of iterations. Obviously, ݐ௦௧ and

 
 ௬ depend on the r-neighbourhood, and soݐ

does ݐ௧ as well. For all digital realizations carried out so far it shows 
that ݐ௦௧ ൌ   is used when noݐ ௬.  Therefore the common notationݐ
ambiguity rises. Hence, template execution time is basically obtained according 
to Eq. ( 6.5) 

௧ݐ ൌ ௦௧ݐ  ݊௧ · ௬ݐ ൌ ሺ1  ݊௧ሻ · ݐ ( 6.5)

In a state-scan architecture with a 1-to-1 mapping between digital nodes and 
CNN cells, the time needed to initially fill the network with data depends on the 
total number of columns in the design, ܿ, and the time needed to fetch one 
line of the frame, ݐ_௧ , as illustrated in Eq. ( 6.6). Hence, frame execution 
time is calculated according to Eq. ( 6.7).  

௧ݐ
 ൌ ܿ · _௧ ( 6.6)ݐ

ݐ
 ൌ ௧ݐ

  ௧ݐ
 ൌ ሺ1  ݊௧ሻ · ݐ  ܿ · _௧ ( 6.7)ݐ

This is, however, true only if the size of network is large enough to 
accommodate the whole frame. Slicing the frame introduces a number of 
complications. The number of slices depends on the size of both frame and CNN 
as shown in Eq. ( 6.8), where ݎ, ܿ and ݎ stand for the number of 
rows and columns in the processed frame, and the number of rows in the CNN 
respectively. 

݊௦
 ൌ

݁ݖ݅ݏ ݁݉ܽݎ݂
݁ݖ݅ݏ ܰܰܥ ൌ

ݎ · ܿ

ݎ · ܿ
 ( 6.8)

 Two cases may rise depending on the relation between template execution 
time and data fetch time: 

 If ݐ௧
   ௧, frame execution time is then dependent on theݐ

number of slices and template execution time. All output values 
corresponding to the inputs of the entire frame have to be available 
before next iteration is performed. In other words, a single iteration has 
to be completed on each slice until the whole frame is processed before 
the next iteration is performed on the first slice of the next frame and so 
on. As the procedure of fetching overlaps with the computational part, 
due to the usage of FIFO-structure, Caballero is idle only when the first 
slice is brought in and the last slice is moved out.  In Eq. ( 6.9), frame 
execution time is given as function of frame size, CNN size, number of 
iterations, and data fetch time. Note that the obtained formula differs 
from the one in Eq. ( 6.7).  
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ݐ
 ൌ ݊௦

 · ݊௧ · ൫ݐ௦௧  ௬൯ݐ  2 · ௧ݐ
 ൌ 

ൌ 2 ൬
ݎ · ܿ

ݎ · ܿ
· ݊௧ · ݐ  ܿ · _௧൰ݐ ( 6.9)

 If ݐ௧
   ௧, frame execution time depends only on data fetchݐ

time as shown below. 

ݐ
 ൌ ݊௦

 · ݊௧ · ௧ݐ
 ൌ 

ൌ
ݎ · ܿ

ݎ · ܿ
· ݊௧ · ܿ · _௧ݐ

( 6.10)

In contrast to Caballero, ILVA has an implicit bound on the number of 
iterations by the size of the implementation. As the nodes are arranged in 
pipeline stages, and the iterations are mapped on the pipeline stages; the 
maximum number of performed iterations is one shorter than the number of 
pipelines ݊. The first pipeline stage is used to calculate the constant part, 
while each of the following stages completes the computation of state and 
corresponding output. In all stages, the operation is accomplished during time 
 . Therefore, ILVA’s template execution time (Eq. ( 6.11)) differs from theݐ
one previously obtained for Caballero (Eq. ( 6.5)). The calculated time is precise 
in Caballero, while it is on average in ILVA. 

௧ݐ
ூ ൌ

݊ · ݐ

݊ െ 1
 ( 6.11)

The pipelining mechanism requires only one (sub-) line of the frame to be 
present prior to computation start. ILVA consumes the fetched line directly but 
still experiences a latency that equals three times ݐ. An overall latency rises 
from the fact that the pipeline has to be filled before the first output values are 
produced. This is reflected in Eq. ( 6.12). However, when the pipeline is filled, a 
new output value is produced each ݐ. In other words, pipeline execution 
time ݐ can be replaced by ݐ without loss of generality.  

ݐ
ூ ൌ ܿݐ௧

ூ  ݐ  ݕܿ݊݁ݐ݈ܽ ൌ 

ൌ ܿ
݊ · ݐ

݊ െ 1
 _௧ݐ  3 ݐ · ݊

( 6.12)

Slicing of the processed frame is required when ݎ   . Number ofݎ
slices is then given as:  

݊௦
ூ ൌ

ݎ

ݎ
 ( 6.13)

In line with the earlier discussion, two different cases are distinguished: 
_௧ݐ    ௧, frame execution time depends mainly on theݐ

 and ݊௦ݐ
ூ as shown in ( 6.14). 

ݐ
ூ ൌ ݊௦

ூ ቆ ܿ · ݊ · ݐ

݊ െ 1
ቇ  _௧ݐ  3 ݐ · ݊ ( 6.14)
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            ൌ
ݎ

ݎ
ቆ ܿ · ݊ · ݐ

݊ െ 1
ቇ  _௧ݐ  3 ݐ · ݊

_௧ݐ    ௧, frame execution time depends mostly on data fetchݐ
time: 

ݐ
ூ ൌ ݊௦

ூ · _௧ݐ  3 ݐ · ݊ ൌ

            ൌ
ݎ

ݎ
· _௧ݐ  3 ݐ · ݊ ( 6.15)

Due to the different mechanisms employed in state-flow and state-scan 
architectures, a straightforward comparison of frame execution times, as given 
in equations ( 6.9) and ( 6.14) respectively, is not feasible. A key factor is the 
number of iterations a given template is performed. In ILVA, this number is 
tightly coupled to the number of realized columns, i.e. ݊௧ ൌ ݊ െ 1. 
Allowing more iterations will render the comparison unfair as it violates the 
intrinsic limit of functionality in ILVA. However, if less iterations are required, 
i.e. ݊௧ ൏ ݊ െ 1, the superfluous pipeline stages should be removed and 
replaced, if possible, by nodes in such a way that the total number of rows in 
ILVA is increased. Equation ( 6.16) explains the relation between the number of 
rows in ILVA and Caballero. 

ݎ
ூ ൌ ቐ

ݎ
                  ݂݅ ܿ

  ݊௧

ݎ
 · 

ܿ


݊
 ݁ݏ݅ݓݎ݄݁ݐ    

 ( 6.16) 

In the following, the comparison is arranged such that first a single iteration, 
݊௧ ൌ 1, and then several iterations, up to ݊௧ ൌ ܿ െ 1, are performed on 
both architectures. This will, with respect to Eq. ( 6.16), yield the different 
settings given in Table  6.2.  
Table  6.2 The actual number of rows in ILVA as a function of the number of pipelines 
and number of columns in Caballero. Parameter r represents the total number of rows in 
Caballero. 

Iter  # Pipelines  Number of rows in ILVA

ݎ
  6 7 8 9 10 11 12

1  2    3r 3r 4r 4r 5r 5r 6r
2  3    2r 2r 2r 3r 3r 3r 4r
3  4    r r 2r 2r 2r 2r 3r
4  5    r r r r 2r 2r 2r
5  6    r r r r r r 2r
6  7    r r r r r r r

Given a DDR-200 SDRAM with ݓ ൌ 16 bits, Figure  6.2 illustrates the 
difference in data fetch time between ILVA and Caballero when ݓௗ ൌ 8. We 
know from Eq. ( 6.6) that data fetch time for Caballero depends on the number of 
columns as well, which is reflected in the figure. 
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Figure  6.2  Data fetch time as function of the number of CNN rows when DDR-200 is 
used. The time increases linearly with the number of columns in Caballero while it is 
independent of pipeline depth in ILVA. 

In order to express frame execution times in seconds, both ILVA and 
Caballero are assumed to run on 100MHz, resulting in  ݐ ൌ 10ିݏ in both 
realizations. We assume further that a PAL frame of size 720 ൈ 576 is stored on 
an external storage of type DDR266 with  ݏ ൌ 266 ൈ 10 and  ݓ ൌ 16 
bits. With respect to equations ( 6.16) and ( 6.2), Figure  6.3 and Figure  6.4 
illustrate frame execution times with different sizes of the realized CNN. To 
fulfil the condition ݐ௧

   .௧, a DDR-266 or higher should be usedݐ

 
Figure  6.3 Frame execution time for ILVA with different CNN sizes, when slicing is 
required. The legends, 6 to 10, represent the number of pipelines, i.e. the number of 
columns in the design. 
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Figure  6.4 Frame execution time for Caballero with different CNN sizes, when slicing is 
required.  

The figures show clearly that the state-flow architecture outperforms the 
state-scan architecture for all CNN-sizes when larger number of iterations per 
template is required. Caballero is better when 1 or 2 iterations are needed. This 
is caused by the need to swap all slices in and out for each iteration. On the 
other hand, if a sequence of iterations is allowed on the same slice before next 
slice is brought in, a different situation arises. This requires a slight modification 
of Eq. ( 6.9) as shown in Eq. ( 6.17). The resulting execution time is reflected in 
Figure  6.5. Here, it is noticed that for more accommodated columns Caballero 
performs better, almost regardless of the number of iterations. 

ݐ
 ൌ ݊௦

 · ௧ݐ  2 ܿ · _௧ݐ

             ൌ
ݎ · ܿ

ݎ · ܿ
· ሺ݊௧  1ሻ · ݐ  2 ܿ · _௧ ( 6.17)ݐ

6.3 MOVING AWAY FROM SLICING 
The alternative to slicing is pixel sampling, where each CNN cell will 
correspond to the average of a pixel block rather than just one pixel. This can 
initially be done for the entire image and then repeated for smaller parts thereby 
gradually focusing in to the region of interest. Template sequencing is not a 
problem, nor have boundary conditions to be communicated between the 
handling of different image parts. To make this work requires a reasonable CNN 
network size to limit the overhead in reaching the region of interest. On the 
other hand, it has only to be done once in the task as the region of interest will 
be the same for all templates in succession. 

The conclusion is that a Caballero-like architecture overcomes memory 
latency if and only if 
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♦ the size of the CNN allows for a rapid determination of the region of 
interest, on which the succession of templates is applied. In this sense, a 
number of approaches can be used, such as pixel averaging and texture 
analysis algorithms.  

♦ the task consists of a number of templates, with a total number of iterations 
such that the total elapsed time exceeds, or at least, equals the time needed 
to fill the FIFO-structure.  

 
Figure  6.5 Frame execution time of Caballero is reduced when all the iterations are 
performed on a slice before next slice is brought in! 

Having that in mind, the overall task execution time depends partially on 
how fast the region of interest is found, but mostly on the template set and the 
clock frequency of the digital design itself. Equation ( 6.18) provides a simple 
formula to calculate task execution time. 

௧௦ݐ ൌ ିି௧௦௧ݐ   ௧ݐ ( 6.18) 

The first part of the formula is independent of the architectural approach. 
The template computational part is, however, dependent on the efficiency of 
implementation and requires further attention. In the following, we focus on the 
contribution of this part only. 

Consequently, the time required to perform a single frame is expressed in 
Eq. ( 6.19). The CNN is idle while the frame is brought into chip and moved out 
to memory, therefore the contribution of ݐ௧. Apparently, frame execution 
time increases linearly with iteration count for a given network size, but data 
fetch time is dominant for larger networks (Figure  6.6) 

ݐ ൌ 2 · ௧ݐ  ௧ݐ ( 6.19) 
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Figure  6.6 Frame execution time using DDR-266. 

A task consists of a number of templates that are applied sequentially. In the 
extreme case a new frame need to be fetched from memory for each applied 
template. The overlapping between template execution and data fetching, which 
rises when two or more templates are sequentially performed, may complicate 
the derivation of task execution time formula. Intuitively, execution time of a 
task that consists of ݊௧ templates is expressed as: 

௧௦ݐ ൌ 2 · ௧ݐ   ௧ሺ݅ሻݐ



ୀଵ

( 6.20)

Substituting Eq. ( 6.5) in Eq. ( 6.20) gives 

௧௦ݐ ൌ 2 · ௧ݐ  ݐ · ݊௧  ݊௧ሺ݅ሻ



ୀଵ

( 6.21)

Equations ( 6.20) and ( 6.21) are valid if and only if the condition in Eq. 
( 6.22) is satisfied.  

௧ݐ  ݇        ௧ሺ݇ሻݐ ൌ 1, 2, ڮ , ݊௧ ( 6.22)

On the other hand, if the inequality given in Eq. ( 6.22) is not valid for any 
of the sequentially performed templates, term ݐ௧ሺ݅ሻ in Eq. ( 6.20) has to be 
replaced by term ݐ௧, and task execution time becomes: 

௧௦ݐ ൌ ሺ2  ݊௧ሻ · ௧ݐ ( 6.23)

Figure  6.7 illustrates the effect of Eq. ( 6.22) for different DDR standards 
with memory word width of 8 bits. The task is assumed to consist of 6 templates 
that are performed sequentially with different iteration count; 2, 2, 1, 2, 2, 1 and 
4 respectively. Obviously, the slower the memory the more dominant is data 
fetch time when the network gets larger. 
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Figure  6.7 Task execution time for different SDRAMs according to Eq. ( 6.22). 

For a given digital CNN implementation ݐ is fixed for a certain 
neighborhood. As most simple templates require a single iteration only, Eq. 
( 6.20) and ( 6.21) are more likely to be considered as representative for task 
execution time. It is worth mentioning that, in most applications, the result of 
one template in the task serves as input for the subsequent template. The relation 
between ݐ௧ and ݐ௧ is not important then, and Eq. ( 6.21) is always valid. 

6.4 DISCUSSION 
The development of classical computer architecture has shown an emphasis on 
computing acceleration by pipelining the central processing unit  [81]. More and 
more the memory bottleneck becomes a concern. Of late, has attention moved to 
more spatially distributed methods, such as networked tiles, which offer 
inherent parallelism and local storage. The underlying assumption is that 
sequencing instructions over the local node takes the pressure away from the 
memory access by the many parallel executing tasks. 

We see the same principle back in the research reported in this thesis. On 
one hand, we aim to have as much nodes executing in parallel as possible. This 
poses a severe burden on the memory bandwidth. Therefore it is required to do 
more locally. From inspection of existing CNN applications, one finds that data 
is accessed in memory more than once. Therefore bringing the amount of 
accesses down to 1 or less will easily pay the bill. 

Actually, the question of communication with external storage units to bring 
in/move out values to/from the CNN array has never been answered 
satisfactorily in all available hardware realizations of CNN. In the conceptual 
CNN-UM  [20] the problem is solved by photo transduction for input values 
while the proposed electromagnetic detection approach remains theoretical only. 
Factually, most famous mixed-signal architectures  [24]- [30] incorporate the 
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optical input approach to overcome the memory access bottleneck and provide 
the promised computational speed when greyscale 8-bit input values are used.  

Supporting more operations on the same data has two consequences. Firstly 
we need to maintain local copies. Then data can be used from the local store 
rather than from the external memory. Secondly we need to have a CNN cell 
that can easily change state and therefore implement a multi-level structure. A 
time-multiplexed node is such a cell. 

The benefits will appear most clearly when the application is designed to 
optimize data re-usage. In  [40] it is discussed how a CNN implementation can 
be derived by a morphological specification, such that operations are either in 
sequence (passing results from operation to operation) or in reconvergent 
parallel paths (using the same data and combining the individual outcomes into 
a single result).  For instance, the typical image understanding algorithm, such 
as used for velocity measurement  [52], runs all templates on the same set of 
frames (RoI) or on the result of a previous template. In slight modification of 
Eq. ( 6.22) fetching 2 frames must be done before a set of 7 templates is 
completely executed. As shown in Figure  6.8, this reduces the task execution 
time considerably for larger networks, read images.  

 
Figure  6.8 Task execution time with reduced data fetch. Compared to Figure  6.7, time 
reduction is obvious for larger networks. 
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Applications 
  

his chapter aims to discuss the different systems and to present some 
testing results. As image processing has always been a popular field of 

CNN applications, it feels natural to verify the significance of the different 
digital implementations presented in the previous chapters, by realizing a 
number of experimental systems to solve certain image processing tasks. Some 
of these tasks require, however, slight modifications in the system design to 
make the testing feasible. The popular Game of Life is implemented for the first 
time on FPGA in section  7.1. The interest in this game comes from the fact that 
it is especially this game that has brought glamour to the Cellular Automata 
 [10]. In section  7.2 the link between picture enhancement and Object Oriented 
Image Analysis scheme is stressed, where the latter is employed to measure 
velocity of an OoI in a video sequence.  Finally, a concluding discussion is 
given in section  7.4. 

The hardware platform is an FPGA from Xilinx, particularly Virtex-II Pro 
P30, which is installed on a development board from Memec  [46] that provides 
4 external SDRAM memory blocks with a size of 32 MB. Additionally, the 
board is equipped with both serial and parallel communication ports, allowing 
for different communication schemes with a PC. 

                                                            
Parts of this chapter have been presented in  [I],  [II] and  [III].  

 

T 
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7.1 GAME OF LIFE 
The Game of Life is not just an example of artificial life, but also an abstraction 
of a typical predator/prey situation. The Cambridge mathematician John Horton 
Conway, who spent a lot of time in manually finding the proper rules, has 
originally proposed it in 1970 but the game is popularised by Martin Gardner 
 [53]. 

The game is played on an arbitrary board. The cells can be either populated 
or not (black or white). According to specific rules, a cell can change the 
population under influence of the neighbours. For instance: 

A cell that is populated dies if at most one or at least four of the neighbours 
are populated (respectively loneliness and overpopulation), while it will become 
populated when three of its neighbours are. 

Important is therefore the initial situation. For a number of starts, the effect 
has been recorded in literature. In Figure  7.1, one of the many ways to get into 
pattern oscillation is shown. As the Game of Life is a cellular automaton, it 
ought to be possible to accelerate the game by means of a CNN. The purpose of 
the project is therefore to demonstrate this acceleration. This is not a first in 
general, as the Game of Life has been demonstrated in analogue hardware  [54] 
and in software, both on general-purpose as in vision hardware  [55]. There are 
also conventional solutions implemented on FPGAs  [56]; therefore the project 
aims to be the first System-on-Chip (SoC) on FPGA, taking the other solutions 
as quantitative references. 

 
Figure  7.1 A Game of Life that never stops. A black cell is alive and turns white when it 
dies.  
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In the black-and-white version, only one convergence iteration is necessary 
per game step. The state of a cell changes between white (-1) and black (+1), 
with no other grey-levels in between. As the operation is local, it can, similar to 
e.g. the template of Logic Not, be performed by calculating the nodal formula 
only once. This pleads for the pipelined architecture, configured with a minimal 
depth. On the other hand, when the game is played with grey-level population, 
the choice of architecture is not straightforward and additional experience is 
required. 

The actual operation is performed on the input values only. Because no 
feedback occurs, the need of feedback template ऋ is eliminated. As the 
contribution of neighbouring cells inputs is already normalized, a simple 
summation suffices for making a decision whether a cell is to be populated or 
not. Hence, the bias term is not needed either. Consequently, based on the 
cloning template, given in ( 7.1), a necessary condition for a cell to 
become/remain populated is that the state of the cell, ݔ, equals 2 or 3, 
otherwise it is considered dead. However, the current state of the cell is decisive 
to obtain the proper output (Table  7.1).  

0,
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⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
= iBA ( 7.1) 

Table  7.1 ‘Truth table’ for the game of life where all values follow the binary 
representation. 

Input value ࢉ࢛ State ࢉ࢞ Output value ࢟

0 0010 0 
1 0010 1 
- 0011 1 
- Otherwise 0 

7.1.1 Implementation 
A slimmed-down version of the Sleipner architecture has been chosen to 
perform the game. It has one column only, containing nodes that perform the 
control contribution,  ∑  only.  The internal design per node is slightly ,ݑܤ
modified to enable the realization of the truth table (Table  7.1). The nodal input 
that is one bit only is buffered and concatenated together with the computed 
state. The obtained word is then used to address a small memory providing the 
final output. Pixel data of the entire game board is saved on chip, using two 
BRAMs. This eliminates the need of communication with external SDRAM 
units and, thus, simplifies timing control. An input buffer is used to bring the 
pixels into the network from one RAM, and an output buffer to send the results 
back to the other RAM. 
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For simplicity, the procedure of testing the final hardware is replaced with a 
simple visualization mechanism. The target board is equipped with 8 light-
emitting diods (LEDs) for verification purpose only  [46]. Instead of sending the 
outputs of the network to a PC, the LEDs are fed with output values. A turned-
on LED indicates a populated cell (black pixel value in the network). As only 8 
LEDs are available the size of the network is decreased to consist of one column 
with 8 nodes as shown in Figure  7.2.  

The initial state of the game enters the network according to the scheme 
described in section  4.3, i.e. a scan-line-by-scan-line. The LEDs show then a 
sequence of scan-lines, where each light combination corresponds to one output 
line. After all, the purpose of this project is to demonstrate the acceleration a 
CNN implementation can provide. Thus, replacing the procedure of testing with 
the simple visualization mechanism is acceptable. 

Node
1u y

Block Select 
RAM

Node 
2u y

Node
3u y

u

LEDs

Node
3u y

 
Figure  7.2 A schematic view of final design testing. 

7.2 VELOCITY MEASUREMENT 
In a typical CNN-based system as Vehicle License Plate Recognition 

(VLPR)  [48], a character string of a well-defined composition is available on a 
clean background. Factors such as limited resolution and dirty surfaces 
complicate the situation. However, It is of increasing interest to determine and 
read text on arbitrary locations, i.e. not only license plates. Figure  7.3 gives an 
easy but common example. The same template set as in VLPR can be used for 
this purpose, but the consistency check is a bit more complicated. Once the 
image is extracted by means of a pre-processing system, a standard optical 
character recognizer (OCR) package in the loop will generally suffice for 
performing the desired recognition.  

In professional VLPR systems, complications arise due to the speed of the 
car versus the angle, and quality of the camera. But such complications can also 
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appear in other situations, as exemplified in Figure  7.4. Here one wants to read 
the text on a passing train, as required for train management systems.  

 
Figure  7.3 Reading the text from the E-building at Faculty of Engineering (LTH), Lund 
University (Sweden). 

The problem has different aspects, each with their own importance. The 
first is movement detection: which object in the image actually moves, and with 
which speed and in which direction. Once such objects are found and labelled, 
the next issue is to track such an object, while diagnosing the reason for and 
character of the movement. A related aspect, for which we want to check the 
feasibility in this experiment, is whether the rendering of the moving object can 
be improved by using knowledge about the actual movement.  

 
Figure  7.4 After edge detection on an image of Lund Railway Station, the text on the 
moving train can still not be read. 

There are of course other (and maybe better) ways to measure object 
velocity than by smart vision. The subject was chosen because velocity 
estimation is crucial to dynamic face recognition  [107]. A good CNN system 
must be stream-oriented: all the processing needs to be on the single image flow 
while reconfiguring the hardware. As literature only shows mixed 
hardware/software approaches, the focus is on showing how velocity 
measurement can be efficiently realized in hardware only.  

For the application described in this section we use the NoC-based CNN 
implementation Caballero. The core of the design is a grid of regularly spread 
cells building the DT-CNN. In order to provide the core with image pixels, a 
serial-to-parallel unit makes use of an SDRAM controller to read data from one 
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of the external SDRAMs, where image frames are “pre-loaded “. The actual size 
of a frame, delivered by a PAL video camera, is 720x576 pixels. Hence, with 8-
bits pixel width, each SDRAM is able to hold up to 80 frames, which is 
sufficient to complete the task of velocity estimation. However, two different 
SDRAM units are used; one for input image frames and one for storing resulting 
image frames. Output pixels are directed to the SDRAM by a parallel-to-serial 
unit that captures these pixels from several FIFO units aligned between the 
columns of the CNN. Figure  7.5 shows a schematic view of the complete 
design.  

 
Figure  7.5 A schematic view of the design. Arrows represent data transmission between 
few units, but far from all data lines are shown in the figure. 

In the following, the concept of velocity estimation is first introduced in 
 7.2.1 before the implementation of the algorithm using CNN basic operations is 
presented in  7.2.2. In subsection  7.2.3, the reliability of the algorithm is ensured 
by performing MATLAB verification, before the hardware design is tested.  

7.2.1 Considerations on the Velocity Estimation Algorithm 
Motion detection is a central scheme in various areas of vision sensing, both in 
industrial as in consumer applications. The concept is based on the simple 
observation that moving objects carry the most important features, in 
comparison to other details contained in background and still parts. Thus, 
detecting and coding the moving objects is essential for image understanding. 
The typical image-analysis algorithm consists of four main steps: 1) 
segmentation 2) parameter (motion) estimation 3) image synthesis and 4) 
consistency observation  [107]. The most important and computationally most 
complex one of these steps is the task of segmentation, which is accomplished 
by cutting a scene into different moving objects (regions). These objects have to 
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be labelled and measured. Furthermore, consistency of object segmentation is an 
essential aspect to guarantee quality of the result. Therefore, maintaining a 
global uniform velocity is crucial to recognize the segmented objects  [109]. 

The object-oriented image analysis scheme is widely accepted as an 
interesting and sophisticated approach for future video coding systems with very 
low bit-rate. By transferring the moving objects only, the transmission rate is 
greatly reduced  [107]. In  [109] the emphasis is on achieving object-oriented 
image compression for videoconferencing purposes on a CNN-UM hardware 
platform. The modelling of the motion can be eased from the understanding that 
labelled objects can only move within a Region of Interest: the remarkable 
features of a human face are the areas containing eye, nose, mouth and ear. 
However, any deterioration of facial expressions decreases image quality 
drastically. Thus different “quality enhancing” steps are needed, which makes 
the segmentation algorithm rather complex. 

In our work, the nature of the problem is fundamentally different. A moving 
object is also changing location in its RoI and needs therefore also to be 
distinguished in every frame from a sequence of consecutive images. Once the 
object is segmented into a number of frames, the displacement of the object 
between two image frames must be extracted. Wrapping the moving object in an 
encapsulation box, eases the computation of the displacement. The displacement 
of the box corresponds to the distance covered by the object in reality. The 
establishment of this correspondence is a problem by itself and often forces a 
need for calibration. When the whole object is observed in one of the frames, the 
difference between two consecutive frames shows two leftovers instead of one. 
Additional effort is then required to relate these two as belonging to a single 
object.  

The process of velocity measurement depends on a number of parameters, 
mainly coupled to the camera in use, such as image resolution, frame frequency 

݂ and view angle ߠ. Another parameter of importance is the distance between 
the camera and the moving object, ݀. Given ݂  in frames/seconds, ݀ in meters 
and ߠ in degrees, the width of the captured scenery is ݀ ൌ 2݀ · ߠሺ ݊ܽݐ 2⁄ ሻ. 
Figure  7.6 illustrates a camera where the involved parameters are pointed.  

da
dp2/θ

Camera

 
Figure  7.6 Mapping of the image on the pixel map. 

An object with velocity v (meter/seconds) will cover the distance ݀ 
(meters) in ݐ ൌ ݀ ⁄ݒ  (seconds). During this time, the camera takes  ܰ ൌ ݐ ·

݂ ൌ ሺ݀ · ݂ሻ ⁄ݒ  frames. In other words, if all the frames are super-imposed, 
there will be N instances of the moving object on a single frame. If ܹ, in pixels, 
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denotes the width of frames delivered by the camera, the movement of the 
object corresponds to a displacement in pixels given by Eq. ( 7.2) 

݊ ൌ ܹ ܰ⁄ ൌ ሺܹ · ሻݒ ሺ݀ · ݂ሻ⁄ ( 7.2) 

The minimum velocity that can be detected corresponds to a single pixel 
displacement of the object. The nature of the applied template complicates the 
calculation of maximum speed when the object is close to the edge of the frame. 
In order to overcome this limitation, a 5% margin of the total frame-width is 
provided on both vertical edges. Obviously, the maximum displacement by 
means of pixels is correlated to the maximum object-velocity that can be 
detected. Typical PAL camera specifications like: horizontal view angle of 60˚, 
720 pixel wide frames, and frame-rate of 25 frames/s are utilized in Figure  7.7, 
where the displacements of a 3 meter long object are shown for different speeds. 
Obviously, the displacement depends on the distance ݀ of the camera from the 
captured scenery in which the object moves. The size of the blob is dependent 
on ݀ as well. 

 
Figure  7.7 Pixel displacement versus observation distance for several object velocities. 

7.2.2 The algorithm in basic CNN operations 
The segmentation quality is significantly increased by pre-processing image-
frames in order to remove disturbing noise. Noise filtering is achieved by 
iteratively applying the averaging template (Eq. ( 7.3)) to the image. The next 
step is to create a mask around the Object of Interest (OoI), i.e. the moving 
object. In order to extract the RoI, all background information has to be 
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removed. Calculating the absolute value of the subtraction of two consecutive 
frames in the image sequence completes the task. In other words, if f1 and f2 are 
first and second frames respectively, the result is given by | ଵ݂ െ ଶ݂|. The 
resulting output map has its darkest pixels where both frames differ, while 
background information is covered in grey.  

ࣛ ൌ 
0 0 0
0 0 0
0 0 0

൩ , ࣜ ൌ ሺ1 8⁄ ሻ כ 
1 1 1
1 0 1
1 1 1

൩ , ݅ ൌ 0 ( 7.3) 

Although the output map includes all necessary contour pixels for 
segmentation, further contour enhancement is needed to achieve sufficiently 
exact segmentation. Contour lines vary in thickness due to the sharpness of 
object edges. An appropriate choice of the gradient threshold reduces the effect 
of sharp/smooth edges, but we follow the proposition made in  [109] and apply 
the approach of skeletonization (Table  7.2). It performs iteratively in 8 
subsequent steps, where each step peels one layer of pixels in a certain direction. 
As one iteration is accomplished, the pattern is one pixel thinner in all 
directions. The algorithm stops when no difference between the input and the 
output is obtained. Applying this powerful line-thinning algorithm iteratively 
reduces lines of arbitrary and varying thickness to their centre pixels. 
Table  7.2 Different skeletonization templates corresponding to the direction of “peeling”.  

Direction ऋ ऌ भ 
North 


0 0 0
0 1 0
0 0 0

൩ 
1 1 1
0 7 0

െ0.5 െ1 െ0.5
൩

െ3 

Northeast 

0 0 0
0 1 0
0 0 0

൩ 
0 1 1

െ1 7 1
0 െ1 0

൩ 
െ3 

East 

0 0 0
0 1 0
0 0 0

൩ 
െ0.5 0 1
െ1 7 1

െ0.5 0 1
൩ 

െ3 

Southeast 

0 0 0
0 1 0
0 0 0

൩ 
0 െ1 0

െ1 7 1
0 1 1

൩ 
െ3 

South 

0 0 0
0 1 0
0 0 0

൩ 
െ0.5 െ1 െ0.5

0 7 0
1 1 1

൩
െ3 

Southwest 

0 0 0
0 1 0
0 0 0

൩ 
0 െ1 0
1 7 െ1
1 1 0

൩ 
െ3 

West 

0 0 0
0 1 0
0 0 0

൩ 
1 0 െ0.5
1 7 െ1
1 0 െ0.5

൩ 
െ3 

Northwest 

0 0 0
0 1 0
0 0 0

൩ 
1 1 0
1 7 െ1
0 െ1 0

൩ 
െ3 
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Quality of the intermediate result is however still reduced due to the 
presence of some isolated pixels that might even inhibit the creation of the 
encapsulation box around the moving object. These pixels are easily removed by 
applying the template of Isolated Pixel Removal (Eq. ( 7.4)) 

ࣛ ൌ 
0 0 0
0 0 0
0 0 0

൩ , ࣜ ൌ 
0 1 0
1 4 1
0 1 0

൩ , ݅ ൌ െ1 ( 7.4) 

The resulting output map is now free of disturbing information and the task 
of segmentation is accomplished by thresholding the value of all pixels using a 
hard-limiter. A binary mask is then created and combining the corners of that 
mask easily creates a black box covering the object of interest. Figure  7.8 
summarises all steps of the creation of the encapsulation box starting from two 
consecutive video frames. As the differences between the frames are not 
necessarily co-located, they must be linked in order to establish the OoI. 

21 ff −

 
Figure  7.8 Template flow diagram in velocity measurement approach. 

In the general case any blob that appears in both frames must be checked. 
The problem is eased when the direction of movement can be predicted from the 
past or by hypothesis. For instance a train will move along a track and its 
direction will be clear from the outset. As the early movement will show co-
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located blobs (Figure  7.9.a and b), the direction can be predicted when the speed 
rises and object splitting occurs. Verification of the hypothesis can be achieved 
by enlarging the blob in the frames in the direction of the movement, followed 
by an AND operation. This supplies us already with a box at length of the 
displacement. We will see this extended algorithm in section  7.4. 

When the blob has not split, we have to repeat the same segmentation 
procedure with the following pair of frames, i.e. ଷ݂ and ସ݂, creating another 
black box. Two different facts are extracted by comparing the position of the 
boxes: motion direction and, most important, displacement of the moving object 
between frames ଷ݂ and ସ݂. As time between consecutive frames is known, we 
only need metric information about one of the details in the scenery (preferably 
the moving object itself) to determine the velocity of the moving object. In 
Figure  7.9.c, the displacement of the moving object is illustrated with the 
difference ∆ of the two black boxes. 

Δ

 
Figure  7.9 Measuring the displacement of an object moving from right to left in the 
scenery. Displacement (shown in (c)) of the moving object is the difference between the 
black boxes in (a) and (b). 

7.2.3 Verification and Test 
MATCNN is one of many software tools for CNN simulation provided in  [59]. 
It is a flexible and easy-to-use test environment for single-layer CNNs. 
Although basically built to simulate analogue CNN implementations, it provides 
a very good toolbox (for MATLAB) to verify the approach. The toolbox is 
equipped with a library of many 3 ൈ 3 templates.  

In the following, all steps in the flow diagram in Figure  7.8 are applied to a 
number of frames captured from a video sequence of a locomotive of type SJR6. 
First of all, the averaging template is iteratively applied on the first two frames 
of the video sequence. Figure  7.10 shows the results after 25 iterations with a 
time step of 0.019߬.  

The background is then faded in order to outline the moving object, which 
is achieved by calculating | ଵ݂ െ ଶ݂|. As seen in Figure  7.11.a, the background is 
replaced with grey pixels.  

Assuming the object moves horizontally only, applying the templates of 
skeletonization for two directions only, i.e. west and east (Table  7.2), is 
sufficient. The templates are applied iteratively for 25 iterations each, with time 
step of 0.019τ . The result is shown in Figure  7.11.b, where isolated pixels are 
easily noticed. Isolated Pixel Removal is applied iteratively for 25 iterations 
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with time step 0.04τ  to remove these pixels. Figure  7.12.a depicts the resulting 
image. 

f2f1  
Figure  7.10 First two frames (f1 and f2) of the video sequence after applying the 
averaging template for a number of iterations. 

(a) (b)  
Figure  7.11 (a) Resulting image of | f1 - f2 |. Darkest pixels are observed where the two 
frames differ as most. (b) Intermediate result after skeletonization, where the isolated 
pixels can easily be noticed. 

Segmentation of the moving object is accomplished by creating a binary 
mask using the hard-limiter function. Figure  7.12.b depicts the final result with 
the binary mask. Finally, the object of interest is covered with a black box, as 
shown in Figure  7.9.b. 

(a) (b)  
Figure  7.12 Applying the template of IPR removes all isolated pixels (a). Procedure of 
segmentation is completed once the binary mask is created (b). 

Caballero performs all steps of the algorithm of velocity estimation from 
averaging to isolated pixel removal through skeletonization. Subsequent steps of 
the algorithm, i.e. creation of both the binary mask and the black box covering 
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the moving object, are performed on a PC by, preferably, using MATLAB 
toolbox. The task of post-processing is completed by calculating the value of Δ  
(see Figure  7.9.c) and, thus, estimating the velocity of the moving object. This 
design maintains the regularity of a CNN and paves the way for future 
modification, e.g. usage of two-layered CNN  [108] needed for implementation 
of steps 2, 3 and 4 in image analysis algorithm mentioned before (section  7.2.1). 

The design performs on the same video sequence used for verification. The 
intermediate result obtained after skeletonization (Figure  7.13) differs, however, 
from the expected result noticed in Figure  7.11.b. Quality reduction is due to the 
use of another squashing function compared to MATCNN. This indicates, 
however, the need for adjustment of the parameters in the table look-up. Instead, 
the error is attempted to be overcome by using the template of averaging (Figure 
 7.8) again between the operation of skeletonization and IPR. Figure  7.13 shows 
the intermediate result after each step. It is obvious that the quality of images is 
still much lower than obtained in software simulation, but as the aim of the 
experiment is to test the basic functionality of the design no further actions are 
taken. 

Skeletonization Averaging

Isolated Pixel Removal Binary mask  
Figure  7.13 The intermediate results of all steps as obtained from the post place and 
route simulation. 

7.3  VEIN FEATURE EXTRACTION  
Modern security systems have to provide fast, accurate and robust personal 
identification, which implies moving away from traditional and unreliable 
methods such as PIN codes and smart cards. The use of electronically stored 
records of human biometrics features seems promising. The US Department of 
Defense started an experiment to replace existing ID-badges for 4.3 million 
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employees by using fingerprint readers from Precise Biometrics already in 2001 
 [92]. Recently, some European states have accepted a biometric signature as 
legally binding, and the UK government has placed in November 2005 
biometrics identification technology on the short list of its Science and 
Innovation Strategy  [93]. 

As the identification process is based on the unique patterns of the users, 
biometrics technologies are expected to provide highly secure authentication 
systems. However, the existing systems are very vulnerable. One’s fingerprints 
are accessible as soon as the person touches a surface, while a high resolution 
camera easily captures the retina pattern. Thus, both patterns can easily be 
“stolen” and forged  [93]. Beside, technical considerations decrease the usability 
for these methods. Due to the direct contact with the finger, the sensor gets 
dirty, which decreases the authentication success ratio. Aligning the eye with a 
camera to capture the retina pattern gives an uncomfortable feeling. On the other 
hand, vein patterns of either a palm of the hand or a single finger offer stable, 
unique and repeatable biometrics features. 

Already in 2001, an experiment was reported where hand vein images were 
recognized with 99.45% success  [94]. Images were cleaned and compared 
within 150 msec. The main bottleneck was the cost and performance of the 
sensor. Meanwhile Fujitsu has built a biometric palm vein scanner, while 
Hitachi presents a finger vein identification system  [95]. In both cases, a thermal 
imager acquires vein images. Near-infrared rays generated by means of LEDs 
penetrate the hand and are absorbed by the hemoglobin in the blood. Thus, the 
veins (where the blood flows) appear as dark areas in an image taken by a CCD 
camera (Figure  7.14.b). Then image processing reconstructs a hand-vein pattern 
from the camera image. Finally, appropriate processing extracts the vein 
patterns from the images and performs a feature matching against reference 
images.  

(a) (b) (c)  
Figure  7.14 Typical biometric patterns; (a) fingerprint, (b) hand vein  [96] and (c) human 
retinal angiograph  [97]. 

In  [97], it has been concluded that a Gaussian model for feature extraction is 
fairly successful; here we check the quality of a CNN-based feature extraction 
that has previously been demonstrated by Gao for fingerprints  [98]. This section 
will go in phases through the feature extraction algorithm of Gao, while making 
modifications for handling veins. The pre-processing  [99] is handled in 
subsection  7.3.1, and the extraction  [98] & matching  [100] in subsection  7.3.2. 
Subsequently we discuss the quality of the vein feature extraction (subsection 
 7.3.3) and give some details on an experimental realization (subsection  7.3.4).  
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7.3.1 Image Pre-processing 
Normally, the captured vein pattern is greyscale and subject to noise. Noise 
Reduction and Contrast Enhancement are crucial to ensure the quality of the 
subsequent steps of feature extraction  [101]. This is achieved by means of three 
operations: Binarization that transforms the gray-scale pattern into a black and 
white image, Skeletonization (Table  7.2) that reduces the width of lines to one 
pixel and finally Isolated Pixel Removal (Eq. ( 7.4)) that eliminates the unwanted 
isolated points. These three steps constitute the procedure of image pre-
processing (Figure  7.15). Upon start, the original image is fed as input ݑ, and 
the initial output ݕሺ0ሻ equals 0, while the intermediate results constitute the 
input of the the templates in the successive steps. 

 
Figure  7.15 Image Pre-processing. 

7.3.2 Feature Extraction 
Blood vessels are characterized by means of length, thickness, shape and 
distribution of the veins. Only the length and distribution are taken into 
consideration as this enables a feasible matching of the overall pattern. As the 
operation of skeletonization masks out the shape and thickness, the thinned vein 
pattern has, similar to fingerprints, two main features: ending and bifurcation 
(Figure  7.16). The former is the end point of a thinned line, which reflects the 
length of the veins, while the latter is the cross section of three lines, which 
reveals the distribution of the veins. 

 
Figure  7.16 Vein features: endings and bifurcations 

It is important to point out the existence of false features due to the noise in 
the original image and artefacts that may be introduced during the procedure of 
image pre-processing. As two false features are normally close to each other, 
they are handled in pairs. Actually, three different types exist: a pair with two 
false endings, a pair with two false bifurcations and a pair with one false ending 
and one false bifurcation  [98]. Figure  7.17 depicts one of the cases that may 
arise during bifurcation detection.  
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Figure  7.17 Bifurcation detection may give rise to false features. 

The algorithm consists mainly of 4 different operations (Figure  7.18). First 
of all both bifurcations and endings in the pre-processed image are detected. 
This can be carried out in parallel. The intermediate results are added together 
by means of a simple logical OR operation  [102] that is given in Eq. ( 7.6). In 
order to remove all pairs of false features the operation of False Feature 
Elimination is applied. Furthermore, two new bifurcation and ending images are 
created by subtracting the false features from the images originating from the 
previous steps of bifurcation and ending detection. This is simply achieved by 
applying the operation of logical AND  [102] that is given in Eq. ( 7.5). These 
new images are target of the final operation, Figure Reconstruction, where two 
instances of the operation are applied in parallel. The final result consists of two 
images containing the placement and direction of endings and bifurcations.  

ࣛ ൌ 
0 0 0
0 2 0
0 0 0

൩ , ࣜ ൌ 
0 0 0
0 1 0
0 0 0

൩ , ݅ ൌ െ1 ( 7.5) 

ࣛ ൌ 
0 0 0
0 2 0
0 0 0

൩ , ࣜ ൌ 
0 0 0
0 1 0
0 0 0

൩ , ݅ ൌ 1 ( 7.6) 

 

 
Figure  7.18 Block diagram of the vein feature extraction. 
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The end of a thinned line has only one black pixel within its neighbourhood. 
As all isolated pixels are already removed during the pre-processing, ending 
points are easily extracted by applying the template of Ending Detection (Eq. 
( 7.7)) once. The input image u is the pre-processed picture, while initial output 
values, ݕሺ0ሻ,  are set to zero. 

ࣛ ൌ 
0 0 0
0 0 0
0 0 0

൩ , ࣜ ൌ 
െ1 െ1 െ1
െ1 2 െ1
െ1 െ1 െ1

൩ , ݅ ൌ െ7 ( 7.7) 

Similarly, Bifurcation Detection extracts all points that have at least 3 black 
pixels within the neighbourhood. Three different types of junctions do exist: 
“real” points, T- and Corner-forms (Figure  7.19). Extracting real bifurcations 
from the T- and Corner-forms needs further treatment. To do that, the approach 
introduced in  [98] is employed. The template of Junction Point Extraction (Eq. 
( 7.8)) that extracts the real junction points but keeps the T- and Corner-forms. 
Once again, the initial output values, ݕሺ0ሻ, are set zero. 

(a) (b) (c)  
Figure  7.19 Different types of Junction Points: regular bifurcation (a), T-form (b) and 
Corner-form (c) 

Junction points in T- and Corner-forms are extracted by means of the 
template given in Eq. ( 7.9), which removes all real bifurcations that have been 
detected using Eq. ( 7.8). The template of Isolated Point Extraction (Eq. ( 7.8)) is 
applied in parallel and the result is added to the outcome of Eq. ( 7.9) by means 
of a logical OR operation. Obviously, the initial output values equal zero here as 
well. The order of operation in the procedure of bifurcation detection is depicted 
in Figure  7.20.  

 
Figure  7.20 Bifurcation detection uses three different templates in addition to a Logic 
OR operation 
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In order to remove all false points that are separated by a distance d ≤ n, it 
performs the dilation and erosion operations for n/2 iterations each. The dilation 
operation connects all features, with distance d ≤ n in between, together. As 
conventional erosion operation will bring the disconnected objects in the dilated 
image back to the original size, the erosion has to be applied in two diagonal 
directions. Thus the templates “Erosion \” and “Erosion /” are employed. The 
former, Erosion \, erodes all pixels inserted in the dilated image except those 
belonging to the centre of diagonal lines with direction “\”. Erosion / works 
similarly for all diagonal lines with direction “/”. The block diagram in Figure 
 7.21 shows the sequence of the different operations. The applied templates of 
Dilation, Erosion / and Erosion \ are given in equations ( 7.11), ( 7.12) and ( 7.13) 
respectively. 

ࣛ ൌ 
0 0 0
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0 0 0

൩ , ࣜ ൌ 
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The fact that two false features are usually close to each other  [98], implies 
the use of a low value of n. Actually, experiments show that n=2 is sufficient in 
our case. Thus, one iteration is enough for each of the operations, which 
explains all feedback templates being equal to zero. Consequently, the values of 
initial output are all set to zero as well. 

So far, the extracted bifurcations and endings are represented as single 
points. Thus, only the location of every ending and bifurcation is obtained so 
far. In order to perform the procedure of Feature Matching, the direction of each 
feature needs to be known. The template of Figure Reconstruction (Eq. ( 7.14)) 
takes the original image as input and the intermediate image (with the extracted 
feature) as initial output in order to reconstruct the feature to the limit that 
makes it comparable. The number of iterations determines the number of pixels 
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that are restored of the three lines leaving a bifurcation and the only line leaving 
an ending. 

 
Figure  7.21 Operations involved in False Feature Elimination. Number of iterations, n/2, 
depends on the distance, n, between two false features. 
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7.3.3 Analysis and Verification 
MATLAB provides an easy-to-use and feasible environment, on which 

verification of the aforementioned algorithm is carried out. We start with the 
image in Figure  7.22.a, where a pattern of veins is captured. Applying the first 
operation of pre-processing, i.e. Binarization, yields in a black and white image 
(Figure  7.22.b). The binary image serves as input to the sequence of 
Skeletonization templates (Table  7.2) that is applied iteratively 7 times to get the 
line-thinned image shown in Figure  7.23.a. As this image undergoes the 
operation of Isolated Pixel Removal ( 7.4), all unwanted isolated points are 
removed, which is depicted in Figure  7.23.b.  

(a) (b)  
Figure  7.22 Original image containing vein pattern (a) and a black and white image after 
binarization (b). 
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As the stage of pre-processing is accomplished, we move on to the first 
stage of feature extraction. Ending Detection produces the image shown in 
Figure  7.24.a, while Figure  7.24.b is obtained by means of Bifurcation 
Detection. The subsequent stages from eliminating false feature in the ORed 
image to the reconstruction of bifurcations and endings result in the images 
shown in Figure  7.25. 

(a) (b)  
Figure  7.23 Result of skeletonization (a) and Isolated Pixel Removal (b) 

(a) (b)  
Figure  7.24 Endings (a) and bifurcations (b). 

7.3.4 Experimental Set-Up 
The project adopts the NoC-based architecture, Caballero. All templates 

introduced previously are preloaded in the BRAM internally in each node, 
which also serves as temporary storage for the intermediate outputs. Apparently, 
this is not feasible if the entire greyscale image (Figure  7.22) is used.  The size 
of the image is 261 ൈ  261 and will require about 67 kB of memory storage, 
which occupies almost 22% of the available on-chip memory (see section  6.2). 
Therefore, only a smaller portion of the original frame that equals the size of the 
network itself is used. As the feedback coefficients in all templates, except Eq. 
( 7.14), equal zero, the contribution of y-values in the calculation of the nodal 
equation is removed. The accumulator is initialized with the value of the bias, 
whereas the subsequent control contributions performed on the multiplier are 
accumulated. The need of multiplication by 8 in Eq. ( 7.14) is resolved by a 
simple 3-bits left-shift. Thus, the computational stage of the nodal operation is 
brought down to 10 clock cycles only instead of 19 cycles originally.  
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Only 78 nodes are realized. Thus, 78 pairs of Multiplier/RAM out of 136 
are used. The utilization of the logic shows to be 64% of the available slices, 
which opens for accommodating additional functionality. The design runs on a 
clock frequency of 100 MHz. 

(a) (b)

(c) (d)  
Figure  7.25 Adding the images with ending and bifurcation points by applying the 
operation of Logical OR (a) before eliminating the false features (b). Reconstruction of 
endings (c) and bifurcations (d). 
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Figure  7.26 FPGA test set-up 

The experiment is kept simple by removing the need for interaction with 
MATLAB. The original image and the MATLAB result are included in the 
programming file as BS-RAM content. Then the CNN will work on the image 
and the result is compared with the stored MATLAB result. If these results are 
in agreement, a LED on the Memec board is lighted (Figure  7.26).  
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7.4 DISCUSSION 
In the previous sections a number of CNN-based experimental systems have 
been discussed to get guidance about the practical significance of the FPGA 
implementations that have been developed so far. The key questions are whether 
there is a need for different architectures and to which degree a generic 
architecture is helpful in creating such systems. 

The Game-of-Life seems a first step in the direction of Artificial Life, but it 
is actually a very simple game. The accuracy requirements are not very high; the 
conventional game can even be played by a binary implementation. It then 
becomes questionable to go for a digital implementation: analogue will be faster 
and the gap with a software solution (using bit parallelism) is unusually small. 
In turn, a grey-level implementation may open new possibilities when available, 
and also closes the gap to predator/prey situations. 

A careful look at Figure  7.7 tells that displacements captured with parts of 
the blob (object) outside the scenery (Figure  7.10) guarantees obtaining one 
solid box after the step of background suppression. On the other hand, 
separation between blobs occurs for all displacement values above maximum 
blob size. Furthermore, two leftovers are observed when one of the frames 
contains the whole object and the displacement is above the maximum size of 
the blob (Figure  7.27). The size of the obtained blobs is highly dependent on the 
speed of the object and the frame frequency ݂. In the extreme case, one of the 
ends of the object is seen in one frame while the other end only appears in the 
successive frame. This case is discarded, as no measurements are possible. The 
alternative is to operate so fast that co-location still exists between subsequent 
images.  

Taking the difference between frames will not suffice, when there is 
separation between blobs. The separation between the blobs has to be bridged. 
This case can be taken care of in the algorithm by including more steps.  

The templates for thickening only the right hand side (Eq. ( 7.15)) and left 
hand side (Eq. ( 7.16)) are applied on the first and second image frames 
respectively. The logical AND template (Eq. ( 7.5)) is applied to the resulting 
image frames to get an intermediate image frame. Now the operation is 
performed on the other sides i.e. the templates for thickening left hand side and 
right hand side are applied on the first and second frames respectively. The 
resulting image frames are again logical ANDed to get another intermediate 
image frame. These two intermediate frames are logical ORed (Eq. ( 7.6)). 
Hence, the image frame derived from this operation will be free of pixel 
separation between the two blobs. The value of ∆ can be calculated by taking 
the difference between the separation-free frame and the first frame. An 
illustrative diagram of the different steps is shown in Figure  7.28. 
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Figure  7.27 Separation between blobs due to different speeds: “slow” object in (a) and a 
“fast” one in (b). The arrows indicate the direction of the movement. 
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In the case of velocity measurements, hardware requirements differ with the 
objective. Initially a single template needs to be applied to the entire image to 
find objects of interest. This favours the pixel pipeline. For more complex 
operations such as the matching of moving objects, the focal plane approach is 
more effective. It seems appropriate to reconfigure the board, but preferably not 
for the total design. In other words, more product-level experience is required to 
make sensible decisions.  

It has been illustrated that the algorithms described in  [99] [100] can also be 
used for vein identification. In comparison with the algorithm presented in  [98], 
the operation of False Feature Elimination is applied only once instead of 3 
times. Furthermore, the design is simplified by restricting the number of 
iterations to 1 for all used templates. This allows for comparison with solutions, 
based on layers of feed-forward networks  [103]. Where this paper performs 
detection based on pre-learned physical features, here such features are pre-
defined through the template application. 

Pre-processing is achieved by applying the template of skeletonization that 
masks out the features of shape and thickness of the veins. The order in which 
the templates of skeletonization are applied influences the type, the number and 
the direction of extracted features. Figure  7.29 shows the output of bifurcation 
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detection as the templates in Table  7.2 are applied in the order: NW, N, NE, E, 
SE, S, SW and W.  

Δ   
Figure  7.28 Extended algorithm for handling fast moving objects. The direction of 
movement is from right to left. 

(a) (b) (c)  
Figure  7.29 A certain order of skeletonization templates applied on (a), results in a false 
feature (b) instead of the real one (c). 

The algorithm is restricted to 2-dimensional black and white images. This 
limitation increases unfortunately the rate of false detection, as vessels passing 
over each other in reality will be treated as a cross-section in the 2-dimensional 
image (Figure  7.30). The operation of False Feature Elimination is crucial for 
the accuracy of the overall algorithm, as the number of false features as well as 
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the total number of extracted features is affected. Unfortunately, the current 
algorithm proves to be sensitive for image resolution.  

2-dimensional 
image

False 
bifurcation

 
Figure  7.30 The non-crossing veins (marked with circle) give rise to false bifurcation in 
the 2-dimesional image. 

 The functionality of vein feature extraction approach is demonstrated on a 
human retinal angiographic image used in  [97], as this enables comparison 
between the methods. As the algorithm in  [97], a Gaussian model, does not 
distinguish between true junctions and corners (points of high curvature), many 
of the detected junctions are neither bifurcations nor end-points. It is reported 
that the Gaussian algorithm extracts 60 out of the actual 65 junctions in the 
original image. In addition, it has a false-positive rate of 80 junctions! A manual 
count shows the existence of 43 real bifurcations in the binarized image. The 
CNN-based approach presented here extracts 30 bifurcations of which 2 shows 
to be false features (Figure  7.25.d). This is caused by the 2-dimensional 
mapping that has already been discussed (Figure  7.30). By mean of comparison 
with the Gaussian extraction model, we focus on the rate of detection rather than 
the number of extracted junctions. Here, two rate numbers are of importance: 
the detection rate of 65% and the false-positive rate of 5%. The former is much 
lower, while the latter is a bit higher than in the Gaussian model. By removing 
the False Feature Elimination, the detection rate is raised to 100% but the false-
positive detection rate is also increased. It appears therefore that this algorithm 
is not fully adequate, although it easily matches the Gaussian model (Table  7.3). 
The reason seems to be a lack in image resolution. As claimed in  [103], this can 
be solved by re-introducing feedback to adapt the resolution before 
skeletonization is performed, similar to the bio-inspiration claimed in  [104]. 
This confirms the setting of different block sizes in  [97] and the variety of 2nd 
layer networks in  [103]. Another issue that needs more attention is the accuracy 
of the binarization procedure as a simple visual inspection reveals a difference 
in the number of bifurcations and ending between the original and the binarized 
images.  

Feature matching of two vein patterns depends on the type, the location and 
the direction of endings and bifurcations. It is debatable, whether with all the 
existing variety it is really required to find all the existing bifurcations and 
endings to limit the images that need to be inspected on per pixel basis. A larger 
experiment seems required to decide how much is enough.  

For realistic image databases, the many images require more pixels to be 
discriminated, leading to a more than quadratic increasing search time. One may 
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conclude that image comparison is accurate  [94], given a repeatable capture 
mechanism  [95], but the number of images to be compared is simply too large. 
One way to ease the problem is by providing a content-based selection 
mechanism. The automatic provision of such ‘features’ allows determining the 
small number of images to search through. For this purpose the reduction of 
False Acceptance Rate (FAR) will be dominant. 
Table  7.3 A comparison of the Gaussian model and the CNN-based approach when 
applied on a human retinal image. FFE stands for False Feature Extraction. 

  Detected 
junctions 

False-
positive 

False-
negative 

Gaussian Model  [97]  92% 123% 8% 

CNN-based approach 
With FFE 65% 4.7% 35%
Without FFE 100% 21% 0%

The implementation stresses the exploitation of the FPGA as realization 
target. We have aimed at the best detection using few resources, as a realistic 
product will be based on bi-spectral imaging. The merging of features from two 
sources will definitively raise the performance figures but poses additional 
computational demands. Hence, the computational need of the feedback 
contribution is removed. This provides for a good starting position to extend the 
hardware with variable resolution and 3-dimensional modelling. 

In all, generic VHDL descriptions are feasible in the sense that parameters 
can be scaled. But experience shows that the diversity is even larger and a 
deliberate customisation of the original generic set-up will be inescapable. For 
instance, the Game-of-Life can be implemented at least 6 times denser than the 
Sleipner template on the target FPGA as only one pipeline is required. 
Consequently the designs are derived from the same base, but made unique in 
implementation. 
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Template Optimization 
  

he functionality of both continuous- and discrete-time CNNs is defined 
by the cloning template ࣮ that, together with the input pattern ݑ and an 

initial output pattern ݕሺ0ሻ, completely determines the dynamic behavior of the 
system. In a 1-neighbourhood, a template consists of 19 free parameters, while 
51 free parameters constitute the template in a 2-neighbourhood. Any deviation 
in template parameters will have a tangible effect on the dynamic behaviour and 
may lead to malfunctioning. Thus, any template design method has to guarantee 
the robustness of the CNN. A CNN is said to be robust if it operates as desired 
even when subjected to implementation inaccuracies  [61]. More attention has to 
be paid to parameter deviation when designing templates for analogue CNN 
chips. Template robustness is easily disturbed due to the noise in the electrical 
components as well as parameter scattering introduced during the fabrication 
process  [80]. 

The simplicity of CNN operation, given in Equations ( 2.33) and ( 2.34) is 
deceptive. The dynamics can be extremely complex, even for relatively small 
networks  [11]. The feedback coefficients, i.e. template ࣛ, give rise to a non-
linear dynamic behavior that leads to the existence of different interesting 
phenomena such as oscillation and chaos. Most CNN applications require, 
however, complete stability and strive to eliminate the chaotic tendency instead. 
In his book  [11], Chua presents the mathematical criteria that guarantee such 
complete stability, which is rephrased below. 

                                                            
Major parts of this chapter are published in  [X]. 

 

T 



138  Chapter 8  Template Optimization
 

 

Theorem 7.1: Complete Stability Criterion 
For a standard CNN with constant inputs, constant bias and an arbitrary 

neighbourhood, all trajectories converge to an equilibrium state, which in 
general depends on the initial states, if the following three conditions are 
fulfilled: 

♦ The feedback template, ࣛ, is symmetric with respect to the center of 
the template 

♦ The squashing function fሺ·ሻ is differentiable with positive slopes, and 
bounded. 

♦ All equilibrium points are isolated, i.e. there exists an open set around 
any equilibrium point that contains no other equilibrium 
point.                                                                                                                    ז 

The piece-wise function in Eq. ( 2.7) does not fulfil condition (ii) above, but 
can be approximated by an injective function that does fulfil it. Furthermore, the 
three conditions are sufficient but not necessary. For instance, many CNNs with 
non-symmetric templates are completely stable  [11]. 

By increasing the slope of the piece-wise function in Eq. ( 2.7) such that it 
approaches infinity, a step function is obtained. This leads to two distinct output 
values for each cell, +1 or -1. The cells are then bistable. Below, we reintroduce 
the bistability theorem as stated in  [11]. 

Theorem 7.2: Bistability Criterion 
The output of every cell at any stable equilibrium point of a completely 

stable standard CNN is equal to either +1 or -1, if the centre element of the ࣛ 
template satisfies ܽ    ז                                                                                        .1

8.1 DESIGN OF ROBUST TEMPLATES 
Different design methods can be applied to find the desired template  [62]. The 
most difficult one is design by intuition as it requires a long experience in the 
applicable field. For the experienced designer this method is fast, but it does not 
guarantee a satisfactory result. The second method is design by learning, where 
classical neural network training techniques are employed. Both local and global 
learning algorithms have been tried  [63] [64], where the idea is to design the 
desired template by gradual enhancement of the robustness. The problem is that 
for some application the template either exists or does not exist. The gradual 
enhancement approach is then not possible and the template may never be 
found!  The third method requires the desired function to be exactly determined; 
this is the direct template design. According to  [62], the popularity of the 
method lies in the fact that it finds a template class rather a single or few 
working templates. The obtained template class is guaranteed to contain the 
most robust template, while time and computational power needed are much 
smaller than in the two other methods.  
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In his strive to give a practical survey of template design in bipolar CNNs, 
i.e. ݕሺݐሻ ൌ  ሻ൯,  Zarándy  [62] divides CNN templates from theݐሺݔ൫݊݃݅ݏ
interconnection point of view into two sets: uncoupled and coupled. In the 
uncoupled templates, a cell is not at all affected by the current output of the 
neighbouring cells but only of the input pattern, while coupled templates takes 
the contribution of neighbouring cells’ output values into account. In other 
words, all the entries in the ࣛ matrix of an uncoupled template are set to zero 
apart from the self-feedback coefficient ܽ00. Table  8.1 illustrates the idea for a 
1-neighborhood.  
Table  8.1 Feedback matrix ऋ in coupled and uncoupled CNN templates. 

Uncoupled Template Coupled Template 


0 0 0
0 ܽ 0
0 0 0

൩ 
ܽିଵିଵ ܽିଵ ܽିଵାଵ
ܽିଵ ܽ ܽାଵ

ܽାଵିଵ ܽାଵ ܽାଵାଵ

൩ 

The simplicity of uncoupled templates lies in the fact that analyzing the 
dynamic behaviour of a single cell is enough to understand the functionality of 
the whole network. The state equation of a single cell is merely a simplification 
of Eq. ( 2.33), as shown in Eq. ( 8.1) below.  

ሻݐሶሺݔ ൌ  െݔሺݐሻ  ܽݕሺݐሻ   ݓ
ݓ ݁ݎ݄݁ݓ ൌ  ܾݑ

אௌೝሺሻ

  ܫ
( 8.1) 

The robustness of uncoupled templates is mainly dependent on the value 
of ܽ00. For a zero valued self-feedback coefficient, the final output is 
independent of the initial state and depends only on the contribution of the 
input. On the other hand, when ܽ ൌ 1, the CNN acts as an integrator with the 
state in the linear region (|x| < 1). Here two options are possible: (i) ݓ ് 0, the 
final output is then only binary, i.e.  ݕሺ∞ሻ ൌ ݓ ሻ and (ii)ݓሺ݊݃݅ݏ ൌ 0, the final 
output depends on the initial state, i.e. ݕሺ∞ሻ ൌ ሺ0ሻ. In a third case, ܽݔ  1, 
the final output is always binary regardless of the initial state and the 
contribution of control template (Eq.( 8.2)). 

ሺ∞ሻݕ ൌ ሺሺܽ݊݃݅ݏ െ 1ሻ · ሺ0ሻݔ  ሻݓ ( 8.2) 

Similarly, the dynamics of coupled templates are described in Eq. ( 8.3). In 
line with Theorem 2, the self-feedback coefficient  ܽ is assumed to always be 
larger than 1. The contribution of neighbouring cells in the feedback loop gives 
coupled templates their characteristic feature, i.e. propagation phenomenon. 
Propagation occurs due to the interaction between active and inactive cells.  An 
active cell is always in the linear region of the activation function, i.e. the output 
of an active cell changes over time. An inactive cell remains in the saturation 
region unless it is explicitly activated. At the beginning of propagation, some 
cells are active. These cells might activate neighbouring inactive cells, a 
procedure that continues for a while. At the end of the operation all the cells are 
inactive.  
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ሻݐሶሺݔ ൌ  െݔሺݐሻ   ௨ ( 8.3)ݓ

where  ݓ௨ ൌ ∑ ܽݕאௌೝሺሻ  ∑ ܾݑאௌೝሺሻ   ܫ
Equation ( 8.3) reveals that stability of an output is only possible in the 

saturation region. For instance, if ݔሺݐሻ ൌ 1 and ݓ௨  1 then the stable 
equilibrium point ݔ ൌ  ݔ ௨ is in the positive saturation region. The stateݓ
reaches equilibrium without changing the output ݕ. On the other hand, if 
ሻݐሺݔ ൌ 1 and ݓ௨ ൏ 1 then the current output resides in the positive 
saturation region, but it moves gradually toward the linear region as y becomes 
smaller than +1, and hence  ݓ௨ decreases. This is due to the decreasing value 
of term ܽݕ. The positive feedback brings the state for the cell to the negative 
saturation region. Similar discussion is valid when the state initially resides in 
the negative saturation region.  

Now the design of the robust template can begin. Zarándy gives in  [62] a 
detailed description of the entire procedure (Figure  8.1) accompanied with a 
number of examples. We will reintroduce the methodology briefly.  

 
Figure  8.1  Flowchart of the design steps of coupled templates. The dashed box marks 
the steps of uncoupled templates  [62]. 

In the first step, the global task is described verbally with some input-output 
pairs. The global description eases the derivation of local rules (on the pixel 
level) of the propagation. A local rule prescribes if the output of a bipolar cell 
has to remain constant or to change sign, depending on the input and output 
values of the neighbouring cells  [65]. Furthermore, a 3 x 3 binary activation 
pattern is generated against which a matching of the input image is performed. 
This completes the second step. The classification step determines whether the 
propagation is constrained/unconstrained and symmetric/asymmetric, which 
helps to perform the next step. The propagation is symmetric if the activation 
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condition is symmetric to the sign of the cell, i.e. in image processing 
applications, black and white cells are affected in a similar (but opposite) way.  
If the input contains a mask that limits the propagation, the template is 
constrained (e.g. hole filling). In an unconstrained template ࣜ ൌ 0, while a 
symmetric template has ܫ ൌ 0. Now, the number of free parameters is known 
and the template form can be determined. In this step, the aim is to reduce the 
free parameters in the searched template as much as possible, e.g. from 11 down 
to 3-4 parameters in the uncoupled templates. This is crucial to successfully 
design a robust template. Depending on the task and with help of the previous 
discussion about Eq. ( 8.2) and Eq. ( 8.3) a number of inequality relations are 
generated. This is simple since input-output pairs are already known. Each 
relation defines a hyperplane that divides the template space into two halves, 
where the relation is satisfied in one half and not in the other. The intersection of 
all satisfying halves gives the subspace in which all correct templates are found. 
See Figure  8.2 for an illustrative description. What remains is only to select the 
most robust template that resides in the centre of the specified template 
subspace. In the case of uncoupled templates, the design procedure consists only 
of the last four steps in Figure  8.1. 

 
Figure  8.2 Graphical example of the Solution of the Relation System step. Here, only 
two free parameters, b and i, are involved. The arrows indicate in which half of the 
space a relation (the line) are satisfied  [62]. 

A rule of thumb in template design is that the larger the template values are 
the faster the transient is (it reaches stability faster). But the analogue realization 
of the CNN limits the maximal absolute value to 3 for template coefficients and 
6 for the bias  [62], which bounds the inifite subspace obtained in Figure  8.2. In 
another modularly extendable gm-C implementation of the CNN-UM  [66], the 
maximal absolute values are a bit larger but have more strict precision 
characteristics (Table  8.2). Thus, the values of control template ࣜ and bias i in 
Figure  8.2 are chosen from the middle of the subspace (dashed lines in Figure 
 8.3). This yields the so-called nominal template. Due to parameter deviations in 
the analogue realization, each cell is considered to have its own template.  These 
real templates are located in a circle around the nominal template, but the circle 
should be completely within the obtained subspace. 
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Figure  8.3 The nominal template is the origin of a circle containing all real templates. 
Dashed lines mark the technical limitation of the employed analogue CNN chip. 
Table  8.2 Range of template values in the gm-C implementation of the CNN-UM  [67]. 

Parameter Interval 
ऋ and ऌ off-center entries േሼ0, 1, 2, 3, 4ሽ
ऋ and ऌ center entries േሼ0, 0.5, 1, 1.5, 2, … , 4ሽ
Bias േሼ0, 0.5, 1, 1.5, 2, … , 7.5ሽ

8.2 CHIP-INDEPENDENT TEMPLATE OPTIMIZATION 
Analogue CNN-UM chips, such as ACE4k  [27] and ACE16k  [29] perform 
image-processing tasks with extremely high throughput data rates in the order of 
tera operations per second. However, non-ideal functionality of the chip may 
occur due to erroneous behaviour in some cells.  These analogue 
implementations can guarantee only a rough accuracy of 5%-10% in relation to 
ideal parameter values  [68] [67]. Additionally, template parameters have a 
discrete range of implementable values of about 7 bits for the actual chips. 
Having this in mind, fabrication imperfections may lead to undesirable and 
unavoidable parameter variations. Other sources of erroneous behaviour are: 
noise in the electrical components of the cells, imperfect or noisy loading of the 
input and initial state from off-chip to on-chip memory, and temperature 
variations. Beside, saturation at exactly േ1 cannot be guaranteed which affects 
the characteristics of the piece-wise function and, hence, leads to erroneous 
behavior. The best way to overcome these restrictions is by adjusting template 
parameters, which makes the CNN more tolerant against inherent chip-
parameter deviations and noise in the analogue implementation. At first, chip-
independent template design methods have been developed, as they are thought 
to generate templates robust enough to be employed on all chips. We discuss 
two methods: one is targeting continuous-time CNN implementations and the 
second covers discrete-time CNN models. 

8.2.1 Discrete-time implementations 
In the finite iteration DT-CNN approach  [69], the network performs a fixed 
number of iterations. The standard feature of convergence is not taken into 
account and the achievement of a steady state is not required. The main feature 
is that different templates are used for different iterations; the DT-CNN is then 
called non-stationary. In this way all the demands on symmetry and stability, 
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discussed in Theorem 1 and Theorem 2, are removed. Each cell in the network 
will have a set of states according to the applied number of iterations. In line 
with the standard CNN, the state corresponding to the current template is tightly 
coupled to the previous state through the feedback of previous output. For 
iterations ݐ ൌ 0, … , ܶ െ 1 the states evolve according to Eq.( 8.4). ܴ stands for 
the number of rows in ࣛ and ࣜ matrices. 

ݔ
௧ାଵ ൌ  ൫ܣ,

௧ ା,ାݕ
௧  ,ܤ

௧ ା,ାݑ
௧ ൯  ݅௧

ோିଵ
ଶ

,ୀିோିଵ
ଶ

 ( 8.4) 

The template is designed through a constructive learning strategy based on 
back-propagation.  Input and output pairs ሺݕ,  ሻ are presented to the networkݑ
upon which the template weights are adjusted. The method is concerned with 
using the DT-CNN as a classifier. The training process aims on minimizing the 
training error that depends on the training data (input/output pairs) and the 
template. For each template, a certain absolute loss function simply measures 
the deviation of the actual CNN output from the desired output. An ߳-insensitive 
absolute loss function  [71] is used due to the higher accuracy of resulting 
derivatives. The actual output has zero loss and zero gradient if it lies inside the 
߳-margin of the desired output. In this way, the algorithm learns misclassified 
training patterns rather than adjusting the weights with gradient steps of already 
correctly classified patterns 

For verification purposes, the system is used to classify normalized 
handwritten digits, i.e. recognition of digits 0,1, 2, … ,9, where 16 x 16 grayscale 
images have served as inputs. Classification rates increased from 80% for a 
single template to around 97% for 10 templates. In a later work  [70], the effects 
of finite-word length have been studied, where the design of templates with 
limited precision is demonstrated. Input images are represented as double-
precision floating-point values with an effective precision of eight bits (covering 
256 greyscale levels). The template weights by the training algorithm are then 
reduced to two decimal digits (at least 8 bits). The algorithm is adjusted to the 
limited precision through truncation of the weights after each training epoch. 
The final weights fall into the interval [-2,+2] and are 9 bits wide; 8 bits for the 
value and 1 sign bit. In both  [69] and  [70], the simulation is confined to ܭ ൌ 5 
only, i.e. 2-neighborhood, as adequate classification performance cannot be 
achieved for ܭ ൌ 3, while ܭ ൌ 7 leads to overfitting. It is interesting that both 
stationary and non-stationary DT-CNNs lead to the same classification rate!  

8.2.2 Continuous-time implementations 
The proposed analytical method in  [61] and  [67] considers robustness with 
respect to template errors only. Approximation errors of the piece-wise function 
are taken into account by choosing sufficiently large fractional errors for the 
template parameters; larger than the errors that the parameters actually 
experience. The analysis are further restricted to the case of binary initial state 
and input values. 
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The approach provides robust templates for accomplishing different tasks, 
e.g. horizontal line detection and shadowing, but the obtained template 
parameters are derived through an intensive mathematical analysis of the 
proposed solution for each of the tasks. Additionally, for tasks requiring a high 
degree of connectivity, e.g. edge detection, the approach leads to relatively large 
template values. The CNN system has then to be able to accommodate larger 
template values than needed in other templates. One way to remedy this is to use 
other algorithms to permit template values remaining in a small range, which 
adds to the already high complexity of the approach! Furthermore, the proposed 
analytical approach guarantees template robustness only for so-called locally 
regular CNNs. Locally regular CNNs are a subclass of bipolar CNNs  [65]. They 
contain two subgroups: uncoupled and a subclass of the coupled CNNs, i.e. 
propagation-type CNNs. The template set consists of not more than 11 non-zero 
coefficients; otherwise the template will not function properly. One of the strong 
features of the proposed method is that the optimal robust template is obtained 
directly without any need for iterative enhancement. 

8.3 CHIP-SPECIFIC TEMPLATE DESIGN  
The main drawback in chip-independent optimization methods is that even if 
some templates show to be robust enough, the degree of robustness for different 
operations is obviously not the same. Actually, noise of the electrical 
components as well as parameter scattering introduced during the fabrication 
process, lead to space-variant differences in template parameters from the ideal 
values. There is no guarantee that two cells within a single chip will react 
identically on the same stimuli, even when the most robust template is used! If 
the tolerance range of the template is smaller than the inherent parameter 
deviation of a given chip, the template works improperly. Consequently, the 
functionality of a robust template is not guaranteed on different chips of the 
same type. In this case improvements can only be achieved by readjusting the 
templates  [80]. Errors of actual chips are then eliminated or at least minimized 
for a certain operation. The ultimate solution in this case would be to manually 
and empirically tune the template for a given chip, which should be avoided as it 
tend to be tedious and require very long time. An automatic approach that tunes 
the template parameter for a specific chip is needed. Two adaptive template 
optimization methods are presented in  [80] [68], where the template is not 
redesigned but optimized. In the following subsections we describe these two 
methods briefly. 

8.3.1 LMS-based approach 
The approach starts with the theoretically most robust template for the given 
task and ends with the optimal template for the given chip. Thus, the obtained 
templates are optimal but not necessarily the most robust ones for the given chip 
and task  

The method assumes uncoupled CNNs with space-invariant templates and 
binary output, where the self-feedback entry is always larger than 1 to guarantee 
stability (Theorem 1). Both binary and analogue inputs can be handled. For 
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simplicity, the initial state of all cells is set to zero, i.e. ݔሺ0ሻ ൌ 0. Then, any 
task is defined by the control vector  (corresponding to control ࣜ template) 
and the bias ݖ. 

The optimization aims on eliminating, or at least minimizing, the average 
error of the entire CNN, denoted ܧሺ,  .࢛ ሻ, when presented an input vectorݖ
Usually, the average error is obtained by calculating the normalized sum of the 
mean square errors of all cells in the grid. Then the gradient descent approach is 
employed to minimize the error and thus find the optimum solution on the error 
surface. The main hindrance is that the exact form of ܧሺ,  ሻ is not known for aݖ
given chip. This makes the attempt to find a solution analytically very difficult. 
Instead, the proposed method is based on a cumulative single-cell model of the 
chip for which an optimum is found through iterative optimization. The gradient 
descent approach is still employed, but the average (or cumulative) response of 
the entire chip to input ݑ א  is obtained according Eq. ( 8.5) instead. ܰ is the ࢛
number of rows and ܯ is the number of columns of the CNN, while ݕത 
represents the desired output value. 

ݕු ؠ
1

ܯܰ   ത,ݕ

ெ

ୀଵ

ே

ୀଵ

 ( 8.5) 

Accordingly, the average error of the entire chip is given by Eq.( 8.6), where 
ܭ .is the number of input vectors, i.e ܭ ൌ 2ଽ for 1-neighborhood and ܭ ൌ
2ଶହ for 2-neibhborhood. 

,ෘሺܧ ሻݖ ൌ
1
ܭ

ሺݕ െ ሻଶݕු


ୀଵ

 ( 8.6) 

The cumulative output carries information about the number of erroneous 
cells rather than about their exact location. This is of course desirable as the 
changes in template parameters should not be cell dependent due to the space-
invariant nature of the template. The minimum on the error surface is found by 
means of gradient descent using Least Mean Square (LMS) learning. 
Furthermore, a piece-wise linear output function is chosen to model the 
noisiness instead of the sharp threshold function. The linear model is 
advantageous due to its simplicity, but for more accurate results, using the 
sigmoid function should be considered  [68].  

Figure  8.4 illustrates the template optimization set-up. The ideal values 
ሺ۰כ, zכሻ are used to initialize the CNN-UM chip and are used by the simulator to 
produce the desired values. New template values are adapted gradually as they 
are calculated by the LMS component.  

There is no guarantee that the global minimum will be found since the LMS 
method will find the local minima on the error surface. Actually, the 
optimization method may fail in finding any template for which ܧሺ, ሻݖ ൌ 0. In 
this case, the template is decomposed into more robust child templates through 
iterative replacement of nonzero template coefficients by zeros. It is well-known 
that increasing the number of zero-valued entries enhances the robustness  [72]. 
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A logical combination of all child templates yields an expression that is 
functionally equivalent to the original non-robust template. The conclusion is 
that templates having a robustness lower than approximately 0.5 require 
decomposition. The approach, illustrated in Figure  8.5, is fully automated in the 
sense that it stops nt before all obtained child templates are robust enough.  

 
Figure  8.4 Template optimization set-up  [68]. 

 

 
Figure  8.5 Block diagram of fault-tolerant template decomposition  [68]. 
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8.3.2 ASA-based approach 
The main critique to the previous method is that the local optimization approach 
needs information on the gradient of the cost function, which leads to a poor 
minimum and forces to decomposition into simpler templates. Applying a global 
optimization method such as the adaptive simulated annealing algorithm (ASA) 
 [73] overcomes this limitation and enables template optimization for coupled 
CNNs as well. This brings the most interesting feature of CNNs, i.e. global 
interaction, into play, which compensates for the main disadvantage of the ASA 
algorithm of being slower than local optimization methods. In  [68], the ASA 
algorithm constitutes the cornerstone in the proposed template optimization 
method. The method is composed of two steps: in the first step the optimal 
tuning of the nominal template is found, while the second step aims on finding 
the robust optimum starting from the tuned template. The target is, as in the 
previously discussed method  [80], the two analogue chips ACE4k and ACE16k. 

For a given training set consisting of input ࢛, initial state ࢞  and desired 
output ݕത (all values belonging to range [0,1]), the cost function of certain, 
randomly generated, template parameter vector  ൌ ሺଵ, ,ଶ … ,  ሻ is given by
Eq. ( 8.7) where k is the number of cells in the chip and ݕሺ∞ሻ is the value of the 
steady-state output of the ith cell. As the objective of the approach is tuning, not 
learning, an initial approximation ௧ is imposed to set the boundaries of the 
search (these initial parameters compose the initially proposed template for the 
given operation under assumption that this template is fully correct on a 
simulator). The allowed search boundaries should be larger than parameter 
deviations of the chip. The search space can be minimized, which makes the 
approach faster, by applying additional constraints on the template, such as 
symmetry or dependence between the values. 

݃ሺ, ,ݑ ,ݔ ത ሻݕ ൌ
1

√݇
ඩሺݕത െ ሺ∞ሻሻଶݕ



ୀଵ

 ( 8.7) 

The ASA algorithm is performed recursively where the constraints are 
gradually removed and the boundaries are made narrower between subsequent 
iterations. The procedure is considered successful and stopped when the cost 
function becomes smaller than a certain tolerance value, otherwise the enforced 
constraints are relaxed to the next level and another ASA optimization is 
initiated. The result of this new optimization round is considered to be optimal. 
In other words, the wider boundaries and the harder constraints upon start 
allows for a fast and rough localization of a global optimum that is iteratively 
refined. 

In the LMS-based approach, the optimization is concerned only with 
minimizing the error, while here robust improvement is involved as well. As 
discussed earlier (Figure  8.3), robust templates have their parameters in the 
middle of a correct operation interval. Similarly, the tuned template of a given 
template resides in the middle of an interval that is shifted together with the 
nominal values due to parameter deviations. It is clear that a more robust version 
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of the tuned template may be found only in this interval. To do that, a method 
similar to statistical circuit design is employed. A Gaussian noise vector of 
random variables with zero mean and small variance, denoted 
ࢋ ൌ ሺ݁ଵ, ݁ଶ, … , ݁ሻ, represents chip parameter deviations. The cost function now 
contains several different embedded measurements instead of only one (Eq. 
( 8.8)). The parameter ݎ denotes the number of runs executed. 

,ሺܩ ,ݑ ,ݔ ഥ,ݕ eሻ ൌ
1
ݎ

 ݃൫  ݁, ,ݑ ,ݔ ത൯ݕ


ୀଵ

 ( 8.8) 

The optimizations are performed using the Aladdin system in connection 
with a MATLAB environment where the main features of the ASA algorithm 
are run. Target chips are: ACE4k of size 64 ൈ  64 cells, and ACE16k of size 
128 ൈ  128 cells. The input and initial state for each optimized template 
operation have been generated randomly, except for few operations such as 
binary edge detection. The desired output values are obtained from simulators of 
ideal CNN-UM using robust templates. No slicing of the images is needed as 
those are always chosen to have the same size as the given chip. Each 
optimization round requires in average tens of thousands iterations, where each 
iteration takes about 50 ms. Performance bottleneck resides on the execution of 
the MATLAB part. Be aware that the obtained templates are robust and/or 
optimal for the given chip only. For use in a different chip, a proper repetition of 
the whole procedure must be performed.  

8.4 OPTIMIZATION OF DIGTIAL IMPLEMENTATIONS  
The noise in digital circuits is primarily of numerical origin, where the finite 
word width causes a degree of value crisping that gradually impacts the intended 
behaviour  [60]. The main difference with respect to analogue realizations is that 
the word width is a design aspect rather than a chip parameter aberration. For 
instance, internal values in  [74] use just a single bit, while most applications 
need 8 bits and only few functions take considerably more than 8  [75] [76]. 
Word size translates immediately into system size. Computational precision that 
is theoretically unlimited becomes rapidly a design bottleneck as the digital 
circuits grow rapidly and dissipate more power with larger words. 

In his attempt to improve the design of a DT-CNN and lift it to a higher and 
more formal level, ter Brugge  [40] has used the rules of Mathematical 
Morphology to systematically derive complex templates. Actually, the approach 
flows in the opposite direction of what other developers and researchers try to 
achieve; simpler templates! This results in a highly efficient CNN architecture 
as it simplifies the overall structure but it introduces a number of complications 
when a digital realization is considered. One has to do with the increasing 
internal word width. An 8-bit wide data word will lead to 21-bits wide internal 
word (Figure  8.6), which takes an appreciable amount of processing capacity 
away. Obviously, the problem is even more severe when the number of 
multiplicative additions increases, i.e. when a larger neighbourhood is 
employed. However, an iterative optimization approach presented by Fang et al. 
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 [60] shows that the internal word width can be reduced down as low as 7 bits 
with no effect on the overall functionality. In this way, employment of 
composed complex templates can be accomplished with limited impact on the 
hardware implementation. 

 

∑i

 
Figure  8.6 Block diagram of a single DT-CNN cell. The numbers represent the width of 
each line in a 1-neighborhood digital implementation. 

The effectiveness of the approach is demonstrated by applying the template 
of hole filling (Table  8.4) on a small black and white image (Figure  8.7). In line 
with the digital implementations introduced previously, a fixed-point 
representation is assumed for all values, internally and externally. Table  8.3 
shows the placement of the decimal comma for the different values. The 
proposed approach reduces the internal values (after the multiplication) 
systematically from 16 to, at least, 7 bits. In this way, word size of the state is 
brought down to 12 bits only, of which 7 bits are used to address a table 
representing the final discrimination. 
Table  8.3 Typical data representation of a digital DT-CNN. The notation <n:m> means 
that the number consists of n-bits integer part and m-bits fractional part. 

Value Fixed-point notation 
 <value <1:7- ࢟ value and- ࢛
ऋ and ऌ coefficients <4:4> 
Bias <5:3> 
Multiplication results <5:11> 
State <10:11> 

 

 
Figure  8.7  Input image used in template optimization algorithm. 
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Upon start the range, in which the search is performed, has to be defined. 
This is heavily dependent on the number of free parameters that the initial 
template has. For instance, the template shown in Table  8.4 that is usually used 
to perform hole filling operation has 4 degrees of freedom only. These are 
denoted ܽଵ for the center ऋ-coefficient, ܽଶ for the non-zero off-center ऋ-
coefficients, ܾ for the centre ऌ-coefficient and ݅ for the bias.  
Table  8.4 Hole filling template. 

ऋ Template ऌ Template bias 


0 1 0
1 3 1
0 1 0

൩ 
0 0 0
0 4 0
0 0 0

൩ 
‐1

In  [60] the search of robust templates is ruled by the tuning ranges given in 
Table  8.5. Obviously, the range ܽଶ is not symmetrically spread around the 
nominal value of 3, while the value of 4 is not at all included in the adjustement 
range of ܾ! These tuning ranges are, however, employed here as well to make 
the comparison with the approach in  [60] possible. The number of robust 
templates is dependent on the performed operation, word size and the employed 
representation of values. For the hole filling template, and with the value 
representation given in Table  8.3 , the smallest step between two consecutive 
values of ऋ- or ऌ-entries is 0.0625, while it is 0.125 for the bias. In all cases, 11 
levels for each of the parameters do exist, which results in a total number of 114 
= 14 641 templates to be tested. 
Table  8.5 Tuning ranges for the Hole filling template. 

࢈ ࢇ ࢇ  
Decimal [2.625, 3.25] [1, 1.625] [3.125, 3.75] [‐1.375, ‐0.125]
Binary [0010.1010, 

0011.0100] 
[0001.0000, 
0001.1010] 

[0011.0010, 
0011.1100] 

[11110.101, 
11111.111] 

The method evolves as follows. At the beginning, the system runs on full 
precision without any truncation (16 bits for the multiplication results with 
notation <5:11>). All templates obtained for the given tuning ranges are tested, 
where each template executes until one of the stopping conditions is fulfilled: 
equilibrium is established or a predefined upper bound of iteration count is 
reached. If the obtained output matches exactly a desired output, the template is 
considered robust for the tested truncation level. The set of robust templates is 
then tested on the next truncation level, i.e. <5:10> for multiplication results. In 
other words, the robust templates from a certain optimization round are tested in 
the successor round where additional bit of the decimal part is truncated. This 
continues until truncation level <5:2> is reached. The methodology is 
schematically illustrated in Figure  8.8. 
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Figure  8.8 Template optimization through truncation. 

The algorithm is executed on a CNN model that is first built in software, 
before it is digitally emulated on an FPGA. The software model is written in 
pure MATLAB functions, while the digital emulator is implemented using 
VHDL. Due to hardware limitations on the FPGA, mainly memory space, the 
algorithm is slightly modified. Instead of checking the entire set of templates for 
robustness on one truncation level as in Figure  8.8, one template is tested with 
all truncation levels for which the template shows to be robust before the next 
template is tested. If a template passes through all truncation levels and still 
provides the desired output, it is then considered fully robust. Both software and 
hardware models find the same final set of robust templates consisting of 466 
templates, i.e. about 3.2% of the entire template space. An interest observation 
is that changing the order of optimization, i.e. starting from heavily truncated 
values <5:2> and gradually ending in full precision <5:11>, still provides the 
same robust templates. For clarity of the following discussion, the approaches 
are here named as descending and ascending. The former employs the intuitive 
understanding of truncation and starts from higher precision, i.e. <5.11>, and 
ends with lowest precision, i.e. <5:2>, while the latter follows the opposite 
order. While both approaches find the same 466 robust templates, they differ, 
however, greatly in the number of robust templates found in the intermediate 
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optimization steps (Figure  8.9). It is further observed that far more iterations per 
template are generally required in the ascending approach. Recall that the 
number of iterations toward convergence is mainly application dependent. Some 
applications, e.g. the Logical NOT, require a single iteration, independent of the 
network size. Other applications, e.g. hole filling, require more iterations 
dependent on the number of rows/columns in the network. However, the 
combination of template coefficients is desicive for how soon convergence is 
reached, i.e. how many iterations are required before the network converges. 
Thus, it is not surprising that the obtained robust templates differ in iteration 
count, making them less or more ‘suitable’ to perform the operation. On 
average, the ascending approach requires 26.3991 iterations for the robust 
templates in the last optimization level while the descending approach requires 
12.5601 iterations. This advantage of the descending approach disappears 
quickly when other aspects are taken into account as will be discussed in section 
 8.7. 

 
Figure  8.9  The number of robust templates remains unchanged at the beginning of the 
descending approach before it decreases strongly at then end. In the ascending 
approach, the number of robust templates is already very low and decreases slightly 
until it reaches the same value as for the descending approach.  

8.5 INFLUENCE OF BOUNDARY CONDITIONS 
The effect of boundary conditions on the quality of the applied approach 
requires special attention. It is well known that the choice of boundary condition 
is essential for the overall functionality of most templates. Mainly three 
conditions are used in literature: zero-flux, fixed (with different values) and 
periodic. Which one to use is operation dependent and is, thus, coupled to the 
derived template. In  [77], the influence of boundary conditions on space-
invariant coupled templates is discussed in detail. Only 1-neighborhood 
templates with zero ࣜ-coefficients and bias are considered. The width of the 
added frame of boundary cells is equal to the neighborhood size. It is here 
proved that for any two-dimensional infinite CNN that has a stable equilibrium 
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point, there are boundary conditions such that the resulting finite CNN, defined 
by the same template, also has a stable equilibrium. The conclusion is that 
CNNs can be divided into three different groups with respect to the influence of 
boundary conditions on their stability. 

 CNNs that always have stable equilibrium, e.g. such that ܽ  1 
∑ |ܽ|,ஷ,  because there is a stable equilibrium in every point of the 
state space where all states are saturated. Loss of stable equilibrium is 
independent of the boundary conditions. 

 Always completely unstable CNNs regardless the boundary conditions. The 
instability is “intrinsic” and is easily unveiled by analyzing the templates 
locally. The size of neighbourhood is at least 2. 

 Stable with some boundary conditions but not with others: for instance 
some linear finite one-dimensional CNNs with opposite-sign templates are 
unstable if the boundary conditions are set to zero and stable if they are set 
to ±1. The instability of this group of CNNs depends more on boundary 
conditions than on the template that defines them. The instability is 
therefore “extrinsic”, which force to examine the whole CNN globally 
before discovering the instability.  
It is then natural to take the accuracy of boundary condition into 

consideration in an effort to obtain the robust templates. Hence, a revision and 
modification of the approach of template optimization in section  8.4 is desired. 
The influence of boundary conditions is the main target of a Master thesis  [78] 
that the author of this thesis has co-supervised. The algorithm shown in Figure 
 8.8 is extended with a loop that takes into account all possible boundary 
condition values between -1 and +1 with step size of 0.1. Section  8.6 discuss the 
implementation of the extended algorithm and presents the obtained results. 

8.6 EXTENDED TEMPLATE OPTIMIZATION ALGORITHM 
In line with the original work presented in the previous section, the algorithm is 
implemented in two models: a software model using both Java and MATLAB 
(Figure  8.10), and hardware model that digitally emulates the algorithm on an 
FPGA. In the former, an indexed set of all possible templates is generated by 
means of Java classes. The number of templates in the set depends on the 
number of free parameters in the model, i.e. non-zero template coefficients 
(Table  8.3), their data representation (Table  8.4) and the tuning ranges to be 
covered (Table  8.5). The MATLAB cluster performs the actual optimization and 
provides a table with the robust templates corresponding to each truncation 
level. One of the distinguishing characteriscs of the software model is that it is 
consuming. For the nominal set of templates (14641 templates), the MATLAB 
cluster requires more than 130 hours for the ascending approach and 223 hours 
for the descending approach before all options are checked. The search is 
performed on a PC with Pentium 4, 2.4GHz and 1 GB RAM, equipped with 
Microsoft XP Professional service pack 3. This is mainly caused by using fixed-
point objects to perform the actual truncation in MATLAB. Implementing the 
model in hardware seems the only way to salvage time constraints.  
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Figure  8.10 Software model of template optimization approach, where only most 
important classes and functions are shown. Dashed ellipses indicate MATLABs own 
functions. The function compConst computes the constant corresponding to control and 
offset contribution as stated in section  4.2, while compY computes the feedback 
contribution. 

The hardware model is based on the scan-architecture embodiment 
Caballero. Here, the size of network is, however, less important as the input 
image is small, 7 ൈ 6 pixels only (Figure  8.7), which opens for denser macro 
utilization as more components can be accommodated per node. Two multipliers 
per node allow for handling two input values in parallel, which reduces the 
clock count per iteration and boosts the overall throughput. This is desirable in 
order to shorten the execution time of the software model. The node is further 
equipped with a dynamic truncation unit to perform the actual optimization 
(Figure  8.11).  

 
Figure  8.11 Structure of the modified Caballero node. Communication interface and 
nodal controller are not shown. 

As two values need to be available simultaneously, the communication 
scheme is modified. Figure  8.12 shows how data is first send to East and North 
neighbours, of which each forwards it perpendicularly on a counter-clockwise 
manner within the neighbourhood. Then, data is broadcasted South and West 
and further forwarded West and North respectively. Doing so, all nodes in the 
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neighbourhood receive their neighbours’ values in 4 steps and produce the 
output in the fifth step. This reduces the communication time-overhead by 50% 
compared to the original approach employed in Caballero. 

8.7 DISCUSSION 
Computing reliability of a circuit is usually decreased due to a number of errors. 
The errors originate from different sources: during the manufacturing process, 
internal noise, e.g. thermal noise, and external noise such as electrostatic 
discharge. Therefore, the existence of error sources is accepted, and the focus in 
fault-tolerant computing is on minimizing the influence of these errors on the 
processing results  [79]. Thus, it is not at all surprising that existing CNN chips 
suffer from parameter scattering. Different approaches have been tried to tackle 
the problem for both continuous-time and discrete-time systems. Of these 
approaches, some are targeting a specific chip, while others are chip 
independent. The focus has been on retaining stability of the system with a solid 
mathematical analysis of the proposed algorithms. However, the influence of 
boundary conditions seems to have sunk into oblivion, which this chapter tries 
to salvage. The proposed approach is general and is adaptable to any digital 
design. 

 
Figure  8.12 The inter-nodal communication is modified to allow the usage of two 
multipliers. Two values are received /submitted simultaneously. 

A completely software-based model is compared to software-aided HW 
model by means of number of robust templates each model finds and the time 
needed to achieve that. Both software and hardware models find the same robust 
templates, where both ascending and descending approaches are tried. None of 
the approaches finds any robust template in the range [0.6, +1] at any precision 
level, while at least one truncation level results in robust templates in the range 
[0.4, 0.5]. Figure  8.13 and Figure  8.14 give an illustrative view of the situation 
while the complete tables are given in Table A.1 and Table A.2 in Appendix A. 

For the descending approach, far more robust templates are found with 
boundary condition 0 than with boundary condition -1 for all truncation levels. 
About 6 times more robust templates are found for full truncation <5:2>.  

In order to gain a better understanding of the dependencies between 
boundary conditions, precision and template robustness, 3-D views are shown in 
Figure  8.15 and Figure  8.16. Here, the absence of robust templates for boundary 
conditions in the range ሾ0.6, 1ሿ is clearly seen. A visual inspection of the 3-D 
diagrams reveals two significant differences in how the approaches evolve. In 
general, the ascending approach finds less robust templates for all intermediate 
steps, but finds exactly the same number of robust templates as the descending 
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approach in the final step. The peak of robustness is shifted a bit compared to 
the descending approach and is located at boundary condition െ0.1 instead of 0 
for all precision levels. 

 
Figure  8.13 Number of robust templates for different boundary conditions in the 
ascending approach. No robust templates are obtained for boundary values in the range 
[0.6, +1] for all precisions. 
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Figure  8.14 Number of robust template for different boundary conditions in the 
descending optimization approach. No robust templates are obtained for boundary 
values in the range [0.6, +1] for all precisions. 
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Figure  8.15 A 3-D view of the outcome of the descending approach. First line of 
columns represents obtained robust templates for each boundary condition on the final 
optimization step. 

  
Figure  8.16 A 3-D view of the outcome of the ascending approach. . First line of 
columns represents obtained robust templates for each boundary condition on the final 
optimization step. 
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An important issue has to do with the number of iterations required for 
achieving convergence for each of the robust templates. Looking at Figure  8.17 
we can see that the iteration count increases for each precision level in the 
ascending approach, while it decreases successively in the descending approach. 
Notably, some of the robust templates require far more iterations than the input 
image theoretically needs due to its size (Figure  8.7). However, as more 
templates are found in the descending approach in the intermediate truncation 
levels, the overall require time is longer than for the ascending approach. In 
other words, the ascending approach is preferred as it is faster and provides the 
same result at the last optimization level.  

Figure  8.17 Iteration count of robust templates obtained in the descending approach 
(top) and the ascending approach (bottom) for boundary condition -0.1. Other conditions 
show a similar behaviour. Note that the horizontal axis is flipped to emphasize the 
direction of optimization. 

The question is whether both approaches find the same templates to be 
robust at least in the last optimization level. To ease the comparison, notions 
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from set theory, such as intersection, union and symmetric difference of two 
sets, are employed. The definitions of these set operations are given below.  

Definition 7.1: Laws of Set Theory [110] 
For a given universe ࣯ and for ܣ, ܤ ك ࣯: 

• The union of ܣ and ܤڂܣ : ܤ ൌ ሼݔ|ݔ א ݔڀܣ א  .ሽܤ
• The intersection of ܣ and ܤځܣ : ܤ ൌ ሼݔ|ݔ א ݔ ٿܣ א  .ሽܤ
• The symmetric difference of ܣ and ܣ : ܤ ᇞ ܤ ൌ ሼݔ|ݔ א ݔ ٿܤڂܣ ב   .ሽܤځܣ
• The cardinality of ܣ| :ܣ| ൌ number of elements in ז                                .ܣ 

Let’s first consider the ascending approach and focus on the final 
optimization level, i.e. precision <5:11>. A set of robust templates is denoted S୧, 
where i א ሼെ1, 1ሽ stands for the boundary condition in use. Looking at Table 
A.3- Table A.5, the following is observed for sets ܵିଵand ܵି.ଽ 

|ܵିଵ  ܵି.ଽ| ൌ 630
|ܵିଵ ת ܵି.ଽ| ൌ 466 ൌ |ܵିଵ|

|ܵିଵ ᇞ ܵି.ଽ| ൌ 164
ቑ ֜ ܵିଵ ؿ ܵି.ଽ ( 8.9) 

Performing the same comparison reveals the relation in Eq. ( 8.10). In other 
words the templates that show to be robust for boundary condition ݃ are also 
robust for boundary conditions ݃  0.1, ݃ א ሼെ1, െ0.2ሽ. The relationships 
among robust template sets ܵିଵ െ ܵି.ଵ are illustrated in Figure  8.18 left. 

ܵିଵ ؿ ܵି.ଽ ؿ ܵି.଼ ؿ ڮ ؿ ܵି.ଷ ؿ ܵି.ଶ ؿ ܵି.ଵ ( 8.10) 

For positive boundary conditions, i.e. ሼ0, 0.3ሽ as other conditions do not 
result in any robust template for precision level <5:11>, a different story holds. 
Eq. ( 8.11) depicts the relation between ܵ.ଵ and ܵ.ଶ. Similar discussion leads to 
the situation illustrated in Figure  8.18 right. 

|ܵ.ଵ  ܵ.ଶ| ൌ 1658
|ܵ.ଵ ת ܵ.ଶ| ൌ 469 ് |ܵ.ଵ| ് |ܵ.ଶ|

|ܵ.ଵ ᇞ ܵ.ଶ| ൌ 1189
ቑ ֜ ܵ.ଵ م ܵ.ଶ ר ܵ.ଶ م ܵ.ଵ ( 8.11) 

It remains to examine the relation between the template sets corresponding 
to positive and negative boundary conditions. Comparing the sets that are 
closest to each other from both groups, i.e. ଵܵ and ܵି.ଵ, seems a good idea (Eq. 
( 8.12)). The chain of proper subset relations as given in Eq. ( 8.10) is broken at 
the transition between negative and positive boundary conditions. 

|ܵି.ଵ  ܵ| ൌ 4296
|ܵି.ଵ ת ܵ| ൌ 2427 ് |ܵି.ଵ| ് |ܵ|

|ܵି.ଵ ᇞ ܵ| ൌ 1869
ቑ ֜ ܵ م ܵି.ଵ ר ܵି.ଵ م ܵ ( 8.12) 

A careful look at Table A.3, Table A.4 and Table A.5 shows further that 
only a small amount of robust templates found with positive boundary 
conditions work properly with negative boundary conditions. Eq. ( 8.13) makes a 
good example.  
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|ܵ.ଷ ת ܵି.ଵ| ൌ 45
|ܵ.ଷ ת ܵି.ଶ| ൌ 44
|ܵ.ଷ ת ܵି.ଷ| ൌ 44
|ܵ.ଷ ת ܵି.ସ| ൌ 1
|ܵ.ଷ ת ܵି.ହ| ൌ 1
|ܵ.ଷ ת ܵି.| ൌ 0

 ( 8.13) 

 
Figure  8.18 Complete overlapping of sets of robust templates is found from boundary 
condition -1 down to -0.1 (left) while positive boundary conditions give rise to a different 
situation (right). 

To summarise, all templates in ܵିଵ show to be robust for all boundary 
conditions down to െ0.1, but none of the templates א ܵିଵ is robust for boundary 
conditions that equal or are larger than 0. On the other hand, a subset of robust 
templates with boundary condition 0.3 are also robust for some conditions less 
than 0. The overlapp between positive and negative boundary conditions 
decreases further when we move away from 0 toward െ1. The same observation 
is completely valid for the descending approach as exactly the same sets of 
robust templates are obtained for all boundary conditions. 
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System Architecture 
A proposal  

t is well known that strongly nonlinear systems give rise to chaotic 
oscillation. In fact, , the universal CNN is inspired by Chua’s earlier work 

on chaotic oscillators  [7], which gives the clear advantage of employing CNNs 
to handle nonlinear systems. Obviously oscillation effects easily hamper typical 
dynamic behaviour of a CNN when feedback is activated, while feedback-less 
settings such as for erosion and dilation will not be affected. A CNN is 
considered completely stable if all cells converge to equilibrium states. But 
complete stability is sensitive to parameter settings, mainly in feedback template 
A. This sensitivity leads to, e.g., the occurrence of reaction/diffusion phenomena 
in higher levels of integration, i.e. when 2 CNN layers are coupled.  

Due to parameter sensitivity, hardware implementation of a CNN turns to 
be application dependent. We have seen in  Chapter 8 that a comprehensive 
evaluation in MATLAB is crucial to achieve a reliable digital design that 
performs the basic operation of hole filling. This experimental approach tends to 
be harder and, thus, requires more time to perform if template complexity is 
higher. In many other cases, an analytical approach is considered. For instance, 
in  [61], template parameters are first mathematically derived and then checked 
for robustness through extensive simulation. The conclusion is that templates 
with high connectivity, e.g. edge detection, result in large template values, 
which implies the need of further optimization by using algorithmic approaches. 
Obviously, design automation will reduce time and save effort while reliability 

                                                            
Parts of this chapter have been published in  [IV] and  [VII].  
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is clearly increased. In other words, there is a need for an automated system that 
extracts information from a user-supplied processing recipe and then builds the 
CNN system. In such a system, robustness is a key issue. 

The newest digital implementations, e.g. word-serial approach, pave the 
way for improvement of network capacity by merging temporal distribution of 
many cells inside a single node and spatial distribution of many nodes within the 
network. This allows entire CNN programs to be handled with minimal memory 
access. This invites to the definition of a system architecture and an appropriate 
application programming interface.This chapter proposes such an architecture in 
sections  9.2 and  9.3, but first section  9.1 discusses how an automated system for 
CNN implementation is generated starting from the basic elements. 

9.1 DESIGN AUTOMATION 
Ter Brugge discusses the front-end in  [40], where algebraic expressions are 
interpreted and converted to a normalized notation, from which different CNN 
architectures can be derived. Technology mapping takes care of various system 
optimizations, notably in the processor/memory balance, in different ways.  The 
amount of parallelism is reduced as operations are performed on the previous 
results without saving and reloading data. Furthermore, transformations produce 
templates in an arbitrary (also larger than 1) neighbourhood. Overall, the front-
end produces a CNN architecture that is efficient by large but has not 
necessarily taken the technological restrictions of an eventual hardware 
realization into account.  

The back-end has therefore to be extended to take care of hardware 
requirements. For instance, data representation has great impact on both 
computation and communication schemes of the different values within a CNN. 
A proper choice of arithmetic will, thus, largely affect both area and time 
overhead. Another issue is the size of CNN needed to facilitate a proper 
information processing systems. In image processing, e.g., an image is therefore 
sliced into sub-frames that are small enough to be accommodated on the 
network. The subsequent snapshots of the image have to be overlapped over a 
pixel thickness equal to the size of the neighbourhood. Unfortunately, this works 
only for templates with locality of operation. Furthermore, it takes an 
appreciable amount of processing capacity away. The larger the neighbourhood 
is, the harder are the demands. 

In short, an automated design system will start with algebraic expressions 
and end in a fully functional full custom design on ASIC. The overall system 
development procedure is depicted in Figure  9.1. The algebraic expressions 
allow for separating the processing steps from the flow control and are easily 
described using MATLAB instructions. The aim is to bring as much of the 
expressions together in single functions as this provides a basis to generate an 
efficient set of CNN templates This step is independent of hardware 
implementation needs such as data representation, word-length and 
communication schemes. By now, the obtained result constitutes a minimal 
solution of the processing application in terms of CNN operations, i.e. a 
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minimal sequence of consecutive templates. The number of templates in use has 
a direct impact on the amount of external memory access, as reloading of 
intermediate results may be required. In this sense, the MATLAB model 
provides us with optimal performance in terms of operation latency and memory 
access overhead. 

 
Figure  9.1 Moving from algorithm to hardware. 

The next development stage uses an FPGA platform, for a number of 
reasons. Firstly, the step toward a full custom ASIC becomes shorter when 
technology and design changes are easily accommodated. This reduces both cost 
and time. Secondly, modern FPGAs combine the over-mass of flip-flops with 
high-density and multifunctional macros such as multipliers and memory 
blocks. Moreover, modular construction is simplified due to the physical 
placement of the functional units. This allows bundling logic and macros to 
easily form CNN nodes and makes the FPGA technology to first-hand choice of 
programmable devices. 

MATLAB works with double-precision floating-point numbers, the largest 
number representation supported on nowadays general-purpose computing 
platforms. This is not feasible for resource-critical digital platforms. Hence, 
float-to-fix conversion is needed. On the FPGA platform, functions are applied 
on basis of fixed-point values represented as arbitrary long bit-strings. The 
limited resources on an FPGA force, however, to focus on making the 
functional components as small as possible. One way is to accommodate shorter 
word-length for the internal numbers. This is achieved through gradual decrease 
of the internal precision in line with the approach used in section  8.6.  This is 
not only aimed to make the functional macros smaller, but also to evaluate 
whether a precision can be achieved that is as low as inherently coupled to 
analogue implementations. MATLAB is very useful here as well.  

The question on the required transfer characteristics that next needs to be 
answered cannot be handled in MATLAB anymore. The aim is to reduce the 
traffic density as much as possible. This, in combination with the allowance of 
medium-size precision, shows that also a realization of analogue function 
macros, embedded in a digital network-on-chip, can be afforded. Through 
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combining small cores with small inter-nodal communication interface, a larger 
network can be accommodated on single FPGA.  

At the last stage, we further question the value transfer by the digital 
network that was originally introduced to allow for a smooth design flow. 
Having subsequently reduced the computation and the communication 
requirements, we may find ourselves in the situation that a fully digital 
realization proves to be feasible.  

9.2 ARCHITECTURAL OVERVIEW 
The CNN Instruction Set Architecture (ISA) defines the exterior of the CNN 
Image Processor in terms of signals and visible memory locations. The overall 
CNN ISA is depicted in Figure  9.2. Overall we find four modes of operation and 
their respective instructions using two separate bus systems: the Image Memory 
Bus (IMB) and the Host Interface Bus (HIB), both with a R/W signal and 
strobed address and data bus. 

 
Figure  9.2 External View of the CNN Architecture 

Window 
The window operations influence the image management unit only. It 

converts physical into virtual pixels and will autonomously fill the CNN with 
pixel information with respect to the designated Region of Interest (RoI) for any 
frame format using the Image Memory Bus (IMB). Using the window settings it 
is possible to repeat the CNN program on a steadily smaller part of the image 
while increasing the resolution. 

Frame Size: the width and height of a frame in pixels 
Centre coordinate: the non-sampled centre of the first frame to be handled. 

Configuration 
The internal operation is governed by a number of tables, downloaded over 

the HIB. They all start with a preamble that gives the general table information 
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and then subsequently provides the table entries. The template and 
discrimination table will be distributed to all nodes, while the program table is 
saved in the Instruction Store Unit (ISU).  

Discrimination: table for discrimination function  
Program: Instruction Store (opt.) 
Template: label and content of a template 
The discrimination function lists the transformation from internal node 

status to external data result. The length of the table is therefore given by the 
table size divided by the table step. 

The program tells the successive applications of pixel operations that can be 
either templates or hard-coded linear instructions. It implicitly relates the use of 
various layers and how they are combined either in time or in space. A template 
gives each CNN function. Templates can be downloaded and stored in every 
CNN node for use later on. The pixel operations can be selected from a number 
of linear (hardwired) and non-linear (downloadable) options. The instructions 
will be placed into a separate ISU. 

Logical: NOT, AND, OR, EXOR. 
Arithmetic: Sum, Minus per pixel or horizontal or vertical 
CNN: refers to downloaded templates 

Run 
Run: none, per clock, per iteration, per template till a specified breakpoint in 

the program. 
Boundary: the boundary conditions as stated in the templates can be 

overwritten for debug purposes. 
Sample Size: the amount of physical pixels represented by one virtual (CNN 

internal) pixel as implied by the window can be overwritten for debug purposes. 
Mode: only this window, or a stripe of the entire image 

Debug 
The ISA makes the CNN network architecture invisible to the host program 

and therefore allows a late binding of the actual structure to an application at 
hand. More often than not, the development network is different from the 
production network. Starting from a MATLAB model with values represented 
in a double floating-point format, a gradual conversion into fixed-point numbers 
is needed (section  9.1). The length of the internal words is application 
dependent, though accuracy can be easily guaranteed by block-based scaling 
with a factor derived by inspection of the templates. In practice we have not 
seen the need for more than 8 bits precision, but for simple templates a smaller 
length can be accepted.  

In line with this, we have inserted a number of in-line debug facilities. The 
system can be run in various time step size, inspected for network data, while 
allowing to overwrite the network status and to continue from the existing 
status. 
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9.3 SYSTEM COMPONENTS 
In our reference system we assume that the network is configured separate from 
the rest. Consequently we have to ensure that the system components can handle 
appropriate network architectures. 

9.3.1 Host Interface Unit (HIU) 
A host must be able to control the overall functionality of the system by sending 
instructions and cloning templates and by setting a number of configuration 
parameters. The communication is handled by the HIU that receives the requests 
from the host over the HIB and forwards them to the system using a wishbone 
bus. The HIU is as well responsible for data delivery to the host. Figure  9.3 
shows the main components. Two different FIFOs are used, one for acquiring 
host requests and one for putting out data to the host.  

 
Figure  9.3 The HIU consists of two FIFOs for communication with the host, IOMMU for 
address translation and a bus master to communicate with other units in the system. 

A host request is 25 bits long and is divided into 3 fields: a Read/Write flag 
that determines the type of the request, a virtual address field and a data field 
that is of interest only in write-requests (Figure  9.4). Once a request is captured 
by the FIFO, the virtual address is translated into a system memory address by 
the Input/Output Memory Managemet Unit (IOMMU). This address will serve 
as a base address for all incoming data as long as the virtual address field in the 
subsequently received requests remains unchanged. The bus master acts 
partially as a Direct Memory Access (DMA); it generates the proper addresses 
from the base address and put it on the address port of the wishbone bus.  In 
case of a read request, once data are available, the wishbone bus raises an 
acknowledgement signal notifying the bus master that reads the data and put it 
on the output FIFO. Write requests are handled similarly. Here the 
acknowledgement signal notifies the bus master that the writing of data is 
accomplished so next pair of address/data can be handled.  

 
Figure  9.4 A host request is subdivided into flag, address and data fields. 
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Looking into area utilization for the different components in HIU, Figure 
 9.5 gives an impression of the incurred overhead. We take here a FIFO of only 1 
deep. Most of the logic is hence devoted for IOMMU and Bus Master only. It 
can be clearly seen that the bus master requires more slices and FFs than the 
HIU itself! This is due to the fact that some of the signals in the bus master are 
not used at all and therefore optimized away.  

 
Figure  9.5 Area Utilization for HIU and two of the sub-components. 

9.3.2 Image Management Unit (IMU) 
The camera captures images and stores them in an external memory. The 8-bit 
greyscale pixels are then retrieved and converted by the IMU to a signed fixed-
point notation with a precision of 7 bits for the fractional part. One of the main 
operations of the IMU is the windowing operation. As the size of the network is 
far much smaller than the processed image frame, a gradual zooming toward the 
RoI is required. At the beginning the RoI covers the entire frame, where each 
CNN node on the chip is mapped onto a virtual pixel that corresponds to a group 
of real pixels in the image. The virtual pixel is suitably obtained through a 
conventional averaging of all pixels in the corresponding group. In a next round 
the RoI covers a smaller part of the frame depending on the output of the 
previous round.  

9.3.3 Control Unit (CU) 
The unit has direct communication to the CNN core and the HIU through 
wishbone buses. It is built with the concept of pipelining in mind and consists of 
two main components: Instruction Fetch and a Controller (acts as instruction 
decoder). The naming convention is somehow misleading as the former 
pipelining stage generates two additional signals; control (used by the Controller 
pipeline stage) and iteration; in addition to the instruction that is fetched from a 
dual-port RAM. The controller consists of two major components. One is the 
actual instruction decoder and provides the proper template, while the other 
generates CNN-enable and instruction-done signals depending on the number of 
iterations and whether equilibrium is reached or not. Figure  9.6 shows a 
schematic view of the control unit.  
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Figure  9.6 Control Unit schematic view. 

The instruction memory (ISU) is arranged as shown in Figure  9.7 with 
space for 64 instructions, while Figure  9.8 illustrates the area utilization for the 
main components. Taking a Xilinx Virtex-II 6000 as reference which 
accommodates 34,000 slices, we find from Figure  9.5 and Figure  9.8 that the 
overhead incurred by turning a CNN network into a system ranges from 1% for 
a limited edition to 5% for a complete one with large buffers. 

 
Figure  9.7 Memory address space as used by the control unit. 

9.4 DISCUSSION 
Design automation tools such as ECAD (electronic computer-aided design) have 
rapidly gained popularity with the continuous scaling in semiconductor 
technology. The aim is to make the translation from graphics to electronics 
smoother, more reliable and less time consuming. We have seen in this thesis 
how application may steer the implementation of a CNN on hardware. 
Furthermore, it has been proved that pruning of internal signals is possible 
without any effect on the obtained result. Obviously, selection of a proper 
architecture already at the beginning is important, but performing the desired 
adjustments is also critical. Doing so manually is not feasible, which implies the 
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need to automate the search for the perfect set-up. The belief is that such an 
automated system will be highly appreciated. 

 
Figure  9.8 Area utilization for the Control Unit and the sub-components Instruction Fetch 
and Instruction Decoder. 

The choice of floating-point and fixed-point representations in hardware 
implementations has so far been ruled by the desired precision and accuracy in 
the target application. As one of the major goals in CNN hardware design is 
accommodation of as many nodes as possible on a single chip, fixed-point 
representation is prefered. Addition of two floating-point numbers is rather 
complex and requires additional control for alignment and postnormalization. 
The longer latency for each accumulation operation leads to performance 
degradation.  In contrast, fixed-point addition is straightforward and requires 
minimal control, which even results in smaller needs of logic resources. In the 
proposed automated system a migration from float- to fixed-point is thus 
crucial.  

It is worth mentioning that the first emulator ACE is based on a floating-
point computation core. The decision is based on the observation that the 
‘limited’ accuracy obtained in fixed-point representation is not enough to solve 
partial differential equations.  But even in ACE16K, the obtained results of these 
equations are not accurate enough to be used in engineering applications  [111]. 
Actually, moving from floating-point to fixed-point numbers is not merely a 
question of reducing the value scope, but a careful arbitration between precision 
and accuracy. Precision is addressed by the smallest step in the value space, 
such that small variations in the value space have little significance in the 
problem space. Accuracy on the other hand has to do with the degree by which 
the computation can achieve the desired result. Figure  9.9 tries to visualize the 
difference between these two notions. It is shown that if one is precise the result 
will be consistent but may still be off target. There is evidently enough 
discriminatory power in the value space. If one is accurate, the average over 
repeated calculations will be in order but the individual readings must be precise 
to get to the target. The representation range of floating-point numbers 
outperforms the one obtained in fixed-point numbers but it comes at the expense 
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of a smaller precision  [112]. On the other hand, it is now proved that a digital 
CNN performs properly even with less accurate fixed-point internal signals. 
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Figure  9.9 Precision versus accuracy 

Furthermore, the large variation in digital CNN implementation shares a 
number of common principles. Such principles can be used to define an 
Instruction Set Architecture that interfaces host programs from CNN 
phenomena, allowing a soft core based implementation.  

The system architecture is founded on the recognition that larger networks 
pose an increasing demand on memory access. Applying more templates to the 
once loaded data alleviates these demands. The more templates can be handled, 
the larger networks can be allowed. The development of an effectively small 
node by employment of time multiplexing has made this possible. 

In the Bi-i system  [89], we find a potentially large but analogue  network. 
However, for a typical application we need both CNN and non-CNN operations. 
An example is motion detection, a central scheme in various areas of vision 
sensing, both in industrial as in consumer applications (section  7.2). For the 
non-CNN operations, the Bi-i system needs an additional digital signal 
processor. In a fully digital system, as presented here, such functionality can be 
integrated into the basic node. This relieves the Host Interface Bus from a lot of 
bandwidth problems. 

This leaves the issue of the Program Store. This is solved by having a 
configurable Stored Program Architecture. The first reason is the separation 
between scope and function. With a Stored Program we cannot only operate on 
subsequent images but also on several sample sizes within the same image 
without burdening the host computer. 

The ISA is especially helpful when the actual parameterization for the 
network is not clear during development, but should not influence the 
application at hand. It has become practical because the virtual network size has 
been raised from a meager 144 nodes to 4096, and can probably be raised even 
higher. This makes a digital CNN a practical alternative for image processing. 
As such networks do not have a global control, their intrinsic speed ought to be 
much higher than usual.  
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Further Considerations 
  

here is a lot of information concealed in the sequencing of frames, but it 
is not easy to get it out. A pixel-wise comparison is not easy to compute. 

It will be slow which defies the purpose of dynamic knowledge extraction or 
uses specialized hardware. Cellular Neural Networks can be used for this 
purpose, as shown in  [47]. For the digital implementation, where the dimensions 
of the problem (Figure  4.7) are mapped on the two dimensions of a Field-
Programmable Gate-Array, not all potential architectures permit such 
applications in an efficient way. 

The key issue seems to be whether access to image information stored off-
chip can be kept outside the inner loops of the computation. This is clearly 
exemplified in the original ILVA architecture, where the computation is 
unrolled on the nodal iteration dimension at the expense of the on-chip image 
salvage. The consequence is that image stream manipulations will involve a 
bandwidth problem with respect to the external image RAM. 

The principle of broadcasting processing elements, loosely coupled through 
a NoC-based architecture retains the potential of image stream handling. Of 
course, in the present generation of FPGAs, the amount of on-chip memory is 
not large enough to store the desired number of frames. However, the ongoing 
increase of storage capability of modern FPGAs indicates that the newer 
generations will be the better platform for real Wave Computing.  

                                                            
Parts of this chapter have been published in  [IV].  
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The fundamental critique on the implementations presented earlier is that 
the discrete-time formulation as given in the CNN nodal equation is not handled 
cycle-true as the implementations are based on the communication of converged 
results. For instance, simultaneous transfer of values within a neighbourhood 
gives rise to bus conflicts in the state-scan approach. In order to avoid such 
conflicts, nodes in Caballero are activated at a Knight Jump distance, which 
burdens the design with additional activity control and severely reduces the 
amount of potential parallelism (Figure  4.16). The special treatment of the 
activation pattern of edge nodes complicates the control further. Apparently, this 
adds heavily on the control and severely reduces the amount of potential 
parallelism. The amount of additionallt required logic is so big that a larger 
neighbourhood is basically precluded. Admittedly, all previous implementations 
emulate the functionality of CNN rather than providing real-time performance. 
One way to overcome interconnect limitations is to use a bit-serial 
communication scheme, which allows all nodes to immediately consume the 
values that are currently produced at the neighbouring cells. This will be part of 
the Network Interface (NI) that wraps any design part to become accessible 
through the network standard. It brings out the basic advantages of the time-
multiplexed communication and is fully in-line with the original Æthereal 
systematic  [83]. But it also presents a degree of overhead that needs to be 
minimized  [91]. Therefore it demands investigation, how the concept of serial 
processing can be moved further into the node. Furthermore, as all nodes can be 
active simultaneously, the activation cycle employed in Caballero is not needed 
anymore, which saves a global controller. Such a scheme has a small footprint 
and scales well with increasing neighbourhood. 

As communication schemes are strongly coupled with the usage of word-
level arithmetic, arithmetical constraints are of crucial importance even when 
optimized communication schemes, e.g. bit-serial, are used.  For instance, 
connecting the bit-serial approach to the existing Caballero node, whose 
computation performance is built on word-level arithmetic, requires buffering to 
create series/parallel conversion and vice versa. Apparently, this introduces both 
time and logic-overhead such that the benefits of a bit-serial communication 
scheme are lost. One way to remedy this is to use serial arithmetic together with 
bit-serial communication. The operation of a fully serial approach is illustrated 
in Figure  10.1. For every step, the coefficient bits multiply the single-bit input 
from each neighbour; the results are added and accumulated. It requires the 
coefficients to be locally available in a ring-buffer. This is not as bad as it 
seems, because a serial shifter can be implemented in a single LUT per 4 bits. 
For longer coefficients one may consider to build the ring-buffer in the Block 
RAM, but usually coefficients are not long. Together with the bit-register for the 
input and the bit multiplier, a 4-bits base unit takes just a slice. The outputs are 
tree-wise added and give a 4-bit result to be added to the shifting accumulator. 
This final addition has to be in parallel because long carry propagation may 
occur. Also the result has to be available in parallel, because a final table lookup 
is needed for the output discrimination. 
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As usual in bit-serial logic, the data-path becomes small but at the expense 
of a more complicated control. Furthermore we can expect a higher latency, as 
more clock ticks are needed to get to the result. But that is only true for the 
single node. The basic 10 clock cycles for a single node in Caballero have to be 
repeated for 5 neighbouring nodes due to bus contention. It does not seem likely 
that a serial solution that eliminates such bus contention problems will need 
more. As the small serial node allows for a larger network to be implemented on 
a single chip, it is worthwhile to evaluate its potential. This provides not only 
for high density but also supports a further higher density increase at the 
expense of a moderate deterioration in latency, which is usually affordable in 
commercial applications. . 
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Figure  10.1 A serial architecture for bit-serial communication. Variables v and w 
represent the width of u/y-values the width of template coefficients respectively. 

 The overview of the alternative designs, presented so far, shows a rich 
variety of compromises between speed and area. Starting from the bit-serial 
structure, even more alternatives can be created by logic transformation. A 
typical example of such a derivative implementation is in series/parallel 
computation (Figure  10.2). Every single input bit multiplies the entire 
coefficient. The outputs are tree-wise added and give a ݓ  3-bit result to be 
added to the shifting accumulator, where ݓ represents the width of template 
coefficients. This reduces the latency and the control significantly, but at the 
expense of wider adders. Connected to this comes the implementation of 
buffering. Where in the pure bit-serial approach, the buffers are directly created 
in hardware; in the derivatives it becomes worthwhile to implement the buffers 
in the local memory. 
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Figure  10.2  Series/parallel architecture for bit-serial communication. Variables v and w 
represent the width of u/y-values the width of template coefficients respectively.  

An overview of the CNN implementation spectrum (VIND) is given in 
Figure  10.3. The similarity to Corporaal’s 4-dimensional diagram about 
Architecture Design Spectrum  [82] reveals the importance of optimizing control 
and data flows in order to achieve a well performing CNN system, as the case 
always is with hardware design. The temporal state-flow architecture can be 
found on the D-axis, while multithreaded improvements like ILVA and 
Sleipner, reside on the surface between D- and N-axes. ILVA covers the gap to 
memory by flattening a 2-dimensional computation of nodal equation into a 1-
dimensional computation by dropping the intermediate results on the 
computational path (Figure  4.9). Pipelining is then, like in RISC architectures, a 
consequence rather than a target. Sleipner opens for larger neighbourhood 
through rearrangement of internal data flow to achieve better utilization of 
memory resources, which reminds of the concept of super-pipelining where 
extra pipeline stages come from decomposing the memory access.  

At this stage, the state-flow architecture seems to reach the edge of its 
performance and a total overhaul is needed.  Allowing larger numbers of 
iterations for each transfer of input values from the neighbourhood will boost 
the performance in the same way VLIW architecture increases the number of 
operations per instruction. The state-scan architecture, Caballero, brings this into 
reality by de-coupling intra-node computation from inter-node communication 
needs. The same sequence of multiply-accumulate operations is performed 
repeatedly in each node independently of the state of all other nodes. The state-
scan architectures that are originally on the I-axis move with the bit-serial 
technique closer to the V-axis where the number of simultaneously transferred 
values is in focus.   
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Figure  10.3 The 4-dimentional design space spectrum {V, I, N, D} of CNN architectures. 
The Time-multiplexed architecture employs the bit-serial technique. 

In order to get a better feeling for the design trade-offs, the effects of 
different implementations are shown in Figure  10.4. The basic clock speed of 
these designs differs considerably. An improved ILVA architecture exhibits a 
clock frequency of 144 MHz, which sets the lower clock rate. This is taken into 
account by normalizing the performance of all other implementations, expressed 
in clock cycles (cc) per iteration. The figure illustrates the impact of inter-nodal 
communication as well, i.e. when network interface is considered.  The 
pipelined approach (ILVA) has the larger core, but the communication interface 
is slim. On the other hand, the parallel approach (Caballero) uses a smaller core, 
but the benefit disappears quickly when the communication interface is taken 
into account. The bit-serial approach is superior with small core and little 
communication overhead. 

 
Figure  10.4 Design trade-offs in digital CNN implementations without (hollowed shapes) 
and with inter-nodal communication overhead in form of Network Interface (filled 
shapes).  
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For a proper evaluation, we also need to look into the impact of larger 
templates. Figure  10.5 shows the effect of larger neighbourhood on the required 
logic. Caballero exhibits the smallest increase in area (9%) due to the reuse of 
routing paths. Main impact is on the control mechanism. Unrolling the nodal 
behaviour into time, as done in ILVA, shows somewhat larger increase in area 
(30%). In contrast, the bit-serial approach tends to grow super-linear with 
template size, about 300% increase. Noteworthy is the version with serial 
communication and parallel nodes (denoted word-parallel/bit-serial), where the 
Caballero performance is merged with a slim-line communication. However, the 
bit-serial approach still has smallest footprint of all other implementations for 
both neighbourhoods. Going from 1- to 2-neighborhood has a marginal impact 
on the normalized performance for all approaches except Caballero, where the 
latency is almost 7 times higher! 

 
Figure  10.5 Area utilization for different neighbourhoods. 

10.1 DISCUSSION 
Connecting to the abstract execution models in section  4.2, we see that 

almost all architectures in the VIND spectrum benefits from the consumer node 
model only. In the producer node model, 8 distinct values are transmitted 
simultaneously equipped with different target addresses. This requires additional 
control compared to the consumer node where a single value is broadcasted with 
same source address. Apart from that, the bandwidth is doubled in the producer 
model which makes the interface eat up more logic. This kicks directly in 
Caballero but even Sleipner is in the danger zone. ILVA is the one that suffers 
less. Apparently, these architectures are typical consumers. The producer model 
makes sense only when the bandwidth is kept at absolute minimum, which is 
possible only in the bit-serial approach.  

All state-flow and state-scan architecures are developed in VHDL using 
generic notations and configuration options. This creates in principle a high 
degree of portability, which unfortunately has not been exploited yet. Instead the 
parameters are instantiated for 8-bits. One reason is that the 18-bits multiplier 
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macros are tightly coupled to the Block RAM, which enforces the address space 
to be divided between the two macros. As the 8-bits parameters lead to larger 
internal values, a balance between input value size and fan-in per node is at 
stake. The other reason is that CNNs will in general work adequately with 8-bits 
parameters. Moving to a larger word width is feasible but it will not be easy 
without major structural changes. Most important, it will require a not fully 
parallel arithmetic. For the moment, it is not clear whether this can be done 
without consequences to the current packing density and this will therefore 
require additional investigation.  

Another issue for future research is the effect of architectural choices in the 
problem space. Of the many degrees of freedom, mentioned in section  4.3, two 
selections only have been experimented with. Many more are possible and will 
probably have different consequences in the efficiency of exploiting the local 
storage potential through the BRAMs. In both pipelined designs, ILVA and 
Sleipner, the handling of the image stripe sequences does not require much 
support but has a fundamental limitation in the number of iterations to find 
locally stable solutions. In the state-scan architecures the limitation on iteration 
count is removed though at the expense of the ease of handling the image 
stripes. 

The discussed applications have shown to be very diverse in their 
implementation requirements. Image processing is by its nature very 
demanding, as the desired ‘locality of operation’ in the geometry domain does 
not agree with the underlying principles of the superscalar computing 
architecture  [57]. This is caused by the temporal character of such architectures, 
where a small number of large resources are scheduled in time for optimal 
usage. Spatial architectures, where the process is divided over many small 
resources, provide an alternative, as illustrated in this thesis.  

A further boost in performance can be derived from the use of complex 
templates. TerBrugge gives an example of skeletonization, where the previously 
published hand-derived solutions can be mechanically improved to a really 
optimal, single template solution  [40]. This is especially relevant to the 
pipelined approach, where the image is written back to external memory after 
every template application. Having fewer templates will then clearly raise 
performance.  

One of the most important features of an FPGA is the innovation of partial 
reconfiguration of hard-wired modules. This innovation has always been kept in 
mind while designing the different approaches. Actually, the ability of 
dynamically reconfiguring (parts of) the FPGA is one of the main reasons for 
adopting the NoC-based architectures.  For instance, in all implementations, as 
presented here, on-line programming can change the nature of the sensor. The 
integrated intelligence serves to extract knowledge from the image about 
physical conditions or objects that otherwise require a dedicated sensor. This 
virtualization of the sensory function is especially of advantage, where such 
measurements are only occasionally needed. Re-programming the sensor at need 
replaces the installation of a hardly used sensor, such as for diagnostics. 
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However, this ability has unfortunately never been tried! Future research is 
ought to take this feature into consideration.  

 



 

 
 

 
 
 
 
 
 
 
 
 
 

Appendix A 



186  Appendix  
 

 

Table A.1 Number of robust templates obtained for each boundary condition and 
precision level in the ascending approach. Boundary values [0.4, 1.0] are omitted as 
they do not result in any robust template 

  5:2  5:3  5:4  5:5  5:6  5:7  5:8  5:9  5:10  5:11 

‐1.0  736  673  583  519  483  483 473 469 468 466

‐0.9  976  877  764  692  648  648 638 634 632 630

‐0.8  1264  1096  941  833  761  759  746  740  738  736 

‐0.7  1780  1509  1297  1145  1051  1049  1031  1025  1022  1018 

‐0.6  2344  1927  1627  1453  1347  1344  1323  1317  1314  1310 

‐0.5  3300  2730  2338  2113  1968 1963 1938 1929 1923 1919

‐0.4  3572  2902  2457  2200  2028 2022 1997 1984 1978 1974

‐0.3  4892  4034  3454  3140  2928  2921  2889  2876  2867  2861 

‐0.2  4892  4034  3454  3140  2928  2921  2889  2876  2867  2861 

‐0.1  5944  4993  4328  3955  3692 3682 3648 3631 3621 3615

0  5720  4512  3830  3414  3214 3214 3139 3131 3108 3108

0.1  5720  3484  2533  1997  1741  1677  1613  1593  1582  1582 

0.2  3776  2006  1180  831  641  611  577  561  550  545 

0.3  3256  642  268  137  104  91  73  73  72  72 

0.4  1116  74  21  5  1  1 1 1 0 0

0.5  381  0  0  0  0  0 0 0 0 0
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Table A.2 Number of robust templates obtained for each boundary condition and 
precision level in the descending approach. Boundary values [0.4, 1.0] are omitted as 
they do not result in any robust template. 

  5:2  5:3  5:4  5:5  5:6  5:7  5:8  5:9  5:10  5:11 

‐1.0  466  2653  4221 5361  5538  5538 5538 5538 5538 5538

‐0.9  630  3001  4634 5844  6162  6186 6187 6201 6205 6210

‐0.8  736  3497  5314  6569  6833  6912  6957  6967  6983  6993 

‐0.7  1018  4071  5996  7275  7563  7646  7658  7696  7703  7705 

‐0.6  1310  4760  6671  7945  8262  8308  8320  8352  8366  8373 

‐0.5  1919  5453  7410 8623  8846  8932 8949 8949 8949 8949

‐0.4  1974  5984  7875 9015  9287  9312 9342 9361 9361 9363

‐0.3  2861  6636  8339  9382  9629  9655  9655  9685  9689  9690 

‐0.2  2861  7070  8663  9596  9841  9867  9867  9873  9873  9873 

‐0.1  3615  7406  8875 9716  9945  9951 9957 9966 9966 9966

0  3108  6274  7447 8224  8452  8452 8452 8452 8452 8452

0.1  1582  4238  5338  6097  6325  6325  6325  6325  6325  6325 

0.2  545  2107  3105  3862  4090  4090  4090  4090  4090  4090 

0.3  72  585  1262  2012  2240  2240  2240  2240  2240  2240 

0.4  0  29  166  621  833  833 833 833 833 833

0.5  0  0  0  15  54  54 54 54 54 54
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Table A.3 ห ܵ  ܵห in the ascending approache for precision <5:11> where ݅, ݆ א
ሼെ1, 0.4ሽ. Same results are obtained for the descending approach with precision 
<5:2>.  
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Table A.4 ห ܵ ת ܵห in the ascending approache for precision <5:11> where ݅, ݆ א
ሼെ1, 0.4ሽ. Same results are obtained for the descending approach with precision 
<5:2>. 
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Table A.5 ห ܵ ᇞ ܵห in the ascending approache for precision <5:11> where ݅, ݆ א
ሼെ1, 0.4ሽ. Same results are obtained for the descending approach with precision 
<5:2>. 
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