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ABSTRACT

The analysis and design of new non-centralized learning algorithms for

potential application in distributed adaptive estimation is the focus of

this thesis. Such algorithms should be designed to have low processing

requirement and to need minimal communication between the nodes

which would form a distributed network. They ought, moreover, to

have acceptable performance when the nodal input measurements are

coloured and the environment is dynamic.

Least mean square (LMS) and recursive least squares (RLS) type in-

cremental distributed adaptive learning algorithms are first introduced

on the basis of a Hamiltonian cycle through all of the nodes of a dis-

tributed network. These schemes require each node to communicate

only with one of its neighbours during the learning process. An original

steady-steady performance analysis of the incremental LMS algorithm

is performed by exploiting a weighted spatial-temporal energy conser-

vation formulation. This analysis confirms that the effect of varying

signal-to-noise ratio (SNR) in the measurements at the nodes within

the network is equalized by the learning algorithm.

A novel incremental affine projection algorithm (APA) is then pro-

posed to ameliorate the problem of ill-convergence in adaptive filters

with coloured inputs which are controlled by the incremental LMS al-

gorithm. The computational and memory costs of this incremental
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APA algorithm are shown for a range of filter lengths to be lower than

those of an incremental RLS algorithm. The transient and steady-

state performances of the incremental APA algorithm are evaluated in

detail through analytical and simulation studies. The nature of the

inter-node collaboration within the incremental APA algorithm is fur-

ther enhanced through the adoption of a diffusion-based cooperation

protocol.

The concept of variable tap-length (VT) adaptive filtering is next

introduced to facilitate structural change during learning. The mono-

tonically non-increasing nature of the converged difference between the

segmented mean square error (MSE) of a filter formed from a number

of the initial coefficients of an adaptive filter and the MSE of the full

adaptive filter, as a function of the tap-length of the adaptive filter, is

confirmed through analysis. An innovative strategy for adaptation of

the leakage factor, a key parameter in the fractional tap-length (FT)

learning algorithm, is proposed to ensure the converged tap-length can

be used to calculate the true length of the unknown system for a range

of initial tap-lengths. For sub-Gaussian noise conditions, a VT adap-

tive filtering algorithm which exploits both second and fourth order

statistics is also presented.

Finally, VT adaptive filters are introduced for the first time into

distributed adaptive estimation. In particular, an FT learning algo-

rithm is used to determine the length of the adaptive filter within each

node in parallel with the scheme to calculate the coefficients of the fil-

ter. The efficacy of this technique is confirmed through analytical and

simulation studies of the steady-state performance.
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Chapter 1

INTRODUCTION

1.1 Stochastic-gradient algorithms

In the literature, the linear estimation problem shown in Figure 1.1 is

widely discussed [3], [4], [5], [6], [7] in the context of the development of

various adaptive algorithms, which is based upon a convex cost function

of the form,

min
w

J(w) = min
w

E|d− uw|2 (1.1.1)

where the desired output d is a zero-mean random complex value with

variance σ2
d, the input u denotes a 1×M row vector with zero-mean, |·|2

indicates absolute squared operation and E is statistical expectation.

Both d and u are assumed jointly wide-sense stationary processes. The

solution wo = R−1
u Rdu is the optimal weight vector, and the resulting

minimum mean square error (MMSE) cost is given by,

MMSE = σ2
d −RudR

−1
u Rdu (1.1.2)

where Ru = Eu∗u is a positive definite covariance matrix, Rdu =

Edu∗ = R∗
ud is a cross correlation vector and (·)∗ denotes complex-

conjugate transposition. Such least mean square problems (1.1.1) are

quadratic in w and have a unique global minimum at wo, provided Ru

1
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Figure 1.1. Linear estimation problem.

has full column rank. Throughout the thesis, the following notations

are adopted: boldface small and capital letters are used for random

complex vectors or scalars and matrices respectively; normal font is

employed for deterministic complex quantities.

The steepest-descent algorithm provides an iterative procedure to

approximate the solution wo, namely, as in [6],

wi=wi−1 − µ[∇wJ(wi−1)]
∗

=wi−1 + µ[Rdu −Ruwi−1], i ≥ 0 w−1 = initial value (1.1.3)

where the positive scalar µ is the step-size, i denotes the iteration index

and ∇wJ(wi−1) is the gradient vector of J(w) at w = wi−1. Lack of the

exact signal statistics in practice leads to the development of stochastic-

gradient algorithms, which can usefully also track the variations in the

signal statistics. Let {d(i), ui} denote the observations of the random

variables {d,u} in (1.1.1). According to its simplicity and robustness,
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the LMS algorithm is developed on the basis of the steepest-descent

algorithm, where the statistical quantities {Rdu, Ru} are replaced by

the instantaneous approximations {d(i)u∗i , u
∗
i ui} (Widrow 1959/60) [3]

and the corresponding recursion (1.1.3) therefore becomes,

wi = wi−1 + µu∗i [d(i)− uiwi−1] (1.1.4)

In addition, LMS is also the exact solution to the localized constrained

optimization problem as [6],

min
wi

‖wi − wi−1‖2, subject to r(i) = (1− µ‖ui‖2)e(i) (1.1.5)

where ‖ · ‖2 indicates squared Euclidean norm operation and two esti-

mation errors are defined by:

e(i),d(i)− uiwi−1 (a priori output estimation error) (1.1.6)

r(i),d(i)− uiwi (a posteriori output estimation error). (1.1.7)

When for all i the condition 0 < µ‖ui‖2 < 2 holds, it is always the

case that |r(i)| < |e(i)|, namely, uiwi yields a better estimate for d(i)

than uiwi−1 (except for the case of e(i) = r(i) = 0). Using δw =

wi−wi−1 and the constraint in (1.1.5), the optimization problem (1.1.5)

is equivalent to,

min
δw
‖δw‖2, subject to uiδw = µ‖ui‖2e(i) (1.1.8)

In the case of ‖ui‖2 6= 0, δwo = µu∗i e(i) has the smallest Euclidean
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norm [6] and with δwo = wi−wi−1 the LMS recursion for wi is obtained,

wi = wi−1 + µu∗i [d(i)− uiwi−1]. (1.1.9)

This therefore verifies that LMS is the exact solution to the localized

constrained optimization problem (1.1.5).

Regularized Newton’s method is developed to obtain the optimal

solution wo and the resulting recursive form is

wi=wi−1 + µ[εI +∇2
wJ(wi−1)]

−1[∇wJ(wi−1)]
∗

=wi−1 + µ[εI + Ru]
−1[Rdu −Ruwi−1] (1.1.10)

where the regularization parameter ε is a small positive value to avoid

the inversion of a rank deficient matrix Ru and ∇2
wJ(wi−1) is the fur-

ther differentiation of ∇wJ(wi−1) with respect to w∗
i−1 and called the

Hessian Matrix. One well-known property of Newton’s method (εI is

dropped in (1.1.10)) is that the choice µ = 1 guarantees convergence

in a single iteration to the minimizing argument of a quadratic cost

function J(w). By replacing the quantities {Rdu, Ru} by different in-

stantaneous approximations [6], several stochastic-gradient algorithm
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variations based on (1.1.10) have been devised, for example:

NLMS : wi = wi−1 +
µ

ε + ‖ui‖2
u∗i [d(i)− uiwi−1] (1.1.11)

APA : Ui =




ui

ui−1

...

ui−T+1




and di =




d(i)

d(i− 1)

...

d(i− T + 1)




wi = wi−1 + µU∗
i (εI + UiU

∗
i )−1[di − Uiwi−1] (1.1.12)

RLS : Pi = λ−1(Pi−1 − λ−1Pi−1u
∗
i uiPi−1

1 + λ−1uiPi−1u∗i
)

wi = wi−1 + Piu
∗
i [d(i)− uiwi−1] (1.1.13)

where in APA T denotes the number of recent regressor samples, and in

RLS the initial condition P−1 = ε−1I is generally used and 0 ¿ λ < 1

is the weighting or forgetting factor. In normalized LMS (NLMS) the

adaptive gain is a scalar but it is time-varying, and ε is a constant

to avoid divide by zero and associated gain amplification. The term

“affine projection” in APA represents linear projection type mapping

onto the subspace defined by the columns of a low column-rank input

matrix. In fact, as in [6] where further details can be found, the precise

term would be ε-APA, where ε represents the weighting on a regular-

izing identity matrix in the algorithm formulation; however, in this

thesis, as in [6] the ε is dropped for notational convenience. Although

the RLS algorithm is derived as an exact solution to a least-squares

estimation problem, it can also be motivated as a stochastic-gradient

method (details shown in [6]). These algorithms generally trade per-

formance with computational complexity. Employing adaptive filters

within the nodes of a network motivates the development of adaptive
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estimation over distributed networks, which allows applications to ob-

tain improved performance by exploiting data in both the spatial and

temporal dimensions as compared to individual filters without cooper-

ative implementation.

1.2 Distributed adaptive estimation

Compared with a traditional centralized solution that requires a pow-

erful central processor and extensive amount of communications, the

objective of a distributed solution is to reduce significantly the amount

of processing and communications between nodes relying only on local

data exchange and interactions between their immediate neighborhood

nodes whilst retaining the accuracy of a centralized solution [8], [9], [10].

Distributed adaptive networks can therefore find potential application

in a wide number of fields, such as precision agriculture, environmen-

tal monitoring, defence, transportation and factory instrumentation [8].

Particular merits of a distributed adaptive estimation solution are col-

laboration and adaptation. The computational burden is shared over

the individual nodes so that communications are reduced as compared

to a centralized network, and power and bandwidth usage are also

thereby reduced [1]. On the other hand, the adaptive capability en-

ables tracking of not only the variations of the environment but also

the topology of the network.

As shown in [1], three modes of distributed cooperative network are

illustrated in Figure 1.2. An incremental network tends to require the

least amount of communications and power, and exploits a cyclic co-

operative pattern, generally a Hamiltonian cycle through the network,

where the information flows from one node to the immediate neighbour
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(a)

Incremental


(b)

Diffusion


(c)

Probabilistic Diffusion


Figure 1.2. Three modes of cooperation between nodes in a dis-
tributed estimation environment [1].

nodes. On the other hand, each node in a diffusion network communi-

cates more than in an incremental fashion; namely, it interacts with all

its neighbours and obtains more data. A probabilistic diffusion on the

other hand selects the nodes with which it communicates in a prob-

abilistic fashion. Novel adaptive algorithms are required to perform

learning in such cooperative environments the development of which is

the focus of the research of this thesis.

In all previous work, such distributed networks have been assumed

to use a fixed tap-length of the adaptive filter at each node. When the

tap-length is chosen too long or sometimes too short in some typical

scenarios, the convergence performance and computational cost will

be significantly impacted. According to the conflicting requirements

of performance and complexity, it is desirable to derive for the first

time distributed adaptive algorithms that can automatically find the

optimum tap-length for distributed adaptive estimation.
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1.3 Variable tap-length LMS (VTLMS) algorithm

As a key parameter, tap-length plays an important role in the design of

adaptive filters based on the LMS algorithm, which has been utilized

in a wide range of applications [4], [5], [6], as a consequence of its sim-

plicity and robustness. However, in many applications the tap-length

of the adaptive filter is for simplicity assumed to be fixed, which is

not suitable for certain situations where the optimal tap-length of the

system filer is unknown or variable. Furthermore, it is well known that

the selection of tap-length significantly influences the performance of

adaptive filters: deficient tap-length is likely to result in increase of the

MMSE; whereas the computational cost and the excess mean square er-

ror (EMSE) may become too high if the tap-length is too large. Since

the concept of variable tap-length in adaptive filters was initially pro-

posed in [11], many related works [12], [13], [14], [15], [16], [17], [18] have

been reported in the literature on the basis of this concept. Utilizing

instantaneous errors for the tap-length adaptation, the FT algorithm

has been proposed to arrive at improved convergence properties over

other methods and is formulated as follows [17]:

e
(L(i))
L(i)−∆(i)=d(i)− ui(1 : L(i)−∆)wi−1(1 : L(i)−∆) (1.3.1)

lf (i + 1)=lf (i)− α + β[(e
(L(i))
L(i)−∆(i))2 − (e

(L(i))
L(i) (i))2] (1.3.2)

where α is the leakage factor, β is the step-size of the fractional tap-

length update and L(i) is the integer value of lf (i) calculated by

L(i + 1) =





Rd (lf (i)) if |L(i)− lf (i + 1)| ≥ ν

L(i) otherwise
(1.3.3)
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where Rd(·) rounds the embraced value to the nearest integer and the

parameter ν is a small integer. The FT algorithm is therefore extended

for the first time to distributed adaptive estimation to obtain the es-

timate of the optimal tap-length of adaptive filters within distributed

adaptive estimation schemes.

1.4 Organization of the thesis

The remainder of this thesis is organized as follows:

Chapter 2 provides a brief review of the development of incremental

learning algorithms based on LMS or RLS methods over distributed

networks. In addition, a steady-state performance analysis of the dLMS

algorithm is provided for an incremental network with non-Gaussian

data which is supported by simulation.

In Chapter 3, a new incremental adaptive learning scheme based

on APA is proposed to overcome efficiently the ill-convergence in LMS-

type adaptive filters with coloured inputs for incremental distributed

networks and provides an improved convergence rate as compared to an

LMS based scheme. As compared to RLS for a range of filter lengths,

the new scheme requires less computational cost and communications

to obtain an acceptable misadjustment at the steady-state stage.

Chapter 4 presents a novel diffusion affine projection algorithm

for adaptive estimation over distributed networks, where the network

topology exploits more communication resources and computational

costs than the incremental type to increase the cooperation among

nodes. Such a strategy is robust to node and link failures and uti-

lizes the network connectivity to obtain improved performance over the

non-cooperative method. In addition, the proposed algorithm is also
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extended to networks with dynamic topology, where the links between

nodes are random due to link failures or time delays.

Chapter 5 provides an analysis of the converged difference between

the segmented MSE of a filter formed from a number of the initial co-

efficients of an adaptive filter, and the MSE of the full adaptive filter,

which is confirmed as a function of the tap-length of the adaptive fil-

ter to be monotonically non-increasing. Based on this analysis, a new

strategy for adaptation of the leakage factor is therefore developed to

systematically choose the key parameters in the FT learning scheme

to ensure convergence to the desired range, which can be used to com-

pute the true tap-length of the unknown filter. In addition, a novel

VTLMS algorithm exploiting both second and fourth order statistics

of the errors is presented to improve the convergence performance of

the fractional tap-length function for the sub-Gaussian noise case.

In Chapter 6, motivated by both ideas of tap-length adaptation and

distributed adaptive estimation, a variable tap-length adaptive filtering

algorithm within the context of incremental learning for distributed

networks is presented for situations where the optimal tap-length of

the filters within the corresponding network is unknown or variable

with respect to time.

Chapter 7, finally, summarizes the content of this thesis and pro-

vides the overall conclusions and suggestions for future work.



Chapter 2

INCREMENTAL LEARNING

SCHEMES FOR

DISTRIBUTED ADAPTIVE

ESTIMATION

2.1 Introduction

A motivational example for distributed adaptive networks is to exam-

ine an application in the context of measuring some quantity such as

temperature or humidity across a spatial field. Consider that a net-

work with N sensors is deployed to observe a physical phenomenum

and events in a specified environment. At time i, each sensor at node

k collects a measurement dk(i), where i denotes the discrete time index

and k indicates the node index, and assuming an autoregressive (AR)

model (shown in Figure 2.1) is adopted to represent these measurements

as follows [19]:

dk(i) =
M∑

m=1

βmdk(i−m) + vk(i) (2.1.1)

11
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x

y

z

Figure 2.1. Modelling application: AR field [2].

where vk(i) is additive zero-mean noise and the random selected coef-

ficients {βm} are the parameters of the underlying model. Define the

1×M regression vector

uk,i = [dk(i− 1) dk(i− 2) . . . dk(i−M)] (2.1.2)

and the M × 1 parameter vector

wo = col{β1, β2, . . . , βm}, (M × 1) (2.1.3)

where col{a} indicates column vector with entries a, then the measure-

ment equation (2.1.1) at each node k can be rewritten as an equivalent

linear measurement model

dk(i) = uk,iw
o + vk(i). (2.1.4)
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The objective is to estimate the model parameter vector wo from the

measurements dk(i) and uk,i over the network and thereby has the form

of a system identification problem. Thus, in order to find the M × 1

vector w, the linear space-time least mean square estimation problem

is posed as:

min
w

J(w) and J(w) = E‖d−Uw‖2 (2.1.5)

where the global desired response vector and input matrix are

d=col{d1, d2, . . . , dN}, (N × 1) (2.1.6)

U=col{u1, u2, . . . , uN}, (N ×M). (2.1.7)

where the {dk(i), uk,i} are realizations of {dk,uk}.
One solution is a non-distributed implementation, which allows an

individual adaptive filter at each node k to solely respond to its local

data {dk(i), uk,i} and estimate wo independently of the other nodes.

As a result, the quality of the local estimate at each node relies on the

statistical properties of its own data. When a multitude of nodes in the

network has access to data, in order to take advantage of node coopera-

tion, it is useful to seek solutions that utilize the assumed collaboration

among the nodes to arrive at the parameters of interest.

The following desirable features should be required for an adaptive

estimation approach over distributed networks:

• Adaptive implementation: The variance in the statistical profile

of the data can be promptly tracked by the solution, which allows

each node to combine the received information and local data to

update its local estimate of the parameter of interest.
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• Convergence performance: The local estimates are shared in a

cooperative fashion according to the network topology. Each node

in the network should end up with an estimate that is as accurate

as it could be obtained if the space-time dimension of the data

were fully exploited.

• Energy consumption and complexity : Communications and local

processing at the nodes should be minimized.

Distributed adaptive solutions are therefore derived to satisfy these

requirements, where local processing at every node allows an appli-

cation to obtain an estimate in a collaborative manner, thereby sav-

ing communications and network resources. Such cooperative adaptive

solutions are expected to obtain improved performance over the non-

cooperative individual filters. Several developments of the LMS and

RLS types based on distributed adaptive estimation have been pro-

posed in both incremental and diffusion network topologies [1], [19],

[20], [21], [22], [23], [24], [25], [26], [27], [28], [29]. Due to space con-

straint, the following section will give a brief introduction to incremen-

tal distributed solutions. These solutions allow the local information

of a certain node to create a ripple effect through the network and

influence the performance behaviour of other nodes.

2.2 Incremental adaptive solutions over distributed networks

Inspired by the earlier studies on incremental methods for distributed

optimization problems [9], [30], [31], [32], Lopes and Sayed extended

these incremental methods in the context of adaptive estimation over a

distributed network, where at least one cyclic path can be established
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across the network. In this distributed network with incremental learn-

ing, a local estimation at each node is computed via combining the

received information from its immediate neighbourhood node and the

local information from its own sensor. Let ψ
(i)
k denote a local estima-

tion at node k and time i and wi denote a global estimation at time

i. The steepest-descent solution is therefore introduced to compute the

optimal tap weight wo, via,

ψ
(i)
k = ψ

(i)
k−1 − µ[∇Jk(wi−1)]

∗, k = 1, 2, . . . , N (2.2.1)

At time instant i, the first node starts with the initial local tap vector

ψ
(i)
0 = wi−1, which is regarded as the current global estimation obtained

cyclically across the network. At the last node, the local estimation ψ
(i)
N

is given to the next global estimation at time i + 1, namely wi = ψ
(i)
N .

Using the instantaneous approximations, the implementation of the

stochastic single global weight scheme is formed as,





ψ
(i)
0 = wi−1

ψ
(i)
k = ψ

(i)
k−1 + µku

∗
k,i(dk(i)− uk,iwi−1), k = 1, . . . , N

wi = ψ
(i)
N

(2.2.2)

For a truly distributed solution to avoid transfer of the global estimate

wi−1 through the network, the evaluation of ∇Jk(wi−1) is replaced by

∇Jk(ψ
(i)
k−1). Thus, the implementation of (2.2.2) becomes,
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Table 2.1. Pseudo-code implementation of dLMS.

For each time instant i ≥ 0 repeat:

ψ
(i)
0 = wi−1

For k=1, . . . N

ψ
(i)
k = ψ

(i)
k−1 + µku

∗
k,i[dk,i − uk,iψ

(i)
k−1]

end

wi = ψ
(i)
N

where the received information ψ
(i)
k−1 is obtained from node k − 1.

The simulated results of noncooperative LMS (nLMS), stochastic single

global weight LMS (sLMS) [1] and distributed LMS (dLMS) solutions

are compared in Figure 2.2, where a 20-node network seeks a 10 × 1

unknown filter. The input signal is from an independent Gaussian se-

quence with Rk = I and the background noise is from zero-mean real

white Gaussian data with variance σ2
v = 0.001. The simulated curves

are obtained by averaging 100 independent Monte Carlo runs and the

global EMSE evolution curves are obtained by averaging all the local

EMSEk results of nodes in the network, namely,

global EMSE =
1

N

N∑

k=1

EMSEk (2.2.3)

In simulation, both dLMS and sLMS solutions have the same step-

size as µk = 0.05. As the analysis in [1], the dLMS algorithm has

improved steady-state performance and faster convergence rate than

the sLMS algorithm. Figure 2.2 shows the converged global EMSE of

dLMS at approximately 34.5dB after 10 iterations, on the other hand,

the converged global EMSE of sLMS is at approximately 29.5dB but
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Figure 2.2. Global EMSE of optimization algorithms within an incre-
mental network.

only after 15 iterations. However, for the nLMS solution, the selection

of µk = 0.095 allows the global EMSE to converge after 100 iterations at

almost the same misajustment as the sLMS solution but the converged

global EMSE is still 5dB above dLMS. Compared with other methods,

the dLMS algorithm therefore has the best performance.

With the development of hardware manufacturing, the computa-

tional capability of the processor is continuously increased but the cost

is reduced. Therefore, more complicated adaptation rules can be con-

sidered and an incremental RLS-based implementation [27] is intro-

duced to obtain better performance at the price of computational com-

plexity and memory cost. The implementation of such an algorithm is

constructed as,
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Table 2.2. Pseudo-code implementation of dRLS.

For each time instant i ≥ 0 repeat:

ψ
(i)
0 = wi−1 and P0,i = λ−1Pi−1

For k=1, . . . N

ψ
(i)
k = ψ

(i)
k−1 +

Pk−1,i

γ−1
k +uk,iPk−1,iu

∗
k,i

u∗k,i[dk(i)− uk,iψ
(i)
k−1]

Pk,i = Pk−1,i − Pk−1,iu
∗
k,iuk,iPk−1,i

γ−1
k +uk,iPk−1,iu

∗
k,i

end

wi = ψ
(i)
N and PN,i = Pi

where γk > 0 indicates a spatial weighting factor and 0 ¿ λ < 1 is a

forgetting factor. To reduce the communications between nodes, a low

communication distributed RLS (Lc-dRLS) adaptation that requires

the same amount of communication as other algorithms is also proposed

in [27], as,

Table 2.3. Pseudo-code implementation of Lc-dRLS.

For each time instant i ≥ 0 repeat:

ψ
(i)
0 = wi−1

For k=1, . . . N

ψ
(i)
k = ψ

(i)
k−1 +

Pk,i−1

γ−1
k +uk,iPk,i−1u∗k,i

u∗k,i[dk(i)− uk,iψ
(i)
k−1]

Pk,i = Pk,i−1 − Pk,i−1u∗k,iuk,iPk,i−1

γ−1
k +uk,iPk,i−1u∗k,i

end

wi = ψ
(i)
N

where matrix Pk,i evolves locally at node k to reduce the transmission

complexity from O(M2) to O(M). The performance analyses of adap-

tive estimation algorithms based on LMS and RLS type learning over

incremental networks for Gaussian data have been studied in [1], [27].
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For the non-Gaussian case, the steady-state performance analysis of

dLMS is studied for the first time in the following section. This is

an important practical consideration as in many sensor network-type

applications Gaussianity of the data can not be guaranteed.

2.3 Performance analysis for non-Gaussian data

To evaluate the performance of dLMS, the following assumptions as

in [1] are utilized

A1) The relation between the unknown system vector wo and {dk(i),uk,i}
is:

dk(i) = uk,iw
o + vk(i) (2.3.1)

where vk(i) is a temporally and spatially distributed white noise

sequence with variance σ2
v,k and independent of ul,j for all l and

j; and dl(j) for k 6= l or i 6= j;

A2) uk,i is spatially independent and temporally independent, namely

uk,i is independent of ul,i and uk,j for k 6= l or i 6= j

These two assumptions are utilized to build a spatial-temporal inde-

pendent model. In addition, with the purpose to facilitate analysis, the

dLMS algorithm is assumed to be used in a stationary environment,

where the statistics of various input and noise signals, and the system

vector wo are assumed to be fixed. It is important to point out that

the algorithm derivation is carried out without regard to any indepen-

dence assumptions: the distributed algorithm does work, as the error

curves show; the algorithm operation/formulation is not related to the

assumptions required to analyze its (mean-square) performance.
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The following local error signals defined as in [1] are introduced to

carry out the evaluation:

ψ̃
(i)
k−1 , wo −ψ

(i)
k−1, ψ̃

(i)
k , wo −ψ

(i)
k (2.3.2)

ea,k(i) , uk,iψ̃
(i)
k−1, ep,k(i) , uk,iψ̃

(i)
k (2.3.3)

Note that the output error is given by

ek(i) = ea,k(i) + vk(i). (2.3.4)

The objective is to evaluate the following steady-state mean square

deviation (MSD), EMSE and MSE measures at each node k:

ηk ,E‖ψ̃(∞)
k−1‖2 (MSD) (2.3.5)

ζk ,E|ea,k(∞)|2 (EMSE) (2.3.6)

ξk ,ζk + σ2
v,k (MSE) (2.3.7)

Introduce further the weighted error signals:

eΣk
p,k(i) , uk,iΣkψ̃

(i)
k , eΣk

a,k(i) , uk,iΣkψ̃
(i)
k−1

(2.3.8)

where Σk is a Hermitian positive-definite weighting matrix that can

be chosen arbitrarily at each node k. Also exploit the weighted norm

notation ‖x‖2
Σ = x∗Σx for a vector x and Hermitian positive-definite

Σ > 0. After the same manipulations as in [1], the expression relating

between two neighboring nodes is formulated as:

ψ̃
(i)
k +

u∗k,ie
Σk
a,k(i)

‖uk,i‖2
Σk

= ψ̃
(i)
k−1 +

u∗k,ie
Σk
p,k(i)

‖uk,i‖2
Σk

(2.3.9)
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By calculating the energies of both sides of (2.3.9), a spatial-temporal

energy relation is obtained as

‖ψ̃(i)
k ‖2

Σk
+
|eΣk

a,k(i)|2
‖uk,i‖2

Σk

= ‖ψ̃(i)
k−1‖2

Σk
+
|eΣk

p,k(i)|2
‖uk,i‖2

Σk

(2.3.10)

which is an exact energy relation between two adjacent nodes in space

and time, and is derived without any approximations. For simplicity,

the time index i is dropped. Applying the expectation operation to

both sides of (2.3.10), it becomes

E‖ψ̃k‖2
Σk

= E‖ψ̃k−1‖2
Σ′k

+ µ2
kσ

2
v,kE‖uk‖2

Σk
(2.3.11)

where Σ′
k is given by

Σ′k = Σk + µkE(u∗kukΣk + Σku∗kuk) + µ2
kE(‖uk‖2

Σk
u∗kuk) . (2.3.12)

In order to evaluate the performance of the learning algorithm, the

following three moments must be examined:

Eu∗kuk = Ru,k (2.3.13)

E‖uk‖2
Σk

= Tr(Ru,kΣk) (2.3.14)

E(‖uk‖2
Σk

u∗kuk) (2.3.15)

where Tr(A) indicates trace of the matrix A.

In [1], with the assumption of Gaussian regressors, eigendecompo-

sition and diagonalization methods are exploited to derive the closed-

form equations for (2.3.11) and (2.3.12). In the non-Gaussian wide

sense stationary case (with finite variance), vectorization and a prop-
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erty of Kronecker products are introduced to achieve the theoretical

mean-square quantities of dLMS. First, the M2 × 1 vectors are intro-

duced, given by:

δk = vec{Σk} and δ′k = vec{Σ′
k} (2.3.16)

which allow these relations (2.3.11) and (2.3.12) to be expressed by

using a convenient vector notation [6], [33]. The vec{·} notation is used

in two ways: δ = vec{Σ} denotes an M2×1 column vector whose entries

are formed by stacking the successive columns of an M ×M matrix on

top of each other, and Σ = vec{δ} indicates a matrix whose entries are

recovered from δ. The following useful property for the vec{·} notation

when working with Kronecker products [34] is also introduced: for any

matrices {P, Σ, Q} of compatible dimensions, it holds that

vec{PΣQ} = (QT ⊗ P )vec{Σ} (2.3.17)

where (·)T indicates matrix transposition and A ⊗ B is a Kronecker

product of A and B. Using (2.3.17) to express some items in the right

side of (2.3.12), these moments become

vec{E(u∗kuk)Σk}=(I ⊗Ru,k)δk (2.3.18)

vec{ΣkE(u∗kuk)}=(RT
u,k ⊗ I)δk (2.3.19)

vec{E(‖uk‖2
Σk

u∗kuk)}=E[(u∗kuk)
T ⊗ (u∗kuk)]δk. (2.3.20)
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The vec{·} operation is applied to both sides of (2.3.12) to obtain a

linear relation between the corresponding vectors {δ′k, δk}, namely,

δ′k = Fkδk (2.3.21)

where Fk is an M2 ×M2 matrix and given by

Fk = I − µkXk + µ2
kYk (2.3.22)

with Xk = (RT
u,k ⊗ I) + (I ⊗ Ru,k) and Yk = E[(u∗kuk)

T ⊗ (u∗kuk)]. For

clarity, recall the time index i. Therefore, expression (2.3.11) becomes

E‖ψ̃(i)
k ‖2

vec{δk} = E‖ψ̃(i)
k−1‖2

vec{Fkδk} + µ2
kσ

2
v,k(ŕ

T
k δk) (2.3.23)

where it exploits the fact that E‖uk,i‖2
Σk

= Tr(Ru,kΣk) = ŕT
k δk with

ŕk = vec{RT
u,k}. For simplicity of notation, the vec{·} notation is

dropped from the subscripts in (2.3.23):

E‖ψ̃(i)
k ‖2

δk
= E‖ψ̃(i)

k−1‖2
Fkδk

+ µ2
kσ

2
v,k(ŕ

T
k δk) . (2.3.24)

Let ρk = ψ̃
(∞)
k , then

E‖ρk‖2
δk

= E‖ρk−1‖2
Fkδk

+ µ2
kσ

2
v,k(ŕ

T
k δk). (2.3.25)
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By iterating (2.3.25) over one cycle, N coupled equations are obtained:

E‖ρ1‖2
δ1

=E‖ρN‖2
F1δ1

+ g1δ1

E‖ρ2‖2
δ2

=E‖ρ1‖2
F2δ2

+ g2δ2

...

E‖ρk−1‖2
δk−1

=E‖ρk−2‖2
Fk−1δk−1

+ gk−1δk−1 (2.3.26)

E‖ρk‖2
δk

=E‖ρk−1‖2
Fkδk

+ gkδk (2.3.27)

...

E‖ρN‖2
δN

=E‖ρN−1‖2
FN δN

+ gNδN

with gk = µ2
kσ

2
v,kŕ

T
k . By choosing the free parameters {δk, δk−1} such

that δk−1 = Fkδk, (2.3.26) and (2.3.27) are combined to obtain

E‖ρk‖2
δk

=E‖ρk−1‖2
δk−1

+ gkδk

=E‖ρk−2‖2
Fk−1Fkδk

+ gk−1Fkδk + gkδk. (2.3.28)

Next, iterate across the cycle to arrive at

E‖ρk−1‖2
δk−1

=E‖ρk−1‖2
Fk···FNF1···Fk−1δk−1

+gkFk+1 · · ·FNF1 · · ·Fk−1δk−1

+gk+1Fk+2 · · ·FNF1 · · ·Fk−1δk−1

· · ·+ gk−2Fk−1δk−1 + gk−1δk−1. (2.3.29)

and let

Πk−1,l=Fk+l−1 + · · ·FNF1 · · ·Fk−1, l = 1, 2, . . . , N (2.3.30)

ak−1=gkΠk−1,2 + · · ·+ gk−2Πk−1,N + gk−1 (2.3.31)
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so that

E‖ρk−1‖2
(I−Πk−1,1)δk−1

= ak−1δk−1 . (2.3.32)

Expression (2.3.32) can be exploited to evaluate the desired perfor-

mance measures at node k, as follows:

ηk =E‖ρk−1‖2
q, q = vec{I} (MSD) (2.3.33)

ζk =E‖ρk−1‖2
rk

, rk = vec{Ru,k} (EMSE) (2.3.34)

ξk =ζk + σ2
v,k (MSE). (2.3.35)

Since the weight vector δk−1 is free to select at node k, choosing δk−1 =

(I −Πk−1,1)
−1q or δk−1 = (I −Πk−1,1)

−1rk results in the expressions for

the steady-state MSD, EMSE and MSE:

ηk =ak−1(I − Πk−1,1)
−1q (MSD) (2.3.36)

ζk =ak−1(I − Πk−1,1)
−1rk (EMSE) (2.3.37)

ξk =ζk + σ2
v,k (MSE). (2.3.38)

These expressions are next verified by simulation study.

2.4 Simulations

In this section, the theoretical performance is compared with that ob-

tained from computer simulations in a system identification scenario.

All simulation results are averaged over 100 independent Monte Carlo

runs. The steady-state curves are obtained by averaging the last 2000

instantaneous samples of 20, 000 iterations. Consider a network with

20 nodes seeking an unknown filter with M = 10 taps, coefficients of

which are selected randomly. A quasi-uniformly distributed signal is
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Figure 2.3. Statistical property per node over the quasi-uniform data
network.

used to generate the inputs at each node k according to the recursion

uk(i) = αkuk(i− 1) + βk · τk(i). (2.4.1)

Expression (2.4.1) describes a first-order AR process with a pole at αk;

τk(i) is a white, zero-mean, uniformly distributed random sequence with

unity variance, αk ∈ (0, 0.5] and βk =
√

σ2
u,k · (1− α2

k). In this way, the

covariance matrix Ru,k of the regressor uk,i is a 10×10 Toeplitz matrix

with entries rk(m) = σ2
u,kα

|m|
k , m = 0, . . .M − 1 with σ2

u,k ∈ (0, 1]. One

should note that (2.4.1) can be transformed approximately to a finite

impulse response (FIR) process

uk(i) =
n∑

j=0

ak(i− j)τk(i− j). (2.4.2)
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Figure 2.4. Steady-state MSD using µk = 0.02 per node for quasi-
uniformly distributed inputs.

where {ak(i − j)} are calculated parameters and n denotes the order

of the delayed inputs. According to the central limit theorem [35], as

n → ∞, the distribution of uk will approximate Gaussian despite the

uniformly distributed sequence τk. As a consequence, the choice of

αk ∈ (0, 0.5] allows the FIR process transformed from (2.4.1) to likely

have a limited number of n. From a strict definition, the distribution

of uk in (2.4.1) is not Gaussian or uniform. Due to simplification, uk

generated by (2.4.1) is termed as correlated quasi-uniform data. The

background noise per node is generated from Gaussian distributed data

with variance σ2
v,k ∈ (0, 0.1]. These statistical profiles for uniformly

distributed data are illustrated in Figure 2.3.

Comparison curves between the theoretical and simulated results

are illustrated in Figures 2.4-2.9. Figures 2.4-2.6 illustrate the steady-
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Figure 2.5. Steady-state EMSE using µk = 0.02 per node for quasi-
uniformly distributed inputs.
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Figure 2.6. Steady-state MSE using µk = 0.02 per node for quasi-
uniformly distributed inputs.
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Figure 2.7. Steady-state MSD versus µk for quasi-uniformly distribu-
tion data at node 5.

state performance of dLMS using µk = 0.02. For the steady-state MSD,

both the theoretical and simulation curves shown in Figure 2.4 are al-

most flat through the network, namely, the simulated MSD fluctuates

at approximately −22.20dB with ±0.12dB and the theoretical MSD at

approximately −22.40dB with ±0.12dB. One can see in Figures 2.5-2.6

that the steady-state EMSE and MSE are more sensitive to the node

statistics and the theoretical results for the steady-state MSE match

well with the simulated results. The small differences are a conse-

quence of independence assumption A2 but these differences reduce in

amplitude as the step-size reduces. Even though there are some small

discrepancies for the steady-state EMSE between simulation and theory

at certain nodes, but these discrepancies can be reduced by decreasing

the step-size as shown in Figure 2.8.



Section 2.4. Simulations 30

0 0.002 0.004 0.006 0.008 0.01
−44

−42

−40

−38

−36

−34

−32

−30

−28

−26

Step−size

E
M

S
E

(d
B

)

dLMS at node 5 in quasi−uniform data network

 

 

Simulation
Theory

Figure 2.8. Steady-state EMSE versus µk for quasi-uniformly distri-
bution data at node 5.
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Figure 2.9. Steady-state MSE versus µk for quasi-uniformly distribu-
tion data at node 5.
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Figures 2.7-2.9 illustrate the steady-state performance of node 5

within the range of the step-size [0.0008, 0.01]. One can clearly see

that as the step-size decreases the discrepancy between theoretical and

simulated results decreases. This is due to the simplifying assumptions

used in the analysis, which will be degraded by large step-sizes. For

the steady-state MSD and MSE, there is a good match between theory

and practice shown in Figure 2.7 and Figure 2.9. Although it is clearly

shown in Figure 2.8 that EMSE almost has the same discrepancy in

dB for the different step-sizes, one can find that a decrease of the step-

size leads to a decrease of the discrepancy in absolute value. This

simulation study confirms the theoretical expressions (2.3.36)-(2.3.38)

for the non-Gaussian wide sense stationary case.

2.5 Conclusions

In this chapter, the steady-state mean-square performance evaluation

of dLMS is carried out under the assumptions A1 and A2 for the non-

Gaussian wide sense stationary case. Using weighted spatial-temporal

energy conservation arguments, the key contribution of this chapter

is obtained, namely, to derive expressions for the steady-state MSD,

EMSE, MSE without restricting the distribution of the inputs. This

work is a useful extension for the dLMS study. However, different learn-

ing rules can be applied in the context of a distributed network with

incremental topology. Chapter 3 therefore illustrates a novel incremen-

tal algorithm based on the APA algorithm.



Chapter 3

DISTRIBUTED ESTIMATION

OVER AN ADAPTIVE

INCREMENTAL NETWORK

BASED ON THE APA

ALGORITHM

3.1 Introduction

In order to reduce the requirement of a powerful central processor and

extensive amount of communications in a traditional centralized solu-

tion, a distributed solution is developed to obtain significant reduction

in the amount of processing and communications between nodes within

a network, relying only on local data exchange and interactions be-

tween immediate neighbourhood nodes, whilst retaining the estimation

accuracy of a centralized solution [8], [9]. Distributed solutions which

exploit consensus implementation presented in [36], [37], [38] require

two time scales: during the initial period of time each node makes an

individual estimation and then through consensus iterations the nodes

32
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combine estimations to reach the desired estimate. This approach relies

on particular conditions for the coefficients and network topology.

Recent investigations [1], [21], [26], [27] have therefore focused on

incremental learning over a distributed network, which has a cyclic

pattern of cooperation with minimum power and communications. In

such a network, each node cooperates only with one adjacent node to

exploit the spatial dimension, whilst performing local computations in

the time dimension. The incremental algorithms thereby obtain the

global estimation in a defined cyclic learning framework. In addition,

this approach reduces communications between nodes and improves

the network autonomy as compared to a centralized solution. In prac-

tical wireless sensor networks, it should be highlighted, however, that it

may become more difficult to establish a Hamiltonian cycle as required

in the incremental mode of cooperation as the number of sensors in-

creases. Moreover, such incremental distributed processing schemes

may not scale well for very large networks. In this work, the net-

work size is therefore assumed to be sufficiently small, typically less

than one hundred, so that incremental schemes can be used. In the

next chapter, adaptive algorithms of the diffusion type will be studied,

which removes the requirement of a Hamiltonian cycle at the expense

of a slightly reduced mean-square performance [2]. The incremental

approach in this chapter can be viewed as a reference point against

which other algorithms can be measured; this is because incremental

approaches provide one of the best performances when cycles are per-

mitted. It is well known that in the case of a single adaptive filter,

one major drawback of the LMS algorithm is its slow convergence rate

for coloured input signals and the APA algorithm is a better alterna-
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tive to LMS in such an environment [39], [40], [41]. For distributed

networks, highly correlated inputs also deteriorate the performance of

the dLMS algorithm. This chapter therefore describes a new APA-

based distributed learning scheme for an incremental network. This

distributed solution is proposed to obtain a good compromise between

convergence performance and computational cost, rather than consid-

ering a precise application. A key contribution of this chapter is using

the weighted spatial-temporal energy conservation relation to reveal the

nature of the energy flow through the network and to evaluate the per-

formance of the resulting ring network of nodes, which incorporates the

space-time structure of the data. These theoretical results are found to

agree well with the simulation results for both Gaussian and uniform

distributed input signals for sufficiently small step-sizes.

3.2 Estimation problem

Firstly, consider an N node network, as in [1], where each node has a

separate random complex valued desired response dk with zero-mean

and a 1×M spatially distinct row input vector uk with zero-mean and

random elements; dk and uk are jointly wide-sense stationary, and k in-

dicates the node index. Each node obtains time realizations {dk(i), uk,i}
of {dk,uk}, where i denotes the discrete time index. Thus, the linear

space-time least mean square estimation problem is formed as:

min
w

J(w) and J(w) = E‖d−Uw‖2 (3.2.1)
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where the global desired response vector and input matrix are

d=col{d1, d2, . . . , dN}, (N × 1) (3.2.2)

U=col{u1, u2, . . . , uN}, (N ×M). (3.2.3)

and the data are obtained from N spatially distinct nodes and exploited

to estimate the M × 1 vector w. Thus, the optimal MMSE solution wo

is calculated, for which the normal equations [6] are satisfied,

Rdu = Ruw
o (3.2.4)

where Ru = EU∗U and Rdu = EU∗d.

When a multitude of nodes in the network have access to data, in

order to take advantage of node cooperation, an incremental adaptive

method is introduced to a distributed network, where at least one cyclic

path can be established around the network. In such a network, infor-

mation should be transferred from one node to its immediate neighbor-

hood node in a cyclic manner to return to the initial node (See Figure

3.1). As in [1], the cost function can be decomposed into

J(w) =
N∑

k=1

Jk(w) and Jk(w) = E|dk − ukw|2. (3.2.5)

In previous works [1], [21], [26], [27], the incremental distributed LMS-

based and distributed RLS-based schemes have been introduced. These

algorithms exploit a cyclic estimation strategy, which at each discrete

time entails visiting every node within the whole network only once,

i.e. a Hamiltonian cycle. The contribution of this chapter aims at

improving upon the convergence performance of the dLMS algorithm



Section 3.2. Estimation problem 36

} ,{ , 1 ,1 ii Ud } ,{ ,  , iNiN Ud

} ,{ , 1 ,1 ikik Ud −−

} ,{ ,  , ikik Ud

} ,{ , 1 ,1 ikik Ud ++

)()( )(
1 , ,

1*
 , ,

*
 ,

)(
1

)( i
kikikikikikk

i
k

i
k UdUUIU −

−
− −++= ψεµψψ

)(
1

i
k −ψ

} ,{ ,  , ikik Ud

)(i
kψ

 

Figure 3.1. Data processing of the dAPA algorithm in an incremental
network.

with coloured input signals whilst reducing the complexity of the Lc-

dRLS algorithm and dRLS algorithm of [27].

Let ψ
(i)
k denote the local estimation of the desired optimal weight

vector at node k and time instant i and let wi indicate the global esti-

mation at time instant i. Consider a regularized Newton’s search based

approach to solving (3.2.5) for incremental learning within a distributed
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network. The optimal tap weight wo is estimated via [6]

wi=wi−1 −
N∑

k=1

µk[εI +∇2Jk(ψ
(i)
k−1)]

−1[∇Jk(ψ
(i)
k−1)]

∗

=wi−1 +
N∑

k=1

µk(εI + Ru,k)
−1[Rdu,k −Ru,kψ

(i)
k−1] (3.2.6)

where Ru,k = Eu∗kuk, Rdu,k = Edku
∗
k and ε denotes a regularization

parameter with small positive value. The parameter µk indicates an

appropriately chosen step-size, which is evaluated in Section 3.3.5, and

the scheme is initialized with an M × 1 vector w−1 = col{0, . . . , 0}.
For a practical scheme to realize (3.2.6), and utilizing the correla-

tion of the input signal at each node, {Ru,k, Rdu,k} is replaced by the

following sample sliding-window estimates,

R̂u,k =
1

T

i∑
j=i−T+1

u∗k,juk,j (3.2.7)

R̂du,k =
1

T

i∑
j=i−T+1

u∗k,jdk(j)

with T equal to the number of recent regressors of each node whilst uk,j

and dk(j) denote the corresponding input vector and desired response

at instant time j for the k-th node. Hence, using the matrix inversion

formula, recursion (3.2.6) becomes,

wi = wi−1 +
N∑

k=1

µkU
∗
k,i(εI + Uk,iU

∗
k,i)

−1[dk,i − Uk,iψ
(i)
k−1] (3.2.8)



Section 3.3. Performance analysis 38

where the local T ×M block data matrix and T × 1 data vector are,

Uk,i =




uk,i

uk,i−1

...

uk,i−T+1




, dk,i =




dk(i)

dk(i− 1)

...

dk(i− T + 1)




(3.2.9)

and ε is employed to avoid the inversion of a rank deficient matrix

Uk,iU
∗
k,i. As such, recursion (3.2.9) is the dAPA learning algorithm in

an incremental network, the operation of which is shown in Figure 3.1.

At each time instant i, each node utilizes local data {dk,i, Uk,i} and

ψ
(i)
k−1 is received from its previous node k− 1 in the cycle to update the

local estimation. At the end of the cycle, the local estimation ψ
(i)
N is

employed as the global estimation wi and the initial local estimation

ψ
(i+1)
1 for the next discrete time instant i + 1. The final weight vector

shown at the bottom of Figure 3.1 can either be used to generate a

filter output vector term of the form uk,iψ
(i)
k or the vector ψ

(i)
k itself can

then be used for system identification or equalization. The pseudo-code

implementation of dAPA is described in Table 3.1. In addition, dAPA

has intermediate computational and memory cost between dLMS and

dRLS, for certain regressor lengths, which is verified in Appendix A.

3.3 Performance analysis

The convergence behaviours of classical APA-based algorithms are stud-

ied in [41], [42], [43] exploiting arguments based on a single adaptive

filter. In order to study the performance of the dAPA algorithm, the

weighted energy conservation approach for the APA-based algorithms

of [42], [43] is extended to the case of a distributed incremental network,
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Table 3.1. Pseudo-code implementation of dAPA.

For each time instant i ≥ 0 repeat:

ψ
(i)
0 = wi−1

k=1, . . . N

ψ
(i)
k = ψ

(i)
k−1 + µkU

∗
k,i(εI + Uk,iU

∗
k,i)

−1[dk,i − Uk,iψ
(i)
k−1]

end

wi = ψ
(i)
N

where {dk,i, Uk,i} are defined by (3.2.9).

which involves both the space and the time dimensions. However, due

to the energy flow across the interconnected filter, some of the simpli-

fications for a single filter case cannot be adopted. A set of weight-

ing matrices is particularly chosen to decouple a set of equations and

the transient and steady-state performances at each individual node

are evaluated in terms of MSD, EMSE and MSE. The closed-form ex-

pressions for the theoretical results are formed under some simplifying

assumptions described below.

3.3.1 Data model and assumption

As defined earlier, boldface letters are used as the random quantities

and the same model as in the previous chapter is assumed to carry out

the performance analysis:

A1) The relation between the unknown system vector wo and {dk(i),uk,i}
takes the form:

dk(i) = uk,iw
o + vk(i) (3.3.1)

where vk(i) is a temporally and spatially independent noise se-

quence with variance σ2
v,k independent of dl(j) for l 6= k or j 6= i,
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and ul,j for all l and j;

A2) uk,i is spatially independent and temporally independent, namely

uk,i is independent of ul,i and uk,j for k 6= l or i 6= j

It is highlighted that assumption A2 is an extension of that made for

time-only adaptive filtering to space-time filtering. The spatial inde-

pendence assumption is generally more likely to hold than the temporal

independence assumption, as a consequence of the different locations

of the nodes. The temporal independence assumption is necessary for

analysis purpose and is commonly used to provide useful performance

measures in adaptive signal processing [7]. In terms of analysis in this

chapter, only the stationary case is studied, where the system vector

is fixed and the statistics of the various input and noise signals are

time-invariant, but the following analysis could be extended to a non-

stationary model, such as the random-walk model (see [3], [4], [44]).

3.3.2 Weighted spatial-temporal energy conservation relation

Using the following error vectors:

ψ̃
(i)
k ,wo −ψ

(i)
k (weight− error vector) (3.3.2)

ek,i,dk,i −Uk,iψ
(i)
k−1 (error vector) (3.3.3)

to represent the update tap weights expression in dAPA, the relation

expression of {ψ̃(i)
k , ψ̃

(i)
k−1} is therefore obtained,

ψ̃
(i)
k = ψ̃

(i)
k−1 − µkU

∗
k,i(εI + Uk,iU

∗
k,i)

−1ek,i. (3.3.4)
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Multiplying both sides of (3.3.4) by Uk,i from the left, equation (3.3.4)

becomes

Uk,iψ̃
(i)
k = Uk,iψ̃

(i)
k−1 − µkUk,iU

∗
k,i(εI + Uk,iU

∗
k,i)

−1ek,i. (3.3.5)

The a posteriori and a priori error vectors {ep,k, ea,k} are introduced

e
(i)
p,k , Uk,iψ̃

(i)
k and e

(i)
a,k , Uk,iψ̃

(i)
k−1.

As a result, expression (3.3.5) becomes,

e
(i)
p,k = e

(i)
a,k − µkUk,iU

∗
k,i(εI + Uk,iU

∗
k,i)

−1ek,i. (3.3.6)

Note that the error vector is given by

ek,i=Uk,iψ̃
(i)
k−1 + vk,i = e

(i)
a,k + vk,i (3.3.7)

where

vk,i = col{vk(i),vk(i− 1), . . . ,vk(i− T + 1)}. (3.3.8)

The following performance measures at each node k must be evaluated:

ηk(i),E‖ψ̃(i)
k−1‖2 = E‖ψ̃(i)

k−1‖2
I (MSD) (3.3.9)

ζk(i),E|uk,iψ̃
(i)
k−1|2 = E‖ψ̃(i)

k−1‖2
Ru,k

(EMSE) (3.3.10)

ξk(i),ζk(i) + σ2
v,k (MSE) (3.3.11)

where under the assumed data conditions the weighted norm notation

‖x‖2
Σ , x∗Σx is introduced with a vector x and a Hermitian positive
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definite matrix Σ > 0. In order to study the performance behaviour of

the dAPA algorithm for incremental networks, the method of weighted

energy conservation described in [6], [1] is used in this section. As a

consequence, the weighted a posteriori and a priori error vectors at

node k are defined by,

e
Σk,(i)
p,k ,Uk,iΣkψ̃

(i)
k (3.3.12)

e
Σk,(i)
a,k ,Uk,iΣkψ̃

(i)
k−1 (3.3.13)

where Σk is a Hermitian positive-definite weighting matrix and is free to

choose for each node k. The weighted definitions (3.3.12) and (3.3.13)

are used to expand (3.3.6) in terms of weighted error vectors and the

regressor data as follows:

e
Σk,(i)
p,k = e

Σk,(i)
a,k − µkUk,iΣkU

∗
k,i(εI + Uk,iU

∗
k,i)

−1ek,i (3.3.14)

If the special case Σk = I is chosen, equation (3.3.14) is simplified to

(3.3.6). With the assumption that Uk,iΣkU
∗
k,i is invertible, (3.3.14) can

be used to replace ek,i in (3.3.4). After rearrangement, the expression

ψ̃
(i)
k +U∗

k,i(Uk,iΣkU
∗
k,i)

−1e
Σk,(i)
a,k =

ψ̃
(i)
k−1 + U∗

k,i(Uk,iΣkU
∗
k,i)

−1e
Σk,(i)
p,k (3.3.15)

is obtained. If the weighted energies of both sides of (3.3.15) are

equated, the space-time version of the weighted energy-conservation
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relation for dAPA is established:

‖ψ̃(i)
k ‖2

Σk
+ e

Σk,(i)∗
a,k (Uk,iΣkU

∗
k,i)

−1e
Σk,(i)
a,k

= ‖ψ̃(i)
k−1‖2

Σk
+ e

Σk,(i)∗
p,k (Uk,iΣkU

∗
k,i)

−1e
Σk,(i)
p,k (3.3.16)

Then, substituting (3.3.14) into (3.3.16) and rearranging the result,

(3.3.16) becomes

‖ψ̃(i)
k ‖2

Σk
=‖ψ̃(i)

k−1‖2
Σk
− µk[e

Σk,(i)∗
a,k Akek,i]

− µk[e
∗
k,iAke

Σk,(i)∗
a,k ] + µ2

k[e
∗
k,iBkek,i] (3.3.17)

with

Ak =(εI + Uk,iU
∗
k,i)

−1 (3.3.18)

BΣk
k =(εI + Uk,iU

∗
k,i)

−1Uk,iΣkU
∗
k,i(εI + Uk,iU

∗
k,i)

−1. (3.3.19)

By using ek,i = Uk,iψ̃
(i)
k−1 + vk,i, taking expectations of both sides and

ignoring dependence between vk,i and {e(i)
a,k, e

Σk,(i)
a,k } due to assumption

A1, expression (3.3.17) becomes

E‖ψ̃(i)
k ‖2

Σk
= E‖ψ̃(i)

k−1‖2
Σ′k

+ µ2
kE[v∗k,iB

Σk
k vk,i] (3.3.20)

where Σ′
k is a stochastic weighting matrix

Σ′
k = Σk − µkΣkCk − µkCkΣk + µ2

kD
Σk
k (3.3.21)

with

Ck = U∗
k,iAkUk,i and DΣk

k = U∗
k,iB

Σk
k Uk,i. (3.3.22)
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Equation (3.3.20) is difficult to evaluate due to the dependence of ψ
(i)
k−1

on previous regressors of Uk,i and Σ′
k on Uk,i. In order to resolve this

problem in terms of analysis, an independence assumption is introduced

on the regressor sequence Uk,i, namely,

A3) The matrix sequence Uk,i is independent of Uk,i−1.

which guarantees that ψ
(i)
k−1 is independent of both Uk,i and Σ′

k. As

compared to A2, A3 is a strong assumption. However, a weaker as-

sumption can be made:

A3’) ψ
(i)
k−1 is independent of U∗

k,i(εI + Uk,iU
∗
k,i)

−1Uk,i

which is derived from (3.3.21) for Σ′
k to satisfy the requirement. It is

highlighted that these are only assumptions necessary to facilitate anal-

ysis similar to those in [42], [43] used for the original non-distributed

APA algorithm, but such assumptions will be verified by simulations

to yield useful performance measures when the step-size is sufficiently

small. For compactness of notation, the index i is dropped. Using this

assumption, the expectation E‖ψ̃k−1‖2
Σ′k

is separated into

E‖ψ̃k−1‖2
Σ′k

= E‖ψ̃k−1‖2
EΣ′k

(3.3.23)

where the mean of the weighted matrix Σ′
k is given by EΣ′

k = Σ′
k:

Σ′
k = Σk − µkΣkECk − µkECk · Σk + µ2

kEDΣk
k

(3.3.24)

and Σ′
k is now a deterministic matrix. In this manner, expression

(3.3.20) is replaced by

E‖ψ̃k‖2
Σk

=E‖ψ̃k−1‖2
Σ′k

+ µ2
kE[v∗kB

Σk
k vk]. (3.3.25)
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For studying the behaviour of the distributed learning algorithm,

the following three moments must be evaluated:

ECk =E[U∗
kAkUk] (3.3.26)

EDΣk
k =E[U∗

kAkUkΣkU
∗
kAkUk] (3.3.27)

E[v∗kB
Σk
k vk]=E[v∗kAkUkΣkU

∗
kAkvk]. (3.3.28)

The terms in (3.3.27) and (3.3.28) are difficult to calculate, even the

eigendecomposition and diagonalization methods used for Gaussian

data in [1] are not available to express (3.3.24) and (3.3.25) in a compact

manner and thereby closed-forms of the mean-square quantities can not

be obtained. To proceed, we need to extract Σk from the right side of

expressions (3.3.27) and (3.3.28). This is achieved by vectorization and

exploiting the property of Kronecker products.

3.3.3 Weighted variance relation

With the purpose to evaluate E‖ψ̃k‖2
Σk

, M2 × 1 column vectors as in

Chapter 2 are introduced:

σk = vec{Σk}, σ′k = vec{Σ′
k}. (3.3.29)

When working with Kronecker products, the vec{·} notation has the

following property,

vec{PΣQ} = (QT ⊗ P )vec{Σ} (3.3.30)

where matrices {P, Σ, Q} have compatible dimensions.
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By applying (3.3.30) to express some items in (3.3.24), the following

expressions are obtained

vec{ΣkECk}=(ECT
k ⊗ I)σk (3.3.31)

vec{ECk · Σk}=(I ⊗ ECk)σk (3.3.32)

vec{EDΣk
k }=E[CT

k ⊗Ck]σk. (3.3.33)

Therefore, a linear relation between the corresponding vectors {σ′k, σk}
is formed, namely

σ′k = Fkσk (3.3.34)

where Fk is an M2 ×M2 matrix and given by,

Fk , I − µk(ECT
k ⊗ I)− µk(I ⊗ECk) + µ2

kE[CT
k ⊗Ck] . (3.3.35)

As a result, expression (3.3.25) becomes

E‖ψ̃k‖2
vec{σk} = E‖ψ̃k−1‖2

vec{Fkσk} + µ2
kE[v∗kB

Σk
k vk]. (3.3.36)

For the sake of clarity, the time index i is reintroduced but the vec{·}
notation is dropped from the subscripts in (3.3.36) for compactness.

Expression (3.3.36) becomes

E‖ψ̃(i)
k ‖2

σk
= E‖ψ̃(i)

k−1‖2
Fkσk

+ µ2
kE[v∗k,iB

Σk
k vk,i] (3.3.37)

Due to the assumption that vk,i is independent from Uk,i, the last item
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in (3.3.37) can be written as

µ2
kE[v∗k,iB

Σk
k vk,i]=µ2

kδ
2
v,kTr{EΦk · Σk}

=µ2
kσ

2
v,kγ

T
k σk (3.3.38)

with Φk = U∗
k,i(εI + Uk,iU

∗
k,i)

−2Uk,i and γk = vec{EΦk}. Therefore,

expression (3.3.37) can be written as

E‖ψ̃(i)
k ‖2

σk
= E‖ψ̃(i)

k−1‖2
Fkσk

+ µ2
kσ

2
v,kγ

T
k σk . (3.3.39)

3.3.4 Learning curves

Expression (3.3.39) involves spatially local information from two nodes,

namely, ψ̃
(i)
k and ψ̃

(i)
k−1. The ring topology with the weighting matrices

allows this problem to be resolved. By iterating (3.3.39), N coupled

equalities are obtained,

E‖ψ̃(i)
1 ‖2

σ1
=E‖ψ̃(i−1)

N ‖2
F1σ1

+ g1σ1

E‖ψ̃(i)
2 ‖2

σ2
=E‖ψ̃(i)

1 ‖2
F2σ2

+ g2σ2

...

E‖ψ̃(i)
k−1‖2

σk−1
=E‖ψ̃(i)

k−2‖2
Fk−1σk−1

+ gk−1σk−1 (3.3.40)

E‖ψ̃(i)
k ‖2

σk
=E‖ψ̃(i)

k−1‖2
Fkσk

+ gkσk (3.3.41)

...

E‖ψ̃(i)
N ‖2

σN
=E‖ψ̃(i)

N−1‖2
FNσN

+ gNσN

with gk = µ2
kδ

2
v,kγ

T
k . In order to describe the energy flow through the

interconnected nodes it is necessary to connect the free parameters σk

and σk−1. Following the approach in [1], a linear relation σk−1 = Fkσk
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is adopted and (3.3.40) and (3.3.41) are thereby combined to obtain

E‖ψ̃(i)
k ‖2

σk
=E‖ψ̃(i)

k−1‖2
σk−1

+ gkσk

=E‖ψ̃(i)
k−2‖2

Fk−1Fkσk
+ gk−1Fkσk + gkσk (3.3.42)

where Fk is as in (3.3.35) and includes statistics of local data. The

matrix Fk turns out to determine the dynamics of propagation of the

energy through the network. Conditions to ensure stability and con-

vergence end up depending on the matrix Fk. A detailed discussion on

such energy relations appears in [7]. Iterating in this way, an equality

involving only ψ̃
(i)
k−1 and ψ̃

(i−1)
k−1 is obtained, namely

E‖ψ̃(i)
k−1‖2

σk−1
=E‖ψ̃(i−1)

k−1 ‖2
Fk···FNF1···Fk−1σk−1

+gkFk+1 · · ·FNF1 · · ·Fk−1σk−1

+gk+1Fk+2 · · ·FNF1 · · ·Fk−1σk−1.

· · ·+ gk−2Fk−1σk−1 + gk−1σk−1 (3.3.43)

One should note that the a posteriori and a priori error vectors {e(i)
p,k, e

(i)
a,k}

have spatial connotation, which is different from the traditional termi-

nology as in [6]. Since the expression σk−1 = Fkσk denotes the relation-

ship of two free parameters {σk−1, σk}, repeating this manner through

the network, N relation equations are obtained, where σN = F1σ1 at

the end of the cycle. To begin with, note that there are N degrees of

freedom since N different σks are introduced. Moreover, the σks are

dummy variables, and this flexibility is used to decouple the set of N

equations that arise from the cyclic structure of the algorithm. In this

sense, the equations are only rewritten in an equivalent form, using the
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set {σk} for “pivoting”. Then, the flexibility introduced by the dummy

variables can be explored to explicitly assign to the σks quantities that

will allow closed-form expressions to be recovered for the quantities of

interest. By choosing σk−1 = q = vec(I), the closed-form expression is

formulated for the MSD learning curve at node k:

E‖ψ̃(i)
k−1‖2

q =E‖ψ̃(−1)
k−1 ‖2

(Πk−1,1)iq

+ ak−1(I + . . . + (Πk−1,1)
i−1)q (3.3.44)

where the product of Fk matrices for each node, Πk−1,l and the 1×M2

row vector ak−1 are defined by

Πk−1,l= Fk+l−1Fk+l · · ·FNF1 · · ·Fk−1, l = 1, 2, . . . , N (3.3.45)

and

ak−1 = gkΠk−1,2 + gk+1Πk−1,3 · · ·+ gk−2Πk−1,N + gk−1 (3.3.46)

Therefore, the theoretical transient performance of the MSD of node k

is formulated as

E‖ψ̃(i)
k−1‖2

q = E‖ψ̃(−1)
k−1 ‖2

fi−1
+ ak−1βi−1 (3.3.47)

where the vectors fi−1 and βi−1 are given respectively by

fi−1=Πk−1,1fi−2, f−1 = q, and

βi−1=βi−2 + fi−1, β−1 = M2 × 1 null vector.



Section 3.3. Performance analysis 50

Let E|ea,k(i)|2 and E|ek(i)|2 denote respectively the EMSE and

MSE learning curves of the set of adaptive filters, in terms of time

iterations, indexed for k = 1, 2, . . . , N . Under the assumption that uk,i

is i.i.d., the EMSE and MSE expressions are formulated as

E|ea,k(i)|2=E|uk,iψ̃
(i)
k−1|2 = E‖ψ̃(i)

k−1‖2
Ru,k

(3.3.48)

E|ek(i)|2=E‖ψ̃(i)
k−1‖2

Ru,k
+ σ2

v,k (3.3.49)

which are used to evaluate the learning curves. Thus, the selection of

σk−1 = rk = vec(Ru,k) leads to the closed-form expressions for EMSE

and MSE learning curves at node k:

E|ea,k(i)|2=E‖ψ̃(−1)
k−1 ‖2

f ′i−1
+ ak−1β

′
i−1 (3.3.50)

E|ek(i)|2=E|ea,k(i)|2 + σ2
v,k (3.3.51)

where the vectors f ′i−1 and β′i−1 are formulated by

f ′i−1 = Πk−1,1f
′
i−2, f ′−1 = rk and

β′i−1 = β′i−2 + f ′i−1, β′−1 = M2 × 1 null vector.

3.3.5 Mean and mean-square stability

Substitute ek,i in (3.3.4) by (3.3.7) to obtain the following relationship

between ψ̃
(i)
k and ψ̃

(i)
k−1 as

ψ̃
(i)
k = (I−µkU

∗
k,i(εI + Uk,iU

∗
k,i)

−1Uk,i)ψ̃
(i)
k−1

−µkU
∗
k,i(εI + Uk,iU

∗
k,i)

−1vk,i (3.3.52)
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Then, taking expectation of both sides leads to the corresponding result

for the evolution of the mean of the weight-error vector:

Eψ̃
(i)
k = (I − µkECk)Eψ̃

(i)
k−1 . (3.3.53)

To guarantee convergence in the mean of dAPA, the step-size µk should

satisfy the condition:

µk <
2

λmax(ECk)
(3.3.54)

where λmax(A) is defined as the largest eigenvalue of A. Note, it is not

necessary for there to be an infinite number of nodes for this to hold,

as through the incremental learning the repeated visits of the nodes at

each discrete time i will achieve convergence with only a finite number

of nodes. In the same way, dAPA will be said to be mean-square stable

if all eigenvalues of Fk from (3.3.39) satisfy −1 < λ(Fk) < 1 as in [6].

Therefore, the matrix Fk is described in (3.3.35) as

Fk = I − µkXk + µ2
kYk (3.3.55)

with Xk = ECT
k ⊗ I + I ⊗ECk and Yk = E[CT

k ⊗Ck]. Exploiting the

approach as in [6], the convergence of the mean-square error of dAPA

will be achieved for values of µk in the range

0 < µk < min
{

1
λmax(X−1

k Yk)
, 1

λmax(Hk)∈R+

}
(3.3.56)
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where the second condition is the reciprocal value of the largest positive

eigenvalue of

Hk =




1
2
Xk −1

2
Yk

I 0


 . (3.3.57)

3.3.6 Steady-state behaviour

In the above, the variance relation (3.3.39) is used to evaluate the tran-

sient behavior of dAPA. The same variance relation can be also used to

characterize the steady-state mean-square performance of dAPA. For

the convenience of studying the steady-state performance of dAPA,

letting pk = ψ̃
(∞)
k , (3.3.39) is rewritten as

E‖pk‖2
σk

= E‖pk−1‖2
Fkσk

+ gkσk (3.3.58)

where the step-size µk of gk = µ2
kδ

2
v,kr

T
k is chosen to guarantee stability

of the filters. Iterating (3.3.58) for an incremental network and choosing

the proper weighting vectors σk for k = 1, 2, . . . , N , an expression only

containing pk−1 is obtained, given by

E‖pk−1‖2
σk−1

=E‖pk−1‖2
Fk···FNF1···Fk−1σk−1

+gkFk+1 · · ·FNF1 · · ·Fk−1σk−1

+gk+1Fk+2 · · ·FNF1 · · ·Fk−1σk−1

· · ·+ gk−2Fk−1σk−1 + gk−1σk−1. (3.3.59)

Use (6.3.22) and (3.3.46) to simplify this expression, which becomes

E‖pk−1‖2
(I−Πk−1,1)σk−1

= ak−1σk−1 (3.3.60)
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Expression (3.3.60) is used to evaluate the steady-state performance

measures at node k, as follows:

ηk(∞)=E‖pk−1‖2
q, q = vec{I} (MSD) (3.3.61)

ζk(∞)=E‖pk−1‖2
rk

, rk = vec{Ru,k} (EMSE) (3.3.62)

ξk(∞)=ζk(∞) + σ2
v,k (MSE). (3.3.63)

Since the weighting vector σk−1 can be freely chosen, it can be ex-

ploited to calculate the steady-state performance of each node. Se-

lecting the weighting vector σk−1 as the solution of the linear equation

(I−Πk−1,1)σk−1 = q or (I−Πk−1,1)σk−1 = rk, the desired MSD, EMSE

and MSE at node k are obtained as

ηk(∞)=ak−1(I − Πk−1,1)
−1q (MSD) (3.3.64)

ζk(∞)=ak−1(I − Πk−1,1)
−1rk (EMSE) (3.3.65)

ξk(∞)=ζk(∞) + σ2
v,k (MSE). (3.3.66)

The matrix Πk−1,l can be regarded as the transition matrix for the

weighting vector σk−1 and the vector ak−1 can be interpreted as the

effect of combining the transformed noise and local data statistics from

all the nodes in the ring topology.

The distributed NLMS (dNLMS) algorithm can be regarded as a

special case of dAPA with the number of recent regressors T = 1.

Since the autocorrelation matrix Ru,k of the input at each node is a

Hermitian matrix, then a unitary Gk and a diagonal matrix Λk with

the eigenvalues of Ru,k are utilized to decompose the autocorrelation
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matrix into Ru,k = GkΛkG
∗
k. The following transformed quantities

p̄k , G∗
kpk, ūk , ukGk

Σ̄k , G∗
kΣkGk, Σ̄′

k , G∗
kΣ

′
kGk

are then used to obtain ‖pk−1‖2
Σk

= ‖p̄k−1‖2
Σ̄k

and ‖uk‖2
Σk

= ‖ūk‖2
Σ̄k

.

Then, the transformed quantities are used to obtain

Σ̄′
k =G∗

kΣ
′
kGk

=Σ̄k − µkG
∗
kΣkECkGk − µkG

∗
kECk · ΣkGk + µ2

kG
∗
kEDΣk

k Gk

=Σ̄k + µkΣ̄kEC̄k − µkEC̄k · Σ̄k + µ2
kED̄Σ̄k

k (3.3.67)

where EC̄k = G∗
kECkGk and ED̄Σk

k = G∗
kEDΣk

k Gk. At the steady-

state stage, (3.3.26) is rewritten for dNLMS as

EC̄k =E
[G∗

ku
∗
kukGk

ε + ‖uk‖2

]

≈ Λk

ε + Tr(Ru,k)

which is a diagonal matrix. For a small step-size, F̄k ≈ I−µk(EC̄k⊗I)−
µk(I ⊗ EC̄k), namely, F̄k also becomes a diagonal matrix. Therefore,

matrix Πk−1,1 = Π = F1F2 · · ·FN will be diagonal as well and ak−1 ≈
∑N

k=1 gk. Using E‖pk−1‖2 = E‖p̄k−1‖2, expression (3.3.64) can be

rewritten as

ηk(∞) ≈
N∑

k=1

gk(I − Π)−1q (3.3.68)

which means that the steady-state MSD at each node is approximately

the same value. This clearly explains why there is an equalization

effect on the MSD of dNLMS throughout the network, and is verified
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in Figures 3.7 and 3.10 even for a large step-size. However, for the

case of the rank T 6= 1 in dAPA, some simplifying approximations in

(3.3.68) can not be used, which means that dAPA with T 6= 1 can

not obtain the equalized performance of MSD throughout the network.

Now it is required to be proceed to confirm these values through Monte

Carlo simulations.

3.4 Simulations

The above analysis is based on the independence assumptions A2 and

A3, but simulations presented in this section were carried out under

independence assumption A2 or a more realistic situations where the

input regressors have shift structure and are generated by feeding data

uk(i) into a tapped delay line as

uk,i = col{uk(i), uk(i− 1) · · · , uk(i−M + 1)}. (3.4.1)

As mentioned in [45], the regularization parameter ε plays an important

role in the convergence behavior of APA-based algorithms.

A large regularization parameter results in a small step-size, which

implies that an APA-based solution has a slow convergence rate but a

small misadjustment error in the steady-state, while a small ε provides

a large step-size, which causes a poor steady-state performance but a

fast convergence rate during learning. In all the experiments, the reg-

ularization parameter ε = 0.001 is set as a small value, whose influence

on the step-size µk of the APA-based solution is very small and can be

neglected. All the coefficients of the adaptive filters within the network

are initialized to zeros.
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3.4.1 Comparison of distributed algorithms

In the first experiment, the proposed algorithm is performed under

shift structure for an incremental network in a system identification

scenario, which corresponds to identifying the parameter vector wo in

(2.1.4). Consider a network with N = 50 nodes in order to seek the

two unknown filters with M = 40, whose z-domain transfer functions

are given by,

W1(z) =
19∑

n=0

z−n −
M−1∑
n=21

z−n and W2(z) = −
M−1∑
n=0

z−n (3.4.2)

where wo(z) = W1(z) for i ≤ 4000 and wo(z) = W2(z) for 4000 < i ≤
8000. At each node, the input uk(i) is generated by passing a unit-

variance white Gaussian sequence through a colouring filter (proposed

in [4]) with the system function as

H(z) = 0.1−0.2z−1 − 0.3z−2 + 0.4z−3

+0.4z−4 − 0.2z−5 − 0.1z−6 (3.4.3)

which results in the input correlation matrix of each node having an

eigenvalue spread λmax

λmin
≈ 91.85. The background noise at each node is a

white additive uncorrelated noise component with variance σ2
v,k = 0.01.

As seen in [26], when the forgetting factor τk reaches close to unity,

both dRLS and Lc-dRLS enable the distributed adaptive estimation

to have similar steady-state performance. However, Lc-dRLS has slow

convergence rate during the initial learning stage due to the matrices

Pk,i evolving locally. As such, dRLS is chosen in the comparison exper-

iment.
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Figure 3.2. Comparison of simulated EMSE learning curves at node
8 for the dLMS, dAPA, and dRLS algorithms in a time-varying envi-
ronment.

Each node within the incremental network is trained by exploit-

ing either dLMS with step-size µk = 0.0011, or dAPA with step-size

µk = 0.0125 and T = 3, or dRLS, for which the forgetting factor is

selected as τk = 0.95, the initial value of P0 = ε−1I and the spatial

weighting factor %k = 1. Since the spatial weighting factor %k in [27]

is not considered by other distributed algorithms, %k = 1 ensures a

fair comparison. The selection of the parameters for the different algo-

rithms allows dLMS, dAPA and dRLS to converge to a similar steady-

state EMSE approximating 37dB. In addition, as shown in Figure 3.19

in Appendix A of this chapter, the setting T = 3 enables dAPA to have

approximately one-third of the computational cost of dRLS per itera-

tion per node. For dRLS, the small value of τk gives more relevance

to recent data in the estimation process so that changes in the input
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can be better tracked. The selection τk = 0.95, which corresponds

to a window length of (1 − τk)
−1 ≈ 20, is therefore used to ensure

dRLS has the best convergence performance over other algorithms in

the time-varying wo environment. The curves are shown in Figure 3.2

by running 8000 iterations and averaging 500 Monte Carlo runs, where

iteration number stands for discrete time index. This figure shows

that the dRLS algorithm obtains the fastest convergence rate with the

largest computational complexity, while the dLMS algorithm has the

slowest convergence rate with the smallest computational complexity.

The dAPA algorithm provides good compromise between convergence

behaviour and computational complexity, namely, dAPA achieves the

improved convergence rate with reasonable computational cost. Since

for each learning scheme the performances are similar at different nodes,

Figure 3.2 illustrates a comparison of the EMSE learning curves of the

different distributed schemes only at node 8.

In the following examples, computer simulations are performed to

compare the experimental results with the theoretical values obtained

by using the theoretical expressions. Consider a network with N = 20

nodes in order to seek an unknown filter with M = 10, whose tap

weights are generated randomly from a standardized Gaussian distri-

bution. The correlated input uk(i) at each node is obtained by passing a

white Gaussian or quasi-uniform random process with variance σ2
u,k = 1

through a first-order AR model filter with z-domain transfer function
√

1− α2
k/(1−αkz

−1) and αk ∈ (0, 0.5] as in Chapter 2. In this way, the

covariance matrix Ru,k of the regressor uk,i is a 10×10 Toeplitz matrix

with entries rk(m) = σ2
u,kα

|m|
k , m = 0, · · · , 9. The background noise of

each node is a white Gaussian process with variance σ2
v,k ∈ (0, 0.1]. Fig-
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Figure 3.3. Node profile: a) Noise power for the Gaussian data net-
work b) Correlation index for the Gaussian data network c) Noise power
for the quasi-uniform data network d) Correlation index for the quasi-
uniform data network.

ure 3.3 illustrates respectively the node profiles of σ2
v,k and αk for both

coloured Gaussian network inputs and coloured quasi-uniform data net-

work inputs. Furthermore, as seen in Figure 3.3, since node 5 and node

12 have the most highly correlated inputs within the corresponding net-

works, a comparison of their performance between theory and practice

is provided in the following example.
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Figure 3.4. Simulated MSE curves of dAPA as a function of the step-
size: a) Node 5 in the coloured Gaussian data network b) Node 12 in
the coloured quasi-uniform data network.

Table 3.2. Stability bounds of step-size for dAPA at node 5 in the
Gaussian data network (4 decimal place precision is used as this corre-
sponds to the resolution in the changes of µmax).

2
λmax(EC5)

1
λmax(X−1

5 Y5)
1

λmax(H5)∈R+ µmax

T=1 9.1204 2.0003 5.0117 2.0003
T=2 6.5406 2.0004 3.9605 2.0004
T=4 3.9959 2.0005 3.4544 2.0005
T=6 2.8628 2.0008 2.8974 2.0008

Table 3.3. Stability bounds of step-size for dAPA (at node 12 in the
quasi-uniform data network).

2
λmax(EC12)

1
λmax(X−1

12 Y12)
1

λmax(H12)∈R+ µmax

T=1 10.3941 2.0002 5.5589 2.0002
T=2 7.1882 2.0003 4.1698 2.0003
T=4 4.1641 2.0004 3.4132 2.0004
T=6 2.9241 2.0006 2.9498 2.0006
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Figure 3.5. Learning MSE curves of dAPA using µk = 0.01 for Node
5 in the coloured Gaussian data network.

3.4.2 Mean and mean-square stability

The experimental values are obtained by running dAPA for 10, 000 iter-

ations and then averaged over 100 independent experiments to generate

the ensemble-average curves. Using expressions (3.3.54) and (3.3.56),

the step-size bounds for dAPA with shift structure are evaluated at the

two corresponding nodes in Table 3.2 and Table 3.3, which verify that

the stability bounds on µk are approximately 0 < µk < 2. This fact

is further confirmed in Figure 3.4, where steady-state MSE curves are

plotted as a function of the step-size. X5, Y5, X12 and Y12 which are

involved in evaluating the expectations for the bounds of step-size, are

calculated via ensemble averaging.
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Figure 3.6. Learning MSE curves of dAPA using µk = 0.01 for Node
12 in the coloured quasi-uniform data network.

3.4.3 Transient performance

Figures 3.5 and 3.6 illustrate the transient performance curves of dAPA

with shift structure during the initial 180 samples. Since the same

step-size as µk = 0.01 is chosen for dNLMS and dAPA with different

T , increasing T results in faster convergence rate but poorer expected

misadjustment in the steady-state, namely, dNLMS obtains the best

steady-state performance, which can be clearly seen in Figure 3.9. For

the transient performance, the simulation results present good agree-

ment with the theoretical results using equation (3.3.51), where Fk and

ak are calculated by ensemble averaging.
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3.4.4 Steady-State performance

In these simulation, the aim is to satisfy independence assumption A2.

Therefore, the following simulations are performed with temporally in-

dependent Gaussian or uniform inputs, i.e. the elements of uk,i satisfy

the temporal assumption in A2. At each node the regressors are gener-

ated as independent realizations, so that the spatial assumption in A2

is satisfied. The sample temporal correlation indices for those inputs

are shown in Figure 3.3, which also illustrates the noise power at each

node for the corresponding networks. In Figures 3.7-3.18, it is clear

to see a good match between theory and simulation. The simulated

curves are obtained by averaging the last 1000 instantaneous samples

of 10, 000 iterations and then averaging 100 independent trials. The

theoretical results are calculated by using equations (3.3.64)-(3.3.66).

Figure 3.7-3.12 show the steady-state MSD, EMSE and MSE curves of

dAPA with different T using a particular choice of the step-size µk = 0.2

for both the coloured Gaussian input data network and the coloured

uniform input data network. These quantities combine the transformed

noise and local statistics from the whole network. As equation (3.3.68)

claims, even for a large step-size µk = 0.2, the MSD curves of dNLMS in

Figures 3.7 and 3.10, are approximately flat throughout the networks.

Compared to the MSD, the EMSE and the MSE are more sensitive to

local statistics. Since the theoretical MSD of dNLMS is roughly even

over the network due to equation (3.3.68), (3.3.65) enables the EMSE

curves of dNLMS to have a similar shape as the correlation index.

As can be seen in Figures 3.8 and 3.11, there seems a better fit

between theory and practice for the steady-state EMSE of dAPA with

ranks T = 2, 4, 6, which is mostly due to the steady-state EMSE of
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Figure 3.7. Steady-state MSD for dNLMS and dAPA using µk = 0.2
for the coloured Gaussian data network.
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Figure 3.8. Steady-state EMSE for dNLMS and dAPA using µk = 0.2
for the coloured Gaussian data network.
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Figure 3.9. Steady-state MSE for dNLMS and dAPA using µk = 0.2
for the coloured Gaussian data network.

dNLMS having the smallest absolute value approximately −21.4dB for

the Gaussian input network or approximately −22.4dB for the uniform

inputs network. For the absolute value of the difference between theory

and simulation, dNLMS has smaller absolute value than dAPA, for

example, as shown in Figure 3.11 for node 13 the absolute gap value

of dNLMS between −22.25dB and −22.65dB is approximately 0.00052

while that of dAPA with T = 4 between −20.4dB and −20.7dB is

also approximately 0.0006. In addition, the theoretical results of MSE

evaluated by equation (3.3.66) are very close to the simulated results

even with the large step-size µk = 0.2 as shown in Figures 3.9 and 3.12.

It should be highlighted that the assumptions in A3 and A3’ underlies

the mismatch between the theoretical and simulated results. Moreover,

as shown in Figures 3.9 and 3.12, the MSE curves roughly coincide
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Figure 3.10. Steady-state MSD for dNLMS and dAPA using µk = 0.2
for the coloured quasi-uniform data network.

with the noise power, which indicates that when the proper step-size

µk is chosen, the adaptive filter of each node has good performance and

wo can be well estimated by ψ
(∞)
k , namely, the residual error ek(∞)

is close to the background noise. In addition, a similar finding as in

[1] is obtained if the whole network is required to have an equalized

performance, Figures 3.9 and 3.12 confirm that the spatial diversity

of the adaptive networks can be used to design the step-size for each

node. Nodes with poor performance, or high noise level, can be tuned

with properly small step-sizes to guarantee a good level of performance

equalization throughout the network. In certain cases, they are just

relay nodes.

Figures 3.13-3.18 illustrate the steady-state MSD, EMSE and MSE

curves of dNLMS and dAPA at node 5 for the coloured Gaussian in-
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Figure 3.11. Steady-state EMSE for dNLMS and dAPA using µk =
0.2 for the coloured quasi-uniform data network.
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Figure 3.12. Steady-state MSE for dNLMS and dAPA using µk = 0.2
for the coloured quasi-uniform data network.
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Figure 3.13. Steady-state MSD curves of dNLMS and dAPA at node
5 in the coloured Gaussian data network as a function of the step-size.

put data network and at node 5 for the coloured uniform input data

network as a function of the step-size. For both corresponding net-

works, the step-size varies in the range [0.008 0.5], which guarantees

the stability of the scheme as mentioned before. Equations (3.3.64)-

(3.3.66) are used to calculate the theoretical results. In order to obtain

the instantaneous mean square error measurements in the steady-state,

the simulation results are obtained by averaging the last 2000 sample

in 20000 iteration numbers and then averaging 100 independent trails.

The experimental values match well with the theoretical values for small

step-size but deviate from the theoretical ones for a larger step-size and

larger T . As is expected, when the step-size is the same, dNLMS has the

smaller absolute value of the discrepancy between theory and practice

than dAPA, namely, increase of T results in an increase of discrep-
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Figure 3.14. Steady-state EMSE curves of dNLMS and dAPA at node
5 in the coloured Gaussian data network as a function of the step-size.
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Figure 3.15. Steady-state MSE curves of dNLMS and dAPA at node
5 in the coloured Gaussian data network as a function of the step-size.
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Figure 3.16. Steady-state MSD curves of dNLMS and dAPA at node
5 in the coloured quasi-uniform data network as a function of the step-
size.

ancy. This is because larger T enables more local input regressors to

be involved in the wk,i update, which will degrade the simplifying as-

sumptions adopted in the analysis. On the other hand, the use of large

step-sizes usually does not satisfy these simplifying assumptions, which

will lead to large deviations between theory and simulation. Therefore,

the range of the step-size is chosen in small values with the purpose of

comparison. One can clearly seen that as the step-size decreases, the

discrepancy decreases.

3.5 Conclusions

This chapter described a new incremental adaptive learning algorithm

based on APA for a distributed network and presented detailed per-
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Figure 3.17. Steady-state EMSE curves of dNLMS and dAPA at
node 5 in the coloured quasi-uniform data network as a function of the
step-size.

formance analysis based on the weighted space-time energy conserva-

tion approach of Lopes and Sayed [1] under assumptions A1, A2, A3

and A3’. The theoretical expressions for MSD, EMSE and MSE de-

rived in this chapter do not restrict the distribution of the inputs to

being Gaussian or white. Both stationary environments and a single

non-stationary environment were considered to test the proposed algo-

rithm. Compared to the dRLS algorithm for certain regressor lengths,

the dAPA algorithm at each node involves less computational cost and

reduced inter-node communications and memory cost whilst retaining

an acceptable steady-state performance. In addition, this algorithm

has obtained improved performance as compared to dLMS in the highly

correlated input case. The bounds of the step-size for mean and mean-

square stability of dAPA have also been evaluated, which have been
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Figure 3.18. Steady-state MSE curves of dNLMS and dAPA at node
5 in the coloured quasi-uniform data network as a function of the step-
size.

employed consistently within the simulation experiments. Furthermore,

the theoretical expressions are compared with the simulated results, for

both the transient and steady-state performance of dAPA in both the

Gaussian data network and quasi-uniform data network. In addition,

it can be clearly seen that the theoretical results of the steady-state

performance have a good match with the experimental results for small

step-size.

In the problem of incremental estimation, a Hamiltonian cyclic path

across the network is required to be defined and nodes communicate

with neighbours within this path. However, this manner limits the

mode of node collaboration in the network and the ability of the net-

work to respond to a topological change, which is likely to be problem-

atic in practical wireless sensor networks. Thus, if more communication
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and computation resources are available, more sophisticated coopera-

tive modes (rather than the incremental type) for the APA-based al-

gorithm can also be pursued, e.g., a diffusion mode of the form used

in [23], [24], where each node cooperates with a subset of neighbouring

nodes, but this will be very much dependent upon the network size and

topolgy. These topics will be addressed in the following chapter.

3.6 Appendix A: Comparison of complexity, memory and trans-

mission costs

The computational costs for the different schemes in the same style as

the presented complexity formulas in [6] are compared in this appendix.

Since a complex addition includes two real additions, and a complex

multiplication is assumed to be computed with four real multiplications

and two real additions, the estimated number of real multiplications,

real additions and real divisions, which are required for the case of

real-valued data for the various algorithms per node per time instant,

is depicted in Table 3.4, and the total number of operations for complex-

valued data is shown in Table 3.5. In order to ensure that dAPA has

intermediate complexity between dLMS and dRLS in the real-valued

data case, a complexity condition should hold which ensures that the to-

tal number of computational operations in dRLS is the largest, namely

2M2+8M+2 > 2T 2M+4TM+M+2T 3+T 2+T > 4M+1, which corre-

sponds to the region below the solid quadratic curve in Fig. 3.19 which

shows the complexity comparison for each update of the different algo-

rithms per node. On the other hand, the complexity condition for com-

plex data is 8M2 +28M +1 > 8T 2M +16TM +2M +8T 2 +2T 2 +4T >

16M +2. Note that dNLMS always has higher complexity than dLMS,
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Table 3.4. Comparison of the estimated complexity per iteration per
node for various algorithms for the case of real-valued data.

Solution × + ÷
dLMS 2M + 1 2M

dNLMS 3M + 1 3M 1
dAPA T 2M + 2TM T 2M + 2TM

+M + T 3 + T +T 3 + T 2

dRLS M2 + 5M + 1 M2 + 3M 1

Table 3.5. Comparison of the estimated complexity per iteration per
node for various incremental algorithms for the case of complex-valued
data.

Solution × + ÷
dLMS 8M + 2 8M

dNLMS 10M + 2 10M 1
dAPA 4T 2M + 8TM 4T 2M + 8TM

+2M + 4T 3 + 4T +4T 3 + 4T 2

dRLS 4M2 + 16M + 1 4M2 + 12M − 1 1

which is illustrated in Figure 3.19. The increase of the tap length M

enables the maximum T of dAPA, which has lower complexity than

dRLS, to become larger, e.g. at M = 25, dAPA has less complexity

than dRLS when T < 5; whereas at M = 90, T < 9.

For communications between nodes, since the entire inverse sam-

ple input correlation matrix requires to be transferred between nodes,

dRLS of [1] at each node requires O(M2) transmission complexity. On

the other hand, the requirement of other algorithms is O(M) as essen-

tially only the tap vector is transferred between nodes. A simplified

distributed RLS algorithm presented in [27] can reduce the communi-

cations between nodes to O(M) at the expense of reduced steady-state

performance and tends to the same performance as dRLS implementa-

tion when the forgetting factor λk approaches unity. On the other hand,

for real data the estimated memory costs of dLMS, dAPA and dRLS are

respectively 5M+4, 5T 2+4M+3T +2TM+2, 5T 2+3M+4T +3TM+1
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Figure 3.19. Complexity comparison in terms of operations per it-
eration per node for various algorithms (dLMS, dNLMS, dAPA and
dRLS).

and 6M2 + 10M + 6 at each node. Since T < M always holds for APA

based methods, dAPA has intermediate memory cost between dLMS

and dRLS. The above memory computations rely on the assumption

that all the scalars, vectors and matrices involved during the computing

process are stored. However, in practice only unique values of vectors

and matrices are required to be stored and some storage of intermedi-

ate results can be removed after computations, which cuts down the

memory storage.



Chapter 4

DISTRIBUTED ADAPTIVE

ESTIMATION BASED ON

THE APA ALGORITHM OVER

A DIFFUSION NETWORK

WITH CHANGING

TOPOLOGY

4.1 Introduction

In a network of nodes spreading over a physical area, the objective

is to estimate the parameters of interest by exploiting observations of

temporal data collected from nodes with different spatial locations, sta-

tistical profiles of which are possibly different. However, applications

in some environments suffer limited capabilities of communications and

complexity due to tight energy and bandwidth constraints, especially

in wireless sensor networks. Such constraints lead to the development

of distributed adaptive algorithms based on LMS and RLS rules for

76
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incremental networks as in [1], [27]. This type of topology reduces the

level of communication and computational resources as compared with

networks having other topologies. It is well known that an incremental

topology requires to establish a Hamiltonian cycle to connect all the

nodes in the network at every iteration. This mode of cooperation is

only likely to be suitable for small size networks and limits the auton-

omy of the network topology. An ideal cooperation strategy should be

capable of dealing with different network topologies, possibly dynamic

changing. Therefore, peer-to-peer distributed algorithms based on dif-

fusion protocols have been derived and studied in [22], [25], [28], [29],

which take advantage of the cooperation among the individual adaptive

nodes. In these types of diffusion distributed algorithms, each node in

a network only communicates with the nodes within its neighbourhood,

but also experiences the effect of the entire network. The applications

of these schemes could be found useful to solve the problem of estima-

tion and event detection by using multiple nodes to collect space-time

data [8], [46], [47], [48], [49].

In the case of a single adaptive filter, the advantage of the APA

algorithm is well known: it achieves an improved convergence perfor-

mance as compared with the LMS algorithm for some coloured input

signals but obtains a reasonable convergence performance by using less

computational cost than the RLS algorithm for certain tap-lengths. In

the former chapter, a new incremental distributed algorithm based on

an APA rule was developed with the purpose to obtain a good bal-

ance between computational cost and convergence performance. As a

consequence, a new diffusion type learning algorithm relying on the

APA rule is derived in this chapter to solve the distributed estimation
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problem, where the cooperation strategy between nodes is a peer-to-

peer diffusion protocol and nodes communicates only with their peer

neighbours at every iteration. Simulations confirm that the proposed

algorithm achieves a greatly improved performance as compared with

a noncooperative scheme.

4.2 Estimation problem

Consider the distributed estimation problem as in Chapter 2: the ob-

jective is to seek an unknown M×1 vector w over an N−node network

by solving

min
w

E‖d−Uw‖2 (4.2.1)

where two global data matrices

d=col{d1, d2, . . . , dN}, (N × 1) (4.2.2)

U=col{u1, u2, . . . , uN}, (N ×M) (4.2.3)

are formulated by the zero-mean random measurement data dk and re-

gression data uk, the time realizations of which are denoted by {dk,i, uk,i},
k = 1, . . . , N with time index i. The optimal solution wo satisfying the

normal equations [6] is therefore obtained by solving

Rdu = Ruw
o (4.2.4)

with Ru = EU∗U and Rdu = EU∗d.

The purpose is to design a distributed adaptive scheme relying on

the APA rule to achieve a good estimate approximating the solution

wo of (4.2.4) at every node within the network. As mentioned in the
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introduction, diffusion topology can be used as a node cooperation

strategy, where at node k the adaptive filter fuses the local estimates

from its neighbourhood and exploits the resulting aggregated estimate

to update the local estimate. Let ψ
(i−1)
k denote the local estimate at

node k at time i−1. Node k therefore obtains a set of unbiased estimates

{ψ(i−1)
l }l∈Nk,i−1

from its neighborhood Nk,i−1, which is defined as the

set of all nodes connecting to node k at any given time i− 1. At node

k, a local combining function fk is used to fuse these local estimates,

yielding the aggregate estimate φ
(i−1)
k ,

φ
(i−1)
k = fk

(
ψi−1

l ; l ∈ Nk,i−1

)
(4.2.5)

where Nk,i−1 is time dependent and includes node k itself. The time-

dependent neighbourhood provides a robust framework when the link

failures are possible. Due to every node having a diffusion linking neigh-

bourhood, one should note that this aggregate step combines informa-

tion from the whole network. The APA-based adaptive filter updates

the local estimate ψ
(i)
k by using the resulting aggregate estimate φi−1

k .

As mentioned in [25], the combiner function fk may be nonlinear, to

respond to the time-varying conditions. In this work, linear combiners

are used and fk is therefore replaced by some weighted combination,

yielding

φ
(i−1)
k =

∑

l∈Nk,i−1

ck,l(i− 1)ψ
(i−1)
l (4.2.6)

with weighted coefficients ck,l(i − 1) ≥ 0 and
∑

l∈Nk,i−1
ck,l(i − 1) = 1.

Let nk,i−1 and nl,i−1 denotes the degree of the neighbourhoods, i.e.

nk,i−1 = |Nk,i−1|. One choice for the combiner is the Metropolis rule,
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as in [37],

ck,l(i− 1)=





1
max(nk,i−1,nl,i−1)

, if k links l but k 6= l

1−∑
l∈Nk,i−1,l 6=k ck,l(i− 1), k = l

0, if k and l are not linked.

(4.2.7)

Other combiners are the Laplacian and the nearest neighbour rules [36],

[50].

Recall the update recursion of the diffusion LMS strategy as in [25],

which can be rewritten in theory as follows:

ψ
(i−1)
k = φ

(i−1)
k − µk[∇Jk(φ

(i−1)
k )]∗ for node k (4.2.8)

where µk denotes the local step-size. With the purpose of improving

the convergence performance, a regularized Newton’s search based ap-

proach [6] is therefore adopted in (4.2.8), yielding,

ψ
(i)
k =φ

(i−1)
k − µk[εI +∇2Jk(φ

(i)
k−1)]

−1[∇Jk(φ
(i)
k−1)]

∗

=φ
(i−1)
k + µk(εI + Ru,k)

−1[Rdu,k −Ru,kφ
(i)
k−1] (4.2.9)

where Ru,k = Eu∗kuk, Rdu,k = Edku
∗
k and ε denotes a regularization

parameter with small positive value. One method to realize (4.2.9)

in practice is to replace {Ru,k, Rdu,k} by the following sample sliding-

window estimates,

R̂u,k =
1

T

i∑
j=i−T+1

u∗k,juk,j (4.2.10)

R̂du,k =
1

T

i∑
j=i−T+1

u∗k,jdk(j)
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where T indicates the rank of recent regressors. Hence, recursion (4.2.9)

becomes,

ψ
(i)
k = φ

(i−1)
k + µkU

∗
k,i(εI + Uk,iU

∗
k,i)

−1[dk,i − Uk,iφ
(i−1)
k ] (4.2.11)

where the local T ×M block data matrix and T × 1 data vector are,

Uk,i =




uk,i

uk,i−1

...

uk,i−T+1




, dk,i =




dk(i)

dk(i− 1)

...

dk(i− T + 1)




(4.2.12)

and ε is employed to avoid the inversion of a rank deficient matrix

Uk,iU
∗
k,i. Therefore, a linear combiner model and APA-type local adap-

tive rule are employed to result in the diffusion APA algorithm as sum-

marized in Table 4.1. The convergence performance of the proposed

algorithm will be studied in the following sections.

Table 4.1. Pseudo-code implementation of diffusion APA.

For each time instant i ≥ 0 repeat:

Initialization φ
(−1)
k = 0

k=1, . . . N

φ
(i−1)
k =

∑
l∈Nk,i−1

ck,l(i− 1)ψ
(i−1)
l

ψ
(i)
k = φ

(i−1)
k + µkU

∗
k,i(εI + Uk,iU

∗
k,i)

−1[dk,i − Uk,iφ
(i−1)
k ]

end

where {dk,i, Uk,i} are defined by (4.2.12).
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4.3 Network global model

The space-time structure of the algorithm leads to challenge in the

performance analysis. To proceed, first, the global representations, in

terms of the stochastic quantities, are formulated to gain the insights

into the effects of cooperation strategy and network model on system

performance and are defined as,

ψi−1
c = col{ψ(i−1)

1 , . . . , ψ
(i−1)
N }, φi−1

c = col{φ(i−1)
1 , . . . , φ

(i−1)
N }

Ui
c = diag{U1,i, . . . ,UN,i}, di

c = col{d1,i, . . . ,dN,i}

where Ui
c is an NT × NM block diagonal matrix. An NM × NM

diagonal matrix D is defined by

D = diag{µ1IM , . . . , µNIM} (4.3.1)

to collect the local step-sizes. The measurements for the APA rule can

be expressed in a traditional manner, given by,

dk,i = Uk,iw
o + vk,i (4.3.2)

where vk,i is obtained by

vk,i = col{vk(i), . . . ,vk(i− T + 1)}, (T × 1) (4.3.3)

and vk(i) is background noise, spatially and temporally independent

with variance σ2
v,k. From the linear model of the form (4.3.2), the
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global model for diffusion APA is obtained

di
c = Ui

cw
o
c + vi

c (4.3.4)

where wo
c = Qwo with an NM ×M transition matrix

Q = col{IM , . . . , IM} (4.3.5)

and an NT × 1 global error vector

vi
c = col{v1,i, . . . ,vN,i}. (4.3.6)

To facilitate analysis, the network topology is assumed to be static (i.e.

ck,l(i) = ck,l). It should be highlighted that this assumption does not

compromise the algorithm derivation or its operation, and is used for

analysis only. Using the above expressions, the global model of diffusion

APA is therefore formulated as follows:

ψi
c = Gψi−1

c + DUi∗
c (εITN + Ui

cU
i∗
c )−1(di

c −Ui
cGψi−1

c ) (4.3.7)

where G = C⊗ IM is the NM ×NM network topology matrix and the

symmetric combining matrix C, is formed by {ck,l}. Now the objective

is to study the performance behavior of cooperative systems governed

by the form (4.3.7).

4.4 Performance analysis

Since the spatial independence assumption of {Uk,i} is likely to hold,

the independence assumptions in Chapter 3 can therefore be extended
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to the global matrix Ui
c. These types of assumptions are very common

in the adaptive signal processing literature, and are frequently necessary

to permit analysis even for the simplest of adaptive schemes. For the

later reference, the local error vector is defined as

ek,i = dk,i −Uk,iφ
i−1
k , (T × 1) (4.4.1)

which is related to the global error vector ec,i

ec,i = col{e1,i, . . . , eN,i}, (NT × 1). (4.4.2)

Let ψ̃i
c denote the global weight error vector, given by,

ψ̃i
c = wo

c −ψi
c, (NM × 1). (4.4.3)

As a consequence, (4.4.2) can be rewritten as

ec,i = di
c −Ui

cGψi−1
c = Ui

cGψ̃c
i−1

+ vi
c = eG

a,i + vi
c (4.4.4)

where

eG
a,i = Ui

cGψ̃c
i−1

(4.4.5)

and

ψ̃i
c = Gψ̃i−1

c −DUi∗
c (εITN + Ui

cU
i∗
c )−1ec,i. (4.4.6)

Let Σ denote an NM × NM arbitrary positive matrix. Pre-multiply

Ui
cDΣ to both sides of (4.4.6) to yield,

Ui
cDΣψ̃i

c=Ui
cDΣGψ̃i−1

c −Ui
cDΣDUi∗

c (εITN + Ui
cU

i∗
c )−1ec,i(4.4.7)

eDΣ
p,i =eDΣG

a,i −Ui
cDΣDUi∗

c (εITN + Ui
cU

i∗
c )−1ec,i (4.4.8)
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where the global a priori and a posteriori weighted estimation errors

are given by:

eDΣG
a,i =Ui

cDΣGψ̃i−1
c (4.4.9)

eDΣ
p,i =Ui

cDΣψ̃i
c. (4.4.10)

Replacing ec,i in (4.4.6) by {eDΣG
a,i , eDΣ

p,i } from (4.4.8) leads to

ψ̃i
c + DUi∗

c (Ui
cDΣDUi∗

c )−1eDΣG
a,i = Gψ̃i−1

c + DUi∗
c (Ui

cDΣDUi∗
c )−1eDΣ

p,i

(4.4.11)

with the assumption that Ui
cDΣDUi∗

c is invertible. Weight energy

balance is performed on both side of (4.4.11) to yield

‖ψ̃i
c‖2

Σ+eDΣG∗
a,i (Ui

cDΣDUi∗
c )−1eDΣG

a,i

= ‖ψ̃i−1
c ‖2

G∗ΣG + eDΣ∗
p,i (Ui

cDΣDUi∗
c )−1eDΣ

p,i (4.4.12)

Then, substituting (4.4.8) in (4.4.12) and rearranging the result, the

following equation is obtained,

‖ψ̃i
c‖2

Σ = ‖ψ̃i−1
c ‖2

G∗ΣG − eDΣG∗
a,i Xec,i − e∗c,iXeDΣG

a,i + e∗c,iYec,i (4.4.13)

where {X,Y} are denoted by

X=(εITN + Ui
cU

i∗
c )−1 (4.4.14)

YΣ=(εITN + Ui
cU

i∗
c )−1Ui

cDΣDUi∗
c (εITN + Ui

cU
i∗
c )−1 (4.4.15)

Recall that ec,i = Ui
cGψ̃i−1

c + vi
c. Taking expectation of both sides of

(4.4.14) and using the independence assumption for the noise signals,



Section 4.4. Performance analysis 86

the expression relating to the terms of {ψ̃i
c, ψ̃

i−1
c } can be obtained

E‖ψ̃i
c‖2

Σ=E‖ψ̃i−1
c ‖2

Σ′ + E[vi∗
c YΣvi

c] (4.4.16)

Σ′=G∗ΣG−G∗ΣDUi∗
c XUi

cG

−G∗Ui∗
c XUi

cDΣG + G∗Ui∗
c YΣUi

cG (4.4.17)

Evaluating expression (4.4.16) is challenging since the weighting matrix

Σ′, dependent on Ui
c, is a random quantity. Recall the independence

assumption of Ui
c, which allows ψ̃i−1

c to be independent of Ui
c. In this

way, (4.4.16) can be expressed as

E‖ψ̃i
c‖2

Σ = E‖ψ̃i−1
c ‖2

EΣ′ + E[vi∗
c YΣvi

c] (4.4.18)

where the mean of the weighted matrix Σ′ is given by EΣ′ = Σ′:

Σ′=G∗ΣG−G∗ΣDE[Ui∗
c XUi

c]G

−G∗E[Ui∗
c XUi

c]DΣG + G∗E[Ui∗
c YΣUi

c]G (4.4.19)

In order to study the behaviour of the diffusion APA algorithm, the

following moments in (4.4.18) and (4.4.19) must be evaluated:

E[Ui∗
c (εITN + Ui

cU
i∗
c )−1Ui

c] (4.4.20)

E[Ui∗
c (εITN + Ui

cU
i∗
c )−1Ui

cDΣDUi∗
c (εITN + Ui

cU
i∗
c )−1Ui

c](4.4.21)

E[vi∗
c (εITN + Ui

cU
i∗
c )−1Ui

cDΣDUi∗
c (εITN + Ui

cU
i∗
c )−1vi

c] (4.4.22)
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To extract the matrix Σ from the expectation terms, a weighted vari-

ance relation is introduced by using N2M2 × 1 column vectors:

σ = bvec{Σ} and σ′ = bvec{Σ′} (4.4.23)

where bvec{·} denotes the block vector operator and Σ is an NM×NM

block matrix, formed by

Σ =




Σ11 . . . Σ1n . . . Σ1N

Σ21 . . . Σ2n . . . Σ2N

...
. . .

...
. . .

...

ΣN1 . . . ΣNn . . . ΣNN




(4.4.24)

where each Σmn is an M × M matrix for m,n = 1, . . . , N . A more

detailed discussion of the block vectorization is presented in Appendix

A. In addition, Σ = bvec{σ} is also used to recover the original matrix

Σ from σ. One property of the bvec{·} operator when working with

the block Kronecker product [51], [52] is used in this work, namely,

bvec{QΣPT} = (P ¯Q)σ (4.4.25)

where P¯Q denotes the block Kronecker product of two block matrices

P and Q and its mn-block is defined as

[P ¯Q]mn =




Pmn ⊗Q11 . . . Qmn ⊗Q1N

...
. . .

...

Pmn ⊗QN1 . . . Pmn ⊗QNN




(NM2 ×NM2) (4.4.26)



Section 4.4. Performance analysis 88

where {Pmn, Qmn} are M × M matrices for m,n = 1, . . . , N . Using

(4.4.25) to (4.4.19) after block vectorization, the following terms on the

right side of (4.4.19) are given by

bvec{G∗ΣG}=(GT ¯G∗)σ (4.4.27)

bvec{G∗ΣD · EZ ·G}=(GT ¯G∗)bvec{ΣDZ}

=(GT ¯G∗)(ZT ¯ INM)(DT ¯ INM)σ (4.4.28)

bvec{G∗ · EZ ·DΣG}=(GT ¯G∗)bvec{ZDΣ}

=(GT ¯G∗)(INM ¯ Z)(INM ¯D)σ (4.4.29)

bvec{G∗E[ZDΣDZ]G}=(GT ¯G∗)bvec{E[ZDΣDZ]}

=(GT ¯G∗)E(ZT ¯ Z)(DT ¯D)σ (4.4.30)

where Z = Ui∗
c (εITN + Ui

cU
i∗
c )−1Ui

c and Z = EZ. Therefore, a linear

relation between the corresponding vectors {σ, σ′} is formulated by

σ′ = Fσ (4.4.31)

where F is an N2M2 ×N2M2 matrix and given by

F =(GT ¯G∗)
[
IN2M2 − (ZT ¯ INM)(DT ¯ INM)

−(INM ¯ Z)(INM ¯D) + Π · (DT ¯D)
]

(4.4.32)

with Π = E
[
(ZT ¯ Z)

]
. For the sake of compactness, the bvec{·}

notation is dropped from the subscripts and (4.4.18) becomes

E‖ψ̃i
c‖2

σ = E‖ψ̃i−1
c ‖2

Fσ + E[vi∗
c YΣvi

c] (4.4.33)
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Let Λv = E[vi
cv

i∗
c ] denote a TN × TN diagonal matrix, whose entries

are the noise variances {σ2
v,k} for k = 1, . . . , N , and given by

Λv = diag{σ2
v,1IT, . . . , σ2

v,NIT}. (4.4.34)

Using the independence assumption of noise signals, the last item in

(4.4.33) can be written as

E[vi∗
c YΣvi

c]=Tr(D · EΦ ·D · Σ)

=γTσ (4.4.35)

where Φ = Ui∗
c (εITN + Ui

cU
i∗
c )−1Λv(εITN + Ui

cU
i∗
c )−1Ui

c and

γ=vec{D · EΦ ·D}

=(DT ⊗D) · vec{E[
W∗ΛvW

]}

=(DT ⊗D) · E[
(WT ⊗W∗)

] · γv. (4.4.36)

with W = (εITN + Ui
cU

i∗
c )−1Ui

c and γv = vec{Λv}. Therefore, the

mean-square behaviour of the diffusion APA algorithm is summarized

by the following expressions:

E‖ψ̃i
c‖2

σ =E‖ψ̃i−1
c ‖2

Fσ + γTσ (4.4.37)

F =(GT ¯G∗)
[
IN2M2 − (ZT ¯ INM)(DT ¯ INM)

−(INM ¯ Z)(INM ¯D) + Π · (DT ¯D)
]
. (4.4.38)

The global transient behaviour of the adaptive network is shown in

{ψ̃i−1
c , ψ̃i

c} by expressions (4.4.37) and (4.4.38), which can be used be-

low to study the mean-square behavior of diffusion APA.
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4.4.1 Mean and mean-square stability analysis

This section presents a discussion on the mean and mean-square sta-

bility of diffusion APA. According to Gwo
c = wo

c , the global data model

(4.3.4) is used and wo
c is abstracted from both sides of (4.3.7) to obtain

ψ̃i
c=Gwo

c −Gψi−1
c

−DUi∗
c (εITN + Ui

cU
i∗
c )−1[Ui

cw
o
c + vi

c −Ui
cGψi−1

c ]

=(INM −DUi∗
c (εITN + Ui

cU
i∗
c )−1Ui

c)Gψ̃i−1
c

+DUi∗
c (εITN + Ui

cU
i∗
c )−1vi

c. (4.4.39)

Then, taking expectation in both sides of (4.4.39) and using the inde-

pendence assumption of Ui
c, leads to

Eψ̃i
c = [INM −DE(Ui∗

c (εITN + Ui
cU

i∗
c )−1Ui

c)]GEψ̃i−1
c

(4.4.40)

In order to guarantee the stability in the mean, all eigenvalues of BG

should satisfy

−1 < λ(BG) < 1 (4.4.41)

where B = [INM − DE(Ui∗
c (εITN + Ui

cU
i∗
c )−1Ui

c)] and λ(A) denotes

all eigenvalues of a matrix A. Therefore, the convergence of diffusion

APA depends on the data moment E(Ui∗
c (εITN + Ui

cU
i∗
c )−1Ui

c) and

the topology matrix G. In the noncooperative algorithm, the mean

evolution of the global weight error vector is formed by

Eψ̃i
c = B · Eψ̃i−1

c (4.4.42)
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where the topology matrix G disappears due to G = INM in a non-

cooperation network. Using matrix 2-norms, the following result can

be obtained,

|λmax(BG)| ≤ |λmax(B)| (4.4.43)

where λmax(A) denotes the largest eigenvalue of matrix A. The deriva-

tion of (4.4.43) is presented in Appendix B. Moreover, with the purpose

to show the convergence in the mean-square sense, F in (4.4.37) can be

rewritten as

F = (GT ¯G∗)H (4.4.44)

where H is an Hermitian matrix, given by

H = IN2M2−(ZT¯INM)(DT¯INM)−(INM¯Z)(INM¯D)+Π·(DT¯D)

(4.4.45)

so that F should satisfy

−1 < λ(F ) < 1 (4.4.46)

to guarantee the mean-square stability. In other words, the spectrum

of F must be strictly inside the unit disc. For both the mean and the

mean-square stability, the selection of µk and the network topology G

must satisfy (4.4.41) and (4.4.46). In the similar way, the following

result is obtained

|λmax((G
T ¯G∗)H)| ≤ |λmax(H)|. (4.4.47)

which is proved in Appendix B. Thus, the diffusion cooperation strategy

leads to a stabilizing effect on the network. In addition, cooperation
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Figure 4.1. The subnetworks Cj with corresponding probability pc,j

reduces the eigenmode of both the mean and mean-square weight error

evolutions as compared with its noncooperative counterpart, which will

be verified by simulation results.

4.5 Dynamic network topology

In the dynamic network topology model (i.e. probabilistic diffusion

network as in [23]) it is assumed that the nature of links between nodes

is determined randomly due to link failures or time delays. At time i,

when the connection between undirected nodes k and l is established

with probability pk,l, the value of ck,l(i) is set to be equal to ck,l, where

ck,l denotes the link weighted coefficient as in (4.2.6). Otherwise, ck,l(i)

is zero with probability 1− pk,l. Therefore, for undirected nodes k and

l, the elements of the corresponding combining matrix Ci are formed
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by, for k, l = 1, . . . , N :

ck,l(i) =





ck,l with pk,l

0 with 1− pk,l

(4.5.1)

where ck,l = cl,k and pk,l = pl,k. In an N -node network, nl is defined

as the maximum number of links and Cj is a subnetwork matrix for

j = 1, . . . , 2nl . A simple example is shown in Figure 4.1, which describes

a 3-node network with nl = 2. The probability pc,j of Cj depends on

{pk,l}, for instance, pc,3 = p1,2p2,3 is the probability of the subnetwork

C3. In this manner, the mean topology matrices G = EGi and Gc =

E(GT
i ¯G∗

i ) for the dynamic network topology are given by,

G =
2nl∑
j=1

pc,jGj and Gc =
2nl∑
j=1

pc,j(G
T
j ¯G∗

j) (4.5.2)

which are therefore used to replace the corresponding terms in the

above equations (4.4.40) and (4.4.44) to obtain the similar analysis of

the mean and mean-square stability.

4.6 Simulations

In this section, computer simulations are carried out in a system iden-

tification scenario. In the following examples, a correlated input signal

at a local node is generated as a Gaussian or uniform first-order Markov

process, which allows the local covariance matrix Ru,k to be a Toeplitz

matrix with entries rk(m) = σ2
u,kα

|m|
k for m = 0, . . . ,M − 1, where αk

denotes the correlation index and the variance of the local input signal

is set as σ2
u,k = 1. In addition, for all APA-based schemes the regu-

larization parameter ε = 0.001 is chosen as a small value to reduce its
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Figure 4.2. Example 1: Network topology (left) and node profile
of the statistical setting for both Gaussian and Uniform data. The
parameter αk denotes the correlation index.
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Gaussian data network; b) APA-based schemes with T = 2 in Gaussian
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pk,l = p denotes the probability of the link between nodes k and l.
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statistical setting for Gaussian data. The parameter αk denotes the
correlation index.
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Figure 4.5. The N2M2 modes of F for Example 2: a) NLMS-based
schemes; b) APA-based schemes with T = 3. The value pk,l = p denotes
the probability of the link between nodes k and l.

effect on step-sizes. For the theoretical evaluations, all the expected

terms {Z, Π} are calculated by ensemble averaging. Moreover, all the

coefficients of the adaptive filters within the network are initialized to

zeros. An NLMS-based strategy can be regarded as a special case of an

APA-based scheme with T = 1. All the simulated results in this work

are obtained by averaging 100 Monte Carlo runs.

In Example 1, consider a 6-node network to seek a 5 × 1 unknown

vector wo by using µk = 0.1. The background noise is set as σ2
v,k =
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Figure 4.6. Global transient performance: a) MSD for NLMS-based
schemes; b) EMSE for NLMS-based schemes; c) MSD for APA-based
schemes with T = 3; d) EMSE for APA-based schemes with T = 3.
Pro-diffusion denotes the probability diffusion algorithm.

0.001. In addition, pk,l = p denotes the probability of the link between

nodes k and l. The ranks of APA-based schemes are set as T = 1, 2.

Noncooperative APA, diffusion APA and probabilistic diffusion are im-

plemented in this network. In addition, noncooperative and diffusion

APA algorithms can be also regarded as the probabilistic diffusion APA

with p = 0 and p = 1 respectively. On the left of Figure 4.2, it illus-

trates the network topology. In this network, coloured Gaussian or

uniform data are used as input signals respectively. The statistical set-

tings of these data are also shown in Figure 4.2. For the probabilistic

APA algorithms, the probabilities p = 0.1, 0.5 are chosen. In Figure
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4.3, one can clearly see that the mode of diffusion cooperation reduces

the eigenmodes of the mean weight error evolution, as compared with

the noncooperative APA. In addition, as shown in Figure 4.3, a large

probability decreases greatly the eigenmodes of mean weight error evo-

lution. Moreover, the mean-square stability of diffusion APA is verified

by the following example.

Figure 4.4 presents the network topology of Example 2, where var-

ious algorithms are performed to estimate a 6 × 1 unknown vector wo

in an 8-node network by using µk = 0.2. The corresponding statis-
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tical settings of Gaussian input and noise signals are plotted on the

right of Figure 4.4. Figure 4.5 presents the mean-square eigenmodes

for Example 2 in Figure 4.4. For the probabilistic APA algorithms, the

probabilities p = 0.1, 0.5 are chosen. It is clear to see that cooperation

also decreases the eigenmodes of the mean-square weight error evolu-

tion, which is verified by Figure 4.6. Figure 4.6 illustrates the global

transient performance of various algorithms in 200 time samples. For

the probabilistic APA algorithm, the probability p = 0.1 is chosen. One

can clearly see that cooperation results in improvement of mean-square

performance.
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Figure 4.9. Local steady-state performance for various APA-based
algorithms over the network by using µk = 0.02: a) MSD for NLMS-
based schemes; b) EMSE for NLMS-based schemes; c) MSD for APA-
based schemes with T = 3; d) EMSE for APA-based schemes with T
= 3.

Since the result of the comparison of various APA-based schemes is

similar as that of various NLMS-based schemes, only the local transient

performances of NLMS-based schemes are shown at nodes k = 1, 2, 3, 4

by using µk = 0.02 in Figure 4.7-4.8. It should be noted that due to the

cooperation strategy, the nodes present a strikingly similar mean-square

performance. Figure 4.9 presents the local steady-state performance

over the network by using step-size µk = 0.02. Figure 4.10 shows

the global steady-state performance as a function of the step-size in

the range [0.004 0.6]. The results shown in both of these figures also
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algorithms as a function of the step-size: a) MSD for NLMS-based
schemes; b) EMSE for NLMS-based schemes; c) MSD for APA-based
schemes with T = 3; d) EMSE for APA-based schemes with T = 3.

confirm the improvement in performance over the noncooperative case.

Another example with a larger network is also provided to carry out

various algorithms by using µk = 0.1. The topology of the network with

21 nodes is shown in Figure 4.11. Figure 4.12 a) presents the statistical

setting of the network. In addition, the instantaneous network traffic is

plotted in Figure 4.12 b), which illustrates the network mean usage is

somewhat below its maximum capacity. The network usage denotes the

number of available links at time i. Figure 4.13 shows that even with

a very low probability, i.e. p = 0.01, the probabilistic diffusion APA
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Figure 4.13. Example 3: Global transient performance comparison
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algorithm can achieve a reasonable improved performance as compared

with the noncooperative scheme.

4.7 Conclusions

This chapter described a new diffusion adaptive learning algorithm

based on APA for a distributed network and presented detailed perfor-

mance analysis based on the weighted space-time energy conservation

approach of Lopes and Sayed [25] under independence assumptions.

This approach yields insight into the energy flow between nodes. One
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main contribution of this chapter is to study the mean and mean-square

stabilities of diffusion APA, which is consistent with simulations. Com-

pared with the non-cooperative APA scheme, diffusion APA achieves

a great improvement in terms of not only convergence rate but also

steady-state performance.

4.8 Appendix A: block vectorization

Recall Σ is an NM ×NM block matrix, given by,

Σ =




Σ11 . . . Σ1n . . . Σ1N

Σ21 . . . Σ2n . . . Σ2N

...
. . .

...
. . .

...

ΣN1 . . . ΣNn . . . ΣNN




(4.8.1)

with the block element matrix Σm,n for m,n = 1, . . . , N . The bvec{·}
notation works in the following steps: firstly σmn = vec{Σmn} forms an

M2 × 1 column vector by stacking the successive columns of Σmn on

top of each other; then the block columns are stacked on top of each

other to obtain

Σn = col{Σ1n, . . . , ΣNn}, (NM ×M) (4.8.2)

and this is vectorized to obtain the corresponding column vector

σn = col{σσ1n,...,σNn
}, (NM2) (4.8.3)
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then the N2M ×M stacked matrix Σv is formed by {Σn} ,

Σv =




Σ1

Σ2

...

ΣN




(4.8.4)

which yields the final column vector

σ = col{σ1, . . . , σN}, (N2M2 × 1) (4.8.5)

4.9 Appendix B: mean and mean-square eigenmodes of diffusion

APA

Using matrix 2-norms in (4.4.41), it has

‖BG‖2 ≤ ‖B‖2‖G‖2 (4.9.1)

Given the block structure of Ui
c, B can be regarded as a Hermitian

matrix. Using G = C ⊗ IM , (4.9.1) becomes

|λmax(BG)| ≤ ‖C‖2 · |λmax(B)|. (4.9.2)

where λmax(A) is defined as the largest eigenvalue of A. The proper

choice of stochastic and symmetric matrix C leads to ‖C‖2 ≤ 1. For

‖C‖2 = 1, the result is obtained,

|λmax(BG)| ≤ |λmax(B)| (4.9.3)
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which describes that the robustness of the cooperative scheme is greater

than that of the noncooperative scheme. In a similar way as in [25],

recall matrix 2-norms for (4.4.46), yielding,

‖F‖2=‖(GT ¯G∗)H‖2

≤‖GT ¯G∗‖2 · ‖H‖2

=‖ΩT(GT ⊗G∗)Ω‖2 · ‖H‖2

≤‖GT ⊗G∗‖2 · ‖H‖2

=‖GT‖2 · ‖G∗‖2 · ‖H‖2 (4.9.4)

where the standard Kronecker product is used to express (GT¯G∗) with

some permutation matrix Ω [53]. Since H is Hermitian and G = C⊗IM ,

the result is obtained

|λmax((G
T ¯G∗)H)| ≤ ‖C‖2

2 · |λmax(H)| (4.9.5)

which illustrates that the mean-square evolution of the overall system

depends on the data matrix H and the chosen topology matrix C.

Therefore, choosing ‖C‖2
2 ≤ 1 can guarantee the robustness of the coop-

erative scheme over that of the noncooperative scheme. With ‖C‖2
2 = 1

as a Metropolis rule is used in the combiner, then (4.9.5) becomes

|λmax((G
T ¯G∗)H)| ≤ |λmax(H)|. (4.9.6)



Chapter 5

TAP-LENGTH ADAPTATION

WITHIN LMS LEARNING

ALGORITHMS

5.1 Overview of VTLMS algorithms

The LMS adaptive algorithm has been extensively used as a conse-

quence of its simplicity and robustness [4], [5], [6]. In many appli-

cations of LMS type algorithms, the tap-length of the adaptive fil-

ter is kept fixed. However, in certain situations the tap-length of

the optimal filter is unknown or variable. According to the analysis

in [54], [55], the MSE of the adaptive filter is likely to increase if the

tap-length is under-modelled. To avoid such a situation, a sufficiently

large tap-length is required to be chosen in the steady-state. How-

ever, the computational cost and the EMSE of the LMS algorithm

will increase if the tap-length is too large, thus a VTLMS algorithm

is needed to find a proper choice of the tap-length. Several algorithms

based on the concept of variable tap-length [11] have been studied in

recent years [12], [14], [16], [17], [18], [56], [57]. The algorithm in [11]

compares the current MSE of a deficient tap-length adaptive filter to

106
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the pre-estimated minimum MSE for a specific tap-length to improve

convergence rate. In [12], a variable tap-length algorithm with a pre-

calculated time constant is proposed. However, both algorithms were

initial attempts at enhancing the convergence behavior of the MSE

in an environment where the tap-length of the system is known. In

time-varying scenarios, where the system to be identified has changing

length, Riera-Palou et al. presented an algorithm which relies on the

concept of partitioned segments, the number of which must be care-

fully chosen dependent on application [13]. During learning in vari-

able tap-length adaptive filters, when the adaptation noise is low, the

“wandering” problem is encountered, that is, the tap-length wanders

within a range that is always greater than the optimum tap-length [14];

this issue is also addressed in Section 5.3 through careful selection of

the leakage factor for the FT algorithm. The algorithms in [16] were

presented to make the estimated tap-length converge to the optimum

tap-length in the mean. However, both algorithms suffer from slow

tap-length convergence in certain scenarios.

Gong and Cowan [17] introduce a low-complexity FT algorithm

based on instantaneous errors, which obtains improved convergence

properties. A convex combination structure of the FT algorithm has

been proposed in [56] to establish the optimal tap-length in high noise

conditions, in which two filters are updated simultaneously with dif-

ferent parameters, so that the overall filter can obtain both a rapid

convergence rate from the fast filter and a smooth curve for the steady-

state tap-length from the slow filter. In [18], a variable tap-length nat-

ural gradient blind equalization algorithm based on the FT algorithm

is proposed, which gives a good compromise between steady-state per-
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formance and computational complexity. A steady-state performance

analysis of the FT algorithm is provided in [57], which also gives a guide-

line for the parameter choice of the FT algorithm. As analyzed in [17],

the FT algorithm is more robust and has lower computational com-

plexity when compared with other methods. For expressing the analy-

sis clearly, when the initial tap-length of the adaptive filter is smaller

than the converged tap-length of the adaptive filter, it is termed as an

increasing tap-length (ITL) estimation; when the initial tap-length is

larger than the converged tap-length, it is named as a decreasing tap-

length (DTL) estimation. The next section therefore will give a brief

introduction of the FT algorithm.

5.2 The FT algorithm

The FT algorithm based on the tap-length adaptation and LMS-type

rule is designed to find the optimal tap-length of the adaptive filter. In

agreement with most approaches used to derive algorithms for adaptive

filtering the design problem is related to the optimization of a certain

criterion that is dependent on the tap-length. For convenience, the

LMS algorithm is formed within a system identification framework, in

which the unknown filter wo has an unknown tap-length M which is to

be identified. In this case, the desired signal d(i) is observed from the

model:

d(i) = uiw
o + v(i) (5.2.1)

where ui is a 1×M row input vector, v(i) indicates a zero mean additive

noise term uncorrelated with the input ui and i denotes the discrete

time index. All quantities are assumed to be real valued for convenience
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of development but extension to complex values is straightforward. It is

well known in [4], [5], [6] that the traditional LMS algorithm computes

wi via

wi = wi−1 + µuT
i (d(i)− uiwi−1) (5.2.2)

where µ is the step-size of the tap weight update.

In order to calculate the unknown tap-length of the adaptive filter,

variable tap-length schemes can be employed. But, as mentioned in [16],

MSE-based variable tap-length schemes can lead to under estimation

of the tap-length in certain applications. In order to overcome this

problem, a parameter ∆, which is a positive integer and sufficiently

large to avoid suboptimum tap-lengths, has been introduced in [16].

Suppose the estimated length of the variable tap-length adaptive filter

is a fixed value and denoted by N , which satisfies N > ∆. Thus, the

segmented error is constructed, as in [17] by,

e
(N)
N−∆(i) = d(i)− ui(1 : N −∆)wi−1(1 : N −∆) (5.2.3)

where ui(1 : N − ∆) and wi−1(1 : N − ∆) are vectors consisting of

the first N −∆ coefficients of ui and wi−1 respectively. In addition, let

e
(N)
N−∆(i) denote the realization of random quantity e

(N)
N−∆(i). As i →∞,

the steady-state segmented MSE is further defined by,

J
(N)
N−∆ = E

[
(e

(N)
N−∆(∞))2

]
. (5.2.4)

The cost function to search for the optimum tap-length is described as:

min{N |J (N)
N−∆ − J

(N)
N ≤ ε} (5.2.5)
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where ε is a predetermined small positive value selected according to

the requirements of the adaptive filter. The minimum N that satisfies

(5.2.5) is then chosen as the optimum tap-length for the adaptive filter.

A detailed description of this criterion and another similar criterion can

be found in [17].

Gradient-based methods can be used to estimate the optimum tap-

length on the basis of (5.2.5). However, the tap-length that should

be used in the adaptive filter structure must be an integer, and this

constrains the adaptation of the tap-length. Different approaches have

been applied to solve this problem [13], [14], [15], [16] , [17]. In [17], the

concept of “pseudo fractional tap-length”, denoted by lf (i), is utilized

to make instantaneous tap-length adaptation possible. The update of

the fractional tap-length is as follows:

lf (i + 1) = lf (i)− α + β · ηL(i)(i) (5.2.6)

where α is the leakage factor, β is the step-size for the fractional tap-

length update [17] and ηL(i)(i) is the difference between the segmented

MSE and the full MSE, given by,

ηL(i)(i) =
[
e
(L(i))
L(i)−∆(i)

]2

−
[
e
(L(i))
L(i) (i)

]2

(5.2.7)

where L(i) is constrained to be not less than Lmin with Lmin > ∆,

since any tap-length below it cannot be calculated in (5.2.7). One

should note that lf (i) is no longer constrained to be an integer, and the

tap-length L(i + 1), which will be used in the adaptation of the filter

weights in the next iteration, is obtained from the fractional tap-length
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lf (i) as (1.3.3):

L(i + 1) =





Rd (lf (n)) if |L(i)− lf (i + 1)| > ν

L(i) otherwise.
(5.2.8)

where Rd(·) rounds the embraced value to the nearest integer and the

parameter ν is a small integer. Similar to the step-size in the LMS

algorithm, a large parameter β will speed up the convergence rate of the

tap-length, but will result in a large fluctuation of the steady-state tap-

length. Once the tap-length fluctuates under the optimal tap-length,

extra error will be introduced. This is named as the under-modelling

phenomenon for VT algorithms. On the other hand, a small parameter

β can obtain a small fluctuation of the steady-state tap-length, but

leads to a slow convergence rate of both the tap-length and EMSE.

Compared with the leakage factor used in the LMS algorithm [58],

[59], [60], the objective of the leakage factor α introduced in the FT

algorithm is to prevent the adaptive tap-length from increasing to an

undesirable large value. A large α leads to a slow convenience rate

for the ITL estimation, but a small α may result in the “wandering”

problem for the DTL estimation.

Motivated by the FT algorithm, two new VTLMS algorithms are

therefore developed to obtain the improved performance over the orig-

inal FT algorithm.

5.3 A novel adaptive leakage FT algorithm

Through analysis provided in the following subsection, the converged

difference between the segmented MSE of a filter formed from a number
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of the initial coefficients of an adaptive filter, and the MSE of the

full adaptive filter, is confirmed as a function of the tap-length of the

adaptive filter to be monotonically non-increasing under the assumption

that the final element of the unknown filter is significantly different

from zero. This analysis also provides a systematic way to select the

key parameters in the FT learning algorithm, first proposed by Gong

and Cowan, to ensure convergence to permit calculation of the true tap-

length of the unknown system and motivates the need for adaptation

in the leakage factor during learning.

5.3.1 Analysis of the tap-length update function

As defined earlier, boldface letters are used to denote random vari-

ables. Let {d(i), ui, v(i)} denote realizations of the real random quan-

tities {d(i),ui,v(i)}. To simplify the analysis, three assumptions are

therefore made:

A1) The input u(i) is a zero-mean stationary white signal with vari-

ance σ2
u and the input vector ui is uncorrelated with uj for i 6= j.

A2) The background noise v(i) is also a zero-mean stationary white

signal with variance σ2
v and uncorrelated with vj for i 6= j and

u(j) for all j.

A3) The final optimum weight vector coefficient is sufficiently different

from zero, wo(M) 6= 0.

After the initial convergence, assuming close proximity to the opti-

mal adaptive filter length and small misadjustment, the converged tap-

length E[L(∞)] should be designed to vary within [M +∆−1, M +∆],

from which the true tap-length of the unknown system M can be found.
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When E[L(∞)] equals to M +∆−1, the fractional tap-length function

should be increased towards M + ∆, namely E[ηM+∆−1(∞)] > α/β.

On the other hand, when E[L(i)] = M + ∆, the fractional tap-length

should be decreased, namely E[ηM+∆−1(∞)] < α/β. Therefore, the

problem becomes how to select the parameters α and β in equation

(5.2.6) to satisfy the above requirements. In order to make the ap-

propriate selection of α/β, the performance of ηM+∆−1(i) should be

evaluated, which is,

ηM+∆−1(i) =
(
e

(M+∆−1)
M−1 (i)

)2

−
(
e

(M+∆−1)
M+∆−1 (i)

)2

(5.3.1)

Taking statistical expectation of both sides, expression (5.3.1) becomes

E[ηM+∆−1(i)] = E

[(
e

(M+∆−1)
M−1 (i)

)2
]
− E

[(
e

(M+∆−1)
M+∆−1 (i)

)2
]

(5.3.2)

Due to the assumption A2, the following expression is obtained

E[ηM+∆−1(i)] = A + σ2
uw

o(M)2 −B (5.3.3)

where wo(M) is the final coefficient of the tap weight in the unknown

system, B is formulated by,

B = E
[
(ui(1 : M + ∆− 1)[wo(1 : M + ∆− 1)−wi(1 : M + ∆− 1)])2]

(5.3.4)
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and A is constructed as,

A=E
[
(ui(1 : M − 1)[wo(1 : M − 1)−wi−1(1 : M − 1)])2]

−2wo(M)E [ui(M)ui(1 : M − 1)wi−1(1 : M − 1)]

+2wo(M)E [ui(M)ui(1 : M − 1)] wo(1 : M − 1) (5.3.5)

According to the assumption A1, ui(M) is uncorrelated with ui(1 :

M − 1) and wi−1(1 : M − 1). Thus, the result of the last two items on

the right side of equation (5.3.5) is zero. Therefore, as i →∞, equation

(5.3.3) becomes

E[ηM+∆−1(∞)]=J
(M+∆−1)
M−1, excess − J

(M+∆−1)
M+∆−1, excess + σ2

uw
o(M)2 (5.3.6)

where J
(M+∆−1)
M−1, excess and J

(M+∆−1)
M+∆−1, excess are used to indicate the steady-

state EMSE, namely,

J
(M+∆−1)
M−1, excess=E

[
(ui(1 : M − 1)w̄i(1 : M − 1))2

]
(5.3.7)

J
(M+∆−1)
M+∆−1, excess=E

[
(ui(1 : M + ∆− 1)w̄i(1 : M + ∆− 1))2] (5.3.8)

where the error vectors {w̄i(1 : M − 1), w̄i(1 : M + ∆− 1)} are defined

by

w̄i(1 : M − 1)=wo(1 : M − 1)−wi−1(1 : M − 1) (5.3.9)

w̄i(1 : M + ∆− 1)=wo(1 : M + ∆− 1)−wi−1(1 : M + ∆− 1). (5.3.10)
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For E[L(i)] = M+∆, after the same manipulations as in (5.3.2)-(5.3.6),

the converged E[ηM+∆(∞)] can be obtained as,

E[ηM+∆(∞)]=J
(M+∆)
M, excess − J

(M+∆)
M+∆, excess

=− [ui(M + 1 : M + ∆)wi(M + 1 : M + ∆)]2 (5.3.11)

the result of which is a small negative value. Therefore, given that the

leakage parameter is positive, E[ηM+∆−1(∞)] should be bigger than

zero, namely wo(M)2 > J
(M+∆−1)
M−1, excess − J

(M+∆−1)
M+∆−1, excess as required in

A3. Only when the ratio of the optimum parameters α/β is chosen

bigger than zero and smaller than the value of E[ηM+∆−1(∞)], can the

resulting steady-state tap-length of the FT algorithm be used to find

the true tap-length of the system.

However, in the FT algorithm E[L(∞)] may converge to a value

within (M, M +∆] when the parameters α and β are not chosen appro-

priately. Thus, the analysis for this case is developed. The expectation

of the MSE difference, E[ηL(∞)] is given by,

E[ηL(i)] = E

[(
e

(L)
L−∆(i)

)2
]
− E

[(
e

(L)
L (i)

)2
]

(5.3.12)

where M < L ≤ M + ∆. Applying the same manipulations as in the

earlier analysis, as i →∞, expression (5.3.10) becomes

E[ηL(∞)] = J
(L)
L−∆, excess − J

(L)
L, excess

+(M + ∆− L)||wo(L−∆ + 1 : M)||2. (5.3.13)
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The steady-state EMSE of the LMS algorithm in [6] is formulated as

JLMS, excess =
µLσ2

uσ
2
v

2− µLσ2
u

(5.3.14)

According to the stability condition of the LMS algorithm (see [4]), the

value of µLσ2
u is chosen significantly smaller than 2. As a result, the

EMSE of the LMS algorithm (5.3.14) becomes

JLMS, excess ≈ µLσ2
uσ

2
v

2
(5.3.15)

In order to facilitate the analysis, it is assumed that with a small µ

the difference between the segmented EMSE and the full length EMSE

is trivial compared to (M + ∆ − L)σ2
u||wo(L − ∆ + 1 : M)||2. Thus,

equation (5.3.13) is approximated as

E[ηL(∞)] ≈ (M + ∆− L)σ2
u||wo(L−∆ + 1 : M)||2 (5.3.16)

From the above analysis, it is clear that E[ηL(∞)] is a monotonic non-

increasing function with respect to the tap-length L, which is within

the range (M, M + ∆]. From the above analysis, when the value of

α/β is close to zero the converged E[L(∞)] will vary within [M +

∆ − 1,M + ∆], which can be utilized to calculate the true tap-length

of the unknown system. However, when α/β is chosen too small, as

observed in [14] the “wandering” problem occurs in the DTL estimation,

which results in a very slow convergence rate for the adaptation of

the fractional tap-length of the adaptive filter. Careful choice of α/β

is therefore crucial for successful operation of the FT algorithm, and

this motivates the work of the development of a new FT strategy with
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leakage factor adaptation to satisfy these requirements in both DTL

and ITL estimations. In the proposed algorithm, a variable leakage

factor based on the squared smoothed error is used to improve the

convergence behavior of the fractional tap-length as compared to the

original FT algorithm.

5.3.2 Proposed novel algorithm and performance analysis

Due to the analysis in the above subsection, a novel algorithm based

on the FT algorithm [17] is therefore proposed to control leakage factor

adaptation. The objective is to allow the leakage factor α(i) to be big

enough during the learning stage to avoid the “wandering” problem

but to approach the desired value in the steady-state to limit the con-

verged range of E[L(∞)]. To achieve this objective, the use of smoothed

errors [61], [62], [63] is introduced in the proposed algorithm, which ex-

ploits an estimate of e(i) to control leakage factor update. To facilitate

analysis, the full MSE e
(L(i))
L(i) (i) is replaced by e(i). Let {e(i)} denote

the realizations of {e(i)}. Such an estimate is a time average of e(i),

formulated as,

p(i) = ρp(i− 1) + (1− ρ)e(i) (5.3.17)

where ρ (0 ¿ ρ < 1) is a forgetting factor and the initial value is chosen

as p(0) = 0. The positive parameter ρ governs the time averaging

window to reduce the effect of the distant past and adapt to the current

statistics. In the steady-state, as the error autocorrelation approaches

zero, the resulting α(i) decreases to the desired value. Therefore, the



Section 5.3. A novel adaptive leakage FT algorithm 118

proposed leakage factor update is given by

α(i)=





p2(i)
p2(i)+δ

if α(i) < αmax

αmax otherwise
(5.3.18)

lf (i + 1)=lf (i)− α(i) + β · ηL(i)(i) (5.3.19)

where δ indicates a positive constant and ηL(i)(i) is the difference of the

errors as defined in (5.3.12). As a result of the averaging operation, the

instantaneous behaviour of the leakage factor will be smoother.

For convenience of analysis, the following assumption is established:

A4) In the steady-state, if the EMSE is much smaller than the MSE,

the full error signal e(i) is approximately equal to the noise signal

v(i) in the system identification case.

Since the squared norm of the smoothed errors p2(i) plays a key role

for the proposed algorithm, a steady-state performance analysis of this

term is firstly developed. From (5.3.17), the recursive expression of p(i)

can be formed as

p(i) = (1− ρ)
i∑

j=1

ρi−je(j) (5.3.20)

with p(0) = 0 and e(0) = 1. Let p(i) denote the realization of p(i).

The expected performance of the squared norm of p(i) can be obtained

E[p2(i)] = (1− ρ)2

i∑
j=1

i∑

k=1

Cj,k (5.3.21)

where Cj,k is defined as

C(j, k) = E
[
ρi−jρi−ke(j)e(k)

]
(5.3.22)
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The following analysis will only discuss the item in the steady-state, i.e.

j and k are both steady-state time indices. The MSE is given by [64]

E[e2(i)] = εmin + εex(i) (5.3.23)

where εmin indicates the minimum value of the MSE and εex(i) denotes

the EMSE. In the steady-state, when j = k, (5.3.22) therefore becomes

C(j, j) ≈ ρ2i−2j(εmin + εex(∞)) (5.3.24)

From assumption A4, with εex(∞) ¿ E[e2(∞)] and εmin = σ2
v , (5.3.24)

becomes

C(j, j) ≈ ρ2i−2jσ2
v (5.3.25)

where σ2
v is the variance of the noise signal. When j 6= k, the samples of

errors can be assumed uncorrelated, i.e., E[e(j)e(k)] = 0, which yields,

C(j, k) = 0 (5.3.26)

Substitute (5.3.25) and (5.3.26) into (5.3.21) to obtain

lim
i→∞

E[p2(∞)] ≈ (1− ρ)2

i∑
j=n

ρ2(i−j)σ2
v (5.3.27)

where n is the time index when the system is assumed in steady-state.

Since 0 ¿ ρ < 1 holds, expression (5.3.27) is simplified as

E[p2(∞)] =
1− ρ

1 + ρ
σ2

v (5.3.28)

Therefore, when δ À p2(i) is chosen as i → ∞, according to (5.3.18),
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the converged variable leakage factor is obtained

α(∞) ≈ (1− ρ)σ2
v

(1 + ρ)δ
(5.3.29)

In addition, when δ is smaller than the square of the instantaneous

errors and αmax is big enough, (5.3.18) leads to α(i + 1) = αmax during

the initial learning. Therefore, proper selection of ρ and δ enables the

variable leakage factor to become large initially but to converge to the

desired value in the steady-state.

It is clear that as compared with the original FT learning algorithm,

two additional update equations (5.3.17) and (5.3.18) are involved in

the proposed algorithm. The added complexity is therefore one divi-

sion, two additions and three multiplications per iteration.

The following simulation study is presented in order to verify the

advantage of the proposed algorithm.

5.3.3 Simulations

This section shows results of the computer simulations which compare

the performances of the original FT learning algorithm and the novel

algorithm. Experiments are performed in a system identification model.

Although the performance analysis is studied for the stationary envi-

ronment, the simulations are carried out in the nonstationary environ-

ment, where the system weight vector abruptly changes at a certain

time. The input signal u(i) is a zero-mean white-noise Gaussian se-

quence with σ2
u = 1 and the background noise is also a zero mean

white-noise Gaussian sequence with σ2
v = 0.001. The coefficients of

the adaptive filter were initialized with zeros. Simulated results are
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Figure 5.1. Two unknown systems: a) W1; b) W2.

obtained by averaging 200 independent runs.

There are two unknown systems W1 and W2 adopted to be tested.

The coefficients of these filters are chosen from a zero-mean uniformly

distributed random sequence and the tap-lengths are 20 and 10 re-

spectively, shown in Figures 5.1(a) and 5.1(b). To satisfy A3, both

variances of the final coefficients W1(M)2 and W2(M)2 are always big-

ger than 0.01. Initially, the unknown system is assumed to be W1, a 20

tap-length filter; then after 2000 instants, it is replaced by W2, which

has a 10 tap-length; then after 4000 instants, W1 is recalled to sub-

stitute W2 to be the unknown filter. The choice of parameters follows

the guidelines of the corresponding publications [17], [18]. For both

algorithms, the parameter ∆ = 6 is selected and the initial tap-length

L(0) equals to the minimum tap-length Lmin = ∆ + 1 = 7. And the

step-size β for the fractional tap-length update is set as unity. It is well
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known that, for the case of uncorrelated Gaussian data, the resulting

bound of the step-size is obtained as follows [65]:

0 < µ <
2

3Tr(Ru)
(5.3.30)

In this example, the step-size of the adaptive filter is therefore chosen

as µ = 0.005, which not only ensures the stability of LMS but satisfies

the condition wo(M)2 > J
(M+∆−1)
M−1, excess − J

(M+∆−1)
M+∆−1, excess as described in

Subsection 5.3.1. The leakage factors of the FT algorithm are chosen

as 0.1 and 0.0005 respectively. For the proposed algorithm, αmax is

chosen as 0.1 and δ = 0.01 is used to control the adaptive leakage

factor. And the smoothing factor of the error is chosen as ρ = 0.99,

which results in the converged smoothed MSE of the novel algorithm

having approximately the value of 0.005σ2
v , as in equation (5.3.19).

Figure 5.2(a) illustrates the evolution curves of the fractional tap-

length adaptation. Figure 5.2(b) plots the learning curve of the adap-

tive leakage factor. According to equations (5.3.16) and (5.3.18), the

converged leakage factor can be estimated and the value is approxi-

mately 0.0005. As expected, Figure 5.2(a) shows that the proposed

scheme not only avoids “wandering” in high value areas, which the FT

algorithm with α = 0.0005 encounters during the period [2001, 4000],

but also obtains an improvement that its fractional tap-length better

calculates the true tap-length as compared to the FT algorithm with

α = 0.1 for example during periods [1000, 2000], [2500, 4000] and

[5000, 6000].

In addition, it gives a good compromise for the fractional tap-length

convergence rate in both the ITL estimation and the DTL estimation.
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Figure 5.2. Learning curves of the FT algorithm and the proposed
algorithm for Gaussian data by averaging 200 Monte Carlo runs in 30dB
SNR: a) fractional tap-length, b) leakage factor.

The learning curve in Figure 5.2(b) shows the fluctuation of the variable

leakage factor in the time varying scenario which confirms the tracking

ability of the variable leakage factor. Therefore, it is clear that when

the value of the leakage factor of the novel scheme for the true tap-

length is located in the approximate range (0.0005, 0.1), the proposed

algorithm can be utilized to search for the true tap-length without the

“wandering” problem.

5.4 A new VT algorithm with second and fourth order statistics

Several VTLMS algorithms have been proposed in recent years [13],

[14], [15], [16], [54], [56], [66]; a summary of these works is given in [17].

All the above work on the VTLMS algorithms on the update of both the

adaptive filter coefficients and the tap-length of the LMS algorithm are
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based on second order statistics (SOS). It is well known that algorithms

based on higher order statistics (HOS) potentially work more efficiently

for sub-Gaussian noise environments since they utilize the information

contained in higher order moments, which yields a better approximation

of the actual distribution of the signal. A typical algorithm is the

least mean fourth (LMF) algorithm, which has been proved to have a

faster convergence rate as compared with the LMS algorithm [67] in

sub-Gaussian noise environments. However, it suffers from a stability

condition. If the LMF algorithm is initialized far from the optimal filter

coefficients, it may be unstable [68].

Motivated by the FT algorithm, the next subsection will describe a

new VTLMS algorithm, in which the update of the tap-length is con-

trolled by fourth order statistics whilst the coefficient update retains

as conventional LMS form. Such an approach utilizes the good proper-

ties of both SOS and HOS, i.e., good stability and quick convergence.

As will be shown by simulations, the proposed approach has a faster

convergence rate as compared with the FT variable tap-length LMS

algorithm in sub-Gaussian noise environments.

5.4.1 Proposed algorithm

It is clear to see from (5.2.6) that in the FT algorithm, the tap-length

of the adaptive filter is updated based on the information provided

by SOS, i.e., squared value of instantaneous errors, and no HOS in-

formation is utilized. In the proposed algorithm, the update of the

coefficients of the adaptive filters still utilizes the SOS, i.e., the LMS

algorithm, to have a good stability property, but the update of the

tap-length is driven by HOS to obtain a faster convergence rate. The
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update of the tap-length of the proposed algorithm is as follows

lf (i + 1) = (lf (i)− α)− β
[
(e

(L(i))
L(i) (i))4 − (e

(L(i))
L(i)−∆(i))4

]
(5.4.1)

It is clear to see that the update equation (5.4.1) is very similar to

(5.2.6), and the fourth moments of the instantaneous errors are utilized.

In order to speed up the convergence rate of the tap weight adaptation

in the proposed algorithm, the step-size is made variable rather than

fixed, according to the range of µ described in [14]:

µ(i) = µ′/
[
(L(i) + 2)σ2

u

]
(5.4.2)

where µ′ is a constant and σ2
u is the variance of the input. The coef-

ficients of the adaptive filter are then updated according to the LMS

algorithm by using L(i) and µ(i). As analyzed in [57] the parameter

β controls the adaptation process of the variable tap-length. Similar

to that in [17] the tap-length L(i + 1) which will be used in the adap-

tation of the filter weights in the LMS algorithm is obtained from the

fractional tap-length lf (i + 1) according to (5.4.1), and the step-size

is chosen according to (5.4.2), followed by the update of the adaptive

filter coefficients according to the LMS algorithm.

By decomposing β
[
(e

(L(i))
L(i) (i))4 − (e

(L(i))
L(i)−∆(i))4

]
in expressing (5.4.1)

into β
[
(e

(L(i))
L(i) (i))2 + (e

(L(i))
L(i)−∆(i))2

] [
(e

(L(i))
L(i) (i))2 − (e

(L(i))
L(i)−∆(i))2

]
, one can

find that the proposed algorithm can be deemed as the FT algorithm

with a variable parameter β
[
(e

(L(i))
L(i) (i))2 + (e

(L(i))
L(i)−∆(i))2

]
. As compared

with a fixed parameter β, it is large initially and small in the steady-

state. Thus as compared with the FT algorithm, the proposed al-

gorithm will have a smaller variance of the tap-length but a similar
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convergence rate of the tap-length, which results in a quick conver-

gence rate of the EMSE, but also reduces or avoids the under-modeling

phenomenon. As will also be shown in the simulations in the next sub-

section, the proposed algorithm has a better performance as compared

with the FT algorithm in sub-Gaussian noise environments.

5.4.2 Simulations

Two simulations are performed in this section to show the advantages

of the proposed algorithm as compared with the FT algorithm in sub-

Gaussian noise environments. The setup of the first simulation is as

follows. The impulse response sequence of the unknown filter is a ran-

dom sequence with zero mean and variance 0.01. The tap-length Lopt

is set to 200. The input signal is a white Gaussian sequence with zero

mean and unit variance. The noise signal is a white uniformly dis-

tributed sequence with zero mean and scaled to make the SNR 0dB.

The parameter ν in (5.2.8) is set to 2. The step size µ′ in (5.4.2) is set

to 0.5. The leakage parameter α is set to 0.01, and ∆ is set to 20.

To show the advantages of the proposed algorithm, the original

FT algorithm is performed with different values β = 1 and β = 5

respectively. The parameter β for the proposed algorithm is set to 0.2.

In Figure 5.3, one run of the simulation is plotted according to the

above set up. It is clear to see in Figure 1(a) that the tap-length of

the proposed algorithm has a similar convergence rate as that of the

FT algorithm with a parameter β = 5, but has a much smaller steady

state variance. For the FT algorithm with a large parameter β = 5,

the under-modeling phenomenon appears, which results in an increase

of the EMSE, as can be seen in Figure 1(b). The proposed algorithm
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Figure 5.3. The evolution curves of the tap-length and EMSE for
both the proposed algorithm and the FT algorithm with a uniformly
distributed noise and SNR=0dB.
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has both a quicker convergence of the tap-length and the EMSE as

compared with that of the FT algorithm with β = 1.

Figure 5.4 shows the evolution curves of the EMSE of both algo-

rithms by averaging the results of 100 independent runs. It is clear to

see from this figure that the proposed algorithm has a similar conver-

gence rate of the EMSE with that of the FT algorithm with β = 5, but

approximately 8dB EMSE improvement. It has a similar steady-state

EMSE with that of the FT algorithm with β = 1 but a quicker conver-

gence. Based on the above simulation results it can be concluded that

the proposed algorithm outperforms the FT algorithm in this uniform

distributed noise environment.

In the second simulation, the set up is the same as that of the first

simulation, but the noise is a binary sequence and scaled to make the

SNR 0dB. Similar to that of the first simulation, Figure 5.5 shows the

evolution curves of the tap-length and EMSE obtained from a single

run of both the proposed algorithm and the FT algorithm. In Figure

5.6, the evolution curves of both algorithms are obtained by averaging

the results of 100 independent runs. Again, it is clear to see from both

Figure 5.5 and Figure 5.6 that the proposed algorithm outperforms the

FT algorithm for the binary noise environment.

5.5 Conclusions

This chapter presented a novel adaptive leakage factor variable tap-

length learning algorithm based on the FT algorithm together with an

analysis of the converged difference between the segmented MSE of a

filter formed from a number of initial coefficients of an adaptive fil-

ter, and the MSE of the full adaptive filter, which motivated the novel
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sequence and SNR=0dB.
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scheme. The simulation results have confirmed the advantages of the

presented algorithm over the original FT algorithm in terms of the per-

formance behavior of the fractional tap-length to ensure convergence

to permit calculation of the true tap-length in both the ITL estimation

and DTL estimation cases. Although this chapter focuses on the un-

correlated white-noise input, further improvements can be expected by

extending it to general coloured input. In addition, a new VT adaptive

algorithm based on the FT method is also proposed in this chapter.

In this algorithm, the update of the tap-length is controlled by fourth

order statistics. As have been shown by simulation results the proposed

algorithm has a better performance as compared with the original FT

algorithm in sub-Gaussian noise environments, and can be potentially

utilized in many applications. The work of this chapter provided a

deeper understanding of VTLMS algorithms based on the FT method,

which motivates the further study of tap-length adjustment within dis-

tributed adaptive estimation.



Chapter 6

VARIABLE LENGTH

FILTERING WITHIN

INCREMENTAL LEARNING

ALGORITHMS FOR

DISTRIBUTED ADAPTIVE

ESTIMATION

6.1 Introduction

Distributed solutions, only exploiting local data exchanges and com-

munications between immediate neighboring nodes, have been pro-

posed for adaptive networks [1] and [27], with the purpose of reducing

processing and communications requirements as compared to central-

ized solutions. The applications of such distributed adaptive networks

range from sensor networks to environmental monitoring and factory

instrumentation [8] and [9]. However, in many applications of such

distributed adaptive estimation the tap-length of the adaptive filters

131
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is assumed fixed, which is not appropriate for certain situations where

the optimal tap-length is unknown or variable.

The concept of tap-length adaptation is therefore introduced in the

design of the structure of the adaptive filter. With low-complexity and

robustness, the FT learning algorithm based on squared instantaneous

errors has been proposed in [17] to obtain improved convergence per-

formance, as compared with other methods. The steady-state perfor-

mance analysis of the FT algorithm is provided in [17] and [18], which

also provides a guideline for parameter selection in the FT algorithm.

Motivated by both the ideas of distributed adaptive estimation

and variable tap-length, this chapter proposes an adaptive learning

algorithm which solves the parameter estimation problem in a dis-

tributed network where the tap-length of the optimal filter is not known.

The steady-state performance of the new algorithm for Gaussian data

is studied using weighted spatial-temporal energy conservation argu-

ments [1], [21]. In particular, theoretical expressions are derived for

the MSD, EMSE and MSE of each node within the network. Simula-

tion studies are presented to confirm the convergence properties of the

scheme and to verify the theoretical results.

6.2 Estimation problem and formulation

Consider an N−node network, where data are observed and collected to

seek an unknown system vector wo, whose tap weights and tap-length

are desirable to be estimated. Note that the adaptation rules can be

decoupled into the tap weights and tap-length adjustments respectively,

which means that the selection of one does not explicitly depend on the

other. Assuming the tap-length is L, which is estimated by the tap-
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length search solution that will be discussed later, each node k obtains

the time observations {dk(i), uk,i} of zero-mean complex spatial data

{dk, uk} at time instant i. Each dk is a scalar value and each uk is a

1×L row regression vector. In order to seek the unknown coefficients of

w, which is a 1×L vector, the linear minimum mean-square estimation

problem is formulated as:

min
w

J
(L)
L (w) and J

(L)
L (w) = E‖d−Uw‖2 (6.2.1)

where two global matrices of the desired response and regression data

are defined by

d,col{d1, d2, . . . , dN}, (N × 1) (6.2.2)

U,col{u1, u2, . . . , uN}, (N × L). (6.2.3)

Let wi be an estimate for wo at time instant i and ψk(i) be a local

estimate for wo at node k at time instant i. The incremental steepest-

descent solution [1] is introduced to estimate the optimal solution wo by

iterating ψ0(i) through an incremental network in the following manner:

ψk(i) = ψk−1(i) + µku
∗
k,i(dk(i)− uk,iwi−1) k = 1, . . . N (6.2.4)

which begins with the setup of the initial condition ψ0(i) = wi−1 at

node 1.

With the assumption of the tap-length L, the segmented cost func-

tion is defined

J
(L)
M (w) , E‖d−UMwM‖2 (6.2.5)

where 1 ≤ M ≤ L, wM and UM consist of the initial M elements of w
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and the initial M column vectors of U, respectively, as

wM ,col{w(1), . . . , w(M)}, (1×M) (6.2.6)

UM ,col{u1(1 : M), . . . , uN(1 : M)}, (N ×M). (6.2.7)

Thus, the minimum difference of mean-square errors estimation prob-

lem is posed to seek the optimal tap-length Lo for the adaptive filters

min
{

L
∣∣J (L)

L−4(w)− J
(L)
L (w) ≤ ε

}
(6.2.8)

where ε, predetermined by system requirements, is a small positive

value and 4 is an integer value to avoid the suboptimum tap-lengths.

Motivated by distributed adaptive estimation, the segment cost

function and full cost function can be decomposed as

J
(L)
L−4(w)=

N∑

k=1

J
(L)
k,L−4(w) (6.2.9)

J
(L)
L (w)=

N∑

k=1

J
(L)
k,L(w) (6.2.10)

where

Jk,L−4(w)=E|dk − uk(1 : L−4)w(1 : L−4)|2 (6.2.11)

Jk,L(w)=E|dk − ukw|2. (6.2.12)

Therefore, (6.2.8) for distributed adaptive estimation is formulated as

min
{

L
∣∣

N∑

k=1

J
(L)
k,L−4(w)−

N∑

k=1

J
(L)
k,L(w) ≤ ε

}
(6.2.13)

Such results lead to the fractional tap-length adaptation function (5.2.7)
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being rewritten as

Lf (i + 1) = (Lf (i)− α) + β ·
N∑

k=1

(
e
(L)
k,L(i)−4(wi−1)

)2

−
(
e
(L)
k,L(i)(wi−1)

)2

(6.2.14)

where

e
(Lk(i))
k,Lk(i)−∆(wi−1) = dk(i)− uk,i(1 : Lk(i)−∆)wi−1(1 : Lk(i)−∆)(6.2.15)

e
(Lk(i))
k,Lk(i)(wi−1) = dk(i)− uk,iwi−1 (6.2.16)

With proper choice of α and β, such a distributed algorithm can obtain

L(i) → Lo as i → ∞ for any initial condition, where Lo is an optimal

tap-length and always larger than the true tap-length of wo. Let `k,f (i)

denote the local estimate of the fractional tap-length at node k at time

i. The parameters α and β can be decomposed to α =
∑N

k=1 αk and

β =
∑N

k=1 βk respectively, where αk indicates the local leakage factor

and βk denotes the local step-size for `k,f (i) adaptation at node k. In

the defined cycle, node k received the estimated fractional tap-length

`k−1,f (i) from the node k− 1. At each time instant i, it starts with the

initial condition `0,f (i) = Lf (i) at node 1 (Lf (i) is the current global

estimation). At the end of the cycle, the local estimation `N,f (i) is

employed as the global estimation Lf (i + 1) for the next time i + 1

and the integer tap-length L(i + 1) is also evaluated by (5.2.8). Such

implementation of a centralized solution for tap-length adaptation is

described as follows:
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Table 6.1. Pseudo-code implementation of centralized solution.

For each time instant i ≥ 0 repeat:

`0,f (i) = Lf (i)

For k=1, . . . N

`k,f (i) = `k−1,f (i)− αk + βk · γk(wi−1)

end

Lf (i + 1) = `N,f (i)

L(i + 1) =

{
Rd [Lf (i + 1)] if |L(i)− Lf (i + 1)| ≥ ν

L(i) otherwise

where γk(wi−1) =
(
e
(L(i))
k,L(i)−4(wi−1)

)2

−
(
e
(L(i))
k,L(i)(wi−1)

)2

where it always holds that `k,f (i) ≥ Lmin, which is the minimum tap-

length. This method also requires all nodes to access the global in-

formation wi−1 and only adapts the integer tap-length at the end of a

cycle. A fully distributed solution can be achieved by evaluating the

segmented mean-square error and mean-square error from its local esti-

mate ψ
(i)
k−1. This approach leads to distributed adaptation for both tap

weights and tap-length. For the estimation of tap weights, a distributed

version of algorithm of (6.2.4) is presented in [1] as

ψk(i) = ψk−1(i) + µku
∗
k,i(dk(i)− uk,iψk−1(i)) k = 1, . . . N (6.2.17)

Let Lk(i) denote the local integer estimate of Lo at node k at time i.

A distributed solution for tap-length adaptation is summarized below:
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Table 6.2. Pseudo-code implementation of distributed solution.

For each time instant i ≥ 0 repeat:

`0,f (i) = Lf (i)

For k=1, . . . N

`k,f (i) = `k−1,f (i)− αk + βk · γk(ψ
(i)
k−1)

Lk+1(i) =

{
Rd [`k(i)] if |Lk(i)− `k,f (i)| ≥ νk

Lk(i) otherwise

end

Lf (i + 1) = `N,f (i)

where γk(ψ
(i)
k−1) =

(
e
(Lk(i))
k,Lk(i)−4(ψ

(i)
k−1)

)2

−
(
e
(Lk(i))
k,Lk(i)(ψ

(i)
k−1)

)2

where

e
(Lk(i))
k,Lk(i)−∆(ψ(i)

k−1) = dk(i)− uk,i(1 : Lk(i)−∆)ψ(i)
k−1(1 : Lk(i)−∆)(6.2.18)

e
(Lk(i))
k,Lk(i)(ψ

(i)
k−1) = dk(i)− uk,iψ

(i)
k−1 (6.2.19)

Figure 6.1 illustrates that in optimization theory the distributed solu-

tion can outperform the centralized solution. The simulated curves

are obtained by averaging 500 independent Monte Carlo runs with

µk = 0.05. The network utilized in the experiment has 12 nodes

and seeks an unknown filter with variable tap-length M = 10 for

i ≥ 140 otherwise M = 19. The input signal is Gaussian data with

Ru,k = I and the background noise is zero mean real white Gaussian

with σ2
v,k = 0.001. For both algorithms, the selection of the parameters

is set as: νk = ν = 1, αk = 0.03, βk = 1, 4 = 4 and Lmin = Lf (0) = 6;

such selection follows the rules in [17], [18]. Note that, in theory, the

upper bound for the value of fractional tap-length is not necessary to

be chosen. However, since the length estimation uses instantaneous
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Figure 6.1. Evolution curves for the distributed solution and the
centralized solution at node 1: a) EMSE performance b) Fractional
tap-length performance.

errors rather than averaged errors, the fractional tap-length may be,

at certain time instants, at an undesired large value, which leads in-

stantaneously to high computational and memory cost. Therefore, in

practice, the upper bound is required to avoid such a situation. The

performance of the distributed solution for an incremental network is

studied in the subsequent section.

6.3 Performance analysis

In this section, weighted spatial-temporal energy conservation argu-

ments [1] are used to evaluate the steady-state performance of the dis-

tributed algorithm. The following assumptions are utilized

A1) In order to simplify the analysis, the estimated tap-length is as-
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sumed to be fixed in the steady-state.

A2) The unknown system vector wo and {dk(i),uk,i} construct:

dk(i) = uk,iw
o + vk(i) (6.3.1)

where vk(i) is a temporally and spatially white noise sequence

with variance σ2
v,k and independent of dl(j) for k 6= l or i 6= j and

ul,j for all l and j;

A3) uk,i is spatially and temporally independent, namely uk,i is inde-

pendent of ul,i and uk,j for k 6= l or i 6= j

The following local error signals defined as in [1] are introduced to

perform the evaluation:

ψ̃
(i)
k−1 , wo −ψ

(i)
k−1, ψ̃

(i)
k , wo −ψ

(i)
k (6.3.2)

ea,k(i) , uk,iψ̃
(i)
k−1, ep,k(i) , uk,iψ̃

(i)
k (6.3.3)

Introduce further the weighted error signals:

eΣk
p,k(i) , uk,iΣkψ̃

(i)
k , eΣk

a,k(i) , uk,iΣkψ̃
(i)
k−1

(6.3.4)

where Σk is an arbitrary Hermitian positive-definite weighting matrix

at each node k. Note that the output error ek(i) = ea,k(i) + vk(i). As

a result, the steady-state quantities for each node are formed as

ηk ,E‖ψ̃(∞)
k−1‖2 (MSD) (6.3.5)

ζk ,E‖ψ̃(∞)
k−1‖2

Ru,k
(EMSE) (6.3.6)

ξk ,ζk + σ2
v,k (MSE). (6.3.7)
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where the weighted norm notation ‖x‖2
Σ = x∗Σx is used with a vector

x and Hermitian positive-definite matrix Σ > 0.

As presented in [1], the spatial-temporal energy conservation rela-

tion between two successive nodes is given by

E‖ψ̃k‖2
Σk

= E‖ψ̃k−1‖2
Σ′k

+ µ2
kσ

2
v,kE‖uk‖2

Σk
(6.3.8)

where Σ′
k is given by

Σ′
k = Σk − µkE(u∗kukΣk + Σku

∗
kuk) + µ2

kE(‖uk‖2
Σk

u∗kuk) . (6.3.9)

Assume that the regressors are from a circular Gaussian distribution

and introduce the eigendecomposition Ru,k = QkΛkQ
∗
k, where Qk is

unitary and Λk is a diagonal matrix with the eigenvalues of Ru,k. The

transformed quantities are defined as

ψ̄k ,Q∗
kψ̃k, ψ̄k−1 , Q∗

kψ̃k−1, ūk , ukQk

Σ̄k ,Q∗
kΣkQk, Σ̄′

k , Q∗
kΣ̄kQk

Since Qk is unitary, it is easy to derive E‖ψ̃k−1‖2
Σk

= E‖ψ̄k−1‖2
Σ̄k

and

E‖uk‖2
Σ = E‖ūk‖2

Σ̄
. Let Tr{A} denote the trace of a matrix A. Using

the results for Gaussian data [6], the transformed expressions from

(6.3.8) and (6.3.9) are obtained

E‖ψ̄k‖2
Σ̄k

= E‖ψ̄k−1‖2
Σ̄′k

+ µ2
kσ

2
v,kTr(ΛkΣ̄k) (6.3.10)
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where Σ̄′
k is given by

Σ̄′
k = Σ̄k − µkXk + µ2

kYk (6.3.11)

where Xk = ΛkΣ̄k +Σ̄kΛk and Yk = ΛkTr(Σ̄kΛk)+τΛkΣ̄kΛk with τ = 1

for complex data and τ = 2 for real data.

A different method for the analysis as compared with that in [1] is

therefore used for originality, the M2 × 1 vectors as in [6] are therefore

introduced

δk = vec{Σ̄k} , δ′k = vec{Σ̄′
k} and λk = vec{Λk} (6.3.12)

to develop expressions (6.3.10) and (6.3.11). One can exploit the fol-

lowing useful property for the vec{·} notation when working with Kro-

necker products as in Chapter 2 and 3: for any matrices {P, Σ, Q} of

compatible dimensions, it holds that

vec{PΣQ} = (QT ⊗ P )vec{Σ}. (6.3.13)

The choice of Σk can make both Σ̄k and Σ̄′
k become diagonal in (6.3.11).

Applying the vec{·} operation to both sides of (6.3.11), a linear relation

between the corresponding vectors {δ′k, δk} is obtained, namely,

δ′k = Fkδk (6.3.14)

where Fk is an M2 ×M2 matrix and given by

Fk = I − 2µk(I ⊗ Λk) + µ2
k(τ(Λk ⊗ Λk) + λkλ

T
k ). (6.3.15)
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Therefore, expression (6.3.10) becomes

E‖ψ̄(i)
k ‖2

vec{δk} = E‖ψ̄(i)
k−1‖2

vec{Fkδk} + µ2
kσ

2
v,k(λ

T
k δk) (6.3.16)

where the time index i is recalled for clarity. For simplicity of notation,

the vec{·} notation is dropped from the subscripts in (6.3.16):

E‖ψ̄(i)
k ‖2

δk
= E‖ψ̄(i)

k−1‖2
Fkδk

+ µ2
kσ

2
v,k(λ

T
k δk) . (6.3.17)

Let ρk = ψ̄
(∞)
k , then

E‖ρk‖2
δk

= E‖ρk−1‖2
Fkδk

+ µ2
kσ

2
v,k(λ

T δk). (6.3.18)

By iterating (6.3.18) over one cycle, N coupled equations are obtained:

E‖ρ1‖2
δ1

=E‖ρN‖2
F1δ1

+ g1δ1

E‖ρ2‖2
δ2

=E‖ρ1‖2
F2δ2

+ g2δ2

...

E‖ρk−1‖2
δk−1

=E‖ρk−2‖2
Fk−1δk−1

+ gk−1δk−1 (6.3.19)

E‖ρk‖2
δk

=E‖ρk−1‖2
Fkδk

+ gkδk (6.3.20)

...

E‖ρN‖2
δN

=E‖ρN−1‖2
FN δN

+ gNδN

with gk = µ2
kσ

2
v,kλ

T . Choose the free parameters δk and δk−1 such

that δk−1 = Fkδk and combine (6.3.19) and (6.3.20), then iterate this
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procedure across the cycle to obtain

E‖ρk−1‖2
δk−1

=E‖ρk−1‖2
Fk···FNF1···Fk−1δk−1

+gkFk+1 · · ·FNF1 · · ·Fk−1δk−1

+gk+1Fk+2 · · ·FNF1 · · ·Fk−1δk−1

· · ·+ gk−2Fk−1δk−1 + gk−1δk−1. (6.3.21)

Let

Πk−1,l=Fk+l−1 · · ·FNF1 · · ·Fk−1, l = 1, 2, . . . , N (6.3.22)

ak−1=gkΠk−1,2 + · · ·+ gk−2Πk−1,N + gk−1 (6.3.23)

then

E‖ρk−1‖2
(I−Πk−1,1)δk−1

= ak−1δk−1 . (6.3.24)

Since the weight vector δk−1 in (6.3.24) is selected arbitrarily due to

δk−1 = vecΣk−1, choosing δk−1 = (I − Πk−1,1)
−1q or δk−1 = (I −

Πk−1,1)
−1λk results in the expressions for the steady-state MSD, EMSE

and MSE at node k:

ηk =E‖ρk−1‖2
q = ak−1(I − Πk−1,1)

−1q (MSD) (6.3.25)

ζk =E‖ρk−1‖2
λk

= ak−1(I − Πk−1,1)
−1λk (EMSE) (6.3.26)

ξk =ζk + σ2
v,k (MSE) (6.3.27)

where q = vec{I} and λk = vec{Λk}. In the subsequent section, simu-

lation study verifies the theoretical expressions (6.3.25)-(6.3.27).
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Figure 6.2. Node profile throughout the network: a) Input power; b)
Noise power; c) Correlation index; d) SNR.

6.4 Simulations

A system identification model is used in this section in order to demon-

strate the performance of the proposed algorithm, whose theoretical

performance and computer results are compared in the simulations.

Although the analysis is developed based on the independence assump-

tions, regressors with shift structure in all the simulations are used in

order to approach real-time scenarios. All simulated results are aver-

aged by using 100 independent Monte Carlo runs to generate the per-

formance curves. The steady-state curves (MSD, EMSE and MSE) are

obtained by averaging the last 5000 instantaneous samples of 50, 000

iterations. Consider a network with 20 nodes to seek an unknown fil-

ter with M = 10 taps, whose coefficients are selected from a uniform

distributed sequence. A correlated Gaussian signal is used to generate
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Figure 6.3. Fractional tap-length versus node k - µk = 0.02.

the inputs at each node k which satisfies the recursion

uk(i) = akuk(i− 1) + bk · ck(i). (6.4.1)

Expression (6.4.1) produces a first-order autoregressive (AR) process

with a pole at ak; ck is a white, zero-mean, Gaussian random sequence

with unity variance, ak ∈ (0, 1] and bk =
√

σ2
u,k · (1− a2

k). In this way,

the covariance matrix Ru,k of the regressor uk,i is an M ×M Toeplitz

matrix with entries rk(m) = σ2
u,ka

|m|
k , m = 0, . . . M−1 with σ2

u,k ∈ (0, 1].

The background noise has variance σ2
v,k ∈ (0, 0.1] across the network.

The statistical profiles are illustrated in Figure 6.2. For the proposed

algorithm, the selection of parameters is νk = 1, αk = 0.05, βk = 1,

4 = 3, and Lmin = Lf (0) = 4. In addition, the initial global estimate of

the unknown system is assumed as an Lmin×1 column vector with zero
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Figure 6.4. Steady-state MSD versus node k - µk = 0.02.

elements. It is expected that the use of large step-sizes usually does not

satisfy the simplifying assumptions adopted in the analysis, which will

lead to large deviations between theory and simulation. Therefore, the

step-size is chosen as a small value in all simulations for comparison.

In the first example, the step-size of the proposed algorithm is se-

lected as µk = 0.02, which leads to a good quality for the theoretical

model. Figure 6.3 illustrates the simulated results of the converged frac-

tional tap-length throughout the network, with a deviation of approx-

imate ±0.26 at 12.02. Therefore, as it is expected, in the steady-state

the proposed algorithm can obtain a good estimate of the tap-length.

One can see that the steady-state results, both in theory and in ex-

periment, are plotted for comparison in Figures 6.4-6.7, which show

that they have a good match. Figures 6.4-6.6 describe the steady-state

performances of interest, namely, MSD, EMSE and MSE, as a function
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Figure 6.5. Steady-state EMSE versus node k - µk = 0.02.

of the node k using a particular choice of the step size µk = 0.02. The

MSD shown in Figure 6.3 is roughly flat over the network, with a de-

viation about 0.2dB between theory and simulation. Figure 6.4 shows

that the EMSE is more sensitive to the node profiles. The selection of

parameter allows the proposed algorithm to have a good estimate for wo

in the steady-state, which means ek,Lk(∞)(∞) is close to the background

noise. In Figure 6.4, one can therefore see that the MSE curve is similar

to the noise power. It is clearly shown in these curves how node profiles

affect the filters in the network, which provides a good guideline for the

setup of the step-size µk at certain nodes in the network. Therefore, as

a result of the proper selection of the step-size at each node, a perfor-

mance equalization in the EMSE is expected to be achieved throughout

the network. In the second example, the steady-state MSE is depicted

as a function of the step-size in the range [0.0008, 0.04] for a particular
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Figure 6.6. Steady-state MSE versus node k - µk = 0.02.
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Figure 6.7. Steady-state MSD versus step-size at node 8.
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Figure 6.8. Steady-state EMSE versus step-size at node 8.

node k = 8 in Figure 6.9, which shows a good match between simu-

lated results and theoretical results. As it is expected, the decrease of

step-size leads to the improvement of the steady-state performance and

reduces the deviation between theory and simulation. This is because

small step-sizes strongly support the simplifying assumptions used in

the analysis. Similar results for MSD and EMSE can be obtained and

are therefore shown in Figures 6.7-6.8.

6.5 Conclusions

Several research studies appear in the literature to develop distributed

estimation algorithms based on an incremental adaptive network. How-

ever, the adaptive filters involved in such algorithms are assumed to

have fixed structures, namely, the tap-length is known due to the sys-
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Figure 6.9. Steady-state MSE versus step-size at node 8.

tem requirement. In a more general vain, variable tap-length filters are

more flexible in terms of an unknown vector estimation, where both

tap weights and tap-length are unknown or variable. In this chapter,

a new algorithm therefore has been proposed for structure adaptation

of adaptive filters for an incremental distributed estimation. Under the

assumptions A1, A2 and A3, weighted spatial-temporal energy con-

servation arguments are used to analyze steady-state mean square per-

formance in the Gaussian case. Numerical simulations show that there

is a good match between simulated results and theoretical results.



Chapter 7

CONCLUSION

This final chapter presents a summary of the work and contributions in

the previous chapters of this thesis. In addition, overall conclusions of

this study and recommendations for future research are also provided.

7.1 Summary of the thesis

This thesis concerns distributed adaptive estimation, which is posed

to resolve the problem of using adaptive filters scattered in a physical

area to estimate some parameters of interests. Compared to tradi-

tional methods, such as centralized and consensus schemes, distributed

adaptive strategies have lower requirements of communication and com-

plexity, and could therefore find a wide field of applications. Different

adaptive methods employed at node filters, accompanied with different

cooperation strategies, lead to various distributed adaptive schemes

with various complexities. Thus, new approaches are required to im-

prove the distributed adaptive estimation within different topological

networks.

In this thesis, a background introduction to adaptive techniques, i.e.

the least mean square algorithm (LMS), the affine projection algorithm

(APA), the recursive least squares scheme (RLS) and the fractional

tap-length algorithm (FT), was firstly presented. A brief review was

151
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also given to describe the incremental adaptive schemes based on LMS

and RLS methods in distributed networks. By utilizing the space-time

weighted energy conservation arguments, a useful extension of the anal-

ysis for distributed LMS (dLMS) was developed to obtain the closed-

form equations of the mean-square quantities in the non-Gaussian wide

sense stationary data case.

Then, a new distributed APA algorithm (dAPA) was proposed to

be adopted in incremental adaptive networks. The motivation of the

proposed algorithm was to improve the poor convergence performance

of the LMS-based distributed algorithm due to coloured input signals.

In addition, it was shown to achieve a reasonable performance for cer-

tain tap-lengths with lower computational cost as compared with the

corresponding RLS-based scheme. A key contribution of this work was

to provide the analysis of its mean-square performance. One should

note that studying the mean-square performance of the APA algorithm

is demanding even for standard filters (without networks); when net-

working is added, the complexity is compounded due to the spatial and

temporal interconnectedness of the data. For an incremental method,

a Hamiltonian cycle must be established at every time in the network,

which limits applications of dAPA. As a consequence, a new diffusion

APA adaptive algorithm without topological constraints was developed

and its performance analysis was also provided.

It is clear to see in some applications, the optimal tap-length for

the adaptive filter is unknown. In order to obtain a good estimate

of the steady-state adaptive filter tap-length, the variable tap-length

LMS (VTLMS) algorithm is required. New research results have been

achieved for the VTLMS algorithms, i.e., a new VTLMS algorithm
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based on the fractional tap-length (FT) scheme and a new VTLMS

algorithm which exploited both high order statistics (HOS) and second

order statistics (SOS). All the analysis and proposed algorithms were

verified and supported by simulations. Although these schemes can not

be adopted directly in the field of distributed adaptive estimation due

to the nonstationarity of the statistical spatial-temporal data found in

networks, these research results provide a deeper understanding of the

VTLMS algorithms, and may be potentially used in other applications.

Within this thesis it was the first time that the idea of variable

tap-length was introduced into the distributed adaptive estimation re-

search area, in particular for incremental adaptive networks. A novel

variable tap-length dLMS algorithm based on the FT method was pro-

posed to search for a good choice of the tap-length of the adaptive filters

within the network. A steady-sate performance analysis was also pre-

sented to achieve the closed-form equations of mean-square quantities,

which provide good performance measures. As shown in simulation

results, the proposed algorithm can converge to a tap-length, which

provided a good trade-off between the steady-state performance and

computational complexity. Due to the similarity of the optimal tap-

length model for the LMS algorithm and the dLMS algorithm, more

research is required for variable tap-length distributed algorithms. The

idea of variable tap-length can be potentially extended to distributed

networks with different topologies.

7.2 Overall conclusions and recommendations of future research

The study of steady-state performance of dLMS revealed new insights

into the energy flow through an incremental network for non-Gaussian
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data. The work on VTLMS algorithms provided new tap-length ad-

justment techniques for applications where the optimal tap-length of

the adaptive filter is unknown. The research results on incremental

APA and diffusion APA were very useful in several problems involving

distributed networks. The analyses of both algorithms also provided

the insights into their mean-square performance. The work of variable

tap-length dLMS showed that the proposed algorithm achieves a good

performance in both tap-length and tap weight estimation in an in-

cremental network. To make the proposed variable tap-length dLMS

estimation approach more practical in reality, future research is sug-

gested:

1. The concept of variable tap-length can be potentially used with

various adaptive rules in networks with various topologies, including

diffusion networks and networks with dynamic topology. The improve-

ment of the performance of distributed adaptive networks with adjust-

ing the structures of the filters is then the most valuable work for further

research.

2. In order to choose reasonable parameters of variable tap-length

dLMS, future work should include analysis for the deficient tap-length

case of adaptive filters in distributed adaptive networks. More theo-

retical research is needed to investigate the relationship between the

performance of distributed adaptive networks with different topologies

and the tap-length order.

3. The existing two VTLMS algorithms, including the research re-

sults shown in this thesis are not suitable for applications where both

input and noise signals are statistical nonstationarity. In further work,

new VTLMS algorithms, robust to such nonstationarity, should there-
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fore be pursued and could be extended to distributed adaptive esti-

mation. In addition, future work should also include evaluating the

performance of the FT algorithm with coloured signals to provide a

good guide for parameter selection.
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