
Power/Energy Estimation and Optimization for
Software-Oriented Embedded Systems

by

Mostafa Elsayed Ahmed Ibrahim

Electrical Engineering Department

High Institute of Technology

Benha University

Thesis Submitted to the

Faculty of Engineering at Cairo University, Egypt

in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

in

Electronics and Electrical Communications Engineering

Faculty of Engineering - Cairo University

Giza, Egypt

November, 2009

Power/Energy Estimation and Optimization for
Software-Oriented Embedded Systems

by

Mostafa Elsayed Ahmed Ibrahim

Thesis Submitted to the
Faculty of Engineering at Cairo University, Egypt

in Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philosophy
in

Electronics and Electrical Communications Engineering

Supervised by

Prof. Dr. Serag-Eldin Elsayed Habib

Electronics and Communication Department
Faculty of Engineering - Cairo University

Prof. Dr. Markus Rupp

Institute of Communications and Radio-Frequency Engineering
Vienna University of Technology

Dr. Hossam A. H. Fahmy

Electronics and Communication Department
Faculty of Engineering - Cairo University

Faculty of Engineering - Cairo University
Giza, Egypt

November, 2009

Power/Energy Estimation and Optimization for
Software-Oriented Embedded Systems

by
Mostafa Elsayed Ahmed Ibrahim

Thesis Submitted to the
Faculty of Engineering at Cairo University, Egypt

in Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philosophy
in

Electronics and Electrical Communications Engineering

Approved by the Examining Committee:

..

Prof. Dr. Mohamed Zaki Abd El Mageed, Member

Faculty of Engineering - Al Azhar University

..

Prof. Dr. Ashraf ElFarghaly Salem, Member

Faculty of Engineering - Ain Shams University

..

Prof. Dr. Serag-Eldin Elsayed Habib, Thesis advisor

Faculty of Engineering - Cairo University

..

Prof. Dr. Markus Rupp, Thesis advisor

Faculty for Electrical Engineering and Information Technology
Vienna University of Technology

Faculty of Engineering - Cairo University
Giza, Egypt

November, 2009

ABSTRACT

The importance of power reduction of embedded systems has continuously increased in the
past years. Recently, reducing power dissipation and energy consumption of a program
have become optimization goals in their own right, no longer considered a side-effect of
traditional performance optimizations which mainly target program execution time and/or
program size. Nowadays, there is an increasing demand for developing power-optimizing
compilers for embedded systems. This thesis is a step towards such important goal.

In this thesis, we develop functional-level power models and investigate several software op-
timization techniques for embedded-processor systems. As a specific example, we consider
the powerful Texas Instruments C6416T DSP processor. We analyze the power consumption
contributions of the different functional units of this DSP. We assess the effect of the com-
piler performance optimizations on the energy and power consumption. Moreover, we ex-
plore the impact of two special architectural features of this DSP; namely Software Pipelined
Loop (SPLOOP) and the SIMD capabilities, on the energy and power consumption.

We also characterize the application-architecture correlation for our targeted architecture.
The PCA multivariate statistical technique is employed to visualize the black box impact of
the compiler and the hardware architecture over the software applications. This is achieved
with the aid of biplots which is depicted in our analysis in such a way, so that it can show
the maximum association between the application and the underlying hardware architec-
ture. Hence, it answers the question whether a given hardware architecture is an appropriate
choice for a given software application or not.

The currently-available compiler optimization techniques are handicapped for power opti-
mization due to their partial perspective of the algorithms and due to their limited modifi-
cations to the data structures. On the contrary, other software optimization techniques, like
source code transformations, can exploit the full knowledge of the algorithm characteristics,
with the capability of modifying both data structures and algorithm coding. Furthermore,
inter-procedural optimizations are envisioned. Hence, we investigate several loop, data and
procedural source code transformations from the power and energy perspectives.

Based on our results and as a step towards a power-aware optimizing compiler, we can rec-
ommend the following recommendations for programmers and compiler designers. First,

viii Abstract

the programmers, targeting the C6000 DSP family, are strongly recommended to compile
and optimize their programs by invoking the optimization level -o3 while disabling the
SPLOOP feature (-mu) in conjunction with the utilization of SIMD capabilities via the em-
ployment of suitable intrinsic functions.

Second, we recommend the compiler designers to pay more attention to the circular (mod-
ulo) and bit reverse addressing schemes which are rarely utilized by the compiler. In addi-
tion, they should utilize the power-aware source code transformations.

Third, developers of power simulators need to embed a functional level power consumption
model for the target processor in their simulators software.

ACKNOWLEDGEMENTS

As the author of this thesis, I am keenly aware that it represents the fruition of not only my
own work, but also the support which other individuals and organizations have lent me over
the years, and for which I am profoundly grateful.

First, I would like to thank my advisors, Prof. Serag E.-D Habib, Prof. Markus Rupp, and Dr.
Hossam A. H. Fahmy for their support, advice, guidance, and good wishes. They have had a
profound influence not only as my PhD advisors, but also on my life. Their availability at all
times, dedication towards work and family, professional integrity, and pursuit of perfection
helped me becoming a better individual. I am grateful to them for the freedom and flexibility
they gave me during the hard PhD years I spent in both Cairo and Vienna.

I would like to express the greatest of gratitude to my parents as well as my brothers and sis-
ters for the extraordinary way they provide me with unfaltering support, encouragement, and
love, even when I am far away from them. Finally, I offer special thanks and appreciations
to my wife and kids, for their love, understanding, and inexhaustible kindness.

I would like to thank the members (past and current) at the Christian Doppler Laboratory
(CD Lab.) for Design Methodology of Signal Processing Algorithms Bastian Knerr, Martin
Holzer, and Christoph Angerer who passed on valuable comments on drafts of my paper
submissions during all stages of my research.

I would like to thank Dr. Mohammad Bakr for the fruitful discussions and for providing me
with some helpful papers during my PhD years.

CONTENTS

1 Introduction 1

1.1 Embedded Systems . 1

1.1.1 Target Architectures for Embedded Systems 2

1.1.2 Embedded Systems Design Metrics 6

1.2 Motivation . 10

1.3 Contributions . 11

1.4 Thesis Outline . 13

2 Related Work 17

2.1 Introduction . 17

2.2 Software Power Consumption Estimation Techniques 17

2.2.1 Low-Level Estimation Techniques 18

2.2.2 High-Level Estimation Techniques 22

2.3 Power Saving Techniques: Overview . 25

2.3.1 Manufacturing Level Power Saving 25

2.3.2 Processor Level Power Saving . 26

2.3.3 Dynamic Voltage and Frequency Scaling 27

2.3.4 Battery Aware Power Saving . 28

2.3.5 Compiler Level Power Saving . 29

2.4 Source to Source Code Transformations 31

2.5 Conclusions . 33

3 Precise Power Consumption Model 35

3.1 Introduction . 35

3.2 Experimental Setup . 36

3.3 Methodology . 37

3.3.1 Static and Clock Distribution Power Consumption Sub-Model . . . 39

3.3.2 IMU Power Consumption Sub-Model 40

3.3.3 PU Power Consumption Sub-Model 42

3.3.4 Internal Memory Power Consumption Sub-Model 44

xii Contents

3.3.5 L1 Data Cache Power Consumption Sub-Model 46

3.3.6 L1 Program Cache Power Consumption Sub-Model 47

3.4 Model Validation . 49

3.4.1 Validation with Benchmarks . 49

3.4.2 Validation with a Real Application 51

3.5 Conclusions . 56

4 Compiler Optimization Influence on the Energy and Power Consumption 57

4.1 Introduction . 57

4.2 Targeted Compiler and Applications . 58

4.3 Global Performance Optimizations Effects on power and Energy 59

4.3.1 Optimizations Effect on Other Execution Characteristics 62

4.4 Specific Architectural and Compiler Features Effects on Power and Energy . 65

4.4.1 Impact of Software Pipelined Loop 65

4.4.2 Impact of SIMD . 69

4.5 Characterization of Application-Architecture Correlation 75

4.6 Conclusions . 79

5 Impact of Source Code Transformations on Energy and Power 81

5.1 Introduction . 81

5.2 Loop Oriented Transformations . 82

5.2.1 Loop Reversal . 82

5.2.2 Loop-Based Strength Reduction 83

5.2.3 Loop Unswitching . 85

5.2.4 Loop Permutation . 86

5.2.5 Loop Peeling . 87

5.2.6 Loop Fusion . 88

5.2.7 Loop Peeling and Fusion . 89

5.2.8 Loop Normalization and Fusion 90

5.2.9 Loop Unrolling . 91

5.2.10 Loop Tiling . 93

5.3 Data Oriented Transformations . 94

5.3.1 Array Declaration Sorting . 94

5.3.2 Array Elements Scalarization . 95

5.4 Procedural and Inter-Procedural Transformations 96

5.4.1 Procedure Call Preprocessing . 96

5.4.2 Procedure Integration . 98

5.5 Conclusions . 100

Contents xiii

6 Conclusions 103

6.1 Summary and Conclusions . 103

6.2 Remarks for Future Work . 106

References 107

Appendices 119

A C6416T Architecture and Profiler Events 121

A.1 Target Architecture . 122

A.2 C6416T Simulator Performance Monitoring Events 124

B Power Estimation Details 127

B.1 Computation of the Model Parameters . 127

B.2 Complete Functional-Level Power Consumption Model at 1000MHz 127

B.3 Power Estimation for Benchmarks . 128

C Multivariate Statistics 131

C.1 Principal Component Analysis (PCA) . 131
C.1.1 Box Plot . 131
C.1.2 Scree Plot . 132
C.1.3 Biplot . 132
C.1.4 PCA Example . 133

C.2 Applications Pseudonyms . 136

D List of Acronyms 139

LIST OF FIGURES

1.1 Architectural components and their affiliation to hardware and software. . . 2

1.2 NRE and production volume influence on the product unit cost 9

1.3 Time-to-Market design metrics impact on the market revenue 9

1.4 Embedded systems in automotive electronics 10

2.1 Experimental Setup for current measurement of V. Tiwari et al. 23

2.2 (a) Experimental Setup for current measurement, (b) The simple current mir-
ror. DUT is the Device Under Test Nilolaidis et al. 24

2.3 Functional level power estimation general methodology. 25

2.4 Dynamic voltage scaling example. 27

2.5 Power consumption without and with dynamic voltage and frequency scaling. 28

3.1 Current Measurement Setup. 37

3.2 Function level power modeling steps. 38

3.3 Functional level power analysis for C6416T. 39

3.4 Model function of the C6416T clock tree. 40

3.5 Screen shots of the scenarios for varying α. 41

3.6 Model function of the C6416T IMU at F = 1 000MHz. 41

3.7 Model function of the C6416T IMU at different frequencies. 42

3.8 Difference between β and α. 43

3.9 Model function of the C6416T Processing Units at α = 1 and F = 1 000MHz. 43

3.10 Snapshots of different scenarios for varying ε. 44

xvi List of Figures

3.11 Model function of the C6416T internal memory read at α = 1 and F =

1 000MHz. 45

3.12 Scenario for forcing a data cache miss. 46

3.13 L1D cache miss rate vs. measured CPU current. 46

3.14 L1P cache miss rate vs measured CPU current. 48

3.15 Estimated vs. measured power consumption of the C6416T at F = 1 000MHz. 51

3.16 Average functional units contribution to the processor power consumption. . 51

3.17 Illustration of the plants scatter-plot. 52

3.18 Elastic graph matching algorithm. 53

4.1 Power consumption of the C6416T while running different benchmarks. . . 59

4.2 Normalized Energy versus various optimization options. 60

4.3 Power, Execution Time and Energy normalized refering to no optimization
versus different optimization options. 61

4.4 Impact of optimizations on the L1D cache misses. 62

4.5 CPU stall cycles versus different optimization options. 63

4.6 Effect of various optimization options on the instructions per cycle. 64

4.7 Parallelization impact on the execution time and the power consumption. . . 64

4.8 Effect of different optimization options on the Memory accesses. 65

4.9 Memory references impact on the power as well as the execution time. . . . 65

4.10 Concept of the SPLOOP. 66

4.11 various optimizations versus execution cycles. 67

4.12 Impact of SPLOOP on the consumed power. 68

4.13 Impact of SPLOOP on the energy usage. 68

4.14 SPLOOP effect on IPC. 69

4.15 Execution time vs. power consumption with various optimization levels. . . 70

4.16 An example of the IDCT kernel w/wo SIMD utilization. 71

4.17 Power consumption w/wo SIMD utilization vs. various optimization options. 73

List of Figures xvii

4.18 Energy w/wo SIMD utilization vs. various optimization options. 74

4.19 Execution cycles w/wo SIMD utilization vs. various optimization options. . 75

4.20 scree plot for the 18 applications at the C6416T using PCA. 76

4.21 Box plot for the 18 applications at the C6416T using PCA. 77

4.22 Plot for the 18 applications data vs. the first two PCs. 77

4.23 biplot for the 18 applications at the C6416T using PCA. 78

5.1 Loop index reversal transformation. 83

5.2 Loop-based strength reduction transformation. 84

5.3 Loop unswitching transformation. 85

5.4 Loop permutation transformation. 87

5.5 Loop peeling transformation. 88

5.6 Loop fusion transformation. 89

5.7 Loop peeling and then fusion transformations. 90

5.8 Loop normalization and then fusion transformations. 91

5.9 Loop unrolling transformation with unrolling factor of 8. 92

5.10 Loop tiling transformation. 93

5.11 Array declaration sorting transformation. 95

5.12 Array elements scalarization transformation. 96

5.13 Procedure call preprocessing transformation. 97

5.14 Procedure integration transformation. 99

5.15 Code transformations impact on power, execution time and energy. 100

A.1 C6000 DSP platform roadmap. 121

A.2 C6000 fixed-point DSPs roadmap. 122

A.3 C6416 block diagram. 123

C.1 Box plot for the data ratings. 134

xviii List of Figures

C.2 Scree plot of the percent variability explained by each principal component. 135

C.3 Visualizing the results of the PCA with the Biplot. 136

LIST OF TABLES

2.1 Power saving techniques for embedded systems. 26

3.1 Algorithmic parameters calculation methodology 48

3.2 Complete power consumption model for C6416T DSP. 49

3.3 Benchmarks used for our experiments. 50

3.4 Impact of increasing number of inliers. 54

3.5 Profiling data for the code with 60 LocalMaxima. 55

4.1 Features of the global performance optimization options. 58

4.2 Average power, execution time, and energy for the investigated benchmarks. 67

4.3 SIMD effect when no optimization option is invoked. 71

4.4 Impact of SIMD when -o0 optimization options are invoked. 71

4.5 SIMD influence when -o1 optimization options are invoked. 72

4.6 SIMD Impact when -o2-mu (SPLOOP is disabled) optimization options are
invoked. 73

4.7 Impact of SIMD when -o3-mu (SPLOOP is disabled) optimization options
are invoked. 73

5.1 Loop reversal transformation effect on energy and power. 83

5.2 Examples of expression strength reduction. 84

5.3 Loop-based strength reduction transformation impact on power and Energy. 85

5.4 Loop unswitching transformation impact on energy and power consumption. 86

5.5 Impact of loop permutation on energy and power consumption. 87

xx List of Tables

5.6 Impact of loop peeling transformation on energy and power consumption. . 88

5.7 Loop fusion transformation impact on energy and power consumption. . . . 89

5.8 Impact of loop peeling then fusion on energy and power consumption. . . . 90

5.9 Influence of loop normalization then fusion transformations on the energy
and power consumption. 91

5.10 Impact of loop unrolling transformation on energy and power consumption. 92

5.11 Impact of loop tiling transformation on energy and power consumption. . . 94

5.12 Influence of array elements scalarization transformation on the energy and
power consumption. 96

5.13 Influence of procedure call preprocessing transformations on the energy and
power consumption. 97

5.14 Influence of procedure integration transformations on the energy and power
consumption. 99

B.1 Algorithmic parameters calculation methodology 127

B.2 Complete power consumption model for C6416T DSP at F = 1 000MHz. . 128

B.3 Power Estimation for different benchmarks at F = 1 000MHz 129

C.1 Pseudonyms for the applications used for PCA. 137

1 INTRODUCTION

1.1 Embedded Systems

An embedded system is a combination of computer hardware and software and sometimes

additional parts, either mechanical or electronical designed to perform a dedicated function.

The design of an embedded system to perform a dedicated function is in direct contrast to

that of the personal computer. It is also comprised of computer hardware and software and

mechanical components (disk drives, for example). However, a personal computer is not

designed to perform a specific function. Rather, it is able to do many different things. Many

people use the term general-purpose computer to make this distinction clear. As shipped, a

general-purpose computer is a blank slate; the manufacturer does not know what the cus-

tomer will do with it. Frequently, an embedded system is a component within some larger

system. For example, modern cars and trucks contain many embedded systems. One em-

bedded system controls the anti-lock brakes, another monitors and controls the vehicle’s

emissions, and a third displays information on the dashboard. Some luxury car manufactur-

ers have even touted the number of processors (often more than 60, including one in each

headlight) in advertisements. In most cases, automotive embedded systems are connected

by a communications network [1].

In general, ”embedded system” is not an exactly defined term, as many systems have some

element of programmability. For example, handheld computers share some elements with

embedded systems such as the operating systems and microprocessors which power them

but are not truly embedded systems, because they allow different applications to be loaded

and peripherals to be connected. Embedded systems exhibit certain characteristics that dis-

tinguish them from other computing systems. These characteristics are:

• Single function: An embedded system usually executes a certain task (or program)

repeatedly.

2 1 Introduction

• Reactive: Also called Event-Driven, continually reacts to changes in the systems en-

vironment. For example, a car’s cruise controller must monitor and react to speed and

brake sensors.

• Real-time: Must compute certain results in certain time without delay.

• Tightly-constrained: Because of the nature of embedded systems, their design met-

rics such as size, speed and power impose tight constraints.

1.1.1 Target Architectures for Embedded Systems

The most typical architectural structures for embedded systems concentrate essentially onto

a range of processing units: relevant for software implementations are micro-Controllers

(µCs) and Digital Signal Processors (DSPs), or even more specific Application Specific

Instruction-Set Processors (ASIPs), typical candidates for hardware implementation are pro-

grammable logic and dedicated data-paths. A mixture of these components is either as-

sembled onto a single chip for which the term System-on-Chip (SoC) has prevailed, or is

composed by several chips onto a board system.

Fig. 1.1: Architectural components and their affiliation to hardware and software.

Figure 1.1 visualizes the common notion of the trade-off between hardware and software

architectural components. From the left to the right the complexity of the underlying com-

ponent is decreasing in terms of instruction set, sophisticated memory access, and pipelining

strategies. This is counterbalanced by the increase of the computational speed towards Ap-

plication Specific Integrated Circuits (ASICs), mostly measured in throughput or number of

operations per time unit. The grouping of these processor classes into hardware and soft-

ware systems has not been clearly defined but is generally understood [2, 3]. In the next

paragraphs we present a short overview over the different embedded system architectures.

1.1. Embedded Systems 3

1.1.1.1 General-Purpose Processors

Although General-Purpose Processors (GPPs) are not considered as viable choices in em-

bedded systems, a short description is given to round up the picture. These processor types

are all-rounders on which nearly any application can be executed with a medium perfor-

mance instead of being optimal for just a single one. Workstations, PCs, servers, and much

more are typical candidates for a deployment of these processors. The steep requirements

on flexibility and processing speed necessitate very complex circuit structures with super-

pipelining, branch prediction, hierarchical caching structures, and superscalar scheduling by

prefetching instructions. The execution time of a characteristic code block varies therefore,

as it is dependent on a number of dynamic effects. For real time systems with strict deadlines

on certain parts of the functionality, these processors are normally inappropriate. Another

obstacle for the deployment of GPPs in embedded systems is the large power consumption

and the tedious and time-consuming interface design for I/O and memory access due to the

aforementioned circuit complexity.

1.1.1.2 Digital Signal Processors

Digital Signal Processors (DSPs) are processors dedicated to a specific application domain

of digital signal processing, e.g. mobile communication, image processing, audio/video

applications. With respect to the general instruction set, they offer very much the same

possibilities as general-purpose processors but with less facets and simpler circuitry. Their

big advantage is the optimized circuitry for additional instructions catering to the specific

application domain. Relevant traits for DSPs are amongst:

• Combined multiply-accumulate (MAC) operations.

In a single instruction cycle a multiply operation of two operands is interlinked with

a subsequent accumulation of the result. This instruction has a direct realization in

hardware circuitry in a DSP for floating-point or fixed point number formats.

• High jump predictability and zero-overhead loops.

A humble level of code branching and fixed loop count variable is exploited by special

registers, in which start and end address and the loop counter is stored. Every iteration

through the loop body triggers the counter’s increment or decrement and the subse-

quent comparison with the end condition, thus not imposing any overhead due to loop

4 1 Introduction

controlling.

• Specialized addressing techniques.

DSPs provide address generators that are capable to increment or decrement the ad-

dress pointer by a programmable step width in parallel to the actual instruction pro-

cessing. Two relevant applications are the circular address scheme, which facilitates

filter implementations and bit-reverse address schemes for e.g. Walsh-Hadamard or

Fast Fourier Transforms.

Many embedded systems comprise DSPs with fixed-point numeric formats, since a fixed-

point arithmetic logic unit (ALU) is much faster than a floating-point ALU given the same

chip area. However, the transition towards fixed-point formats additionally complicates the

design due to quantization noise, rounding and overflow errors.

Nowadays, C-compilers exist for most of the DSPs on the market, but crucial functions may

still be designed in assembler to ensure a better exploitation of the specific architectural fea-

tures of the DSP. For many applications, as in the image processing domain, time critical

code parts that have been manually optimized in assembler can be embedded into C rou-

tines.

The digital signal processing domain gained significant attention due to the revolution in

mobile communications. Therefore, a large variety of different DSP cores emerged with

manyfold innovative architectures [4]: for instance multiple DSP platforms, very large in-

struction word (VLIW) DSPs, and desktop DSPs.

1.1.1.3 Microcontrollers

As the name suggests a micro controller (µC) is dedicated to control flow dominated appli-

cations like protocols that are characterized by a large number of branches, internal states,

and boolean logic operations. The data throughput as well as the arithmetic operations do

not play a major role. Typically, µCs are used for interrupt handling and support a very fast

context switching often seen in protocol state machines. In other words, the current program

context is realized completely in the RAM, so that in the case of an interrupt the program

address pointer is simply set to a new address.

1.1. Embedded Systems 5

1.1.1.4 Application Specific Instruction Set Processors

These µPs are even more customized to their specific application domain than DSPs and

micro controllers. The key idea is the application-directed generation of a programmable

device, whose instruction set and data word widths have undergone a fierce optimization

towards its purpose. As indicated in Figure 1.1, ASIPs occupy the location with the least

flexibility and the highest performance in the software domain.

Since ASIPs are by definition application specific, it is difficult to classify them by their

commonalities. Usually, their instruction set includes operator concatenation as MAC op-

erations, or vector arithmetics. Similar to their larger siblings, the DSPs, their circuitry

exploits parallelism of address calculation and data operations. On the contrary, ASIPs usu-

ally dispense complicated caching schemes and reduce the pin number as far as possible to

enable smaller chip sizes. The development of optimizing compilers, debuggers, and linkers

for ASIPs has long been subject to intense research. In recent years, a design group from

RWTH Aachen developed a mature tool suite for ASIP design called LISA [5, 6], which is

now commercially available in the portfolio of CoWare [7].

1.1.1.5 Field Programmable Gate Arrays

Field programmable gate arrays (FPGA) belong in our notion to the hardware domain, al-

though being programmable as the name suggests. A regular arrangement of configurable

logic blocks (CLB) is programmable by adjusting the interconnects between them in order

to duplicate basic logic gates as AND, OR, XOR, memory or more complex combinatorial

functions. The CLBs contain look-up tables, multiplexers, and flip-flops, whose structure

usually differs widely to offer high flexibility on a single FPGA. The interconnection net-

work occupies the major portion of the chip area of up to 90%. I/O blocks surround the

CLB grid. It is in general distinguished between one time only programming of FPGAs with

anti-fuse switches and reconfigurable programming of FPGAs with SRAM switches. In the

first case the interconnects and configuration of the multiplexers are burned onto the die to

establish a connection (thus anti-fuse).

Eventually, these FPGAs resemble ASICs, as their behavior is permanently determined. The

configuration of SRAM based FPGAs is accomplished by setting variables in the SRAM

units that determine the interconnects and multiplexers. In modern FPGAs at every power up

of the FPGA the configuration is loaded from an EEPROM. The development of FPGA cir-

6 1 Introduction

cuitry resembles very much the development of ASICs. Classical hardware design tools are

utilized to develop schematics and netlists of integrated circuit elements (gates, flip-flops).

The FPGA vendor usually offers integrated tools for the schematics, which automatically

transpose the netlist into the configuration data and eventually configures the FPGA.

1.1.2 Embedded Systems Design Metrics

To cope with the rapidly growing complexity of embedded systems, designers must work at

higher levels of abstraction [8]. Depending on the abstraction layer, the level of detail used

to describe the system, designers can address different concerns. The key is to model the

system at each abstraction layer with as little detail as possible and then collect performance

metrics that help the development team make sound engineering decisions.

Among the many metrics used to characterize the quality of an embedded system design, we

will go through the following metrics:

• Execution-time • Power consumption
• Non-Recurring Engineering (NRE) • Size
• Flexibility • Unit cost
• Time-to-Market •Maintainability

Execution-time: (as a measure of the embedded system performance) plays an important

role in the area of embedded systems and especially hard constrained real-time systems.

These systems are typically subject to stringent timing constraints, which often result from

the interaction with the surrounding physical environment. It is essential that the compu-

tations are completed within their associated time bounds; otherwise severe damages may

result, or the system may be unusable. Therefore, a schedulability analysis has to be per-

formed which guarantees that all timing constraints will be met. Schedulability analysis

requires the upper bounds for the execution times of all tasks in the system to be known.

These bounds must be safe, that is, they may never underestimate the real execution time.

Furthermore, they should be tight, that is, the overestimation should be as small as possible.

In modern microprocessor architectures, caches, pipelines, and all kinds of speculation are

key features for improving (average-case) performance. Unfortunately, they make the anal-

ysis of the timing behavior of instructions very difficult, since the execution time of an

instruction depends on the execution history. A lack of precision in the predicted timing be-

havior may lead to a waste of hardware resources, which would have to be invested in order

to meet the requirements [9].

1.1. Embedded Systems 7

Power consumption: has emerged as one of the most important embedded systems design

metrics. This is largely due to the proliferation of mobile battery-powered computing de-

vices, the increasing speed and density of CMOS (complementary metal-oxide semiconduc-

tor) VLSI (very large-scale integration) circuits, and continuous shrinking of the transistor

feature size of deep sub-micron technologies [10].

Power consumption is a major concern for portable or battery-operated devices. Power is-

sues, such as how long the device needs to run and whether the batteries can be recharged,

need to be thought out ahead of time. In some systems, replacing a battery in a device can be

a big expense. This means the system must be conscious of the amount of power it uses and

take appropriate steps to conserve battery life. There are several methods to conserve power

in an embedded system, including clock control, power-sensitive processors, low-voltage

ICs, and circuit shutdown. Some of these techniques must be addressed by the hardware de-

signer in his selection of the different system ICs. Some power-saving techniques are under

software control.

It might seem ideal to select the fastest and most powerful processor available for a particular

embedded system. However, one of the tasks of the hardware designer is to use just enough

processing power to enable the device to get its job done. This helps reducing the power

consumed by the device. The selected processor plays a key role in determining the amount

of power an embedded system will consume. In addition, some processors can automatically

shut down different execution units when they are not in use [1].

One software technique offered by many embedded processors to conserve power is differ-

ent operating modes (e.g. run, idle and sleep). These modes allow the software to scale

processor power consumption to match the moment-by-moment needs of the application.

Operating the processor in different modes can save quite a bit of power. Another power-

saving technique that can be controlled by software is to vary processor clock speeds. Some

processors accept a fixed-input clock frequency but feature the ability to reduce internal

clock speeds by programming clock configuration registers. Software can reduce the clock

speed to save power during the execution of noncritical tasks and increase the clock speed

when processing demands are high. Substantial power/energy savings can also be achieved

through the implementation of adequate dynamic power management policies, for exam-

ple, tracking instantaneous workloads (or levels of resource utilization) and shutting-down

idling/unused resources, so as to reduce leakage power, or slowing down under-utilized re-

8 1 Introduction

sources, so as to decrease dynamic power dissipation [1, 9].

Non-Recurring Engineering (NRE): refers to the one-time cost of researching, developing,

designing, and testing a new product. When budgeting for a project, NRE must be considered

in order to analyze if a new product will be profitable. Even though a company will pay for

NRE on a project only once, NRE can be considerably high and the product will have to sell

well enough to produce a return on the initial investment. NRE is unlike production cost,

which must be paid continually in order to maintain production.

In a project-type company, large parts (possibly all) of the project represent NRE. In this

case the NRE cost are likely be included in the first project’s cost. If the company cannot

recover this cost, it will have to consider funding part of these from reserves (possibly make

a project loss) in the hope that the investment can be recovered from additional profit on

future projects [11].

Size: the physical space required by the system, e.g., bytes of memory for software and logic

gates or Configurable Logic Blocks (CLB) for hardware.

Flexibility: the ability to change the functionality of the system without incurring heavy

NRE cost.

Unit cost: the monetary cost of manufacturing each copy of the system, excluding NRE

cost. When comparing technologies by cost, the best option depends on quantity. Let’s

assume that there are two alternatives technologies for a certain product. The first alternative

is technology A; which has a NRE cost of $2 000 and a unit cost of $100. The second

alternative technology B with a NRE cost of $30 000 and a unit cost of $30. Figure 1.2

illustrates the strong impact of the NRE and the production volume on the final product unit

cost [12].
Time-to-Market: the time required to develop a system to the point that it can be released and

sold to customers. Growing system complexities, driven by increased IC capacities, requires

designers to do more in less time. Figure 1.3 indicates the importance of the time-to-market

design metrics from the revenue point of view.

Delays can be costly. Equation (1.1) expresses the percentage of revenue lost. Assume that

market rise in Fig. 1.3 is at 45 degree angle and that the product life is 2W with a peak

market rise at W . Hence (1.2) and (1.3) define the on-time and delayed design entry point

for the product. By substituting in (1.1) the final revenue model in (1.4) is obtained. For

1.1. Embedded Systems 9

Fig. 1.2: NRE and production volume influence on the product unit cost (reproduced
from [12]).

Fig. 1.3: Time-to-Market design metrics impact on the market revenue (reproduced
from [12]).

example let 2W = 52 weeks, delay D = 10 weeks hence, by substituting in (1.4) we find

out that the percentage revenue lost due to 10 weeks delay in the entry to the market equals

50% [12].

% revenue lost =
revenueOn-time − revenueDelayed

revenueOn-time
× 100 (1.1)

revenueOn-time =
1

2
× 2W ×W = W 2, (1.2)

revenueDelayed =
1

2
× (W −D +W)× (W −D), (1.3)

% revenue lost =
D(3W −D)

2W 2
× 100 (1.4)

Maintainability: measures the ease and speed with which a system can be restored to oper-

10 1 Introduction

ational status after a failure occurs [12–14].

1.2 Motivation

Embedded systems are rapidly growing in the few recent years. As shown in Fig. 1.4 more

than 30% of the car is now in electronics and almost 90% of innovations will be based on

electronics [14]. As illustrated in the previous section, the power and energy constraints on

embedded systems are becoming increasingly tight as complexity and performance require-

ments continue to be pushed by the user demand [15].

Fig. 1.4: Embedded systems in automotive electronics (reproduced from [14]).

Power density has a direct impact on packaging and cooling cost, and can also affect system

reliability, owing to electromigration [16] and hot-electron [17] degradation effects. Thus,

the ability to decrease power density, while offering similar performance and functionality,

critically enhances the competitiveness of a product. Moreover, for battery operated portable

systems, maximizing battery lifetime translates into maximizing duration of service, an ob-

jective of paramount importance for this class of products. Power is thus a primary figure of

merit in contemporary embedded system design [9].

Integrated circuits in their various manifestations consume some amount of electric power.

This power is dissipated both by the action of the switching devices contained in IC (such

as transistors) as well as heat due to the resistivity of the electrical circuits. This is a major

1.3. Contributions 11

consideration in the design of micro-processors and the embedded systems they are utilized

in.

Today, digital signal processors (DSPs) are frequently used in embedded systems to per-

mit application specifications in software. Processor speeds have doubled approximately

every 18 months as predicted by Moore’s law [18]. In order to get an energy-efficient sys-

tem consisting of processor and compiler, it is necessary to optimize hardware as well as

software [19].

The program behavior is difficult to predict due to its heavy dependence on application

and run-time conditions [20, 21]. For embedded systems, the application performance can

be optimized by utilizing parallel hardware architectures, such as Very-Long Instruction

Word (VLIW) architectures [6]. VLIW architectures are a suitable alternative for exploit-

ing Instruction-Level Parallelism (ILP) in programs, that is, for executing more than one

basic (primitive) instruction at a time. These processors contain multiple functional units.

They fetch from the instruction cache a VLIW containing several primitive instructions, and

dispatch the entire VLIW for parallel execution.

These capabilities are exploited by compilers which generate code that has grouped together

independent primitive instructions executable in parallel. The processors have a relatively

simple control logic because they do not perform any dynamic scheduling nor reordering of

operations (as is the case in most contemporary superscalar processors). The instruction set

for a VLIW architecture tends to consist of simple instructions (RISC-like). The compiler

must assemble many primitive operations into a single instruction word such that the multi-

ple functional units are kept busy, which requires enough ILP in a code sequence to fill the

available operation slots.

1.3 Contributions

The main contributions of this dissertation can be summarized in the following folds:

1. First, a complete power and energy characterization of the VLIW fixed-point C6416T

DSP is performed.
• The first step toward this power characterization is the design and implementa-

tion of a precise high level software power consumption model for the targeted

12 1 Introduction

processor, while running a software algorithm.

• Next, we prove the validation and precision of our model on many typical algo-

rithms applied in signal and image processing.

• The power consumption estimated by our model, is compared to the physically

measured power consumption, achieving a very low average estimation error of

1.65% and a maximum estimation error of only 3.3%

2. Second, a quantitative study is provided wherein we examine the influence of the

global optimizations of the C/C++ compiler, of the code composer studio, with respect

to the energy and power consumption.
• we find that enabling general compiler performance optimizations considerably

increase the power consumption of the DSP, on average, by 30.35% when the

third optimization level (-o3) is invoked.

• In order to analyze the causes for the power increase we study the effect on some

other performance measures, such as:

� L1D cache misses � Instructions per cycle
� Memory references � CPU stall cycles

• The impact of the special C64x+ architecture feature; namely Software Pipelined

Loop (SPLOOP) on the energy usage and power consumption is evaluated.

• Moreover, the impact of utilizing the targeted architecture Single Instruction

Multiple Data (SIMD) capabilities on the energy usage and power consumption

is evaluated.

• Finally, the characterization of the application-architecture correlation for the

targeted platform. The Pricipal Component Analysis (PCA) multivariate statis-

tical technique is employed to visualize the black box impact of the compiler

and the hardware architecture over the software applications. This is achieved

with the aid of biplots which is depicted in our analysis in such a way, so that it

can show the maximum association between the application and the underlying

hardware architecture. Hence, it answers the question whether a given hardware

architecture is an appropriate choice for a given software application or not.

3. Third, since the CCS allows very limited control over the individual optimization tasks

embedded within each global optimization levels, we assess the effect of applying

source to source code transformations on the power, energy and performance. The

1.4. Thesis Outline 13

source code transformations that are presented in this work are classified into three

major groups: loop, data and procedural transformations.

This thesis is based on the following publications:

• Mostafa E. A. Ibrahim, Markus Rupp, and S. E.-D. Habib. Power consumption model

at functional level for VLIW digital signal processor. In proceedings of the conference

on Design and Architectures for Signal and Image Processing (DASIP’08), Bruxelle,

Belgium, pages 147-152, November 2008.
• Mostafa E. A. Ibrahim, Markus Rupp, and Hossam A. H. Fahmy. Power Estimation

Methodology for VLIW Digital Signal Processor. In proceedings of the IEEE confer-

ence on Signals, Systems and Computers (SSC’08), Asilomar, CA, US, IEEE, pages

1840-1844, October 2008.
• Mostafa E. A. Ibrahim, Markus Rupp, and S. E.-D. Habib. Compiler-Based Optimiza-

tions Impact on Embedded Software Power Consumption. In proceedings of the joint

IEEE conference NEWCAS-TAISA’09 Toulouse, France, pages 247-250, June 2009.
• Mostafa E. A. Ibrahim, Markus Rupp, and S. E.-D. Habib. Performance and Power

Consumption Trade-offs for a VLIW DSP. In proceedings of the IEEE International

Symposium on Signals, Circuits and Systems (ISSCS’09), Iasi, Romania, pages 197-

200, July 2009.

• Mostafa E. A. Ibrahim, Markus Rupp, and Hossam A. H. Fahmy. Impact of Code

Transformations and SIMD on Embedded Software Power Consumption. In proceed-

ings of the IEEE International Conference on Computer Engineering and Systems

(ICCES’09), Cairo, Egypt, December 2009.

1.4 Thesis Outline

The rest of this thesis is structured as follows:

Chapter 2 reviews the evolution and state-of-the-art in processor’s power consumption mod-

els that rely on the running software. In general two main abstraction levels are surveyed

in this chapter. The low-level power modeling and estimation techniques cover the circuit-

level, gate-level, Register Transfer (RT)-level and the micro-architecture level. The high-

level techniques can be divided into two categories the Instruction Level Power Analysis

14 1 Introduction

(ILPA) and the Functional Level Power Analysis (FLPA). The software and hardware based

power saving techniques are surveyed, focusing on the recent attempts to evaluate the impact

of different compiler optimizations on the energy and power consumption of the processor.

The variety of existing source to source code transformations are analyzed from power and

energy perspectives .

Chapter 3 proposes a precise model to estimate the power consumption of the targeted

DSP, while running a software algorithm. The modeling is performed at the functional level

making this approach distinctly different from other modeling approaches in low level tech-

niques. This means that the power consumption can be identified at an early stage in the

design process, enabling the designer to explore different hardware architectures and algo-

rithms. After applying the FLPA, the targeted C6416T architecture is subdivided into six

distinct functional blocks (clock tree, instruction management unit, processing unit, inter-

nal memory, L1 data cache and L1 program cache). The parameters that affect the power

consumption for the identified functional blocks are determined.Typical signal and image

processing algorithms and a real time application are used for the purpose of validating the

proposed model. The estimated power consumption is compared to the physically measured

power consumption

Chapter 4 explores the performance and power trade-offs of the VLIW Texas Instruments

C6416T DSP. We assess the effect of the compiler performance optimizations on the en-

ergy and power consumption. Moreover, we explore the impact of two special architectural

features of this DSP; namely Software Pipelined Loop (SPLOOP) and the SIMD capabil-

ities, on the energy and power consumption. The code binaries utilized in this study were

generated with aid of the Texas Instrument C/C++ Compiler that is embedded in the CCS,

which allows control over the whole set of optimizations. Finally, we explore the correlation

between the software applications and the underlying hardware architecture at which these

applications are executed . We employ the Principal Component Analysis (PCA) biplots

to visualize the black box impact of compiler and hardware architecture over the software

applications.

Chapter 5 assesses the effect of applying source to source code transformations on the

power, energy and performance. The source code transformations that are presented in this

work are classified into three major groups: data oriented transformations, loop oriented

1.4. Thesis Outline 15

transformations and finally procedural and inter-procedural transformations. To evaluate the

effectiveness of the applied transformations we compile each program, both the original and

transformed version, on the target architecture (C6416T DSK). Next, we record the current

drawn from the core CPU and hence the consumed power. With the aid of the compiler’s

profiler we also record the run time and other execution characteristics such as memory

references, L1D cache misses and so on. To obtain reliable and precise information, we

repeat the whole measuring procedure for each transformation multiple times.

Chapter 6 concludes the thesis commenting on the probable impact of the obtained results.

In addition to the summary of the presented unique contributions, a discussion of the possible

future directions of research based on this thesis is presented.

Appendix A illustrates an overview of the DSP products of Texas Instrument Inc., the mar-

ket leader in DSP field, focusing on the architecture of our target DSP C6416T. Moreover

this appendix lists the C6416T simulator’s performance monitoring events along with their

description.

Appendix B shows how the algorithmic parameters, required to estimate the power con-

sumption of the running algorithm, are computed. In addition, it shows the actual computed

parameters, the estimated, the measured power consumption for different image and signal

processing benchmarks and finally a complete power consumption model at an operating

frequency of 1 000MHz.

Appendix C explains some basic foundations regarding the multivariate statistical technique

named Principal Component Analysis (PCA) which is used to characterize the application-

architecture correlation.

Appendix D lists the different acronyms utilized in this thesis.

2 RELATED WORK

2.1 Introduction

In this chapter we review the evolution and state-of-the-art in processor’s power consump-

tion models that rely on the running software. In general two main abstraction levels are

surveyed in this chapter. The low-level power modeling and estimation techniques cover the

circuit-level, gate-level, Register Transfer (RT)-level and the micro-architecture level. The

high-level techniques can be divided into two categories the Instruction Level Power Anal-

ysis (ILPA) and the Functional Level Power Analysis (FLPA). We also survey the software

and hardware based power saving techniques, focusing on the recent attempts to evaluate

the impact of invoking different compiler optimization levels on the energy and power con-

sumption of the processor. Finally, we analyze the variety of existing source to source code

transformations from power and energy perspectives.

2.2 Software Power Consumption Estimation Techniques

This section summarizes the most recent contributions to the problem of power modeling

and estimation. Recent approaches to model the power consumption of the software running

on a processor can be separated into two main categories:

• Low-Level or Hardware level models.

• High-Level models.

Hardware level models calculate power and energy from detailed electrical descriptions,

comprising circuit level, gate level, register transfer (RT) level or system level. High-Level

models deal only with instructions and functional units from the software point of view and

without electrical knowledge of the underlying architecture [22].

18 2 Related Work

2.2.1 Low-Level Estimation Techniques

The level of detail in the modeling performed by the power simulator influences both the

accuracy of estimation as well as the speed of the simulator. In this section we survey the

frequently used models at low level. The low level power consumption estimation tech-

niques cover a range of abstractions such as the:

• Circuit/Transistor level.

• Logic gate level.

• RT-level.

• Architectural level.

2.2.1.1 Transistor-Level Estimations

The representation of a microprocessor in terms of transistors and nets is extremely complex

and requires to undergo all the steps of the design flow and the layout, routing and parameter

extraction inclusive. This is rarely feasible since only few big companies have the know-

how and the technology in-house while most of them rely on silicon vendors for the lowest-

level steps. Furthermore, a transistor-level view of the system uses components models

based on linearized differential equations and works in the continuous time domain. This

implies that a simulation of more than one million transistors, even for few clock cycles,

requires times that are usually not affordable and anyway not practical for the high-level

power characterization [23].

The PowerMil [24] is an early attempt to build a low-level power consumption simulator.

PowerMil is a transistor level simulator for simulating the current and power behavior in

VLSI circuits. It is capable of simulating detailed current behavior in modern deep sub-

micron CMOS circuits, including sophisticated circuitries such as sense-amplifiers, with

speed and capacity approaching conventional gate level simulators. For more details about

power estimation techniques in VLSI circuits refer to [25, 26].

2.2. Software Power Consumption Estimation Techniques 19

2.2.1.2 Gate-Level Estimations

Methods to estimate the power consumption based on gate-level descriptions of micropro-

cessors or micro controller cores have been proposed in literature. The main advantage of

such methods with respect to transistor-level simulation approaches is that the simulation is

event-driven and takes place in a discrete time domain, leading to a considerable reduction

of the computational complexity, without a significant loss of accuracy [23].

An example for the gate-level power estimators is the model presented by Chou [27]. Chou

et al. present an accurate estimation of signal activity at the internal nodes of sequential logic

circuits. The power consumption estimation in Chou et al. is a Monte Carlo based approach

that take spatial and temporal correlations of logic signals into consideration.

2.2.1.3 RT-Level Estimations

A design described at RT-level can be seen as a collection of blocks and a network of inter-

connections. The blocks, sometimes referred to as macros, are adders, registers, multiplexers

and so on, while the interconnections are simply nets or group of nets. An assumption under-

lying the great majority of the approaches presented in literature is that the power properties

of a block can be derived from an analysis of the block isolated from a design, under con-

trolled operating conditions. The main factor influencing the power consumption model of

a macro is the input statistics [23].

Most of the research in RT-level power estimation is based on empirical methods that mea-

sure the power consumption of existing implementations and produce models from those

measurements. This is in contrast to approaches that rely on information-theoretic mea-

sures of activity to estimate power [28, 29]. Measurement-based approaches for estimating

the power consumption of datapath functional units can be divided into two sub-categories.

The first technique, introduced by Powel and Chau [30], is a fixed-activity micro-modeling

strategy called the Power Factor Approximation (PFA) method. The power models are pa-

rameterized in terms of complexity parameters and a PFA proportional constant. Similar

schemes were also proposed by Kumar et al. [31] and Liu and Svensson [32]. This approach

assumes that the inputs do not affect the switching activity of a hardware block. To remedy

this problem, activity-sensitive empirical power models were developed. These schemes are

20 2 Related Work

based on predictable input signal statistics; an example is the method proposed by Landman

and Rabaey [33]. Although the individual models built in this way are relatively accurate

(a 10% - 15% error rate), overall accuracy may be negatively affected due to incorrect input

statistics or the inability to correctly model the interaction.

The second empirical technique, transition-sensitive power models, is based on input transi-

tions rather than input statistics. The method, proposed by Mehta, Irwin, and Owens [34],

assumes a power model is provided for each functional unit- a table containing the power

consumed for each input transition. Closely related input transitions and power patterns can

be concentrated in to clusters, thereby reducing the size of the table. Other researchers have

also proposed similar macro-model based power estimation approaches [35, 36].

2.2.1.4 Architectural-Level Estimations

Recently, various architectural power simulators have been designed that employ a combina-

tion of lower level of abstraction power consumption models. These simulators derive power

estimates from the analysis of circuit activity induced by the application programmes during

each cycle and from detailed capacitive models for the components activated. A key distinc-

tion between these different simulators is in the degree of estimation accuracy and estimation

speed. For example, the SimplePower power simulator [37] employs a transition-sensitive

power model for the datapath functional unit. The SimplePower core accesses a table con-

taining the switch capacitance for each input transition of the functional unit exercised.

The use of a transition-sensitive approach has both design challenges as well as performance

concerns during simulation. The first concern is that the construction of these tables is

time consuming. Unfortunately, the size of this table grows exponentially with the size of

the inputs. The table construction problem can be addressed by partitioning and clustering

mechanisms. Further, not all tables grow exponentially with the number of inputs. For

example, consider a bit-independent functional unit such as a pipeline register where the

operation of each bit slice does not depend on the values of other bit slices. In this case,

the only switch capacitance table needed is a small table for a one-bit slice. The total power

consumed by the module can be calculated by summing the power consumed by each bit

transition.

2.2. Software Power Consumption Estimation Techniques 21

A second concern with employing transition-sensitive models is the performance cost of

the table lookup for each component access in a cycle. In order to overcome this cost, sim-

ulators such as SoftWatt [38] and Wattch [39] use a simple fixed-activity model for the

functional unit. These simulators only track the number of accesses to a specific compo-

nent and utilize an average capacity value to estimate the power consumed. Even the same

simulator can employ different types of power models for different components. For ex-

ample, SimplePower estimates the power consumed in the memories utilizing analytical

models [40]. In contrast to the datapath components that utilize a transition-sensitive ap-

proach, these models estimate the power consumed per access and do not accommodate the

power differences found in sequences of accesses.

One of the most widely used micro-architectural power simulators is Wattch [39]. Wattch

is a power simulator for superscalar, out-of-order, processors. It has been developed with aid

of the infrastructure offered by SimpleScaler [41]. SimpleScaler performs fast, flexible,

and accurate simulation of modern processors that implement a derivative of the MIPS-IV

architecture and support superscalar, out-of-order, execution. The power estimation engine

of Wattch is based on the SimpleScaler architecture, but in addition, it supports detailed

cycle-accurate information for all models, including datapath elements, memory and Content

Addressable Memory(CAM) arrays, control logic, and clock distribution network. Wattch

uses activity-driven, parameterizable power models, and it displayed an accuracy better than

10% when tested on three different architectures. Another approach to evaluate energy es-

timates at the architectural-level exploits the correlation between performance and energy

metrics. These techniques [42, 43] use performance counters present in many current pro-

cessors architectures to provide runtime energy estimates [44].

While providing excellent accuracy; low-level power estimation methodologies are slow and

impractical for analyzing the power consumption at an early design stage. Moreover, these

methodologies require the availability of lower level circuit details or a complete Hardware

Description Language (HDL) design of the targeted processor, which is not available for

most of commercial off-the-shelf processors.

22 2 Related Work

2.2.2 High-Level Estimation Techniques

Recently, the demand increased for high level power estimation simulators that allow an

early design space exploration from the power consumption perspective. The existing high-

level power estimation models can be classified into two main categories, Instruction Level

Power Analysis (ILPA) and Functional Level Power Analysis (FLPA).

2.2.2.1 Instruction Level Power Analysis

An instruction level power model for individual processors was first proposed by V. Tiwari

et al. [45]. By measuring the current drawn by the processor as it repeatedly executes distinct

instructions or distinct instruction sequences, it is possible to obtain most of the information

that is required to evaluate the power consumption of a program for the processor under

test. V. Tiwari et al. modeled the power consumption of the Intel DX486 processor. Power

is modeled as a base cost for each instruction plus the inter-instruction overheads that de-

pend on neighboring instructions. The base cost of an instruction can be considered as the

cost associated with the basic processing needed to execute the instruction. However, when

sequences of instructions are considered, certain inter-instruction effects come into play,

which are not reflected in the cost computed solely from base cost. These effects can be

summarized as:

• Circuit state: switching activity depends on the current inputs and previous circuit

state. In other words the difference between the bit pattern of two successive instruc-

tions.

• Resource Constraints: Resource constraints in the CPU can lead to stalls e.g. pipeline

stalls and write buffer stalls.

• Cache Misses: Another inter-instruction effect is the effect of cache misses. The in-

struction timings listed in manuals give the cycle count assuming a cache hit. For a

cache miss, a certain cycle penalty has to be added to the instruction execution time.

An experimental method is proposed by V. Tiwari et al. to empirically determine the base

and the inter-instructions overhead cost. In this experimental method, several programs con-

taining an infinite loop consisting of several instances of the given instruction or instruction

2.2. Software Power Consumption Estimation Techniques 23

sequences are used. The average current drawn by the processor core during the execution of

this loop is measured by a standard off-the-shelf, dual-slope integrating digital multi-meter

as shown in Fig. 2.1.

Fig. 2.1: Experimental Setup used for current measurements in [45].

Much more accurate measuring environments have been proposed to precisely monitor the

instantaneous current drawn by the processor instead of the average current. One of these

approaches has used a high-performance current mirror, based on bipolar junction transistors

as current sensing circuit as shown in Fig. 2.2. The power profiler in Niloladies et al. [46]

receives as input the trace file of executed assembly instructions, generated by an appro-

priate processor simulator, and estimates the base and inter-instruction energy cost of the

executed program taking into account the energy sensitive factors as well as the effect of

pipeline stalls and flushes. The main disadvantage of this approach is the current measuring

complexity. [47].

Another approach, to reduce the spatial complexity of instruction-level power models, is

presented in [48]. Therein, inter-instruction effects have been measured by considering only

the additional energy consumption observed when a generic instruction is executed after a

No-Operation (NOP) instruction.

An attempt to modify the original ILPA to create an instruction level power model with a

gate level simulator is carried out by Sama et al. [49]. In this approach, the power cost values

were obtained through a power simulator rather than actual measurement; thus modeling is

possible at design time and can be part of micro-architecture and/or instruction set archi-

tecture exploration. More researchers attempted to enhance the original Tiwari ILPA power

24 2 Related Work

(a) (b)

Fig. 2.2: (a) Experimental Setup for current measurement, (b) The simple current mirror.
DUT is the Device Under Test [46].

consumption modeling technique as in [50–52].

The ILPA based methods have some drawbacks, one of these drawbacks is that the number

of current measurements is directly related to the number of instructions in the Instruction

Set Architecture (ISA), and also the number of parallel instructions composing the very long

instruction in the VLIW processor. The problem of instruction level power characterization

of K-issue VLIW processor isO(N2K) where N is the number of instructions in the ISA and

K is number of parallel instructions composing the VLIW [53]. Also they do not provide any

insight on the instantaneous causes of power consumption within the processor core, which

is seen as a black-box model. Moreover, the effect of varying data (as well as address) is

ignored in the ILPA models, though this effect can be accounted by an additive factor [54].

2.2.2.2 Function Level Power Analysis

FLPA was first introduced by J. Laurent et al. in [55]. Figure 2.3 illustrates the process of

estimating the power consumption with aid of the FLPA technique. The basic idea behind

the FLPA is the distinction of the processor architecture into functional blocks like Pro-

cessing Unit (PU), Instruction Management Unit (IMU), internal memory and others [55].

First, a functional analysis of these blocks is performed to specify and then discard the non-

consuming blocks (those with negligible impact on the power consumption). The second

step is to figure out the parameters that affect the power consumption of each of the power

consuming blocks. For instance, the IMU is affected by the instructions dispatching rate

2.3. Power Saving Techniques: Overview 25

which in turn is related to the degree of parallelism. In addition to these parameters, there

are some parameters that affect the power consumption of all functional blocks in the same

manner such as operating frequency and word length of input data [56]. The functional

level power modeling approach is applicable to all types of processor architectures. Further-

more, FLPA-modeling can be applied to a processor with moderate effort and no detailed

knowledge of the processors architecture is necessary [57].

Fig. 2.3: Functional level power estimation general methodology.

2.3 Power Saving Techniques: Overview

Low power design is a complex endeavor requiring a broad range of strategies from floor

planning on silicon substrate to the design of application software. In Table 2.1, we enlisted

several strategies for achieving power efficiency in an power-conscious system design. In

this section, we review some of these strategies.

2.3.1 Manufacturing Level Power Saving

There are three major sources for the power dissipation in digital CMOS circuits, these

sources are summarized in (2.1) [58].

P = K · CL · V 2
dd · F + ISC · Vdd + ILeakage · Vdd, (2.1)

26 2 Related Work

Tab. 2.1: Power saving techniques for embedded systems.
Power Saving Technique Abstract Level

Manufacturing level power saving Low level

Processor level power saving Intermediate level

Dynamic voltage and frequency scaling (DVFS) Intermediate level

Battery aware power saving High level

Compiler level power saving High level

whereCL is the output capacitance load, Vdd is the supply voltage,K is the transition activity

factor which is defined as the average number of times the circuit makes a power consuming

transition in a single clock cycle (this term is defined in [59] as the probability that a power

consuming transition occurs), and F is the operating clock frequency. The short circuit cur-

rent pulse is expressed by the term ISC which is generated when both n-CMOS and p-CMOS

transistors are briefly turned on during the output switching, and ILeakage is the leakage cur-

rent.

It is expected that employing low-power electronics can achieve significant power sav-

ing. Half of this power reduction will come from architecture changes and management

of switching activity. The other half of this power reduction will come from the utilization

of advanced materials technology to allow reduction of Vdd to 1V or even below, while also

reducing CL [58, 59].

2.3.2 Processor Level Power Saving

One software technique offered by many embedded processors to conserve power is different

operating modes. These modes allow the software to scale processor power consumption to

match the moment-by-moment needs of the application [1]. For example:

• Run-mode: the processor core runs at its normal frequency, this is the normal or default

operating mode.

• Idle-mode: the processor core is not clocked, but the other peripheral components

operate as normal.

2.3. Power Saving Techniques: Overview 27

• Sleep-mode: this is the lowest power state for the processor.

The embedded system designer needs to determine when the system is not doing anything

and how to wake up the processor when it needs to operate, and the designer need to know

what events will wake up the system. For example, in an embedded system that sends some

data across a network every few minutes, it makes sense to be able to shut down the device

to conserve power until it is time to send the data. The device must still be able to wake up

in case an error condition arises. Therefore, the designer must understand how a peripheral

circuit wakes up the processor when the processor needs to operate (including how long it

takes the circuit to wake up and whether any re-initialization needs to be done) [1].

2.3.3 Dynamic Voltage and Frequency Scaling

Dynamic power consumption in a processor (general purpose or application specific) can be

decreased by reducing two of its key contributors, supply voltage and clock frequency. In

fact, since the power dissipated in a CMOS circuit is proportional to the square of the supply

voltage, the most effective way to reduce power is to scale down the supply voltage [9]. Dy-

namic voltage scaling (DVS) [60, 61] refers to runtime change in the supply voltage levels

supplied to various components in a system so as to reduce the overall system power dissipa-

tion while maintaining a total computation time and/or throughput requirement. Figure 2.4

shows an example DVS architecture.

Fig. 2.4: Dynamic voltage scaling example.

Since static voltage scaling cannot deal with variable workload situations in real-time sys-

tems, one must be able to change the supply voltages dynamically for different workloads.

Meanwhile, one must carefully design the clock generation circuitry because clock rate must

28 2 Related Work

decrease (or increase) with the decrease (or increase) of the supply voltage to make sure that

the circuit can work properly [62].

Many contemporary processor families, such as Intels XScale [63], IBMs PowerPC405LP [64],

and Transmeta’s (Transmeta is acquired by Novafora Inc. since January 2009) Crusoe [65],

offer dynamic voltage and frequency scaling features. For example, the Intel 80200 proces-

sor, which belongs to the XScale family of processors mentioned earlier, supports a software

programmable clock frequency. Specifically, the voltage can be varied from 1.0 to 1.5 V,

in small increments, with the frequency varying correspondingly from 200 to 733 MHz, in

steps of 33/66 MHz. Figure 2.5 illustrates the power consumption in a digital circuit with

and without Dynamic Voltage and Frequency Scaling (DVFS) [9].

Fig. 2.5: Power consumption without and with dynamic voltage and frequency scaling.

The simplest way to take advantage of the scaling features discussed above is by carefully

identifying the smallest supply voltage (and corresponding operating frequency) that guar-

antee that the target embedded application meets its timing constraints, and run the processor

for that fixed setting [9].

Most processors developed for the mobile/portable market already support some form of

built-in mechanism for voltage/frequency scaling. Intels SpeedStep technology, for example,

detects if the system is currently plugged into a power outlet or running on a battery, and

based on that, either runs the processor at the highest voltage/frequency or switches it to a

less power hungry mode [9].

2.3.4 Battery Aware Power Saving

Chiasserini and Rao [66] have shown how battery behavior can be exploited to prolong bat-

tery life. In particular, they identify the phenomenon of charge recovery that takes place

2.3. Power Saving Techniques: Overview 29

under pulsed discharge conditions as a mechanism that can be exploited to enhance the ca-

pacity of an energy cell. The bursty nature of many data traffic sources suggests that there

might be a natural fit between the two.

P. Rong and M. Pedram in [67] address the problem of maximizing the utilization of the bat-

tery capacity of the power source for a portable electronic system under a given performance

constraint. They propose a new stochastic model of a power-managed battery-powered

electronic system, which is based on Continuous-Time Markovian Decision Processes (CT-

MDP). In this model, two important characteristics of todays rechargeable battery cells, i.e.,

the current rate-capacity characteristic and the relaxation-induced recovery are considered.

2.3.5 Compiler Level Power Saving

Compiler design techniques contribute to energy saving in several ways. Kolson et al. [68]

address the problem of allocating memory to variables in embedded DSP (digital signal

processing) software. The goal is to maximize simultaneous data transfers from different

memory banks to registers. In several DSP applications mentioned in [69, 70], two registers

are loaded with the required data and an arithmetic operation is performed. Loading two

registers with a single double transfer instruction draws a little more current than a move

instruction. Both instructions take one clock cycle each. However, energy is saved by em-

ploying the double transfer, because the double transfer instruction loads the two registers in

one clock cycle, whereas it takes two clock cycles to sequentially load the registers. Instruc-

tions with memory operands have much higher energy cost than instructions with register

operands [71]. This suggests that energy can be saved by suitably assigning the live vari-

ables of a program to registers. But, a processor has only a small number of registers. When

the number of simultaneous live variables is larger than the number of available registers,

some of the variables must be spilled to memory. Register assignment for loop variables is

important because loops are typically executed many times. Algorithms for optimal register

assignment to loop variables are presented in [72, 73]. These algorithms can be included in

the code generation part of a compiler.

30 2 Related Work

2.3.5.1 Influence of compiler optimizations on power and energy usage:

Survey

Recently some attempts to understand the scope of compiler optimizations, from the per-

spective of power dissipation and energy consumption of programmable processors have

been introduced. Tiwari et al. [74] presented an instruction level power model, following

the same methodology published in [45], for a Fujistu 3.3v, 40MHz DSP. Moreover, the ef-

fect of two architectural features (dual-memory accesses, and packing of instructions into

pairs) on the energy consumption has been exposed.

With the help of a cycle-accurate energy simulator (SimplPower), a source-to-source code

translator, and a number of benchmark codes, Kandemir et al. [75, 76] studied the influence

of five high-level compiler optimizations, such as loop unrolling and loop fusion, on energy

consumption. Valluri et al. [77] provided an evaluation of some general and specific opti-

mizations in terms of the power/energy consumption of the Alpha processor while running

some SpecInt95 and SpecFp95 benchmarks. The processor in their work was simulated by

means of Wattch (A frame work for analyzing processor power consumption at architectural-

level) [39].

Chakrapani et al. [78] also presented a study into the effect of compiler optimization on

the energy usage of an embedded processor. Their work targets an ARM embedded core

and they use an RTL level model along with Synopsys Power Compiler to estimate power.

Seng et al. [79] revised the effect of the Intel compiler general and specific optimizations,

for energy and power consumption, for a Pentium 4 processor running some benchmarks

extracted from Spec2000.

Azzemi et al. [80] examined the effect of loop unrolling factor, grafting depth and blocking

factor on the energy and performance for the Philips Nexperia media processor ”PNX1302”.

But, they interchangeably use the term energy and power for the same meaning. Hence the

improvement in energy is directly related to the performance enhancement. Finally, Casas

et al. [81] studied the effect of various compiler optimizations on the energy and power

usage of the low power C55 DSP from Texas Instruments. Their work was based on a

physical measurement platform for measuring the current drawn by the DSP core. The work

does not consider the effect of the compiler optimizations on many performance measures

that significantly affect the power and energy usage, such as the memory access and the

2.4. Source to Source Code Transformations 31

instructions per cycle.

2.4 Source to Source Code Transformations

The presence of mixed hardware/software architectures is becoming pervasive in the em-

bedded systems arena, with a growing importance for the software section. Many proposals

take into account the environment executing the code (CPU, Memory, Operating System,

and so on) as well as the impact of code organization and compiler optimizations on the

energy demand of the application as shown in Section 2.3.5.1. Memory optimization tech-

niques focus on reducing the energy related to memory access, exploiting the presence of

multilevel memory hierarchy, possibly in conjunction with suitable encodings to reduce the

bus switching activity [82].

Other software-oriented proposals focus on instruction scheduling and code generation, pos-

sibly minimizing memory access cost [71]. As expected, standard low level compiler op-

timizations, such as loop unrolling or software pipelining, are also beneficial to energy re-

duction since they reduce the code execution time. However, there are a number of cross-

related effects that cannot be so clearly identified and, in general, are hard to be applied

by compilers, unless some suitable source-to-source restructuring of the code is a priori

applied. In fact, the optimizations at compile time typically improve performance and oc-

casionally the power consumption, with the main limitations of having a partial perspective

of the algorithms and without the possibility of introducing significant modifications to the

data structures. On the contrary, source code transformations can exploit full knowledge

of the algorithm characteristics, with the capability of modifying both data structures and

algorithm coding. Furthermore, inter-procedural optimizations can be envisioned. Another

benefit of exploiting restructuring of the source code is related to portability, since the results

are normally fairly general to deal with different compilers and architectures, without any

intervention on existing compilers [83].

Brandolese et al. [83] stressed the state-of-the-art source to source transformations, to dis-

cover and compare their effectiveness from power and energy perspective. The data struc-

ture, loop and inter-procedural transformations were investigated with the aid of the GCC

compiler. The compiled software codes were then simulated with a framework based on the

32 2 Related Work

SimpleScaler [41]. The simulation framework was configured with a 1-kbyte 2-ways set-

associative unified cache.

Ortiz et al. [84] investigated the impact of three different code transformations namely, loop

unrolling, function inlining and variable types declaration on the power consumption. They

choose three platforms as the target for their work, 8-bit and 16-bit micro-controllers and

the 32-bit ARM7TDMI processor. Their results show that loop unrolling has a significant

impact on the consumed power in case of the 16-bit and 32-bit processors.

Catthoor et al. [85] showed how source-to-source code transformations play a crucial role

in the solution of the data-transfer and storage bottleneck in modern processor architectures.

They survey many transformations that are mainely aiming to enhance the data locality and

reuse.

Kulkarni et al. [86] were interested in improving the software controlled cache utilization,

so as to achieve lower power requirements for multi-media and signal processing applica-

tions. Their methodology took into account many program parameters like the locality of

data, size of data structures, access structures of large array variables, regularity of loop

nests and the size and type of cache with the objective of improving the cache performance

for lower power. The targeted platform for their research were the embedded multi-media

and DSP processors. In the same way McKinley et al. [87] investigated the impact of loop

transformations on the data locality.

Benini et al. [88] proposed three new schemes for code compression, based on the con-

cepts of static (utilizing the static representation of the executable) and dynamic (utilizing

program execution traces) entropy and compare them with a state-of-the-art compression

scheme, IBMs CodePack [89]. Compression of executable code in embedded microproces-

sor systems, used in the past mainly to reduce the memory footprint of embedded software,

is gaining interest for the potential reduction in memory bus traffic and power consumption.

Their proposed schemes are competitive with CodePack for static footprint compression and

achieved superior results for bus traffic and energy reduction. Another interesting outcome

of their work was that static compression is not directly related to bus traffic reduction; yet

there is a trade-off between static compression and dynamic compression, i.e., traffic reduc-

tion.

Yang et al. [90] studied the impact of loop optimizations in terms of performance and power

trade-offs, with the aid of the Delaware Power-Aware Compilation Testbed (Del-PACT):an

2.5. Conclusions 33

integrated framework consisting of a modern industry-strength compiler infrastructure and a

state-of-the-art micro-architecture -level power analysis platform. Both low-level loop opti-

mizations at code generation (back-end) phase, such as loop unrolling and software pipelin-

ing, and high-level loop optimizations at program analysis and transformation phase (fron-

tend), such as loop permutation and tiling, are studied.

2.5 Conclusions

In this chapter we review the evolution and state-of-the-art in processor’s power consump-

tion modeling and estimation methodologies that rely on the running software. In general

two main abstraction levels are surveyed in this chapter. The low-level power modeling and

estimation techniques cover the circuit-level, gate-level, Register Transfer (RT)-level and the

micro-architecture level.

The high-level techniques can be divided into two categories, the Instruction Level Power

Analysis (ILPA) and the Functional Level Power Analysis (FLPA). This survey leads us to

the appropriate power estimation technique for VLIW processors.

Second, we go through different abstraction level software and hardware based power sav-

ing strategies, with a special focus on the recent attempts to evaluate the impact of different

C/C++ compiler optimizations on the power consumption and the energy usage of a pro-

grammable processor in embedded systems.

Finally, we outline the variety of existing research efforts that investigate the effect of apply-

ing source to source code transformations on the energy and power consumption.

3. PRECISE POWER CONSUMPTION

MODEL

3.1 Introduction

The importance of power constraints during the design of embedded systems has continu-

ously increased in the past years, due to technological trends toward high-level integration

and increasing operating frequencies, combined with the growing demand of portable sys-

tems [91]. Because of the small size and the mobility requirement of portable systems,

they are powered by batteries of low rating. In order to avoid frequent recharging and/or

replacement of the batteries, there is significant interest in low-energy system design.

In recent years, reducing power dissipation and energy consumption of a program have be-

come optimization goals in their own right, no longer considered a side-effect of traditional

performance optimizations which mainly try to reduce program execution time. Power and

energy optimizations can be implemented in hardware through circuit design, and by the

compiler through compile-time analysis, code reshaping, and supplying information to the

operating system [92].

Due to the processing regularity of multimedia and DSP applications, statically scheduled

processors such as VLIW processors are a viable option over dynamically scheduled pro-

cessors, such as state-of-the-art superscalar GPPs. VLIW processors rely on software to

identify parallelism and assemble wide instruction packets to issue multiple instructions per

cycle. Though energy is actually consumed by the hardware, energy consumption can be

reduced, apart from utilizing low-energy electronics, by suitably manipulating the software

systems. This is because the hardware activities are controlled through the software.

36 3 Precise Power Consumption Model

Let a program X run for T seconds to achieve its goal, V CC be the supply voltage of the

system, and I be the average current in Amperes drawn from the power source for T seconds.

Consequently, T can be rewritten as T = N × τ where N is the number of clock cycles and

τ is the clock period. The power consumed by running X is given by: P = V CC × I .

Then, the amount of energy consumed by X to achieve its goal is given by: E = P ×N × τ

Joules. Since for a given hardware, both V CC and τ are fixed, E ∝ I × N . However, at

the application level, it is more meaningful to talk about T than N , and therefore, energy

is expressed as E ∝ I × T . This expression shows the main idea in the design of energy-

efficient software that is to reduce both T and I . From the running time (average case) of

an algorithm, a measure of T is achieved. However, to compute I , one must consider the

average current drawn during the execution of the program.

The aim of this chapter is to develop a precise functional level power consumption model.

The model will give us a deep insight view for the power characteristics of the targeted

processor. This chapter is organized as follow: Section 3.2 addresses the setup for our

experiments. In Section 3.3 a detailed description for the proposed model is given, including

the different sub-models for the targeted processor functional units. Section 3.4 explains

how the proposed model is validated even with signal and image processing benchmarks or

real embedded system application. Finally, conclusions are drawn in Section 3.5

3.2 Experimental Setup

The targeted architecture is explored in detail in Appendix A.1. In our setup, the operating

frequency ranges from 600MHz to 1200MHz and the DSP core voltage is 1.2V. All mea-

surements are carried out on the TMS320C6416T DSP Starter Kit (DSK) manufactured by

Spectrum Digital Inc. There are three power test points on this DSK for DSP I/O current,

DSP core current and system current. The C/C++ compiler embedded in the Code Com-

poser Studio (CCS3.1) from Texas Instruments is used for getting the binaries to be loaded

to the DSP. The current drawn by the DSP core while running an algorithm is captured by

the Agilent 34410A 61
2

digit Digital Multi-Meter(DMM). This DMM features very high DC

basic accuracy, actually 0.003% of the reading plus 0.003% of the range [93]. As shown

in Fig. 3.1 the current is captured in terms of the differential voltage drop across a 0.025Ω

3.3. Methodology 37

sense resistor inserted, by the DSK manufacturer, in the current path of the DSP core. The

input differential voltage drop is divided by 0.025Ω to obtain the current drawn. Several

assembly language scenarios have been developed to separately stimulate each of the func-

tional blocks. All the scenarios consist of unbounded loops with a body of more than 1 000

instructions, to avoid the effect of branching instructions on the measured current.

Fig. 3.1: Current Measurement Setup.

3.3 Methodology

The basic idea behind the FLPA is the distinction of the processor architecture into functional

blocks like Processing Unit (PU), Instruction Management Unit (IMU), internal memory and

others [55]. At first, a functional analysis of these blocks is performed to specify and then

discard the non-consuming blocks (those with negligible impact on the power consumption).

The second step is to figure out the parameters that affect the power consumption of each of

the power consuming blocks. For instance, the IMU is affected by the instructions dispatch-

ing rate which in turn is related to the parallelism degree. In addition to these parameters,

there are some parameters that affect the power consumption of all functional blocks in the

same manner such as operating frequency and word length of input data [56].

By means of simulations or measurements it is possible to find an arithmetic function for

each block that determines its power consumption depending on a set of parameters. Hence,

to determine the arithmetic function for each functional block, the average supply current

38 3 Precise Power Consumption Model

Fig. 3.2: Function level power modeling steps.

of the processor core is measured in relation with the variation of the affecting parameter.

These variations are achieved by a set of small programs, called scenarios. Such scenarios

are short programs written in assembly language and consisting of unbounded loops with

a body of several hundreds of certain instructions that individually invoke each block. The

power consumption rules are finally obtained by curve-fitting the measurement values [56].

The parameters that affect the power consumption for each functional block can be extracted

from the assembly code generated by the Integrated Development Environment (IDE). Some

parameters cannot be extracted directly from the assembly code, such as the execution time

and the data cache miss rate. Therefore, the code should be run at least once to obtain these

parameters with the aid of the profiler.

After applying the FLPA, the C6416T architecture is subdivided into six distinct functional

blocks (clock tree, instruction management unit, processing unit, internal memory, L1 data

cache and L1 program cache) as shown in Fig. 3.3. Although the L2 unified memory ac-

cesses are considered through the treatment of the L1 data and program cache misses, the

L2 cache misses are not handled in our model as the L2 memory size (1-Mbyte) is almost

enough for most of the signal processing applications. The parameters that affect the power

consumption for the determined functional blocks are also shown in Fig. 3.3. The C6416T

3.3. Methodology 39

fetches instructions from memory in fixed bundles of eight instructions, known as fetch

packets. The instructions are decoded and separated into bundles of parallel-issue instruc-

tions known as execute packets.

The dispatching rate α represents the average number of execution packets per fetch packet.

The processing rate β stands for the average number of active processing units per cycle.

The internal memory read/write access rates ε/λ respectively express the number of memory

accesses divided by the number of required clock cycles for executing the code segment un-

der investigation. The data cache miss rate γ corresponds to the number of data cache misses

divided by the total memory accesses. Finally, the program cache miss rate δ corresponds

to the number of program cache misses divided by the total program cache references. The

methodology of computing these algorithmic parameters are presented in Appendix B.2.

Fig. 3.3: Functional level power analysis for C6416T.

3.3.1 Static and Clock Distribution Power Consumption Sub-Model

The static power consumption of any processor includes the power consumed due to leakage

current and the clock distribution network. It is not possible at the functional level analysis

to differentiate between those types of power consumption. Hence, Both static and clock

distribution power consumption are considered in a single sub-model as the static and clock

distribution power consumption model. From now on when we talk about the operating

frequency effect on the power consumption, actually the effect of static and clock distri-

bution is meant. First, the effect of the operating frequency on the power consumption is

40 3 Precise Power Consumption Model

determined. The operating frequency linearly affects the current drawn by the DSP core and

hence, also linearly affects the power consumption of the processor. Figure 3.4 shows the

relation between the operating frequency and the current drawn by the DSP core.

Fig. 3.4: Model function of the C6416T clock tree.

3.3.2 IMU Power Consumption Sub-Model

The IMU unit of the C6416T processor consists of two main sub-units which are the instruc-

tions fetching unit and the dispatching unit. The IMU fetches eight instructions per cycle as

one fetch packet. The dispatch unit then subdivides this fetch packet into execution packets.

Since the C6416T has eight functional units, it is capable of simultaneously executing up

to eight instructions. Consequently, the dispatch unit can divide the fetch packet into one

(maximum parallelism) to eight (sequential) execution packets. Therefore, it is obvious that

the dispatch rate is the parameter that affects the power consumption of the IMU.

Since the NOP instruction does not require any processing unit for its execution, the pro-

posed scenarios to invoke the IMU are composed of an unbounded loop with more than

1 000 No Operations (NOPs). These scenarios vary the dispatch rate (number of fetch pack-

ets divided by the number of execution packets) from 0.125 to 1.0. Figure 3.5 shows screen

shots of the scenarios to vary the dispatch rate. Figure 3.6 indicates the characteristics of

the current drawn by the core processor with a varying dispatch rate when the operating

3.3. Methodology 41

Fig. 3.5: Screen shots of the scenarios for varying α.

frequency is adjusted to 1 000MHz. Figure 3.7 indicates that varying α is independent of

varying the operating frequency.

Fig. 3.6: Model function of the C6416T IMU at F = 1 000MHz.

By curve fitting the measurement values in Fig. 3.6 the arithmetical function in (3.1) is

obtained.

IDDIMU = −0.0918α2 + 0.284α + 0.0603. (3.1)

The quality of the fitting process is measured by the value R-squared (R2): A number from

0 to 1, which is the normalized square of the residuals of the data after the fit. This value

expresses what fraction of the variance of the data is explained by the fitted trend line. It

reveals how closely the estimated values for the trend line correspond to the actual data. A

trend line is most reliable when its R2 value is at or close to 1.0 [94]. Since the R2 value

42 3 Precise Power Consumption Model

Fig. 3.7: Model function of the C6416T IMU at different frequencies.

for the arithmetic function in (3.1) equals 0.9994 then (3.1) is an excellent fit for the curve

values in Fig. 3.6.

The arithmetic function in (3.1) does not consider the effect of pipeline stalls. Many reasons

cause the pipeline to stall. For instance, one data cache miss stalls the pipeline for at least

six cycles. Hence, the arithmetic function in (3.2) is presented to account for the pipeline

stall effect.

IDDIMU = (−0.0918α2 + 0.284α + 0.0603)(1− PSR), (3.2)

where PSR stands for Pipeline Stall Rate which can be expressed as the number of pipeline

stall cycles divided by the total cycles required for executing the code segment under inves-

tigation.

3.3.3 PU Power Consumption Sub-Model

The data path of the C6416T consists of eight functional units. These functional units can

work simultaneously, if the dispatch unit succeeds to compose an execution packet with

eight instructions. Unlike the model in [57] that uses the parallelism degree as the affecting

parameter for the processing unit model, the fact that the NOP does not require any PU for

its execution convinced us that another parameter yields a better description of the PUs.

The new parameter is the processing unit rate which expresses the average number of active

processing units per cycle. Figure 3.8 illustrates the difference between the dispatch rate

3.3. Methodology 43

Fig. 3.8: Difference between β and α.

and the processing unit rate. Another important parameter that affects the processing unit

power consumption is the word length of the data operands. In the C6416T the word length

varies from 8-bits to 32-bits. Thus, in our model 16-bits word length has been chosen to be

the typical word length.

Fig. 3.9: Model function of the C6416T Processing Units at α = 1 and F = 1 000MHz.

More than 1 000 different instructions compose the scenarios that vary the processing unit

rate, that is to account for the inter-instructions effect. The current measured from the DSK

is the sum of the clock tree, IMU, and the PU currents. To attain only the current drawn by

the PU, the IMU and clock tree currents are subtracted from the measured current.

Figure 3.9 depicts the effect of varying the number of active PU per cycle on the current

drawn by the core processor.

IDDPU = (−0.0049β + 0.0065)(1− PSR). (3.3)

The arithmetic function in (3.3) results in an excellent fit for the curve values in Fig. 3.9 with

44 3 Precise Power Consumption Model

R2 value of 0.9982. Compared to other functional units such as clock tree or the IMU, it

is clear that the PU does not significantly contribute to the total power consumption of the

core processor. It is important to mention that the scenario for invoking the PU does not

include any memory instructions. The internal memory operations are handled in a separate

scenario.

3.3.4 Internal Memory Power Consumption Sub-Model

As mentioned in the previous Section 3.3.3 the internal memory operations are separately

handled. That is because of its distinct execution characteristics. Two categories of memory

operations are included in the instruction set of the C6416T DSP load and store. The load

instructions represent the read of data from the data cache (if the operand exist in the data

cache) to a specific register from the processor’s register file. The store instructions represent

the write of data into the memory, according to the data cache write policy.

Fig. 3.10: Snapshots of different scenarios for varying ε.

The C64x+ architecture is capable of performing two memory operations per cycle. The

affecting parameter for the internal memory sub-model are the memory read access rate ε

and the memory write access rate λ. The memory access rate is defined as the number of

memory references (read and write) divided by the algorithm execution time.

Figure 3.10 illustrates snapshots of different scenarios to vary the memory read access rate

ε from 20% to 180% (as two memory operations can be simultaneously executed). All of

those scenarios conducted with the same α = 1
4
. Figure 3.11 shows the measured current

3.3. Methodology 45

Fig. 3.11: Model function of the C6416T internal memory read at α = 1 and F =
1 000MHz.

values for different ε values.

IDDInternal Memory Read = (−2 · 10−6ε2 + 0.0012ε)(1− PSR). (3.4)

The arithmetic function in (3.4) results in an excellent fit for the curve values in Fig. 3.11

with R2 value of 0.9995. When we tried to fit the values of the curve in Fig. 3.11 with a

linear arithmetic function, we hit upon that the resultant R2 value equals 0.98, equivalent to

an error of 2%. As the final model will be the summation of the different functional block

sub-models then the final model estimation error will be an accumulation of the sub-models

errors. Therefore, we decide to minimize the curve fitting error as much as possible. Hence,

we choose the arithmetic function in (3.4) to represent the internal memory read sub-model.

In the same manner (3.5) represents the current drawn from the CPU while running different

scenarios that vary the memory write access rate λ. This equation results in a R2 value of

0.9978.

IDDInternal Memory Write = (−10−5λ2 + 0.0049λ)(1− PSR). (3.5)

Hence, Equation (3.6) represent the total internal memory model.

IDDInternal Memory = (−2 · 10−6ε2 + 0.0012ε− 10−5λ2 + 0.0049λ)(1− PSR). (3.6)

46 3 Precise Power Consumption Model

3.3.5 L1 Data Cache Power Consumption Sub-Model

The L1 data cache functional block represents the flow of data from the L1 data cache to L2

memory and vice versa. Different scenarios are prepared to stimulate the effect of the data

cache miss.

Fig. 3.12: Scenario for forcing a data cache miss.

Fig. 3.13: L1D cache miss rate vs. measured CPU current.

The data cache miss rate is used as the affecting parameter for the L1 data cache functional

block. Taking into account the fact that the L1D cache is a two-way associative cache,

different scenarios that vary the number of data cache misses per fixed number of memory

accesses have been developed. In this scenario, a deterministic way for forcing the data cache

misses is followed. First, arbitrary data are pre-loaded into both blocks of set 0. Second, data

3.3. Methodology 47

from L2 memory with addresses that must be mapped into set 0 blocks are loaded to L1D

cache. The new data, from L2 memory, addresses are different from those already preloaded

to set 0. Hence, a data cache miss occurs as illustrated in 3.12.

Figure 3.13 shows the effect of varying the data cache miss rate on the current drawn by the

core processor. The arithmetic function in (3.7) results in an excellent fit for the curve values

in Fig. 3.13 with an R2 value of 0.9909. Although the quadratic term in (3.7) is very small

compared to the linear term, it has great impact on the R2 value. Discarding the quadratic

term in (3.7) results in a R2 value of 0.9272 with an error of 7.28% thus, (3.7) is a very

suitable function to represent the L1D cache misses power consumption.

IDDL1D = (−2 · 10−5γ2 + 0.0041γ)(1− PSR). (3.7)

The arithmetic function in (3.7) differs from the corresponding linear function that was pro-

posed in [57] for the cache functional block. The squared-function yields a better description

for the L1 data cache block due to the fact that L1 data cache pipelines the cache misses, to

decrease the resulting pipeline stalls. The proposed model in [56] did not separately inves-

tigate the effect of data cache misses; instead it is included in the processing unit functional

block [95].

3.3.6 L1 Program Cache Power Consumption Sub-Model

With the aid of the profiler of the C6416T device accurate cycle simulator, different scenarios

are prepared that arbitrarily vary the program cache miss rate δ. Figure 3.14 shows the effect

of varying the program cache miss rate on the current drawn by the core processor. The best

arithmetic function that fits the measured values in Fig. 3.14 is obtained as indicated in (3.8)

with an R2 value of 0.9889.

IDDL1P = (0.0011δ)(1− PSR). (3.8)

Table 3.1 shows how the algorithmic parameters of the proposed model are computed with

the aid of the C6416T profiler. The C6416T profiler, which is embedded in the CCS3.1, of-

fers many statistics regarding the program under investigation that are utilized in the process

of computing our proposed model such as number of execution packets, number of NOP

instruction cycles, number of L1D cache misses and so on.

48 3 Precise Power Consumption Model

Fig. 3.14: L1P cache miss rate vs measured CPU current.

Tab. 3.1: Algorithmic parameters calculation methodology
Parameter Computation Methodology

α No. of fetch packets / No. of execution packets

β (No. of executed instructions - NOP instructions) /
Total code cycles

ε (No. of L1D read hits / Total code cycles) * 100

λ (No. of L1D write hits / Total code cycles) * 100

γ ((No. of L1D read misses + No. of L1D write misses)
/ No. of L1D references) * 100

δ (No. of L1P misses / No. of L1P references) * 100

PSR No. of CPU stall cycles / Total code cycles

The complete FLPA power consumption model for the C6416T fixed-point high perfor-

mance VLIW DSP is shown in Table 3.2. A detailed description of how the parameters in

the proposed model are computed as well the complete model with exact constant values at

an operating frequency of 1 000MHz are illustrated in Appendix B.

3.4. Model Validation 49

Tab. 3.2: Complete power consumption model for C6416T DSP.
Functional unit Functional unit power consumption sub-model

Clock Distribution PF = (a1 · F + a2) · Vcore

IMU PIMU = (b1 · α2 + b2 · α + b3)(1− PSR) · F · Vcore

Processing Units PPU = (c1 · β + c2)(1− PSR) · F · Vcore

Memory Read PMemR = (d1 · ε2 + d2 · ε)(1− PSR) · F · Vcore

Memory Write PMemW = (e1 · λ2 + e2 · λ)(1− PSR) · F · Vcore

L1D Cache PL1D = (g1 · γ2 + g2 · γ)(1− PSR) · F · Vcore

L1P Cache PL1P = (h1 · δ)(1− PSR) · F · Vcore

Total Power PT = PF + PIMU + PPU + PMemR + PMemW + PL1D + PL1P

3.4 Model Validation

3.4.1 Validation with Benchmarks

Some common signal and image processing benchmarks from Texas Instruments libraries

are used for demonstration purpose as described in Table 3.3. The input data for all used

benchmarks are located in the internal data memory. All the benchmarks are executed in an

infinite loop to get a stable reading on the DMM.

First of all, all optimization options which are included in the CCS3.1 are turned off because

these optimization options affect the speed or the code size only and are not dedicated to

power optimization. The second step is to compile the benchmarks.

The required parameters for the model are calculated either statically from the generated

assembly files or with the aid of the CCS3.1 profiler for the parameters that cannot be esti-

mated statically such as the data cache miss rate. For instance, the processing unit rate which

is defined as the average number of active processing units per cycle is calculated from the

assembly code. The parameter β is the result of dividing the number of processing units

(equals the number of instructions excluding the NOP) by the number of cycles per code

iteration. Figure 3.15 presents the result of the estimated power consumption versus the

measured one for the benchmarks listed in Table 3.3.

50 3 Precise Power Consumption Model

Tab. 3.3: Benchmarks used for our experiments.
benchmark Description

DotP128 Dot product of a vector of 128 16-bit elements

m100 Matrix multiplication for 2 100x100 square matrices

FIR Computes a real FIR filter, Input data and filter taps are
16-bit

Sobel3x3 Apply Sobel filter of 3x3 window to an image of 8192
pixels

Thresholding Performs a thresholding operation on an input image of
8192 pixels

Histogram Takes histogram of an image of 8192, 8-bit pixels

IIR Performs an auto-regressive moving-average (ARMA)
filter with 4 auto-regressive filter coefficients and 5
moving-average filter coefficients

FFT16x16 Performs a mixed radix forwards FFT using a special
sequence of coefficients

Correlation3x3 Performs a point by point multiplication of the 3x3 mask
with an input image

The absolute average estimation error is 1.65% while the worst is 3.3%. Appendix B.3 illus-

trates the actual values for the different algorithmic parameters to estimate the power con-

sumption for the different benchmarks. It also presents the estimated and measured power

consumption with estimation error for each benchmark.

The results obtained from the previous modeling process are analyzed to figure out the func-

tional unit that is dominantly contributing to the power consumption. Figure 3.16 illustrates

the contribution percentages of the different functional blocks of the processor to the power

consumption. It is clear that the clock distribution is the largest contributor while the pro-

cessing unit is the smallest contributor. The clock distribution contribution percentage to

the total power consumption is expected to decrease when estimating the power consump-

tion of much more complex algorithms or compiling these algorithms with much aggressive

optimization options. This for sure increases the opportunity for more power oriented opti-

mization efforts. However, this processor is not the best choice for battery operated handheld

3.4. Model Validation 51

Fig. 3.15: Estimated vs. measured power consumption of the C6416T at F = 1 000MHz.

Fig. 3.16: Average functional units contribution to the processor power consumption.

devices.

3.4.2 Validation with a Real Application

The application of complex video processing algorithms with real time constraints requires

optimal transformation from the algorithm to the target architecture. For example automatic

recognition of bad weeds and their automatic eradication, automatic positioning of transport

systems, video quality control of weld seams, and video based 3D scene generation for au-

tonomous in-door vehicles. All those applications have complex video processing in a real

time environment in common. Usually, those video processing algorithms are developed in

a high level language description like MATLAB or C++ in order to verify their functionality

52 3 Precise Power Consumption Model

while performance and power issues are neglected. After this step, the algorithms have to

be optimally transformed to a target platform e.g. a PC. Whenever the PC platform does not

allow for the requested performance, which is the case in any of the aforementioned projects,

the applications have to be thoroughly analyzed in order to overcome the performance gap.

Viable choices are typically code transformations to mathematically equivalent expressions

that represent a better match to the target architecture, or the migration to a different plat-

form, e.g. DSP boards or DSP-FPGA systems, or even the composition of an optimally

tailored target architecture including instruction set extensions and dedicated processing el-

ements (ASIC) for distinct parts of the design. The bad weeds recognition algorithm, serving

as a realistic code segment, is shortly surveyed and how it has been mapped onto the targeted

DSP board.

Fig. 3.17: Illustration of the plants scatter-plot.

The bad weeds recognition algorithm is concerned with the automatic recognition and erad-

ication of bad weeds for the agricultural domain. An imaging device scans the ground and

transmits data identifying the location and intensity of green spots, i.e. representing either

the agricultural crop or bad weeds. Since the crops have been planted on a regular six ver-

tices grid as depicted in Fig. 3.17, the algorithm tries to match the ideal six vertex grid onto

the given scatter-plot of candidate spots. The best match found is then supposed to identify

the agricultural crop, whereas all other points of the scatter-plot are likely to be bad weeds

and are hence eradicated.

3.4. Model Validation 53

The example application is a restricted set exhaustive search algorithm named Elastic Graph

Model. Elastic Graph Model is a method for detecting nearly regular located objects in im-

ages. It proceeds as follows: any local maximum of the scatter-plot is supposed to represent

the left upper node of the ideal six vertex grid. For any of the remaining five ideal grid nodes

a subset of local maxima is determined from the remaining local maxima in the scatter-plot.

Hence, we obtain for any grid node a set of candidates, the so called inliers, which lie within

a certain region around the ideal grid node. In Fig. 3.17 these inliers are highlighted in green.

Thus, the number of hypotheses for the elastic graph is any possible combination of inliers

for any node. Any of these hypotheses is evaluated by two measures: the external energy,

which represents the weight of the six local maxima of the respective hypothesis indicated

in Fig. 3.17 by thicker or thinner crosses, and the internal energy, which is a measure that

accumulates the squared error of the edge length between two hypothetical nodes (for all

seven edges) and the ideal edge length (which is one in the usual case), also weighted by an

edge weight (typically also one for all edges).

Fig. 3.18: Elastic graph matching algorithm.

This restricted set exhaustive search algorithm is very time-consuming with an exponen-

tially growing algorithmic complexity in the order of the cardinality of the set of scatter-plot

vertices and/or the size of the inlier regions as noticed from Fig. 3.18. The task shall be ana-

lyzed towards optimization possibilities with respect to the computing platform. Therefore,

the algorithm has been migrated to the DSP platform.

This algorithm has been provided by Austrian Research Center (ARC), as a part of the K-

Project Embedded Computer Vision (ECV), as C++ program projected within MS Visual

Studio .NET. Therefore, the code had to be migrated to the targeted platform, i.e. the DSP

C6416T. The following steps summarize the actions taken to perform the migration to the

54 3 Precise Power Consumption Model

TI processor:

• The code had been revised and analyzed regarding its basic functionality including

debugging and structuring to match our coding requirements.

– The code included a large portion of dynamic memory allocation that did not

match the memory requirements of the DSP platform.

– Co-operating with the Austrian Research Center (ARC) a modification took place

to obtain functionally equivalent code with static memory allocation to ensure

portability.

• A suitable linker command file (.cmd) has been prepared for the project.

• The stack and heap memory maps have been adjusted to satisfy the memory require-

ments of the algorithm.

• The functionality has been tested against the original unmodified code to ensure equiv-

alence.

The power consumption of the Elastic Graph Matching (EGM) is estimated with the aid of

our proposed power consumption model described in 3.2. The estimated power consumption

equals 1.0498W while the physically measured power consumption equals 1.061W, resulting

in an estimation error of 1%. First, we check the impact of increasing the number of allowed

inliers. Table 3.4 indicates that the increase in the number of inliers exponentially increases

the execution cycles. It is very important to carefully determine the inlier distance.

Tab. 3.4: Impact of increasing number of inliers.
Local Maxima Exec. Time (ms) Code Size(bytes) Energy (mJ)

6 5.98 3288 6.36
24 90.56 4124 95.85
42 274.01 4972 291.61
60 556.64 5816 590.76

Table 3.5 shows a part from the profiling data for the scatterplot of 60 local maxima from

which the number of hypotheses is computed. Each row of Table 3.5 summarizes the state

of a certain piece of the code. The row begins by the starting and ending lines of code that

3.4. Model Validation 55

delineate the piece reported. The second column of the table indicates the type of that piece

(either function or loop) while the third column gives the number of times this piece is run

during the program’s execution. Finally, the last row gives the total number of clock cycles

spent on that piece of code.

Tab. 3.5: Profiling data for the code with 60 LocalMaxima.

Symbol Type Access Count cycle.total.incl

19-250:main.cpp Function:main 1 556 637 078
29-35:main.cpp Loop 15 82

71-238:main.cpp Loop 60 556 612 470
74-237:main.cpp Loop 360 556 609 942
90-136:main.cpp Loop 2 160 554 044 923
93-114:main.cpp Loop 129 600 547 007 140

148-151:main.cpp Loop 2 160 12 960
165-232:main.cpp Loop 360 9 557 712
178-185:main.cpp Loop 1 440 10 080
190-193:main.cpp Loop 2 160 129 240
200-212:main.cpp Loop 2 520 9 369 360

The main function starts at line 19 and ends at 250 (first row of the table). Within the main

function there is a loop that starts at line 29 and ends at 35 (second row of the table). There

is second loop that starts at line 71 and ends at 238 (third row of the table). This second loop

contains another nested loop that starts at line 74 and ends at 237. This last loop contains

several other nested loops (remaining rows of the table). The time taken within any loop is

the sum of the time taken in its nested loops as well as the remaining instructions that are

outside of those nested loops.

The performance monitoring event in this profiling is the cycle.total.incl which indicates

that the cycles count for the outer loops include the cycle count for the most inner loops.

The profiling results indicate that the most time-consuming part of the code lies in the loop

calculating the Euclidean distances. There are two positions in the code that compute the

Euclidean distance:

1. When determining the inliers for each node and this loop (93-114:main.cpp most inner

loop) consumes 547 007 140 cycle.

2. When evaluating the available hypotheses and this loop (200-212:main.cpp loop) con-

sumes 9 369 360 cycle.

56 3 Precise Power Consumption Model

The total number of execution cycles for the whole algorithm code is 556 637 078 cycles.

This means that the loop determining the inliers for each node consumes 98% of the execu-

tion cycles for the whole algorithm. Hence, more optimization effort should be paid for this

code area.

3.5 Conclusions

A precise functional-level model for estimating the power consumption of the commercial

off-the-shelf VLIW processor C6416T has been developed. The processor architecture has

been divided into several functional blocks specifically, clock tree, instruction management

unit, processing unit, internal memory, L1 data cache and L1 program cache.

The parameters that affect the power consumption of each functional block have been de-

termined. Those parameters are divided into two categories: architecture and algorithmic

parameters. The architecture parameters are those parameters that affect the power con-

sumption of all the functional blocks such as the operating frequency and the word length.

The algorithmic parameters have been computed from the generated assembly code of the

IDE. The inter-instructions as well as the pipeline stall effects have been investigated in our

proposed model.

We prove the validation and precision of our model on many typical algorithms applied in

signal and image processing as well as a real embedded application. The power consump-

tion estimated by our model, compared to the physically measured power consumption, is

achieving a very low absolute average estimation error of 1.65% and an absolute maximum

estimation error of only 3.3%.

4. COMPILER OPTIMIZATION

INFLUENCE ON THE ENERGY AND

POWER CONSUMPTION

4.1 Introduction

Given a particular architecture, the programs that run on it will have a significant effect on

the energy usage of the processor. The manner in which a program exercises particular parts

of the processor will vary the contribution of individual structures to the total energy con-

sumption [79]. For example, if the execution of a particular program generates a significant

number of data cache misses, the energy used by the second level cache will increase, as

there will be more access to the secondary cache as we present in the previous chapter.

Compilers traditionally are not exposed to the energy details of the processor. Current com-

piler optimizations are tuned primarily for performance (i.e. execution time) and/or code

size. Hence, it is essential to evaluate how these optimization options influence the power

and energy consumption within the processor while running a software kernel [77].

In this chapter we evaluate the effects of the global performance optimizations on the energy

and power consumption of the C6416T processor. Moreover, we assess the impact of these

optimization options on the most important execution characteristics such as the memory

references, the L1D cache misses and the Instruction Per Cycle (IPC) as a measure of the

instruction level parallelism.

The rest of the chapter is organized as follow: Section 4.2 explores the features of the tar-

geted compiler. The impact of various compiler optimizations on the power and energy is

analyzed in Section 4.3 as well as the effect of different execution characteristics on the

58 4 Compiler Optimization Influence on the Energy and Power Consumption

performance, power, and energy. In Section 4.4 the effect of two specific C64x+ archi-

tectural features namely; Software Pipelined Loop (SPLOOP) and the employment of the

Single Instruction Multiple Data (SIMD) on the energy and power consumption is explored.

Section 4.5 presents an evaluation to the application-architecture correlation. Finally, con-

clusions are drawn in Section 4.6.

Tab. 4.1: Features of the global performance optimization options.
Optimizations Features

-o0

performs control-flow-graph simplification, allocates
variables to registers, performs loop rotation,
eliminates unused code, simplifies expressions and
statements, Expands calls to functions declared
inline.

-o1
all -o0 optimizations, plus: performs local
copy/constant propagation, removes unused
assignments, eliminates local common expressions.

-o2

all -o1 optimizations, plus: performs software
pipelining, performs loop optimizations, eliminates
global common sub-expressions and unused
assignments, converts array references in loops to
incremented pointer form, performs loop unrolling.

-o3

all -o2 optimizations, plus: removes all functions that
are never called, simplifies functions with return
values that are never used, inline calls to small
functions, reorders function declarations so that the
attributes of called functions are known when the
caller is optimized, propagates arguments into
function bodies when all calls pass the same value in
the same argument position, identifies file-level
variable characteristics.

4.2 Targeted Compiler and Applications

The embedded C/C++ compiler version 6.0.1, in the Code Composer Studio (CCS3.1) from

Texas Instruments, is used for generating the software binaries to be loaded to the DSP. The

TMS320C6000 C/C++ compiler accepts C and C++ code conforming to the International

Organization for Standardization (ISO) standards for these languages, and produces assem-

bly language source code for the C6416T device. The compiler supports the 1989 version of

the C language.

4.3. Global Performance Optimizations Effects on power and Energy 59

This compiler features many levels of optimization as shown in Table 4.1 mainly tuned for

speed and/or code size. This can be achieved by invoking the {-o0, -o1, -o2, -o3} options

for global speed optimization [96].

4.3 Global Performance Optimizations Effects on power and

Energy

Figure 4.1 presents the measured power consumption at the four global performance opti-

mization levels for different signal and image processing benchmarks along with their av-

erages. It is obvious from Fig. 4.1 that these optimization options, on average, increase the

power consumption.

Fig. 4.1: Power consumption of the C6416T while running different benchmarks.

This emphasizes the fact that most aggressive optimizations (although they may lead to

minimum execution times) do not necessarily result in the best code from the perspective of

power consumption. The highest optimization level -o3 increases the power consumption on

average by 30.3% compared to the no optimization option. This percentage reaches 45% for

some individual benchmarks, FDCT8x8 i and correlation 3 × 3. On average, invoking -o2

or -o3 leads to much power consumption than invoking -o0 or -o1. The software pipelining

60 4 Compiler Optimization Influence on the Energy and Power Consumption

loop feature is enabled with -o2 and -o3 allowing better instruction parallelization, and as

we explain later this has a significant impact on the power consumption.

Although the results in Fig.4.1 demonstrate that invoking the global performance optimiza-

tions increases, on average, the power consumption, the energy significantly decreased. Fig-

ure 4.2 shows the normalized energy for each of the benchmarks. The normalization is

achieved by relating the energy for each of the benchmarks while invoking different opti-

mization levels to the energy when all optimization options are disabled.

Fig. 4.2: Normalized Energy versus various optimization options.

Figure 4.3 demonstrates that there is a strong correlation between execution time and energy

consumption. The most aggressive speed optimization level -o3 reduces the execution time

on average by 96.2% compared to the no optimization option. While, it reduces the energy

on average by 94.8%. It is obvious that invoking -o2 and -o3 provides significant additional

energy saving than when invoking -o0 or -o1. This can be explained by the fact that, at -o2

and -o3 the software loop pipelining is enabled, consequently leading to considerably higher

reduction in the execution time and hence in the energy.

Two groups of optimization levels can be identified namely -o0 plus -o1, enhanced mainly

by register allocation, and -o2 plus -o3 distinguished by the use of software pipelined loops

or in other words hardware (zero-overhead) loops. The no optimization, -o0 and -o1 im-

4.3. Global Performance Optimizations Effects on power and Energy 61

Fig. 4.3: Power, Execution Time and Energy normalized refering to no optimization versus
different optimization options.

ply the use of pointer registers. However, in no optimization case, data is pre-fetched from

memory prior to the execution of the instruction that needs this data. In case of -o0 and

-o1 data is fetched simultaneously with the instruction execution, saving CPU cycles and

consequently energy. Therefore, if the programm uses many variables, the power consump-

tion increases in companion with an energy drop. If the programm utilizes few variables

it presents similar energy drop with unchanged power consumption, since the registers are

loaded less frequently and reused more often.

Optimization levels -o2 and -o3 are defined mainly by the use of hardware loops. Once

set up, hardware loops parallelize counter update, comparison and branch operations, thus

saving a fixed amount of cycles per loop iteration, mostly by avoiding pipeline stalls. Given

that stalls have lower power consumption than normal instruction execution, shortening the

programs in this way actually increases power consumption. However, the magnitude of this

increase depends on how long the loop kernel is and the instructions within it. To a lesser

extent, elimination of global common subexpressions further reduces the cycle count and the

power consumption.

62 4 Compiler Optimization Influence on the Energy and Power Consumption

4.3.1 Optimizations Effect on Other Execution Characteristics

In order to analyze the previous results we find that it is worth to study the effect of the com-

piler optimizations on four important execution characteristics: data cache misses, memory

references, IPC, and CPU stall cycles. Figure 4.4 illustrates the effect of different optimiza-

tion levels on the L1D cache misses. The L1D cache misses decreases, on average, by almost

69% when -o3 is invoked. The L1D cache misses require the access of L2D cache/SRAM

which in turn provide additional power consumption.

Fig. 4.4: Impact of optimizations on the L1D cache misses.

The CPU stall cycles are decreased by 78% when -o3 is invoked as shown in Fig. 4.5. Several

reasons can cause the CPU to stall such as the cache miss, the resource conflicts and the

memory bank conflicts. Although one data cache miss causes at least six CPU stall cycles,

the C6416T CPU has two features that are expected to decrease the cache miss penalty.

The first feature, the L1D cache of the C6416T DSP pipelines the L1D cache read misses. A

single L1D read miss takes six cycles when serviced from L2 SRAM, and eight cycles when

serviced from L2 cache. Pipelining of cache misses can hide much of the miss penalty (CPU

stall cycles) by overlapping the processing of several cache misses. The miss overhead can

be expressed as (4 + (2 ×M)) when serviced from L2 SRAM or as (6 + (2 ×M)) when

serviced from L2 cache where M is the number of cache misses [97].

4.3. Global Performance Optimizations Effects on power and Energy 63

Therefore, the pipelining of cache misses provides significant reduction in the execution time

and consequently the energy but it still has no effect on the power consumption.

The second feature, the write cache miss does not directly stall the CPU because of the use

of L1D Write buffer [97]. This also affects the execution time but has no effect on the power

consumption especially when the write buffer is not full.

Fig. 4.5: CPU stall cycles versus different optimization options.

Figure 4.6 illustrates that the IPC is increased by about 269% when -o3 is invoked compared

to the case when all optimization options are disabled. This surely decreases the execution

time and consequently the energy, as more overlapping in the execution of the instructions

per cycle will be achieved. But, this results in higher parallelization degree which in turn

increases the power consumption.

Figure 4.7 shows the impact of the parallelization on the consumed power as well as the

execution time. It is clear from this figure that the compiler occasionally misbehaves for

example, invoking -o0 sometimes provides better performance results than invoking -o1.

Although the execution time is inversely proportional to the parallelization, the power con-

sumption is directly proportional.

Although, Fig. 4.8 points out that the memory references are decreased by 94% which is

expected to save the consumed power, we find that the power is increased. This emphasizes

our results in [95,98] that the Instruction Management Unit (IMU), the unit which is respon-

sible for fetching and dispatching instructions, contribution to the total power consumption

dominates the memory referencing contribution.

64 4 Compiler Optimization Influence on the Energy and Power Consumption

Fig. 4.6: Effect of various optimization options on the instructions per cycle.

Fig. 4.7: Parallelization impact on the execution time and the power consumption.

Figure 4.9 shows the relation between the memory references in one side and the power and

execution time on the other side. The values for memory references, power and execution

time are normalized w.r.t. the case of no optimizations. As shown in Fig. 4.9 invoking -o3

saves more memory references than invoking -o2 which explains why the power consump-

tion when -o2 is invoked is slightly higher than when -o3 is invoked.

4.4. Specific Architectural and Compiler Features Effects on Power and Energy 65

Fig. 4.8: Effect of different optimization options on the Memory accesses.

Fig. 4.9: Memory references impact on the power as well as the execution time.

4.4 Specific Architectural and Compiler Features Effects on

Power and Energy

4.4.1 Impact of Software Pipelined Loop

Software pipelined loop (SPLOOP), also called hardware Zero-Overhead Loop (ZOL), is a

type of instruction scheduling that exploits instruction level parallelism (ILP) across loop

iterations. SPLOOP is a specific architectural optimization feature of the C64x+ CPU, the

C64x CPU does not support the SPLOOP. This feature allows the CPU to store a single it-

66 4 Compiler Optimization Influence on the Energy and Power Consumption

eration of loop in a specialized buffer which contains hardware that will selectively overlay

copies of the single iteration in a software pipeline manner to construct an optimized execu-

tion of the loop [99]. Modulo scheduling is a form of SPLOOP that initiates loop iterations

at a constant rate, called the iteration interval (ii). To construct a modulo scheduled loop, a

single loop iteration is divided into a sequence of stages, each with length ii. In the steady

state of the execution of the SPLOOP, each of the stages is executing in parallel. The in-

struction schedule for a modulo scheduled loop has three components:

a prolog, a kernel and an epilog. The kernel is the instruction schedule that executes the

pipeline steady state. The prolog and epilog are the instruction schedules that setup and

drain the execution of the loop kernel [99].

Fig. 4.10: Concept of the SPLOOP.

In Figure 4.10, the steady state has four stages, each from a different iteration, executing in

parallel. A single iteration produces a result in the time it takes four stages to complete, but

in the steady state of the software pipeline, a result is available every stage (that is, every ii

cycles).

In this section we evaluate the impact of the software pipelining on the power and energy

consumption. The SPLOOP feature is implicitly enabled with the global optimization op-

tions -o2 and -o3. However, we override this by invoking the -mu option which disables

only the SPLOOP feature. To distinguish between the case when the software pipelining is

enabled or disabled, we utilize the term -o2-mu and -o3-mu to indicate that the SPLOOP

feature is disabled.

Table 4.2 summarizes the average power, execution time, and energy for the different signal

and image processing benchmarks listed in Table 3.3 when -o2, -o2-mu, -o3, and -o3-mu are

4.4. Specific Architectural and Compiler Features Effects on Power and Energy 67

invoked.

Tab. 4.2: Average power, execution time, and energy for the investigated benchmarks.

Power(W) Exec.Time(mSec) Energy(mJ)

-o2 1.371 0.168 0.221
-o2-mu 1.109 0.703 0.766

-o3 1.352 0.072 0.104
-o3-mu 1.117 0.16 0.204

Fig. 4.11: various optimizations versus execution cycles.

Figure 4.11 clearly illustrates the strong impact of the SPLOOP on the execution time. When

the -o2-mu and -o3-mu are invoked the execution cycles increase by 317.3% and 120.8% re-

spectively. This increase is relative to the case when -o2 and -o3 are invoked.

It is noticeable that the impact of disabling the SPLOOP on the execution cycles is higher

when invoking -o2 than when invoking -o3. Since -o3 include all the individual optimiza-

tions that exist in -o2 as well as more performance oriented optimizations that aim to reduce

the execution cycles via extra reduction in the memory references.

Despite the increase in the execution cycles when SPLOOP is disabled, the power con-

sumption decreases, on average, by 19.1% and 17.4% when -o2-mu and -o3-mu are invoked

respectively. Figure 4.12 shows the power consumption reduction for all the benchmarks

68 4 Compiler Optimization Influence on the Energy and Power Consumption

Fig. 4.12: Impact of SPLOOP on the consumed power.

when the SPLOOP feature is disabled. Figure 4.13 shows the effect of the SPLOOP on

the energy. It is clear from Fig. 4.13 that the energy increases for all the benchmarks. The

increase in the energy when SPLOOP is disabled is directly related to the increase in the

execution time.

Fig. 4.13: Impact of SPLOOP on the energy usage.

4.4. Specific Architectural and Compiler Features Effects on Power and Energy 69

We find that disabling the SPLOOP has no effect on the memory references and the L1D

cache miss rate but it significantly affects the IPC.

The IPC decreases, on average, by 55.75% and 48.5% when -o2-mu and -o3-mu are invoked

respectively resulting in lower instruction parallelism rate and consequently lead to the pre-

mentioned power saving as shown in Fig. 4.14.

Fig. 4.14: SPLOOP effect on IPC.

The power consumption increases, on average, by 7.67% when -o3-mu is invoked compared

to the case when no optimization option is invoked. Hence, the SPLOOP contributes by

70.3% to the total power increase when -o3 is invoked. Therefore, more attention to the

design of the specialized hardware for the software pipelining should be paid to compromise

the performance and power trade-offs for the C6416T.

Figure 4.15 summarizes our results regarding the effect of the SPLOOP feature on the power

consumption. It is pretty clear that invoking -o3-mu can be considered as a trade-off between

performance and power consumption.

4.4.2 Impact of SIMD

The C6000 compiler recognizes a number of intrinsic C-functions. Intrinsics allow the pro-

grammer to express the meaning of certain assembly statements that would otherwise be

cumbersome or inexpressible in C/C++. Most of the intrinsic functions make use of the

70 4 Compiler Optimization Influence on the Energy and Power Consumption

Fig. 4.15: Execution time vs. power consumption with various optimization levels.

SIMD capabilities of the C6416T. Intrinsics are used like functions. The programmer can

use C/C++ variables with these intrinsics, just as coping with any normal function. The in-

trinsics are specified with a leading underscore, and are accessed by calling them as done

with a function. For example:

int X1, X2, Y;

Y = _sadd(X1, X2)

For a complete list of the C6000 and the specific C64x+ intrinsic functions readers are en-

couraged to look at [96].

In order to assess the effect of utilizing SIMD instructions on the energy and power consump-

tion, with the aid of the Texas Instrument host intrinsics package Ver.0.72 [100], we prepare

two versions of the Inverse Discrete Cosine Transform (IDCT) algorithm as a case study.

The first version is implemented without utilizing any of the SIMD instructions while the

second is implemented with the aid of all possible SIMD instructions as shown in Fig. 4.16.

The functionality of both versions are tested and verified to give the same result.

We study the effect of the employing SIMD instructions isolated from the effect of the

SPLOOP feature by compiling the two versions with -o2-mu and -o3-mu (-mu disables the

SPLOOP feature). It is worth to mention here that invoking -o0 or -o1 do not enable the

SPLOOP feature.

Table 4.3 shows the results of applying SIMD instructions when no optimization option is in-

voked. A significant reduction in the execution cycles, slightly more than 49.5%, is achieved

in case of employing the SIMD instructions. This great reduction in the execution cycles is

4.4. Specific Architectural and Compiler Features Effects on Power and Energy 71

Fig. 4.16: An example of the IDCT kernel w/wo SIMD utilization.

Tab. 4.3: SIMD effect when no optimization option is invoked.

Original with SIMD %

Exec. Cycles 28 220 14 224 −49.60
Power (W) 1.025 1.039 1.41

Energy (mJ) 0.0289 0.0148 −48.89
IPC 1.425 1.407 −1.26

CPU Stall Cycles 60 31 −48.33
Memory References 19 821 10 519 −46.93

achieved with less than 1.5% increase in the power consumption. The energy follows the

reduction in the execution cycles and hence is reduced by 48.89%.

Tab. 4.4: Impact of SIMD when -o0 optimization options are invoked.

Original with SIMD %

Exec. Cycles 5 244 2 818 −46.26
Power (W) 1.145 1.070 −6.5

Energy (mJ) 0.006 0.00302 −49.75
IPC 3.197 2.229 −30.30

CPU Stall Cycles 49 0 −100
Memory References 2 142 773 −63.91

Table 4.4 shows the results of employing SIMD instructions when invoking -o0 global per-

formance optimization options. The execution time decreases by 46.22% when the SIMD

instructions are utilized, which is lower than the decrease in case of no optimization option is

72 4 Compiler Optimization Influence on the Energy and Power Consumption

invoked. But, on the other hand, the power consumption decreases by 6.5% which maintains

the previous energy saving (when no optimization option is invoked) to 49.75%. The main

reason for this power consumption reduction is the decrease in the IPC by 30.3%. Hence,

from the power dissipation point of view invoking -o0 with the employment of SIMD out-

performs invoking no optimization option without sacrificing the energy saving.

Table 4.5 illustrates the results of applying SIMD instructions when invoking -o1 optimiza-

tion options. The execution time decreases by 35.43% while the power consumption is

imperceptibly increased by 0.5% this is because the IPC is almost the same as in the case

when no SIMD is utilized. This leads to an energy saving by 35.15%.

Tab. 4.5: SIMD influence when -o1 optimization options are invoked.

Original with SIMD %

Exec. Cycles 3 985 2 573 −35.43
Power (W) 1.099 1.104 0.44

Energy (mJ) 0.00438 0.00284 −35.15
IPC 2.678 2.693 0.54

CPU Stall Cycles 48 0 −100
Memory References 1 536 768 −50.0

Comparing the results of utilizing SIMD while invoking -o1 and -o0, we can conclude that

utilizing the SIMD while invoking -o0 can be considered as a power aware optimization

option. This is of course on the account of longer execution time by almost 10%, if compared

to the case of invoking -o1.

It is much valuable to invoke -o2 and the -o3 from the execution speed perspective, but to

study the effect of utilizing the SIMD isolated from the effect of the SPLOOP we decide to

turn off the SPLOOP, which is implicitly invoked with -o2 or -o3. Hence, Tables 4.6 and 4.7

illustrate the results of utilizing SIMD when -o2-mu and -o3-mu (-mu is used to turn off the

SPLOOP feature) are invoked.

Table 4.6 shows that employing SIMD while invoking -o2-mu achieves slightly more than

3% power saving. It also achieves 25.21% enhancement in the execution time. The achieved

power saving is mainly caused by the reduction of the IPC by 17.34% while the enhance-

ment in the execution time is related to the significant memory references reduction by more

than 62%.

Table 4.7 demonstrates that the employment of SIMD in conjunction with invoking -o3-mu

4.4. Specific Architectural and Compiler Features Effects on Power and Energy 73

Tab. 4.6: SIMD Impact when -o2-mu (SPLOOP is disabled) optimization options are in-
voked.

Original with SIMD %

Exec. Cycles 3 471 2 596 −25.21
Power (W) 1.072 1.039 −3.02

Energy (mJ) 0.00372 0.0027 −27.47
IPC 2.231 1.844 −17.34

CPU Stall Cycles 139 0 −100
Memory References 1 536 578 −62.37

achieves 3.96% power saving while it achieves 25.4% and 28.35% reduction in the execu-

tion time and the energy respectively. The achieved power saving is mainly caused by the

reduction of the IPC by 20.86% while the enhancement in the execution time is derived by

the significant memory references reduction, by more than 62%.

Tab. 4.7: Impact of SIMD when -o3-mu (SPLOOP is disabled) optimization options are in-
voked.

Original with SIMD %

Exec. Cycles 3 319 2 476 −25.4
Power (W) 1.091 1.048 −3.96

Energy (mJ) 0.00362 0.00259 −28.35
IPC 2.416 1.913 −20.86

CPU Stall Cycles 96 0 −100
Memory References 1 536 576 −62.5

Fig. 4.17: Power consumption w/wo SIMD utilization vs. various optimization options.

74 4 Compiler Optimization Influence on the Energy and Power Consumption

To precisely determine the effect of utilizing the SIMD on the power consumption, energy

and the execution time we investigate two more case studies, the Discrete Cosine Transform

(DCT) and the Median filter with a 3x3 window in the same manner as the investigation of

the IDCT. Figure 4.17, 4.18 and 4.19 represent a comparison between the averages of power

consumption, energy and the execution cycles of the three case studies with/without SIMD

employment against various performance optimization options.

Fig. 4.18: Energy w/wo SIMD utilization vs. various optimization options.

Generally, employing the SIMD significantly enhances the performance and the energy sav-

ing. The SPLOOP feature is the main basis for the significant improvement in the perfor-

mance when -o2 or -o3 is invoked [101]. Hence, by disabling the SPLOOP feature, -o2-mu

or -o3-mu, the utilization of SIMD instructions results in a comparable performance en-

hancement with -o2 or -o3 in addition to the great advantage of, on average, 18.83% and

17% power saving, respectively [102].

Thus, it is pretty clear that rewriting the algorithm to maximally utilize SIMD instructions,

while invoking the optimization options -o3-mu, is the best choice from the power consump-

tion and performance perspective. Therefore, it can be considered as a trade-off between the

power consumption from one side and the execution time and the energy from the other side.

4.5. Characterization of Application-Architecture Correlation 75

Fig. 4.19: Execution cycles w/wo SIMD utilization vs. various optimization options.

4.5 Characterization of Application-Architecture Correlation

Embedded systems are software running on hardware. An efficient embedded system is that

one for which the software application fully utilizes the underlying architecture to deliver op-

timal energy-cycle performance. The application-architecture correlation is a bidirectional

process, matching the algorithmic structure with hardware architecture and vice versa [103].

The objective of this section is to visualize the black box impact of the compiler and the

hardware architecture (C6416T) over the software applications. We follow the same method-

ology utilized in [103]. We prepare 18 applications from image and signal processing bench-

marks. The list and description of these applications are presented in Table C.1. In order to

characterize the applications at the targeted architecture we choose nine attributes:

• Execution Time (ExecTime) • Power (power)
• Energy (Energy) • Code Size (CodeSize)
• Instructions Per Cycle (IPC) • CPU Stall Cycles (stall)
• L1D Cache Misses (L1DMiss) •Memory References (MemRef)
• Dispatching Factor (DispFac)

76 4 Compiler Optimization Influence on the Energy and Power Consumption

We analyze all the nine attributes data for the 18 applications listed in Table C.1 with the

aid of multivariate statistical techniques, in order to determine the application-architecture

correlation between these applications and the targeted platform. We utilize box plots, scree

plots and Principal Component Analysis (PCA) biplots to explore the correlation between

application and underlying hardware architecture, more details about these kind of plots and

the PCA are presented in Appendix C.

First, in order to identify the number of necessary principal components, we plot them on a

scree plot and a box plot as shown in Fig. 4.20 and Fig. 4.21. The two figures indicate that

the first three principal components (PCs) represent more than 90% of the variability in the

application profiles. Hence, the first three PCs are sufficient to represent the variability in

the application profiles for for the C6416T platforms.

Fig. 4.20: scree plot for the 18 applications at the C6416T using PCA.

Second, the importance of the PCA in reducing the problem dimensionality becomes much

more clear with the ability to plot the 18 applications data versus the first two principal com-

ponents (PCs) as shown in Fig. 4.22. Among the labeled applications A2 (multiplication of

two 100x100 matrices) and A12 (Elastic graph matching algorithm) are some of the largest

application from execution time, memory references and L1D cache misses perspective.

They are definitely different from the remainder of the data, thus they should be considered

separately.

Generally PCA is employed to reduce the data dimension. In this section, we focus on the

4.5. Characterization of Application-Architecture Correlation 77

Fig. 4.21: Box plot for the 18 applications at the C6416T using PCA.

Fig. 4.22: Plot for the 18 applications data vs. the first two PCs.

qualitative analysis of biplots. The biplot helps visualizing both the principal component

coefficients for each attribute and the principal component scores for each application in a

single plot.

Finally, we utilize the PCA biplot to visualize the black box impact of compiler and hard-

ware architecture over the software applications. We explain first, how we analyze the biplot

shown in Fig. 4.23:

• Application names are presented as solid dots.

• Vector lines show the application attributes, they correspond to the nine application

attributes.

• The main axes are the first two PCs.

78 4 Compiler Optimization Influence on the Energy and Power Consumption

• The biplot is depicted here in such a way, so that it can show the maximum association

between the application attributes, PCs and applications.

Each of the nine variables is represented in this plot by a vector, and the direction and length

of the vector indicates how each variable contributes to the two principal components in the

plot. For example, the first principal component, represented in this biplot by the horizontal

axis, has positive coefficients for the attributes ExecTime, Energy, MemRef, CodeSize and

Stall, and negative coefficients for the remaining four attributes. That corresponds to vectors

directed into the right and left halves of the plot. The second principal component, repre-

sented by the vertical axis, has negative coefficients for the attributes CodeSize and IPC, and

positive coefficients for the remaining seven attributes. That corresponds to vectors directed

into the bottom and down halves of the plot, respectively. This indicates that these compo-

nents distinguish between applications that have high values for the first set of attributes and

low for the second, and applications that have the opposite.

Fig. 4.23: biplot for the 18 applications at the C6416T using PCA.

From Fig. 4.23, it is clear that the majority of the applications are concentrated around the

IPC and on the opposite direction of ExecTime, Energy, and MemRef. Which in turn indi-

cates that these applications benefit from the great parallelization capabilities of the C6416T

and consequently have small execution time, energy and memory references. The minority

of the applications such as A7, A15 and A10 are in the opposite direction that means they rel-

atively consume much more time, energy and have a bigger number of memory references.

4.6. Conclusions 79

On the other hand this is reversed when we consider the power instead of the execution time.

Thus, this assures the obtained results in Section 4.3 that the most aggressive optimization

level -o3 increases the power consumption, on average, by 30% [104].

4.6 Conclusions

In this chapter we explore the performance and power trade-offs of the targeted architecture.

The compiler used to generate the code binaries is the embedded C/C++ compiler Ver.6.0.1

in the CCS3.1. We evaluate the effect of invoking the global performance optimization

options -o0 to -o3 on the power consumption.

The results show that the most aggressive performance optimization option -o3 reduces the

execution time, on average, by 96.2%, while it increases the power consumption by 30.3%.

We also find that the energy is significantly decreased, on average, by 94.8%, thanks to the

strong correlation between execution time and energy.

To investigate the cause of this power increase we inspected the optimizations effect on some

other performance measures, such as the memory references and the data cache misses.

Despite the decrease of the memory references by 94%, the IPC increases by 269% and

consequently increases the consumed power by 30.3% which emphasizes our results in [95]

that the IMU contribution to the total DSP core power consumption dominates the internal

memory referencing contribution.

Moreover, we assess the C64x+ architectural feature SPLOOP effect on the power consump-

tion and the performance as well. The results show that the software loop pipelining feature

contributes, on average, by 70.3% to the total power consumption increase.

In addition, we investigate the effect of utilizing the targeted architecture SIMD capabilities

on the power and energy. The results show that employing the SIMD, in general, has a sig-

nificant impact on the power consumption, execution time and consequently on the energy.

From the power dissipation point of view invoking -o0 with the employment of SIMD can

be considered as a power aware optimization option. This of course on the account of longer

execution time by almost 10%, if compared to the case of invoking -o1.

In general, invoking -o3-mu (invoking -o3 while disabling the SPLOOP feature), in con-

junction with the utilization of SIMD, is a trade-off between execution speed and the power

80 4 Compiler Optimization Influence on the Energy and Power Consumption

consumption.

Finally, we characterize the application-architecture correlation for our targeted architecture.

The PCA multivariate statistical technique is employed to visualize the black box impact of

the compiler and the hardware architecture over the software applications. This is achieved

with the aid of biplots which is depicted in our analysis in such a way, so that it can show

the maximum association between the application and the underlying hardware architec-

ture. Hence, it answers the question whether a given hardware architecture is an appropriate

choice for a given software application or not.

5. IMPACT OF SOURCE CODE

TRANSFORMATIONS ON ENERGY

AND POWER

5.1 Introduction

Power and energy optimizations can be implemented in hardware through circuit design,

and by the compiler through compile-time analysis, code reshaping, and directions to the

operating system. While hardware optimizations have been the focus of several studies and

are fairly mature, software approaches to optimizing power are relatively new. Progress in

understanding the impact of traditional compiler optimizations on the power consumption

and developing new power-aware compiler optimizations are important to overall system

energy optimization. The optimizations at compile time typically improve performance and

rarely the power consumption, as we have explained in Chapter 4, with the main limitations

of having a partial perspective of the algorithms and without the possibility of introducing

significant modifications to the data structures.

On the contrary, source code transformations can exploit full knowledge of the algorithm

characteristics, with the capability of modifying both data structures and algorithm coding;

furthermore, inter-procedural optimizations can be envisioned.

In this chapter we present the impact of applying source to source code transformations on

the power, energy and performance. The source code transformations that are presented in

this chapter are classified into three major groups: loop, data, and procedural transforma-

tions.

To evaluate the effectiveness of the applied transformations we compile each program, both

82 5 Impact of Source Code Transformations on Energy and Power

the original and transformed versions, on the target architecture (C6416T DSK). We record

the current drawn from the core CPU and hence the consumed power. With the aid of the

compiler’s profiler we also record the run time and other execution characteristics such as

memory references, L1D cache misses and so on. To obtain reliable and precise information,

we repeat the whole measuring procedure for each transformation multiple times.

5.2 Loop Oriented Transformations

Among the most important optimizations, in general, are those that operate on loops since

the loops are the most time consuming kernels of the code [105]. Loop optimization can

be viewed as the application of a sequence of specific loop transformations to the source

code, with each transformation having an associated test for legality. A transformation (or

sequence of transformations) generally must preserve the result of the program (i.e., be a le-

gal transformation). A transformation is correct, if and only if, it computes the same output

values as the original code from the same input values [106].

Evaluating the benefit of a transformation or sequence of transformations can be quite diffi-

cult within this approach, as the application of one beneficial transformation may require the

prior use of one or more other transformations that, by themselves, would result in reduced

performance. Hence, we apply each loop transformation individually on the source code

and evaluate its impact on the power as well as the performance with the aid of the target C

compiler’s profiler.

5.2.1 Loop Reversal

Reversing loop conditions so that they count down instead of up can enhance the speed

of loops. Counting down to zero with the decrement operator (i- -) is faster than counting

up to a number of iterations with the increment operator (i++). Counting down to zero

eliminates the need to a compare instruction and instead the loop is ended with a branch-if-

not-equal-zero (BNEZ). The loop reversal transformation is usually used to allow other loop

transformations such as the loop interchange or permutation and the loop fusion.

An example of applying the loop reversal transformation is shown in Figure 5.1. In this

example the code is composed of two nested loops, the inner loop is reversed to count down

5.2. Loop Oriented Transformations 83

from N-1 to 1.

Fig. 5.1: Loop index reversal transformation.

Table 5.1 shows the impact of applying loop reversal transformation on the execution time,

power and energy. Two important facts should be mentioned regarding this transformation.

First, this transformation reduces the number of registers in use which is expected to decrease

the power consumption. Second, The loop reversal transformation increases the instructions

parallelization which has a negative impact on the power consumption. The negative im-

pact of increasing the instructions parallelization on the power consumption compensates

the positive effect of reducing the number of registers in use. Thus, the overall power con-

sumption is not enhanced and remains unchanged while the execution time and the energy

are enhanced by 3.16%.

But as we mentioned before, the loop reversal still is an important pre-request transformation

for some other transformations such as the loop fusion and loop peeling.

Tab. 5.1: Loop reversal transformation effect on energy and power.

Original Transformed %

Exec. Cycles 74 507 72 156 −3.16
Power (W) 0.985 0.985 0.0

Energy (mJ) 0.0734 0.0711 −3.16
IPC 0.905 0.934 3.18

5.2.2 Loop-Based Strength Reduction

Reduction in strength replaces an expression in a loop with one that is equivalent but uses

a less expensive operator. Operator strength reduction involves the employment of mathe-

matical identities to replace slow mathematical operations with faster operations. The cost

84 5 Impact of Source Code Transformations on Energy and Power

and benefits will depend highly on the target CPU and sometimes on the surrounding code

(depending on availability of other functional units within the CPU).

Figure 5.2 shows an original loop that contains a multiplication operation and a transformed

version of the loop where the multiplication is replaced by addition operation.

Fig. 5.2: Loop-based strength reduction transformation.

Table 5.2 represents some examples of the expression strength reduction that replace costly

operations such as division and multiplication with less expensive operations such as shifting

left or right, subtraction and addition.

Tab. 5.2: Examples of expression strength reduction.

Original Reduced

x× 2 x+ x
x2 x ∗ x
xc.5 xc ×

√
x

i× 2c i << c
x/8 x >> 3
x× 15 (x << 4)− x

Table 5.3 shows the impact of applying the loop-based strength reduction transformation

on the power, energy and execution time. Although the power is not enhanced (we cannot

consider the decrease of 0.24% as a real enhancement) the execution time is decreased by

14.25% leading to a significant energy saving by almost 14.5%.

Based on our power measurements, we find that the C6416T ISA has no difference between

the execution of the ADD and the multiply (MPY) instructions from power consumption

perspective. Both the ADD & MPY instructions with 16−bit operands consume 941mW at

an operating frequency of 850MHz. On the other hand, the MPY instruction takes longer

5.2. Loop Oriented Transformations 85

execution time than the ADD instruction and it is executed only by the .M unit. On the

contrary, the ADD instruction can be executed by .L, .S, or the .D functional units. Hence,

the loop-based strength reduction allows the compiler to efficiently exploit the processor

functional units leading to better instructions parallelization as shown in Table 5.3. Thus,

the loop-based strength reduction transformation positively affects the execution time and

consequently the energy but keeps the power consumption at the same level.

Tab. 5.3: Loop-based strength reduction transformation impact on power and Energy.

Original Transformed %

Exec. Cycles 3 592 3 080 −14.25
Power (W) 0.994 0.991 −0.24

Energy (mJ) 0.0036 0.0031 −14.46
IPC 1.071 1.125 5.04

5.2.3 Loop Unswitching

This transformation is applied when a loop contains a conditional statement with a loop

invariant condition. Thus, the loop unswitching transformation moves the conditional state-

ment outside the loop by duplicating the loop’s body inside each branch of the conditional.

Hence, this transformation aims to reduce the overhead of unnecessary conditional branches

which enables more instructions parallelization that consequently enhance the performance.

Figure 5.3 presents an example to demonstrate the idea of the loop unswitching transforma-

tion.

Fig. 5.3: Loop unswitching transformation.

86 5 Impact of Source Code Transformations on Energy and Power

Table 5.4 shows the impact of applying the loop unswitching transformation on the power,

energy and execution time. Although the number of executed instructions decreases by

almost 45% leading to execution time speedup factor of almost two, the power consumption

increased by 3.15%. This transformation reduces the number of unnecessary branching

instructions that causes the CPU to stall for certain cycles. The main reason for the power

increase, due to applying the loop unswitching transformation, is the enhancement of the

instructions parallelization by 7.47% in parallel with the significant increase in the L1D

cache misses by 44.38%.

Tab. 5.4: Loop unswitching transformation impact on energy and power consumption.

Original Transformed %

Exec. Cycles 29 008 15 008 −48.26
Power (W) 0.973 1.003 3.15

Energy (mJ) 0.0282 0.0151 −46.63
IPC 0.621 0.667 7.47

L1D Cache Misses 676 976 44.38
Executed Instructions 18 008 10 003 −44.40

5.2.4 Loop Permutation

This loop transformation exchanges inner loops with outer loops. When the loop variables

index into an array, such a transformation can improve locality of reference, depending on

the array’s layout.

Figure 5.4 expresses how the loop permutation transformation is applied to two nested loops.

Recalling that the C language convention for storing an array in memory is the row-major

order (i.e a two dimension array is stored in memory row by row), then the transformed

nested loops reduces the stride from stride-N to stride-1.

Definition 1 (stride). The stride is the distance in memory between consecutively accessed

elements of an array [107].

Reducing the stride from stride-N to stride-1 is expected to enhance the performance and

consequently the energy specially when N is too large (in our example the used two dimen-

sional array size is 200× 200 with integer data elements).

Table 5.5 shows the impact of applying the loop permutation transformation on the power,

energy and execution time. Loop permutation transformation reduces the IPC by 6.4% which

5.2. Loop Oriented Transformations 87

Fig. 5.4: Loop permutation transformation.

in turn decreases the power consumption by 2.76%. But, the bad news is that it increased

the execution time by 33.26% which really was not expected. We investigated the generated

assembly code to understand the reasons behind the significant execution time increase.

Our investigation shows that the executed instructions increase by 24.73% due to improper

compiler handling of the storing and retrieving of the array index. This significant increase

in the executed instructions in conjunction with the decrease in the IPC causes the previously

mentioned execution time increase.

Tab. 5.5: Impact of loop permutation on energy and power consumption.

Original Transformed %

Exec. Cycles 360 208 480 009 33.26
Power (W) 1.044 1.015 −2.76

Energy (mJ) 0.3761 0.4873 29.58
IPC 0.891 0.834 −6.4

Executed Instructions 321 009 400 410 24.73

5.2.5 Loop Peeling

This transformation, also called Loop Splitting, attempts to eliminate or reduce the loop

dependencies introduced by the first or last few iterations by splitting these iterations from

the loop and perform them outside the loop, thus enabling better instructions parallelization.

This transformation also can be used to match the iteration control of adjacent loops allowing

the two loops to be fused together as we will see in Section 5.2.7.

Figure 5.5 shows an example of loop peeling transformation. In the original code of this

example the first iteration only makes use of the variable p = 10, and for all other iterations

p = i − 1. Therefore, in the transformed code the first iteration is moved outside the loop

and the loop iteration control is modified.

88 5 Impact of Source Code Transformations on Energy and Power

Fig. 5.5: Loop peeling transformation.

Table 5.6 shows the impact of applying the loop peeling transformation on the power, en-

ergy and execution time. Because of splitting the first iteration from the loop’s body and

performing it outside the loop, the memory references decreased by 37.78% maintaining the

same number of L1D cache misses. Hence, the execution time and the power consumption

are enhanced by 11.5% and 2.78% respectively leading to an energy saving of 13.97%.

Tab. 5.6: Impact of loop peeling transformation on energy and power consumption.

Original Transformed %

Exec. Cycles 2 808 2 485 −11.5
Power (W) 1.034 1.006 −2.78

Energy (mJ) 0.0029 0.0025 −13.97
IPC 0.919 0.962 4.6

Memory References 802 499 −37.78

5.2.6 Loop Fusion

Loop fusion, also called loop jamming, is a type of the loop transformations, which replaces

multiple loops with a single one. This transformation aims to reduce the loop overhead (loop

index increment or decrement, compare and branch). This transformation also is supposed

to enhance the cache and register file utilization. Some other loop transformations, such as

loop reversal, loop normalization, or loop peeling, may be applied to make sure that the two

loop have the same loop bounds and hence can be fused together.

Figure 5.6 presents an example of two loops that have the same bounds and there are no

dependencies between the two loop bodies. Thus, these two loops can legally be fused.

Table 5.7 shows the impact of applying the loop fusion transformation on the power, energy

and execution time. As we mentioned before the loop fusion reduces the loop overhead

5.2. Loop Oriented Transformations 89

Fig. 5.6: Loop fusion transformation.

by a factor of two. Hence, it reduces the registers in use and the executed instructions as

well, in the proposed example, by 5.44%. Moreover, the loop fusion reduces the memory

references by 14.43% and increase the instructions parallelization represented by the IPC

by 3.52%. Thus, the power consumption and the execution time are reduced by 2.3% and

8.66% respectively.

Tab. 5.7: Loop fusion transformation impact on energy and power consumption.

Original Transformed %

Exec. Cycles 5 798 5 296 −8.66
Power (W) 1.042 1.018 −2.3

Energy (mJ) 0.0060 0.0054 −10.76
IPC 1.277 1.322 3.52

Memory References 700 599 −14.43
Executed Instructions 7 405 7 002 −5.44

5.2.7 Loop Peeling and Fusion

As we mentioned in Section 5.2.6, loop fusion may be preceded by one or more other loop

transformations to make the loops under investigation legible for fusion. Figure 5.7 shows

an example where the two loops are initially not legible for fusion. Hence, loop peeling is

first applied to unify the loop bounds (both of the two loops starts from 1 and end at N − 1)

then loop fusion is applied.

Table 5.8 shows the impact of applying two transformations: the loop peeling and the loop

90 5 Impact of Source Code Transformations on Energy and Power

Fig. 5.7: Loop peeling and then fusion transformations.

fusion transformations on the power, energy and execution time. Applying both loop peeling

and fusion increases the instructions parallelization by 7.22%, while it reduces the memory

references and the executed instructions by 31.05% and 17.83% respectively. Although the

applied two loop transformations do not significantly enhance the power, it outperforms the

individually applied loop transformations from energy perspective. The energy decreases by

23.92% in case of applying loop peeling then fusion, while the energy decreases by 13.97%

and 10.76% in case of the individual applying of loop peeling and loop fusion respectively.

Tab. 5.8: Impact of loop peeling then fusion on energy and power consumption.

Original Transformed %

Exec. Cycles 4 793 3 673 −23.37
Power (W) 1.006 0.998 −0.72

Energy (mJ) 0.0048 0.0037 −23.92
IPC 0.833 0.893 7.22

Memory References 1 298 895 −31.05
Executed Instructions 3 993 3 281 −17.83

5.2.8 Loop Normalization and Fusion

Loop normalization, also called loop alignment, converts all loops of a given module into a

normal form. In this normal form, the lower bound equals one or zero and the increment in

each iteration equals one [107]. Loop normalization may be a pre-request for loop fusion.

Figure 5.8 shows an example of the loop normalization followed by loop fusion transforma-

tions. First the second loop in the original code is normalized to start from one and hence,

5.2. Loop Oriented Transformations 91

the array index in the body of this loop is modified. Second the two loops are fused together.

Fig. 5.8: Loop normalization and then fusion transformations.

Table 5.9 shows the impact of applying two transformations: the loop normalization and the

loop fusion transformations on the power, energy and execution time. The application of the

two transformations greatly affect the parallelization, IPC increases by 51.65%. The mem-

ory references and executed instructions are reduced by 20.22% and 28.74% respectively.

Derived by the great increase in the IPC, the execution time is significantly reduced by 53%

and consequently the energy is reduced by 51.12%. The negative impact of the IPC increase

on the power consumption overrides the positive impact of reducing the memory reference

and the executed instructions and causes the power consumption to increase by 4%.

Tab. 5.9: Influence of loop normalization then fusion transformations on the energy and
power consumption.

Original Transformed %

Exec. Cycles 3 022 1 420 −53.01
Power (W) 0.986 1.026 4.01

Energy (mJ) 0.00298 0.00146 −51.12
IPC 0.619 0.939 51.65

Memory References 445 355 −20.22
Executed Instructions 1 872 1 334 −28.74

5.2.9 Loop Unrolling

Loop unrolling, also known as Loop unwinding, is a loop transformation technique that

attempts to optimize a program’s execution speed at the expense of its size. Loop unrolling

92 5 Impact of Source Code Transformations on Energy and Power

replicates the body of a loop some number of times called the unrolling factor (u) and iterates

by step u instead of step one. Loop unrolling improves the performance by reducing the loop

overhead, effective exploitation of ILP from different iterations, and improving register and

data cache locality [107, 108].

Figure 5.9 illustrates an example of the loop unrolling in which the loop unrolling factor (u)

equals eight. The loop performs histogram of an input image of size 8192 pixels. It is pretty

clear that the code size significantly increased while the overhead of the loop represented in

the number of executed branches is significantly reduced.

Fig. 5.9: Loop unrolling transformation with unrolling factor of 8.

Table 5.10 shows the impact of applying the loop tiling transformations on the power, energy

and execution time. Loop unrolling enhances the instructions parallelism by 13.2% which

significantly reduces the execution time by 32.76% and consequently saves the energy by

32.55%. The memory references as well as the executed instructions are reduced by 29.14%

and 23.93% respectively, which almost maintains the power consumption at the same level.

Tab. 5.10: Impact of loop unrolling transformation on energy and power consumption.

Original Transformed %

Exec. Cycles 303 220 203 894 −32.76
Power (W) 0.955 0.958 0.31

Energy (mJ) 0.2895 0.1952 −32.55
IPC 0.649 0.734 13.2

Memory References 73 797 52 295 −29.14
Executed Instructions 196 788 149 687 −23.93

5.2. Loop Oriented Transformations 93

5.2.10 Loop Tiling

Loop tiling, also called loop blocking, partitions a loop’s iteration space into smaller chunks

or blocks, so as to help ensure data used in a loop stays in the cache until it is reused. The

partitioning of loop iteration space leads to partitioning of large arrays into smaller blocks,

thus fitting accessed array elements into cache size, enhancing cache reuse and eliminating

cache size requirements. It also can be used to enhance the processor register file [107].

The loop tiling transformation is essential for enhancing the utilization of data cache in dense

matrix applications. The loop tiling can be followed by loop permutation for the innermost

loops to increase the parallelism, the outmost loops can also be interchanged to enhance

locality across tiles.

Figure 5.10, the original code, illustrates the need of loop tiling. The innermost loop access

to array B is stride-N, while access to array A is stride-1. Thus loop permutation does not

help. Moreover, the original loop iteration space is N by N. The accessed chunk of array

B[j][i] is also N by N. When N is too large, in our example the matrix size is 100× 100, and

the cache size of the machine is too small. The accessed array elements in one loop iteration

(for example, i=1, j=1 to N) may cross the cache lines, causing cache misses. By iterating

over smaller chunks of the iteration space as shown in the transformed code in Fig. 5.10, the

loop efficiently uses the cache line.

Fig. 5.10: Loop tiling transformation.

Table 5.11 shows the impact of applying the loop tiling transformations on the power, en-

ergy and execution time. It is pretty clear that the loop tiling transformation enhances the

cache locality, as the L1D cache misses decrease by 27.52%. The enhancement of the cache

locality directly leads to a power saving by 2.95%. On the other hand, the instructions par-

allelism is significantly increased by 38.41%, which is expected to significantly enhance the

execution time. But the number of executed instructions increases by 47.88%, due to new

94 5 Impact of Source Code Transformations on Energy and Power

inserted loops, which consequently override the enhancement in the parallelism. Hence, the

execution time increases by 6.84% leading the energy to increase by 3.69%.

However, loop tilling increases the energy, it is still a good transformation for the cases when

the data cache size is small and the array dimensions are extremely large.

Tab. 5.11: Impact of loop tiling transformation on energy and power consumption.

Original Transformed %

Exec. Cycles 182 274 194 745 6.84
Power (W) 1.058 1.027 −2.95

Energy (mJ) 0.1929 0.20 3.69
IPC 0.825 1.141 38.41

L1D Cache Misses 12 226 8 862 −27.52
Executed Instructions 150 306 222 273 47.88

5.3 Data Oriented Transformations

In this section we present some transformations that are mainly concerned with the data

structures, access modes and the declaration scope of the data variables or arrays. This kind

of transformation aims to maximize the register file exploitation and to reduce the memory

and cache accesses.

5.3.1 Array Declaration Sorting

The basic idea is to modify the local array declaration ordering, so that the arrays more

frequently accessed are placed on top of the stack; in such a way, the memory locations

frequently used are accessed by exploiting direct access mode.

In particular, the arrays are allocated in the stack following the order of declaration and

the first array is accessed by offset addressing with constant 0, while the others use non-0

constants [83].

Figure 5.11 shows an example where the array access frequency ordering is C[], B[] and

A[]: the declaration order, in the original code A[], B[], and C[], is restructured placing C[]

in the first position, B[] in the second one and A[] at the end.

5.3. Data Oriented Transformations 95

Fig. 5.11: Array declaration sorting transformation.

The array declaration sorting reduces the execution time by 1.95% and consequently saves

the energy by 2.19%. The power consumption is almost not affected, hence this transforma-

tion is not a power hungry transformation.

5.3.2 Array Elements Scalarization

This transformation introduces a set of temporary variables as a substitute of the more fre-

quently used elements of an array. It allows the compiler to optimize the computation by

utilizing the processor registers. Figure 5.12 illustrates an example of the scalarization of

array elements. In the transformed code three scalar variables, t0, t1 and t2 are inserted to

replace the frequent array referencing.

Table 5.12 shows the impact of applying the array elements scalarization transformation on

the power, energy and execution time. The array size in our example is 50 but we also

verified the results with array sizes of 500 and 5000. The scalarization of array elements

transformation increases the IPC by 9.13% and hence, the execution time is reduced by

5.46%. The insertion of new variables increases the number of executed instructions by

3.17%. The compiler did not properly utilize the processor registers to handle the new

inserted scaler variables and thus, the number of memory references increases by 35.3%.

Therefore, the power consumption increases by 2.41%.

96 5 Impact of Source Code Transformations on Energy and Power

Fig. 5.12: Array elements scalarization transformation.

Tab. 5.12: Influence of array elements scalarization transformation on the energy and power
consumption.

Original Transformed %

Exec. Cycles 3 372 3 188 715 −5.46
Power (W) 0.944 0.967 2.41

Energy (mJ) 0.00318 0.00308 −3.17
IPC 0.738 0.806 9.13

Memory References 660 893 35.3
Executed Instructions 2 490 2 569 3.17

5.4 Procedural and Inter-Procedural Transformations

5.4.1 Procedure Call Preprocessing

This transformation associates with a specific function a proper set of macros that will substi-

tute a function call with either an equivalent but low energy function call or a specific result;

5.4. Procedural and Inter-Procedural Transformations 97

in short, the transformation skips a function call, or reduces its impact, when its actual pa-

rameters allow to directly identify either the returned value or another equivalent function.

Figure 5.13 illustrates a meaningful example of this transformations where two functions,

sqrt() that computes the square root of an integer value and fabs() that computes the absolute

value of a floating-point number, are predefined as macros.

Fig. 5.13: Procedure call preprocessing transformation.

Table 5.13 shows the impact of applying the procedure call preprocessing transformations on

the power, energy and execution time. Procedure call preprocessing reduces the execution

time by 23.74% and consequently saves the energy by 24%. The memory references as well

as the executed instructions are reduced by 24.21% and 23.36% respectively, which almost

maintains the power consumption at the same level.

Tab. 5.13: Influence of procedure call preprocessing transformations on the energy and
power consumption.

Original Transformed %

Exec. Cycles 503 728 384 123 −23.74
Power (W) 1.074 1.070 −0.34

Energy (mJ) 0.5410 0.4112 −24.0
IPC 1.255 1.261 0.5

Memory References 126 187 95 640 −24.21
Executed Instructions 632 224 484 513 −23.36

98 5 Impact of Source Code Transformations on Energy and Power

5.4.2 Procedure Integration

Procedure integration, also called procedure inlining, replaces calls to procedures with copies

of their bodies [107]. It can be a very useful optimization, because it changes calls from

opaque objects that may have unknown effects on aliased variables and parameters to local

code that not only exposes its effects but that can be optimized as part of the calling proce-

dure [105].

Although procedure integration removes the cost of the procedure call and return instruc-

tions, these are often small savings. The major savings often come from the additional op-

timizations that become possible on the integrated procedure body: for example, a constant

passed as an argument can often be propagated to all instances of the matching parameter.

Moreover, the opportunity to optimize integrated procedure bodies can be especially valu-

able if it enables loop transformations (refer to Section 5.4) that were originally inhibited by

having procedure calls embedded in loops or if it turns a loop that calls a procedure, whose

body is itself a loop, into a nested loop [105].

Ordinarily, when a function is invoked, control is transferred to its definition by a branch

or call instruction. With procedure integration, control flows directly to the code for the

function, without a branch or call instruction. Moreover, the stack frames for the caller and

callee are allocated together. Procedure integration may make the generated code slower as

well: for instance, by decreasing locality of reference.

Figure 5.14 shows an example of the use of procedure integration. In this example the

function pred(int) is integrated in the function f(int).

Table 5.14 shows the impact of applying the procedure integration transformations on the

power, energy and execution time. As we mentioned before the procedure integration elimi-

nate the call overhead and hence, reduce the memory references in the proposed example by

12.44%. Moreover, the procedure integration reduces the executed instructions by 41.11%

and the IPC by 12.59%. Thus, the power consumption and the execution time are reduced

by 3.93% and 32.63% respectively.

Finally, Fig. 5.15 summarizes the results of applying different code transformations on the

power, execution time, and energy. In Fig. 5.15 the original code represents the 100% hence,

the deviation above or under 100% is related to the applied code transformation.

5.4. Procedural and Inter-Procedural Transformations 99

Fig. 5.14: Procedure integration transformation.

Tab. 5.14: Influence of procedure integration transformations on the energy and power con-
sumption.

Original Transformed %

Exec. Cycles 3 218 2 168 −32.63
Power (W) 1.039 0.998 −3.93

Energy (mJ) 0.0033 0.0022 −35.27
IPC 0.983 0.859 −12.59

Memory References 804 704 −12.44
Executed Instructions 3 162 1 862 −41.11

The results show that several code transformations have good impact on power consumption,

energy and performance such as loop peeling, loop fusion and procedure integration. While

other transformations improve the power consumption on the account of the performance

such as loop permutation and loop tilling. The results also show that some transformations

have no impact on the power consumption but they improve the performance and energy.

This type of transformations are not power hungry transformations such as loop reversal,

loop strength reduction and array declaration sorting. The last type of the code transforma-

tions are those which improve the performance on the account of the power consumption

such as loop unswitching, loop normalization then fusion and the scalarization of array ele-

100 5 Impact of Source Code Transformations on Energy and Power

Fig. 5.15: Code transformations impact on power, execution time and energy.

ments.

5.5 Conclusions

The CCS allows very limited control over the individual optimizations embedded within

each global optimization level. Thus, in this chapter we assess the effect of applying source

to source code transformations on the power, energy and performance. The source code

transformations that are presented in this work are classified into three major groups: loop,

data, and procedural transformations. To evaluate the effectiveness of the applied transfor-

mations we compile each program, both the original and transformed version, on the target

architecture (C6416T DSK). Next, we record the current drawn from the core CPU and

hence the consumed power. With the aid of the compiler’s profiler we also record the run

time and other execution characteristics such as memory references, L1D cache misses and

so on. To obtain reliable and precise information, we repeat the whole measuring procedure

for each transformation multiple times.

The results show that several code transformations have good impact on power consump-

tion, energy and performance such as loop peeling, loop fusion and procedure integration

while other transformations improve the power consumption on the account of the perfor-

mance such as loop permutation (due to the inappropriate compiler handling of the storing

5.5. Conclusions 101

and retrieving of the array index) and loop tilling (due to overhead of extra inserted loops).

The results also show that some transformations have no impact on the power consumption

but they improve the performance and energy. This type of transformations is not power

hungry such as loop reversal, loop strength reduction and array declaration sorting. Other

transformations such as loop unswitching, loop normalization then fusion and scalarization

of array elements enhance the execution time on the account of the power consumption.

6 CONCLUSIONS

6.1 Summary and Conclusions

The importance of power reduction of embedded systems has continuously increased in the

past years. Recently, reducing power dissipation and energy consumption of a program

have become optimization goals in their own right, no longer considered as side-effect of

traditional performance optimizations which mainly target program execution time and/or

program size. Nowadays, there is an increasing demand for developing power-optimizing

compilers for embedded systems. This thesis is a step towards such important goal.

In this thesis, we develop functional-level power models and investigate several software

optimization techniques for embedded-processor systems. As a specific example, we con-

sider the powerful Texas Instruments C6416T DSP processor. We analyze the power con-

sumption contributions of the different functional units of this DSP. We assess the effect of

the compiler performance optimizations on the energy and power consumption. Moreover,

we explore the impact of two special architectural features of this DSP; namely Software

Pipelined Loop and the SIMD capabilities, on the energy and power consumption.

The currently-available compiler optimization techniques target execution time and rarely

improve power consumption. These techniques are handicapped for power optimization

due to their partial perspective of the algorithms and due to their limited modifications to

the data structures. On the contrary, other software optimization techniques, like source

code transformations, can exploit the full knowledge of the algorithm characteristics, with

the capability of modifying both data structures and algorithm coding. Furthermore, inter-

procedural optimizations are envisioned. Hence, we investigate several loop, data and pro-

cedural source code transformations from the power and energy perspectives. This is based

on several unique contributions:

• The development of a precise functional-level estimation technique to estimate the

104 6 Conclusions

power consumption of the embedded software running on a programmable processor.

The commercial off-the-shelf VLIW DSP C6416T from Texas Instruments is utilized

as the targeted platform. The inter-instructions as well as the pipeline stall effects have

been investigated in our proposed model. The validation and precision of our model

have been proven by estimating the power consumption of many typical algorithms

applied in signal and image processing as well as a real embedded application. The

power consumption estimated by our model, is compared to the physically measured

power consumption, achieving a very low absolute average estimation error of 1.65%

and an absolute maximum estimation error of only 3.3%.

• The exploration of power and performance trade-offs for the targeted architecture.

The compiler used to generate the code binaries is the embedded C/C++ compiler

Ver.6.0.1 in the CCS3.1. The effect of invoking the global performance optimization

options -o0 to -o3 on the power and energy consumption has been evaluated. The

results show that the most aggressive performance optimization option -o3 reduces the

execution time, on average, by 96.2%, while it increases the power consumption by

30.3%. Due to the perfect correlation between execution time and energy, we find that

the energy is significantly decreased, on average, by 94.8%. To investigate the cause

of this power increase we inspect the optimizations effect on some other performance

measures, such as the memory references and the IPC. Despite the decrease of the

memory references by 94%, the IPC increases by 260% and consequently increases

the consumed power by 30.3% which emphasizes our results in [95] that the IMU

contribution to the total DSP core power consumption dominates the internal memory

referencing contribution.

• The evaluation of the SPLOOP, specific C64x+ architectural feature, effect on the en-

ergy and power consumption. The results show that the SPLOOP feature contributes,

on average, by almost 70.3% to the total power consumption increase when -o3 is

invoked.

• The investigation of the impact of utilizing the targeted architecture SIMD capabilities

on the power and energy. The results show that employing the SIMD, in general, has

a significant impact on the power consumption, execution time and consequently on

the energy. Invoking -o3-mu (invoking -o3 while disabling the SPLOOP feature), in

6.1. Summary and Conclusions 105

conjunction with the employment of SIMD, is the best choice from the power con-

sumption perspective. Meanwhile, it also can be considered as a trade-off between

execution time and the power consumption.

• The characterization of the application-architecture correlation for the targeted plat-

form. The PCA multivariate statistical technique is employed to visualize the black

box impact of the compiler and the hardware architecture over the software applica-

tions. This is achieved with the aid of biplots which is depicted in our analysis in

such a way, so that it can show the maximum association between the application and

the underlying hardware architecture. Hence, it answers the question whether a given

hardware architecture is an appropriate choice for a given software application or not.

• The assessment of the effect of applying source code transformations on the power, en-

ergy and performance. The source code transformations that are presented in this work

are classified into three major groups: loop, data, and procedural transformations. The

results show that several code transformations have a good impact on power consump-

tion, energy and performance such as loop peeling, loop fusion and procedure integra-

tion while other transformations improve the power consumption on the account of the

performance such as loop permutation (due to the inappropriate compiler handling of

the storing and retrieving of the array index) and loop tilling (due to overhead of extra

inserted loops). The results also show that some transformations have no impact on

the power consumption but they improve the performance and energy. This category

of transformations is not power hungry such as loop reversal, loop strength reduction

and array declaration sorting. Other transformations such as loop unswitching, loop

normalization then fusion and scalarization of array elements enhance the execution

time on the account of the power consumption.

Based on our results and as a step towards a power-aware optimizing compiler, we can rec-

ommend the following recommendations for programmers and compiler designers.

First, the programmers, targeting the C6000 DSP family, are strongly recommended to com-

pile and optimize their programs by invoking -o3 while disabling the SPLOOP feature (-mu)

in conjunction with the utilization of SIMD capabilities via the employment of suitable in-

trinsic functions.

106 6 Conclusions

Second, we recommend the compiler designers to pay more attention to the circular (mod-

ulo) and bit reverse addressing schemes which are rarely utilized by the compiler. In addi-

tion, they should utilize the power-aware source code transformations.

Third, developers of power simulators need to embed a functional level power consumption

model for the target processor in their simulators software.

6.2 Remarks for Future Work

A number of interesting topics for the future based on the work accomplished in this thesis

can be identified:

With respect to the developed power consumption model the methodology can be applied

for other processors to build a library. This library can be integrated in a power estima-

tion framework to facilitate an early estimation of the power consumption. In order to ob-

tain higher accuracy regarding the power estimation methodology a combined approach of

functional-level and instruction-level power analysis techniques might be applicable.

Developing a tool that statistically analyze the application program codes to automatically

compute the required algorithmic parameters for our developed power consumption model.

The qualitative analysis of the source code transformations effect on the power and energy

indicates that some transformations are promising from power reduction perspective. Further

research regarding the automation of the process of applying these transformations can speed

up the optimization process and lead to further more power and energy savings.

BIBLIOGRAPHY

[1] M. Barr and A. Massa, Programming Embedded Systems: with C and GNU Develop-

ment Tools. O’Reilly Media Inc., 2006.

[2] M. Platzner and L. Thiele, “Hardware/Software Codesign,” Lectures,

2005, http://www.cs.uni-paderborn.de/fachgebiete/computer-engineering-

group/teaching/ss08/hscdvu.html.

[3] G. DeMicheli, R. Ernst, and W. Wolf, Readings in Hardware/Software Co-Design.

San Francisco, CA, USA: Morgan Kaufman Publishers, Academic Press, 2002.

[4] L. Geppert, “High-Flying DSP Architectures,” IEEE Spectrum, vol. 35, no. 11, pp.

53–56, 1998.

[5] V. Zivojnovic, S. Pees, and H. Meyr, “LISA - Machine Description Language and

Generic Machine Model for HW/SW Co-Design,” in proceedings of the IEEE Work-

shop on VLSI Signal Processing, San Francisco, October 1996.

[6] A. Hoffmann, H. Meyr, and R. Leupers, Architecture Exploration for Embedded Pro-

cessors with LISA. Norwell, MA, USA: Kluwer Academic Publishers, December

2002.

[7] CoWare Inc., “Processor Designer,” 2005, http://www.coware.com/products/

processordesigner.php.

[8] A. Sangiovanni-Vincentelli and G. Martin, “Platform-Based Design and Software

Design Methodology for Embedded Systems,” IEEE Design & Test of Computers,

vol. 18, no. 6, pp. 23–33, 2001.

[9] R. Zurawski, Embedded Systems Handbook. Boca Raton, FL, USA: CRC Press,

Inc., 2004.

http://www.coware.com/products/ processordesigner.php
http://www.coware.com/products/ processordesigner.php

108 Bibliography

[10] C. Talarico, J. W. Rozenblit, V. Malhotra, and A. Stritter, “A New Framework for

Power Estimation of Embedded Systems,” IEEE Computer, vol. 38, no. 2, pp. 71–78,

2005.

[11] D. Shefer, “Non Recurring Engineering,” http://www.shefer.net/articles.html, 2005.

[12] J. Plusquellic, C. Kief, and S. Suddarth, “Hardware/Sofware Code-

sign with FPGAs: Embedded Systems Design,” Lectures, October 2008,

http://www.ece.unm.edu/faculty/jimp/codesign/.

[13] A. Balboni, W. Fornaciari, and D. Sciuto, “Partitioning of Hardware-Software Em-

bedded Systems: A Metrics-Based Approach,” Integrated Computer-Aided Engineer-

ing, vol. 5, no. 1, pp. 39–56, 1998.

[14] F. Vahid and T. Givargis, Embedded System Design: A Unified Hardware/Software

Introduction. New York, NY, USA: John Wiley & Sons, Inc., 2001.

[15] V. Gutnik and A. P. Chandrakasan, “Embedded Power Supply for Low-Power DSP,”

IEEE Transactions of VLSI Systems, vol. 5, pp. 425–35, 1997.

[16] J. Lloyd, “Electromigration for Designers: An Introduction for the Non-Specialist,”

http://www.simplex.com/udsm/whitepapers/electromigration1/index.html.

[17] R. Ludeke, “Hot-Electron Effects and Oxide Degradation in MOS Structures Studied

with Ballistic Electron Emission Microscopy,” IBM Journal of Research and Devel-

opment, vol. 44, no. 4, pp. 517–534, 2000.

[18] G. Moore, “Moore’s Law,” http://www.intel.com/technology/mooreslaw/.

[19] M. Lorenz, P. Marwedel, T. Dräger, G. Fettweis, and R. Leupers, “Compiler based

exploration of DSP energy savings by SIMD operations,” in proceedings of the con-

ference on Asia South Pacific Design Automation ASP-DAC’04. Piscataway, NJ,

USA: IEEE Press, 2004, pp. 838–841.

[20] D. Stepner, N. Rajan, and D. Hui, “Embedded application design using a real-

time OS,” in proceedings of the 36th ACM/IEEE conference on Design automation

DAC’99. New York, NY, USA: ACM, 1999, pp. 151–156.

http://www.simplex.com/udsm/whitepaper s/electromigration1/index.html

Bibliography 109

[21] P. S. Diniz, Adaptive Filtering: Algorithms and Practical Implementation. Norwell,

MA, USA: Kluwer Academic Publishers, 2002.

[22] C. J. Bleakley, M. Casas-Sanchez, and J. Rizo-Morente, “Software Level Power Con-

sumption Models and Power Saving Techniques for Embedded DSP Processors,”

Journal of Low Power Electronics, vol. 2, no. 2, pp. 281–290, 2006.

[23] C. Brandolese, “A Codesign Approach to Software Power Estimation for Embedded

Systems,” PhD Disseration, Politecnico di Milano, Institute of Electronics and Infor-

mation, 2000.

[24] C. X. Huang, B. Zhang, A. Deng, and B. Swirski, “The design and implementation

of PowerMill,” in proceedings of the International Symposium on Low Power Design

ISLPED’95. New York, NY, USA: ACM, 1995, pp. 105–110.

[25] F. N. Najm, “A Survey of Power Estimation Techniques in VLSI Circuits,” IEEE

Transactions on VLSI Systems, vol. 2, pp. 446–455, 1994.

[26] S. Gupta and F. N. Najm, “Power macromodeling for high level power estimation,”

in proceedings of the 34th annual conference on Design automation DAC’97. New

York, NY, USA: ACM, 1997, pp. 365–370.

[27] T. Chou and K. Roy, “Accurate Estimation of Power Dissipation in CMOS Sequential

Circuits,” IEEE Transaction VLSI Systems, vol. 4, pp. 369–380, September 1996.

[28] D. Marculescu, R. Marculescu, and M. Pedram, “Information theoretic measures of

energy consumption at register transfer level,” in proceedings of the International

Symposium on Low Power Design ISLPED’95. New York, NY, USA: ACM, 1995,

pp. 81–86.

[29] J. N. Rabaey and M. Pedram, Low Power Design Methodologies. The Springer

International Series in Engineering and Computer Science, 1996, vol. 336.

[30] S. Powell and E. M. Chau, “Estimating power dissipation of VLSI signal processing

chips: the PFA technique,” in VLSI Signal Processing IV, 1990, pp. 250–259.

110 Bibliography

[31] N. Kumar, S. Katkoori, L. Rader, and R. Vemuri, “Profile-Driven Behavioral Synthe-

sis for Low-Power VLSI Systems,” IEEE Design and Test, vol. 12, no. 3, pp. 70–84,

1995.

[32] D. Liu and C. Svensson, “Power Consumption Estimation in CMOS VLSIs Chips,”

IEEE Journal of Solid-State Circuits, vol. 29, no. 6, pp. 663–670, 1994.

[33] P. E. Landman and J. M. Rabaey, “Activity-Sensitive Architectural Power Analysis

for the Control Path,” in proceedings of the International Symposium on Low Power

Design ISLPED’95. New York, NY, USA: ACM, 1995, pp. 93–98.

[34] H. Mehta, R. M. Owens, and M. J. Irwin, “Energy Characterization Based on Clus-

tering,” in proceedings of the conference on Design automation DAC’96. New York,

NY, USA: ACM, 1996, pp. 702–707.

[35] Q. Wu, Q. Qiu, M. Pedram, and C.-S. Ding, “Cycle-Accurate Macro-Models for RT-

Level Power Analysis,” IEEE Transaction VLSI Systems, vol. 6, no. 4, pp. 520–528,

1998.

[36] L. Benini, A. Bogliolo, M. Favalli, and G. De Micheli, “Regression Models for Be-

havioral Power Estimation,” Integrated Computer-Aided Enggineering, vol. 5, no. 2,

pp. 95–106, 1998.

[37] W. Ye, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin, “The Design and Use of

SimplePower: A Cycle-Accurate Energy Estimation Tool,” in proceedings of the 37th

conference on Design automation DAC’2000. New York, NY, USA: ACM, 2000,

pp. 340–345.

[38] S. Gurumurthi, A. Sivasubramaniam, M. J. Irwin, N. Vijaykrishnan, M. Kandemir,

T. Li, and L. K. John, “Using Complete Machine Simulation for Software Power

Estimation: The SoftWatt Approach,” in proceedings of the 8th International Sym-

posium on High-Performance Computer Architecture HPCA’02. Washington, DC,

USA: IEEE Computer Society, February 2002, pp. 141–151.

[39] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A Framework for Architectural-

Level Power Analysis and Optimizations,” SIGARCH Computer Architecture News,

vol. 28, no. 2, pp. 83–94, 2000.

Bibliography 111

[40] M. B. Kamble and K. Ghose, “Analytical Energy Dissipation Models for Low-Power

Caches,” in proceedings of the International Symposium on Low Power Electronics

and Design ISLPED’97. New York, NY, USA: ACM, 1997, pp. 143–148.

[41] D. Burger and T. M. Austin, “The SimpleScalar Tool Set, Version 2.0,” SIGARCH

Computer Architecture News, vol. 25, no. 3, pp. 13–25, 1997.

[42] R. Joseph, D. Brooks, and M. Martonosi, “Runtime Power Measurements as a Foun-

dation for Evaluating Power/Performance Tradeoffs,” in proceedings of the Workshop

on Complexity Effectice Design WCED, held in conjunction with ISCA’01, June 2001.

[43] I. Kadayif, T. Chinoda, M. Kandemir, N. Vijaykirsnan, M. J. Irwin, and A. Siva-

subramaniam, “VEC: Virtual Energy Counters,” in proceedings of the workshop on

Program analysis for software tools and engineering PASTE’01. New York, NY,

USA: ACM, 2001, pp. 28–31.

[44] M. Pedram, Power Aware Design Methodologies, J. M. Rabaey, Ed. Norwell, MA,

USA: Kluwer Academic Publishers, 2002.

[45] V. Tiwari, S. Malik, and A. Wolfe, “Power Analysis of Embedded Software a First

Step Towards Software Power Minimization,” IEEE Transaction on VLSI Systems,

pp. 437–445, December 1994.

[46] S. Nikolaidis, N. Kavvadias, P. Neofotistos, K. Kosmatopoulos, T. Laopoulos, and

L. Bisdounis, “Instrumentation Set-up for Instruction Level Power Modeling,” in pro-

ceedings of the 12th International Workshop on Power and Timing Modeling, Op-

timization and Simulation PATMOS’02. London, UK: Springer-Verlag, 2002, pp.

71–80.

[47] S. Nikolaidis, N. Kavvadias, T. Laopoulos, L. Bisdounis, and S. Blionas, “Instruction

Level Energy Modeling for Pipelined Processors,” Journal of Embedded Computing,

vol. 1, no. 3, pp. 317–324, 2005.

[48] B. Klass, D. E. Thomas, H. Schmit, and D. F. Nagle, “Modeling Inter-Instruction

Energy Effects in a Digital Signal Processor,” in Power Driven Microarchitecture

Workshop in conjunction with International Syymposism Computer Architecture, June

1998.

112 Bibliography

[49] A. Sama, J. F. M. Theeuwen, and M. Balakrishnan, “Speeding up Power Estimation of

Embedded Software,” in proceedings of the International Symposium on Low Power

Electronics and Design ISLPED’00. New York, NY, USA: ACM, 2000, pp. 191–196.

[50] J. T. Russell and M. F. Jacome, “Software Power Estimation and Optimization for

High Performance 32-bit Embedded Processors,” in proceedings of the International

Conference on Computer Design ICCD’98. Washington, DC, USA: IEEE Computer

Society, 1998, pp. 328–333.

[51] H. Mehta, R. M. Owens, and M. J. Irwin, “Instruction Level Power Profiling,” in pro-

ceedings of the International Conference of Acoustics, Speech, and Signal Processing

ICASSP’96. Washington, DC, USA: IEEE Computer Society, 1996, pp. 3326–3329.

[52] V. Steven, R. Gentile, D. R. Kaeli, and G. Olivadoti, “Developing Energy-Aware

Strategies for the Blackfin Processor,” in Proceedings of the High Performance Em-

bedded Computing (HPEC’04), Septemper 2004.

[53] M. Sami, D. Sciuto, C. Silvano, and V. Zaccaria, “An Instruction-Level Energy Model

for Embedded VLIW Architectures,” IEEE Transaction on CAD of Integrated Circuits

and Systems, vol. 21, no. 9, pp. 998–1010, 2002.

[54] M. Balakrishnan, “Low Power Design,” Lectures, 2008,

http://embedded.cse.iitd.ernet.in/homepage/course/low power/index.shtml.

[55] J. Laurent, E. Senn, N. Julien, and E. Martin, “High Level Energy Estimation for DSP

Systems,” in proceedings International Workshop on Power And Timing Modeling

and Optimization and Simulation PATMOS’01, September 2001, pp. 311–316.

[56] E. Senn, N. Julien, J. Laurent, and E. Martin, “Power Consumption Estimation of a

C Program for Data-Intensive Applications,” in proceedings of the 12th International

Workshop on Integrated Circuit Design. Power and Timing Modeling, Optimization

and Simulation PATMOS’02. London, UK: Springer-Verlag, 2002, pp. 332–341.

[57] M. Schneider, H. Blume, and T. G. Noll, “Power Estimation on Functional Level for

Programmable Processors,” in journal of Advances in Radio Science, vol. 2, May

2005, pp. 215–219.

Bibliography 113

[58] T. Arslan, A. T. Erdogan, and D. H. Horrocks, “Low Power Design for DSP: Method-

ologies and Techniques,” Microelectronics Journal, vol. 27, no. 8, pp. 731–744, 1996.

[59] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, “Low Power CMOS Digital

Design,” IEEE Journal of Solid State Circuits, vol. 27, pp. 473–484, 1992.

[60] T. Pering, T. Burd, and R. Brodersen, “The Simulation and Evaluation of Dynamic

Voltage Scaling Algorithms,” in proceedings of the International Symposium on Low

Power Electronics and Design ISLPED’98. New York, NY, USA: ACM, 1998, pp.

76–81.

[61] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B. Srivastava, “Power Optimiza-

tion of Variable Voltage Core-Based Systems,” in proceedings of the 35th annual

conference on Design automation DAC’98. New York, NY, USA: ACM, 1998, pp.

176–181.

[62] M. Pedram, “Power Optimization and Management in Embedded Systems,” in pro-

ceedings of the conference on Asia South Pacific design automation ASP-DAC’01.

New York, NY, USA: ACM, 2001, pp. 239–244.

[63] Intel Corporation, “www.intel.com.”

[64] International Business Machines(IBM) Corporation, “www.ibm.com.”

[65] Novafora Inc., “www.novafora.com.”

[66] C. F. Chiasserini and R. R. Rao, “Pulsed Battery Discharge in Communication De-

vices,” in proceedings of the 5th annual ACM/IEEE international conference on Mo-

bile computing and networking MobiCom’99. New York, NY, USA: ACM, 1999,

pp. 88–95.

[67] P. Rong and M. Pedram, “Battery-Aware Power Management Based on Markovian

Decision Processes,” in proceedings of the 2002 IEEE/ACM international conference

on Computer-aided design(ICCAD’02). New York, NY, USA: ACM, 2002, pp. 707–

713.

www.intel.com
www.ibm.com
www.novafora.com

114 Bibliography

[68] D. J. Kolson, A. Nicolau, N. Dutt, and K. Kennedy, “Optimal Register Assignment to

Loops for Embedded Code Generation,” ACM Transaction on Desgin Automation of

Electronic Systems, vol. 1, no. 2, pp. 251–279, 1996.

[69] M. O. Tokhi, M. A. Hossanin, and M. H. Shaheed, Parallel Computing for Real-Time

Signal Processing and Control, 1st ed. London, UK: Springer-Verlag, March 2003.

[70] T. V. K. Gupta, R. E. Ko, and R. Barua, “Compiler-Directed Customization of ASIP

Cores,” in proceedings of the tenth international symposium on Hardware/software

codesign CODES’02. New York, NY, USA: ACM, 2002, pp. 97–102.

[71] V. Tiwari, S. Malik, and A. Wolfe, “Compilation Techniques for Low Energy: An

Overview,” 1994, pp. 38–39.

[72] K. Ramamritham and J. A. Stankovic, “Dynamic Task Scheduling in Hard Real-Time

Distributed Systems,” IEEE Software, vol. 1, no. 3, pp. 65–75, 1984.

[73] F. Yao, A. Demers, and S. Shenker, “A Scheduling Model for Reduced CPU Energy,”

in proceedings of the 36th Annual Symposium on Foundations of Computer Science

FOCS’95. Washington, DC, USA: IEEE Computer Society, 1995, pp. 374–382.

[74] M. T.-C. Lee, M. Fujita, V. Tiwari, and S. Malik, “Power Analysis and Minimization

Techniques for Embedded DSP Software,” IEEE Transaction VLSI Systems, vol. 5,

no. 1, pp. 123–135, 1997.

[75] M. Kandemir, N. Vijaykrishnan, M. J. Irwin, and W. Ye, “Influence of Compiler Op-

timizations on System Power,” IEEE Transaction VLSI Systems, vol. vol. 9, pp. 801–

804, 2001.

[76] M. Kandemir, N. Vijaykrishnan, and M. J. Irwin, “Compiler Optimizations for Low

Power Systems,” Chapter 10, Robert Graybill and Rami Melhem: Power aware com-

puting, pp. 191–210, 2002.

[77] M. Valluri and L. John, “Is Compiling for Performance == Compiling for Power?”

in proceedings of the 5th Workshop on Interaction between Compilers and Computer

Architectures INTERACT’01, Monterrey, Mexico, Januarry 2001.

Bibliography 115

[78] L. N. Chakrapani, “The Emerging Power Crisis in Embedded Processors: What Can

a Poor Compiler Do,” in proceedings of the international conference on Compilers,

Architecture, and Synthesis for Emdedded SystemsCASES’01, November 2001.

[79] J. S. Seng and D. M. Tullsen, “The Effect of Compiler Optimizations on Pentium

4 Power Consumption,” in proceedings of the Seventh Workshop on Interaction be-

tween Compilers and Computer Architectures INTERACT’03. Washington, DC,

USA: IEEE Computer Society, February 2003, pp. 51–56.

[80] Z. N. Azeemi and M. Rupp, “Energy-Aware Source-to-Source Transformations for

a VLIW DSP Processor,” in proceedings of the 17th ICM’05, Islamabad, Pakistan,

December 2005, pp. 133–138.

[81] M. Casas-Sanchez, J. Rizo-Morente, C. Bleakley, and J. Gonzalez, “Effect of Com-

piler Optimizations on DSP Processor Power and Energy Consumption,” in proceed-

ings of the conference on Design of Circuits and Integrated Systems DCIS’07, Seville,

Spain, November 2007.

[82] E. Macii, M. Pedram, and F. Somenzi, “High-Level Power Modeling, Estimation, and

Optimization,” in proceedings of the 34th annual conference on Design automation

(DAC’97). New York, NY, USA: ACM, 1997, pp. 504–511.

[83] C. Brandolese, W. Fornaciari, F. Salice, and D. Sciuto, “The Impact of Source Code

Transformations on Software Power and Energy Consumption,” Journal of Circuits,

Systems, and Computers, vol. 11, no. 5, pp. 477–502, 2002.

[84] D. Ortiz and N. Santiago, “Impact of Source Code Optimizations on Power Consump-

tion of Embedded Systems,” June 2008, pp. 133–136.

[85] F. Catthoor, K. Danckaert, S. Wuytack, and N. D. Dutt, “Code Transformations

for Data Transfer and Storage Exploration Preprocessing in Multimedia Processors,”

IEEE Design and Test of Computers, vol. 18, no. 3, pp. 70–82, 2001.

[86] C. Kulkarni, F. Catthoory, and H. De Man, “Code Transformations for Low Power

Caching in Embedded Multimedia Processors,” in proceedings of the 12th. Interna-

tional Parallel Processing Symposium on International Parallel Processing Sympo-

116 Bibliography

sium (IPPS’98). Washington, DC, USA: IEEE Computer Society, 1998, pp. 292–

297.

[87] K. S. McKinley, S. Carr, and C.-W. Tseng, “Improving Data Locality with Loop

Transformations,” ACM Transactions on Programming Languages and Systems,

vol. 18, no. 4, pp. 424–453, 1996.

[88] L. Benini, F. Menichelli, and M. Olivieri, “A Class of Code Compression Schemes for

Reducing Power Consumption in Embedded Microprocessor Systems,” IEEE Trans.

Comput., vol. 53, no. 4, pp. 467–482, 2004.

[89] M. Game and A. Booker, “CodePackTM: Code Com-

pression for PowerPC Processors,” white paper, 1998,

http://users.ece.gatech.edu/l̃eehs/CS8803/papers/CodePack whitepaper.pdf.

[90] H. Yang, G. R. Gao, A. Marquez, G. Cai, and Z. Hu, “Power and Energy Impact by

Loop Transformations,” in proceedings of the Workshop on Compilers and Operat-

ing Systems for Low Power 2001, Parallel Architecture and Compilation Techniques,

2001.

[91] W. Fornaciari, P. Gubian, D. Sciuto, and C. Silvano, “Power Estimation of Embed-

ded Systems: A Hardware/Software Codesign Approach,” IEEE Transaction VLSI

Systems, vol. 6, no. 2, pp. 266–275, 1998.

[92] U. Kremer, “Low Power/Energy Compiler Optimizations,” in Chapter 35, Christian

Piguet: Low-Power Electronics Design, 2005.

[93] Agilent Technologies Inc., Agilent 34410A Digital Multimeter, Datasheet, October

2007, 5989-3738EN. [Online]. Available: http://www.home.agilent.com/agilent/

product.jspx?pn=34410A

[94] N. R. Draper and H. Smith, Applied Regression Analysis, 2nd ed., ser. Wiley Series in

Probability and Mathematical Statistics. New York, NY: John Wiley and Sons, Inc.,

1981.

[95] M. E. A. Ibrahim, M. Rupp, and H. A. H. Fahmy, “Power Estimation Methodology

for VLIW Digital Signal Processor,” in proceedings of the conference on Signals, Sys-

http://www.home.agilent.com/agilent/product.jspx?pn=34410A
http://www.home.agilent.com/agilent/product.jspx?pn=34410A

Bibliography 117

tems and Computers (SSC’08). Asilomar, CA, US: IEEE Signal Processing Society,

October 2008, pp. 1840–1844.

[96] Texas Instruments Inc., TMS320C6416T, Fixed Point Digital Signal Processor,

Optimizing Compiler User Guide, May 2004, SPRU187l. [Online]. Available:

www.ti.com

[97] Texas Instruments Inc., TMS320C6416T,DSP Two-Level Internal Memory Reference

Guide, February 2006, SPRU610C. [Online]. Available: www.ti.com

[98] M. E. A. Ibrahim, M. Rupp, and S. E.-D. Habib, “Power Consumption Model at Func-

tional Level for VLIW Digital Signal Processors,” in proceedings of the conference

on Design and Architectures for Signal and Image Processing (DASIP’08), Bruxelles,

Belgium, November 2008, pp. 147–152.

[99] Texas Instruments Inc., TMS320C64x/C64x+, DSP CPU and Instruction Set

Reference Guide, July 2007, SPRU732D. [Online]. Available: www.ti.com

[100] Texas Instruments Inc., C6000 Host Intrinsics, January 2009. [Online]. Available:

www.tiexpressdsp.com

[101] M. E. A. Ibrahim, M. Rupp, and S. E.-D. Habib, “Performance and Power Consump-

tion Trade-offs for a VLIW DSP,” in proceedings of the IEEE International Sympo-

sium on Signals, Circuits and systems(ISSCS’09). Iasi, Romania: IEEE, July 2009,

pp. 197–200.

[102] M. E. A. Ibrahim, M. Rupp, and H. A. H. Fahmy, “Impact of Code Transformations

and SIMD on Embedded Software Power Consumption,” in proceedings of the IEEE

International Conference on Computer Engineering and Systems (ICCES’09), Cairo,

Egypt, December 2009.

[103] N. Z. Azeemi, “Energy Aware Frame Work for Mobile Computing,” PhD Disseration,

Vienna University of Technology, Institute of Communication and Radio Frequency-

Engineering, August 2007.

[104] M. E. A. Ibrahim, M. Rupp, and S. E.-D. Habib, “Compiler-Based Optimizations

Impact on Embedded Software Power Consumption,” in proceedings of the IEEE joint

conference NEWCAS-TAISA09. Toulouse, France: IEEE, June 2009, pp. 247–250.

www.ti.com
www.ti.com
www.ti.com
www.tiexpressdsp.com

118 Bibliography

[105] S. S. Muchnick, Advanced compiler design and implementation. San Francisco, CA,

USA: Morgan Kaufmann Publishers Inc., 1997.

[106] J.-F. Collard, Reasoning about Program Transformations. Secaucus, NJ, USA:

Springer-Verlag New York, Inc., 2002.

[107] D. F. Bacon, S. L. Graham, and O. J. Sharp, “Compiler Transformations for High-

Performance Computing,” ACM Computing Surveys, vol. 26, no. 4, pp. 421–461,

1994.

[108] V. Sarkar, “Optimized Unrolling of Nested Loops,” International Journal of Parallel

Programming, vol. 29, no. 5, pp. 545–581, 2001.

[109] Texas Instruments Inc., C6000 Digital Signal Processors Documentations. [Online].

Available: www.ti.com

[110] Texas Instruments Inc., TMS320C6416T, Fixed Point Digital Signal Processor,

Datasheet, November 2003, SPRS226J. [Online]. Available: www.ti.com

[111] P. J. A. Shaw, Multivariate statistics for the Environmental Sciences. Wiley, 2009.

[112] T. Cserhati, Multivariate Methods in Chromatography: A Practical Guide. Wiley,

2008.

[113] K. R. Gabriel, “The Biplot Graphic Display of Matrices with Application to Principal

Component Analysis,” Biometrika Journal of Statistics, vol. 58, no. 3, pp. 453–567,

1971.

[114] W. Yan and M. S. Kang, GGE Biplot Analysis: A Graphical Tool for Breeders, Ge-

neticists, and Agronomists. CRC Press, 2003.

[115] Mathworks Inc., Matlab 7.7. [Online]. Available: www.mathworks.com

[116] ViSta: The Visual Statistics System. [Online]. Available: www.visualstats.org

www.ti.com
www.ti.com
www.mathworks.com
www.visualstats.org

APPENDICES

A. C6416T ARCHITECTURE AND

PROFILER EVENTS

The DSP market two years ago (2007) was divided into two parts. One, the market leader

Texas Instruments Inc., accumulates 65% market share, and the remaining companies among

them as the biggest Freescale Semiconductor share the remaining 35% of the market. According

Fig. A.1: C6000 DSP platform roadmap (reproduced from [109]).

to this fact, we restrict our consideration to the market leader Texas Instruments Inc. and give

a short overview about their product tree and the price policy in their DSP segment. The

C6000 DSP platform, which forms a bundle of high performance DSPs is mainly divided

into two categories fixed-point and floating-point DSPs.

Figure A.1 gives an overview about the single representatives of the C6000 family. They are

fixed-point DSP architectures, with the exception of the C67xx family which is a floating

122 A C6416T Architecture and Profiler Events

point architecture, priced from $7.53 to $320.95 at clock frequencies of up to 2400MHz [109].

Fig. A.2: C6000 fixed-point DSPs roadmap (reproduced from [109]).

Figure A.2 gives an overview about the high performance C64x Fixed-Point DSPs Roadmap.

The C64xTM DSP generation features TIs VelociTI.2TM VLIW architecture extensions that

include support for packed data processing and special purpose instructions to accelerate

broadband infrastructure and imaging applications. The C64x generation is shipping DSPs

with clock speeds available up to 1.2 GHz and can incorporate multiple memory, peripheral

and voltage combinations to address a wide range of high performance applications [109].

A.1 Target Architecture

Since the C6000 form a special DSP family which comprises of extreme DSP cores and con-

nected video ports. They typically possess fast memories, wide data busses and parallelism

like Very Long Instruction Word (VLIW) and Simple Instruction-Multiple Data(SIMD).

Hence, the targeted DSP is the TMS320C6416T (for the rest of the thesis it is referred to as

C6416T for brevity).

A block diagram of the C6416T DSP CPU is shown in Fig. A.3. This DSP is considered as

A.1. Target Architecture 123

Fig. A.3: C6416 block diagram (reproduced from [110]).

a complex processor architecture since it features the following:

• One of the highest performance fixed-point DSP.

– Deep pipeline (11 stages).

– Eight 32-bit instructions/cycle.

– twenty-eight operations/cycle.

– Up to 8000 MIPS.

• VLIW TMS320C64x+ DSP Core.

– Six ALUs (32-/40-bit), each supports single 32-bit, dual 16-bit, or quad 8-bit

arithmetic per clock cycle.

– Two multipliers support four 16 × 16-bit multiplies (32-bit results) per clock

cycle or eight 8× 8-bit multiplies (16-bit results) per clock cycle.

– 6432-bit general purpose registers.

– Non-aligned load-store architecture.

• Instruction set features.

– Byte-addressable (8-/16-/32-/64-bit data)

124 A C6416T Architecture and Profiler Events

• L1/L2 memory architecture.

– 16-kbyte L1 two-way set associative data cache, with a 64-byte line size and 128

sets.

– 16-kbyte direct-mapped L1P program cache, with a 32-byte line size and 512

sets.

– 1024-kbyte L2 unified mapped RAM/cache, with flexible allocation configura-

tions.

More details about the C6416T DSP can be found in [110].

A.2 C6416T Simulator Performance Monitoring Events

cycle.CPU Counts cycles consumed by the CPU (including in-

struction execution, & pipeline stall cycles) This event

count includes instruction execution cycle count,

cross path stalls and memory bank conflict stalls

cycle.Total This event count includes instruction execution cycle

count, all stalls (including pipeline stalls), memory la-

tency and system effects

L1D.hit.read CPU read access is a hit in L1D cache

L1D.hit.write CPU write access is a hit in L1D cache

L1D.hit.summary Total hits in L1D Cache

L1D.miss.read CPU read access is a miss in L1D cache

L1D.miss.write CPU write access is a miss in L1D cache

L1D.mis.summary Total misses in L1D Cache

L1D.access All data accesses from CPU to L1D cache (hit and

miss accesses)

CPU.stall.mem.L1D CPU stall cycles due to L1D cache

A.2. C6416T Simulator Performance Monitoring Events 125

L1D.stall.write buf full A write buffer exists between the L1D and L2 caches.

There can be up to four non-mergeable write misses

outstanding in the write buffer without stalling the

CPU. If a write miss occurs when the write buffer is

full, this event will occur.

L1P.hit L1P cache hit

L1P.miss.summary Total L1P cache misses

L1P.access all program fetches from CPU to L1P

CPU.stall.mem.L1P CPU stall cycles due to L1P

CPU.discontinuity.branch This will be reported every time a discontinuity (or

jump) occurred in the PC value due to the execution

of a branch instruction.

CPU.execute packet Number of instruction packets that have been de-

coded. Events will be reported against the address

of the first instruction.

CPU.instruction.executed Total number of instructions which got executed.

CPU.NOP Number of No-Operation cycles executed.

B POWER ESTIMATION DETAILS

B.1 Computation of the Model Parameters

Table B.1 shows how the algorithmic parameters, required to estimate the power consump-

tion of the running algorithm, are computed.

Tab. B.1: Algorithmic parameters calculation methodology
Parameter Computation Methodology

α No. of fetch packets / No. of execution packets

β (No. of executed instructions - NOP instructions) /
Total code cycles

ε (No. of L1D read hits / Total code cycles) * 100

λ (No. of L1D write hits / Total code cycles) * 100

γ ((No. of L1D read misses + No. of L1D write misses)
/ No. of L1D references) * 100

δ (No. of L1P misses / No. of L1P references) * 100

PSR No. of CPU stall cycles / Total code cycles

B.2 Complete Functional-Level Power Consumption Model

at 1000MHz

Table B.2 summarizes the whole power consumption model for the C6416T at an operating

frequency equals 1 000MHz. In the clock distribution sub-model as shown in Table B.2 F is

substituted with the operating frequency in MHz.

128 B Power Estimation Details

Tab. B.2: Complete power consumption model for C6416T DSP at F = 1 000MHz.
Functional unit Functional unit power consumption sub-model

Clock Distribution PClock Distribution = (0.0006F + 0.0574)× Vcore

IMU PIMU = (−0.0918α2 + 0.284α + 0.0603)(1− PSR) · Vcore

Processing Units PPU = (−0.0049β + 0.0065)(1− PSR) · Vcore

Memory Read PMem Read = (−2 · 10−6ε2 + 0.0012ε)(1− PSR) · Vcore

Memory Write PMem Write = (−10−5λ2 + 0.0049λ)(1− PSR) · Vcore

L1D Cache PL1D = (−2 · 10−5γ2 + 0.0041γ)(1− PSR) · Vcore

L1P Cache PL1P = (0.0011δ)(1− PSR) · Vcore

B.3 Power Estimation for Benchmarks

Table B.3 shows the actual computed parameters, the estimated, and the measured power

consumption for different image and signal processing benchmarks at an operating frequency

of 1 000MHz. For computing the average estimation error we used the absolute values of

the estimation error values in Table B.3. Hence, the absolute average estimation error for the

used benchmarks equals 1.6%.

B.3. Power Estimation for Benchmarks 129

Ta
b.

B
.3

:P
ow

er
E

st
im

at
io

n
fo

rd
iff

er
en

tb
en

ch
m

ar
ks

at
F

=
1

00
0M

H
z

B
en

ch
m

ar
k

α
β

ε
λ

γ
1
−

PS
R

E
st

.P
ow

er
M

ea
su

re
d

Po
w

er
E

rr
or

%

D
ot

P1
28

0.
22

7
1.

49
6

16
.6

2
5.

58
20
.0

9
0.

92
3

1.
05

6
1.

04
64

0.
88

FI
R

0.
14

05
0.

99
6

46
.8

5
11
.7

4
0.

03
3

1.
0

1.
03

9
1.

03
7

0.
21

So
be

l3
x3

0.
17

75
0.

93
6

30
.6

1
12
.2

5
2.

33
0.

99
7

1.
03

5
1.

01
9

1.
59

T
hr

es
ho

ld
0.

13
69

0.
48

7
22
.3

1
2.

70
5

9.
75

0.
99

87
0.

99
91

0.
97

7
2.

19

H
is

to
gr

am
0.

14
06

0.
55

04
21
.7

8.
84

0.
06

1
0.

99
8

0.
98

1
0.

96
24

1.
79

5

II
R

0.
17

45
1.

07
9

44
.6

3
9.

36
1.

24
1.

0
1.

04
13

1.
05

79
−

1.
59

7

FF
T

16
x1

6r
0.

15
28

0.
93

29
41
.0

8
18
.1

9
1.

06
0.

99
8

1.
06

6
1.

03
1

3.
27

C
or

re
la

tio
n

3x
3

0.
17

18
0.

88
14

31
.5

7
9.

51
6

0.
84

7
1.

0
1.

01
73

1.
00

7
1.

01
2

C MULTIVARIATE STATISTICS

C.1 Principal Component Analysis (PCA)

PCA is used for dimensionality reduction in a data set by retaining those characteristics of

the data set that contribute most to its variance, by keeping lower-order principal compo-

nents (e.g., PC1, PC2, PC3) and ignoring higher-order ones (such as PC4,PC5 and higher).

Such low-order components often contain the most important aspects of the data. But this is

not necessarily the case, depending on the application. PCA is an orthogonal linear transfor-

mation that transforms the data to a new coordinate system such that the greatest variance

by any projection of the data comes to lie on the first coordinate (called the first principal

component), the second greatest variance on the second coordinate, and so on. PCA is a way

of identifying patterns in data, and expressing the data in such a way as to highlight their

similarities and differences. Since patterns in data can be hard to find in data of high dimen-

sion, where a graphical representation is not available, PCA is a powerful tool for analyzing

data [111, 112].

C.1.1 Box Plot

The Box, Diamond and Dot plot uses boxes, diamonds and dots to form a schematic of a

set of observations. The schematic can give you insight into the shape of the distribution of

observations. Some Box, Diamond and Dot plots have several schematics. These side-by-

side plots help to see if the distributions have the same average value and the same variation

in values. The plot always displays dots. They are located vertically at the value of the

observations shown on the vertical scale. The dots are jittered horizontally by a small ran-

dom amount to avoid overlap. The plot can optionally display boxes and diamonds. Boxes

summarize information about the quartiles of the variable distribution. Diamonds summa-

rize information about the moments of the variable distribution. The box plot is a simple

132 C Multivariate Statistics

schematic of a variable distribution. The schematic gives information about the shape of the

distribution of the observations. The schematic is especially useful for determining if the

distribution of observations has a symmetric shape. If the portion of the schematic above the

middle horizontal line is a reflection of the part below, then the distribution is symmetric.

Otherwise, it is not. In the box plot, the center horizontal line shows the median, the bottom

and top edges of the box are at the first and third quartile, and the bottom and top lines are at

the 10th and 90th percentile. Thus, half the data are inside the box, half outside. Also, 10%

are above the top line and another 10% are below the bottom line. The width of the box is

proportional to the total number of observations.

C.1.2 Scree Plot

The Scree plot shows the relative fit of each principal component. It does this by plotting the

proportion of the data variance that is fit by each component versus the component number.

The plot shows the relative importance of each component in 5.1. Terminologies 71 fitting

the data. The numbers beside the points provide information about the fit of each compo-

nent. The first number is the proportion of the data variance that is accounted for by the

component. The second number is the difference in variance from the previous component.

The third number is the total proportion of variance accounted for by the component and the

preceding components. The Scree plot can be used to aid in the decision about how many

components are useful. We use it to make this decision by looking for an elbow (bend) in the

curve. If there is one (and there often is not be likely to) then the components following the

bend account for relatively little additional variance, and are good candidates to be ignored.

C.1.3 Biplot

The biplot was introduced by Gabriel at (1970) [113]. Biplots are a type of graph used in

statistics. A biplot allows information on both samples and variables of a data matrix to be

displayed graphically. Samples are displayed as points while variables are displayed either

as vectors, linear axes or nonlinear trajectories. In the case of categorical variables, category

level points may be used to represent the levels of a categorical variable. A generalized

biplot displays information on both continuous and categorical variables [114].

C.1. Principal Component Analysis (PCA) 133

C.1.4 PCA Example

Consider a sample application (reproduced from Matlab help [115]) that uses nine different

indices of the quality of life in 329 U.S. cities. These are climate, housing, health, crime,

transportation, education, arts, recreation, and economics. For each index, higher is better.

For example, a higher index for crime means a lower crime rate. The data of this example is

organized in the following matrix format:

Name Size Bytes Class
categories 9× 14 252 char array
names 329× 43 28 294 char array
ratings 329× 9 23 688 double array

• categories, a string matrix containing the names of the indices.

• names, a string matrix containing the 329 city names.

• ratings, the data matrix with 329 rows and 9 columns.

The box plot gives a quick impression of the ratings data as shown in Fig. C.1. The boxplot

can be obtained by utilizing the following matlab function:

boxplot(ratings,’orientation’,’horizontal’,’labels’,categories)

There is substantially more variability in the ratings of the arts and housing than in the rat-

ings of crime and climate. Ordinarily, we need to graph pairs of the original variables, but

there are 36 two-variable plots. Thus, we need a way to reduce the dimensionality of the

problem, principal components analysis can reduce the number of variables to consider.

Sometimes it makes sense to compute principal components for raw data. This is appropri-

ate when all the variables are in the same units. Standardizing the data is often preferable

when the variables are in different units or when the variance of the different columns is sub-

stantial (as in this example). Data can standardized by dividing each column by its standard

deviation. The principal component analysis can be easily applied to our example data with

the aid of many programs such as Matlab 7.7 from Mathworks [115] or the ViSta [116] and

so on. The princomp function of the Matlab has four outputs:

stdr = std(ratings);

sr = ratings./repmat(stdr,329,1);

[coefs,scores,variances,t2] = princomp(sr);

134 C Multivariate Statistics

Fig. C.1: Box plot for the data ratings.

• Coefficients: The first output of the princomp function, coefs, contains the coeffi-

cients of the linear combinations of the original variables that generate the principal

components. The coefficients are also known as loadings.

• Scores: The second output, scores, contains the coordinates of the original data in the

new coordinate system defined by the principal components. This output is the same

size as the input data matrix.

• Variances: he third output, variances, is a vector containing the variance explained by

the corresponding principal component. Each column of scores has a sample variance

equal to the corresponding element of variances.

• Hotelling’s T2: The last output of the princomp function, t2, is Hotelling’s T2, a

statistical measure of the multivariate distance of each observation from the center of

the data set. This is an analytical way to find the most extreme points in the data.

With the aid of the pareto function we can get a scree plot of the percent variability explained

by each principal component as shown in Fig. C.2.

C.1. Principal Component Analysis (PCA) 135

pareto(percent_explained)

xlabel(’Principal Component’)

ylabel(’Variance Explained (\%)’)

Fig. C.2: Scree plot of the percent variability explained by each principal component.

Figure C.2 shows that the only clear break in the amount of variance accounted for by each

component is between the first and second components. However, that component by itself

explains less than 40% of the variance, so more components are probably needed. Hence,

it is clear that the first three principal components explain roughly two-thirds of the total

variability in the standardized data ratings, so that might be a reasonable way to reduce the

dimensions in order to visualize the data.

Finally, by utilizing the biplot function we can visualize both the principal component coef-

ficients for each variable and the principal component scores for each observation in a single

plot as shown in Fig. C.3.

biplot(coefs(:,1:2), ’scores’,scores(:,1:2),...

’varlabels’,categories);

axis([-.26 1 -.51 .51]);

Each of the nine variables is represented in this plot by a vector, and the direction and

length of the vector indicates how each variable contributes to the two principal components

in the plot. For example, the first principal component, represented in this biplot by the

136 C Multivariate Statistics

Fig. C.3: Visualizing the results of the PCA with the Biplot.

horizontal axis, has positive coefficients for all nine variables. That corresponds to the nine

vectors directed into the right half of the plot. The second principal component, represented

by the vertical axis, has positive coefficients for the variables education, health, arts, and

transportation, and negative coefficients for the remaining five variables. That corresponds

to vectors directed into the top and bottom halves of the plot, respectively. This indicates that

this component distinguishes between cities that have high values for the first set of variables

and low for the second, and cities that have the opposite.

Each of the 329 observations is represented in this plot by a point, and their locations indicate

the score of each observation for the two principal components in the plot. For example,

points near the left edge of this plot have the lowest scores for the first principal component.

The points are scaled to fit within the unit square, so only their relative locations may be

determined from the plot.

C.2 Applications Pseudonyms

Table C.1 shows the pseudonyms of the employed applications for the multivariate analysis.

C.2. Applications Pseudonyms 137

Tab. C.1: Pseudonyms for the applications used for PCA.
App. Abbrev. Description

A1 Dot product of a vector of 128 16-bit elements
A2 Matrix multiplication for 2 100x100 square matrices
A3 Computes a real FIR filter, Input data and filter taps are

16-bit
A4 Apply Sobel filter of 3x3 window to an image of 8192

pixels
A5 Performs a thresholding operation on an input image of

8192 pixels
A6 Takes histogram of an image of 8192, 8-bit pixels
A7 Performs an auto-regressive moving-average (ARMA)

filter with 4 auto-regressive filter coefficients and 5
moving-average filter coefficients

A8 Performs a mixed radix forwards FFT using a special
sequence of coefficients

A9 Performs a point by point multiplication of the 3x3 mask
with an input image

A10 Performs IDCT on 8x8 DCT coefficient blocks
A11 Performs IDCT on 8x8 DCT coefficient blocks with the aid

of all possible SIMD
A12 Elastic Graph Matching used in the project of bad weeds

recognition and elimination
A13 performs a 3x3 median filter operation on 8-bit unsigned

values
A14 performs a 3x3 median filter operation on 8-bit unsigned

values with the aid of all possible SIMD
A15 performs a FIR filter whose sum can be larger than 32 bits
A16 performs a FIR filter whose sum can be larger than 32 bits

with the aid of all possible SIMD
A17 performs a FDCT on a list of 8x8 8-bit pixels
A18 performs a FDCT on a list of 8x8 8-bit pixels with the aid

of all possible SIMD

D LIST OF ACRONYMS

α Dispatching Rate

β Processing Rate

ε Internal Memory Read Referencing Rate

λ Internal Memory Write Referencing Rate

γ L1D cache Memory Miss Rate

δ L1P cache Memory Miss Rate

µC Micro-Controller

µP Micro-Processor

ALU Arithmetic Logic Unit

ARMA Auto-Regressive Moving-Average

ASIC Application Specific Integrated Circuit

ASIP Application Specific Instruction-Set Processor

CCS Code Composer Studio

CLB Configurable Logic Block

CMOS Complementary Metal-Oxide Semiconductor

CPU Central Processing Unit

CTMDP Continuous-Time Markovian Decision Processes

DCT Discrete Cosine Transform

DMM Digital Multi-Meter

DSK DSP Starter Kit

DSP Digital Signal Processor

DVS Dynamic voltage scaling

EEPROM Electrically Erasable Programmable ROM

FFT Fast Fourier Transform

FIR Finite Impulse Response

FLPA Functional Level Power Analysis

FPGA Field Programmable Gate Array

140 D List of Acronyms

GPP General Purpose Processor

GSM Global System for Mobile Communication

IDCT Inverse Discrete Cosine Transform

IDE Integrated Development Environment

IIR Infinite Impulse response

ILP Instruction Level Parallelism

ILPA Instruction Level Power Analysis

IMU Instruction Management Unit

IPC Instructions Per Cycle

ISA Instruction Set Architecture

MIPS Mega Instruction per Second

NOP No Operation

PC Personal Computer

PCA Principal Component Analysis

PDA Personal Digital Assistant

PFA Power Factor Approximation

PSR Pipeline Stall Rate

PU Processing Unit

RAM Random Access Memory

RISC Reduced Instruction Set Computer

ROM Read Only Memory

RTL Register Transfer Level

SIMD Single Instruction Multiple Data

SoC System on Chip

SPLOOP Software Pipelined Loop

SRAM Static Random Access Memory

UMTS Universal Mobile Telecommunication System

VLIW Very Long Instruction Word

ZOL Zero-Overhead loop

 ملخــص الرسالــــة
نتيجة الطاقة المستھلكة بواسطة الأنظمة المدمجة وذلك القدرة ويتزايد الإھتمام ھذه الأيام بتقليل

وزيادة ترددات التشغيل ، جنبا إلى جنب مع الطلب نحو التكامل رفيع المستوى الاتجاھات التكنولوجية

الطاقة لبرمجيات و القدرةح الحد من إستھلاك في الآونة الأخيرة ،أصب .المتزايد على النظم المحمولة

ً من أھداف التحسين في حد ذاته ، وليس عرضاً ثانوياً ينشأ عن الطرق الأنظمة المدمجة ھدفاً رئيسيا

وقد بات تطوير .التقليدية لتحسين الأداء والتي تتركز في محاولة الحد من وقت تنفيذ البرنامج أو حجمه

. الطاقة للأنظمة المدمجة مطلباً ملحًاالقدرة وقادرة على تحسين إستھلاك (Compilers)تراجم برمجية

 .وتعد ھذه الأطروحة خطوة نحو تحقيق ھذا الھدف الھام

 لتقديرإستھلاك القدرة -مبني على المستوى الوظيفي - تطوير نموذج بھذه الأطروحة وقد قمنا في

وكمثال محدد . لبرمجيات الأنظمة المدمجة الطاقةالقدرة و ودراسة أساليب عدة لتحسين للأنظمة المدمجة

المصنع) C6416T(للمعالجات التي تستخدم في بناء الأنظمة المدمجة أخترنا المعالج الرقمي الفائق

).Texas Instruments(بواسطة شركة

للمعالج ھذا وقد ساعد النموذج المطور لتقدير إستھلاك القدرة على تحديد إسھامات الوحدات الداخلية

فقد قمنا بعمل دراسة ،علاوةَ على ما سبق. الرقمي موضوع الدراسة في القدرة والطاقة المستھلكة

تحليلية عن مدى تأثير المستويات المختلفة لتحسين الأداء المتاحة بمترجم البرمجيات كذا توظيف سمتين

كبية والأوامر الفردية متعددة الحلقات البرمجية الترا: خاصتين بعمارة المعالج موضع الدراسة ھما

 . على القدرة والطاقة المستھلكة بواسطة ھذا المعالج)SIMD(المعطيات

وقد قمنا أيضاً بدراسة مدى الترابط بين التطبيقات البرمجية وبنية العتاد المستھدفة في ھذه الرسالة عن

طريقة تحليل المكونات الرئيسية طريق توظيف إحدى طرق التحليل الإحصائي متعدد المتغيرات وتحديدًا

وقد تم ذلك . لدراسة تأثير كل من مترجم البرمجيات وبنية العتاد المستھدفة على التطبيقات البرمجية

بحيث يوضح اقصى ترابط بين التطبيق البرمجي وبنية العتاد الذي تم توظيفة)biplots(بالإستعانة بـ

ھذا وتساھم ھذة الدراسة في إجابة السؤال التقليدي عن مدى . قالمستخدمة لتنفيذ ھذا التطبي التحتية

 .ملائمة أي بنية عتاد لتنفيذ تطبيقات برمجية محددة

يتيح للمبرمج قدرًا) Code composer Studio CCS3.1(ونظرًا لأن مترجم البرمجيات المستخدم

ن الأداء فقد قمنا بدراسة تأثير محدودًا من التحكم في وظائف التحسين المستخدمة بأي من مستويات تحسي

التحولات الخاصة بالحلقات البرمجية : العديد من التحولات البرمجية التي تشمل ثلاثة أنواع ھي

 .والبيانات والإجراءات من وجھة نظر القدرة والطاقة بالإضافة إلى وقت التنفيذ

وة على طريق الحصول على مترجم وبناءً على النتائج التي تم التوصل إليھا في ھذة الأطروحة وكخط

برمجيات معني بتحسين القدرة والطاقة المستھلكة فإننا نقدم في ھذه الأطروحة مجموعة من التوصيات

 .لكل من المبرمجين ومصممي تراجم البرمجيات

باستخدام -(C6000)الذين يستھدفون معالج الإشارات الرقمية من عائلة -نوصي المبرمجون :أولاً

وذلك بالتزامن مع (SPLOOP)مستوى التحسين الثالث مع الغاء خاصية الحلقات البرمجية التراكبية

 مــن خـلال توظيــف الإجراءات الجوھريــة)SIMD(ات ــددة المعطيـة متعـالفرديإستخدام الأوامــر

(Intrinsic Functions) المتاحة.

 ً مجية بزيادة الإھتمام بتوظيف طرق العنونة الحلقية والجزئية العكسية نوصي مصمموا التراجم البر: ثانيا

ُ إلى ضرورة استھداف . والتي نادرًاُ ما يتم توظيفھا من قبل التراجم الحالية كما يجدر الإشارة أيضا

 .التحولات البرمجية المعنية بتحسين القدرة بمستويات التحسين المختلفة

ً ثا - نموذج محاكاة نمط إستھلاك القدرة بالمعاجات الرقمية الدقيقة بدمج نوصي مطوري برمجيات : لثا

 .بالمعالج الدقيق المستھدف مع برامجھم لتقديرإستھلاك القدرة -مبني على المستوى الوظيفي

م ـتقدير وتحسين القدرة والطاقة لبرمجيات النظ
 ةـالمدمج
 إعداد

 مصطفى السيد أحمد إبراھيم

 جامعة القاھرة -الھندسة لى كلية إرسالة مقدمة

 كجزء من متطلبات الحصول على درجة الدكتوراه

 فــــــي

 ھندسة الإلكترونيات والإتصالات الكھربية

 :يعتمد من لجنة الممتحنين

 محمد زكي عبد المجيد عضو /الأستاذ الدكتور
 جامعة الأزھر –سة دھنكلية ال

 أشرف الفرغلي سالم عضو / الأستاذ الدكتور
 جامعة عين شمس –سة دكلية الھن

 سراج الدين السيد حبيب المشرف على الرسالة /الأستاذ الدكتور
 جامعة القاھرة –سة دكلية الھن

 روب المشرف على الرسالة ماركوس /الأستاذ الدكتور
 كلية الھندسة الكھربية وتكنولوجيا المعلومات
 جامعة فيينا للتكنولوجيا

 جامعة القاھرة –كلية الھندسة

 جمھورية مصر العربية –الجيزة

 ٢٠٠٩نوفمبر

ات ــة لبرمجيـــدرة والطاقـــن القـديـر وتحسيــتق
 ةـــالمدمجـ مـــالنظـ

 دادـــــإع

 مصطفى السيد أحمد إبراھيم

 جامعة القاھرة -لى كلية الھندسة إرسالة مقدمة

 كجزء من متطلبات الحصول على درجة الدكتوراه

 يــــــف

 ھندسة الإلكترونيات والإتصالات الكھربية

 رافــــــــت إشـــتح

 سراج الدين السيد حبيب. د.ا
 جامعة القاھرة –كلية الھندسة كترونيات والإتصالات الكھربيةأستاذ بقسم ھندسة الإل

 ماركوس روب . د.ا
 جامعة فيينا للتكنولوجيا –معھد الإتصالات وھندسة ترددات الراديو ب أستاذ

 حسن فھمي يحسام عل. د
 جامعة القاھرة –كلية الھندسة مدرس بقسم ھندسة الإلكترونيات والإتصالات الكھربية

 جامعة القاھرة –ھندسة كلية ال

 جمھورية مصر العربية –الجيزة

 ٢٠٠٩نوفمبر

ات ــة لبرمجيـــدرة والطاقـــن القـديـر وتحسيــتق
 ةـــم المدمجــــالنظـ

 إعـــــداد

 مصطفى السيد أحمد إبراھيم
 مدرس مساعد بقسم الھندسة الكھربية

 جامعة بنھا –المعھد العالي للتكنولوجيا

 جامعة القاھرة - مة إلى كلية الھندسة رسالة مقد

 كجزء من متطلبات الحصول على درجة الدكتوراه

 فـــــــــي

 ھندسة الإلكترونيات والإتصالات الكھربية

 جامعة القاھرة –كلية الھندسة

 جمھورية مصر العربية –الجيزة

 ٢٠٠٩نوفمبر

	Introduction
	Embedded Systems
	Target Architectures for Embedded Systems
	Embedded Systems Design Metrics

	Motivation
	Contributions
	Thesis Outline

	Related Work
	Introduction
	Software Power Consumption Estimation Techniques
	Low-Level Estimation Techniques
	High-Level Estimation Techniques

	Power Saving Techniques: Overview
	Manufacturing Level Power Saving
	Processor Level Power Saving
	Dynamic Voltage and Frequency Scaling
	Battery Aware Power Saving
	Compiler Level Power Saving

	Source to Source Code Transformations
	Conclusions

	Precise Power Consumption Model
	Introduction
	Experimental Setup
	Methodology
	Static and Clock Distribution Power Consumption Sub-Model
	IMU Power Consumption Sub-Model
	PU Power Consumption Sub-Model
	Internal Memory Power Consumption Sub-Model
	L1 Data Cache Power Consumption Sub-Model
	L1 Program Cache Power Consumption Sub-Model

	Model Validation
	Validation with Benchmarks
	Validation with a Real Application

	Conclusions

	Compiler Optimization Influence on the Energy and Power Consumption
	Introduction
	Targeted Compiler and Applications
	Global Performance Optimizations Effects on power and Energy
	Optimizations Effect on Other Execution Characteristics

	Specific Architectural and Compiler Features Effects on Power and Energy
	Impact of Software Pipelined Loop
	Impact of SIMD

	Characterization of Application-Architecture Correlation
	Conclusions

	Impact of Source Code Transformations on Energy and Power
	Introduction
	Loop Oriented Transformations
	Loop Reversal
	Loop-Based Strength Reduction
	Loop Unswitching
	Loop Permutation
	Loop Peeling
	Loop Fusion
	Loop Peeling and Fusion
	Loop Normalization and Fusion
	Loop Unrolling
	Loop Tiling

	Data Oriented Transformations
	Array Declaration Sorting
	Array Elements Scalarization

	Procedural and Inter-Procedural Transformations
	Procedure Call Preprocessing
	Procedure Integration

	Conclusions

	Conclusions
	Summary and Conclusions
	Remarks for Future Work

	References
	Appendices
	C6416T Architecture and Profiler Events
	Target Architecture
	C6416T Simulator Performance Monitoring Events

	Power Estimation Details
	Computation of the Model Parameters
	Complete Functional-Level Power Consumption Model at 1000MHz
	Power Estimation for Benchmarks

	Multivariate Statistics
	Principal Component Analysis (PCA)
	Box Plot
	Scree Plot
	Biplot
	PCA Example

	Applications Pseudonyms

	List of Acronyms

