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Abstract

The world in which we live is becoming more and more automated, exemplified
by the numerous robots, or autonomous vehicles, that operate in air, on land, or
in water. These robots perform a wide array of different tasks, ranging from the
dangerous, such as underground mining, to the boring, such as vacuum cleaning.
In common for all different robots is that they must possess a certain degree of
awareness, both of themselves and of the world in which they operate. This thesis
considers aspects of two research problems associated with this, more specifically
the Simultaneous Localization and Mapping (slam) problem and the Multiple
Target Tracking (mtt) problem.

The slam problem consists of having the robot create a map of an environment
and simultaneously localize itself in the same map. One way to reduce the ef-
fect of small errors that inevitably accumulate over time, and could significantly
distort the SLAM result, is to detect loop closure. In this thesis loop closure detec-
tion is considered for robots equipped with laser range sensors. Machine learning
is used to construct a loop closure detection classifier, and experiments show that
the classifier compares well to related work.

The resulting slam map should only contain stationary objects, however the
world also contains moving objects, and to function well a robot should be able to
handle both types of objects. The mtt problem consists of having the robot keep
track of where the moving objects, called targets, are located, and how these tar-
gets are moving. This function has a wide range of applications, including track-
ing of pedestrians, bicycles and cars in urban environments. Solving the mtt
problem can be decomposed into two parts: one part is finding out the number
of targets, the other part is finding out what the states of the individual targets
are.

In this thesis the emphasis is on tracking of so called extended targets. An ex-
tended target is a target that can generate any number of measurements, as op-
posed to a point target that generates at most one measurement. More than one
measurement per target raise interesting possibilities to estimate the size and the
shape of the target. One way to model the number of targets and the target states
is to use random finite sets, which leads to the Probability Hypothesis Density
(phd) filters. Two implementations of an extended target phd filter are given,
one using Gaussian mixtures and one using Gaussian inverse Wishart (giw) mix-
tures. Two models for the size and shape of an extended target measured with
laser range sensors are suggested. A framework for estimation of the number of
measurements generated by the targets is presented, and reduction of giw mix-
tures is addressed. Prediction, spawning and combination of extended targets
modeled using giw distributions is also presented. The extended target tracking
functions are evaluated in simulations and in experiments with laser range data.
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Populärvetenskaplig sammanfattning

Den värld i vilken vi lever har med tiden blivit allt mer automatiserad. Ett av
många tecken på detta är det stora antal robotar, eller autonoma farkoster, som
verkar bland annat i luften, på land, eller i vatten. De här robotarna kan utföra
ett brett spektrum av olika uppgifter, allt ifrån direkt farliga, som underjordisk
gruvdrift och sanering av havererade kärnreaktorer, till alldagliga och tråkiga,
som dammsugning och gräsklippning. På samma sätt som en människa behöver
använda sina sinnen och sitt medvetande för att hantera vardagen, måste alla
typer av robotar ha en viss medvetenhet för att kunna utföra sina uppgifter. Det
krävs bland annat att robotarna kan uppfatta och förstå sin arbetsmiljö.

I den här avhandlingen behandlas ett antal delar av två stycken övergripande
forskningsproblem som är relaterade till detta. Det första forskningsproblemet
kallas för samtidig positionering och kartering, vilket på engelska heter Simulta-
neous Localization and Mapping och förkortas slam. Det andra forskningspro-
blemet kallas för målföljning.

slam-problemet går ut på att låta roboten skapa en karta av ett område, och sam-
tidigt som kartan skapas positionera sig i den. Exakt vad som menas med karta
i det här sammanhanget varierar beroende på robotens specifika arbetsuppgift.
Exempelvis kan det, för en inomhusrobot, röra sig om en virtuell modell av var
golv, väggar och möbler finns i ett hus. En oundviklig del av slam-problemet är
att roboten hela tiden gör små fel, vilket påverkar kartan som skapas, samt hur
väl roboten kan positionera sig. Enskilda fel har inte särskilt stor inverkan, men
om felen ackumuleras under en längre tid kan det leda till att kartan förvrängs,
eller att roboten helt enkelt inte kan finna sin position i kartan.

Ett sätt att undvika att så sker är att utrusta roboten med en funktion vilken gör
det möjligt för roboten att känna igen platser som den har besökt tidigare, vilket
kallas platsigenkänning. När roboten känner igen en plats kan den jämföra med
vad kartan och positionen säger. Om kartan och positionen inte säger att roboten
är tillbaka på en plats som tidigare besökts kan denna diskrepans korrigeras. Re-
sultatet är en karta och en position som bättre representerar verkligheten. I den
här avhandlingen har platsigenkänning studerats för robotar som är utrustade
med laserscanners, och en funktion för platsigenkänning har skapats. I en serie
experiment har det visats att funktionen kan känna igen platser såväl inomhus
i kontorsmiljö, som utomhus i stadsmiljö. Det har även visats att funktionens
egenskaper jämför sig väl med tidigare arbete på området.

Den resulterande slam-kartan bör av naturliga skäl endast innehålla stationä-
ra föremål. Vår värld innehåller dock även rörliga föremål, och för att en robot
ska kunna arbeta på ett säkert sätt måste den även hålla reda på alla rörliga fö-
remål som finns i dess närhet. Det andra forskningsproblemet som behandlats
i avhandlingen, målföljning, går ut på att utrusta roboten med funktioner som
gör det möjligt för den att hålla reda på var de rörliga målen är, samt vart de är
på väg att röra sig. Exempelvis kan den här typen av funktioner användas till att
hålla reda på fotgängare, cyklister och bilar i en stadsmiljö.
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viii Populärvetenskaplig sammanfattning

Tidigare har forskningen inom målföljning varit fokuserad på så kallade punkt-
mål. Vid följning av punktmål kan följningsproblemet sägas ha två delar: den
ena är att räkna ut hur många rörliga mål det finns, den andra är att räkna ut var
varje enskilt mål befinner sig, samt vart det är på väg.

Här har fokus istället legat på följning av vad som kallas för utsträckta mål, en
typ av mål som rönt ökande uppmärksamhet i forskningsvärlden de senaste fem
till tio åren. Med utsträckta mål får följningsproblemet en tredje del: att för var-
je enskilt mål räkna ut storleken och formen på målet, det vill säga den spatiala
utsträckningen. Att känna till utsträckningen på de rörliga målen är viktigt exem-
pelvis för en robot som ska ta sig genom ett rum där många person befinner sig.
För att göra det krävs att roboten rör sig nära personerna, utan att för den skull
krocka med någon. Att lösa detta på ett bra sätt kräver att roboten har kunskap
inte bara om var personerna befinner sig, utan även hur mycket plats de tar upp.

I avhandlingen har ett antal aspekter av följning av utsträckta mål studerats. En
viktig och komplicerande aspekt av följning av såväl punktmål, som utsträckta
mål, är att roboten på förhand inte vet hur många mål som finns i dess närhet.
En funktion för att hantera osäkerheterna kring antalet mål som finns, samt osä-
kerheterna kring var varje mål befinner sig, har implementerats.

I många situationer är det nödvändigt att kunna prediktera, eller förutsäga, var
de olika målen kommer att befinna sig i den närmaste framtiden. Det kan exem-
pelvis röra sig om en robot som ska köra genom en vägkorsning, och då måste
undvika att krocka med övrig trafik. För detta ändamål har en prediktionsfunk-
tion tagits fram.

När ett större antal mål rör sig i robotens närhet kan det bli svårt att följa varje
enskilt mål. Istället kan roboten följa grupper av mål. Det blir då nödvändigt att
hålla reda på vad som sker när mål lämnar gruppen, eller nya mål ansluter till
gruppen. Fritt översatt från engelska till svenska kan dessa två händelser kallas
för målproduktion och målkombination. Funktioner för att hantera produktion
och kombination av utsträckta mål har tagits fram.

För att roboten ska kunna beräkna ett måls spatiala utsträckning krävs model-
ler för formen på målen. När laserscanners används kan formen på en bil sägas
vara approximativt rektangulär, och formen på en person kan sägas vara approx-
imativt elliptisk. Beräkning av storleken på rektangulära och elliptiska mål har
studerats för robotar utrustade med laserscanners.

Målföljningsfunktionerna som nämnts ovan har utvärderats med hjälp av såväl
simulerade data, som experimentella data insamlade med laserscanners. Resul-
taten visar att det arbete som har utförts jämför sig väl med tidigare arbete på
området.
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1
Introduction

This chapter introduces the research topics that are considered in this thesis, and
summarizes the research contributions. In Section 1.1 a motivation to the re-
search topics is given, and in Section 1.2 and Section 1.3 the topics are described
in more detail. A list of published work is given in Section 1.4, and the main
contributions of the thesis are summarized in section 1.5. The chapter is ended
with a thesis outline in Section 1.6.

1.1 Motivation

The research presented in this thesis was undertaken at the Division of Auto-
matic Control, Department of Electrical Engineering, at Linköping university.
Automatic control is a research area that can be given the following definition,
deliberately intended to be as broad as possible:
Definition 1.1 (Automatic control). To automatically make a system behave as
desired.

In this context automatically is to be understood as without human intervention.
A system may refer to anything whose behavior can be controlled, however this
thesis will be limited to mobile robots, also called autonomous vehicles.

In the January 2007 issue of the magazine Scientific American, Bill Gates, co-
founder and former ceo of Microsoft, predicted that the next hot research field
would be robotics (Gates, 2007). About four years later, a free online course in ar-
tificial intelligence, given by Stanford University during the fall semester of 2011,
attracted more than 58000 students globally (Markoff, 2011). Both these exam-
ples serve as a testament to the interest in, and relevance of, robotics research.
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4 1 Introduction

Indeed, the past decades have seen a large research effort in the field of robotics.
In order for a mobile robot to behave as desired in the dynamic and complex
world within which humans live, the robot must be aware of itself and its sur-
roundings. In this thesis we refer to this as knowing the state of the robot and the
state of its surroundings. The state of the robot includes its location, knowledge
of which requires the ability to recognize places that the robot has visited earlier,
also called loop detection. The state of the robots’ surroundings includes the lo-
cation of moving objects, called targets, knowledge of which requires the ability
to track the targets as they move.

The main research topics considered in this thesis are

1. loop closure detection, i.e. recognizing places that have been visited before;

2. multiple target tracking, i.e. estimating how many targets there are and
estimating each target’s state.

To solve both these problem, the robot needs to sense the environment around it,
similarly to how humans use their five senses1 to be able to go about their days.
In this thesis data from laser range sensors is used for both loop closure detection
and target tracking. A reconstruction of 2317 2D laser range scans, acquired
inside a shopping mall, is shown in Figure 1.1. Figure 1.2, a small portion of a
full scene constructed by 34 3D laser range scans, shows an outdoor environment
with some buildings and vegetation.

Laser range sensors are versatile sensors that provide data rich in information
content, and the sensor data can be used for many different tasks. In the Defense
Advanced Research Projects Agency’s (darpa) Urban Challenge, e.g., laser range
sensors were used for task such as staying in lane; maintain vehicle separation;
vehicles at an intersection; leaving lane to pass; U-turn; following a vehicle; queu-
ing at an intersection; negotiate obstacle field; road blockages; merging to traffic
circle; sparse waypoints (straight); road follow: gps outages; merging at T in-
tersection; merging at 4-way intersection; left turns at intersections; emergency
vehicle avoid; and blocked intersection (Campbell et al., 2007).

1.2 Loop closure detection

Loop closure detection is an important part of the Simultaneous Localization and
Mapping (slam) problem. The slam problem consists of finding out where the
robot is (localization), while simultaneously finding out what the surrounding en-
vironment looks like (mapping), see e.g. the two part slam tutorial by Durrant-
Whyte and Bailey (2006) and Bailey and Durrant-Whyte (2006). To solve the
slam problem the acquired sensor data must be organized such that, when the
individual pieces of data are put together, they together constitute a coherent
map. However, one of the fundamental properties of the slam problem is that
small errors, due to sensor inaccuracies, are constantly inserted into the localiza-

1Vision, hearing, smell, taste, and touch.
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Figure 1.1: Laser range data in 2D, from the ground floor of the shopping
mall “Gränden” in central Linköping, Sweden. The laser range data is shown
in blue, the robot trajectory is shown in red. Data courtesy of Petter Torle,
C3 Technologies.

tion and mapping process. As time passes the errors accumulate, and eventually
the map is no longer a good representation of the world. One method to correct
this problem is to detect when the robot returns to a place that it has previously
visited, i.e. detect that the robot has closed a loop. Because loop closure detection
is used to correct errors in the slam process, it is of high importance that incor-
rect, or false, loops are not closed, because this would only increase the errors.

In this thesis the slam map consists of individual laser range scans, so called
point clouds, acquired at different locations. Loop closure is detected by com-
paring different point clouds to each other in a pairwise fashion, and classifiying
them as either being from the same location, or not.

1.3 Multiple target tracking

Multiple target tracking is needed for the robot to be able to move around without
constantly running into other objects, and also to make the robot able to follow
a moving object while the object moves. The research area target tracking dates
back at least to the mid 1900’s, when radar stations were built for the purpose
of tracking airplanes, see e.g. the books by Bar-Shalom and Fortmann (1987), Bar-
Shalom (1992), Bar-Shalom and Rong Li (1995), Bar-Shalom et al. (2001), and Bar-
Shalom et al. (2011). In the typical target tracking scenario it is unknown how
many targets there are, it is unknown which target caused which measurement,
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Figure 1.2: Laser range data in 3D, only a portion of the full data set is shown.
The scene features a couple of buildings and some vegetation. The data was
acquired using laser range sensors mounted on a helicopter. Data courtesy of
Piotr Rudol and Mariusz Wzorek, at the Knowledge Processing lab (kplab)
at the division of Artificial Intelligence and Integrated Computer Systems
(aiics) at the Department of Computer and Information Science (ida) at
Linköping university (LiU).

it is unknown if all targets caused any measurement at all, and there are false, so
called clutter, measurements that were not caused by any target at all. In some
target tracking scenarios, the target and sensor setup is such that each target
generates at most one measurement per time step, in other scenarios each target
may generate more than one measurement. In the former case the targets are
called point targets, in the latter case the targets are called extended targets.

In this thesis we consider tracking of multiple extended targets, where both the
number of targets and each target’s state must be found.

1.4 Publications

The following papers, listed in reverse chronological order, have been published:

K. Granström, C. Lundquist, and U. Orguner. Extended Target Track-
ing using a Gaussian Mixture PHD filter. IEEE Transactions on Aero-
space and Electronic Systems, 2012.

K. Granström and U. Orguner. A PHD filter for tracking multiple
extended targets using random matrices. IEEE Transactions on Signal
Processing, 2012a. doi: 10.1109/TSP.2012.2212888.

K. Granström and U. Orguner. On the Reduction of Gaussian inverse
Wishart mixtures. In Proceedings of the International Conference
on Information Fusion (FUSION), pages 2162–2169, Singapore, July
2012d.
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K. Granström and U. Orguner. Estimation and Maintenance of Mea-
surement Rates for Multiple Extended Target Tracking. In Proceed-
ings of the International Conference on Information Fusion (FUSION),
pages 2170–2176, Singapore, July 2012c.

K. Granström, C. Lundquist, F. Gustafsson, and U. Orguner. On ex-
tended target tracking using PHD filters. In Workshop on Stochastic
Geometry in SLAM at IEEE International Conference on Robotics and
Automation (ICRA), St. Paul, Minnesota, USA, May 2012.

K. Granström, T. B. Schön, J. I. Nieto, and F. T. Ramos. Learning to
close loops from range data. The International Journal of Robotics
Research, 30(14):1728–1754, December 2011.

U. Orguner, C. Lundquist, and K. Granström. Extended Target Track-
ing with a Cardinalized Probability Hypothesis Density Filter. In Pro-
ceedings of the International Conference on Information Fusion (FU-
SION), pages 65–72, Chicago, IL, USA, July 2011.

C. Lundquist, K. Granström, and U. Orguner. Estimating the shape
of targets with a PHD filter. In Proceedings of the International Con-
ference on Information Fusion (FUSION), pages 49–56, Chicago, IL,
USA, July 2011a.

K. Granström, C. Lundquist, and U. Orguner. Tracking Rectangular
and Elliptical Extended Targets Using Laser Measurements. In Pro-
ceedings of the International Conference on Information Fusion (FU-
SION), pages 592–599, Chicago, IL, USA, July 2011.

K. Granström and T. B. Schön. Learning to Close the Loop from 3D
Point Clouds. In Proceedings of the IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pages 2089–2095,
Taipei, Taiwan, October 2010.

K. Granström, C. Lundquist, and U. Orguner. A Gaussian Mixture
PHD filter for Extended Target Tracking. In Proceedings of the In-
ternational Conference on Information Fusion (FUSION), Edinburgh,
UK, July 2010.

K. Granström, J. Callmer, F. T. Ramos, and J. I. Nieto. Learning to
Detect Loop Closure from Range Data. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), pages
15–22, Kobe, Japan, May 2009.

J. Callmer, K. Granström, J. I. Nieto, and F. T. Ramos. Tree of Words for
Visual Loop Closure Detection in Urban SLAM. In Proceedings of the
Australian Conference on Robotics & Automation (ACRA), Canberra,
Australia, December 2008.
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The following paper has been provisionally accepted for publication:

K. Granström and U. Orguner. On Spawning and Combination of Ex-
tended/Group Targets Modeled with Random Matrices. IEEE Trans-
actions on Signal Processing, 2012e.

The following paper has been revised and resubmitted:

K. Granström and U. Orguner. A New Prediction Update for Extended
Target Tracking with Random Matrices. IEEE Transactions on Aero-
space and Electronic Systems, 2012b.

The following paper has been submitted:

C. Lundquist, K. Granström, and U. Orguner. An extended target
CPHD filter and a gamma Gaussian inverse Wishart implementation.
Journal of Selected Topics in Signal Processing, 2012a.

Finally, the following paper about pedagogic and didactic aspects of undergradu-
ate teaching, has also been published:

C. Lundquist, M. A. Skoglund, K. Granström, and T. Glad. Insights
from implementing a system for peer review. IEEE Transactions on
Education, 2012b. doi: 10.1109/TE.2012.2211876.

1.5 Main contributions

The second part of this thesis contains edited versions of eight of the above listed
papers. The scientific contributions contained in these eight papers are summa-
rized in this section.

1.5.1 Loop closure detection

Learning to close loops from range data

Paper A,

K. Granström, T. B. Schön, J. I. Nieto, and F. T. Ramos. Learning to
close loops from range data. The International Journal of Robotics
Research, 30(14):1728–1754, December 2011.

presents a loop closure detection classifier that works for point cloud data in both
2D and 3D. A thorough implementational description is given, and the classifier’s
properties are evaluated in several different experiments using publicly available
data. The pros and cons compared to related work are discussed, and the classi-
fier is shown to compare well to other loop closure detection methods.
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1.5.2 Target tracking

Extended Target Tracking using a Gaussian Mixture PHD filter

Paper B,

K. Granström, C. Lundquist, and U. Orguner. Extended Target Track-
ing using a Gaussian Mixture PHD filter. IEEE Transactions on Aero-
space and Electronic Systems, 2012.

presents a Gaussian mixture implementation of an extended target phd filter.
The optimal filter requires a summation over all possible measurement set parti-
tions, which is computationally infeasible in all but the simplest of cases. Suit-
able partitioning methods are presented, such that the number of partitions that
are considered can be kept to a minimum without sacrificing too much tracking
performance. The filter is evaluated in both simulations and experiments.

Tracking Rectangular and Elliptical Extended Targets Using Laser
Measurements

To keep the presentation simple, the sizes and shapes of the extended targets are
not estimated in Paper B. Paper C,

K. Granström, C. Lundquist, and U. Orguner. Tracking Rectangular
and Elliptical Extended Targets Using Laser Measurements. In Pro-
ceedings of the International Conference on Information Fusion (FU-
SION), pages 592–599, Chicago, IL, USA, July 2011.

presents a version of the Gaussian mixture phd filter that is designed for laser
range measurement, with capability to estimate the shape and size of the targets.
Two different types of targets are considered, rectangular and elliptical, and the
filter is also capable of estimating the target type. Furthermore, the paper shows
that the Gaussian mixture phd filter is not limited to linear motion and measure-
ment models, as in Paper B, it also works for non-linear models. The filter is
evaluated in both simulations and experiments.

A PHD filter for tracking multiple extended targets using random matrices

In Paper B and Paper C Gaussian distributions are used to model the extended
targets. An alternative to the Gaussian model is to use Gaussian inverse Wishart
distributions to model the extended targets, a model in which the extended target
shape is assumed to be elliptical. Paper D,

K. Granström and U. Orguner. A PHD filter for tracking multiple
extended targets using random matrices. IEEE Transactions on Signal
Processing, 2012a. doi: 10.1109/TSP.2012.2212888.

presents a Gaussian inverse Wishart implementation of the extended target phd
filter. A likelihood function is derived, and the necessary assumptions and ap-
proximations are given. Two partitioning methods are presented, in addition to
the methods given in Paper B. The filter is evaluated in both simulations and
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experiments, and the results show the benefits of estimating the target size and
shape, in addition to estimating the position.

Estimation and Maintenance of Measurement Rates for Multiple Extended
Target Tracking

The extended target phd filters in Paper B, Paper C and Paper D model the num-
ber of measurements generated by an extended target as Poisson distributed. In
Paper B and Paper D it is noted that correctly setting the filter parameter corre-
sponding to the Poisson rate is necessary in certain circumstances. With an incor-
rect parameter setting, the filter might estimate the number of targets incorrectly.
Paper E,

K. Granström and U. Orguner. Estimation and Maintenance of Mea-
surement Rates for Multiple Extended Target Tracking. In Proceed-
ings of the International Conference on Information Fusion (FUSION),
pages 2170–2176, Singapore, July 2012c.

presents a framework for estimating an individual, possibly time varying, Poisson
rate for each extended target. In addition to the already known measurement
update, a simple time update is suggested, and a method for mixture reduction
is also given. Simulations show that the filter can estimate multiple Poisson rates
simultaneously.

On the Reduction of Gaussian inverse Wishart Mixtures

In Paper D a heuristic is used for reduction of Gaussian inverse Wishart mixtures,
however it is noted that a better and less approximative method is needed. Pa-
per F,

K. Granström and U. Orguner. On the Reduction of Gaussian inverse
Wishart mixtures. In Proceedings of the International Conference
on Information Fusion (FUSION), pages 2162–2169, Singapore, July
2012d.

presents a merging method that can be used for reduction of Gaussian inverse
Wishart distribution mixtures. It is shown how a weighted sum of distributions
can be approximated with a single distribution, and a criterion is suggested that
can be used to determine whether or not two distributions should be merged.
Simulations show the merits of the presented merging method.

A New Prediction Update for Extended Target Tracking with Random Matrices

In Paper D it is noted that when two spatially close targets maneuver, the filter
often cannot keep the two targets resolved, and as a consequence underestimates
the number of targets. Part of the problem is the heuristic prediction method that
is used. Paper G,

K. Granström and U. Orguner. A New Prediction Update for Extended
Target Tracking with Random Matrices. IEEE Transactions on Aero-
space and Electronic Systems, 2012b.
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presents a prediction method that can handle maneuvering extended targets bet-
ter, while considering all uncertainty sources. Simulation results show that the
presented method outperforms related work on this subject.

On Spawning and Combination of Extended/Group Targets Modeled with
Random Matrices

The event that a target launches another target, or that a larger target separates
into multiple smaller targets, is called target spawning. The opposite, i.e. that
multiple targets merge into a single target, is called target combination. Target
spawning is not explicitly modeled in Paper D, however it is noted there that a
spawning function could be useful. Paper H,

K. Granström and U. Orguner. On Spawning and Combination of Ex-
tended/Group Targets Modeled with Random Matrices. IEEE Trans-
actions on Signal Processing, 2012e.

presents spawning and combination of extended targets whose state are modeled
as Gaussian inverse Wishart distributed. Limited to the two target case, a model
for target combination is first derived. The combination model is then used to de-
rive a model for spawning into two targets. Simulation results show the benefits
of the presented functions.

1.6 Thesis outline

The thesis is divided into two parts, with background material in the first part
and edited versions of the eight published papers in the second part. It should be
noted that while the chapters in the first part give relevant background required
for the second part of the thesis, the amount of detail is intentionally kept to a
minimum. The reason is that each of the papers in the second part includes back-
ground material – repeating this material would cause unnecessary redundancy.

The first part of the thesis is organized as follows. Chapter 2 presents the laser
range sensor and the data it produces. Classification, with an emphasis on so
called boosting, is the topic of Chapter 3. The machine learning method used in
this thesis, called AdaBoost, is presented and illustrated using a number of exam-
ples. The estimation problem is introduced in Chapter 4, and filtering solutions
and performance metrics are mentioned. Chapter 5 is about the target tracking
problem. Data association methods are over-viewed, and performance evaluation
is discussed. Random finite sets and the probability hypothesis density filter is
introduced in Chapter 6, and extended target tracking is the topic of Chapter 7.
The first part of the thesis is ended with Chapter 8, which presents conclusions
and discusses future work.





2
The laser range sensor

This chapter presents a brief overview of the laser range sensor and the data it
produces. The sensor is described in Section 2.1, and examples of 2D and 3D
data are given in Section 2.2 and Section 2.3, respectively. The occlusion problem
is described in Section 2.4, and registration of laser range data is discussed in
Section 2.5.

2.1 Introduction

In the past 10 year, a vast amount of research has been performed using data from
laser range sensors, e.g. mapping, localization and target tracking. There exist dif-
ferent types of laser sensors that produce slightly different types of data, this the-
sis will be limited to so called sweeping laser sensors. This sensor type works by
measuring the distance to the nearest object at different angles, provided that the
nearest objects’ reflectance properties are good enough. A simulation example of
laser range data is given in Figure 2.1.

For an estimation or classification application, the laser range sensor’s probabilis-
tic properties need to be modeled. In this thesis, a brief introduction to modeling
of the laser range sensor is given. For a more thorough description, chapter 6
in the book by Thrun et al. (2005) is a good starting point. A description of the
underlying mechanical and electrical properties goes beyond the scope of this
thesis.

In the remainder of this thesis, the output from laser range sensors will be re-
ferred to as point clouds, with the following definition:

13
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Figure 2.1: Example of laser range data in a 2D simulation environment,
where the objects are shown in light gray. The sensor is located at the large
black dot, the sensor field of view (180◦ wide) is shown by the semi-circle.
The sensor sweeps right to left, and measures the nearest object every fourth
degree. When the nearest object is further away than the boundary of the
field of view, the sensor returns maximum range.

Definition 2.1 (Point cloud pk). A collection of points in space,

pk =
{
pki

}N
i=1

, pki ∈ R
D. (2.1)

Here, k refers to the acquisition time tk , N is the number of points pki in the cloud
and D is the dimensionality of the data.

The name point cloud is inherited from the fact that the sensor measurement
defines a point in space which is occupied by an object. It should be noted though
that the name point cloud does not capture the so called negative information,
i.e. the information about the free space along the laser measurement ray1. In
an application, this negative information about the free-space is important to
consider along with the points themselves.

In the applications presented in this thesis, the dimensionality of the data is ei-
ther D = 2 or D = 3. Many sensors however, in addition to measuring range, also
measure the remission value of the measured point. If the laser range data is
fused with image data from a camera, each point may also contain rgb color val-
ues. Thus the dimensionality D of the data could be larger than 3. Each measured

1cf. the gray rays from the sensor to the measurement points in Figure 2.1
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(a) (b) (c)

Figure 2.2: Examples of laser range sensors. (a): the SICK LMS200-series.
(b): the Hokuyo URG-04Lx-series. (c): the Velodyne HDL-64E. Images are
from www.sick.com, www.hokuyo-aut.jp and www.velodyne.com/
lidar/, respectively.

point p is a function L of the sensor position s and the surrounding environment
M,

p = L
(
s,M, ep

)
, (2.2)

where ep is random noise. Typically ep is modeled as a Gaussian with zero mean
and covariance Σp,

N
(
ep ; 0,Σp

)
. (2.3)

The properties of laser range sensors vary substantially from sensor to sensor.
Maximum measurable range rmax varies from several meters to several kilome-
ters, angular resolution varies from being in the order of one degree to the order
of one thousand of a degree. Examples of popular sensors are the LMS200-series
sensors manufactured by SICK, see Figure 2.2a, and the sensors manufactured by
Hokuyo, see Figure 2.2b. Both these sensors produces planar laser range scans,
i.e. they sense the surrounding environment in 2D. Using different pan/tilt units,
several 2D scans can be combined to provide 3D laser range data. There are also
dedicated 3D laser range sensors, e.g. the HDL-series sensors from Velodyne, see
Figure 2.2c.

2.2 Laser range data in 2D

In 2D the points in the point cloud are typically given in polar coordinates as

pki =
[
rki ϕki

]T
, (2.4)

where r is the range and ϕ is the horizontal angle, or bearing, to the measured
point. Using the polar to Cartesian transformation[

x
y

]
= Tp2c (r, ϕ) =

[
r cos (ϕ)
r sin (ϕ)

]
, (2.5)

www.sick.com
www.hokuyo-aut.jp
www.velodyne.com/lidar/
www.velodyne.com/lidar/
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Figure 2.3: Illustration of laser point uncertainty. (a): Uncertainty in po-
lar coordinates. (b): The same uncertainty ellipses as in (a), transformed to
Cartesian coordinates using the transform (2.5). (c): First order approxima-
tion of transformed uncertainty in (b) using (2.9).

the points can be expressed in Cartesian coordinates as

pki =
[
xki yki

]T
. (2.6)

The measurement noise covariance matrix is typically a diagonal matrix, where
the range and bearing standard deviations can be modeled as functions of range
and bearing,

Σp =
[
σ2
r (r, ϕ) 0

0 σ2
ϕ (r, ϕ)

]
. (2.7)

Using the Jacobian Jp2c of the polar to Cartesian transformation (2.5),

Jp2c =
[
cos (ϕ) −r sin (ϕ)
sin (ϕ) r cos (ϕ)

]
(2.8)

the covariance can be approximated to first order in Cartesian coordinates as

Σcp = Jp2cΣpJ
T
p2c. (2.9)

An illustration of the modeled uncertainty is shown in Figure 2.3, where a mea-
surement at range r = 10m and bearing ϕ = 45◦, and its corresponding uncer-
tainty, are shown in Figure 2.3a. The results for the non-linear transformation
from polar to Cartesian coordinates (2.5) is shown in Figure 2.3b. Compare with
the first order approximation in Figure 2.3c.

Figure 2.4 shows a typical outdoor point cloud, both in polar and Cartesian coor-
dinates, Figure 2.4a and Figure 2.4b, respectively. Typical indoor data was shown
in Figure 1.1 in Chapter 1. The figures also feature the corresponding 3σ covari-
ance ellipses for every tenth point. For this example, the measurement noise
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Figure 2.4: Example 2D point cloud, acquired in an outdoor environment.
(a): Polar coordinates. (b): Cartesian coordinates. All points measuring
range above the maximum range rmax = 50m have been filtered out. The
points are shown in black, for every tenth point the corresponding 3σ co-
variance ellipse is shown in gray.

covariance is modeled as

Σp =
[
σ2
r (r, ϕ) 0

0 σ2
ϕ (r, ϕ)

]
=


(
0.01

(
1 + r

rmax

))2
0

0
(

0.01π
180

(
1 + r

rmax

))2

 . (2.10)

Thus the uncertainty in range grows larger as the distance to the nearest object
along the laser ray grows larger. The bearing noise model can be understood as
modeling the laser ray as being shaped as a triangle, with the tip located at the
sensor. Thus, the measured point is located on the bottom edge of the triangle.

2.3 Laser range data in 3D

In 3D the points in the point cloud are given in spherical coordinates as

pki =
[
rki ϕki ψki

]T
, (2.11)

where r is the range, ϕ is the horizontal angle and ψ is the vertical angle to the
measured point. Using the spherical to Cartesian transformationxy

z

 = Ts2c (r, ϕ, ψ) =

r sin (ψ) cos (ϕ)
r sin (ψ) sin (ϕ)

r cos (ψ)

 , (2.12)

the points can be expressed in Cartesian coordinates as

pki =
[
xki yki zki

]T
. (2.13)
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Figure 2.5: Example 3D point cloud in Cartesian coordinates, shown from
two different view points in (a) and (b). Grey-scale is used to accentuate
height. In the center of the point cloud there are two persons and behind
them a car can be seen. To the left and right of the persons and the car there
are two trees.

The measurement noise covariance matrix is typically a diagonal matrix, where
the range, horizontal angle and vertical angle standard deviations can be mod-
eled as functions of range, horizontal angle and vertical angle,

Σp =


σ2
r (r, ϕ, ψ) 0 0

0 σ2
ϕ (r, ϕ, ψ) 0

0 0 σ2
ψ (r, ϕ, ψ)

 . (2.14)

Using the Jacobian Js2c of the spherical to Cartesian transformation (2.12),

Js2c =

sin (ψ) cos (ϕ) −r sin (ψ) sin (ϕ) r cos (ψ) cos (ϕ)
sin (ψ) sin (ϕ) r sin (ψ) cos (ϕ) r cos (ψ) sin (ϕ)

cos (ψ) 0 −r sin (ψ)

 (2.15)

the covariance can be approximated to first order in Cartesian coordinates as

Σcp = Js2cΣpJ
T
s2c. (2.16)

An example point cloud is shown in Figure 2.5. In the figure, gray-scale is used
to accentuate height. A 3D point cloud was also shown in Figure 1.2 in Chapter 1.

2.4 Occlusion

Similarly to how a camera needs direct line of sight to the object that is being
sensed, so does a laser range sensor. Thus, if an object A is located at the same
bearing as another object B, but at larger range than B, then A is occluded by B.
Depending on the shape and size of the two objects, A is either partially of fully
occluded by B. An example of occlusion is given in Figure 2.6. Occlusion presents
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Figure 2.6: Example of the occlusion problem for laser range sensors. The
3D point cloud shows two persons in the foreground, and behind them is a
partially occluded vehicle. This point cloud is a portion of the point cloud
shown in Figure 2.5. Grey-scale is used to accentuate height, however the
gray-scale is different from Figure 2.5.

a considerable challenge in estimation and classification problems where laser
range data is used. In the context of target tracking, targets may be lost when
they move behind other objects and thus do not generate any measurements. For
loop closure detection, occlusions by dynamic objects means that the appearance
of the point cloud can be significantly changed.

2.5 Registration

Registration is the process by which two point clouds pk and pl are fitted to
each other with respect to some measure, or cost function, C (pk ,pl). Typically,
the problem is solved by finding a rigid body transformation (R, t), where R is
a rotation matrix and t is a translation vector, such that the sum of distances
between different point correspondences in the two point clouds is minimized.
Point cloud registration is in the literature also referred to as scan matching. Sev-
eral different methods for finding this rigid body transformation have been sug-
gested, among them the (probably) most popular and well used is the so called
Iterative Closest Point (icp) algorithm (Besl and McKay, 1992; Chen and Medioni,
1992; Zhang, 1994). icp works by solving the following optimization problem

min
(R,t)

C (pk ,pl) = min
(R,t)

Nk∑
i=1

Nl∑
j=1

wi,j

∥∥∥∥pki − (
Rplj + t

)∥∥∥∥2
, (2.17)

where wi,j is 1 if point pki and point plj describe the same point in space, and
0 otherwise. Finding these point correspondences is typically performed by a
nearest neighbor search, and a solution (R, t) is found by iterating between find-
ing nearest neighbor point pairs and computing the corresponding rigid body
transformation. The cost function in (2.17) has many local minimas, and the icp
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Figure 2.7: Point cloud registration using the icp algorithm. (a): two point
clouds from an outdoor environment before the icp algorithm is applied.
(b): after the icp algorithm is applied. Note how the rotation and translation
that aligns the two point clouds are rather small, thus initializing the icp
algorithm in

(
R0, t0

)
= (I2, 02×1) is sufficient.

algorithm is thus dependent on being initialized in a good point
(
R0, t0

)
in order

to converge. There are a few different ways to implement icp, and a full overview
goes beyond the scope of this thesis. Chapter 4 in the book by Nüchter (2009) is
a good starting point for the interested reader.

An illustrative example of the icp algorithm is given in Figure 2.7, where two
point clouds are shown before and after the icp algorithm is applied. A 3D exam-
ple of registration is given in Figure 1.2 in Chapter 1, where the point cloud was
constructed from 34 smaller point clouds which were registered to each other.

As mentioned above, icp is a local algorithm in the sense that it, if initialized
poorly, often gets stuck in local minimas of the cost function (2.17). To remedy
this problem, a method that is able to find a rigid body transformation (R, t) that
is close to the ground truth without relying on a good initial guess is needed.
Some examples of methods that attempt to improve upon the performance of icp
are the Normal Distributions Transform (ndt) in 2D (Biber and Strasser, 2003)
or 3D (Magnusson et al., 2007), crf-Match in 2D by Ramos et al. (2007), or the
approach using histograms in 2D by Bosse and Zlot (2008).



3
Classification

This chapter introduces the classification problem, with an emphasis on boosting
methods for finding decision boundaries. The classification problem is defined
in Section 3.1, and boosting is presented in Section 3.2. The boosting method
of choice, called adaptive boosting, is presented algorithmically, and some key
properties of adaptive boosting are highlighted in a series of examples.

3.1 The classification problem

The purpose of a classification method is to take an input data vector

f = [f1, . . . , fnf ]T ∈ Rnf (3.1)

and assign it to one of K classes. Let Ck denote the class domain, where k ∈
{1, . . . , K} is a class index. In some classification scenarios, the K classes are as-
sumed to be disjoint,

Ci ∩ Cj = ∅, ∀i , j, (3.2)

and the input space can therefore be divided into decision regions which are
separated by boundaries. These are called decision boundaries, or decision sur-
faces, see e.g. Bishop (2006). When the decision boundaries are affine functions
of the input data f, the corresponding classifiers are called linear. There are also
non-linear classifiers, i.e. classifiers which define decision boundaries that are
non-linear functions of the input data. Classes that are disjoint can be separated
by linear/non-linear decision boundaries, and are therefore called linearly/non-
linearly separable.

21
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However, many problems in classification are neither linearly separable, nor are
the true, underlying, data domains Ck disjoint. For data sets which can not be sep-
arated by linear decision boundaries, methods which combine multiple models
may be used. Such methods are sometimes called committees, examples include
bagging and boosting, see e.g. Bishop (2006). Bagging classifiers are formed by
generating M bootstrap data sets from a single data set, and then using each boot-
strap data set to train a classifier. Bootstrap data sets are generated by randomly
drawing points with replacement from the original data set. Some points from
the original data set may thus be drawn more than once in a bootstrap data set,
while other points are not drawn at all. The bagging classification is then formed
by taking the average of the M bootstrap classifications. In Paper A, boosting,
presented in Section 3.2, is used to compute non-linear classifiers.

3.2 Boosting

Boosting is a machine learning method for finding combinations of simple base
classifiers in order to produce a form of committee whose performance can be
significantly better than any one of the base classifiers used alone. The simple
base classifiers need to be just slightly better than a random guess, hence they
are often called weak classifiers, see e.g. Bishop (2006). The resulting combina-
tion is (typically) better than the best individual weak classifier, and analogously
the resulting classifier learned by boosting is thus called strong. The principal
difference between boosting and other committee methods such as bagging, is
that the training is performed sequentially. Each weak classifier is learned using
a weighted form of the data set, where the weighting of each data point depends
on the performance of the previous weak classifiers, see e.g. Bishop (2006). There
exists a few different boosting methods, here we will limit ourselves to consider-
ing adaptive boosting.

3.2.1 Adaptive boosting

A widely used form of boosting is adaptive boosting, abbreviated AdaBoost. It is
a machine learning procedure which greedily builds a strong classifier by a lin-
ear combination of weak classifiers (Freund and Shapire, 1995). When the weak
classifiers are combined into a strong classifier, the resulting decision boundary
is non-linear. As more weak classifiers are added, the classification error on the
training data converges towards zero, and eventually becomes zero. Although
this might be interpreted as over-fitting, AdaBoost has been shown to generalize
well on testing data (Freund and Shapire, 1995). A more detailed overview and
examination of boosting than can be given here is found in Chapter 10 in the
book by Hastie et al. (2009).

Although later generalized to multiple classes, AdaBoost was originally designed
for problems with two classes, i.e. K = 2. Rather than denoting the two classes as
1 and 2, here they are referred to as the positive class and negative class, or p and
n, respectively. As input to the AdaBoost learning algorithm, N hand-labeled
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training data pairs are provided,(
f1, y1

)
, . . . ,

(
fi , yi

)
, . . . ,

(
fN , yN

)
, (3.3)

where each data point fi has a corresponding class label yi . To learn a classifier
using AdaBoost, data points from each class are needed. Let Np and Nn be the
number of training data points belonging to Cp and Cn, respectively, i.e. N =
Nn + Np. The data labels in the two class problem are defined as

yi =
{

1 if fi ∈ Cp,
0 if fi ∈ Cn.

(3.4)

In the AdaBoost algorithm, each data pair
(
fi , yi

)
is given a weight wit , where

t denotes the specific iteration of the algorithm. The weights are initialized as
wi1 = 1

2Nn
if yi = 0, or wi1 = 1

2Np
if yi = 1. This initialization ensures that each

class is given half the weight of the data, and all data pairs within a class are
given an equal weight.

After initialization, AdaBoost iteratively adds weak classifiers to a set of previ-
ously added weak classifiers, to find a good combination that together constitutes
a strong classifier. The weak classifiers used in this thesis are decision stumps, i.e.
one node decision trees, defined as

c
(
fi , θ

)
=

{
1 if pf ij < pλ
0 otherwise

(3.5)

with parameter θ = {j, p, λ}, where j is the particular component of fi selected, f ij ,
p is the polarity (p = ±1), and λ ∈ R is a threshold. The result of a weak classifier
(3.5) is that the input space is partitioned into two half spaces, separated by an
affine decision boundary which is parallel to one of the input axes.

In each iteration t, the weak classifier that minimizes the weighted classification
error with respect to θ is chosen. This is performed by solving an optimization
problem. Given the parameters of the best weak classifier θt , the training data is
classified and the weights of the mis-classified data are increased (or, conversely,
the weights of the correctly classified data are decreased). Further, using the
classification error εt a weight αt is computed for the best weak classifier. Details
on how the weights are computed are given below.

This procedure is repeated until T weak classifiers c
(
fi , θt

)
have been computed.

Weak classifiers can be added several times in each dimension of Rnf , each time
with a new polarity and threshold, i.e. same j and new p and λ. The normalized
weighted combination of T weak classifier together create the strong classifier
c
(
fi
)
. The output of the strong classifier is a likelihood, c

(
fi
)
∈ [0, 1]. To obtain

a binary classification decision, a threshold τ ∈ [0, 1] is used, where the standard
choice is τ = 0.5. A detailed presentation of AdaBoost is given in Algorithm 1,
and the learning iterations are illustrated in Example 3.1.
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Algorithm 1 AdaBoost

Input: Labeled data pairs:
(
f1, y1

)
, . . . ,

(
fN , yN

)
. Number of training iterations:

T .
Initialize weights: wi1 = 1

2Nn
if yi = 0, wi1 = 1

2Np
if yi = 1

1: for t = 1, . . . , T do
2: Normalize the weights:

w̃it =
wit∑Nn+Np

j=1 w
j
t

, i = 1, . . . , Nn + Np (3.6)

3: Select the best weak classifier with respect to θ,

θt = arg min
θ

N∑
i=1

w̃it

∣∣∣∣c (fi , θ) − yi ∣∣∣∣ (3.7)

4: Define ct
(
fi
)

= c
(
fi , θt

)
, and εt =

∑N
i=1 w̃

i
t

∣∣∣∣ct (fi) − yi ∣∣∣∣.
5: Update the weights:

wit+1 = w̃itβ
1−ei
t , i = 1, . . . , Nn + Np, (3.8)

where ei = 0 if fi is classified correctly and 1 otherwise, and βt = εt
1−εt . Set

αt = log 1
βt

.
6: end for

Output: Strong classifier

c
(
fi
)

=

∑T
t=1 αtct

(
fi
)

∑T
t=1 αt

∈ [0, 1] (3.9)

Example 3.1: AdaBoost learning
A data set was generated in polar coordinates, where the angle fϕ was sampled
uniformly in [0 2π], and the range fr was sampled from N (fr ; 0, 0.10) for the
positive class and N (fr ; 0.50, 0.10) for the negative class. Using the transform
(2.4), the sampled data was transformed into Cartesian coordinates. Note that
since the range components fr for the two classes are randomly sampled from
probability distributions that overlap, the underlying classes are not separable
and it is therefore difficult to define a “true” decision boundary.

However, with the known Gaussian distributions for the range components of the
data, a probabilistic decision boundary can be defined by considering which class
has higher probability in any given data point. Here, the probabilistic decision
boundary in the range component is defined as the range for which both classes
are equally probable,

1
√

2π0.102
e
− (r−0)2

2 · 0.102 =
1

√
2π0.102

e
− (r−0.50)2

2 · 0.102 ⇔ r = 0.25. (3.10)

Thus, for this example, in Cartesian coordinates the probabilistic decision bound-
ary is a circle with radius 0.25. This probabilistic decision boundary is compared
with the decision boundary learned by AdaBoost. The data set and a number of
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learning iterations are shown in Figure 3.1.

In Figures 3.1b to 3.1f, the decision boundaries of the weak classifiers are shown
as black lines and the resulting decision regions are shown in white for Cp and
light purple for Cn. The increasing weight of the misclassified data is illustrated
by making the markers larger.

3.2.2 Examples

In this section we show some of the properties of AdaBoost through some exam-
ples. The first two examples are for data from classes that are separable, either
linearly of non-linearly. Thus, for these examples true decision boundaries can be
defined. The third example is with data from classes that are non-separable, sim-
ilarly to the data in Example 3.1. The last example bears the largest resemblance
to the real world classification problem addressed in this thesis in Paper A.

A very basic requirement for a classification method is that it can handle data
which is linearly separable. The AdaBoost algorithm is tested on such data in
Example 3.2.

Example 3.2: Linearly separable data
Data points fi are generated by uniform sampling in [0 1] × [0 1]. In total N =
1000 data points are generated, and sorted into classes according to{

fi ∈ Cp if f i1 < f
i

2 ,
fi ∈ Cn otherwise.

(3.11)

Thus, the class regions are well defined in the data space, f ∈ R2, and a true
decision boundary can be defined as the line f i2 = f i1 . Figure 3.2 shows the data
and the results. AdaBoost is able to compute a good estimate of the true decision
boundary, using T = 100 weak classifiers.

For linearly separable data, using AdaBoost can be inefficient from a computa-
tional point of view. In Example 3.2 a linear classifier, e.g. Fischer’s linear discrim-
inant (see e.g. Bishop (2006)), would be a better choice due to its lower computa-
tional demands. An example of data which is separable by a non-linear decision
boundary is given in Example 3.3.

Example 3.3: Non-linearly separable data
Data points fi are generated by uniform sampling in [0 1] × [0 1]. In total N =
1000 data points are generated, and sorted into classes according to{

fi ∈ Cp if
∣∣∣f i1 − 0.5

∣∣∣ ≤ 0.25 AND
∣∣∣f i2 − 0.5

∣∣∣ ≤ 0.25,
fi ∈ Cn otherwise.

(3.12)

Similarly to Example 3.2, the class regions are well defined and the true decision
boundary is defined as a square box. The data and the results are shown in Fig-
ure 3.3. For the particular example, using just T = 9 weak classifiers, AdaBoost
finds a good estimate of the true decision boundary.
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(d) T = 3
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(g) Decision region
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(h) Probabilistic decision re-
gion.
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Figure 3.1: AdaBoost learning. (a): polar data set, f ∈ Cp in green, f ∈ Cn
in dark purple. (b) to (f): the first five training iterations. (g) and (h): final
decision region, T = 25, and true probabilistic decision region. (i): Training
error versus number of training iterations T . The error is defined as the
percentage of data points that are mis-classified.
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Figure 3.2: AdaBoost with data that is linearly separable. (a): Cp in green, Cn
in dark purple. (b): AdaBoost decision region, T = 100. (c): True decision
region.
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Figure 3.3: AdaBoost with data that is separable by a non-linear decision
boundary. (a): Cp in green, Cn in dark purple. (b): AdaBoost decision region,
T = 9. (c): True decision region.

Most practical classification problems however, are with data sampled from class-
es that are likely to be non-separable. Example 3.4 presents data, where each
class is represented by a Gaussian distribution. Thus, with knowledge of the
true underlying class distributions, a decision boundary can be computed from
the probability density functions analogously to how a decision boundary was
computed in Example 3.1. In the example, there is a large resemblance between
the learned decision boundary and the probabilistic decision boundary.
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Figure 3.4: AdaBoost with data generated by two Gaussian distributions. (a):
Cp in green, Cn in dark purple. (b): AdaBoost decision boundary, T = 100.
(c): Probabilistic decision region.

Example 3.4: Gaussian data
This example illustrates how AdaBoost finds a decision boundary for data from
two non-separable classes. The data points fi are generated by sampling from
two Gaussian distributions, and keeping only samples that fall in [0 1] × [0 1].
Here, Np = Nn = 1000 data points are generated from the following Gaussian
distributions

Cp : Samples from N
(
f ;

[
0.95
0.05

]
,

[
0.01 0

0 0.02

])
,

Cn : Samples from N
(
f ;

[
0.25
0.75

]
,

[
0.20 −0.005
−0.005 0.20

])
.

(3.13)

A probabilistic decision boundary is computed analogously to Example 3.1, i.e.
by computing the value of each Gaussian’s corresponding probability density
function, and for each point in the data space consider which class has higher
probability. In Figure 3.4 the data is shown together with the decision boundary
learned by AdaBoost and the probabilistic decision boundary.

3.2.3 Properties

Above it was shown that AdaBoost has strong capabilities of finding good non-
linear decision boundaries. In each of the three examples however, the number of
training data was quite large. In this section, we show what happens when there
is few training data available (i.e. Np and Nn are small), or when the training data
are unbalanced (Np � Nn orNp � Nn). The important issue of over-fitting is also
addressed. Paper A contains experiments where the data is unbalanced, and also
contains experiments where the learned classifier is tested for overfitting.

Performance when data is scarce is shown in Example 3.5.
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Figure 3.5: AdaBoost when both Np and Nn are small. A decision boundary
has to be learned from an insufficient amount of data. (a): Polar data, T = 25.
(b): Gaussian data, T = 3.

Example 3.5: Few data
Data is generated by randomly selecting Np = 20 and Nn = 20 data points from
the polar data in Figure 3.1a, and from the Gaussian data in Figure 3.4a. These
data sets were previously used in Example 3.1 and Example 3.4, thus the prob-
abilistic decision boundaries are the same as previously. Figure 3.5 shows the
results, compare to the true decision boundaries given in Figure 3.1g and Fig-
ure 3.4c. It is quite clear from the results that the decision boundary learned by
AdaBoost is a poor estimate of the probabilistic decision boundaries. It can be
noted though, that such few data gives a rather poor representation of the under-
lying true distributions, and finding a good decision boundary can be expected
to be difficult using any method.

Unbalanced data is presented in Example 3.6, where the number of positive data
Np is 100 times fewer than the number of negative data Nn.

Example 3.6: Unbalanced data
Data is generated by randomly selecting Np = 10 data points from the positive
class, and using all Nn = 1000 data points from the negative class. As in Exam-
ple 3.5, both the polar and the Gaussian data sets were used, thus the probabilis-
tic decision boundaries are the same as previously. Figure 3.6 shows the results,
compare to the probabilistic decision boundaries given in Figure 3.1g and Fig-
ure 3.4c. It is evident that with unbalanced data, AdaBoost no longer finds a
decision boundary which resembles the probabilistic one. Instead the learned
decision boundary adapts too much to the data, which can be interpreted as over-
fitting, an issue which is addressed in the next example.

When learning models for classification, care should be taken to avoid the prob-
lem of over-fitting. Over-fitting is when the learned model adapts too much to the
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Figure 3.6: AdaBoost when the numbers of data in each class are unbalanced,
here Np � Nn. (a): Polar data, T = 25. (b): Gaussian data, T = 100.

training data, and thus does not generalize well to validation data, or the true un-
derlying decision regions. Over-fitting, in the context of AdaBoost, corresponds
to using a number of weak classifiers that is too large. Work by Freund and
Shapire (1995) has shown that AdaBoost has a strong resistance to over-fitting,
indeed experimental results in Paper A confirm this. Attempts have been made
to explain AdaBoost, and its reported resistance to over-fitting, in terms of logis-
tic regression, see the paper by Friedman et al. (2000). However, an exhaustive
and full technical explanation has to the best of the author’s knowledge not been
given.

Example 3.7: Overfitting
In this example, the polar data from Example 3.1 and Gaussian data from Exam-
ple 3.4 were used. For both data sets a classifier was learned using AdaBoost for
T = 1000 iterations. Figure 3.7 shows the results, compare to the true decision
boundaries given in Figure 3.1g and Figure 3.4c.

The results in Example 3.7 show that despite T being excessively large, the re-
sulting decision boundary has not over-fitted to the training data. However, Ex-
ample 3.5 did show that when data are scarce, the resulting decision boundary
adapts too much to training data, i.e. the resistance to overfitting appears to be
dependent on the total number of training data.

3.2.4 S-fold cross validation

When solving a classification problem it is important to keep the training data
separate from the validation data. If data is scarce, a common practice is to use S-
fold cross validation. With this approach, the data is partitioned into S-folds, or
subsets. In each of S runs, the S:th fold is reserved for validation, and remaining
S − 1 folds are used for training. The results from each round are then pooled.
This procedure allows a portion S−1

S of the data to be used for training, while the
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Figure 3.7: Overfitting test. (a): Polar data, T = 1000. (b): Gaussian data,
T = 1000.

whole data set can be used for performance evaluation. While performing S-fold
cross validation, it is important to keep the training and validation data fully
disjoint. A drawback of S-fold cross validation is that the training procedure has
to be repeated S times, which can prove time consuming when the training is
computationally expensive, see e.g. Bishop (2006).

A sub-problem of S-fold cross validation is how to partition the data into folds.
When data is a sequence over time, training data and validation data can be cho-
sen as different time sequences. This is common practise in e.g. system identi-
fication, see e.g. Ljung (1999). In Paper A the data used in classification is not
ordered temporally, and thus training and validation data can not be taken as
different time sequences. Instead, the data is partitioned into folds by randomly
permuting the order of the data, and then dividing the re-ordered data into folds.
If the random permutation is performed correctly, each fold should be a good
representation of the entire data set. It is also important to consider the labels
of the data such that one, or more, of the folds do not represent an unbalanced
subset of the whole data set.

3.3 Performance evaluation

This section contains the definition of some quantities related to performance
evaluation of binary classifiers. It is shown how these quantities can be used
to evaluate classifiers, and compare classifiers to each other. The performance
evaluation metrics are used to evaluate and compare classifiers in Paper A.

3.3.1 Basic concepts

For a binary classifier, the true positive rate tp is the number of positive test
data correctly classified as positive. Similarly, the true negative rate tn is the
number of negative test data correctly classified as negative. The false positive
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Table 3.1: Binary classifier contingency table.

A
ct

u
al

cl
as

s

Predicted class
p n Tot.

p True
Positive

False
Negative tp + fn = N t

p

n False
Positive

True
Negative fp + tn = N t

n

Tot. tp + fp fn + tn

rate fp is the number of negative test data incorrectly classified as positive, and
the false negative rate fn is the number of positive test data incorrectly classified
as negative.

Let there be N t
p and N t

n number of positive and negative test data, respectively.
The four outcomes of a binary classifier can be formulated in a 2 × 2 contingency
table, or confusion matrix, as shown in Table 3.1.

3.3.2 Detection and false alarm

The detection, or true positive, rate D and false alarm, or false positive, rate FA
are defined as

D =
tp

tp + fn
=
tp
N t

p
, (3.14a)

FA =
fp

fp + tn
=
fp
N t

n
. (3.14b)

For an AdaBoost learned classifier, and a given set of test data, the detection and
false alarms rates can be computed for different thresholds τ , see Example 3.8.

Example 3.8: Detection and false alarms rates
A set of N t

p = N t
n = 104 test data was generated in the same way as the training

data in Example 3.1. Figure 3.8 shows the detection and false alarm rates for
different thresholds when the test data is classified using the classifiers learned
in Example 3.1 (all training data), Example 3.5 (few training data), Example 3.6
(unbalanced training data), and Example 3.7 (overtraining).

The figure shows that both the detection rate and the false alarm rate decrease
with an increasing threshold. This is intuitive, because a higher threshold im-
plies that a higher likelihood is required for the test data point to be classified as
belonging to the positive class.
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Figure 3.8: Detection (solid) and false alarm (dashed) rates for different
thresholds. The legend refers to classifiers learned using the data in Ex-
ample 3.1 (All), Example 3.5 (Few), Example 3.6 (Unbal), and Example 3.7
(Over).

3.3.3 Receiver operating characteristic

For any binary classifier the detection rate should be high and the false alarm rate
should be low. However, as shown in Example 3.8, these two objectives are in con-
flict. A higher detection rate implies that a lower threshold should be used, but
a lower threshold in turn implies a higher false alarm rate. A receiver operating
characteristic (roc) curve is an illustration of a binary classifier’s trade off be-
tween detection and false alarm. Example 3.9 gives roc curves for the detection
and false alarm curves in Example 3.8.

Example 3.9: Receiver operating characteristic
The detection and false alarm rates in Figure 3.8 are plotted against each other as
roc curves in Figure 3.9. At any given false alarm rate, the detection rate should
be as high as possible, which implies that the roc curve should be as close as
possible to the upper left corner of the plot. It can be seen that the overtrained
classifier has similar performance as the classifier learned using all data. The
classifier learned using few data points has worse performance, but is slightly
better than the classifier learned using unbalanced data.

In addition to visually comparing roc curves in order to compare different clas-
sifiers, the area under the roc curve can be taken as a performance measure. In
the best case scenario, the detection rate is 100% for any threshold that gives a
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Figure 3.9: roc curves corresponding to the detection and false alarm curves
in Figure 3.8. The legend refers to classifiers learned using the data in Ex-
ample 3.1 (All), Example 3.5 (Few), Example 3.6 (Unbal), and Example 3.7
(Over).

Table 3.2: Area under the roc curves in Figure 3.9.
Classifier All Few Unbal Over
Area under roc 99.45% 94.85% 92.07% 99.62%

non-zero false alarm rate. In this case the area under the roc curve would be
1, which means that the larger the area under the roc curve is, the better the
classifier is. The areas under the roc curves in Figure 3.9 are given in Table 3.2.
The results confirm that the classifier learned using the unbalanced training data
is the worst, and that the overtrained classifier has equal performance with the
classifier learned using all training data.

In certain classification problems it is more important to have a low FA rate than
to have a high D rate, one such example is given in Paper A. In this case, different
classifiers can be compared by considering the D rate at a specific FA rate. Natu-
rally, the opposite could also be true, i.e. high D rate is more important than a low
FA rate. In this case, a comparison of FA rates for specific D rates can be made.

In Table 3.3 the D rates at 0% and 1% FA rate are given for the roc curves in
Figure 3.9. Judging by the D rate at 1% FA rate, the classifier learned using the
unbalanced training data is again the worst. However, judging by the D rate at
0% FA rate, the classifier learned using the unbalanced training data is the only
one that achieves a non-zero D rate.
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Table 3.3: D rate at 0% and 1% FA rate for the roc curves in Figure 3.9.
Classifier All Few Unbal Over
0% FA 0% 0% 46.94% 0%
1% FA 97.71% 70.75% 60.36% 98.20%





4
Estimation

This chapter is about estimation, a signal processing problem in which an unob-
served signal is approximated using an observed signal containing noise. Estima-
tion is an important part of many scientific fields, e.g. sensor fusion and robotics.
A common requirement for practical estimation is a mathematical model of the
observed and unobserved signals, and the relationship between the signals. In
the cases where the mathematical models are linear, and the noise is Gaussian
distributed, the Kalman filter is the optimal solution to the estimation problem.
In many applications the state-space description is non-linear, for these cases the
extended Kalman filter might be an option.

The chapter is organized as follows: the estimation problem is presented and
defined in Section 4.1. Section 4.2 is about dynamical models and measure-
ment models, with examples in both continuous and discrete time. Recursive
single state Bayes filtering is overviewed in Section 4.3. Linear and non-linear
estimation methods are described in Section 4.4 and performance evaluation is
presented in Section 4.5.

4.1 The estimation problem

Estimation can, in a general sense, be defined as the problem of approximating,
or estimating, a state x, or a parameter θ, using the noisy measurement z. In an
estimation problem, the quantity of interest, either the state x or the parameter
θ, or the pair x and θ, is unknown. To keep things simple and uncluttered, in
the remainder of the chapter we will assume that it is the state x that is being
estimated. However, note that the presented theory applies equally well to the
parameter θ.

37
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Assume, for the sake of simplicity, that the state, parameter and measurement
are all vector valued variables, x = [x1, . . . , xnx ]T ∈ Rnx , θ = [θ1, . . . , θnθ ]T ∈ Rnθ
and z = [z1, . . . , znz ]T ∈ Rnz . Estimation can be performed in either continuous
or discrete time. Let x(t) denote the true state in continuous time t, and let xk
denote the true state at discrete time instant tk , i.e. xk = x (tk). In discrete time,
let x̂k|` denote the estimate at discrete time tk , given all measurements up to,
and including, time t`. When t` > tk (` > k), the estimation problem is called
smoothing, and when t` < tk (` < k) the problem is called prediction. However,
in this chapter we will limit ourselves to the filtering problem, i.e. when t` = tk
(` = k).

4.2 Dynamic models and measurement models

To solve the estimation problem it is necessary to model how the estimated quan-
tity x evolves over time, i.e. to model the state dynamics, which is typically done
using differential equations in continuous time. Let

ẋ(t) = a (x(t),u(t),w(t), θ(t)) (4.1)

denote the dynamic motion model in continuous time. Here, ẋ(t) is the derivative
of x(t) w.r.t. time t, u(t) is an exogenous input variable, and w(t) is random noise,
often called process noise. Note that estimation of the state x often assumes that
the parameter θ is known. Often estimation of the state x cannot be performed
in continuous time, instead it has to be performed in discrete time. Let

xk+1 = f (xk ,uk ,wk , θk) (4.2)

be the discrete time counterpart of (4.1). The discrete time steps are related as
follows,

tk+1 = tk + Ts(k) (4.3)

where Ts(k) is the sampling time at time step k. The sampling time can be a
function of time, i.e. it can be time varying. However, in the remainder of this
chapter we assume constant sampling time and simply write Ts.

In addition to modeling the state dynamics, it is necessary to model the relation-
ship between the measurements z and the state x. Let

z(t) = c (x(t), e(t), θ(t)) (4.4)

denote the measurement model in continuous time. Here e(t) is random noise,
often called measurement noise. Analogously to the continuous-discrete relation-
ship between (4.1) and (4.2), a measurement model can be given in discrete time
as

zk = h (xk , ek , θk) . (4.5)

In the most simple case, the motion and measurement models are both linear, and
the process and measurement noises are additive zero mean Gaussian. However,
far from all systems can be modeled as linear and Gaussian. In the following, we
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will give some simple model examples in continuous and discrete time.

4.2.1 Example in continuous time

Example 4.1 gives a simple linear and noiseless state space system in continuous
time.

Example 4.1: Linear state space system, continuous time
Let the state vector contain the one dimensional position p and velocity v of an
object, i.e. x(t) = [p(t) v(t)]T. The motion model can be defined as

ẋ(t) =
[
ṗ(t)
v̇(t)

]
=

[
v(t)
a(t)

]
=

[
0 1
0 0

] [
p(t)
v(t)

]
+

[
0
1

]
w(t)

= Ax(t) + Bw(t) (4.6)

where w(t) = a(t) is the acceleration. This motion model is often called con-
stant velocity model. Let the measurement be the position, thus the measurement
model is

z(t) = z(t) = p(t)

=
[
1 0

] [p(t)
v(t)

]
= Cx(t). (4.7)

Note that the motion and measurement models (4.6) and (4.7) are modeled as
noiseless. This is an atypical choice, because most often systems are assumed to
be noisy.

The motion and measurement models used in this thesis are all in discrete time,
and in the next section, which presents discrete time models, noise is included. A
presentation of random signals in continuous time goes beyond the scope of this
thesis, instead we refer the reader to the literature, see e.g. (Jazwinski, 1970).

4.2.2 Examples in discrete time

As was noted above, some estimation problems cannot be solved in continuous
time, and instead discrete time models have to be derived for the dynamic mo-
tion and measurements. A possible way to discretize a continuous model is to
approximate the continuous time derivatives as

ẋ(t) ≈x(t + Ts) − x(t)
Ts

(4.8a)

=
xk+1 − xk

Ts
, (4.8b)
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where Ts is the sample time, and we assume that t = kTs. Note that in the limit,
limTs→0, the approximation is exact. The approximation (4.8) is also called Eu-
ler’s approximation. In Example 4.2 Euler’s approximation is used to find a dis-
crete time counterpart to the continuous time system presented in Example 4.1.

Example 4.2: Linear Gaussian state space system, discrete time
Using the approximation given in (4.8), the motion model in (4.6) is given in
discrete time as

xk+1 − xk
Ts

=
[ pk+1−pk

Tsvk+1−vk
Ts

]
=

[
0 1
0 0

] [
pk
vk

]
+

[
0
1

]
wk

⇔

xk+1 =
[
pk+1
vk+1

]
=

[
1 Ts
0 1

] [
pk
vk

]
+

[
0
Ts

]
wk

= Fxk + Gwk , (4.9)

with discrete time process noise p (wk) = N (wk ; 0,Qk). The measurement model
is given in discrete time as

zk =
[
1 0

] [pk
vk

]
+ ek

= Hxk + ek , (4.10)

with discrete time measurement noise p (ek) = N (ek ; 0,Rk).

Other continuous to discrete approximations are also possible, see e.g. Gustafs-
son (2010). Depending on the approximation that is used, the discretization of
the continuous constant velocity model in Example 4.1 could be different than
the one given in Example 4.2.

However, in many cases neither the state dynamics nor the measurements can
be modeled accurately as linear systems. Instead non-linear models have to be
used. Similarly, the noise processes are not necessarily zero mean Gaussian, but
may belong to any other probability distribution. An example of a non-linear,
non-Gaussian, state space system is given in Example 4.3.

Example 4.3: Non-linear non-Gaussian state space system, discrete time
A common non-linear motion model is the coordinated turn model with polar
velocity. The state is

xk =
[
pxk pyk vk φk ωk

]T
, (4.11)

where pxk and pyk are the positions in two dimension, vk is the velocity, φk is the
heading and ωk is the turn rate.
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The motion model, see e.g. Rong Li and Jilkov (2003), is

xk+1 =


pxk + 2vk

ωk
sin

(
ωkTs

2

)
cos

(
φk + ωkTs

2

)
pyk + 2vk

ωk
sin

(
ωkTs

2

)
sin

(
φk + ωkTs

2

)
vk

φk + ωkTs
ωk


+ wk , (4.12)

where wk is random process noise with covariance matrix (Rong Li and Jilkov,
2003)

Qk = blkdiag

[0 0
0 0

]
, Tsσ

2
v ,

 T 3
s σ

2
ω

3
T 3
s σ

2
ω

2
T 3
s σ

2
ω

2 T 3
s σ

2
ω


 . (4.13)

The coordinated turn motion model is often used for airplane tracking in air
traffic control, and the measurement is then typically the range to the airplane
measured by a radar station. If the radar station is located in s = [sx sy]T, the
measurement model for the state vector in (4.11) is

zk =

√(
pxk − sx

)2
+

(
pyk − sy

)2
+ ek , (4.14)

where ek is random measurement noise.

4.3 Recursive single state Bayes filter

It is often of interest to use dynamic and measurement models to describe the
time evolution of a state. Because of the uncertainties involved, such as process
and measurement noise, the knowledge of the state is often described using prob-
ability distributions.

The time evolution of the distribution of the state x can be described in a recursive
Bayesian framework. At time step k, assume that we have a prior distribution for
the state variable,

p
(
xk

∣∣∣zk ) , (4.15)

where zk is the set of all measurements from time step 0 to time step k

zk = {z0, z1, . . . , zk−1, zk} . (4.16)

The prior can be predicted (i.e. time updated) to the next time step using the
Chapman-Kolmogorov equation,

p
(
xk+1

∣∣∣zk ) =
∫
p (xk+1 |xk ) p

(
xk

∣∣∣zk )dxk , (4.17)

where p (xk+1 |xk ) is the transition density from time k to time k + 1.
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Let p (zk+1 |xk+1 ) be the measurement likelihood. Then, given the predicted prior,
the corrected (i.e. measurement updated) posterior is

p
(
xk+1

∣∣∣zk+1
)

=
p (zk+1 |xk+1 ) p

(
xk+1

∣∣∣zk )∫
p (zk+1 |xk+1 ) p

(
xk+1

∣∣∣zk )dxk+1

. (4.18)

Let p (x0) be the prior at the initial time step. The prior p (x0), the prediction
(4.17), and the correction (4.18), are sufficient to describe the time evolution of
the distribution of the state x given measurements z,

p (x0)
c→ p

(
x0

∣∣∣z0
) p
→ p

(
x1

∣∣∣z0
) c→ p

(
x1

∣∣∣z1
) p

→ . . .

. . .
c→ p

(
xk

∣∣∣zk ) p
→ p

(
xk+1

∣∣∣zk ) c→ p
(
xk+1

∣∣∣zk+1
) p
→ . . .

(4.19)

where
p
→ denotes prediction and

c→ denotes correction.

It is often desired that the propagated distribution over x has the same functional
form, i.e. that p

(
xk

∣∣∣zk−1
)

and p
(
xk

∣∣∣zk ) are of the same functional form for all k.
For example, if the initial prior is a Gaussian distribution

p (x0) = N (x0 ; m0, P0) , (4.20)

it is desired that p
(
xk

∣∣∣zk−1
)

and p (xk |zk ) are Gaussian for all k, i.e.

p
(
xk

∣∣∣zk−1
)

=N
(
xk ; mk|k−1, Pk|k−1

)
, (4.21a)

p
(
xk

∣∣∣zk ) =N
(
xk ; mk|k , Pk|k

)
. (4.21b)

The property that the posterior distribution p
(
xk

∣∣∣zk ) has the same functional

form as the prior distribution p
(
xk

∣∣∣zk−1
)

is called conjugacy; for a given mea-
surement likelihood p (zk |xk ) the prior that gives the same posterior is called
conjugate prior.

Worthy of mention for their relevance to this thesis are the conjugate pairs given
in Table 4.1. A comprehensive study of conjugate pairs can be found in e.g. the
book by Gelman et al. (2004).

Table 4.1: Conjugate prior pairs
Measurement likelihood Conjugate Prior (variable of interest)
Poisson Gamma (Poisson rate)
Gaussian Gaussian (mean vector)
Multivariate Gaussian Inverse Wishart (covariance matrix)
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4.4 Some solutions to the estimation problem

There exists a variety of methods to solve estimation problems, in this section we
will briefly review some of them. For linear estimation with Gaussian noise, the
Kalman filter provides the optimal solution. For non-linear, non-Gaussian, prob-
lems, the extended Kalman filter and the particle filter are two possible methods.
The Kalman filter is used in Paper B, Paper D and Paper H, and the extended
Kalman filter is used in Paper C and Paper G.

4.4.1 Linear estimation with the Kalman filter

For the case presented in Example 4.2, when the motion and measurement mod-
els are linear and the process and measurement noise are Gaussian and indepen-
dent, the estimation problem can be solved in closed form using the Kalman filter
(Kalman, 1960). The Kalman filter propagates in time the first moment mk|k and
the second moment Pk|k of the state xk ,

. . .
c→ N

(
xk ; mk|k , Pk|k

) p
→ N

(
xk+1 ; mk+1|k , Pk+1|k

)
c→ N

(
xk+1 ; mk+1|k+1, Pk+1|k+1

) p
→ . . .

(4.22)

The Kalman filter prediction and correction equations are given in Algorithm 2.
Example 4.4 shows how the Kalman filter is used to estimate the states of the
discrete time system given in Example 4.2.

Algorithm 2 Kalman filter

Input: Measurements: {zk}Nk=0. Initial state estimate and covariance: {m0,P0}.
Models: F, G, andH . Parameters: Rk and Qk .

1: for k = 0, . . . , N do
2: Correction (measurement update)

ẑk|k−1 = Hmk|k−1 (4.23a)

Sk = HPk|k−1H
T + Rk (4.23b)

Kk = Pk|k−1H
TS−1
k (4.23c)

mk|k = mk|k−1 + Kk
(
zk − ẑk|k−1

)
(4.23d)

Pk|k = Pk|k−1 − KkHPk|k−1 (4.23e)

3: if k < N then
4: Prediction (time update)

mk+1|k = Fmk|k (4.24a)

Pk+1|k = FPk|kF
T + GQkG

T (4.24b)
5: end if
6: end for

Output: State estimates and covariances
{
mk|k ,Pk|k

}N
k=1
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Figure 4.1: Kalman filter state estimates, with 95% confidence intervals.

Example 4.4: Kalman filter
The system in Example 4.2 was initialized at the state x0 = [−0.75, 0.72]T, and
then simulated with true process noise covariance Q̄k = 1. N = 19 measurements
were generated with true measurement noise covariance R̄k = 1. The solution
from the Kalman filter, initialized with

m0 =
[
0
0

]
, (4.25a)

P0 =
[
1 0
0 1

]
, (4.25b)

is given in Figure 4.1. In the Kalman filtering the same models were used as
were used to simulate the system, and process and measurement noise covariance
parameter were set to Qk = Q̄k and Rk = R̄k , respectively.

For certain dynamic motion models, e.g. the constant velocity model in Exam-
ple 4.2, the state covariance Pk|k will converge to a steady state value, see e.g. Bar-
Shalom and Fortmann (1987). In such cases, a class of stationary filters known as
α-β filters can be used. The filter recursion consists of the following prediction
and correction steps,

mk+1|k = Fmk|k , (4.26a)

mk+1|k+1 = mk+1|k +
[
α
β
Ts

] (
zk+1 − ẑk+1|k

)
, (4.26b)

which, analogously to (4.22), can be expressed as

. . .
c→ mk|k

p
→ mk+1|k

c→ mk+1|k+1
p
→ . . . (4.27)

The steady state Kalman filter can be used to determine appropriate values for
the parameters α and β, see e.g. Bar-Shalom and Fortmann (1987).
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4.4.2 Non-linear estimation

As mentioned above, in many estimation problems the system is neither linear,
nor are the noise processes Gaussian. One possible way to solve a non-linear
estimation problem is to assume that the process and measurement noises are
zero mean Gaussian, and to apply the so called Extended Kalman Filter (ekf), see
e.g. Jazwinski (1970). As the name hints, the ekf is an extension of the Kalman
filter to non-linear systems. The ekf works by, at each time step, linearizing the
non-linear equations around the state estimate via first order Taylor expansion.
This linearization introduces linearization errors though. Note that there is no
guarantee of convergence of the ekf, however there is much practical experience
showing that, if initialized properly, the solution of the ekf often converges.

In the cases when the noise distributions cannot, with reasonable accuracy, be as-
sumed to be Gaussian, the so called Particle Filter (Gordon et al., 1993) is a good
alternative to the ekf. In brief, the particle filter provides an approximation of
the distribution of the state xk conditioned on zk . The approximation of the dis-
tribution is based on a number of particles, or samples, with associated weights.
There are also filters that combine the Kalman filter and the particle filter, these
are called Marginalized Particle Filters or Rao-Blackwellized particle filters, see
e.g. Schön et al. (2005). In brief, this type of filter is suitable for systems whose
state-space models can be separated into linear and nonlinear parts. There are
also non-linear filtering methods, good references on non-linear filtering are Si-
mon (2006) and Gustafsson (2010).

4.5 Performance evaluation

When a system is simulated, as in Example 4.4, the true state xk is available
and can be compared to the state estimate x̂k|k . In contrast to simulations, the
true state is often not directly available in experiments, however sometimes an
approximation of the true state can be obtained. One such example is outdoor
positioning of mobile robots, in which case the position given by a gps sensor
can be used as an approximation of the true position. In other cases the true
state can not be approximated, and other more or less subjective performance
measures have to be used.

Performance evaluation in the absence of the true state is briefly addressed in
Paper A, Paper B, Paper C, and Paper D. In the remainder of this section, it is
assumed that the true state is available. When evaluating estimation results, it is
important to have a well defined notion of the performance of the estimate. Two
performance evaluation methods are presented in this section.

4.5.1 The root mean square error

The estimation error Ek is defined as

Ek = xk − x̂k|k . (4.28)
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Figure 4.2: Kalman filter estimation errors, with 95% confidence intervals.

The estimation error is thus a vector of the same dimension as the underlying
state xk , i.e. Ek = [ε1

k , . . . , ε
nx
k ]T ∈ Rnx , and each component of the estimation

error has the same unit as the corresponding state. If the states are position and
velocity, as in Example 4.2, the components of the estimation error are given in
meters and meter per second, respectively, see Example 4.5.

Example 4.5: Kalman filter estimation errors
The estimation errors corresponding to the Kalman filter results in Example 4.4
are given in Figure 4.2. The figure shows the estimation errors and the 95%
confidence intervals.

A standard performance metric for the estimation error is the root mean square
error (rmse) ρ. Given a time sequence of states xk , and the corresponding state
estimates x̂k|k , the rmse’s are defined, for each component of the estimation error
vector, as

ρi
M=

√√√
1
N

N∑
k=1

(
εik

)2
. (4.29)

Note that the summation is taken over time for each component of the estimation
error vector. The rmse of the estimation error Ek , i.e. the Euclidean norm of
the vector, can be difficult to interpret because often the states have different
dimensions1. An exception to this is when the state vector contains multiple
states of the same dimension, in which case an rmse can be calculated in each
time step for those states2.

When simulated data is used, Monte Carlo techniques can be used to realize the
system with different process and measurement noise sequences. In such a case,
the rmse can be evaluated at each time step over the different simulations. Let

1cf. Example 4.2: what is the unit of a sum of position squared and velocity squared?
2When x contains x-position and y-position, the 2D Euclidean norm of x is the position error.
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Emk be the estimation error at time step k for the m:th Monte Carlo simulation run.
The rmse at each discrete time step k is then calculated, for each component i of
the estimation error vector, as

ρi,MC
k =

√√
1
nMC

nMC∑
m=1

(
εi,mk

)2
. (4.30)

where εi,mk is component i of Emk , and nMC is the number of Monte Carlo runs.
Note that since the estimation error can be negative, calculating the mean estima-
tion error should be avoided. Evaluating the rmse over time may be of interest
when the true target track contains different types of motion, e.g. linear motion
and curving motion. In such cases, it is often difficult to model both types of
motion using just one motion model.

Note that techniques exist that find the estimate that minimizes the squared
rmse, the so called minimum mean square error (mmse) estimate x̂mmse, see e.g.
Bar-Shalom and Fortmann (1987).

4.5.2 The normalized estimation error square

An alternative to the estimation error is the normalized estimation error square
(nees) ηk , defined as

ηk
M=

(
xk − x̂k|k

)T
P−1
k|k

(
xk − x̂k|k

)
. (4.31)

The nees can be understood as being a weighted average of the individual state
errors, where the weights are given by the inverse state covariance. Thus, if the
variance of a state estimate is high, its inverse weight will be small and a large
error will have a smaller contribution to the nees. Conversely, if the variance of
a state is low, its inverse weight will be large and a large error will have a larger
contribution to the nees. Note that the nees, in contrast to the estimation error
and rmse, is a dimensionless quantity.

When the state estimate x̂k is Gaussian distributed, the nees can be shown to
be χ2-distributed with nx degrees of freedom (Bar-Shalom et al., 2001). Thus,
using the χ2 (nx)-distribution, probability gates can be computed for the nees.
Similarly to (4.30), the nees can be averaged over Monte Carlo runs. The nees
however, is always positive by definition, and thus the sum can be calculated over
the Monte Carlo runs,

ηMC
k =

nMC∑
j=1

η
j
k =

nMC∑
j=1

(
xjk − x̂jk|k

)T (
Pjk|k

)−1 (
xjk − x̂jk|k

)
. (4.32)

The Monte Carlo nees sum ηMC
k is χ2-distributed with nx × nMC degrees of free-

dom. Probability gates gmax
γ and gmin

γ , corresponding to γ% of the probability
mass, can be computed using the χ2 (nxnMC)-distribution. For a given discrete
time sequence, ηMC

k should be within
[
gmin
γ , gmax

γ

]
γ% of the time instances. If it

is not, it is a sign that the estimates may be inconsistent. In practical implementa-
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Figure 4.3: Estimation performance evaluation. (a): the rmse for the posi-
tion and velocity, respectively. (b): the nees with 90% confidence interval.

tions, ηMC
k is often divided by the number of Monte Carlo runs nMC. When this is

performed, gmax
γ and gmin

γ must also be divided by nMC. Example 4.6 shows the
Monte Carlo average rmse and nees for the system in Example 4.4.

Example 4.6: rmse and nees
The system presented in Example 4.4 is simulated with 100 unique process and
measurement noise sequences, and the Kalman filter was used to compute state
estimates. The corresponding rmse and nees are shown in Figure 4.3. The nees
is within the 90% confidence interval in 19 out of 20 time steps, or 95% of the
time steps.

4.6 Simultaneous localization and mapping

Filtering can be applied to solve a broad variety of problems. An example that
is of high relevance to this thesis, is the Simultaneous Localization and Mapping
(slam) problem. The slam problem is a robotics problem that consists of the
joint estimation of the robot state rx and the map state M. Thus, the full state
vector is

x =
[
rx
M

]
. (4.33)

The robot state typically consists of position and orientation, which is also called
the robot pose. The map is often divided into landmarks, sometimes called fea-
tures, and thus the map state M can be decomposed as

M =
[(

m(1)
)T

. . .
(
m(i)

)T
. . .

(
m(m)

)T]T
, (4.34)
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where m(i) is the i:th landmark state. The landmark state is often given as an (x, y)
or (x, y, z) position, however the orientation can also be included. In some slam
applications the robot trajectory, i.e. a history of robot poses, is of interest and
therefore included in the state vector. In the estimation, the estimated quantity
is the trajectory state

tx =
[
rxT

0
rxT

1 . . . rxT
k . . . rxT

K
rxT
c

]T
, (4.35)

where rxk is the kth robot pose and rxc is the current robot pose. When both the
robot trajectory and the whole map is estimated, the problem is called Full-slam.
The Full-slam state vector is

x =
[
tx
M

]
. (4.36)

Estimating the robot trajectory tx, and not the landmarks in the map state M, is
called trajectory based slam. In this case, the state vector is simply x=tx. In
trajectory based slam, instead of measuring the landmarks in the map state M,
the robot measures the relative difference between the current pose rxc and some
previous pose rxk . A simple example of trajectory based slam in 2D is given in
Example 4.7.

Example 4.7: Trajectory based slam
A true trajectory was simulated,3 and control inputs and measurements were
obtained from the simulation. The robot pose is

rxk =
[
xk yk φk

]T
, (4.37)

where (xk , yk) is the position and φk is the orientation. The relative pose

rxk,c =
[
xk,c yk,c φk,c

]T
(4.38)

is defined as a rigid body transformation that transforms rxk to rxc. For a pose
defined as in (4.37), the relationship between rxk , rxc and rxk,c is (Smith et al.,
1990)

rxc =

xcyc
φc

 =

xk + xk,c cos(φk) − yk,c sin(φk)
yk + xk,c sin(φk) + yk,c cos(φk)

φk + φk,c

 (4.39a)

=

xkyk
φk

 +

cos(φk) − sin(φk) 0
sin(φk) cos(φk) 0

0 0 1


xk,cyk,c
φk,c

 (4.39b)

=rxk +
[
R(φk) 02×1
01×2 1

]
rxk,c, (4.39c)

where R( · ) is a rotation matrix, and 0m×n is an m × n all zero matrix.

3The trajectory was simulated using the ekf-slam toolbox written by Tim Bailey and Juan I. Nieto,
Australian Centre for Field Robotics (acfr), University of Sydney (usyd), Australia.
http://www-personal.acfr.usyd.edu.au/tbailey/software/index.html

http://www-personal.acfr.usyd.edu.au/tbailey/software/index.html
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Figure 4.4: Trajectory based slam. The true trajectory is given by the line,
estimated poses by the dots and the 99% pose uncertainty is shown by the
ellipses for every fifth pose.

In this example, measurements are generated when the true current pose is suf-
ficiently close to a previous pose, i.e. when the robot closes a loop. The measure-
ments are of the true relative pose rxk,c, with additive white Gaussian noise. The
probability of detecting loop closure was set to one. In reality however, detecting
loop closure presents a considerable challenge, and the probability of detection
is less than one.

A slam trajectory was estimated using an Exactly Sparse Delayed state Filter
(esdf) (Eustice et al., 2006), which is an ekf on information form for state vectors
of the type (4.35). The results are shown in Figure 4.4.

The origins of modern slam research can be traced back to the mid 80’s, when
probabilistic methods were first applied to mobile field robotics (Durrant-Whyte
and Bailey, 2006). Early work of large impact includes the paper by Smith et al.
(1990), which showed that when a robot makes relative observations of land-
marks, the estimates of the landmarks are all correlated. This implied that a
consistent full solution to the slam problem would require a joint state consist-
ing of both robot state rx and map state M. A nice overview of slam research
is given in the two part tutorial by Durrant-Whyte and Bailey (2006) and Bailey
and Durrant-Whyte (2006).
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A number of different solutions to the slam problem have been proposed. In on-
line solutions, the data is considered incrementally, i.e. processed one at a time,
while in offline solutions the data is typically considered in batch, i.e. all data is
processed at the same time, see e.g. Thrun and Leonard (2008). Popular solutions
to the slam problem include ekf-slam, see e.g. Dissanayake et al. (2001), which,
as the name reveals, solves the problem using an ekf. Another solution is fast-
slam (Montemerlo et al., 2002), which is based on the particle filter. fast-slam
has been shown to suffer from particle depletion when the robot’s mission grows
longer in time, which results in inconsistent estimates (Bailey et al., 2006). There
are, however, many practical examples where fast-slam has provided good re-
sults. A third family of solutions to the slam problem are the graph-based so-
lutions, pioneered by Lu and Milios (1997). The graph-based solutions solve the
slam problem offline in batch, either as trajectory based slam, or as Full-slam.

An important part of any slam solution is the data association, i.e. associating
measurements to the right landmark estimates, or associating relative pose esti-
mates to the correct previous pose. Data association in slam is very important,
because incorrect associations can lead to inconsistent slam-estimates. In Pa-
per A data association for trajectory based slam is posed as a loop closure detec-
tion problem, and a detection classifier is learned using AdaBoost.





5
Target tracking

This chapter is about target tracking, which is a type of estimation problem. The
target tracking problem is defined in Section 5.1, and some common data associ-
ation methods are presented in Section 5.2. The optimal sub-pattern assignment
metric for target tracking performance evaluation is defined in Section 5.3.

5.1 The target tracking problem

In this thesis, we will focus on targets that are moving objects, such as airplanes,
cars and humans. Early target tracking research was motivated by, among other
things, tracking of airplanes using radars, see e.g. Bar-Shalom and Fortmann
(1987). When airplanes are tracked using radar stations, the distance between
the sensor and target is often such that the target only occupies one resolution
cell of the sensor. Due to this, each target generates at most one radar measure-
ment. Because the targets generate at most one measurement per time step, they
effectively behave as points in the surveillance space and can thus be modeled as
such. This leads to the point target assumption, with the following definition:
Definition 5.1 (Point target). A target that gives rise to at most one measure-
ment per time step.

In the following two subsections some properties of target tracking are listed, and
problem formulations are given for both the case of a single target, and the case
of multiple targets.

5.1.1 Single target tracking

Single target tracking can be defined as the processing of measurements in order
to maintain an estimate of a target’s current state. As in any estimation problem,

53



54 5 Target tracking

it holds that

I each target generated measurement is corrupted by noise.

However, when the estimation problem was introduced to the reader it was im-
plicitly assumed that in each time step there is a single state generated measure-
ment. In contrast to this, single target tracking is complicated by the fact that

II the probability of detection for each target is less than one, i.e. in each time
step it is not known whether or not the target generated a measurement,

III there are false, so called clutter, measurements, and

IV measurement origin is unknown, i.e. it is not known which measurements
are target generated, and which measurements are clutter.

Each time step, a sensor delivers Nz,k measurements z(j)
k . Let the set of measure-

ments at time k be denoted

Zk =
{

z(j)
k

}Nz,k
j=1

. (5.1)

Further, let Zk be all sets of measurements from time 1 to time k, i.e. Zk = {Zi}ki=1.
The objective of single target tracking is to use Zk to determine whether or not
there is a target present, and if a target is present, to estimate the target state xk .

5.1.2 Multiple target tracking

Multiple target tracking is an extension of single target tracking, and can be de-
fined as the processing of multiple measurements obtained from multiple targets
in order to maintain estimates of the targets’ current states, see e.g. Bar-Shalom
and Fortmann (1987). At the heart of multiple target tracking lies a joint estima-
tion problem, namely estimating the number of targets, and estimating the states
of each target. In addition to the properties I to IV listed above, in multiple target
tracking

V the number of present targets is unknown.

Let Nx,k denote the unknown number of targets present at time k, and let x(i)
k

denote the state of target i at time k. At time k the set of all present targets Xk is
given by

Xk =
{

x(i)
k

}Nx,k
i=1

. (5.2)

The objective of multiple target tracking is to estimate Xk given Zk , i.e. to deter-
mine how many targets there are, and for the targets that are present, to estimate

the target states x(i)
k .
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5.2 Data association methods

An important part of solving a target tracking problem is solving the data associ-
ation problem, sometimes also referred to as the correspondence problem. Data
association means to associate each measurement to one of the measurement gen-
erating sources, i.e. either to a target or a clutter source.

Data association is an integral part of target tracking, because incorrect data as-
sociation can result in disastrous tracking performance. In this section, we will
briefly overview some data association methods often used for point target track-
ing. In each time step, each measurement is either clutter, or generated by a
target. For the measurements that are generated by targets, a decision has to be
made as to which measurements belong to already existing targets, and which
measurements belong to new targets. Handling the data association problem is
easier when the number of targets is limited to at most one. Hence, we will re-
view single target tracking association methods first before reviewing association
methods for multiple target tracking.

5.2.1 Single target tracking

When at most one target is present, i.e. single target tracking, the data association
problem comes down to deciding if there is a target present, and if so, which
measurement belongs to the target. Since there is at most one target present, the
association can be handled locally, i.e. only the measurements closest to the target
estimate are considered as potentially having been generated by the target.

Nearest neighbor

In nearest neighbor (nn) data association, the target is associated to the nearest
measurement such that (

z(i)
k − ẑk|k−1

)T

S−1
k

(
z(i)
k − ẑk|k−1

)
(5.3)

is minimized. Here, the notation ẑk|k−1 and Sk was introduced in Algorithm 2,
and i is an index which spans over all measurements that fall within the gate. A
gate, or validation region, is a part of the measurement space where the specific
measurement is found with some (high) probability (Bar-Shalom and Fortmann,
1987). Gating is used as a means to reduce the risk that the target is corrected
using a clutter measurement. Each measurement has a probability of being target
generated, and a probability of being clutter. The measurements that fall inside
the gate have a probability of being target generated that is relatively high.

One of the more common gating methods is ellipsoidal gating, which checks
whether the quantity in (5.3) is larger or smaller than some gate threshold gγ ,
which corresponds to γ% of the probability mass.1 Ellipsoidal gating thus corre-
sponds to an ellipsoidal region in the measurement space. Note that nn makes
a hard decision in the sense that only the measurement that minimizes (5.3) is

1The quantity in (5.3) is χ2-distributed, cf. the normalized estimation error square in (4.31).
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considered, the remaining measurements that fall inside the gate are ignored in
the correction step.

Probabilistic data association

Probabilistic data association (pda) is a soft version of nn. No hard decision is
made at all, instead all measurements that fall inside the gate are used to the

extent that they suit the prediction. Let
{

z(i)
k

}mk
i=1

be the measurements that fall

within the gate. The following hypotheses are considered,

H0 : All of
{

z(i)
k

}mk
i=1

are clutter (5.4a)

Hj : z(j)
k was target generated and

{
z(i)
k

}
i,j

are clutter. j = 1, . . . , mk (5.4b)

Using the total probability theorem, the probability P
(
xk

∣∣∣∣∣{z(i)
k

}mk
i=1

)
is calculated

as

P
(
xk

∣∣∣∣∣{z(i)
k

}mk
i=1

)
=

mk∑
j=0

P
(
xk

∣∣∣∣∣Hj , {z(i)
k

}mk
i=1

)
P

(
Hj

∣∣∣∣∣{z(i)
k

}mk
i=1

)
. (5.5)

Details on how pda is implemented can be found in the literature, see e.g. Bar-
Shalom and Fortmann (1987).

5.2.2 Multiple target tracking

In multiple target tracking, i.e. when more than one target may be present, data
association is more complicated, and using local methods is insufficient. Instead
a global association decision must be made, meaning that all measurement-to-
target-estimate associations have be to considered jointly.

Global nearest neighbor

Global nearest neighbor (gnn) data association considers all measurement-to-
clutter/existing track/new track associations, and selects the best overall hypoth-
esis. In an implementation, the clutter and new target tracks are typically han-
dled by so called track initiators, and they are therefore combined into a cate-
gory called external sources. At each time step, an association matrix contain-
ing measurement-to-source likelihoods is formed, and the assignment problem
is then solved as a convex optimization problem, e.g. using the auction algorithm
(Blackman and Popoli, 1999). While being global, and thus superior to nn, gnn
represents a hard decision for each measurement and only one data association
hypothesis is thus considered. In some more complex scenarios, making a hard
decision may be insufficient.

Joint probabilistic data association

Joint probabilistic data association (jpda) is a soft version of gnn analogously to
how pda is a soft version of nn. Measurement-to-target probabilities are com-
puted jointly over all targets, and only measurements from the last time step are
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considered, see e.g. Bar-Shalom and Fortmann (1987).

Multiple hypothesis tracking

Multiple hypothesis tracking (mht) is a data association method that considers as-
sociation of sequences of measurements and evaluates the probabilities of all hy-
potheses. Quickly, the number of possible hypotheses grows very large, and there-
fore methods to reduce the number of hypotheses have been suggested. These in-
clude clustering to reduce combinatorial complexity, pruning of low probability
hypotheses and merging of similar hypotheses, see e.g. Bar-Shalom and Rong Li
(1995).

5.3 Performance evaluation

In Section 4.5 performance evaluation methods for the estimation problem were
presented. While state estimation is a central part of target tracking, in many
scenarios performance indicators, such as rmse and nees, can not be applied
directly to a target tracking problem. Some typical difficulties are highlighted in
Example 5.1.

Example 5.1: Multiple target tracking data association difficulties
Let the true number of targets be 2, and let each state consist of Cartesian x and y
position. Consider the scenarios given in Figure 5.1. Note that the index numbers
for the estimates are not used as track labels. In Figure 5.1a the targets and the
estimates can be arranged in vectors according to the respective index numbers,
and the total position rmse can be computed in a straightforward manner as the
Euclidean norm of the estimation error. In Figure 5.1b, the indexing of the targets
and the estimates does not coincide, and a straightforward computation of the
rmse does not make sense. In Figures 5.1c and 5.1d, the problem is complicated
further because the number of targets is either under- or overestimated.

Thus, a multiple target tracking performance evaluation method must capture
both the error in the estimated number of targets, as well as the state estimation
error. Further, the performance evaluation should consider, globally, which esti-
mate is associated to which target. One such method is the optimal subpattern
assignment (ospa) metric (Schuhmacher et al., 2008). Let

d(c)
(
x(k), x(l)

) M= min
(
c, d

(
x(k), x(l)

))
(5.6)

be the distance between x(k) and x(l), cut off at c > 0. Here d ( · , · ) is any metric,
in target tracking typically the Euclidean metric. Let X = {x(1), . . . , x(m)} and X̂ =
{x̂(1), . . . , x̂(n)}, where m, n ∈ {0, 1, 2, . . .}. Let Πk denote the set of permutations on
{1, 2, . . . , k} for any k ∈ {1, 2, . . .}. For example, if k = 3 then Π3 is

Π3 =
{
[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]

}
. (5.7)
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Figure 5.1: Multiple target tracking data association difficulties. There are
two true targets, marked with black dots, and the estimated targets are
marked with gray squares.

Define d̄(c)
p

(
X, X̂

)
, called the ospametric of order p with cut-off c, as

d̄
(c)
p

(
X, X̂

) M=

1
n

min
π∈Πn

m∑
i=1

d(c)
(
x(i), x̂(π(i))

)p
+ cp (n −m)




1
p

if m ≤ n (5.8a)

d̄
(c)
p

(
X, X̂

) M= d̄
(c)
p

(
X̂,X

)
if m > n (5.8b)

d̄
(c)
p

(
X, X̂

) M= 0 if m = n = 0 (5.8c)

Note that if d ( · , · ) is the Euclidean metric, n = m, p = 2, c = ∞ and the optimal

permutation is π(i) = i, the ospa d̄(∞)
2 reduces to the rmse multiplied with

√
nx.

It is shown by Schuhmacher et al. (2008) that (5.8) is indeed a metric. Similarly
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to how a minimum mean square error estimate can be found, see Section 4.5, a
minimum mean ospa (mmospa) estimate x̂mmospa can be found (Guerriero et al.,
2010). In Example 5.2 the ospa metric is evaluated for the scenarios presented
in Example 5.1.

Example 5.2: ospametric
For the multiple target tracking scenarios given in Figure 5.1, the ospa metric,
evaluated with c = 0.5 and p = 2, is

(a): d̄(0.5)
2

(
X, X̂

)
= 0.14 (5.9a)

(b): d̄(0.5)
2

(
X, X̂

)
= 0.14 (5.9b)

(c): d̄(0.5)
2

(
X, X̂

)
= 0.36 (5.9c)

(d): d̄(0.5)
2

(
X, X̂

)
= 0.31 (5.9d)





6
Random finite sets and the

probability hypothesis density

This chapter is about random finite sets and the probability hypothesis density.
Random finite sets and multi-target calculus are reviewed in Section 6.1. These
mathematical concepts can be used to derive a recursive multi-state Bayes filter.
Multi-state Bayes filters is the topic of Section 6.2, with an emphasis on the prob-
ability hypothesis density filter.

6.1 Introduction

When the estimation problem was presented, see Chapter 4, the notion of a ran-
dom vector x was implicitly assumed to be known to the reader. In this section
the reader is introduced to the perhaps less familiar concept of a random finite
set, and is also given a short overview of multi-target calculus.

6.1.1 Random finite sets

In the previous chapter both the measurements and targets were seen as sets,
see (5.1) and (5.2). Considering the properties I to V listed in Section 5.1, in
multiple target tracking it becomes suitable to model the numbers of elements in
the measurement and target sets as random variables, and to model all elements
in the sets as random variables.

A random finite set (rfs) is a set where each element in the set is a random vari-
able, and where the number of elements in the set is a non-negative integer val-
ued random variable. Mahler (2007b) defines random finite set as follows.
Definition 6.1 (Random finite set). A random variable Ξ that draws its instanti-
ations Ξ = X from the hyperspace X of all finite subsets X (the null set ∅ included)
of some underlying space X0.

61
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One of the benefits of using rfs:s to model multiple target tracking is that doing
so simplifies the performance evaluation, as highlighted in the examples in Sec-
tion 5.3. The number of elements in an rfs is also called the set cardinality, and
is denoted |X|. Note that an rfs X is without ordering, which implies that

X =
{
x(1), x(2)

}
=

{
x(2), x(1)

}
(6.1)

for |X| = 2. The rfs concept is used for multiple target tracking in Paper B to
Paper H. In Example 6.1 we give an rfs example whose elements are random
state vectors.

Example 6.1: Random finite set in Euclidean vector space
In multiple target tracking the target states can typically be defined as vectors in
a Euclidean vector space Rnx , e.g. this is the case in the examples in Chapter 4.

Let the underlying state space be a Euclidean vector space, i.e. X0 = Rnx . Then
the hyperspace X consists of the following finite sets:

X = ∅
X = x(1) ∈ Rnx

...

X =
{
x(1), . . . , x(Nx)

}
, x(i) ∈ Rnx ∀i

...

(6.2)

where Nx ≥ 0 is the set cardinality.

Thus, in multiple target tracking the target set (5.2) can be modeled as a random
finite set Xk ∈ X , where X0 = Rnx . This has a simple interpretation: there could
be any number of targets present, and the state of each present target is a vector
in Rnx .

6.1.2 A brief overview of multi-target calculus

The probability mass function and probability density function are two impor-
tant concepts in the context of random variables. In this section the rfs general-
izations of these concepts, given by Mahler (2007b), are introduced.

For a random variable x ∈ X0 the probability mass function px(S) gives the prob-
ability of x being in some part S ⊆ X0,

Px (S) = Pr (x ∈ S) . (6.3)

The probability density function px (x) describes the relative likelihood of x to
occur at a given point x, and it is related to the probability mass function by an
integral

Px(S) =
∫
S

px(x)dx, (6.4)
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and a derivative

px (x) =
dPx(S)

dx

∣∣∣∣∣
S=x

. (6.5)

The probability mass function for a random vector can be generalized to the be-
lief mass function for an rfs. The belief-mass function is denoted βΞ(S), and
is defined as the probability that the random finite set Ξ on X0 is within some
region S,

βΞ(S) = Pr (Ξ ⊆ S) . (6.6)

Similarly, the probability density function for a random vector can be generalized
to the probability density function pΞ(X) of a random finite set Ξ.

A multi-state density function on the underlying space X0 is a real valued func-
tion p(X) of a finite subset variable X ⊆ X0 such that, if X0 has a unit of mea-
surement u, the unit of measurement of p(X) is u |X|. Furthermore a multi-state
density function p(X) is a multi-state probability density function if p(X) ≥ 0 for
all X and if ∫

p(X)δX = 1. (6.7)

The probability density function of an rfs Ξ is, if it exists, the function pΞ (X),
such that ∫

S

pΞ (X) δX = Pr (Ξ ⊆ S) , ∀S. (6.8)

The relation between pΞ(X) and βΞ(S) is thus given by a set integral

βΞ(S) =
∫
S

pΞ(X)δX (6.9)

and a set derivative

pΞ(X) =
δβΞ(S)
δX

∣∣∣∣∣
S=∅

. (6.10)

Please refer to the book by Mahler (2007b) for the definitions of the set integral
and the set derivative. Multi-target distributions can also be expressed in vector
notation, e.g.

pΞ
({

x(1), x(2)
})

= 2px

(
x(1), x(2)

)
, (6.11)

since the probability density must be distributed equally over the two possible
vectors

[
x(1), x(2)

]
and

[
x(2), x(1)

]
. In general it holds that

pΞ
({

x(1), . . . , x(n)
})

= n!px

(
x(1), . . . , x(n)

)
. (6.12)

As mentioned earlier in the chapter, the cardinality of an rfs is a random variable,
and it is necessary to model its distribution. The cardinality distribution of the
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finite random set Ξ is

pΞ (n) , p|Ξ| (n) (6.13a)

, Pr (|Ξ| = n) (6.13b)

=
1
n!

∫
X0

p
({

x(1), . . . , x(n)
})

dx(1) . . .dx(n). (6.13c)

Let p (n) be a probability distribution on the non-negative integers and let px (x)
be a probability density function on X0. For any X =

{
x(1), . . . , x(n)

}
with |X| = n,

define

pΞ (X) , n!p(n)
n∏
i=1

px

(
x(i)

)
. (6.14)

An i.i.d. cluster process is any random finite set Ξ that has pΞ(X) as its distribu-
tion, for some choice of p(n) and px(x). In Example 6.2 a type of i.i.d. cluster
process called Poisson process is given.

Example 6.2: Multitarget Poisson process
If p(n) is the Poisson probability mass function with rate parameter γ ,

p(n) =PS (n; γ) (6.15a)

=
γne−γ

n!
, (6.15b)

then the rfs X with pdf

pΞ (X) = e−γγn
n∏
i=1

px

(
x(i)

)
(6.16)

is a multi-target Poisson process.

The concepts i.i.d. cluster process and Poisson process can be used to derive prac-
tical recursive multi-state Bayes filters, e.g. the probability hypothesis density
filter and the cardinalized probability hypothesis density filter, which are given
in the next section.

For a more in depth description of multi-target calculus, please refer to the book
by Mahler (2007b).

6.2 Recursive multi-state Bayes filter

In Section 4.3 we described the time evolution of the probability distribution of
a single target. In this section we generalize this to the multi-target case using
the concepts and tools introduced previously in this chapter. For the sake of
simplicity and brevity, we drop the subscript Ξ from the multi-target pdf, i.e.

p (X) = pΞ (X) . (6.17)
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At time step k, assume that we have a posterior distribution for the multi-target
set,

p
(
Xk

∣∣∣Zk ) . (6.18)

The posterior can be predicted (time updated) to the next time step using the set
equivalent of (4.17),

p
(
Xk+1

∣∣∣Zk ) =
∫
p (Xk+1 |Xk ) p

(
Xk

∣∣∣Zk ) δXk , (6.19)

where p (Xk+1 |Xk ) is the multi-target transition density from time k to time k + 1.

Let p (Zk+1 |Xk+1 ) be the multi-target measurement likelihood. Then the set equiv-
alent of (4.18) is

p
(
Xk+1

∣∣∣Zk+1
)

=
p (Zk+1 |Xk+1 ) p

(
Xk+1

∣∣∣Zk )∫
p (Zk+1 |Xk+1 ) p

(
Xk+1

∣∣∣Zk ) δXk+1

. (6.20)

The prior at the initial time step p (X0), and the prediction and correction equa-
tions, (6.19) and (6.20) respectively, is sufficient to describe the time evolution of
the distribution of the state X given measurements Z,

p (X0)
c→ p

(
X0

∣∣∣Z0
) p
→ p

(
X1

∣∣∣Z0
) c→ p

(
X1

∣∣∣Z1
) p

→ . . .

. . .
c→ p

(
Xk

∣∣∣Zk ) p
→ p

(
Xk+1

∣∣∣Zk ) c→ p
(
Xk+1

∣∣∣Zk+1
) p
→ . . .

(6.21)

From the above we see that there are many conceptual similarities between sin-
gle target Bayes filtering, presented in Section 4.3, and multi-target Bayes filter-
ing. However, while the single target Bayes filter is computationally tractable,
its multi-target generalization is typically not, due to the need to compute set
integrals. Because of this approximations are needed, in the next section we will
introduce a first order approximation of the full multi-target Bayes filter.

6.2.1 The probability hypothesis density filter

For a random vector x ∈ Rnx with conditional pdf px(x|z), the first order moment,
also called the expected value, is defined as

Epx [x|z] ,
∫
Rnx

x px (x|z) dx (6.22a)

= x̂. (6.22b)

For a random vector with Gaussian pdf px

(
xk |zk

)
= N

(
xk ; mk|k , Pk|k

)
, the ex-

pected value is equal to the mean vector, x̂k|k = mk|k . The α-β-filter recursion
(4.27) corresponds to propagating the expected value,

. . .
c→ x̂k|k

p
→ x̂k+1|k

c→ x̂k+1|k+1
p
→ . . . (6.23)



66 6 Random finite sets and the probability hypothesis density

The first-order moment of a multi-target pdf is a density function defined on
single target states x ∈ X0 (Mahler, 2007b),

Dk|k (x) . (6.24)

In point process theory Dk|k (x) is called first-moment density or intensity den-
sity, see e.g. Mahler (2007b), however for target tracking the name probability
hypothesis density (phd) was adopted by Mahler (2007b). Despite its name, the
phd should not be confused with a probability density function. It is uniquely
determined by the property that, given any region S in single target state space
X0, i.e. S ⊆ X0, the integral ∫

S

Dk|k (x) dx (6.25)

is the expected number of targets in S (Mahler, 2007b). Especially, if S = X0 is
the entire state space then

Nk|k
M=

∫
Dk|k (x) dx (6.26)

is the expected total number of targets (Mahler, 2007b).

The phd filter propagates the first order multi-target moment (6.24) through
time,

D0 (x)
c→ D0|0 (x)

p
→ D1|0 (x)

c→ D1|1 (x)
p
→ . . .

. . .
c→ Dk|k (x)

p
→ Dk+1|k (x)

c→ Dk+1|k+1 (x)
p
→ . . .

(6.27)

and can be interpreted as an rfs equivalent to the α-β-filter for state vector es-
timation, see Section 4.4.1. It has been noted that, in principle, it is possible
to derive predictor and corrector equations for a second order multi-target filter,
however such a filter is unlikely to be computationally tractable (Mahler, 2007b).

phd filter initialization consists of choosing a prior phd (Mahler, 2007b)

D0 (x) = n0 × s0 (x) , (6.28)

where n0 is the initial expected number of targets, and s0 (x) is a pdf with peaks
that correspond to likely initial target locations.

Given a phd Dk|k (x), the predicted phd is (Mahler, 2007b)

Dk+1|k (x) = Db
k+1|k (x)︸     ︷︷     ︸

Birth of new targets

+
∫
pS (x′) pk+1|k (x|x′)Dk|k (x′) dx′︸                                     ︷︷                                     ︸

Prediction of existing targets

+
∫
ps
k+1|k (x|x′)Dk|k (x′) dx′︸                            ︷︷                            ︸

Target spawning

(6.29)
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where

• Db
k+1|k (x) is the likelihood that new targets will appear at time k + 1,

• pS (x′) is the probability that a target with state x′ at time k will survive to
time k + 1,

• pk+1|k (x|x′) is a single target Markov transition density, and

• ps
k+1|k (x|x′) is the likelihood that at target with state x′ at time k will spawn

a target with state x at time k + 1.

Under the assumption that the multi-target distribution corresponding to the
predicted phd is approximately Poisson, the corrected phd is (Mahler, 2007b)

Dk+1|k+1 (x) ≈ (1 − pD (x))Dk+1|k (x)︸                     ︷︷                     ︸
Not detected targets

+
∑
z∈Z

pD (x) pk+1 (z|x)

λc (z) +
∫
pD (x′) pk+1 (z|x′)Dk+1|k (x′) dx′

Dk+1|k (x)︸                                                                   ︷︷                                                                   ︸
Detected targets

(6.30)

where

• pD (x) is the probability that a measurement will be collected at time step
k + 1 from a target with state x,

• pk+1 (z|x) is the sensor likelihood function,

• λ is the average of the Poisson distributed number of false alarms collected
by the sensor, and

• c (z) is the spatial distribution of the false alarms.

In (6.29) and (6.30) the theoretical equations for phd prediction and correction
are given, however these equations must be implemented to be useful in a practi-
cal setting. One alternative is to use particle filters, e.g. a sequential Monte Carlo
filter; another alternative is to approximate the phd with a weighted mixture of
Gaussian distributions and use the Kalman filter, or one of its non-linear exten-
sions.

A sequential Monte Carlo implementation of the phd filter for point targets is
presented by Vo et al. (2005), with a convergence analysis given by Vo et al. (2005);
Clark and Bell (2006); Johansen et al. (2006). The Gaussian mixture phd (gm-
phd) filter for point targets assumes that at time step k the phd has the following
Gaussian mixture representation (Vo and Ma, 2006),

Dk|k (x) =
Jk|k∑
j=1

w
(j)
k|kN

(
x ; m(j)

k|k , P
(j)
k|k

)
. (6.31)
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Thus, because
∫
N

(
x ; m(j)

k|k , P
(j)
k|k

)
dx = 1, the number of present targets is readily

given as Nk|k =
∑Jk|k
j=1 w

(j)
k|k . To arrive at predictor and corrector equations, the fol-

lowing assumptions were made by Vo and Ma (2006), repeated below for clarity:
Assumption A1. Each target evolves and generates observations independently
of one another.

Assumption A2. Clutter is Poisson and independent of target-originated mea-
surements.

Assumption A3. The predicted multiple-target rfs is Poisson.

Assumption A4. Each target follows a linear Gaussian dynamical model and the
sensor has a linear Gaussian measurement model.

Assumption A5. The survival and detection probabilities are state independent.

Assumption A6. The intensities of the birth and spawn rfs:s are Gaussian mix-
tures.

As mentioned by Vo and Ma (2006), Assumption A1, A2, A4 and A5 are standard
in many target tracking applications, see e.g. Bar-Shalom and Fortmann (1987).
The third assumption is reasonable in applications where target interactions are
negligible. Extended, more complete, remarks on the assumptions are given in
Vo and Ma (2006).

The full prediction and correction equations are not repeated here, instead we
refer the reader to the paper by Vo and Ma (2006). Convergence analysis of the
gm-phd filer is given in Clark and Vo (2007).

6.2.2 The cardinalized probability hypothesis density filter

A known drawback of the phd filter is that the cardinality is estimated using a
single parameter (the mean), resulting in the cardinality distribution being ap-
proximated with a Poisson distribution. Because the Poisson mean and variance
are equal, when the true cardinality is high the corresponding estimate has a
high variance. In practice, this results in an oversensitive cardinality estimate
(Erdinc et al., 2005), e.g. seen when there are missed detections. To improve
upon this, the cardinalized probability hypothesis density (cphd) filter was in-
troduced (Mahler, 2007a). In addition to propagating the phd Dk|k (x) in time,
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the cphd filter also propagates the full cardinality distribution Pk|k (n),{
D0 (x)
P0 (n)

c→
{
D0|0 (x)
P0|0 (n)

p
→

{
D1|0 (x)
P1|0 (n)

c→
{
D1|1 (x)
P1|1 (n)

p
→ . . .

. . .
c→

{
Dk|k (x)
Pk|k (n)

p
→

{
Dk+1|k (x)
Pk+1|k (n)

c→
{
Dk+1|k+1 (x)
Pk+1|k+1 (n)

p
→ . . .

(6.32)
To initialize the cphd filter an initial phd

D0 (x) =n0 × s0 (x) (6.33)

and an initial cardinality distribution P0 (n) have to be chosen (Mahler, 2007b),
where s0 (x) is a pdf with peaks that correspond to likely initial target locations,
and P0 (n) is a pmf definded on n ∈ N = {0, 1, 2, 3, . . .} such that the expected value
is n0,

n0 =
∞∑
n=0

nP0 (n) . (6.34)

The cphd prediction and correction equations are more intricate than their phd
counterparts, and they are not repeated here. However, we note that the cphd
prediction and correction require the assumption that the propagated multi-tar-
get distribution is approximated with an i.i.d. cluster process, cf. (6.14). A gm
implementation of the cphd filter for point targets can be found in the paper by
Vo et al. (2007).

6.3 A brief revisit to the SLAM problem

Random finite sets were introduced in this chapter in part because they are a
suitable remedy to the intricacies of performance evaluation of multiple object
estimation, as highlighted in Section 5.3. Similarly to multiple target tracking, in
slam the map state M consists of an unknown number of landmarks, each with
an unknown state. Thus, modeling the landmarks as an rfs

M =
{
m(i)

}m
i=1

, (6.35)

rather than a vector, as in (4.34), can simplify performance evaluation of the
slam map. A further benefit of the rfs model is that the measurement to land-
mark data association can become more robust against high clutter rate and mea-
surement noise.

An rfs formulation for slam was first proposed by Mullane et al. (2008), who
model the robot state and map as a joint finite set valued variable and give
a Gaussian mixture implementation of the proposed phd-slam filter. A Rao-
Blackwellized implementation of phd-slam was given by Mullane et al. (2011),
with early results presented by Mullane et al. (2010). The implemented phd-
slam filter is based on using the gm-phd filter for the map and a particle filter
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for the robot trajectory. A similar approach is taken by Lee et al. (2012).

The rfs approaches to slam share most similarities with fast-slam (Monte-
merlo et al., 2002). Comparisons show that the rfs approach outperforms fast-
slam in scenarios with high levels of clutter measurements.



7
Extended target tracking

In this chapter we revisit the target tracking problem, this time with an emphasis
on a type of target that is called extended. We give a definition of extended target
in Section 7.1 and provide some extended target models in Section 7.2. Measure-
ment set partitioning is presented in Section 7.3, and performance evaluation for
extended target estimates is discussed in Section 7.4.

7.1 Introduction

In many modern target tracking applications the point target assumption, see
Definition 5.1 in Chapter 5, is not valid. Examples of such applications include
vehicle tracking using automotive radars, people tracking using laser range sen-
sors or object tracking using vision sensors, e.g. cameras. See Figure 7.1 for two
examples. This prompts us to make the following definition:
Definition 7.1 (Extended target). A target that potentially gives rise to more
than one measurement per time step.

It is important to note here that the target tracking properties I to V listed in
Section 5.1 apply to extended targets too. In addition to those properties, for
extended target tracking it also holds that

VI the number of measurements generated by each target is unknown.

The multiple measurements per target raise interesting potentials for the estima-
tion of target shape and size. While the single measurement setting is sufficient
to track the targets’ centers of mass, multiple measurements allow certain prop-
erties of the targets to be estimated too, e.g. shape, size and orientation. With this
added knowledge, differentiation between different target types is possible.

71
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Figure 7.1: (a) Laser data with car, bicycle and pedestrian. (b) Camera image
with pedestrian detections. Detections obtained using the classifier by Maji
et al. (2008).

7.2 Extended target modeling

Naturally there are more than one possible way to model extended targets. In
this section we will briefly overview a few different alternatives.

7.2.1 Extended target measurements

Let ξk denote the extended target state at time tk . Modeling the distribution of
the set of target generated measurements means to model the distribution

p (Zk |ξk) = p
(
Zk |Nz,k , ξk

)
p
(
Nz,k |ξk

)
, (7.1)

where the measurement set Zk was defined in (5.1). The measurements z(j)
k are

often assumed to be i.i.d.,

p
(
Zk |Nz,k , ξk

)
=
Nz,k∏
j=1

p
(

z(j)
k

∣∣∣∣ ξk) , (7.2)

where p (zk | ξk) is a likelihood function for a single target generated measure-
ment.

In the extended target model suggested by Gilholm and Salmond (2005) the num-
ber Nz,k of target generated measurements is Poisson distributed with a rate pa-
rameter λk . The probability mass function for Nz,k is

p
(
Nz,k |λk

)
=PS

(
Nz,k ; λk

)
(7.3a)

=
e−λkλ

Nz,k
k

Nz,k!
. (7.3b)

Each of the Nz,k measurements are then distributed according to a spatial extent
model. The analysis in Gilholm and Salmond (2005) is limited to the single target
case, and a multiple hypothesis Kalman filter implementation and a particle filter
implementation is given.
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The model by Gilholm and Salmond (2005) has been extended to modeling the
generation of target measurements as an inhomogeneous Poisson point process
(Gilholm et al., 2005). The probability of n measurements falling in a region A of
the surveillance space is

P
(
Nz,k = n

)
= PS (n; λk(A)) , (7.4a)

where

λk(A) =
∫
A

Λk (z |ξk ) dz (7.4b)

is the expected number of measurements falling in A, and Λk (z |ξk ) is the spa-
tially dependent intensity of the Poisson process. The likelihood function for a
single measurement in the region A is

p (z |ξk ) =
Λk (z |ξk )
λk(A)

, (7.5)

i.e. given ξk , any measurement z is a random draw from this pdf. For this ex-
tended target model, Gilholm et al. (2005) gave a particle filter implementation
for the multiple target case, and an extended target phd filter for this model was
developed by Mahler (2009).

A slightly different approach is taken by Swain and Clark (2010). They assume
that at most one measurement is generated by a point target, however the point
targets belong to groups, or clusters. The cluster centers are referred to as parent
processes, and their point target processes are daughter processes. The resulting
filter presented by Swain and Clark (2010) is similar to the extended target phd
filter (Mahler, 2009).

In all papers in the second part of this thesis, except Paper A and Paper F, the
number of extended target generated measurements is modeled as Poisson dis-
tributed, with a target state dependent measurement rate λk (ξk). In the next
section, different models for the extended target state are given, together with
corresponding measurement models.

7.2.2 Extended target state

For the extended target state, a common choice is to let the extended target state
be a vector ξk ∈ Rnx that is Gaussian distributed,

p
(
ξk

∣∣∣Zk ) = N
(
ξk ; mk|k , Pk|k

)
. (7.6)

The measurement distribution is then typically modeled as

p
(

z(j)
k

∣∣∣∣ ξk) = N
(
z(j)
k ; hk (ξk) , Rk

)
, (7.7)

where hk( · ) : Rnx → Rnz is a non-linear measurement function. In this case,
the extended state vector contains all states that are of interest, such as position,
velocity, acceleration and the states that govern the shape and size of the extended
target. A Gaussian state vector is used in Paper B and Paper C, and is also used by
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Figure 7.2: State estimate with rectangular shape for the extended target,
and measurements from a car.

e.g. Salmond and Parr (2003); Gilholm and Salmond (2005); Baum et al. (2010b);
Baum and Hanebeck (2011); Baum et al. (2011).

In Example 7.1 a Gaussian state vector is applied to the car data from Figure 7.1a,
under the assumption that the target is shaped as a rectangle.

Example 7.1: Gaussian state
Consider the laser data in Figure 7.1a, which features measurements from a car,
a bicycle and a pedestrian. For the car a rectangle appears to be a suitable shape
model. Let the extended target state be a Gaussian distributed vector,

ξk =
[
xk , yk , `k , wk , φk

]T
(7.8)

where (xk , yk) is the position, (`k , wk) is the length and width of the rectangle, and
φk is the orientation of the rectangle.

Using the knowledge that the laser range sensor measures along the edge of the
shape, i.e. along the edges of the rectangle, Figure 7.2 shows the result of this
extended target state applied to the car measurements from Figure 7.1a. The
rectangle is not an exact fit to the measurements, however it is a reasonable ap-
proximation of the shape.

Note that for this type of example, modeling the measurement function hk( · ) can
be quite complicated. Modeling of the measurement function for laser range data
is considered in Paper C.

An alternative to the Gaussian model (7.6) was proposed by Koch (2008). This
model is sometimes referred to as the random matrix model, or random matrix
framework. The random matrix model defines the extended target state as the
combination of a kinematical state vector xk ∈ Rnx , and an extension state matrix
Xk ∈ Sd++ representing the size of the target. Modeling the extension as a random
matrix means that the shape is modeled as elliptical.
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The extended target state ξk = (xk , Xk) is modeled as Gaussian inverse Wishart
(giw) distributed (Koch, 2008),

p
(
ξk

∣∣∣Zk ) =p
(
xk

∣∣∣Xk ,Zk ) p (
Xk

∣∣∣Zk ) (7.9a)

=N
(
xk ; mk|k , Pk|k ⊗ Xk

)
IW

(
Xk ; vk|k , Vk|k

)
, (7.9b)

and the measurement distribution can be modeled as

p
(

z(j)
k

∣∣∣∣ ξk) = N
(
z(j)
k ; hk (xk) , Xk

)
. (7.10)

Koch (2008) uses a linear function hk (xk) = Hkxk , which results in linear correc-
tion for the extended target state estimate. The giw model is used in Paper D,
and is also used by e.g. Koch and Feldmann (2009); Wieneke and Koch (2010);
Lan and Rong Li (2012).

In this model, the measurement covariance is given by the extension matrix, and
the measurements are assumed to be spread across the target surface. The kine-
matic state vector contains states that are derivatives of the spatial state com-
ponent, denoted rk (Koch, 2008). For example, if the measurements are of the
extended target’s Cartesian (xk , yk)-position, then the spatial state component is
rk = [xk , yk]

T. In this case the kinematic state vector xk contains the position rk ,
and possibly also higher derivatives of the spatial components such as velocity
drk/dtk and acceleration d2rk/dt2k .

As mentioned above, in the random matrix model the extended target shape is
assumed to be an ellipse (Koch, 2008). While this assumption is limiting, in
many scenarios the ellipse is a sufficient approximation of the true extended tar-
get shape. Example 7.2 shows the giw model applied to the laser data in Fig-
ure 7.1a.

Example 7.2: giw state
Consider again the laser data in Figure 7.1a. Let the extended target be giw
distributed, with kinematical state

xk =
[
xk , yk

]T
, (7.11)

and extension state Xk ∈ S2
++. Using a linear measurement function Hkxk = xk , in

Figure 7.3 this extended target state is applied to the car, bicycle and pedestrian
measurements from Figure 7.1a, respectively.

For the bicycle and the pedestrian an ellipse appears to be a reasonable model for
the shape, however it is a poor model for the car.

The measurement model (7.10) implicitly assumes that the sensor noise is negli-
gible in comparison to the target extent (Feldmann and Fränken, 2008; Feldmann
et al., 2011), a relation that does not hold in all scenarios.
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Figure 7.3: The giw extended target state model applied to the laser data
from Figure 7.1a. (a), (b) and (c) Model applied to measurements from a car,
a bicycle and a pedestrian, respectively.

Feldmann and Fränken (2008), see also the work by Feldmann et al. (2011), pro-
posed to approximate the kinematical and extension state as independent

p
(
ξk

∣∣∣Zk ) =p
(
xk

∣∣∣Xk ,Zk ) p (
Xk

∣∣∣Zk ) (7.12a)

≈p
(
xk

∣∣∣Zk ) p (
Xk

∣∣∣Zk ) (7.12b)

=N
(
xk ; mk|k , Pk|k

)
IW

(
Xk ; vk|k , Vk|k

)
, (7.12c)

with measurement distribution model

p
(

z(j)
k

∣∣∣∣ ξk) = N
(
z(j)
k ; Hkxk , zXk + Rk

)
, (7.13)

where z is a scaling factor, and Rk ∈ Sd+. This measurement model can be inter-
preted as meaning that Xk is the true extension of the extended target, while Rk is
the sensor error covariance matrix. Note that with this measurement distribution,
the correction for the extended target state estimate is no longer linear, but has
to be approximated (Feldmann and Fränken, 2008; Feldmann et al., 2011). For a
comparison of the model (7.9), (7.10) and the model (7.12), (7.13), see the paper
by Feldmann et al. (2011).
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In comparison to (7.9), in the giwmodel (7.12) the kinematic state vector can be
defined independently of the spatial state component. This includes the possibil-
ity of states that represent, e.g., the heading and the turn-rate. This variant of the
giwmodel is used in Paper F and Paper G.

A third model for the measurement distribution is suggested by Lan and Rong Li
(2012),

p
(

z(j)
k

∣∣∣∣ ξk) = N
(
z(j)
k ; Hkxk , BkXkB

T
k

)
, (7.14)

where Bk is a d × d non-singular transformation matrix. The transformation that
Bk represents could, e.g., be a rotation or a scaling of the extension matrix Xk .
Setting the two models (7.13) and (7.14) equal, we have the following relation
(Lan and Rong Li, 2012),

BkXkB
T
k = zXk + Rk (7.15a)

= (zXk + Rk)
1
2 X
− 1

2
k XkX

− T
2

k (zXk + Rk)
T
2 , (7.15b)

⇔ Bk = (zXk + Rk)
1
2 X
− 1

2
k . (7.15c)

Under the assumption Xk ≈ X̂k|k−1 = E
[
Xk

∣∣∣Zk−1
]
, Lan and Rong Li (2012) ap-

proximate (7.15c) as

Bk ≈
(
zX̂k|k−1 + Rk

) 1
2 X̂
− 1

2
k|k−1, (7.16)

which gives a matrix Bk that is not a function of the extended target state.

Both the state vector representation (7.6) and the random matrix representation
(7.9), (7.12) can be augmented with a state variable γk > 0, where γk is related to
measurement generating Poisson rate as follows,

λk (ξk) = γk . (7.17)

The conjugate prior for the Poisson rate is the gamma distribution, see Table 4.1
in Chapter 4. In this case it is natural to model ξk = (γk , xk) as gamma Gaussian
(gg) distributed,

p
(
ξk

∣∣∣Zk ) =p
(
γk

∣∣∣Zk ) p (
xk

∣∣∣Zk ) (7.18a)

=GAM
(
γk ; αk|k , βk|k

)
N

(
xk ; mk|k , Pk|k

)
, (7.18b)

and to model ξk = (γk , xk , Xk) as gamma Gaussian inverse Wishart (ggiw) dis-
tributed,

p
(
ξk

∣∣∣Zk ) =p
(
γk

∣∣∣Zk ) p (
xk

∣∣∣Xk ,Zk ) p (
Xk

∣∣∣Zk ) (7.19a)

=GAM
(
γk ; αk|k , βk|k

)
N

(
xk ; mk|k , Pk|k ⊗ Xk

)
IW

(
Xk ; vk|k , Vk|k

)
,

(7.19b)
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or

p
(
ξk

∣∣∣Zk ) =p
(
γk

∣∣∣Zk ) p (
xk

∣∣∣Zk ) p (
Xk

∣∣∣Zk ) (7.20a)

=GAM
(
γk ; αk|k , βk|k

)
N

(
xk ; mk|k , Pk|k

)
IW

(
Xk ; vk|k , Vk|k

)
. (7.20b)

A Bayesian recursion for estimation of the Poisson rate γk is given in Paper E.
The ggiwmodel (7.19) is used in Paper H.

7.2.3 Extension shape models

Closely related to modeling the distribution of the extended target measurements
is modeling the extended target shape. Dezert (1998) models the extension as a
collection of points, which together with the target kinematics are jointly esti-
mated from the measurements. In this case the target shape is given by the shape
of the points. Gilholm and Salmond (2005) give an example in which the target
extension is an infinitely thin stick of length `, a similar example is used by Boers
et al. (2006).

The giwmeasurement models suggested by Koch (2008), Feldmann et al. (2011),
and Lan and Rong Li (2012), assume that the extended target is shaped like an
ellipse, and that the measurements are spread across the target surface. Inspired
by Koch (2008), Degerman et al. (2011) decompose the extension matrix into
principal components, and design a heuristic Kalman filter for tracking the ex-
tension. Zhu et al. (2011) model the extension as a combination of two ellipses,
more specifically two Gaussian distributions. The random hypersurface model
by Baum and Hanebeck (2009) models the measurements as random samples of
measurement generating points on the target surface. A random hypersurface
model is given for elliptic targets by Baum et al. (2010b), and a comparison be-
tween the elliptic random hypersurface model and the giw model is given by
Baum et al. (2010a).

Modeling the measurements as being spread across the target surface is appropri-
ate, e.g., when airborne radars are used to track ground vehicles. For other sen-
sors, e.g. the laser range sensor, the measurements are better modeled as being
spread along the edge of the target surface. Rectangular and elliptical shape mod-
els are given for the laser range sensor in Paper C, Lundquist et al. (2011a) give
a more general shape model for laser range type sensors, capable of estimating
arbitrary shapes. Note that the methods presented by Lundquist et al. (2011a)
and in Paper C are capable of estimating the entire extension, even when only
parts of the extension are seen. For similar scenarios, Petrov et al. (2011) give a
sampling based measurement model for extended targets whose extensions are
measured across so called regions of interest. They illustrate their approach by
considering circular objects. Lundquist et al. (2011b) model the extended targets
using polynomials, an approach that is shown to be applicable to road-mapping
using vehicle radars.
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7.3 Measurement set partitioning

In Chapter 5 the data association problem was mentioned, and some data asso-
ciation methods for multiple point target tracking in clutter were given in Sec-
tion 5.2. The data association problem must be solved also for multiple extended
target tracking in clutter. Because more than one measurement may originate
from the same target, one approach to solving the data association problem is to
divide the set of measurements into non-empty subsets, where each subset is as-
sumed to contain measurement that are all from the same source. The subsets can
then be associated to the extended targets, similarly to how single measurements
are associated to the point targets.

In this thesis, we refer to the division of the measurement set into non-empty
subsets as partitioning the measurement set, a particular partitioning of the mea-
surement set is called a partition, and the non-empty subsets are denoted cells.
Note that in the literature, partitioning is sometimes called clustering or cluster
analysis, and the cells are then typically called clusters. For a given partition, the
cells can be interpreted as containing measurements that all stem from either a
single extended target or a clutter source.

There are different ways to approach the measurement partitioning, e.g. the mea-
surement-to-cell association could be either hard or soft. Hard association means
that the measurement belongs to the cell or not, similarly to nn and gnn data
association. Soft association means that the measurement belongs to the cell to a
certain degree. This thesis will only consider hard measurement-to-cell associa-
tions.

When it comes to computing the partitions, one method is to assume that the
partition should have K cells, and then assign the measurements to the K cells by
minimizing a cost function. One such partitioning method is K-means clustering,
see e.g. the textbooks by Bishop (2006); Hastie et al. (2009). K-means clustering
is a type of combinatorial algorithm (Hastie et al., 2009), meaning that it works
directly on the data and does not have an underlying probability model. Given a
desired number of cells, the algorithm assigns the data to the cells by iteratively
minimizing a cost function. One of K-means clustering’s drawbacks is its ten-
dency to get stuck in local optimas during the cost function minimization. An
improved version, called K-means++ clustering, is reported to have an initializa-
tion that better avoids local optimas (Arthur and Vassilvitskii, 2007; Ostrovsky
et al., 2006).

Alternatively, one may define a criterion by which it is determined whether, or
not, two measurements belong to the same cell. One such criterion is the distance
between the measurements, as given by a distance measure, e.g. the Euclidean
metric or Mahalanobis distance. This is also known as hierarchical clustering
(Hastie et al., 2009), and there are two types of hierarchical methods: agglomera-
tive and divisive. Agglomerative is bottom-up, i.e. it starts with all measurements
in one cell each, and builds larger cells (Hastie et al., 2009). Divisive is top-down,
i.e. it starts with all measurements in the same cell and splits into smaller cells
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(Hastie et al., 2009).

In terms of the distance used to determine cell membership, two alternatives are
complete linkage and single linkage. Let W1 and W2 be two cells whose union is
empty, i.e. the two cells do not have any measurements in common. For complete
linkage, the distance between the cells is measured as

max
{
d
(
z(i)
k , z(j)

k

)
: z(i)

k ∈ W1 , z(j)
k ∈ W2

}
, (7.21)

where d( · , · ) is the distance measure used. This means that the distance between
the two cells is the maximum distance between a pair of measurements. For
single linkage, the distance between the cells is measured as

min
{
d
(
z(i)
k , z(j)

k

)
: z(i)

k ∈ W1 , z(j)
k ∈ W2

}
. (7.22)

In this case the distance between the two cells is the minimum distance between
a pair of measurements.

In Paper B a type of agglomerative, single linkage, hierarchical partitioning meth-
od, called Distance Partitioning, is proposed for use in multiple extended target
tracking. Distance Partitioning forms the basis for the measurement set partition-
ing that is used in this thesis, however additional methods are also proposed in
Paper B and Paper D. Example 7.3 gives a small comparison of Distance Parti-
tioning and K-means++ clustering.

Example 7.3: Measurement set partitioning
True target measurements were generated from three Gaussian distributions with
the following means and covariances,

m(1) =[0 0]T, P (1) =diag ([1 1]) , (7.23a)

m(2) =[15 0]T, P (2) =diag ([0.25 1]) , (7.23b)

m(3) =[0 15]T, P (3) =diag ([1 0.25]) . (7.23c)

In total, 10 measurements were sampled from each distribution, let ZT denote
the set of 30 target measurements. Further, 10 clutter measurements were gen-
erated by uniform sampling in [−5 , 20] × [−5 , 20]. Let ZC denote the set of 10
clutter measurements, and let ZT C denote the union of ZT and ZC .

The measurements are shown in Figure 7.4a. Figure 7.4b and Figure 7.4c show ZT

and ZT C , respectively, after partitioning with Distance Partitioning with thresh-
old 2, measurements with the same color belong to the same cell. We see that
Distance Partitioning gives correct cells for the target generated measurements,
and places the clutter measurements in individual cells in Figure 7.4c. Both these
partitions are quite intuitive, and correspond well to our desire to have a parti-
tion in which the cells contain measurements that all stem from either a single
extended target or a clutter source.

In Figure 7.4d ZT is shown after partitioning with K-means++ clustering, we see
that the result is the same partition as when Distance Partitioning is used, see
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Figure 7.4: Comparison of clustering methods. Measurements with the same
color belong to the same cell. (a) True target measurements shown as blue
circles, cyan squares and yellow triangles, respectively, and clutter measure-
ments shown as red diamonds. (b) Partition of ZT computed using Distance
Partitioning, threshold 2. (c) Partition of ZT C computed using Distance Par-
titioning, threshold 2. (d) Partition of ZT computed using K-means++ clus-
tering, K = 3. (e) Partition of ZT C computed using K-means++ clustering,
K = 3. (f) Partition of ZT C computed using K-means++ clustering, K = 13.

Figure 7.4b. However, when K-means++ clustering is used for partitioning of
ZT C , the results are much less intuitive. The partitions, for K = 3 and K = 13
are shown in Figure 7.4e and Figure 7.4f. For this measurement set, K-means++
does not return the correct partition for any value of K between 3 and 13.

7.4 Performance evaluation

In terms of multiple extended target tracking, there is no conceptual difference
to multiple point target tracking that prevents the use of the ospa metric (see
Section 5.3). However, the ospa requires a metric d( · , · ) for comparison of a true
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extended target state and a state estimate. In this section we will discuss some
alternatives for performance evaluation of a single extended target estimate.

In Section 4.5 the rmse and nees were introduced as performance metrics for
state vector estimates, theses metrics are no less valid for an extended target state
vector. However, depending on the particular modeling framework used, the
extension states could benefit from being treated differently.

For extended targets whose extension parameters are included in the state vector,
cf. (7.6), the rmse and nees can naturally be used also for the states related
to the extension. In case the extended target state is decomposed as in (7.9) or
(7.12), the extension estimation error can be evaluated using a matrix norm, e.g.
the Frobenius norm,

∥∥∥Xk − X̂k|k∥∥∥F =

√√√√ d∑
i=1

d∑
j=1

∣∣∣∣X[ij]
k − X̂[ij]

k|k

∣∣∣∣2, (7.24)

where d × d is the dimension of the extension matrix, and the notation A[ij] is
used to denote the i, jth element of the matrix A. The Frobenius norm for ma-
trices is analogous to the Euclidean norm for vectors. It is used for performance
evaluation in Paper G and Paper H.

Another performance metric, often used in computer vision, is a difference mea-
sure called Intersection-Over-Union (iou). The ioumeasures the volumes of the
intersection and the union of the true extended target and the estimate, and then
takes the ratio of the two volumes. Note that the iou is not a metric, e.g. it does
not satisfy the triangle inequality. Further, in comparison to the rmse, nees and
Frobenius norm, who are all equal to zero when there is no error, the iou is equal
to one when there is no error. The iou measure is used for performance evalua-
tion in Paper C.

In case a measurement rate γk is estimated, a suitable performance metric is the
absolute difference, ∣∣∣γk − γ̂k|k ∣∣∣ . (7.25)

Example 7.4 compares performance metrics for giw distributed extended targets.

Example 7.4: Extension estimation performance evaluation
Let the extended target state be giw distributed, with true state

ξk = (xk , Xk) , (7.26a)

xk = [0 , 0]T , (7.26b)

Xk =R
( 45

180
π
)

diag
([

52 , 22
])
RT

( 45
180

π
)
, (7.26c)
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where R( · ) is a 2D rotation matrix. There are two state estimates,

ξ̂
(1)
k|k =

(
x̂(1)
k|k , X̂

(1)
k|k

)
, (7.27a)

x̂(1)
k|k = [−0.25 , 0.15]T , (7.27b)

X̂
(1)
k|k =R

( 35
180

π
)

diag
([

62 , 1.752
])
RT

( 35
180

π
)
, (7.27c)

and

ξ̂
(2)
k|k =

(
x̂(2)
k|k , X̂

(2)
k|k

)
, (7.28a)

x̂(2)
k|k = [−1 , 1]T , (7.28b)

X̂
(2)
k|k =R

( 45
180

π
)

diag
([

5.12 , 2.12
])
RT

( 45
180

π
)
. (7.28c)

The true state and the estimates are shown in Figure 7.5a, the intersections and
the unions of the 2σ -ellipses are shown in Figure 7.5b and Figure 7.5c. The Eu-
clidean norms for the kinematical state vector differences, the Frobenius norms
for the extension matrix differences, and the iou values are∥∥∥∥xk − x̂(1)

k|k

∥∥∥∥
2

= 0.29,
∥∥∥∥xk − x̂(2)

k|k

∥∥∥∥
2

= 1.41, (7.29a)∥∥∥∥Xk − X̂(1)
k|k

∥∥∥∥
F

= 12.79,
∥∥∥∥Xk − X̂(2)

k|k

∥∥∥∥
F

= 1.09, (7.29b)

iou = 0.70, iou = 0.64. (7.29c)

Determined by the iou measure, ξ̂(1)
k|k is the better estimate. To be able to deter-

mine by the Euclidean and Frobenius norms, the two norms would have to be
weighed together. Depending on how this is performed, either estimate could be
the better one.
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Figure 7.5: Illustration of the difference measure intersection over union.
The 2σ -ellipses are plotted. (a) True extended target state ξk (gray area),

state estimate ξ̂(1)
k|k (black solid line), and state estimate ξ̂(2)

k|k (black dashed
line). (b) The intersection (black solid line) and the union (gray area) of ξk
and ξ̂

(1)
k|k . (c) The intersection (black dashed line) and the union (gray area)

of ξk and ξ̂(2)
k|k .



8
Concluding remarks

This chapter summarizes the thesis, with conclusions in Section 8.1 and recom-
mendations for future work in Section 8.2.

8.1 Conclusions

A method for loop closure detection in slam using data from laser sensors was
presented. A compact and efficient feature description of each point cloud is
given, and AdaBoost is used to construct a classifier that uses the features to clas-
sify a point cloud pair as being either from the same location, or not. The classi-
fier is able to detect loop closure from arbitrary direction, and in experiments it
is shown to produce detection rates that compare well to related work at low false
alarm rates. The real world slam experiments showed that the classifier can be
used within the context for which it was constructed.

Two different implementations of the extended target probability hypothesis den-
sity filter was presented, one Gaussian mixture implementation and one Gaus-
sian inverse Wishart implementation. The Gaussian mixture implementation
was also extended to non-linear motion and measurement models. The ideal
filter requires consideration of the full set of partitions, which is computation-
ally unfeasible in all but the very simplest cases. It was shown that the full set of
partitions can be approximated with a subset of partitions, without having to sac-
rifice tracking performance. Four different partitioning methods were suggested,
and it was shown that they reduce the number of partitions considered by several
orders of magnitude, and also that they outperform the well known partitioning
method K-means clustering.
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It was shown in simulations and experiments that the case of spatially close tar-
gets can be difficult to handle. Suitable remedies to improve performance under
these circumstances were suggested, and results showed that performance was
improved. Further, it was shown that the filter is sensitive to the number of mea-
surements generated by each extended target. A framework for estimating the
number of measurements generated was presented, and shown to be capable of
estimating an individual measurement rate for each target. The complexity of
the implementations increases exponentially with time, and approximations are
necessary to ensure computational feasibility. To this end, merging of distribu-
tion mixtures was presented. Finally, extended target prediction, spawning and
combination was also addressed.

8.2 Future work

A noted drawback of the presented loop detection classifier is that it, compared
to related work, is more sensitive to translation, i.e. required a higher degree of
point cloud overlap. While this is not problematic in environments with well
defined pathways, such as road networks or office hallways, it would present a
challenge in environments with less restrictions on motion. A topic for future
work is to increase the classifiers ability to handle translation.

The underlying ideas behind the presented loop detection classifier could have
extensions to the environment labeling problem. Environment labeling is a prob-
lem in which the parts of the sensor data is labeled according to which class it
originated from, e.g. ground, vegetation, building walls, cars, humans, etc. Fea-
tures similar to the ones used to describe the point clouds as a whole could be
used as local descriptors of each point in the point clouds. Using a multi-class
classifier, the data point could then be labeled with the most likely class label.

Two different models for estimation of the size and shape of extended targets
were used, however they were both limited to simpler shapes. A comparison of
different models for the shape and size of the extended targets would be interest-
ing. Given a partition of the current measurement set, and prior extended target
estimates, the cell to target association problem is similar to classic point target
tracking. It would be interesting to see how the partitioning methods could be
used together with classic target tracking approaches, like Multiple Hypothesis
Tracking, to construct multiple extended target tracking algorithms. If such a
tracking algorithm can be devised, a comparison to the extended target phd fil-
ter could show the advantages and disadvantages of using random set theory.

Further work on measurement set partitioning can be undertaken, to ensure that
the filtering framework is capable of handling multiple extended targets that ma-
neuver close to each other in heavily cluttered measurement data. When targets
are spatially close, the suggested partitioning methods sometimes fail in produc-
ing correct partitions. A method capable of detecting that a cell contains mea-
surement that actually belong to multiple sources could improve performance.
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Regarding estimation of the measurement rates, better models for the relation
between the measurement rate and the target kinematics and target extension is
needed. Reduction of distribution mixtures is addressed using merging, and a
simple way to construct a pairwise criterion is suggested. The related literature
on Gaussian mixture reduction contains different approaches to the problem of
finding which components in the mixture should be merged, and which should
not be merged. A comparison of these approaches applied to other distribution
mixtures would be interesting.

The presented approach to prediction of an extended target modeled with ran-
dom matrices can be tested further in multiple target scenarios. Only one step
prediction is considered in the paper, however the case of multi-step prediction
could further show the merits of the prediction. It would also be interesting to
include the prediction in an interacting multiple model framework. The spawn-
ing and combination of extended targets only handles the two target case, an
extension to the case of an arbitrary number of targets would be interesting.

Somewhere along the intersection of mapping and target tracking lies the prob-
lem of separating the sensor data into segments that correspond to either station-
ary or moving objects. This thesis has not handled the segmentation problem,
although it is shown that the loop detection classifier is not sensitive to moving
objects. An extended target tracking framework could possibly be used to de-
termine which parts of the surrounding environment are stationary, and which
parts are moving.
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Abstract

This paper addresses the loop closure detection problem in slam, and
presents a method for solving the problem using pairwise compari-
son of point clouds in both 2D and 3D. The point clouds are math-
ematically described using features that capture important geomet-
ric and statistical properties. The features are used as input to the
machine learning algorithm AdaBoost, which is used to build a non-
linear classifier capable of detecting loop closure from pairs of point
clouds. Vantage point dependency in the detection process is elimi-
nated by only using rotation invariant features, thus loop closure can
be detected from arbitrary direction. The classifier is evaluated using
publicly available data, and is shown to generalize well between envi-
ronments. Detection rates of 66%, 63% and 53% for 0% false alarm
rate are achieved for 2D outdoor data, 3D outdoor data and 3D indoor
data, respectively. In both 2D and 3D, experiments are performed
using publicly available data, showing that the proposed algorithm
compares favorably to related work.

1 Introduction

Loop closure detection is defined as the problem of detecting when the robot has
returned to a previously visited location. Being an integral part of the Simul-
taneous Localization and Mapping (slam) problem, loop closure detection has
received considerable attention in recent years. In particular, methods using vi-
sion sensors have broadly been presented, see e.g. (Goedeme et al., 2006; Tapus
and Siegwart, 2006; Fraundorfer et al., 2007; Ho and Newman, 2007; Cummins
and Newman, 2008; Angeli et al., 2008; Callmer et al., 2008; Eade and Drum-
mond, 2008; Milford and Wyeth, 2008; Cummins and Newman, 2009; Konolige
et al., 2010; Paul and Newman, 2010). Range sensors on the other hand, have
not been so widely considered for loop detection, in particular with 2D sensors.
This paper addresses the problem of loop closure detection using range sensor
measurements and, similarly to many vision solutions, the problem is solved via
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(b) 3D example.

Figure 1: Examples of the loop closure detection problem. In (a) two planar
point clouds from the same location are shown. Parts of the scene are oc-
cluded by vehicles parked along the side of the road in the right point cloud,
these parts are highlighted in color. In (b) two 3D point clouds are shown,
color is used to accentuate the height. These point clouds are from the same
location, which can be identified by the building corner and the wall oppo-
site the corner.

pairwise data comparison. The proposed method applies equally well for both
2D and 3D data (see Figure 1 for examples of the problem in 2D and 3D).

In this paper the loop closure detection problem is cast as a classification task, in
which a data pair is classified as either being from the same location, or not. The
range sensor measurements, represented as point clouds, are mathematically de-
scribed using features which capture important statistical and geometrical prop-
erties. The features provide an efficient means for dimensionality reduction, and
also facilitate easy comparison of the point clouds. Furthermore, the features are
fully invariant to rotation, thus enabling loop closure detection from arbitrary di-
rection. Following the feature extraction process, a machine learning algorithm
called AdaBoost is used to train a classifier. AdaBoost builds a classifier by com-
bining simple binary classifiers, resulting in a decision boundary which is non-
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linear. AdaBoost renders a classifier with good generalization properties which
is able to robustly detect loop closure.

Similar point cloud features have been used in (Mozos et al., 2005; Arras et al.,
2007; Brunskill et al., 2007). In this work, the set is extended with novel features
to better address the problem of loop closure detection. The major contribution
of this paper is the formulation of the loop closure detection algorithm with ex-
tensive experimental evaluation in urban environments, comparisons to related
work using publicly available data sets, and a detailed implementation descrip-
tion.

Early versions of this work have been presented previously (Granström et al.,
2009; Granström and Schön, 2010). This paper presents extensions of the previ-
ously presented results. In particular, a more detailed and thorough evaluation
is presented by using different publicly available datasets. The paper is orga-
nized as follows: the next section contains an overview of related work. Section 3
presents the suggested loop closure detection method. A general framework for
slam using the loop closure methodology is presented in Section 4. Extensive ex-
perimental results and comparisons are presented in Section 5, and Conclusions
and Future work are presented in Section 6.

2 Related work

In this section we give an overview of related work on large-scale slam and loop
closure detection, using 2D and 3D range sensors, as well as cameras. A detailed
comparison between the work in this paper and the related work using similar
sensor setups is given in Section 5.

slam algorithms based on raw laser scans have been shown to present a more
general solution than classic feature-based (Gutmann and Konolige, 1999). For
example, in (Hahnel et al., 2003; Bosse and Zlot, 2008; Newman et al., 2006), raw
laser scans were used for relative pose estimation. The mapping approach pre-
sented in (Gutmann and Konolige, 1999) joins sequences of laser scans to form
local maps. The local maps are then correlated with a global laser map to detect
loop closures. Laser range scans are used in conjunction with ekf-slam in (Nieto
et al., 2007). The authors introduced an algorithm where landmarks are defined
by templates composed of raw sensed data. The main advantage claimed is that
the algorithm does not need to rely on geometric landmarks as traditional ekf-
slam. When a landmark is re-observed, the raw template could be augmented
with new sensor measurements, thus improving the landmark’s representation.
The authors also introduced a shape validation measure as a mechanism to en-
hance data association. In summary, the main advantage in all these works is the
ability of the algorithms to work in different environments thanks to the general
representation obtained from raw sensor data.

Mapping algorithms based on laser scans and vision have shown to be robust.
The work presented in (Ho and Newman, 2005) performs loop closure detection
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using visual cues and laser data. Shape descriptors such as angle histograms and
entropy are used to describe and match the laser scans. A loop closure is only
accepted if both visual and spatial appearance comparisons credited the match.
In (Ramos et al., 2007b), laser range scans are fused with images to form descrip-
tors of the objects used as landmarks. The laser scans are used to detect regions
of interest in the images through polynomial fitting of laser scan segments while
the landmarks are represented using visual features.

An approach to loop closure detection in 2D which is similar to the one taken in
this paper is presented in (Brunskill et al., 2007). The authors construct submaps
from multiple consecutive point clouds. Before initializing a new submap, it
is checked whether the current point cloud is similar to any of the previous
submaps. Each submap is described using a set of rotation invariant features,
several of which are similar to the features used in this work. Next, AdaBoost is
used to train one classifier for each submap, where each classifier test whether
or not a point cloud belongs to the corresponding submap. The learning is unsu-
pervised and performed online during slam, in contrast to learning in this work
which is supervised and performed offline, prior to slam. The authors present
results from two small scale indoor data sets, and show detection rates of 91%
and 83% at precision rates of 92% and 84% for the two data sets, respectively.
Comparing to the work presented in this paper, the main difference is that (Brun-
skill et al., 2007) learn representations for each submap, and require one classifier
for each submap, while a general similarity metric between two arbitrary point
clouds is learned in this paper. Thus the loop closure detection problem can be
solved using just one classifier.

Another example of loop closure detection for 2D point clouds is the work in
(Bosse and Zlot, 2008). They use consecutive laser scans to build submaps, typi-
cally a submap contains laser scans from tens of meters of travel. The submaps
are then compressed using orientation and projection histograms as a compact
description of submap characteristics. Entropy metrics and quality metrics are
used to compare point clouds to each other. A 51% detection rate for 1% false
alarm rate is reported for suburban data. Extending the work on 2D data, key-
points are designed which provide a global description of the point clouds (Bosse
and Zlot, 2009a), thus making it possible to avoid pairwise comparison of all
local submaps which can prove to be very time consuming for large data sets.

Work on object recognition and shape matching in 2D using point based descrip-
tions includes the work on shape context (Belongie et al., 2002). The shape con-
text is a global descriptor of each point which allows the point correspondence
problem to be solved as an optimal assignment problem. For loop closing in
2D, a method which relies on the extraction of linear landmarks is proposed in
(Rencken et al., 1999). Loops are detected by matching landmarks from partial
maps in structured indoor environments. For global robot localization using 2D
laser in unstructured environments, the gestalt features have also been proposed
(Walthelm, 2002).
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For the similar problem of object recognition using 3D points, regional shape
descriptors have been used (Johnson and Hebert, 1999; Frome et al., 2004). Ob-
ject recognition must handle occlusion from other objects, similarly to how loop
closure detection must handle occlusion from moving objects. However object
recognition often relies on an existing database of object models. Regional shape
descriptors have also been used for place recognition for 3D point clouds (Bosse
and Zlot, 2009b). Here, place recognition is defined as the problem of detecting
the return to the same place and finding the corresponding relative pose (Bosse
and Zlot, 2009a,b), i.e. it includes both relative pose estimation, and what we
here define as loop closure detection.

In (Magnusson et al., 2009) results for loop closure detection are presented for
outdoor, indoor and underground mine data. The method presented is based
on the Normal Distribution Transform (ndt) (Biber and Strasser, 2003), which
acts as a local descriptor of the point cloud. After discretizing space into bins, or
cubes, the points in each bin are described as either linear, planar or spherical by
comparing the size of the covariance matrix eigenvalues. The ndt is exploited
to create feature histograms based on surface orientation and smoothness. In-
variance to rotation is achieved after scans have been aligned according to the
dominant planar surface orientation. The authors show detection rates of 47.0%,
69.6% and 28.6% for 0% false alarm, for outdoor, indoor and mine data, respec-
tively.

In more recent work another method for loop detection for 3D point clouds was
presented (Steder et al., 2010). The point cloud is transformed into a range im-
age, from which features are extracted by computing the second derivative of
the image gradient. The extracted features are compared to features from previ-
ous scans using the Euclidean distance. Using feature correspondence, a relative
rotation and translation can be computed, and the operation is evaluated by com-
puting a score for how well the two scans are aligned. Rotation invariance is
achieved by orienting image patches along the world z-axis. According to the
authors this does not restrict the performance of the method as long as the robot
moves on a flat surface. This assumption is however not valid in all environments,
e.g. underground mines (Magnusson et al., 2009).

Work on vision based loop closure detection have been presented in (Cummins
and Newman, 2008, 2009), with detection rates of up to 37% and 48% at 0% false
alarm for the City Centre and the New College datasets (Smith et al., 2009), re-
spectively. The authors show results for very large data sets (1000km), and also
present interesting methods to handle occlusion, a problem that is often present
in dynamic environments. The work is extended via inclusion of a laser range
sensor in (Paul and Newman, 2010), and the detection rate for the New College
data set is increased to 74%. Another vision based loop closure detection method
is suggested in (Callmer et al., 2008). surf features are extracted from images,
and classified as words using Tree-of-Words. A spatial constraint is imposed by
checking nearest neighbors for each word in the images. A similar approach us-
ing visual words for monocular slam is taken in (Eade and Drummond, 2008),
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however the vocabulary is built online in contrast to offline as in (Cummins and
Newman, 2008, 2009; Callmer et al., 2008). In a Graph-slam system, loops are
closed when new edges are created. A slam system inspired by rodents is pre-
sented in (Milford and Wyeth, 2008). The authors use a monocular camera to
collect data over a 66km trajectory with multiple nested loops. More than 51
loops are closed, with no false loops, however there is no explicit loop closure de-
tection. A topological mapping method where loop closure is detected via strong
geometrical constraints for stereo images is presented in (Konolige et al., 2010).
Another topological method using vision is the work by (Tapus and Siegwart,
2006). It should be noted that it is difficult to compare results from different
types of sensors.

A classification approach based on point cloud features and AdaBoost has been
used for people detection in cluttered office environments (Arras et al., 2007)
and indoor place recognition (Mozos et al., 2005). For people detection the point
clouds were segmented and each segment classified as either belonging to a pair
of legs or not. Detection rates of over 90% were achieved. For place recognition
multiple classes (> 2) are generally used. For this reason the results do not easily
compare to the present loop closure detection problem, which has two classes
(either same place or not).

3 Loop closure detection

Loop closure detection can be seen as a place recognition problem - it consists of
detecting that the robot has previously visited the current location. The problem
is central to slam, as it allows the estimated map and robot location to be refined.
This section presents the suggested loop closure detection algorithm. Here, we
pose the loop closure problem as being the problem of determining whether or
not two point clouds are from the same location or not. A mobile robot equipped
with a range sensor moves through unknown territory and acquires point clouds
pk at times tk along the trajectory. A point cloud pk is defined as

pk = {pki }
N
i=1, pki ∈ R

D, (1)

where N is the number of points in the cloud and D is the dimensionality of the
data, here D = 2 or D = 3. The points are given in Cartesian coordinates

cpki =


[
xki yki

]T
, if D = 2[

xki yki zki
]T
, if D = 3

(2)

but can of course be converted into polar/spherical coordinates

ppki =


[
rki ϕki

]T
, if D = 2[

rki ϕki ψki
]T
, if D = 3

(3)

using the appropriate Cartesian to polar/spherical transformation. Here r, ϕ
and ψ is range, horizontal angle and vertical angle, respectively. For simplicity,
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time index k and the differentiation between coordinate systems, i.e. c and p in
Equations (2) and (3), is dropped in the remainder of the paper. In Appendix A,
where the features are defined, it will be clear from context which coordinate
system that is intended.

After moving in a loop the robot arrives at a previously visited location, and
the two point clouds, acquired at different times, should resemble each other.
A comparison of the point clouds is performed in order to determine if a loop
closure has occurred or not. To facilitate this comparison, two types of features
are first introduced. From the features a classifier is then learned using AdaBoost.
The learned classifier is used to detect loop closure in the experiments.

3.1 Algorithm overview

Our loop detection algorithm uses the same principle as in other loop detec-
tion approaches, i.e. pairwise comparison of data, see e.g. (Bosse and Zlot, 2008;
Callmer et al., 2008; Cummins and Newman, 2008; Magnusson et al., 2009; Steder
et al., 2010). Each point cloud is described using a large set of rotation invariant
features. These features are combined in a non-linear manner using a boosting
classifier which outputs the likelihood of the two point clouds being from the
same location.

There are two main parts to the algorithm, the first is the learning phase where
a classifier is learned from training data. The second part is the classification
phase, where the learned classifier is used to classify pairs of point clouds in
slam experiments. A diagram of the algorithm is given in Figure 2. In the learn-
ing phase (left), pairs of point clouds with corresponding class labels y are found
in point cloud data sets. From each point cloud features are computed. Examples
of the features employed are mean range, area (in 2D) or volume (in 3D), distance
etc. A detailed description of the features is presented in subsection 3.2 and Ap-
pendix A. The difference between the features from point clouds k and l is called
the set of extracted features, and is denoted Fk,l . The set of extracted features with
corresponding class labels are input to AdaBoost (Freund and Shapire, 1995), a
machine learning procedure which greedily builds a strong classifier c

(
Fk,l

)
by

a linear combination of simple, so called weak, classifiers. When the weak clas-
sifiers are combined into a strong classifier, the resulting decision boundary is
non-linear. The same strategy has been employed for face detection in (Viola and
Jones, 2004).

In the classification phase of our algorithm, Figure 2 (right), the learned classi-
fier is used to detect loop closure in slam experiments. The slam framework
used here is trajectory based, meaning that the state vector contains a history of
previous poses. The particular slam framework is described in Section 4.

3.2 Features

The main reason for working with features is the ability to compress the infor-
mation in point clouds by defining meaningful statistics describing shape and
other properties – working with nf features is easier (e.g. requires less memory
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Point cloud data sets
pk = {pki }Ni=1, p

k
i ∈ RD

Find training pairs:
pi1 , pi2 , yi

Extract features:
Fi1,i2 , yi

Use AdaBoost to learn a
strong classifier.

Output strong classifier:
c (Fk,l)

Point cloud pair:
pk, pl

Extract features:
Fk,l

Strong classifier:
c (Fk,l)

Point cloud registration

esdf measurement
update

Next point cloud pair
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Figure 2: Algorithm overview. Left diagram, learning phase. Right diagram,
classification phase. In the learning phase, one or more point cloud data sets
are used to learn a strong classifier. The learning phase is run first in our
algorithm. In the classification phase the strong classifier is used to detect
loop closure in slam experiments. In our slam implementation, the classi-
fication phase is run each time a new pose has been added to the state vector.

and is less computationally expensive) than working with the full point clouds
since nf � N . In this work, two types of features fj are used. The first type is a
function that takes a point cloud as input and returns a real number. Typically,
features that represent geometrical or statistical properties of the point cloud are
used, e.g. volume of point cloud or average range. The features of the first type

are collected in a vector fk ∈ Rn
1
f , where k again refers to the time tk when the

point cloud was acquired. Here, n1
f is the number of features of the first type.

The second type of feature used is a range histogram with bin size bj . In total, n2
f

histograms are computed, giving a total of n1
f + n2

f = nf features.

In order to facilitate comparison of two point clouds from times tk and tl , the
features of both types are considered. For the first type, elementwise absolute
value of the feature vector difference is computed,

F1
k,l = |fk − fl | . (4)

The underlying idea here is that point clouds acquired at the same location will
have similar feature values fk and fl , and hence each element of Fk,l should be
small. For the second type of feature, for each bin size bj the correlation coeffi-
cient for the two corresponding range histograms is computed. Here, the under-
lying idea is that point clouds acquired at the same location should have similar
range histograms, and thus the correlation coefficient should be close to 1. The
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correlation coefficients are collected in a vector F2
k,l , and the comparisons of both

types of features are concatenated in a vector as

Fk,l =
[
F1
k,l ,F

2
k,l

]
. (5)

Fk,l is referred to as the set of extracted features for two point clouds indexed k
and l.

In (Granström et al., 2009) 20 features are used in 2D, in (Granström and Schön,
2010) those features are extended to 3D and augmented with new features. Some
of the features used here are the same regardless of dimension, e.g. mean range,
while other features are generalized, e.g. from area in 2D to volume in 3D. Similar
2D features can be found in (Mozos et al., 2005; Arras et al., 2007; Brunskill et al.,
2007). In total, nf = 44 features are used in 2D and nf = 41 features are used in
3D. For formal definitions, see Appendix A.1.

3.3 Classification using AdaBoost

Boosting is a machine learning method for finding combinations of simple base
classifiers in order to produce a form of committee whose performance can be
significantly better than any one of the base classifiers used alone. The simple
base classifiers need to be just slightly better than a random guess, thus they
are called weak classifiers, see e.g. (Bishop, 2006). The resulting combination
is better than the best individual weak classifier, and analogously the resulting
classifier is thus called strong. Each weak classifier is learned using a weighted
form of the data set, where the weighting of each data point depends on the
performance of the previous weak classifiers.

A widely used form of boosting is AdaBoost, which constructs a strong classifier
by a linear combination of weak classifiers (Freund and Shapire, 1995). When
the weak classifiers are combined into a strong classifier, the resulting decision
boundary is non-linear. As more weak classifiers are added, the classification
error on the training data converges towards zero, and eventually becomes zero.
Although this might be interpreted as overfitting, AdaBoost has been shown to
generalize well on testing data (Freund and Shapire, 1995).

Although later generalized to multiple classes, AdaBoost was originally designed
for problems with two classes. Here, the two classes are called positive and nega-
tive, or p and n, respectively. The positive class consists of point cloud pairs from
the same location, the negative class consists of point cloud pairs from different
locations. As input to the AdaBoost learning algorithm, n hand-labeled training
data pairs are provided,(

F11,12
, y1

)
, . . . ,

(
Fi1,i2 , yi

)
, . . . ,

(
Fn1,n2

, yn
)
, (6)

where each data point Fi1,i2 has a corresponding class label yi . Let Fi be a compact
way of writing Fi1,i2 . To learn a classifier using AdaBoost, data points from each
class are needed. Let Np and Nn be the number of training data points belonging
to p and n, respectively, i.e. n = Nn + Np.
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The data labels in the two class problem are defined as

yi =
{

1 if fi ∈ p
0 if fi ∈ n (7)

In the AdaBoost algorithm, each data pair (fi, yi) is given a weight wit , where
t denotes the specific iteration of the algorithm. The weights are initialized as
wi1 = 1

2Nn
if yi = 0, or wi1 = 1

2Np
if yi = 1. This initialization ensures that each

class is given half the weight of the data, and all data pairs within a class are
given an equal weight.

After initialization, AdaBoost iteratively adds weak classifiers to a set of previ-
ously added weak classifiers. The weak classifiers used here are decision stumps,
i.e. one node decision trees, defined as

c (fi, θ) =
{

1 if pfi(f ) < pλ
0 otherwise

(8)

with parameters θ = {f , p, λ}, where fi(f ) is the selected component f of fi, p is
the polarity (p = ±1), and λ ∈ R is a threshold. The result of a weak classifier (8)
is that the input space is partitioned into two half spaces, separated by an affine
decision boundary which is parallel to one of the input axes.

In each iteration, the weak classifier that minimizes the weighted classification
error with respect to θ is chosen. Given the parameters of the best weak classifier,
the training data is classified and the weights of the mis-classified data are in-
creased (or, conversely, the weights of the correctly classified data are decreased).
Further, using the classification error a weight αt is computed for the best weak
classifier. Details on how the weights are computed are given below.

This procedure is repeated until T weak classifiers have been computed. Weak
classifiers can be added several times in each dimension of Rnf , each time with a
new polarity and threshold, i.e. same f and new p and λ. The weighted combina-
tion of T weak classifier together create the strong classifier. A detailed presenta-
tion of AdaBoost is given in Algorithm 3.

In this work, to find the best weak classifier, we employ a similar technique as
is used in (Viola and Jones, 2004). The search for the best weak classifier is sum-
marized in Algorithm 4. In our implementation, we search over all features each
time we find the best weak classifier. With just over 40 features, doing so does not
pose a significant complexity issue. However, if the number of features were in
the order of thousands, as in (Viola and Jones, 2004), searching over all features
could prove to be very time consuming.

4 Simultaneous localization and mapping

In this section we briefly outline the slam framework used for testing the new
method in detecting loop closure. The algorithm is well known and not part of
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Algorithm 3 AdaBoost
Input: (F1, y1) , . . . , (Fn, yn)
Initialize weights: W i

1 = 1
2Nn

if yi = 0, W i
1 = 1

2Np
if yi = 1

1: for t = 1, . . . , T do
2: Normalize the weights:

W̃ i
t =

W i
t∑Nn+Np

j=1 W
j
t

, i = 1, . . . , Nn + Np (9)

3: Select the best weak classifier, i.e. the one that minimizes the weighted
error,

θt = arg min
θ

n∑
i=1

W̃ i
t

∣∣∣c(Fi , θ) − y
∣∣∣ (10)

where θ = {f , p, λ}.
4: Define ct(Fi) = c(Fi , θt), and let εt be the corresponding weighted error.
5: Update the weights:

W i
t+1 = W̃ i

t β
1−ei
t , (11)

where ei = 0 if Fi is classified correctly and ei = 1 otherwise, and βt = εt
1−εt .

6: end for
The strong classifier is:

c
(
Fk,l

)
=

∑T
t=1 αtct

(
Fk,l

)∑T
t=1 αt

∈ [0, 1] (12)

where αt = log 1
βt

. The closer c
(
Fk,l

)
is to one, the higher the loop likelihood is.

To obtain a binary decision, i.e. loop or no loop, the classification likelihood can
be thresholded using a threshold

K ∈ [0, 1]. (13)
Output: c

(
Fk,l

)

our main contribution, hence we only provide the specific design choices made
and refer to the relevant references for the exact implementation details.

4.1 Exactly Sparse Delayed-state Filters

The Exactly Sparse Delayed-state Filter (esdf), a delayed state extended infor-
mation filter, maintains a delayed state vector containing the poses where point
clouds were acquired. The state vector is augmented with a new pose when a new
point cloud is acquired. The state information matrix is sparse without approxi-
mation, which results in an estimation comparable to the full covariance matrix
solution. Using sparse solutions, like seif (Thrun et al., 2004), has been shown to
be inconsistent (Eustice et al., 2005). Using the esdf, prediction and update can
be performed in constant time regardless of the information matrix size. Refer to
(Eustice et al., 2006) for details on the implementation.
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Algorithm 4 Find the best weak classifier

Input: (F1, y1) , . . . , (Fn, yn) with corresponding weights W 1
t , . . . , W

n
t .

Initialize: T− =
∑
i:yi=0 W

i
t and T+ =

∑
i:yi=1 W

i
t .

1: for d = 1, . . . , nf do
2: Sort the data in the current feature dimension d in ascending order, and let

i1, . . . , in be the corresponding index, i.e. fi1(d) ≤ fi2(d) ≤ . . . ≤ fin(d).
3: Compute the cumulative sum of weights for each class,

S j− =
j∑
k=1

(1 − yik )W ik
t j = 1, . . . , n (14a)

S
j
+ =

j∑
k=1

yikW
ik
t j = 1, . . . , n (14b)

4: Compute errors εj1 = S
j
+ + T− − S j− and εj2 = S j− + T+ − S

j
+.

5: Find the minimum error, εd = minj,k ε
j
k . Let `, γ be the minimizing argu-

ments, i.e. εd = ε`γ .
6: Compute the threshold,

λd =
F(d)
i`

+ F(d)
i`+1

2
(15)

7: Compute polarity,

pd =
{
−1 if γ = 1
1 if γ = 2 (16)

8: end for
Find the feature dimension with lowest error,

f = arg min
d
εd (17)

and set p = pf and λ = λf . The optimal parameters, and corresponding error,
are θt = {f , p, λ} and εt = εf .
Output: θt and εt

4.2 Robot pose, process and measurement models

In this paper we use the coordinate frame notation introduced by Smith et al.
(1990) to handle the robot pose, process model and measurement model. Let xi,j
denote the location of coordinate frame j with respect to coordinate frame i. In
2D, xi,j is a 3-dof pose consisting of (xi,j , yi,j )-position and heading angle ψi,j .
In 3D, xi,j is a 6-dof pose consisting of (xi,j , yi,j , zi,j )-position and Euler angles
(φi,j , θi,j , ψi,j ) representing roll, pitch and heading angles. Here, the roll, pitch
and heading definitions from (Eustice, 2005) are used. This Euler representation
is singular at pitch θ = ±90◦, however ground robots rarely operate at such config-
urations and the singularity has not been any problem in our slam experiments.
It can be noted that an alternative angle representation that does not suffer from
singularities could have been used, e.g. axis angle or quaternions. Using xk,l and
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xl,m, the location of coordinate frame mwith respect to coordinate frame k can be
expressed using the compounding operator ⊕ introduced in (Smith et al., 1990)
as

xk,m = xk,l ⊕ xl,m. (18)

Using the inverse compounding operator 	 from (Smith et al., 1990), the location
of coordinate frame k with respect to coordinate frame l is expressed as

xl,k = 	xk,l . (19)

Formal mathematical definitions of the compounding operators ⊕ and 	 in 2D
and 3D can be found in Appendix A.2. Subsequently, if the locations of coordi-
nate frames l and m with respect to coordinate frame k are known, the location
of m with respect to l is expressed as

xl,m = 	xk,l ⊕ xk,m. (20)

Note, that since each x consists of a position and a heading, the compounding
operator is just a short hand representation for combinations of rigid body trans-
formations. In our slam experiments the pose

x0,k =
{ [

x0,k y0,k ψ0,k
]T in 2D[

x0,k y0,k z0,k φ0,k θ0,k ψ0,k
]T in 3D

(21)

is the location of point cloud k’s local coordinate frame in the global coordinate
frame 0. Both process and measurement model are defined as coordinate frame
operations using the compounding operator. The process, or motion, model is

x0,k+1 = f
(
x0,k , xk,k+1

)
+ wk+1 (22a)

= x0,k ⊕ xk,k+1 + wk+1, (22b)

where xk,k+1 is computed using point cloud registration, Section 4.3, and wk+1 is
a white Gaussian process noise. After a loop closure has been detected between
point clouds m and n, the corresponding relative pose xm,n is computed using the
measurement model, defined as

xm,n = h
(
x0,m, x0,n

)
+ em,n (23a)

= 	x0,m ⊕ x0,n + em,n (23b)

= xm,0 ⊕ x0,n + em,n, (23c)

where em,n is white Gaussian measurement noise.

4.3 Point cloud registration

Point cloud registration, also referred to as scan matching, is the process of find-
ing a rigid body transformation (rotation and translation) that aligns two point
clouds to each other. Typically, this is performed by minimizing a cost function,
e.g. the sum of distances to nearest neighbor points. There are a number of dif-
ferent methods proposed in the literature, in this work we have used four dif-
ferent methods; the well known Iterative Closest Point (icp) (Besl and McKay,
1992; Chen and Medioni, 1992; Zhang, 1994), 3D ndt (Magnusson et al., 2007),
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crf-Match (Ramos et al., 2007a) and an implementation of the histogram based
method by (Bosse and Zlot, 2008).

In 2D, we use icp to compute the vehicle motion, i.e. to compute xk,k+1 in (22b).
After loop closure has been detected, we use either the histogram method or crf-
Match to find an initial point cloud registration, which is then refined using icp.

In 3D we use 3D ndt, initialized by odometry to compute vehicle motion. We
have performed a slam experiment on a publicly available indoor data set, and
for this data the consecutive relative poses are available together with the point
clouds. After loop closure detection, we use icp to compute the relative pose.
Here, icp is initialized with the relative pose estimate obtained from the esdf
state vector. While this method works well for the particular slam experiment
presented here, in a general slam solution a point cloud registration method that
does not rely on a good initial guess would be needed.

5 Experimental results

This section presents the results from the experiments performed. We examine
the proposed method by evaluating the strong classifiers properties, and by doing
slam experiments in both 2D and 3D. The classifier is evaluated in terms of
detection rate (D), missed detection rate (MD) and false alarm rate (FA). The
rates are defined as

D =
# positive data pairs classified as positive

# positive data pairs
,

MD =
# positive data pairs classified as negative

# positive data pairs
,

FA =
# negative data pairs classified as positive

# negative data pairs
.

These rates are important characteristics for any classification or detection prob-
lem, and typically it is difficult to achieve low MD and low FA simultaneously.
Instead, a choice has to be made as to which error is more important to minimize.
For the loop closing problem, we argue that the main concern is minimizing FA,
while keeping MD as low as possible. A relevant question is then how low FA
should be, since lowering FA further comes at the price of higher MD.

In previous work, D has been reported at 1% FA (Bosse and Zlot, 2008), in other
work D has been reported at 0% FA (or equivalently at 100% precision) (Magnus-
son et al., 2009; Cummins and Newman, 2008), yet others report D at 0.01% FA
(Callmer et al., 2008). While it is very important to keep FA low, it is possible
to find and reject false alarms in subsequent stages, e.g. when the relative pose
is found via point cloud registration (Bosse and Zlot, 2008), or using a cascade
of several methods (Bosse and Zlot, 2009a). However, even if a combination of
methods is used, the false alarms have to be rejected at some stage since closing
a false loop could prove disastrous for the localization and/or mapping process.
Further, finding a subset of loop closures is typically sufficient to produce good
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results (Magnusson et al., 2009; Bosse and Zlot, 2008; Cummins and Newman,
2008, 2009). Therefore, the detection rate at 0% false alarm is more robust. How-
ever, for completeness and ease of comparison, results at both 0% and 1% false
alarm are presented.

The experiments in Section 5.2 were conducted using k-fold cross validation on
the data sets. Note that in each experiment the validation portion of the data
was fully disjoint from the training portion. The partitioning into folds was
performed by randomly permuting the order of the data. Since different per-
mutations give slightly different results, k-fold cross validation was performed
multiple times, each time with a different permutation of the data. The results
presented are the mean of the cross validations. The data used in experiments is
presented in Section 5.1. After evaluating the 2D and 3D classifiers, Section 5.2,
the classifiers are tested in slam experiments which are presented in Section 5.3.
The experiments are compared to the estimated slam trajectories with the dead
reckoning sensors, and with gps when it is available. The resulting slam maps
are also shown, overlaid on aerial photographs in the outdoor cases. The results
are summarized, and a comparison to related work is given, in Section 5.4.

5.1 Data

In this subsection we describe the data used in the 2D and 3D experiments. Three
of the six data sets are publicly available, references to the data repositories are
provided. The datasets used for training are divided into two classes, positive
and negative. Five of the data sets contain a large quantity of point clouds, thus
making it possible to find tens of thousands of training pairs. However, to keep
the computational cost tractable, the amount of training pairs were limited.

2D data

For the 2D experiments, four different datasets were used. The first data set,
called kenmore_pradoroof (ken), is publicly available (Howard and Roy, 2003).
Thanks to Michael Bosse, Autonomous Systems Laboratory, CSIRO ICT Centre,
Australia, for providing the data set. It has maximum measurable range rmax =
50m and horizontal angular resolution δϕ = 1◦. The data set is approximately
18km long. The last three data sets all have maximum measurable range rmax =
50m and horizontal angular resolution δϕ = 0.5◦. Two of them, Sydney 1 (syd1 )
and Sydney 2 (syd2 ), were acquired in a residential and business area close to the
University of Sydney, Sydney, Australia. These two datasets are approximately
0.65 and 2 km long. Using an initial set of 50 data pairs for each class, a classifier
was learned and used for slam experiments using the ken, syd1 and syd2 data
sets. The resulting trajectories are shown in Figure 3.

Using the estimated trajectories, positive and negative data pairs were extracted
based on the translational distance between the poses at which the point clouds
were acquired. For each of the three datasets, positive pairs were taken as all
pairs where the translational distance was less than or equal to 1m, 2m and 3m.
Negative pairs were obtained by taking a random subset of remaining data pairs,
such that for each translational distance the number of positive Np and negative
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Table 1: Number of 2D point cloud pairs, at various translational distances.
The point cloud pairs were used for training and evaluation of the classi-
fier. Np and Nn are the number of positive and negative point cloud pairs,
respectively.

Data set Dist. [m] Np, Nn

ken 1 1321
2 4242
3 7151

syd1 1 31
2 568
3 956

syd2 1 286
2 2039
3 3570

Nn data pairs are equal. The number of data pairs for each dataset and each
translational distance is shown in Table 1.

Careful visual examination of the ken trajectory in Figure 3c shows parts for
which the trajectory estimation was of lower quality. The main reason for this
was that our scan registration, an implementation of the histogram method from
(Bosse and Zlot, 2008), failed to find the correct rotation and translation when
true loops were detected from the opposite direction. Thus several detected
loop closures from the opposite direction could not be included in the estima-
tion. Since we want to use the slam results for finding training pairs at certain
translational distances, we also want to be certain that the translational distance
computed from the slam results is close to the true translational distance. For
this reason, only the first half of the ken data set, for which we could estimate the
trajectory with higher accuracy (only loops from the same direction), was used to
find positive and negative training data. This trajectory is shown in Figure 3d. In
addition to being used for finding training data, the ken data set is also used to
evaluate the classifier’s dependence to translation.

The fourth dataset, Sydney 3 (syd3 ), was also collected around the University of
Sydney and is approximately 2 km long. This dataset contains point clouds with
just a 180◦ field of view, and was therefore not used for learning the classifier.
Instead it was integrated in a slam experiment, where gps was used to collect
ground truth data. All four data sets were collected using planar sick laser range
sensors. Placing two such sensors “back-to-back” gives a full 360 degree view of
the environment. The sensors sweep from right to left, thus introducing an order
for the range measurement. Some of the features defined in Appendix A use this
ordering of the points when the feature value is computed.
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(a) slam results for syd1.
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(d) slam results for the first half ken.

Figure 3: Estimated slam trajectories (white) overlaid on Google maps im-
ages, and compared to gps (green) when available. Note that the gps signal
becomes increasingly unreliable under trees and tall buildings. The slam
trajectories were used to find point cloud pairs for training and evaluation
of the classifier.

3D data

In the 3D experiments, two datasets were used, both are publicly available (Wulf,
2009). Thanks to Oliver Wulf, Leibniz University, Germany and Martin Mag-
nusson, aass, Örebro University, Sweden for providing the data sets. The first
one, Hannover 2 (hann2 ), contains 924 outdoor 3D scans from a campus area,
covering a trajectory of approximately 1.24 km. Each 3D point cloud contains
approximately 16600 points with a maximum measurable range of 30m. From
this dataset 3130 positive data pairs (point clouds from the same location) and
7190 negative data pairs (point clouds from different locations) were selected.
The positive data pairs were chosen as the scan pairs taken less than 3m apart
(Magnusson et al., 2009). The negative data were chosen as a random subset of
the remaining data pairs, i.e. those more than 3m apart.
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The second dataset, aass-loop (AASS ), contains 60 indoor 3D scans from an of-
fice environment, covering a trajectory of 111 m. Each 3D point cloud contains
approximately 112000 points with a maximum measurable range of 15m. From
this dataset 16 positive and 324 negative data pairs are taken. The positive data
pairs are those taken less than 1m apart (Magnusson et al., 2009), the negative
data pairs are a random subset of the remaining data pairs. Due to the limited
number of positive data pairs, we chose to not use all negative data. The impact
of few data pairs of one class, called unbalanced data, is discussed further in the
paper.

Both 3D data sets were acquired using 2D planar laser range finders, and 3D point
clouds were obtained using pan/tilt units. Each 3D point cloud thus consists of
a collection of 2D planar range scans. The points in each 3D point cloud can be
ordered according to the order in which the points are measured by the sensor
setup. Some of the features defined in Appendix A use this ordering of the points
when the feature value is computed.

5.2 Classifier evaluation

In this section we evaluate the classifiers learned previously. An important as-
pect of any robotics application is computational complexity. If a method is to
be implemented on a robot, it is important that it can be computed in real time
in order to not significantly delay the robot’s functionality. The computational
times for different parts of the suggested method for loop closure detection are
presented here. When learning a classifier, an initial important step is to deter-
mine an appropriate number of training rounds T (cf. Algorithm 3) for the clas-
sifier. Training should proceed as long as the validation error decreases, but not
longer to avoid overfitting and to keep computational complexity low. Another
important aspect is which features are the most beneficial to the final strong clas-
sifier. This is verified in two ways: 1) by considering which features are selected
in early training iterations, and, 2) by removing features from the training data
and checking how they affect the classifier’s performance. The strong classifier’s
receiver operating characteristics (roc) are evaluated, and a comparison is made
between 2D and 3D performance by downsampling 3D data to 2D. The classifiers
dependence to translation is also evaluated, as well as how it handles dynamic
objects. Finally, the difficulty posed by repetitive structures in the environment
is addressed.

Computational complexity

The code used in this work was implemented in Matlab and run on a 2.83GHz In-
tel Core2 Quad CPU with 3.48 gb of ram running Windows. It should be noted
that the implementation is not optimized for speed. The timing results are pre-
sented in Table 2. The times to compute the features are averages over all point
clouds in the data sets syd2, hann2 and AASS. As expected the time increases
with the number of points in each cloud. Computing the features only needs to
be performed once per point cloud in a slam experiment. Since comparing the
features and computing c

(
Fk,l

)
are the same operations in both 2D and 3D, the
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Table 2: Execution time of loop closure detection classifier, all times in ms.
The times to compute the features are shown separately for 2D and 3D data,
respectively. Comparing the features is a procedure that is equal in 2D and
3D, thus the time to compare the features is the same in 2D and 3D.

Compute features syd2 hann2 AASS
Type 1 14.35 15.96 206.11
Type 2 0.22 3.38 18.99

Total 14.57 19.34 225.10
Total per point 20.2 × 10−3 1.17 × 10−3 2.00 × 10−3

Compare features Time
Type 1 6.58 × 10−3

Type 2 0.824
Total 0.831

Compute c
(
Fk,l

)
0.78

presented times are averages over the training pairs for all 2D and 3D data sets.
Comparing features and classifying a set of extracted features takes about 1.6ms
when T = 50 weak classifiers are used. Training a strong classifier for T = 50
iterations takes 15s when about 10000 data pairs are used.

Number of training rounds T

Strong classifiers were trained for different values of T , the resulting error rates
are shown in Figure 4. The total error rate is the ratio between the number of
misclassified data pairs and the total number of data pairs. As can be seen in Fig-
ure 4, the validation error levels decrease as the learning algorithm iterates up
until about 50 training iterations, when the validation error levels stop decreas-
ing. Hence, T = 50 was chosen for all subsequent experiments in both 2D and 3D.

Most informative features

An interesting aspect of the suggested solution to the loop closure detection prob-
lem is which features are the most informative for classification. In each train-
ing iteration of the learning phase, the weak classifier that best improves perfor-
mance is selected. Each feature can be chosen multiple times, each time with a
new polarity and threshold. The features that are chosen in early training itera-
tions will have a larger weight than features chosen in later training iterations.
Therefore, we considered the features chosen in the first five training rounds in
this analysis. To further examine the importance of the features, strong classifiers
were learned from the training data after removing the features individually. The
best features are those that negatively affected the validation error rate the most
when removed. Results for the 2D data are presented in Table 3, 3D results are
presented in Table 4. In the tables, Test 1 shows which features were chosen in
the first five training rounds, Test 2 indicates the features whose removal resulted
in the highest validation error rates.
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Figure 4: Error rates during AdaBoost training plotted against the number
of training rounds T . For both 2D and 3D data the validation error levels stop
decreasing after about 50 training rounds, hence T = 50 is an appropriate
choice for the subsequent experiments.

Results for the 2D data are in Table 3. Both tests suggest that for ken, features
4 (average of all ranges), 44 (range histogram with bin size 3m) and 22 (range
kurtosis for all ranges) are most informative. For syd1, feature 23 (mean rela-
tive range) appears in both tests as an important feature, and for syd2 feature 34
(mean group size) appears in both tests as important for loop closure detection.
For both Sydney datasets, Test 1 suggests that feature 38 is best for loop closure
detection. This feature corresponds to range histograms with bin size 0.5m. For
ken and syd1, Test 2 suggests that feature 21 (range kurtosis excluding maximum
ranges) is most informative. The difference in total error is quite small for the five
best features (Table 3, Test 2), however the results do suggest that the best five
features are different for the three data sets. As all three data sets were acquired
in rather similar suburban environments, see Figure 3, this raises the important
question of whether the presented loop closure detection method generalizes be-
tween data sets. This question is addressed further in Section 5.3.



5 Experimental results 121

Table 3: Most informative features for loop closure detection using 2D data.
The feature numbers correspond to the list numbers in Appendix A. Test 1
shows which features were added in the first five training rounds. Test 2
shows the resulting validation error when the features were removed from
the training data before learning the classifier.

Test 1

Training Round 1 2 3 4 5
Added Feature, ken 4 44 22 12 19
Added Feature, syd1 38 23 17 40 4
Added Feature, syd2 38 22 34 7 35

Test 2

Feature removed, ken 21 22 4 44 35
Total error [%] 2.98 2.94 2.92 2.83 2.82
Feature removed, syd1 21 10 17 23 27
Total error [%] 0.36 0.31 0.30 0.30 0.30
Feature removed, syd2 34 6 43 42 29
Total error [%] 0.38 0.36 0.36 0.35 0.34

Results for the 3D data are presented in Table 4. As can be seen, for AASS, the
features that are added in early training rounds also have the largest negative
effect when removed. Those features, numbers 33, 40, 32 and 41, correspond
to range histograms with bin sizes 0.1, 2.5 and 3 m, respectively, and standard
deviation of range difference for ranges shorter than or equal to gr3 = 0.5rmax.
For hann2, the results are less consistent, however feature 35, corresponding to
range histogram with bin size 0.5 m, appears to be most effective at separating the
two classes of data pairs. As with the 2D data, the results from Test 2 suggest that
two different sets of five features are best at detecting loop closure. Comparing
to the 2D results in Table 3, the difference in total error is larger for the 3D data.

Furthermore, considering all results in Tables 3 and 4 together shows that the
most important features for loop closure detection are not the same for either the
2D data sets or the 3D data sets. As mentioned above, an important and imme-
diate question raised by this is whether or not the method is able to generalize
between environments (i.e. between data sets). In e.g. 3D, hann2 is an outdoor
data set and AASS is an indoor data set, suggesting that the learned classifier
might not generalize from outdoor to indoor. Again, this issue is addressed fur-
ther in Section 5.3, where it is shown that the classifier does in fact generalize
well between different environments and different sensor setups.

Classifier performance

In this section we present the performance of the classifiers in terms of D and
FA, as defined above. Figure 5 shows roc curves for the classifier in 2D and 3D.
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Table 4: Most informative features for loop closure detection using 3D data.
The feature numbers correspond to the list numbers in Appendix A. Test 1
shows which features were added in the first five training rounds. Test 2
shows the resulting validation error when the features were removed from
the training data before learning the classifier.

Test 1

Training Round 1 2 3 4 5
Added Feature, hann2 35 1 7 27 20
Added Feature, AASS 33 40 32 36 41

Test 2

Feature removed, hann2 21 8 10 28 35
Total error [%] 1.29 1.15 1.14 1.13 1.13
Feature removed, AASS 41 22 33 32 40
Total error [%] 2.27 2.24 2.16 2.08 2.04

Good levels of detection are achieved for all levels of false alarm for the data used
here. Table 5 shows a summary of the results achieved compared to related work.
For the 3D results and the 2D ken results, the same data sets were used in the
experiments. The two Sydney data sets have not been used in any previous work.

For the 2D classifier, the performance for different translational distances can
be compared for all three data sets. In general, performance degrades with in-
creasing translational distance, however even at 3m distance detection rates are
sufficient for reliable slam.

As seen in Table 5 and Figure 5, for syd1 the classifier characteristics are worse
for 1m distance than for 2m distance. Further, 0% was the lowest D for 0% FA
for AASS. This occurred in 5 out of 10000 cross validations. Furthermore, the
mean D is lower than (Magnusson et al., 2009) and the standard deviation of D is
higher than for hann2. For these two data sets, the number of training data pairs
is small and unbalanced (31+31 and 16+324, respectively), which is an intuitive
reason for the worse performance. The training data is crucial to the AdaBoost
learning, and it is possible that there is not enough data pairs to be able to achieve
a high degree of class separation.

To test this hypothesis, 16 positive and 300 negative data pairs were randomly
selected from the large set of hann2 data pairs, and a classifier was learned and
evaluated from the subset of data. Out of 1000 such random subsets, 30 resulted
in classifiers with 0% D for 0% FA (mean D was 72% ± 19% for 0% FA). While
this result is not sufficient to conclude that the small number of positive data
pairs is the sole reason for the worse results for AASS, compared to related work
and hann2, it does support the hypothesis that the relatively low number of posi-
tive training data has a strong negative effect on the learned classifiers ability to
achieve a good degree of class separation. The roc-curve corresponding to this
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Table 5: Classification performance, all numbers in %. Results for the pre-
sented algorithm are shown in the middle column, results for related work
are shown in the right column. The 3D results, and the 2D ken results, are
for the same data sets as were used in related work. However, the 2D syd1
and syd2 data sets have not been used in any related work. Note that (Bosse
and Zlot, 2008) detected loops between submaps consisting of laser range
scans from tens of meters of travel, while our results are for loop detection
between individual laser range scans.

Data set FA D Min/Max D Source

hann2 0 63 ± 6 28/76 47 (Magnusson et al., 2009)
85 (Steder et al., 2010)

1 99 ± 0.1 98/99 81 (Magnusson et al., 2009)

AASS 0 53 ± 14 0/88 70 "
1 78 ± 6 56/88 63 "

ken, 1m 0 59 ± 11 18/84 N/A (Bosse and Zlot, 2008)
1 93 ± 1 90/99 51 "

ken, 2m 0 45 ± 13 3/72.00 N/A "
1 90 ± 1 86/92 51 "

ken, 3m 0 30 ± 10 3/60 N/A "
1 84 ± 1 80/87 51 "

syd1, 1m 0 57 ± 23 0/93 N/A
1 57 ± 23 0/93 "

syd1, 2m 0 33 ± 9 4/62 "
1 62 ± 4 45/75 "

syd1, 3m 0 19 ± 7 2/35 "
1 63 ± 2 61/68 "

syd2, 1m 0 66 ± 9 27/84 "
1 81 ± 5 61/91 "

syd2, 2m 0 35 ± 9 8/57 "
1 81 ± 2 75/85 "

syd2, 3m 0 19 ± 8 2/38 "
1 63 ± 2 56/68 "
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Figure 5: Receiver operating characteristic (roc) curves. For each level of
false alarm, the higher the detection is, the better the classifier is.

test is the green curve in Figure 5d. If compared to the curve for the full hann2
data set, it shows a clear negative effect.

Comparison of 2D and 3D performance

This section presents a quantitative comparison of the performance of the classi-
fier in 2D and 3D. Intuitively, performance in the 3D case should be considerably
better than in 2D, since the added dimension and larger quantity of points signif-
icantly increases the information content of the point cloud. To obtain 2D data
which is comparable to 3D data, 2D point clouds were extracted from the 3D data
set hann2 by taking all points which were located 1m ± 15cm above the ground
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Table 6: Comparison of 2D and 3D performance, all numbers in % unless
otherwise stated.

Data set FA D Min/Max

hann2, 2D 0 2.12 ± 1.40 0/8.34
1 43.96 ± 2.81 36.36/55.08

hann2, 3D 0 63 ± 6 28/76
1 99 ± 0.1 98/99

syd2, 3m, δϕ =1◦ 0 12.33 ± 6.21 N/A
syd2, 3m, δϕ =0.5◦ 0 18.57 ± 7.56 N/A

plane. The z-components were removed, i.e. the points were projected into the
1m-above-ground plane. The process is illustrated in Figure 6a and Figure 6b.

After extracting the 2D point clouds, a classifier was learned and evaluated using
the same data pairs as when the 3D data was used. The results are shown in Fig-
ure 6c and Table 6. As expected the performance is worsened due to the lower
information content in the point clouds. It is difficult to elaborate why the per-
formance is so much worse, in comparison to the 2D results presented in Table 5
and Figure 5. A possible explanation is that for the hann2 2D point clouds the
horizontal angular resolution is δϕ = 1.0◦ ± 0.33◦ (mean ± one standard devia-
tion), compared to the syd1 and syd2 data sets which have a horizontal angular
resolution of δϕ = 0.5◦. Thus, the hann2 2D data contains less information, about
400 ± 163 points (mean ± one standard deviation), compared to syd1 and syd2
which both contain 722 points per cloud.

To test the hypothesis that the lower angular resolution is detrimental to classifier
performance, the 3m data pairs from syd2 were converted to δϕ = 1◦ data by tak-
ing every second range measurement. Cross validation experiments similar to the
ones presented in Table 5 were performed, and the results presented in Table 6
show that decreasing the angular resolution has a negative effect on performance.
This experiment does not rule out other explanations, e.g. different degrees of
structure or self-similarity in the two environments, however it does support the
hypothesis that the lower angular resolution contributes to some degree to the
poor performance. Similar experiments were performed evaluating the different
maximum measurable ranges, rmax = 30m for hann2 and rmax = 50m for syd2,
however the results showed no statistically significant difference in performance.

Dependence to translation

This section presents results from experiments testing how the learned classifier
handles translation between the point clouds. While invariance to rotation is ex-
plicitly built into the features, and thus also into the learned classifier, there is
no translational counterpart to the rotation invariance. For this experiment, data
from the densely sampled ken data set was used. From the data set, a 78m trajec-
tory which traverses a roundabout was chosen. Along the trajectory 1000 point
clouds were acquired, with a mean translation of just 8cm between consecutive
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(a) Original 3D point cloud in gray, with the extracted 2D
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(b) Extracted 2D point cloud.
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Figure 6: Illustration of the extraction of 2D point clouds from 3D point
clouds.

point clouds. The resulting trajectory and area map are shown in Figure 7a. Each
of the 1000 point clouds was compared to the remaining 999 point clouds, and
the resulting classification similarity is plotted against translation in Figure 7b.
The figure also features a polynomial fitted to the results in the least squares
sense. As can be seen, there is a rather rapid decay in classification similarity as
the translation increases, suggesting that the classifier is highly sensitive to trans-
lation. The explanation is, however, not so simple. As shown in Figure 8 the point



5 Experimental results 127

−60 −40 −20 0 20 40 60 80
−60

−50

−40

−30

−20

−10

0

10

20

30

40

X [m]

Y
 [m

]

(a) Map of the area for which translation dependence were ex-
perimented on. The poses are printed in black, the point clouds
are printed in gray.
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(b) Plot of translation against classification similarity. The black
line shows a seventh order polynomial fitted to the points in the
least squares sense.

Figure 7: Classifier dependence to translation.
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Figure 8: Illustration of the translation problem, for 2D data in outdoor en-
vironments. The plot on the left shows a trajectory, black line, along which
1000 point clouds were acquired, the constructed area map is shown in gray.
Two poses are marked by crosses in blue and red, respectively, and the corre-
sponding sensor surveillance boundary is shown by the dashed circles. De-
spite the fact that the relative pose translation, 12m, is well below the sen-
sor’s maximum range, 50m, the point clouds corresponding to the poses are
significantly different.

clouds change significantly in appearance after a small translation, thus making
it difficult to determine that the point clouds are acquired in close vicinity of
each other. Rather than showing the learned classifier’s dependence to transla-
tion, this experiment shows the inherent difficulty of sensing a 3D environment
with a 2D sensor.

However, further results which show the dependence to translation are found in
Table 5 and Figure 5. While the detection rate decreases with increasing transla-
tional distance, it is still possible to achieve good loop closure detection results for
up to 3m distance, in both 2D and 3D. The decreasing detection rates do imply an
inversely proportional dependence between detection and translational distance.
This suggests that the presented method is more suitable for environments where
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the vehicle is expected to travel along defined paths, e.g. office hallways, urban
or rural roads, etc. In an environment where the vehicle is expected to be less re-
strained to defined paths, the presented method would possibly perform worse.
To summarize, the presented method can handle translation, however consider-
able overlap of sensor field of view appears to be needed.

Dynamic objects

A challenge in loop closure detection is the presence of dynamic objects in the
environment. Dynamic objects change the appearance of a scene, making it more
difficult to recognize that two point clouds are indeed from the same location.
An example of the challenge that dynamic objects present was given in Figure 1a,
where the robot returns to a place where two vehicles have been parked along the
side of the street.

In this section, we present results from experiments where the classifiers sensi-
tivity to dynamic objects are tested. From the 2D syd2 data set we were able to
obtain 287 pairs of point clouds from the same location where dynamic objects
have changed the appearance of the scene. In order to isolate the challenge of
dynamic objects from other factors which may also affect the loop closure classi-
fication, the pairs of point clouds that are tested in this experiment are acquired
at very low translational distance. Thus, the differences between the point clouds
can be said to fully be an effect of the dynamic objects.

In order to assess the point cloud difference, which can be compared to the clas-
sification likelihood, we have computed the root mean square of the normalized
extracted features for each pair of point clouds,√√√√√

1

n1
f + n2

f

∑
j

F(j)
k,l

F(j)
µ


2

. (24)

The extracted features Fk,l were normalized with the average extracted feature Fµ,
since the extracted features are quite different in magnitude. The normalization
was thus performed to give each component of the extracted feature vector an
approximately equal weight. To compute Fµ, the positive class data pairs from
the same data set were used. We chose to use the pairs from the same data set
to assess the average similarity for the particular environment. A simple relation
that can be used to better understand (24) is that if Fk,l = kFµ, the point cloud
difference is k.

Results from the experiment are shown in Figure 9. The plot of classification
likelihood against feature difference, Figure 9a, does not show any clear trend,
in contrast to, e.g., Figure 7b which shows a downward trend in classification
likelihood as translational distance increases. While the likelihood for some point
cloud pairs is rather low, around 0.5, at the highest feature difference computed,
around 5.25, the likelihood of loop closure is high for several of the point cloud
pairs. It appears that the classifier can handle dynamic objects in many cases,
which is in accordance with empirical impressions from using the classifier in
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Figure 9: Results from experiment with dynamic objects. (a): Comparison of
classifier likelihood and feature difference, computed as (24). Despite large
feature differences, reasonable classification likelihood can still be achieved
in many cases. (b): Example of point cloud pair, where the appearance of the
scene is changed by dynamic objects. The first point cloud is shown as blue
dots, with the measurement rays shown in light gray. The other point cloud
is shown as red dots, with the measurement rays shown in dash-dotted dark
gray. The feature difference is 5.31, the classification likelihood, 0.53 is quite
low. Note that range measurements at maximum range are not plotted for
increased clarity.

slam experiments. If the positive training data includes point cloud pairs with
dynamic objects, e.g. cars and humans, then the learned classifier can handle
dynamic objects in the test data to some extent.

Repetitive structures

Another difficulty faced by loop closure detection methods is the presence of
repetitive structures in the environment. In e.g. an office environment, many
hallways look similar, and many doorways also look similar. A high degree of
repetitiveness in the environment is thus difficult, since the appearance of many
places will be similar and consequently the computed feature values will be sim-
ilar. While performing the experiments presented previously, repetitive struc-
tures in the data sets did not appear to pose a major difficulty to the presented
loop closure detection method. To test our empirical observation that repetitive
structures were not an issue in the data sets used, we considered the sample mean
and standard deviation of the extracted features. If a feature is repetitive, many
point clouds will measure the same feature value, and the feature difference will
thus be similar for both point cloud pairs that are from the same location, and for
point cloud pairs that are not from the same location.
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Figure 10: Results from repetitive structures experiment. The plots show the
ratio for the positive and negative data pairs of mean, in (a), and standard
deviation, in (b), of the extracted features. Ratios close to, or larger than one,
suggest a high degree of repetitive structures.

Let F(k)
i be component k of the extracted features for data pair i, Fi1,i2 . Further, let

µ
p
k and µn

k denote the mean and let σp
k and σn

k denote the standard deviation of
Fki for the positive and negative data pairs, respectively. For features of the first
type, the mean should be small for the positive class, and larger for the negative
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class. Features of the second type should be close to one for the positive class,
and smaller for the negative class. If a feature is repetitive, µp

k and µn
k will be of

similar size. Thus, the ratio{
µ

p
k /µ

n
k for type 1 features

µn
k /µ

p
k for type 2 features

(25)

can be used as a measure of repetitiveness. A value closer to one means that the
environment is repetitive with respect to that feature.

For each of the positive data pairs, F(k)
i should be low for the first feature type,

or close to one for the second feature type, and σ
p
k should thus be small. The

negative pairs are random samples of point clouds, thus σn
k will be small if the

feature is repetitive, and otherwise larger. Thus, the ratio

σ
p
k

σn
k

(26)

can also be used as a measure of repetitiveness. Analogously to (25), a value
closer to one means that the environment is repetitive with respect to that feature.
Using the 1m 2D data pairs and both sets 3D data pairs, the ratios (25) and (26)
were computed. The results are shown in Figure 10.

For AASS, features 24 and 26 both have µ and σ ratios that suggest a high degree
of repetitiveness. Considering the small size of this data set, it is difficult to draw
any definite conclusions though. Regarding remaining data sets, for the mean
ratio (25), in general none of the features appear to suffer from repetitiveness.
The range histograms for the 3D data are quite close though. For the standard
deviation ratio (26), the features corresponding to range histograms with smaller
bins appear to be somewhat sensitive to repetitiveness in 2D. Both the µ and σ
ratios are below 0.5 in about 80% of the cases. To summarize, the results from
the experiment largely support our observation that repetitive structures in the
environment is not a major problem in the data sets used in this paper.

However, in a very large scale data set from a highly repetitive environment,
repetitiveness could possibly become a problem. One way to handle such a dif-
ficulty is to modify the main slam filter to handle multiple hypotheses, simi-
larly to the multiple hypothesis filter for target tracking, see e.g. (Bar-Shalom and
Rong Li, 1995). This way, ambiguous loop detections could be kept as separate
hypotheses until one or more hypotheses could be rejected.

5.3 SLAM experiments

In this section we present slam experiments in both 2D and 3D, using the frame-
work presented in Section 4. These experiments were conducted for two reasons,
the first is to verify how the classifier would perform in a slam setting, the other
is to verify how the classifier performs when it is trained on data from one en-
vironment and then tested on data from another. Thus, in each experiment, the
classifier was trained on one dataset and then used to detect loop closure on an-
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(a) Estimated trajectory compared to
dead reckoning (D.R.) and gps.

(b) Resulting slam map overlaid
onto an aerial photograph.
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(c) Estimated trajectory compared to
dead reckoning (D.R.) and gps.

(d) Resulting slam map overlaid onto an
aerial photograph.

Figure 11: 2D slam results. In (a) and (c), the rings mark the starting points
and the stars mark the respective end points of the estimated trajectory and
dead reckoning.

other dataset. For the 2D results, both training and testing were performed with
outdoor data. For the 3D experiments, both outdoor and indoor data were used,
and thus we are able to demonstrate how the classifier generalizes from one envi-
ronment to another.

2D SLAM

The data pairs from syd2 were used to train a classifier, which was then used to
detect loop closure in experiments with the datasets syd1 and syd3. Figure 11
shows the estimated esdf trajectories compared to dead reckoning and gps, and
also the resulting point cloud maps overlaid onto aerial photographs. The re-
sults show a clear improvement in trajectory estimation when the suggested loop
closure detection classifier was used.
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3D SLAM

In the first experiment, the positive and negative data pairs from hann2 were
used to train a classifier. The classifier was then used to classify data pairs from
the AASS dataset. Each point cloud pk was compared to all previous point clouds,
{pi}k−1

i=1 . The result from the experiment is shown as a classification matrix in Fig-
ure 12a. The k, l:th element of the classification matrix is the classification likeli-
hood c

(
Fk,l

)
, (12) in Algorithm 3. For completeness, the classification matrix in

Figure 12a contains the classification of the (k, k) point cloud pairs. In a slam
experiment however, such tests are obviously redundant. Figure 12b shows the
classification matrix after thresholding each element, (13) in Algorithm 3. Black
squares correspond to pairs of point clouds classified as being from the same
location. Figure 12c shows the corresponding ground truth: black squares cor-
respond to pairs of point clouds acquired less than 1m apart (Magnusson et al.,
2009).

There is a high similarity between Figures 12b and 12c, showing the generaliza-
tion properties of the features and the classifier. The classifier used in the experi-
ment was trained on outdoor data containing 17000 points per cloud, rmax = 30,
and then tested on indoor data containing 112000 points per cloud, rmax = 15.
Figure 12e shows a 2D projection of the resulting map from the slam experiment,
with the robot trajectory overlaid. The robot trajectory is compared to dead reck-
oning in Figure 12d. For this part of the experiment, a minimum loop size of five
poses was introduced, explaining why the detected loop closure between poses
28 and 29 in Figure 12b is not present in Figure 12e.

In the second experiment, the AASS data was used to train a classifier, which
was then used to classify the hann2 data. The classification results from this
experiment are presented in Figure 13. For this experiment the detection rate
is just 3% for 0% false alarm, an intuitive explanation for the poor performance
is again the small number of training data, Np = 16 and Nn = 324. It could be
noted though that even such low detection rates can be enough to produce good
slam maps (Cummins and Newman, 2009). The roc-curves for both the 3D
slam experiments are shown in Figure 5e. Both roc-curves show good detection
rates for false alarm rates ≥ 1%. The slam experiment where the AASS data was
used for training does not handle very low levels of false alarm though, which
the right plot in Figure 5e shows.

5.4 Summary and comparison

In this last subsection, we summarize the results from the experiments, and dis-
cuss how the presented loop closure detection method compares to related work.
In experiments, we have presented results that

1. show the classifiers’ execution time,

2. show the number of weak classifiers needed to construct a strong classifier,

3. test which features are most informative,
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Figure 12: Results from slam experiment on AASS data.
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used for training.

Figure 13: Results from slam experiment on hann2 data.

4. evaluate the classifier’s receiver operating characteristic,

5. compares performance in 2D and 3D,

6. evaluate the dependence to translation,

7. show how the classifier handles dynamic objects,

8. test how the classifier handles repetitive structures in the environment, and
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9. show that the classifier can be used to detect loops in slam experiments,
both in 2D and 3D.

The presented loop detection method was evaluated on the publicly available ken
data set, used in previous work on the same problem (Bosse and Zlot, 2008). It
should be noted however that the work by (Bosse and Zlot, 2008) is for submaps
containing laser scans from tens of meters of travel, while our results are for sin-
gle laser scans. Further, as mentioned in Section 5.1, our results are for the first
half of the data set. Thus, while the presented results are for the same data set,
a ceteris paribus comparison is not possible. Even so, 84% detection at 1% false
alarm is significantly higher than 51% detection at 1% false alarm, thus the pre-
sented work can be claimed to outperform related work on 2D data by (Bosse and
Zlot, 2008) in terms of achieving high detection rates at low false alarm rates. In
the work by (Brunskill et al., 2007), detection rates are not reported at low false
alarm rates (or conversely, at high precision rates), and the data sets used are
smaller in scale. A thorough comparison of quantitative results is thus unfortu-
nately not possible.

For hann2 3D data, detection rates are higher than the ndt work by (Magnusson
et al., 2009), while the work by (Steder et al., 2010) outperforms the presented
method. It could be noted here that the method presented by (Steder et al., 2010)
includes registering the two point clouds, which is not included in the detection
here. Registering the two point clouds allows the robot to evaluate the registra-
tion result, and weed out possible false alarms as point clouds that are poorly
aligned. It is possible that the presented method’s detection rates could be im-
proved further if the method was coupled with a registration process.

The presented method is faster than (Steder et al., 2010) however and, which is
noted above and in related work, detecting only a subset of loops is typically suffi-
cient to produce good slam results. Low execution times are of high importance,
especially for larger data sets, since each point cloud must be compared to all
previous point clouds. Furthermore, the presented method is fully invariant to
rotation, while the work by (Steder et al., 2010) relies on the assumption that the
robot is traveling over a flat surface, and the work by (Magnusson et al., 2009)
relies on finding dominant planar surfaces.

The experiments that showed the most informative features showed that the re-
sults differed between different data sets, suggesting that the classifier might not
generalize well between different data sets or environments. It was shown in
Section 5.3 however, that the classifier does in fact generalize between different
environments and sensor setups. This fact is important – since the classifier relies
of being learned from manually labeled data, it must generalize well in order to
function in an environment which is different from that on which it was learned.
Experiments with dynamic objects showed that the type of dynamic objects that
typically appear in suburban environments can be handled in most cases. Repet-
itive structures in the environment was shown to not pose a considerable chal-
lenge in the data sets used here.
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The presented method is, compared to related work in both 2D and 3D, at a dis-
advantage in terms of the ability to handle translation. When the environment
contains well defined pathways, such as office hallways or urban or rural roads,
and the data is sampled without much translation in between point clouds, the
sensitivity to translation is not a problem, which is shown by the slam experi-
ments in 2D and 3D. Obtaining densely sampled data in 2D is easy using stan-
dard sensors, i.e. the SICK LMS200-sensors. In 3D, densely sampled data can
be obtained using state-of-the-art sensors, i.e. the Velodyne HDL-64E. Thus, the
need for densely sampled data does not pose a significant limitation. For data
which is from environments without well defined pathways the dependence to
translation could possibly prove to be problematic.

To summarize, the presented method performs well in environments with de-
fined pathways, the execution times are favorable and detections rates at low
false alarm rates compare well to related work and are sufficient to produce good
slam results.

6 Conclusions and future work

This paper presented a method for loop closure detection, using pairwise com-
parison of point clouds. The presented method uses rotation invariant features,
which provide a way to compress the sensed information into meaningful statis-
tics. This reduces the dimension of the data by up to a factor of 2000 (point clouds
with > 100k points), thus the features also present a way to store the data in an
efficient manner. The features are input to AdaBoost, which builds a classifier
with good generalization properties. Inheriting the rotation invariance from the
features, the learned classifier is fully invariant to rotation, without the need to
discretize the metric space, assume that the robot is traveling over a flat surface,
or be limited by predefined geometric primitives. Thus, it is possible to detect
loop closure from arbitrary directions. Experiments in both 2D and 3D showed
the algorithms ability to achieve levels of detection at 0% false alarm, at detec-
tion levels comparable to related work. The slam experiments presented showed
that the method can perform reliable localization and mapping in very challeng-
ing environments. Experiments using both indoor and outdoor data showed the
generalization properties of the framework proposed. The method is shown to be
suitable for real-time performance: computing the set of features takes at most
0.2s (for a point cloud with 112000 points), and comparing the set of features for
two point clouds takes less than 2ms.

In the experiments, the dependence between number of training data and clas-
sifier performance was noted. In future work, we intend to investigate this de-
pendence further, and also address how training data can be selected in order
to achieve the best performance at the lowest computational cost. Experiments
showed that in addition to being fully invariant to rotation, the classifier can
also handle up to 3m translation when detection loop closure between pairs of
point clouds. In future work, we wish to evaluate whether this distance can be ex-
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tended, such that the classifier can handle loop closure detection with less partial
overlap between the point clouds. It would also be interesting to test the classifier
on a very large scale data set from a highly repetitive environment, to see how it
would perform in such a situation. Further, the presented slam framework relies
on pairwise comparison between the current point cloud and all previous point
clouds, resulting in a time complexity which grows linearly with the robot tra-
jectory. The computed set of features can possibly be used in an initial nearest
neighbor search, candidates from which are then used as input to the classifier.
A similar approach has previously been taken for 2D point cloud submaps using
keypoints and kd− and Bkd−trees (Zlot and Bosse, 2009).

A Appendix

A.1 Feature definitions

In this appendix we define the features that were used to learn classifiers for loop
closure detection. The first subsection defines the features used in 2D, the second
subsection presents the features used in 3D.

Given a point cloud pk , 15 or 14 parameters need to be specified for computing
the features in 2D or 3D, respectively. The parameters are given in Table 7. Except
for rmax, all parameters are set manually. In order to find appropriate values, we
have used empirical results. For the range histograms, instead of choosing just
one bin size, we use 9 different bin sizes and leave it to the algorithm to find
which corresponding features are informative.

Table 7: Parameters used when the features are computed. All parameters
except for rmax are set manually.

Parameter Numerical value Comment

rmax 15m (AASS ), 30m (hann2 ), Maximum measurable range.
50m (all 2D data) Determined by sensor used.

gdist 2.5m

gmin size 3 Only used in 2D.

gr1 , gr2 , gr3 rmax, 0.75rmax, 0.50rmax

b1, . . . , b9 0.1, 0.25, 0.5, 0.75, 1, Bin sizes for the range
1.5, 2, 2.5 and 3 meters histograms.

2D features

The following features were used for loop closure detection in 2D. Features 1 to
35 are of type 1, features 36 to 44 are of type 2.

1. -2. Area Measures the area covered by a point cloud. Points whose range
is greater than rmax have their range set to rmax. Each point is seen as the
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center point of the base of an isosceles triangle. The height of the triangle

is hi = ri , and the width of the base is wi = 2ri tan
(
δϕ
2

)
, where δϕ is the

horizontal angular resolution of the sensor. The area of the triangle is ai =
hiwi

2 = r2
i tan

(
δϕ
2

)
. The area feature is computed as

amax = r2
max tan

(
δϕ
2

)
, (27a)

f1 =
1

Namax

N∑
i=1

r2
i tan

(
δϕ
2

)
=

1
N

N∑
i=1

(
ri
rmax

)2

. (27b)

The area is normalized by dividing by the maximum measurable area. Note
that the specific numerical value of δϕ is not needed to compute the feature.
f2 is the area computed for all ranges ri < rmax.

3. - 4. Average Range Let the normalized range be rn
i = ri /rmax. f3 is the

average rn
i for ranges ri < rmax and f4 is the average rn

i for all ranges.

5. - 6. Standard Deviation of Range f5 is the standard deviation of rn
i for

ranges ri < rmax and f6 is the standard deviation of rn
i for all ranges.

7. - 9. Circularity A circle is fitted to all points in the cloud in a least squares
sense, which returns the center of the fitted circle pc and the radius of the
fitted circle rc. f7 is rc/rmax, f8 is the residual sum of squares divided by
Nrc,

f8 =
1
Nrc

N∑
i=1

(rc − ‖pc − pi‖)2, (28)

where ‖ · ‖ is the Euclidean norm. f9 is ‖pc‖rmax
.

10. - 12. Centroid Let p̄ be the mean position of the point cloud, computed for
all points ri < rmax. f10 = ‖p̄‖, f11 is the mean distance from p̄ for points
ri < rmax and f12 is the standard deviation of the distances from p̄ for points
ri < rmax.

13. - 14. Maximum Range f13 is the number of ranges ri = rmax and f14 is the
number of ranges ri < rmax.

15. - 17. Distance Let the distance between consecutive points be

δpi = ‖pi − pi+1‖ . (29)

f15 is the sum of δpi for all points. f16 is the sum of δpi , for consecutive
points with ri , ri+1 < rmax. f17 is the sum of all δpi < gdist, for consecutive
points with ri , ri+1 < rmax.

18. Regularity f18 is the standard deviation of δpi , for consecutive points with
ri , ri+1 < rmax.
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19. - 20. Curvature Let A be the area covered by the triangle with corners in
pi−1, pi and pi+1, and let di−1, di and di+1 be the pairwise point to point
distances. The curvature at pi is computed as ki = 4A

di−1didi+1
. Curvature is

computed for pi ∈ I, where I = {pi : ri−1, ri , ri+1 < rmax, di−1, di , di+1 <
gdist}. f19 is the mean curvature and f20 is the standard deviation of the
curvatures.

21. - 22. Range Kurtosis Range kurtosis is a measure of the peakedness of the
histogram of ranges. Sample kurtosis is computed for all points ri < rmax as
follows

mk =
1

Nri<rmax

∑
i : ri<rmax

(ri − r̄)k , (30a)

f21 =
m4

(m2)2 − 3, (30b)

where r̄ is mean range, and Nri<rmax
is the number of ranges ri < rmax. f22 is

range kurtosis computed for all points in the cloud.

23. - 26. Relative Range Let the relative range be rr
i = ri /ri+1. f23 is the mean

of rr
i and f24 is the standard deviation of rr

i for all ranges. f25 and f26 are the
mean and the standard deviation of rr

i , respectively, computed for ri , ri+1 <
rmax.

27. - 32. Range Difference Mean and standard deviation of range difference
rd
i = |ri − ri+1|. The features are calculated for all ranges less than or equal

to a varying range gate gr . gr1 gives f27 (mean) and f28 (standard deviation),
and gr2 and gr3 gives f29 to f32. The features are normalized by division by
the respective gri .

33. - 34. Group A group is defined as a cluster of points in which the distance
between consecutive points is less than a maximum distance gate gdist. To
be considered a group, the cluster has to contain more than a certain num-
ber of points specified by the minimum group size gate gmin size. f33 is the
total number of groups found, f34 is the average number of points in each
group.

35. Mean Angular Difference Measures the sum of the angles between consec-
utive point to point vectors. Given two consecutive points pi and pi+1, a
vector that connects the points is given as p̄i,i+1 = [xi+1 − xi , yi+1 − yi]T. The
feature is calculated as

f15 =
∑

i:r{i,i+1,i+2}<rmax

arccos

 p̄T
i,i+1p̄i+1,i+2

||p̄i,i+1|| ||p̄i+1,i+2||

 . (31)

36. - 44. Range histogram f33 to f41 are range histograms. Bins of sizes bj , see
Table 7, are used to tabulate the ranges.
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3D features

The following features were used for loop closure detection in 3D. Features 1 to
32 are of type 1, features 33 to 41 are of type 2. Note that some of the 3D features
are defined analogously to some of the 2D features, hence the definitions are not
repeated.

1. - 2. Volume Measures the volume of the point cloud by adding the volumes
of the individual laser measurements. Each point is seen as the center point
of the base of a pyramid with its peak in the origin. Let δϕ and δψ be the
laser range sensors horizontal and vertical angular resolution, and let li =

2ri tan
(
δϕ
2

)
and wi = 2ri tan

(
δψ
2

)
be length and width of the pyramid base,

and hi = ri the height at point i. The volume of the pyramid is vi = liwihi
3 .

The volume is computed as

vmax =
4
3

tan
(
δϕ
2

)
tan

(
δψ
2

)
r3
max (32a)

f1 =
1

Nvmax

N∑
i=1

vi =
1
N

N∑
i=1

(
ri
rmax

)3

(32b)

The volume is normalized by dividing by the maximum measurable volume
Nvmax, i.e. the volume when all ranges equal rmax. Notice that the explicit
values of δϕ and δψ do not matter. f2 is the volume computed using points
with ri < rmax.

3. - 6. Defined analogously to features 3 to 6 in 2D.

7. - 9. Sphere A sphere is fitted to all points in the cloud in a least squares
sense, which returns the center of the fitted sphere pc and the radius of the
fitted sphere rc. f7 is rc/rmax, f8 is the residual sum of squares divided by
Nrc,

f8 =
1
Nrc

N∑
i=1

(rc − ‖pc − pi‖)2, (33)

where ‖ · ‖ is the Euclidean norm. f9 is ‖pc‖rmax
.

10. - 32. Defined analogously to features 10 to 32 in 2D.

33. - 41. Range histogram Defined analogously to features 36 to 44 in 2D.

A.2 Compounding operations

This appendix contains definitions of the compounding operations ⊕ and 	 and
their corresponding Jacobians. Let xi,j denote the location of coordinate frame j
with respect to coordinate frame i. The definitions are taken from (Eustice, 2005;
Smith et al., 1990).
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Compounding in 2D

Let the 2D 3-dof pose be given by

xi,j =
[
xi,j yi,j ψi,j

]T
. (34)

The compounding operation xi,k = xi,j ⊕ xj,k is defined as

xi,k = xi,j ⊕ xj,k (35a)

=


xi,j + xj,k cos(ψi,j ) − yj,k sin(ψi,j )
yi,j + xj,k sin(ψi,j ) + yj,k cos(ψi,j )

ψij + ψjk

 . (35b)

The Jacobian of the compounding operator J⊕ is given by

J⊕ =
d(xi,j ⊕ xj,k)

d(xi,j , xj,k)
=

d(xi,k)
d(xi,j , xj,k)

=
[
J1⊕ J2⊕

]
(36a)

=

1 0 −
(
xj,k sin(φi,j ) + yj,k cos(φi,j )

)
cos(φi,j ) − sin(φi,j ) 0

0 1 xj,k cos(φi,j ) − yj,k sin(φi,j ) sin(φi,j ) cos(φi,j ) 0
0 0 1 0 0 1

 (36b)

where J1⊕ and J2⊕ correspond to the left and right 3 × 3-matrix half partitioning
of J⊕. The inverse relationship 	, explaining xj,i as a function of the coordinates
in xi,j , is given by

xj,i = 	xi,j =


−xi,j cos(φi,j ) − yi,j sin(φi,j )
xi,j sin(φi,j ) − yi,j cos(φi,j )

−φi,j

 , (37)

with Jacobian J	

J	 =
d(xj,i)

dxi,j
=
d(	xi,j )

dxi,j
(38a)

=

− cos(φi,j ) − sin(φi,j ) xi,j sin(φi,j ) − yi,j cos(φi,j )
sin(φi,j ) − cos(φi,j ) xi,j cos(φi,j ) + yi,j sin(φi,j )

0 0 −1

. (38b)

Compounding in 3D

Let the 3D 6-dof pose be given by

xi,j =
[
xi,j yi,j zi,j φi,j θi,j ψi,j

]T
. (39)
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The compounding operation xi,k = xi,j ⊕ xj,k is defined as

xi,k = xi,j ⊕ xj,k (40a)

=


Ri,j

[
xj,k yj,k zj,k

]T
+

[
xi,j yi,j zi,j

]T
atan2

(
R

(1,3)
i,k sinψi,k − R

(2,3)
i,k cosψi,k ,−R

(1,2)
i,k sinψi,k + R

(2,2)
i,k cosψi,k

)
atan2

(
−R(3,1)

i,k , R
(1,1)
i,k cosψi,k + R

(2,1)
i,k sinψi,k

)
atan2

(
R

(2,1)
i,k , R

(1,1)
i,k

)

, (40b)

where the rotation matrix Ri,j is defined as

Ri,j =

cosψ cos θ − sinψ cosφ + cosψ sin θ sinφ sinψ sinφ + cosψ sin θ cosφ
sinψ cos θ cosψ cosφ + sinψ sin θ sinφ − cosψ sinφ + sinψ sin θ cosφ
− sin θ cos θ sinφ cos θ cosφ

 (41)

where the subscripts i,j are omitted for brevity. Further, Ri,k = Ri,jRj,k and R(m,n)
i,k

is the (m, n):th element of the rotation matrix Ri,k . The Jacobian of the compound-
ing operator J⊕ is given by

J⊕ =
d(xi,j ⊕ xj,k)

d(xi,j , xj,k)
=

d(xi,k)
d(xi,j , xj,k)

=
[
J1⊕ J2⊕

]
(42a)

=
[
I3×3 M Ri,j 03×3
03×3 K1 03×3 K2

]
. (42b)

where J1⊕ and J2⊕ correspond to the left and right 6 × 6-matrix half partitioning
of J⊕, and

M =


R

(1,3)
i,j yj,k − R

(1,2)
i,j zj,k

(
zi,k − zi,j

)
cosψi,j −

(
yi,k − yi,j

)
R

(2,3)
i,j yj,k − R

(2,2)
i,j zj,k

(
zi,k − zi,j

)
sinψi,j

(
xi,k − xi,j

)
R

(3,3)
i,j yj,k − R

(3,2)
i,j zj,k −xj,k cos θi,j −

(
yj,k sinφi,j + zj,k cosφi,j

)
sin θi,j 0


K1 =


cos θi,j cos

(
ψi,k − ψi,j

)
sec θi,k sin

(
ψi,k − ψi,j

)
sec θi,k 0

− cos θi,j sin
(
ψi,k − ψi,j

)
cos

(
ψi,k − ψi,j

)
0

R
(1,2)
j,k sinφi,k + R

(1,3)
j,k cosφi,k sec θi,k sin

(
ψi,k − ψi,j

)
tan θi,k 1


K2 =


1 sin

(
φi,k − φj,k

)
tan θi,k

(
R

(1,3)
i,j cosψi,k + R

(2,3)
i,j sinψi,k

)
sec θi,k

0 cos
(
φi,k − φj,k

)
− cos θj,k sin

(
φi,k − φj,k

)
0 sin

(
φi,k − φj,k

)
sec θi,k cos θj,k cos

(
φi,k − φj,k

)
sec θi,k

 (43)

The inverse relationship 	, explaining xj,i as a function of the coordinates in xi,j ,
is given by

xj,i = 	xi,j =


−RT

i,j

[
xi,j yi,j zi,j

]T
atan2

(
R

(3,1)
i,j sinψj,i − R

(3,2)
i,j cosψj,i ,−R

(2,1)
i,j sinψj,i + R

(2,2)
i,j cosψj,i

)
atan2

(
−R(1,3)

i,j , R
(1,1)
i,j cosψj,i + R

(1,2)
i,j sinψj,i

)
atan2

(
R

(1,2)
i,j , R

(1,1)
i,j

)


(44)
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with Jacobian J	

J	 =
d(xj,i)

dxi,j
=
d(	xi,j )

dxi,j
=

[
−RT

i,j N
03×3 Q

]
(45)

where

N =


0 −R(3,1)

i,j

(
xi,j cosψi,j + yi,j sinψi,j

)
+ zi,j cos θi,j R

(2,1)
i,j xi,j − R

(1,1)
i,j yi,j

zj,i −R(3,2)
i,j

(
xi,j cosψi,j + yi,j sinψi,j

)
+ zi,j sin θi,j sinφi,j R

(2,2)
i,j xi,j − R

(1,2)
i,j yi,j

−yj,i −R(3,3)
i,j

(
xi,j cosψi,j + yi,j sinψi,j

)
+ zi,j sin θi,j cosφi,j R

(2,3)
i,j xi,j − R

(1,3)
i,j yi,j


Q = 1

1−
(
R

(1,3)
i,j

)2


−R(1,1)
i,j −R(1,2)

i,j cosφi,j R
(1,3)
i,j R

(3,3)
i,j

R
(1,2)
i,j

√
1 −

(
R

(1,3)
i,j

)2
−R(3,3)

i,j cosφi,j

√
1 −

(
R

(1,3)
i,j

)2
R

(2,3)
i,j

√
1 −

(
R

(1,3)
i,j

)2

R
(1,3)
i,j R

(1,1)
i,j −R(2,3)

i,j cosψi,j −R(3,3)
i,j


(46)

Composite relationships

Using the two operations defined above, operations for more than two spatial
relationships can be performed. The following composite relationships hold in
both 2D and 3D:

xi,l = xi,j ⊕ xj,l = xi,j ⊕ (xj,k ⊕ xk,l) (47a)

= xi,k ⊕ xk,l = (xi,j ⊕ xj,k) ⊕ xk,l (47b)

xi,j 	 xk,j = xi,j ⊕ (	xi,k) (47c)

xj,k = 	xi,j ⊕ xi,k (47d)

The Jacobian of (47d), 	J⊕, is given by

	J⊕ =
dxj,k

d(xi,j , xi,k)
=

dxj,k
d(xj,i , xi,k)

×
d(xj,i , xi,k)

d(xi,j , xi,k)
= J⊕ ×

[
J	 0
0 I

]
=

[
J1⊕J	 J2⊕

]
. (48)
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Abstract

This paper presents a Gaussian-mixture implementation of the phd
filter for tracking extended targets. The exact filter requires process-
ing of all possible measurement set partitions, which is generally in-
feasible to implement. A method is proposed for limiting the number
of considered partitions and possible alternatives are discussed. The
implementation is used on simulated data and in experiments with
real laser data, and the advantage of the filter is illustrated. Suitable
remedies are given to handle spatially close targets and target occlu-
sion.

1 Introduction

In most multi-target tracking applications it is assumed that each target produces
at most one measurement per time step. This is true for the cases when the dis-
tance between the target and the sensor is large in comparison to the target’s size.
In other cases however, the target size may be such that multiple resolution cells
of the sensor are occupied by the target. Targets that potentially give rise to more
than one measurement per time step are categorized as extended. Examples in-
clude the cases when vehicles use radar sensors to track other road-users, when
ground radar stations track airplanes which are sufficiently close to the sensor, or
in mobile robotics when pedestrians are tracked using laser range sensors.

Gilholm and Salmond (2005) have presented an approach for tracking extended
targets under the assumption that the number of received target measurements
in each time step is Poisson distributed. Their algorithm was illustrated with two
examples where point targets which may generate more than one measurement
and objects that have a 1-D extension (infinitely thin stick of length l) are tracked.
In (Gilholm et al., 2005) a measurement model was suggested which is an inho-
mogeneous Poisson point process. At each time step, a Poisson distributed ran-
dom number of measurements are generated, distributed around the target. This
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measurement model can be understood to imply that the extended target is suf-
ficiently far away from the sensor for its measurements to resemble a cluster of
points, rather than a geometrically structured ensemble. A similar approach is
taken in (Boers et al., 2006) where track-before-detect theory is used to track a
point target with a 1-D extent.

Baum and Hanebeck (2009) have presented the random hypersurface model, an
extended target model which has been used to track elliptic targets (Baum et al.,
2010b), as well as more general shapes (Baum and Hanebeck, 2011). A differ-
ent approach to elliptic target modeling is the random matrix framework by
Koch (Koch, 2008). The target kinematical states are modeled using a Gaussian
distribution, while the ellipsoidal target extension is modeled using an inverse
Wishart distribution. Using random matrices to track group targets under kine-
matical constraints is discussed in (Koch and Feldmann, 2009). Modifications
and improvements to the Gaussian-inverse Wishart model of (Koch, 2008) have
been suggested in (Feldmann et al., 2011), and the model (Koch, 2008) has been
integrated into a Probabilistic Multi-Hypothesis Tracking (pmht) framework in
(Wieneke and Koch, 2010). A comparison of random matrices and the random hy-
persurface model under single target assumption is given in (Baum et al., 2010a).
Measurements of target down-range extent are used to aid track retention in
(Salmond and Parr, 2003). Other approaches to estimating the target extensions
are given in (Granström et al., 2011; Lundquist et al., 2011; Zhu et al., 2011).

Using the rigorous finite set statistics (fisst), Mahler has pioneered the recent
advances in the field of multiple target tracking with a set theoretic approach
where the targets and measurements are treated as random finite sets (rfs). This
type of approach allows the problem of estimating multiple targets in clutter
and uncertain associations to be cast in a Bayesian filtering framework (Mahler,
2007b), which in turn results in an optimal multi-target Bayesian filter. As is the
case in many nonlinear Bayesian estimation problems, the optimal multi-target
Bayesian filter is infeasible to implement except for simple examples and an im-
portant contribution of fisst is to provide structured tools in the form of the
statistical moments of a rfs. The first order moment of a rfs is called probabil-
ity hypothesis density (phd), and it is an intensity function defined over the state
space of the targets. The so called phd filter (Mahler, 2003, 2007b) propagates
in time phdss corresponding to the set of target states as an approximation of
the optimal multi-target Bayesian filter. A practical implementation of the phd
filter is provided by approximating the phdss with Gaussian-mixtures (gm) (Vo
and Ma, 2006) which results in the Gaussian-mixture phd (gm-phd) filter. In the
recent work (Mahler, 2009), Mahler presented an extension of the phd filter to
also handle extended targets of the type presented in (Gilholm et al., 2005).

In this paper, we present a Gaussian-mixture implementation of the phd-filter
for extended targets (Mahler, 2009), which we call the extended target gm-phd-
filter (etgmphd). In this way, we, to some extent, give a practical extension of
the series of work in (Gilholm et al., 2005; Vo and Ma, 2006; Mahler, 2009). An
earlier version of this work was presented in (Granström et al., 2010) and the
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current, significantly improved, version includes not only much more details and
extensive investigations of the methodology but also practical examples with real
data. For space considerations, we do not repeat the derivation of the phd-filter
equations for extended targets and instead refer the reader to (Mahler, 2009).

The document is outlined as follows. The multiple extended target tracking prob-
lem is defined in Section 2. The details of the Gaussian-mixture implementation
are given in Section 3. For the measurement update step of the etgmphd-filter,
different partitions of the set of measurements have to be considered. A measure-
ment clustering algorithm used to reduce the combinatorially exploding number
of possible measurement partitions is described in Section 4. The proposed ap-
proaches are evaluated using both simulations and experiments. The target track-
ing setups for these evaluations are described in Section 5, the simulation results
are presented in Section 6 and results using data from a laser sensor are presented
in Section 7. Finally, Sections 8 and 9 contain conclusions and thoughts on future
work.

2 Target Tracking Problem Formulation

In previous work, extended targets have often been modeled as targets having
a spatial extension or shape that would lead to multiple measurements, as op-
posed to at most a single measurement. On the other hand, the extended target
tracking problem can be simplified by the assumption that the measurements
originating from a target are distributed approximately around a target reference
point (Gilholm and Salmond, 2005) which can be e.g. the centroid or any other
point depending on the extent (or the shape) of the target. Though all targets
obviously have a spatial extension and shape, in the latter type of modeling, only
the target reference point is important and the target extent does not need to be
estimated.

The relevant target characteristics that are to be estimated form the target’s state
vector x. Generally, beside the kinematic variables as position, velocity and ori-
entation, the state vector may also contain information about the target’s spatial
extension. As mentioned above, when the target’s state does not contain any vari-
ables related to the target extent, though the estimation is done as if the target
was a point (i.e. the target reference point), the algorithms should still take care
of the multiple measurements that originate from a target. Hence, in this study,
we use a generalized definition of an extended target, given below, which does
not depend on whether the target extent is estimated or not.

Definition B.1 (Extended Target). A target that potentially gives rise to more
than one measurement per time step.

In this work, to simplify the presentation, no information about the size and
shape of the target is kept in the state vector x, i.e. the target extent is not ex-
plicitly estimated. Nevertheless, it must be emphasized that this causes no loss
of generality as shown by the recent work (Granström et al., 2011) where the re-



156 Paper B Extended target tracking using a Gaussian mixture PHD filter

sulting etgmphd filter is used to handle the joint estimation of size, shape and
kinematic variables for rectangular and elliptical extended targets. We model
both the target states to be estimated, and the measurements collected, as rfsss.
The motivation behind this selection is two-fold. First, in many practical systems,
although the sensor reports come with a specific measurement order, the results
of the target tracking algorithms are invariant under permutations of this order.
Hence, modeling the measurements as elements of a set in which the order of the
elements is irrelevant makes sense. Second, this work unavoidably depends on
the previous line of work (Mahler, 2009), which is based on such a selection.

The initial gm-phd work (Vo and Ma, 2006) does not provide tools for ensuring
track continuity, for which some remedies are described in the literature, see e.g.
(Panta et al., 2009). However it has been shown that labels for the Gaussian com-
ponents can be included into the filter in order to obtain individual target tracks,
see e.g. (Clark et al., 2006). In this work, for the sake of simplicity, labels are not
used, however they can be incorporated as in (Clark et al., 2006) to provide track
continuity.

We denote the unknown number of targets Nx,k , and the set of target states to be

estimated at time k is Xk = {x(i)
k }

Nx,k
i=1 . The measurement set obtained at time k is

Zk = {z(i)
k }

Nz,k
i=1 where Nz,k is the number of measurements.

The dynamic evolution of each target state x(i)
k in the rfs Xk is modeled using a

linear Gaussian dynamical model,

x(i)
k+1 = Fkx(i)

k + Gkw(i)
k , (1)

for i = 1, . . . , Nx,k , where w(i)
k is Gaussian white noise with covariance Q(i)

k . Note
that each target state evolves according to the same dynamic model independent
of the other targets.

The number of measurements generated by the ith target at each time step is

a Poisson distributed random variable with rate γ
(
x(i)
k

)
measurements per scan,

where γ( · ) is a known non-negative function defined over the target state space.
The probability of the ith target generating at least one measurement is then
given as

1 − e
−γ

(
x(i)
k

)
. (2)

The ith target is detected with probability pD

(
x(i)
k

)
where pD( · ) is a known non-

negative function defined over the target state space. This gives the effective
probability of detection 1 − e

−γ
(
x(i)
k

) pD

(
x(i)
k

)
. (3)

The measurements originating from the ith target are assumed to be related to
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the target state according to a linear Gaussian model

z(j)
k = Hkx(i)

k + e(j)
k , (4)

where e(j)
k is white Gaussian noise with covariance Rk . Each target is assumed

to give rise to measurements independently of the other targets. We emphasize
here, that in an rfs framework both the set of measurements Zk and the set of
target states Xk are unlabeled, and hence no assumptions are made regarding
which target gives rise to which measurement.

The number of clutter measurements generated at each time step is a Poisson dis-
tributed random variable with rate βFA,k clutter measurements per surveillance
volume per scan. Thus, if the surveillance volume is Vs, the mean number of
clutter measurements is βFA,kVs clutter measurements per scan. The spatial dis-
tribution of the clutter measurements is assumed uniform over the surveillance
volume.

The aim is now to obtain an estimate of the sets of the target states XK = {Xk}Kk=1
given the sets of measurements ZK = {Zk}Kk=1. We achieve this by propagating the
predicted and updated phdss of the set of target states Xk , denoted Dk|k−1( · ) and
Dk|k( · ), respectively, using the phd filter presented in (Mahler, 2009).

3 Gaussian-Mixture Implementation

In this section, following the derivation of the gm-phd-filter for standard single
measurement targets in (Vo and Ma, 2006), a phd recursion for the extended
target case is described. Since the prediction update equations of the extended
target phd filter are the same as those of the standard phd filter (Mahler, 2009),
the Gaussian mixture prediction update equations of the etgmphd filter are the
same as those of the standard gm-phd filter in (Vo and Ma, 2006). For this reason,
here we only consider the measurement update formulas for the etgmphd filter.

The predicted phd has the following Gaussian-mixture representation

Dk|k−1 (x) =
Jk|k−1∑
j=1

w
(j)
k|k−1N

(
x ; m(j)

k|k−1, P
(j)
k|k−1

)
(5)

where

• Jk|k−1 is the predicted number of components;

• w
(j)
k|k−1 is the weight of the jth component;

• m
(j)
k|k−1 and P (j)

k|k−1 are the predicted mean and covariance of the jth compo-
nent;

• N (x ; m, P ) denotes a Gaussian distribution defined over the variable x
with mean m and covariance P .
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The phd measurement update equation for the extended target Poisson model
of (Gilholm et al., 2005) was derived in (Mahler, 2009). The corrected phd-
intensity is given by the multiplication of the predicted phd and a measurement
pseudo-likelihood function (Mahler, 2009) LZk ,

Dk|k (x|Z) = LZk (x)Dk|k−1 (x|Z) . (6)

The measurement pseudo-likelihood function LZk in (6) is defined as

LZk (x) ,1 −
(
1 − e−γ(x)

)
pD (x) + e−γ(x)pD (x)

×
∑

p∠Zk

ωp

∑
W∈p

γ (x)|W |

dW
·

∏
zk∈W

φzk (x)

λkck (zk)
. (7)

where

• λk , βFA,kVs is the mean number of clutter measurements;

• ck (zk) = 1/Vs is the spatial distribution of the clutter over the surveillance
volume;

• the notation p∠Zk means that p partitions the measurement set Zk into
non-empty cells W ;

• the quantities ωp and dW are non-negative coefficients defined for each par-
tition p and cell W respectively.

• φzk (x) = p(zk |x) is the likelihood function for a single target generated mea-
surement, which would be a Gaussian density in this work.

The first summation on the right hand side of (7) is taken over all partitions p of
the measurement set Zk . The second summation is taken over all cells W in the
current partition p.

In order to derive the measurement update of the gm-phd-filter, six assump-
tions were made in (Vo and Ma, 2006), which are repeated here for the sake of
completeness.
Assumption B.1. All of the targets evolve and generate observations indepen-
dently of one another.

Assumption B.2. Clutter is Poisson and independent of target-originated mea-
surements.

Assumption B.3. The predicted multi-target rfs is Poisson.

Assumption B.4. Each target follows a linear Gaussian dynamical model, cf. (1),
and the sensor has a linear Gaussian measurement model, cf. (4).

Assumption B.5. The survival and detection probabilities are state independent,
i.e. pS (x) = pS and pD (x) = pD.
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Assumption B.6. The intensities of the birth and spawn rfs are Gaussian mix-
tures.

In this paper we adopt all of the above assumptions except that we relax the
assumption on detection probability as follows.
Assumption B.7. The following approximation about the probability of detec-
tion function pD ( · ) holds for all x and for j = 1, . . . , Jk|k−1,

pD (x)N
(
x ; m(j)

k|k−1, P
(j)
k|k−1

)
≈ pD

(
m

(j)
k|k−1

)
N

(
x ; m(j)

k|k−1, P
(j)
k|k−1

)
. (8)

Assumption B.7 is weaker than Assumption B.5 in that (8) is trivially satisfied
when pD ( · ) = pD, i.e. when pD ( · ) is constant. In general, Assumption B.7 holds
approximately when the function pD ( · ) does not vary much in the uncertainty

zone of a target determined by the covariance P (j)
k|k−1. This is true either when

pD ( · ) is a sufficiently smooth function or when the signal to noise ratio (snr) is

high enough such that P (j)
k|k−1 is sufficiently small. We still note here that Assump-

tion B.7 is only for the sake of simplification rather than approximation, since
pD (x) can always be approximated as a mixture of exponentials of quadratic func-
tions (or equivalently as Gaussians) without losing the Gaussian-mixture struc-
ture of the corrected phd, see (Vo and Ma, 2006). This, however, would cause a
multiplicative increase in the number of components in the corrected phd, which
would in turn make the algorithm need more aggressive pruning and merging op-
erations. A similar approach to variable probability of detection has been taken
in order to model the clutter notch in ground moving target indicator target track-
ing (Ulmke et al., 2007).

For the expected number of measurements from the targets, represented by γ( · ),
similar remarks apply and we use the following assumption.
Assumption B.8. The following approximation about γ( · ) holds for all x, n =
1, 2, . . . and j = 1, . . . , Jk|k−1,

e−γ(x)γn(x)N
(
x ; m(j)

k|k−1, P
(j)
k|k−1

)
≈ e
−γ

(
m

(j)
k|k−1

)
γn

(
m

(j)
k|k−1

)
N

(
x ; m(j)

k|k−1, P
(j)
k|k−1

)
. (9)

The trivial situation γ( · ) = γ , i.e. when γ( · ) is constant, is again a special case
where Assumption B.8 is satisfied. In general, satisfying Assumption B.8 is more
difficult than Assumption B.7 and a Gaussian mixture assumption for γ( · ) would
not work due to the exponential function. Nevertheless Assumption B.8 is ex-
pected to hold approximately either when γ ( · ) is a sufficiently smooth function
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or when the signal to noise ratio (snr) is high enough such that P (j)
k|k−1 is suffi-

ciently small.

With the assumptions presented above, the posterior intensity at time k is a
Gaussian-mixture given by

Dk|k (x) = DND
k|k (x) +

∑
p∠Zk

∑
W∈p

DD
k|k (x, W ). (10)

The Gaussian-mixture DND
k|k ( · ), handling the no detection cases, is given by

DND
k|k (x) =

Jk|k−1∑
j=1

w
(j)
k|kN

(
x ; m(j)

k|k , P
(j)
k|k

)
, (11a)

w
(j)
k|k =

(
1 −

(
1 − e−γ

(j)
)
p

(j)
D

)
w

(j)
k|k−1, (11b)

m
(j)
k|k = m

(j)
k|k−1, P

(j)
k|k = P

(j)
k|k−1. (11c)

where we used the short hand notations γ (j) and p(j)
D for γ

(
m

(j)
k|k−1

)
and pD

(
m

(j)
k|k−1

)
respectively.

The Gaussian-mixture DD
k|k (x, W ), handling the detected target cases, is given by

DD
k|k (x, W ) =

Jk|k−1∑
j=1

w
(j)
k|kN

(
x ; m(j)

k|k , P
(j)
k|k

)
, (12a)

w
(j)
k|k = ωp

Γ (j)p
(j)
D

dW
Φ

(j)
Ww

(j)
k|k−1, (12b)

Γ (j) = e−γ
(j) (
γ (j)

)|W |
, (12c)

Φ
(j)
W = φ

(j)
W

∏
zk∈W

1
λkck (zk)

, (12d)

where the product is over all measurements zk in the cell W and |W | is the num-

ber of elements in W . The coefficient φ(j)
W is given by

φ
(j)
W = N

(
zW ; HWm

(j)
k|k−1,HW P

(j)
k|k−1HT

W + RW

)
(12e)

and is calculated using

zW ,
⊕
zk∈W

zk , (12f)

HW =[HT
k , H

T
k , · · · , H

T
k︸             ︷︷             ︸

|W | times

]T, (12g)
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RW =blkdiag(Rk , Rk , · · · , Rk︸           ︷︷           ︸
|W | times

). (12h)

The operation
⊕

denotes vertical vectorial concatenation. The partition weights
ωp can be interpreted as the probability of the partition p being true and are
calculated as

ωp =

∏
W∈p dW∑

p′∠Zk
∏
W ′∈p′ dW ′

, (12i)

dW = δ|W |,1 +
Jk|k−1∑
`=1

Γ (`)p
(`)
D Φ

(`)
W w

(`)
k|k−1, (12j)

where δi,j is the Kronecker delta. The mean and covariance of the Gaussian com-
ponents are updated using the standard Kalman measurement update,

m
(j)
k|k = m

(j)
k|k−1 + K(j)

k

(
zW −HWm

(j)
k|k−1

)
, (13a)

P
(j)
k|k =

(
I −K(j)

k HW

)
P

(j)
k|k−1, (13b)

K(j)
k = P

(j)
k|k−1HT

W

(
HW P

(j)
k|k−1HT

W + RW

)−1
. (13c)

In order to keep the number of Gaussian components at a computationally tract-
able level, pruning and merging is performed as in (Vo and Ma, 2006).

4 Partitioning the Measurement Set

As observed in the previous section, an integral part of extended target tracking
with the phd filter is the partitioning of the set of measurements (Mahler, 2009).
The partitioning is important, since more than one measurement can stem from
the same target. Let us exemplify the process of partitioning with a measurement

set containing three individual measurements, Zk =
{
z(1)
k , z

(2)
k , z

(3)
k

}
. This set can

be partitioned in the following different ways;

p1 : W 1
1 =

{
z(1)
k , z

(2)
k , z

(3)
k

}
,

p2 : W 2
1 =

{
z(1)
k , z

(2)
k

}
, W 2

2 =
{
z(3)
k

}
,

p3 : W 3
1 =

{
z(1)
k , z

(3)
k

}
, W 3

2 =
{
z(2)
k

}
,

p4 : W 4
1 =

{
z(2)
k , z

(3)
k

}
, W 4

2 =
{
z(1)
k

}
,

p5 : W 5
1 =

{
z(1)
k

}
, W 5

2 =
{
z(2)
k

}
, W 5

3 =
{
z(3)
k

}
.

Here, pi is the ith partition, andW i
j is the jth cell of partition i. Let |pi | denote the

number of cells in the partition, and let |W i
j | denote the number of measurements

in the cell. It is quickly realized that as the size of the measurement set increases,
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the number of possible partitions grows very large. In order to have a computa-
tionally tractable target tracking method, only a subset of all possible partitions
can be considered. In order to achieve good extended target tracking results, this
subset of partitions must represent the most likely ones of all possible partitions.

In Section 4.1, we propose a simple heuristic for finding this subset of partitions,
which is based on the distances between the measurements. Note that our pro-
posed method is only one instance of a vast number of other clustering algorithms
found in the literature, and that other methods could have been used. Some well-
known alternatives are pointed out, and compared to the proposed partitioning
method, in Section 4.2. An addition to the partitioning approach to better handle
targets which are spatially close is described in Section 4.3.

4.1 Distance Partitioning

Consider a set of measurements Z = {z(i)}Nzi=1. Our partitioning algorithm relies
on the following theorem.

Theorem 1. Let d( · , · ) be a distance measure and d` ≥ 0 be an arbitrary dis-
tance threshold. Then there is one and only one partition in which any pair of
measurements z(i), z(j) ∈ Z that satisfy

d
(
z(i), z(j)

)
≤ d` (15)

are in the same cell. �

Proof: The proof is given in Appendix A.1 for the sake of clarity. �

Given a distance measure d( · , · ), the distances between each pair of measure-
ments can be calculated as

∆ij , d(z(i), z(j)), for 1 ≤ i , j ≤ Nz . (16)

Theorem 1 says that there is a unique partition that leaves all pairs (i, j) of mea-
surements satisfying ∆ij ≤ d` in the same cell. An example algorithm that can
be used to obtain this unique partition is given in Table 1. This algorithm is used
to generate Nd alternative partitions of the measurement set Z, by selecting Nd
different thresholds

{d`}
Nd
`=1 , d` < d`+1, for ` = 1, . . . , Nd − 1. (17)

The alternative partitions contain fewer cells as the d`’s are increasing, and the
cells typically contain more measurements.

The thresholds {d`}
Nd
`=1 are selected from the set

D , {0} ∪ {∆ij |1 ≤ i < j ≤ Nz} (18)

where the elements of D are sorted in ascending order. If one uses all of the
elements in D to form alternative partitions, |D| = Nz(Nz − 1)/2 + 1 partitions are
obtained. Some partitions resulting from this selection might still turn out to be
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identical, and must hence be discarded so that each partition at the end is unique.
Among these unique partitions, the first (corresponding to the threshold d1 = 0)
would contain Nz cells with one measurement each. The last partition would
have just one cell containing all Nz measurements. Notice that this partitioning
methodology already reduces the number of partitions tremendously.

In order to further reduce the computational load, partitions in this work are
computed only for a subset of thresholds in the set D. This subset is determined
based on the statistical properties of the distances between the measurements
belonging to the same target.

Suppose we select the distance measure d( · , · ) as the Mahalanobis distance, given
by

dM
(
z(i), z(j)

)
=

√(
z(i) − z(j)

)T
R−1

(
z(i) − z(j)

)
. (19)

Then, for two target-originated measurements z(i) and z(j) belonging to the same
target, dM

(
z(i), z(j)

)
is χ2 distributed with degrees of freedom equal to the mea-

surement vector dimension. Using the inverse cumulative χ2 distribution func-
tion, denoted invchi2( · ), a unitless distance threshold,

δPG
= invchi2(PG), (20)

can be computed for a given probability PG. Simulations have shown that good
target tracking results are achieved with partitions computed using the subset
of distance thresholds in D satisfying the condition δPL

< d` < δPU
, for lower

probabilities PL ≤ 0.3 and upper probabilities PU ≥ 0.8.

As a simple example, if there are four targets present, each with expected number
of measurements 20, and clutter measurements are generated with βFAVs = 50,
then the mean number of measurements collected each time step would be 130.
For 130 measurements, the number of all possible partitions is given by the Bell
number B130 ∝ 10161 (Rota, 1964). Using all of the thresholds in the set D, 130
different partitions would be computed on average. Using the upper and lower
probabilities PL = 0.3 and PU = 0.8, Monte Carlo simulations show that on aver-
age only 27 partitions are computed, representing a reduction of computational
complexity several orders of magnitude.

4.2 Alternative Partitioning Methods

An alternative to using the proposed algorithm is to use a method which takes
as input the final desired number of cells, denoted K , and then divides the set
of measurements into K cells. The most well-known example of such a method
is perhaps K-means clustering, see e.g. the textbooks (Bishop, 2006; Hastie et al.,
2009). In the etgmphd-filter, one needs to generate alternative partitions, cor-
responding to different values of K between a lower and an upper threshold, de-
noted KL and KU. While the values for the partitioning parameters δPL

and δPU
in Distance Partitioning can be chosen using some intuitive arguments as above,
it is less clear how KL and KU should be selected. One idea is to set KL = 1 and
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Table 1: Distance Partitioning

Require: d`, ∆i,j , 1 ≤ i , j ≤ Nz .
1: CellNumbers(i) = 0, 1 ≤ i ≤ Nz {Set cells of all measurements to null}
2: CellId = 1 {Set the current cell id to 1}

Ensure: %Find all cell numbers
3: for i = 1 : Nz do
4: if CellNumbers(i) = 0 then
5: CellNumbers(i) = CellId
6: CellNumbers = FindNeighbors(i,CellNumbers,CellId)
7: CellId = CellId+1
8: end if
9: end for

The recursive function FindNeighbors( · , · , · ) is given as
1: function CellNumbers = FindNeighbors(i,CellNumbers,CellId)
2: for j = 1 : Nz do
3: if j , i & ∆ij ≤ d` & CellNumbers(j) = 0 then
4: CellNumbers(j) = CellId
5: CellNumbers = FindNeigbors(j,CellNumbers,CellId)
6: end if
7: end for

KU = |Zk |, which corresponds to δPU
= ∞ and δPL

= 0 in Distance Partitioning.
Doing so would significantly increase the computational complexity compared
to Distance Partitioning, since a considerably higher number of partitions must
be considered.

Another major difference between the suggested distance partitioning and K-
means clustering is highlighted in Figure 1, which shows a measurement set that
consists of Nz,k = 13 measurements, 10 of which are clustered in the northeast of
the surveillance region and the other three are scattered individually. The intu-
itive way to cluster this set of measurements is into 4 clusters, which is achieved
by Distance Partitioning using a distance threshold of about 25 m, as shown in
the left plot of Figure 1. When there is a large number of measurements concen-
trated in one part of the surveillance area, as is the case in this example, K-means
clustering tends to split those measurements into smaller cells, and merge re-
maining but far away measurements into large cells. This is illustrated in the
right plot of Figure 1.

One reason behind this shortcoming of K-means is the initialization of the algo-
rithm, where the initial cluster centers are chosen by uniform sampling. In order
to overcome this problem, modifications to the standard K-means algorithm have
been suggested, where initial clusters are chosen as separated as possible, see
(Arthur and Vassilvitskii, 2007; Ostrovsky et al., 2006). This improved version of
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Figure 1: Set of Nz,k = 13 measurements. Left: The measurements par-
titioned using the suggested distance partitioning method with a distance
threshold of 25 m. Right: The measurements partitioned using K-means
clustering with K = 4.

K-means is called K-means++.

In simulations, Distance Partitioning was compared to K-means++ (using an im-
plementation available online (Sorber, 2011)). The results, see Section 6.2, show
that K-means++ fails to compute informative partitions much too often, except
in scenarios with very low βFA,k . This can be attributed to the existence of counter-
intuitive local optima for the implicit cost function involved with K-means++ (or
K-means). Distance Partitioning on the other hand can handle both high and low
βFA,k , and always gives an intuitive and unique partitioning for a given d`.

Therefore, we argue that a hierarchical method, such as the suggested Distance
Partitioning, should be preferred over methods such as K-means. However, it is
important to note here again, that regarding partitioning of the measurement set,
the contribution of the current work lies mainly not in the specific method that
is suggested, but rather in showing that all possible partitions can efficiently be
approximated using a subset of partitions.

4.3 Sub-Partitioning

Initial results using etgmphd showed problems with underestimation of target
set cardinality in situations where two or more extended targets are spatially
close (Granström et al., 2010). The reason for this is that when targets are spa-
tially close, so are their resulting measurements. Thus, using Distance Partition-
ing, measurements from more than one measurement source will be included in
the same cell W in all partitions p, and subsequently the etgmphd filter will
interpret measurements from multiple targets as having originated from just one
target. In an ideal situation, where one could consider all possible partitions of
the measurement set, there would be alternative partitions which would contain
the subsets of a wrongly merged cell. Such alternative partitions would dominate
the output of the etgmphd filter towards the correct estimated number of tar-
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gets. Since we eliminate such partitions completely using Distance Partitioning,
the etgmphd filter lacks the means to correct its estimated number of targets.

One remedy for this problem is to form additional partitions after performing
Distance Partitioning, and to add them to the list of partitions that etgmphd
filter considers at the current time step. Obviously, this should be done only
when there is a risk of having merged the measurements belonging to more than
one target, which can be decided based on the expected number of measurements
originating from a target. We propose the following procedure for the addition
of more partitions.

Suppose that we have computed a set of partitions using Distance Partitioning,
e.g. with the algorithm in Table 1. Then, for each generated partition pi , we
calculate the maximum likelihood (ML) estimates N̂ j

x of the number of targets
for each cell W i

j . If this estimate is larger than one, we split the cell W i
j into N̂ j

x

smaller cells, denoted {
W +
s
}N̂ j

x
s=1 . (21)

We then add a new partition, consisting of the new cells along with the other cells
in pi , to the list of partitions obtained by Distance Partitioning.

We illustrate the Sub-Partition algorithm in Table 2, where the splitting operation
on a cell is shown by a function

split
(
N̂
j
x , W

i
j

)
. (22)

We give the details for obtaining the ML estimate N̂ j
x and choosing the function

split ( · , · ) in the subsections below.

Computing N̂ j
x

For this operation, we assume that the function γ( · ) determining the expected
number measurements generated by a target is constant, i.e. γ( · ) = γ . Each target
generates measurements independently of the other targets, and the number of
generated measurements by each target is distributed with the Poisson distribu-
tion, Pois ( · , γ). The likelihood function for the number of targets corresponding
to a cell W i

j is

p
( ∣∣∣∣W i

j

∣∣∣∣∣∣∣∣N j
x = n

)
= Pois

(∣∣∣∣W i
j

∣∣∣∣ , γn) . (23)

Here, we assume that the volume covered by a cell is sufficiently small such that
the number of false alarms in the cell is negligible, i.e. there are no false alarms
in W i

j . The ML estimate N̂ j
x can now be calculated as

N̂
j
x = arg max

n
p
( ∣∣∣∣W i

j

∣∣∣∣∣∣∣∣N j
x = n

)
. (24)
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Table 2: Sub-Partition

Require: Partitioned set of measurements Zp =
{
p1, . . . ,pNp

}
, where Np is the

number of partitions.
1: Initialize: Counter for new partitions ` = Np.
2: for i = 1, . . . , Np do
3: for j = 1, . . . , |pi | do

4: N̂
j
x = arg max

n
p
( ∣∣∣∣W i

j

∣∣∣∣∣∣∣∣N j
x = n

)
5: if N̂ j

x > 1 then
6: ` = ` + 1 {Increase the partition counter}
7: p` = pi\W i

j {Current partition except the current cell}

8:
{
W +
k

}N̂ j
x

k=1
= split

(
N̂
j
x , W

i
j

)
{Split the current cell}

9: p` = p` ∪
{
W +
k

}N̂ j
x

k=1
{Augment the current partition}

10: end if
11: end for
12: end for

Note that other alternatives can be found for calculating the estimates of N j
x , e.g.

utilizing specific knowledge about the target tracking setup, however both sim-
ulations and experiments have shown that the above suggested method works
well.

The split ( · , · ) function

An important part of the Sub-Partition function in Table 2 is the function

split ( · , · ) , (25)

which is used to divide the measurements in a cell into smaller cells. In both
simulations and experiments, we have used K-means clustering to split the mea-
surements in the cell, results shows that this works well. However note that other
methods to split the measurements are possible.

Remark 1 (Limitations of Sub-Partition). Notice that the Sub-Partition algorithm given in
this section can be interpreted to be only a first-order remedy to the problem, and hence
have limited correction capabilities. This is because we do not consider the combinations
of the cells when we are adding new partitions. In the case, for example, where there are
two pairs of close targets whose cells are merged wrongly by Distance Partitioning, the
sub-partitioning algorithm presented above would add an additional partition for each of
the target pairs (i.e. for each of the wrongly merged cells), but not an additional partition
that contains the split versions of both cells. Consideration of all combinations of (the
wrongly merged) cells seems to be prohibitive, due to the combinatorial growth in the
number of additional partitions. An idea for the cases where there can be more than one
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Figure 2: Birth intensity used in experiments.

wrongly merged cells is to add a single additional partition, which contains split versions
of all such cells.

5 Target Tracking Setup

The presented tracking approach is exemplified with a laser sensor tracking hu-
mans at short distance. In this section the tracking setup is defined for both a
pure simulation environment and an experimental realization with laser data.
The targets are modeled as points with state variables

xk =
[
xk yk vxk vyk

]T
, (26)

where xk and yk are the planar position coordinates of the target, and vxk and vyk
are the corresponding velocities. The sensor measurements are given in batches
of Cartesian x and y coordinates as follows;

z(j)
k ,

[
x

(j)
k y

(j)
k

]T
. (27)

A constant velocity model (Rong Li and Jilkov, 2003), with sampling time T is
used. In all simulations the probability of detection and probability of survival
are set to pD = 0.99 and pS = 0.99, respectively. The algorithm parameters for
the simulation and experiment are given in Table 3. The surveillance area is
[−1000, 1000](m) × [−1000, 1000](m) for the simulations, and for the real data ex-
periments the surveillance area is a semi circle located at the origin with range
13 m. Unless otherwise stated, in the simulations clutter was generated with a
Poisson rate of 10 clutter measurements per scan, and each target generated mea-
surements with a Poisson rate of 10 measurements per scan. The birth intensity
in the simulations is

Db (x) = 0.1N (x ; mb, Pb) + 0.1N (x ; −mb, Pb), (28a)

mb = [250, 250, 0, 0]T, Pb = diag ([100, 100, 25, 25]) . (28b)
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Table 3: Parameter values used for simulations (s) and experiments (e).
T Qk Rk γ (i) wβ Qβ

S 1 22I2 202I2 10 0.05 blkdiag(100I2, 400I2)
E 0.2 22I2 0.12I2 12 0.01 0.01I4

For the experiments, the birth intensity Gaussian components are illustrated with
their corresponding one standard deviation ellipsoids in Fig. 2. Each birth inten-

sity component has a weightw(j)
b = 0.1

Jb
, where the number of components is Jb = 7.

The spawn intensity is

Dβ (x|y) = wβN (x ; ξ, Qβ), (29)

where ξ is the target from which the new target is spawned and the values for wβ
and Qβ are given in Table 3.

6 Simulation Results

This section presents results from simulations using the presented extended tar-
get tracking method. Section 6.1 presents three simulation scenarios that are used
several times, and Section 6.2 presents a comparison of Distance Partitioning and
K-means++. In Section 6.3 a comparison of Distance Partitioning and Distance
Partitioning with Sub-Partition is presented, the results show the increased per-
formance when using Sub-Partition. A comparison between etgmphd and gm-
phd is presented in Section 6.4, where it is shown that etgmphd as expected
outperforms gm-phd for extended targets. Section 6.5 presents a comparison of
etgmphd and gm-phd for targets that give rise to at most one measurement per
time step. Finally, detailed investigations are carried out about the effects of the
possibly unknown parameter γ in Section 6.6.

6.1 True target tracks

Three different scenarios are used in several simulations. The first two both
have two targets. The true x, y positions and the distance between the targets
are shown in Fig. 3a and Fig. 3b. At the closest points the targets are 60m and
50m apart, respectively. In the third scenario there are four targets in total, the
true x, y positions are shown in black in Figure 3c. Around time 50–52 two target
tracks cross at a distance of just over 50m, at time 67 a new target is spawned 20m
from a previous one. Together the three scenarios present challenges that are typ-
ical in multiple target applications. In the simulations, the targets are modeled
as points that generate measurements with standard deviation 20m in both x and
y direction. Thus, a measure of target extent can be taken as the two standard
deviation measurement covariance ellipses, in this case circles of radius 40m. In
all three scenarios these circles partly overlap when the targets are closest to each
other.



170 Paper B Extended target tracking using a Gaussian mixture PHD filter

0 10 20 30 40 50 60 70 80 90 100

−200

0

200

x
[m

]

0 10 20 30 40 50 60 70 80 90 100
200

250

300

350

400

y
[m

]

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

D
is
t.

[m
]

Time

(a)

0 10 20 30 40 50 60 70 80 90 100

−200

0

200

x
[m

]

0 10 20 30 40 50 60 70 80 90 100
−100

0

100

200

300

400

y
[m

]

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

D
is
t.

[m
]

Time

(b)

0 10 20 30 40 50 60 70 80 90 100
−400

−200

0

200

400

600

800

1000

x
[m

]

0 10 20 30 40 50 60 70 80 90 100
−1000

−500

0

500

Time

y
[m

]

(c)

Figure 3: (a) Two targets move closer to each other and then stand still at
a distance of 60m apart. Note that the true y position was 300m for both
targets for the entire simulation. (b) Two targets cross paths, at the closest
point they are 50m apart. (c) Four targets, with a target spawning event at
time 67. The x and y positions are shown as lines, the light gray shaded areas
show the target extent, taken as two measurement noise standard deviations
(40m). In (a) and (b), the bottom row shows the distance between the two
targets over time.

6.2 Comparison of Distance Partitioning and K-means++

The scenario in Figure 3b was used to compare Distance Partitioning and K-
means++. In order to make the comparison as fair as possible, the upper and
lower thresholds were set to KL = 1, KU = |Zk |, δPU

= ∞ and δPL
= 0, respectively.

The scenario was simulated with a Poisson rate of 1 and 10 clutter measurements
per scan. For each clutter rate, the scenario was simulated 100 times, Figure 4
shows the resulting sum of weights. At the lower clutter rate, K-means++ yields a
small positive bias in estimated target number, but the performance is otherwise
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(a) βFA,kVs = 1 (b) βFA,kVs = 10

Figure 4: Results from the comparison of Distance Partitioning (black dash-
dotted line) and K-means++ (gray solid line), the shaded areas correspond
to ± one standard deviation. At the lower clutter rate, K-means++ performs
adequately, however at the higher clutter rate the performance is unaccept-
able. Distance Partitioning on the other hand handles both the lower and
higher clutter rate, and has a much smaller uncertainty area.

good. However, at the higher clutter rate the performance using K-means++ is
far from acceptable. Distance Partitioning, on the other hand, handles both clut-
ter rates equally well, except for when the targets are close around time 50. Note
also that using Distance Partitioning, the sum of weights uncertainty area is con-
siderably smaller. The case of close targets is investigated further in the next
subsection, using the countermeasure introduced in Section 4.3.

6.3 Benefits of Sub-Partition

As was noted in Section 4.3, as well as in previous work (Granström et al., 2010),
using only Distance Partitioning to obtain a subset of all possible partitions is
insufficient when the extended targets are spatially close. For this reason, Sub-
Partition was introduced to obtain more partitions. In this section, we present
results from simulations that compare the performance of etgmphd tracking
with partitions computed using only Distance Partitioning and with partitions
computed using Distance Partitioning and Sub-Partition. The scenarios in Fig. 3a
and Fig. 3b are considered.

Each scenario was simulated 100 times with a constant expected number of mea-
surements per target (γ( · ) = γ) of 5, 10 and 20, respectively. Fig. 5 shows the
resulting sum of weights of the etgmphd algorithm. As can be seen, using Sub-
Partition the average sum of weights is closer to the true number of targets. This
is especially clear for targets that generate more measurements per time step, i.e.
when γ is higher.

6.4 Comparison with GM-PHD

This section presents results from a simulation comparison of etgmphd and gm-
phd. Note here that the gm-phd filter is applied naively to the simulated mea-
surements, i.e. it is applied under the (false) assumption that each target pro-
duces at most one measurement per time step.
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Figure 5: Simulation results for two of the scenarios in Fig. 3, comparing
different partitioning methods for different values of the expected number
of measurements γ . The left column, (a), (c) and (e), is for the true tracks
in Fig. 3a. The right column, (b), (d) and (f), is for the true tracks in Fig. 3b.
Black shows Distance Partitioning with Sub-Partition, gray is only Distance
Partitioning. It is clear from the plots that using Sub-Partition gives signifi-
cantly better results, especially when γ is higher.

The scenario in Figure 3c is considered. In total 100 Monte Carlo simulations
were performed, each with new measurement noise and clutter measurements.
The results are shown in Figure 6a and Figure 6b, which show the correspond-
ing multi-target measure optimal subpattern assignment metric (ospa) (Schuh-
macher et al., 2008), and the cardinality, respectively. In the ospa metric the pa-
rameters are set to p = 2, corresponding to using the 2-norm which is a standard
choice, and c = 60, corresponding to a maximum error equal to three measure-

ment noise standard deviations. Here, the cardinality is computed as
∑Jk|k
j=1 w

(j)
k|k .

This sum can be rounded to obtain an integer estimate of target number (Vo and
Ma, 2006).

It is evident from the two figures that the presented etgmphd significantly out-
performs the standard gm-phd, which does not take into account the possibility
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Figure 6: Results from multiple target tracking using the true tracks in Fig-
ure 3c. (a) Mean OSPA (solid lines) ±1 standard deviation (dashed lines). (b)
Mean cardinality compared to the true cardinality.

of the multiple measurements from single targets. The main difference between
the two filters is the estimation of cardinality, i.e. the number of targets. The et-
gmphd-filter correctly estimates the cardinality with the exception of when the
new target is spawned – after time 67 there is a small dip in the mean estimated
cardinality, even though Sub-Partition is used. The reason for this is that the tar-
gets are only 20m apart. With the target extension being a circle of 40m radius, at
20m distance the measurements overlap significantly and the probability that the
new target’s measurements were also generated by the old target, as computed in
(12e), is large. As the targets separate, this probability decreases and the etgm-
phd filter recovers the correct cardinality. It should still be noted that, in reality,
where the targets would probably be rigid bodies, this type of very close situation
is highly unlikely and the results of the etgmphd filter with Sub-Partition would
be close to those presented in Section 6.3.

6.5 Standard single measurement targets

This section investigates how etgmphd handles standard targets that produce at
most one measurement per time step, in comparison to standard gm-phd which
is designed under the standard target measurement generation assumption. Note
that the measurement set cardinality distribution (i.e. the probability mass func-
tion for the number of measurements generated by a target) for a standard target
contains only a single nonzero element at cardinality 1, which is impossible to
model with a Poisson distribution underlying the etgmphd filter. A standard
target always generates a single measurement. Whether no measurement or a
single measurement is obtained from the standard target is determined by the
detection process. Hence, the case where each target generates measurements
whose number is Poisson distributed with rate γ = 1 is very different from the
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standard target measurement generation.

Four targets were simulated in 100 Monte Carlo simulations, and all the targets
were separated, i.e. there were no track crossings or new target spawn. Initially, in
the etgmphd filter, γ (j) are all set as γ (j) = 1 in the comparison. The average sum
of weights and the average number of extracted targets (obtained by rounding the
weights to the nearest integer) for the algorithms are shown in Fig. 7a and Fig. 7b
respectively. As is shown, the sum of weights and number of extracted targets are
too large for the etgmphd filter. The reason for this is that when the expected
number of measurements per target (i.e. γ (j)) is small, the effective probability of
detection

p
(j)
D,eff =

(
1 − e−γ

(j)
)
p

(j)
D (30)

becomes significantly smaller than one. More correctly, p(j)
D,eff in (30) is the proba-

bility of the event that at least one measurement from the (jth) target is obtained

by the sensor. For example, the case γ (j) = 1 and p(j)
D = 0.99 gives p(j)

D,eff = 0.6258.
This low effective probability of detection is what causes the weights in the et-
gmphd filter to become too large.

Actually, this problem has been seen to be inherited by the etgmphd filter from
the standard phd filter. We here give a simple explanation to the problem with
low (effective) probability of detection in the phd filter. Assuming no false alarms,
and a single target with existence probability pE, ideally a single detection should
cause the expected number of targets to be unity. However, applying the standard
phd formulae to this simple example, one can calculate the updated expected
number of targets to be 1 + pE(1 − pD) whose positive bias increases as pD de-
creases. We have seen that when the (effective) probability of detection is low, the

increase in
∑Jk|k
j=1 w

(j)
k|k is a manifestation of this type of sensitivity of the phd type

filters. Some extreme versions of this phenomenon for lower PD values are illus-
trated and investigated in detail in (Orguner et al., 2011). A similar sensitivity
issue is mentioned in (Erdinc et al., 2009) for the case of no detection.

This problem can be overcome by increasing γ (j) slightly in the etgmphd fil-

ter, e.g. γ (j) = 2 gives pjD,eff = 0.8560 which gives sum of weights and number
of extracted targets that better match the results from gm-phd, see Fig. 7c and
Fig. 7d. Using γ (j) = 3 gives results that are more or less identical to gm-phd,
thus a conclusion that can be drawn is that when tracking standard targets with
an etgmphd filter, the parameter γ (j) should not be set too small. The following
subsection investigates the issue of selecting the parameter γ in more detail.

6.6 Unknown expected number of measurements γ

In the simulations above, the parameters γ = γ (j) were assumed to be known a
priori. Further, in Section 4.3 where Sub-Partition is presented, the knowledge
of the Poisson rate γ was used to determine whether a cell should be split or
not to create an additional partition. In this section, some scenarios where γ is
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(a) γ(j) = 1
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(b) γ(j) = 1
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(c) γ(j) = 2
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(d) γ(j) = 2

Figure 7: Simulation results, comparison of etgmphd and gm-phd for stan-
dard targets that produce at most one measurement per time step. The top
row shows results when the parameter γ (j) is set to one, the bottom row
shows results when it is set to two. Due to the low effective probability of de-
tection, the etgmphd weights become too large, resulting in sum of weights
larger than the true number of targets. When each weight is rounded to the
nearest integer to extract targets, results for γ (j) = 2 gives the correct number
of extracted targets.

not known a priori are investigated. For the sake of clarity, γ is used to denote
the true Poisson rate with which measurements were generated, and γ̂ is used to
denote the corresponding parameter in the etgmphd-filter.

In many real world scenarios, the number of measurements generated by a tar-
get is dependent on the distance between the target and the sensor. Typically,
the longer the distance, the lower the number of measurements generated by the
targets. This is true for sensors such as laser range sensors, radars and even cam-
eras. Thus, it is of interest to evaluate the etgmphd-filter in a scenario where
the number of generated measurements varies with the target to sensor distance.
This is simulated in Section 6.6, where the etgmphd filter is compared for the
cases when the parameter γ̂ is constant, and when the parameter is modeled as
distance varying. Section 6.6 presents results from simulations where the param-
eter γ̂ is set incorrectly, and Section 6.6 presents results with targets of different
sizes. Finally, Section 6.6 presents a discussion about the results from the simula-
tions, and supplies some guidelines into the selection of γ̂ .

Distance varying γ

A scenario was constructed where a target moved such that the target to sensor
distance first decreased, and then increased. The sensor was simulated such that
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the true parameter γ depended on the target to sensor distance ρ as follows.

γ(ρ) =


1, if ρ > 400m⌊
−0.08ρ + 33.5

⌋
, if 100m ≤ ρ ≤ 400m

25, ρ < 100m

(31)

where b · c is the floor function. Thus, at distances larger than 400m, with p(j)
D =

0.99, the effective probability of detection is only 0.6258 (as in the previous sub-
section). Note that the scenario is different from a target that always generates

one measurement, which is detected with probability p(j)
D = 0.99.

Monte Carlo simulations were made with two etgmphd-filters: one with con-
stant value γ̂ = 10 and another where γ̂ was selected to be dependent on the
state of the targets via the function (31). The results are shown in Figure 8. For
constant γ̂ , the number of targets is underestimated when the true γ is low. This
is due to the fact that the filter expects a target to generate more measurements,
and thus the likelihood that some small number of measurements are all clutter
is higher. However, at distances ρ such that γ (ρ) > 5, γ̂ = 10 works quite well.
When the model (31) for distance dependent γ is assumed known, the results are
much more reasonable and acceptable. The only, and possibly negligible, draw-
back seems to be the number of targets being slightly overestimated. There are
two main reasons for this. The first reason is the low effective probability of de-
tection when γ̂ is low. When γ̂ becomes smaller than 5, this behavior is more
evident. The second reason is that the clutter falling into the region ρ > 400m
(i.e. when the true parameter is γ = 1) is interpreted as targets to some extent,
which causes a positive, though small, bias in the estimation of number of tar-
gets. In that region, the target behavior is fairly similar to the clutter behavior
which results in some Gaussian components with small weights surviving until
the situation is resolved.

Incorrect γ parameter

In this simulation study, the target tracks in Figure 3b were used. Each target
generated measurements with a Poisson rate of γ = 20 and eleven different et-
gmphd-filters, each using a different γ̂ value, were run. The set of γ̂ values used
is given as

γ̂ = 10, 12, . . . , 28, 30. (32)

The results, in terms of the sum of weights averaged over the Monte Carlo runs,
are shown in Figure 9. The figure shows that for sufficiently separated targets, the
etgmphd-filter correctly estimates the number of targets for all values of γ̂ . How-
ever, for spatially close targets, the etgmphd-filter overestimates the number of
targets when γ̂ is set too low, and underestimates the number of targets when γ̂
is set too high. This result is actually expected, and is a direct consequence of the
simple Sub-Partition algorithm which is used. When γ̂ is too low, Sub-Partition
creates an additional partition with too many cells, causing the overestimation of
number of targets. Conversely, when γ̂ is too high, Sub-Partition does not create
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Figure 8: Results from the simulation scenario where γ is dependent on the
target to sensor distance. In (a), the true γ is plotted against time, and in
(b) the mean sum of weights is plotted against time. The etgmphd-filter is
compared for the cases when the parameter γ̂ is held constant (gray) or is
set to the true distance dependent value (black). The correct target number
is one, thus the sum of weights should be around one. In both cases, at the
beginning and the end of the scenario when the distance is largest and γ = 1,
tracking performance gets worse.

partitions with sufficient number of cells, causing the underestimation of number
of targets. It is very important to note here that Sub-Partition runs even when the
targets are well separated and does not cause any overestimation. Our observa-
tions show that this is a result of the fact that additional partitions created (when
γ̂ is selected too low) cannot win over single target partitions when the targets
measurements are distributed in a blob shape. It is only when the two targets
approach each other, resulting in an eight-shaped cluster of measurements, that
the additional partition can gain dominance over the single target partition. This
property, though not proved mathematically, is considered to be a manifestation
of the Poisson property and the Gaussian assumptions underlying the measure-
ments.

If the cardinality estimates of the algorithms are rounded to the nearest integer,
an interesting property observed with Figure 9 is that no cardinality error ap-
pears for the cases that satisfy

γ̂ −
√
γ̂ ≤ γ ≤ γ̂ +

√
γ̂ . (33)

Thus, when the true parameter γ lies in the interval determined by the mean (γ̂)
± one standard deviation (

√
γ̂), cardinality is expected to be estimated correctly

even for close targets.

Targets of different size

In many scenarios, it is possible to encounter multiple targets of different sizes,
thus producing a different number of measurements. This means that two targets
would not have the same Poisson rate γ . In this section, results are presented for
a scenario with two targets with measurement generating Poisson rates of 10 and
20, respectively. In Monte Carlo simulations, three etgmphd-filters were run
with the parameter γ̂ set to 10, 15 and 20, respectively. This corresponds to
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Figure 9: Simulation results for various values of the etgmphd-filter pa-
rameter γ̂ . There are two targets, the true Poisson rate used to generate
measurements for both targets was γ = 20.
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Figure 10: Simulation results from a scenario with two targets of different
sizes. The two targets have the true Poisson rates γ = 10 and γ = 20, respec-
tively. The legend refers to the filter parameter γ̂ .

using either the true value of the smaller target, the mean of both, or the true
value of the larger target. The results, in terms of average sum of weights over
time are shown in Figure 10. When the targets are spatially separated, all three
filters perform equally well. However, when the targets are spatially close, the
target with γ̂ set to the mean of the true γs performs better than the others.

Discussion

The simulation results above show that the etgmphd-filter works well even when
γ̂ , γ , except when γ < 5 or targets are spatially close. For γ < 5, the filter is
more sensitive, and a correct value for γ̂ is increasingly important. For targets
that are spatially close, it is important for γ̂ to be a good estimate of γ , since the
Sub-Partition algorithm relies on γ̂ . When such a good estimate is unavailable, a
more advanced sub-partitioning algorithm seems to be necessary for robustness.
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With the proposed Sub-Partition procedure, our findings support the intuitive
conclusion that the true parameter γ should be in one standard deviation un-
certainty region around the mean γ̂ of the Poisson distribution for a reasonable
performance for close targets.

The simulation with different target sizes shows that the close target case in this
example is harder to tackle than the others. A possible solution is to adaptively es-
timate the parameters γ̂ for each Gaussian mixture component, based on the pre-
vious measurements. Another solution, which is possibly more straightforward,
is to use a state dependent γ̂ parameter, where the state contains information
about the target extent, which can readily be estimated, see e.g. (Granström et al.,
2011; Lundquist et al., 2011; Baum et al., 2010b; Baum and Hanebeck, 2011; Zhu
et al., 2011). Using the estimated shape and size, and a model of the sensor that is
used, γ̂ can then be estimated with reasonable accuracy. This has indeed recently
been performed using an etgmphd-filter (Granström et al., 2011).

7 Experiment Results

This section presents results from experiments with data from two data sets ac-
quired with a laser range sensor. The experiments are included more as a proof
of concept and as a potential application, rather than as an exhaustive evaluation
of the presented target tracking filter. The measurements were collected using a
sick lms laser range sensor. The sensor measures range every 0.5◦ over a 180◦

surveillance area. Ranges shorter than 13 m were converted to (x, y) measure-
ments using a polar to Cartesian transformation.

The two data sets contain 411 and 400 laser range sweeps in total, respectively.
During the data collection humans moved through the surveillance area, entering
the surveillance area at different times. The laser sensor was at the waist level of
the humans.

Because there is no ground truth available it is difficult to obtain a definite mea-
sure of target tracking quality, however by examining the raw data we were able
to observe the true cardinality, which can thus be compared to the estimated car-
dinality.

Section 7.1 presents results from an experiment with spatially close targets, and
Section 7.2 presents results from an experiment with both spatially close targets
and occlusion.

7.1 Experiment with close targets

In this experiment, a data set containing 411 laser range scans was used. The data
set contains two human targets that repeatedly move towards and away from
each other, moving right next to each other at several times. The two targets
passed each other at close distance moving in the opposite direction, represent-
ing instances in time when the targets were close for short periods of time. The
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Figure 11: Experiment results, two human targets moving close to each
other. Note that in (a) the gray scale indicates the time line, lighter gray
is earlier time steps, darker is later time steps. In (b), the number of ex-
tracted targets (black) is compared to the ground truth (gray). In (c) the sum
of weights is shown. Around time 320 the cardinality is underestimated for
three time steps.

targets also moved close to each other moving in the same direction, representing
instances in time when the targets were close for longer periods of time.

The locations of the extracted Gaussian components are shown in Fig. 11a, the
number of extracted targets is shown in Fig. 11b and the sum of weights are
shown in Fig. 11c. Around time 320 there is a decrease in the number of extracted
targets for three time steps, in all other situations the filter handles the two tar-
gets without problem. Thus, using Sub-Partition with K-means as split ( · , · )
function, the etgmphd filter can be said to handle most of the spatially close
target cases.
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7.2 Experiment with occlusion

In this experiment, a dataset containing 400 laser range scans was used. The data
set contains four human targets that move through the surveillance area, however
there are at most three targets present at any one time. The first target enters the
surveillance area at time k = 22 and proceeds to the center of the surveillance
area where he remains still for the remainder of the experiment. The second
target enters the surveillance area at time k = 38 and repeatedly moves in front
of and behind the first target. The third target enters and exits at time k = 283
and k = 310, respectively. The last target enters and exits at time k = 345 and
k = 362, respectively.

This case requires a state dependent (i.e. variable) probability of detection pD( · )
selection for the targets. Otherwise, i.e. with a constant probability of detection
assumption, when a target is occluded, this would be interpreted as the exit of
the target from the area of surveillance while it is only the disappearance of the
target behind another. The variable pD is modeled as a function of the mean,
covariance and the weights of the Gaussian components. The intuition behind
this idea is that the knowledge of the targets that are present, i.e. the knowledge
of the estimated Gaussian components of the phd, can be used to determine what
parts of the surveillance area are likely to be in view of the sensor, and which
parts are not. Leaving the details of the variable pD calculation to Appendix A.2,
we present the results below.

The locations of the extracted Gaussian components are shown in Fig. 12a, the
number of extracted targets is shown in Fig. 12b and the sum of weights are
shown in Fig. 12c. In total, there are six situations where one target is occluded
by another. The extracted number of targets is incorrect in two of these situations,
where the occluded target is spatially very close to (right next to) the target which
is causing the occlusion. The etgmphd filter correctly estimates the cardinality
in four out of six occlusions.

Thus, using the suggested variable pD, the filter can correctly predict the target
while it is occluded, provided that it is not very close to another target while the

occlusion is happening. If
∑Jk|k
j=1 w

(j)
k|k is rounded to the nearest integer there is no

cardinality error for the first four occlusions. However, as the target exits the oc-

cluded area there is a “jump” in
∑Jk|k
j=1 w

(j)
k|k around times k = 75, k = 125, k = 175

and k = 210, see Fig. 12c. We have seen that this “jumping” behavior is caused
by the sensitivity of the cardinality estimates of the phd filter to detections when

p
(j)
D is set to a low value, which is the case when the target is half occluded while

it gets out of the occluded region. This is the same phenomenon observed with
low effective probability of detection in Section 6.5.
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Figure 12: Experiment results, targets moving in and out of occluded regions
of the surveillance area. Note that in (a) the gray scale indicates the time line,
lighter gray is earlier time steps, darker is later time steps. In (b), the number
of extracted targets (black) is compared to the ground truth (gray). In (c) the
sum of weights is shown.

8 Conclusions

In this paper a Gaussian mixture implementation of the probability hypothesis
density filter for tracking extended targets was presented. It was shown that
all possible partitions of the measurement set does not need to be considered,
instead it is sufficient to consider a subset of partitions, as long as this subset
contains the most probable partitions. A simple method for finding this subset
of all measurement set partitions was described. This partitioning method is
complemented with a sub-partitioning strategy to handle the cases that involve
close targets better. Simulations and experiments have shown that the proposed
filter is capable of tracking extended targets in cluttered measurements. The
number of targets is estimated correctly even for most of the cases when tracks
are close. The detailed investigations carried out gave some guidelines about
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Table 4: Find partition p that satisfies the conditions of Theorem 1

Require: Set of measurements Z =
{
z(1), z(2), . . . , z(Nz )

}
, where Nz is the number

of measurements.
1: Set p0 =

{
{z(1)}, {z(2)}, . . . , {z(Nz )}

}
i.e., set W 0

j = {z(j)} for j = 1, . . . , Nz .
2: Set i = 1.
3: Calculate all the pairwise distances between the cells of pi−1 as

η i−1
st = min

z(m)∈W i−1
s

z(n)∈W i−1
t

d
(
z(m), z(n)

)
(34)

4: If min1≤s,t≤|pi−1 | η
i−1
st > d`, then stop the algorithm, since pi−1 is a partition

satisfying the conditions of the theorem.
5: Otherwise, combine all cells that satisfy η i−1

st ≤ d` to form a single cell.
6: Set pi to be the set of cells obtained in Step 5.
7: Set i = i + 1 and go to Step 3.

the selection of the Poisson rate parameter for the cases when it is unknown.
Using inhomogeneous detection probabilities in the surveillance region, it was
shown that targets can be tracked as they move through occluded parts of the
surveillance area.

9 Future Work

In recent work, a cardinalized PHD filter (Mahler, 2007a) for extended targets
has been presented (Orguner et al., 2011). This filter has less sensitive estimates
of the number of targets. Initial steps have also been taken towards including
estimation of target extent in the etgmphd-filter (Granström et al., 2011). More
work is needed in both of these research directions.

A further interesting research can be to see the potential use of the partitioning
algorithms presented in this work with more conventional multiple target track-
ing algorithms. A comparison of such algorithms with the etgmphd filter can
illustrate the advantage coming from the use of the random set framework.

A Appendix

A.1 Proof of Theorem 1

The proof is composed of two parts.

• We first prove that there is a partition satisfying the conditions of the the-
orem. The proof is constructive. Consider the algorithm in Table 4. In
the algorithm, one first forms a partition formed of singleton sets of the
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individual measurements and then combine the cells of this cluster until
conditions of the theorem are satisfied. �

• We need to prove that the partition satisfying the conditions of the theorem
is unique. The proof is by contradiction. Suppose that there are two dif-
ferent partitions pi and pj satisfying the conditions of the theorem. Then,
there must exist (at least) one measurement z(m) ∈ Z such that the cells
W i
mi 3 z(m) and W j

mj 3 z(m) are different, i.e., W i
mi , W

j
mj . This requires (at

least) a single measurement z(n) ∈ Z that is in one of W i
mi , W

j
mj but not in

the other. Without loss of generality, suppose z(n) ∈ W i
mi and z(n) < W

j
mj .

Since both z(m) and z(n) are in W i
mi , there must exist a (possibly empty) sub-

set {z(r1), z(r2), . . . , z(rR)} ⊂ W i
mi\{z

(m), z(n)} such that the following conditions
hold.

d
(
z(m), z(r1)

)
≤d` (35a)

d
(
z(rs), z(rs+1)

)
≤d` s = 1, 2, . . . , R − 1 (35b)

d
(
z(rR), z(n)

)
≤d` (35c)

However, (35) implies that the measurements {z(m), z(r1), z(r2), . . . , z(rR), z(n)}
should all be in the same cell. For pj , this is the cell W j

mj 3 z(m), which

contradicts the fact that z(n) < W
j
mj . Thus, the initial assumption that there

are two different partitions satisfying the conditions of the theorem must
be wrong. The proof is complete. �

A.2 Variable Probability of Detection
for the Laser Sensor

The variable probability of detection function reduces pD behind (i.e. at larger
range from the sensor) each component of the phd.

For a given point x in the surveillance area, the probability of detection pD(x) is
computed as

pD(x) = max
(
pD,min , p

v
D

)
(36a)

pv
D = pD,0 −

∑
i:r>r(i)

w(i)

√
σs
σ̄ϕ(i)

exp

−(ϕ − ϕ(i))2

2σ̄ϕ(i)

 (36b)

where

• pD,min is the minimum probability of detection value a target can have;

• pD,0 is the nominal probability of detection of the targets when they are not
occluded;

• r and ϕ are the range and bearing, respectively, from the sensor to the point
x;
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• r(i) and ϕ(i) are the range and bearing, respectively, from the sensor to the
ith Gaussian component;

• w(i) is the weight of the ith component;

• σ̄ϕ(i) is defined as

σ̄ϕ(i) ,


σmax, if σϕ(i) > σmax

σmin, if σϕ(i) < σmin

σϕ(i) , otherwise

(37)

where σϕ(i) is the bearing standard deviation of the ith component given as

σϕ(i) ,

√
uT

ϕ(i)P
(i)
p uϕ(i) . (38)

Here, P (i)
p is the position covariance of the ith component and uϕ(i) is the

unit vector orthogonal to the range direction from the ith component to the
sensor.

• The constant term σs is used to scale the bearing standard deviation.

Intuitively, the operation of (36b) is to reduce the nominal probability of detec-
tion at a point. The reduction depends on the weights, means and standard de-
viations of the components of the last estimated phd. Reductions are only per-
formed for the components that have smaller range values than the range of the
point, and the angular proximity of the point and the components is taken into
account through the exponential function in (36b).
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Abstract

This paper considers tracking of extended targets using data from
laser range sensors. Two types of extended target shapes are consid-
ered, rectangular and elliptical, and a method to compute predicted
measurements and corresponding innovation covariances is sugges-
ted. The proposed method can easily be integrated into any tracking
framework that relies on the use of an extended Kalman filter. Here,
it is used together with a recently proposed Gaussian mixture proba-
bility hypothesis density (gm-phd) filter for extended target tracking,
which enables estimation of not only position, orientation, and size
of the extended targets, but also estimation of extended target type
(i.e. rectangular or elliptical). In both simulations and experiments
using laser data, the versatility of the proposed tracking framework is
shown. In addition, a simple measure to evaluate the extended target
tracking results is suggested.

1 Introduction

Target tracking is the problem of estimating the states of an unknown number
of targets using noisy and cluttered sets of measurements. In many typical tar-
get tracking scenarios the point target assumption is made, meaning that it is
assumed that each target generates at most one measurement per time step. In
recent years, tracking of extended targets have received increasing research at-
tention. Here, extended target is defined as a target that potentially gives rise
to more than one measurement per time step. Multiple measurements per tar-
get and time step enables the target tracking framework to not only estimate the
location of each target, but also its spatial size and shape.

Gilholm and Salmond (2005) presented an approach for tracking extended tar-
gets under the assumption that the number of received target measurements in
each time step is Poisson distributed. They show an example where they track

191
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(b) Measurements of a human.

Figure 1: Motivating examples: measurements acquired outdoors with a
laser range sensor. In (a) the measurements are approximately rectangular,
and in (b) the measurements are approximately elliptical.

point targets which may generate more than one measurement, and an example
where they track objects that have a 1-D extension (infinitely thin stick of length
l). In (Gilholm et al., 2005) a measurement model was suggested which is an
inhomogeneous Poisson point process. At each time step, a Poisson distributed
random number of measurements are generated, distributed around the target.
This measurement model can be understood to imply that the extended target is
sufficiently far away from the sensor for its measurements to resemble a cluster
of points, rather than a geometrically structured ensemble. A similar approach
is taken in (Boers et al., 2006), where track-before-detect theory is used to track a
point target with a 1-D extent.

In (Baum et al., 2010b) the authors model extended objects using an elliptic ran-
dom hypersurface model (Baum and Hanebeck, 2009). Extended targets are mod-
eled as having different measurement sources located on the target, and an ellipse
is estimated that fits around the measurement sources. However, multiple ex-
tended target tracking is not treated. A Bayesian framework for estimating the
location and radius of a circle from noisy measurements of the circle circumfer-
ence is derived in (Baum et al., 2010a). A likelihood is not stated directly, instead
the problem is posed using an errors-in-variables model.

In this work we consider estimation of extended targets using measurements
from laser range sensors. Laser range sensor typically gives measurements with
a high degree of structure, see examples in Figure 1, and are therefore suitable to
use for the estimation of the shape and size of extended targets. In robotics laser
range sensors have been used for tracking of vehicles and persons, we briefly
present some more recent work here. The typical framework contains a detec-
tion algorithm that supplies a tracking algorithm with measurements belonging
to some predefined class of targets. In (Petrovskaya and Thrun, 2008), vehicles
are modeled as rectangles and are tracked using a particle filter framework. In
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(Spinello et al., 2010), work on detection and tracking of people and cars using
a 2D laser range scanner and a camera is presented. However, there is no men-
tion of estimation of the shape and size of the targets. Detection and tracking
of pedestrians using 3D laser range data is presented in (Navarro-Serment et al.,
2010), where the position and velocity of the targets are tracked. Place dependent
distributions of human behavior is used to improve tracking of people in (Luber
et al., 2011). The place dependency encodes locations in the surveillance area
where the human targets are more likely to be located, and also captures areas
where the human targets are less likely to move, e.g. crossing through walls.

Two types of extended targets are considered here, rectangular targets and ellipti-
cal targets. In computer vision tracking, rectangles and ellipses have been used as
target bounding boxes, for targets of different types of shape. In comparison, here
we are not concerned with estimation of target bounding boxes, but rather estima-
tion of the shape, size and location of targets that are (approximately) rectangular
or elliptical using point measurements. A similar scenario occurs in vision if fea-
ture points are extracted from the images, e.g. Harris corner points (Harris and
Stephens, 1988).

Here, the target type (ellipse or rectangle) is not detected from the measurements,
but instead inferred in the target tracking estimation process. Bayesian estima-
tion of extended targets from multiple measurements requires an appropriate
likelihood function for the multiple measurements a target can generate. The
paper presents a framework for computing these functions using the predicted
measurements and corresponding innovation covariances for an extended target
measured with a laser range sensor. It is also shown that this framework can suc-
cessfully be integrated into an existing framework for extended target tracking,
that is based on a Gaussian mixture Probability Hypothesis Density (gm-phd)
filter (Granström et al., 2010).

The extended target tracking framework is evaluated using both simulations and
experiments. In simulations, single extended targets shaped as rectangles and
ellipses are tracked. The results are evaluated against the ground truth. To eval-
uate the estimated shape and size of the extended targets, a performance metric
called Intersection Over Union (iou) is suggested. This measure is inspired by
work in the computer vision research community, where it has been used to com-
pare shapes to each other. In an outdoor experiment, up to three humans are
tracked simultaneously, and the results are visually examined and shown to be
good.

The paper is organized as follows: the next section defines the state representa-
tion of the extended targets, and relates the individual states in the state vector to
the rectangular and elliptical shapes, respectively. Section 3 presents extended
target tracking with a gm-phd-filter, defines the main problem considered in
this paper and addresses tracking of multiple extended targets with multiple
shapes. In Section 4, a detailed implementational description is given of how pre-
dicted measurements and corresponding innovation covariances are computed.
Section 5 presents a measure used for performance evaluation of extended target
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(b) Elliptical target

Figure 2: Relationship between target states (1) and target shape.

tracking, and Section 6 presents results from both simulations and experiments.
The paper is ended with conclusions and a discussion of future work in Section 7.

2 State representation

The state vector of a general two dimensional extended target is given as

x =
[
x y vx vy ψ s1 s2

]T
, (1)

where x, y and vx, vy are the Cartesian position and velocity in R2, respectively.
The parameter ψ is the orientation of the extended target shape, and s1, s2 rep-
resent the size of the shape. In this paper, two types of extended targets are
considered, rectangular and elliptical shaped targets.

For rectangularly shaped extended targets, the two shape parameters s1 and s2
encode the length and width of the target, respectively, as is shown in Figure 2a.
Using this particular type of shape is motivated by the fact that cars measured by
laser range sensors generate measurements that are approximately rectangularly
shaped, see Figure 1a.

For extended targets that are shaped like ellipsoids, the two shape parameters
encode the lengths of the major and minor axis, respectively, as is shown in Fig-
ure 2b. The ellipse shape for extended targets is motivated by the fact that hu-
mans measured by laser range sensors generate measurements that are approxi-
mately elliptically shaped, see Figure 1b.
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3 Extended target tracking

This section presents target tracking using gm-phd-filters, defines the main prob-
lem addressed in the paper, and briefly considers estimation of multiple targets
of multiple shapes.

3.1 GM-PHD target tracking

The aim is to estimate the state of a set of extended targets

Xk =
{

x(j)
k

}Nx,k
j=1

(2)

using sets of noisy, possibly cluttered, measurements

Zk =
{

z(j)
k

}Nz,k
j=1

, (3)

for discrete time instants k = 1, . . . , K . In this paper, data from laser range sensors
are used. Laser range sensors measure range ri to the nearest object along rays
pointing from the sensor at angles αi . The measurements in Zk can thus be sorted
counter-clockwise according to the scanning angles αi . Note that this order of the
measurements does not contain information about which measurement source
caused which measurement.

The target dynamics is assumed to be modeled with a function

xk+1 = f (xk ,uk ,wk) , (4)

where uk is an exogenous input and wk is process noise with covariance matrix
Qk . State prediction using a dynamic motion model (4) is straightforward in
target tracking, thus this part of the problem will not be addressed further in
this publication.

In this work we have used the Gaussian Mixture Probability Hypothesis Density
(gm-phd) filter for extended target tracking presented in (Granström et al., 2010).
If Dk|k−1 (x|Z) is the predicted phd-intensity, the corrected phd-intensity is

Dk|k (x|Z) = LZk (x)Dk|k−1 (x|Z) , (5)

where the measurement pseudo-likelihood function (Mahler, 2009) is given by

LZk (x) =1 −
(
1 − e−γ(x)

)
pD (x)

+ e−γ(x)pD (x)
∑

p∠Zk

ωp

∑
W∈p

γ (x)|W |

dW
·
∏
z∈W

φz (x)
λkck (z)

. (6)

The first part of this equation, 1−
(
1 − e−γ(x)

)
pD (x), handles the targets for which

there are no detections. The second part handles targets for which there are at
least one detection.
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The phd-intensity is approximated by a Gaussian mixture as in (Vo and Ma,
2006),

Dk (x) =
Jk∑
i=1

w
(i)
k N

(
x ; m(i)

k , P
(i)
k

)
, (7)

where w(i)
k , m(i)

k and P (i)
k are the weights, mean vectors and covariance matrices of

the Gaussian components, respectively.

As (6) shows, the update step contains a summation over partitions p of the mea-
surement set Zk , and a summation over the cells W in each partition p. Let the
measurements in a cell W be denoted

zW ,
⊕
z∈W

z, (8)

where
⊕

is vertical vectorial concatenation. Then, for each cell of each partition
and each predicted Gaussian component,

e−γ(x)pD (x)ωp
γ (x)|W |

dW

N
(
zW ; ẑW,(i)

k|k−1, S
W,(i)
k

)
(λkck (z))|W |

N
(
x ; x̂(i)

k|k , P
(i)
k|k

)
(9)

represents the corresponding updated Gaussian component, where

N
(
zW ; ẑik|k−1, S

W,(i)
k

)
(10)

is the likelihood of the set of measurements in the cell W . The key point of
being able to use the above formulas for extended targets with structured mea-
surements (e.g., with laser sensor reports) is to calculate the predicted measure-

ments ẑW,(i)
k|k−1, innovation covariances SW,(i)

k , updated means x̂(j)
k|k and updated co-

variances P (i)
k|k . The calculation of these quantities must rely on a measurement

model of a form similar to

z(j)
k = h (xk , ek) , (11)

where ek is measurement noise with covariance matrix R(j)
k . Once such a model

is available,

• the calculation of the measurement prediction ẑW,(i)
k|k−1 and innovation covari-

ance SW,(i)
k can be achieved using the current estimates, and

• as in the implementation presented in (Granström et al., 2010), the updated

means x̂(i)
k|k and updated covariances P (i)

k|k can be obtained with a Kalman
filter, or one of its non-linear counterparts such as the Extended Kalman
Filter (ekf) or Unscented Kalman Filter (ukf).

The construction of a measurement model of the form (11) is at the root of the
problem of calculating a measurement prediction which will be posed as the
main problem of our work in the next subsection.
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Figure 3: Comparison of estimated measurements, the sensor is located in
the origin. The true extended target is shown as a solid rectangle and the
set of measurements Zk are shown as filled black circles. The estimated ex-
tended target is shown as a dashed rectangle, the estimated set of measure-
ments Ẑk are shown as filled black squares. In (a), using a straightforward
model of the laser sensor gives a Ẑk which is a poor correspondence to Zk . In
(b), the proposed method is used and Ẑk better corresponds to Zk .

3.2 Problem definition

When the extended targets are modeled as points, a measurement model can read-
ily be constructed assuming that each measurement is close to the target’s center
of mass, see e.g. (Granström et al., 2010). Here however, we are concerned with
tracking extended targets (1) using measurements acquired with a laser range sen-
sor, thus the point target assumption is trivially invalid. As will be shown using
an example, when the extended targets are not modeled as points but rather as
geometric structures, construction of a measurement model can be significantly
more complicated compared to the point target case.

Consider the plots in Figure 3. The extended target estimate is shifted in y posi-
tion by 0.7m, and in heading ψ by 20◦, with respect to the true extended target.
Using a simple model of a laser range sensor, predicted measurements can be
computed using line intersection as is shown in Figure 3a. However, due to the
orientation error, the estimated target is not showing the same two sides towards
the sensor as the true target, making the set of true measurements Zk fundamen-
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tally different from the set of estimated measurements Ẑk . The cardinality is
different, |Zk | = 16 and |Ẑk | = 14, and the measurements are located on different
sides of the target shape, causing the data association between the measurements
in Zk and the predicted measurements in Ẑk to become difficult. However, using
the method proposed in this paper, described further in Section 4, a Ẑk that better
corresponds to Zk is obtained, see Figure 3b.

The main problem addressed in this paper is thus to obtain predicted measure-
ments and innovation covariances such that they can be integrated into an exist-
ing target tracking framework. As mentioned above, here the gm-phd extended
target tracking framework presented in (Granström et al., 2010) has been used,
however any target tracking framework that relies on the ekf could have been

used just as well. In order to obtain predicted measurements ẑW,(i)
k|k−1 and cor-

responding innovation covariances SW,(i)
k , information from the set of measure-

ments in the cell zW is used, i.e. the following two approximations

ẑW,(i)
k|k−1 ≈ ẑW,(i)

k|k−1

(
zW , x̂k|k−1

)
(12a)

S
W,(i)
k ≈ SW,(i)

k

(
zW , x̂k|k−1

)
(12b)

are made. Thus, the predicted measurements and innovation covariances are
functions of the predicted state and the set of measurements. In a sense, this
is an unconventional use of an errors-in-variables framework where the mea-
surement model would depend on the current set of measurements. In Sec-

tion 4 we describe in detail the proposed method for computing ẑW,(i)
k|k−1

(
zW , x̂k|k−1

)
and SW,(i)

k

(
zW , x̂k|k−1

)
. When these quantities are calculated, a Kalman filter (or

ekf/ukf) measurement update can easily be used to obtain the updated means

x̂(i)
k|k and updated covariances P (i)

k|k .

3.3 Multiple shapes and multiple targets

An interesting aspect of extended target tracking with multiple targets and mul-
tiple shapes is how to correctly estimate the correct shape for each target. As was
mentioned in the introduction, in some previous work the target tracking is pre-
ceded by a detection algorithm. Thus, a possible way to infer the type of shape
is to consider the measurements and make a hard decision as to which type they
represent.

In this paper, an approach that is slightly similar to track-before-detect is taken.
When a new target appears, the gm-phd-filter birth intensity is set such that
one Gaussian component per target type is given birth to. Then, as the filter

iterates throughout the prediction and correction steps, the weight w(j)
k of each

Gaussian component is updated. Eventually, the weights will converge such that
only one component remains, from which the target type can be found. The
target types are thus, while not included in the state vectors, implicitly estimated
via the weights of the Gaussian components in the phd-intensity.
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4 Computing predicted measurements and
innovation covariances

In this section we present a detailed description of how predicted measurements
and innovation covariances (12) are computed for extended targets (1) that are
either rectangular or elliptical in shape.

4.1 Predicted measurements for rectangular targets

The first step in predicting a set of measurements is to, given the set of measure-
ments, estimate how many sides of the measured target that are shown. For a
rectangular target, it is trivial to conclude that at most two of the sides of the
shape are visible to the sensor at any given moment. Given a set of measure-

ments Z =
{

z(j)
k

}Nz,k
j=1

, where each measurement is a vector z(j)
k =

[
z

(j),1
k , . . . , z

(j),nz
k

]T

,

let C = [cm,n] be the sample covariance of the measurements with entries

cm,n =
1

Nz,k − 1

Nz,k∑
j=1

(
z

(j),m
k − z̄mk

) (
z

(j),n
k − z̄nk

)
(13)

where z̄mk is the mean of the m:th component of the measurement vectors z(j)
k . For

laser range measurements in 2D we have nz = 2.

Further, let e1 and e2 be the two eigenvalues of the covariance matrix C, where
e2 > e1. In the noiseless case, measurements of just one side of a rectangle will
have 0 standard deviation along the direction perpendicular to the measured line,
and the corresponding eigenvalue will be 0. An estimate of the number of sides
N that generated the set of measurements can then be obtained as

N =
{

1 if e2
e1
≥ K

2 otherwise
(14)

where K is a threshold. Empirically K = 25 was determined to be an appropriate
value. Given the measurements in Figure 4a, the eigenvalues of the correspond-
ing sample covariance matrix are e1 = 0.1198 and e2 = 0.6629, and the eigenvalue
quota 5.5327 is less than the threshold K . Note that the measurements are a sub-
set of the measurements in Figure 1a. A subset is used to prevent Figures 4a and
4b from being too cluttered.

If the estimated number of sides is two, the measurement closest to the corner
connecting the two sides needs to be found. This is performed using the function
Corner Index given in Table 1, where the distance d from a point z3 to a line
defined by two points z1 and z2 is given by the function

d = point2lineDist (z1, z2, z3) =

∣∣∣∣(zx2 − zx1
) (

zy1 − zy3
)
−
(
zx1 − zx3

) (
zy2 − zy1

)∣∣∣∣√(
zx2 − zx1

)2
+

(
zy2 − zy1

)2
. (15)
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Table 1: Corner Index

1: Input: Set of measurements Z =
{
z(j)

}Nz
j=1

, sorted counter clockwise according

to scanning angle.
2: Initialize: Minimum distance dmin = ∞, first and last points z1 = z(1), zNz =

z(Nz ).
3: for n = 2, . . . , Nz − 1 do
4: Let zn = z(n) be the current point.
5: Initialize sum of distances d = 0.
6: for k = 2, . . . , n − 1, n + 1, . . . , NZ − 1 do

7: d = d +
{

point2lineDist (z1, zn, zk) if k < n
point2lineDist

(
zn, zNz , zk

)
if k > n

8: end for
9: if d < dmin then

10: Set n̂ = n and dmin = d
11: end if
12: end for
13: Output: Index to measurement closest to corner n̂.

For the measurements in Figure 4a, the corner is identified as the point located in
x = 5.40, y = 8.99. Given the identified corner, it is straightforward to compute
the number of measurements belonging to each of the two sides that are seen by
the sensor. In the example given in Figure 4a, there are m1 = 3 measurements on
one side, and m2 = 6 on the other. If only one side is measured, i.e. if e2e1 ≥ K , then
trivially all measurements belong to the side that was measured by the sensor.

Assuming that two sides are shown by the set of measurements Z, the set can be
divided into two subsets Z1 and Z2 corresponding to the measurements that are
from the two sides, i.e. |Z1| = m1 and |Z2| = m2. Let β1 and β2 be the angles of
the vectors defined by the first and last point from Z1 and Z2, respectively. Then,
βNi = βi + π/2 are the angles of the corresponding normal vectors. Further, given
an estimated extended target state x̂, let η1, . . . , η4 be the surface normals of the
four sides of the rectangle.

The sets Z1 and Z2 can now be associated to one of the four sides of the rectangle
by finding the two sides for which

∣∣∣ηi − βN1 ∣∣∣ and
∣∣∣ηj − βN2 ∣∣∣ are minimized. Pre-

dicted measurements are generated for the sides that are in view by distributing
m1 and m2 points uniformly on the two sides. An example is given in Figure 4a.

4.2 Predicted measurements for elliptical targets

Given an angle at which the sensor measures, finding the intersection between
the measurement ray and an ellipse is performed as follows. Let the ellipse be
given by the position x, y, orientation ψ and lengths of the major and minor axis
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Figure 4: The rectangular and elliptical targets. (a) and (c): Example of
measurements of a car and human (filled black circles), respectively, and
predicted measurements located on target surface (filled black squares). The
corresponding associations are shown with dashed lines. The measurement
identified as being closest to the corner in the rectangular case is shown with
a gray star. (b) and (d): The corresponding measurement covariances.

s1 and s2, as in (1). Further, let the range measurement r from the sensor to the
target surface be measured at an angle α. Thus, the intersection defines a point
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in Cartesian coordinates [
xr
yr

]
=

[
r cos (α)
r sin (α)

]
, (16)

given in the coordinate frame defined with the sensor position as origin. The
same point can be described in the coordinate frame defined by the position and
heading of the ellipse, using the appropriate coordinate frame transformation.
The intersection point’s coordinates are now given by[

xer
yer

]
= (R−α)−1

[
xr − x
yr − y

]
=

 r
(
cαcψ + sαsψ

)
− xcψ − ysψ

r
(
−cαsψ + sαcψ

)
+ xsψ − ycψ

 =
[
rθ1 + θ2
rθ3 + θ4

]
(17)

where Rα is the rotation matrix for an angle α and e denotes the change of refer-
ence frame. This point must satisfy the ellipse equation

(xer )
2

s21
+

(yer )
2

s22
= 1. (18)

Inserting (17) into (18) gives

1 =
(rθ1 + θ2)2

s21
+

(rθ3 + θ4)2

s22

=
(
θ2

1

s21
+
θ2

3

s22

)
r2 + 2

(
θ1θ2

s21
+
θ3θ4

s22

)
r +

θ2
2

s21
+
θ2

4

s22
= Ar2 + 2Br + C (19)

which has the two solutions r = − BA ±
√
B2

A2 − C−1
A . Since the sensor measures

the closest intersection with the target, the correct range r at a given angle α is

r = − BA −
√
B2

A2 − C−1
A . Note that if no part of the extended target is located along

the measurement ray defined by the angle α, r will be a complex number.

For elliptically shaped extended targets, the first step in computing a set of pre-
dicted measurements is to find the angles α1 and α2 within which the sensor can
measure the estimated target. Next, |Z| estimated measurements are generated on
the estimated target surface uniformly spaced in the angle dimension between α1
and α2. An example of predicted measurements is given in Figure 4c.

4.3 Innovation covariances

To compute the innovation covariances

S
W,(j)
k

(
zW , x̂k|k−1

)
, (20)

the measurement model Jacobian Hk and the measurement covariances R(j)
k are

needed.
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As we have not derived an explicit mathematical function for the measurement
model, the measurement model Jacobian

Hk =
dh
dx

∣∣∣∣∣
x̂k|k−1

, (21)

is computed numerically instead of derived analytically. By making a small per-
mutation ε to the n:th element of the predicted state vector, the n:th column of
the measurement Jacobian is approximated as

ẑW,(j)
k|k−1

(
zW , x̂ε,nk|k−1

)
− ẑW,(j)

k|k−1

(
zW , x̂k|k−1

)
ε

(22)

where x̂ε,nk|k−1 is the predicted state after the n:th element is permuted by adding ε.
Note that in doing so, we only consider permutations in the predicted state when
the Jacobian is approximated numerically, i.e. we do not consider permutations
in the set of measurements zW . Considering changes in zW is a topic for future
work.

Instead of modeling the covariances according to the sensor statistics, the covari-
ances are constructed such that the uncertainty of all predicted measurements
follow the surface of the target. One of the axes of the corresponding uncertainty
ellipse is aligned with the surface, and the size of the uncertainty in this direction
is set to the distance to the nearest measurement point. The size of the uncer-
tainty in the direction perpendicular to the surface is set to a constant σr .

With multiple measurements on the target surface, this gives measurement co-
variance ellipses that are aligned to the surface tangent, thus giving a combined
uncertainty that covers the part of the target surface that was measured by the
sensor. Examples of measurement covariances for the measurements given in
Figures 4a and 4c are shown in Figures 4b and 4d.

5 Extended target tracking performance evaluation

In this section we address evaluating the estimated shape of the extended target.
As the velocity of the extended target does not affect its shape and size, the two
velocity states vx and vy are excluded here for the sake of simplicity. For a rect-

angular or elliptical extended target with true state x0 =
[
x0 y0 ψ0 s01 s02

]T
,

there are four alternative estimates that give an identical shape in the state space:

x̂1 =
[
x0 y0 ψ0 s01 s02

]T
, (23a)

x̂2 =
[
x0 y0 ψ0 + π s01 s02

]T
, (23b)

x̂3 =
[
x0 y0 ψ0 + π

2 s02 s01
]T
, (23c)

x̂4 =
[
x0 y0 ψ0 − π

2 s02 s01
]T
. (23d)
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For example, let the orientation of a rectangular target be ψ = 0rad and let the
lengths of the two sides be s1 = 4m and s2 = 2m. The estimation errors of the
corresponding estimated states may be as large as π

2 rad, −2m and 2m, despite
the fact that if visualized, the estimated shape and size of the extended target
is identical to the true one. Thus, only considering the estimation errors of the
extended target tracking results may give a false picture of the quality of the
extended target tracking results.

In this paper, we evaluate the extended target tracking results by considering the
estimated x, y-position, and by considering a measure called Intersection-Over-
Union (iou). Let Â be the area of the estimated extended target, and let A0 be
the area of the true target. By computing the area of the intersection between the
estimate and the true target, and dividing by the union of the two areas,

Â ∩ A0

Â ∪ A0
∈ [0 1] (24)

a measure is obtained, where 1 represents a perfect overlap of the estimated and
true extended target, and 0 represents that there is no overlap at all. The iou-
measure captures differences in x, y-position, in shape orientation ψ and in the
shape size parameters s1 and s2. It should be noted though that the iou-measure
does not consider any difference in target type, thus the measure could very well
be close to one despite the fact that the true target is rectangular and the esti-
mated target is elliptical, or vice versa.

The estimated target type is evaluate by considering the sum of the Gaussian com-

ponents’ weights w(j)
k for each type. Assuming that there is only one rectangular

target present, the weights for the Gaussian components representing rectangu-
lar targets should sum to one, and the weights for the components representing
elliptical targets should sum to zero.

6 Results

This section presents results from simulations and experiments using the pre-
sented work.

6.1 Simulations

A number of different simulations were performed in order to assess the esti-
mation results of the extended target tracking filter. Two simulated trajectories
were used, one linear motion, shown in Figure 5a, and a combination of linear
and curved motion, shown in Figure 5b.

Linear motion

In the first simulation a rectangularly shaped extended target moves from right
to left through the surveillance area. The orientation of the target is 0rad and the
length and width is s1 = 5m and s2 = 2.5m, respectively. The estimation results
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(b) Linear and curved motion

Figure 5: Trajectories used in simulations. The target trajectories are showed
in black. The sensor is located in the origin, the surveillance area boundary
is showed with a dashed gray line.

are shown in Figure 6a. A similar simulation was performed using an elliptical
extended target. The motion is again from right to left, and the orientation is
0rad. The lengths of the major and minor axes are s1 = 2.5m and s2 = 1.25m,
respectively. The estimation results are shown in Figure 6b.

Linear and curved motion

In this simulation the motion of the extended target was a combination of linear
and curved motion. A rectangular target with length and width s1 = 5m and
s2 = 2.5m was simulated first, the estimation results are shown in Figure 6c. In a
similar simulation, an elliptical target with lengths of the major and minor axes
s1 = 2.5m and s2 = 1.25m, respectively, was simulated. The estimation results
are shown in Figure 6d.

Comments

Under linear motion, the rectangular target is estimated with high accuracy, while
the elliptical target is slightly underestimated in size (s1 and s2 are underesti-
mated). Under linear and curved motion the problem is slightly more compli-
cated for the rectangular target as it moves close to the sensor, however the over-
all results are good. For the elliptical target, the size is underestimated again.
Estimation of target type (rectangular or elliptical) is shown via the Gaussian
component weights in the bottom plots in each figure. As is shown, the filter
quickly converges to the correct target type.

6.2 Experiment

The suggested framework for extended target tracking was tested in an experi-
ment using laser range data. The data set used contains 600 range scans acquired
in an outdoor environment, with five persons moving through the surveillance
area (at most three persons simultaneously). The first person enters the surveil-
lance area at time 22 and moves to the center where he remains still for the re-
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(a) Rectangular target, linear motion
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(b) Elliptical target, linear motion
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(c) Rectangular target, linear and curved
motion
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(d) Elliptical target, linear and curved mo-
tion

Figure 6: Simulation results: the top row shows linear motion (Figure 5a),
the bottom row linear and curved motion (Figure 5b). Each figure shows the
estimation error in x and y position, the iou measure and the sum of the
weights for each target type (black is rectangles, gray is ellipses).

mainder of the data. The second person enters at time 38, and proceeds to move
behind the first person, both entering and exiting an occluded part of the surveil-
lance area. Remaining three persons enters and exits the surveillance area at
later times during the experiment. The results from the experiment are shown in
Figures 7 and 8.

Since the second person moves through parts of the surveillance area that are
occluded by the first person, the results show target loss (i.e. cardinality error)
at three time steps. Using a variable probability of detection, this problem can
be overcome. However we have chosen to not include this, since the space con-
straints do not allow a description of the method used to compute the variable
probability of detection.
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Figure 7: Experiment results, showing the estimated x and y position, as
well as the area of each extended target.

As there is no ground truth, it is difficult to evaluate the quality of the estimated
extended target, including the shape parameters ψ, s1 and s2. In this paper we
have chosen to compute the area of each extended target, since this area can be
compared to a rough estimate of the area of a cross section of the human torso,
under the assumption that it is elliptically shaped. Under the assumption that
an average person is roughly 50cm to 60cm wide (torso and arms) and 25cm to
30cm deep, the average area can be said to be somewhere between 0.1m2 and
0.15m2. Comparing these values to the estimated areas (see Figure 7) show that
the ellipses representing the persons have estimated areas of reasonable size, with
the exception of two instances in time between time 200 and time 300. These
two times correspond to time when two targets are spatially very close, and are
thus merged into just one target, producing a considerably larger target. The
person standing still shows a stable estimated area, the persons that are moving
throughout the whole experiment shows much more changes in the estimated
area.

7 Conclusions and future work

In this paper we presented a method to compute predicted measurements and
corresponding innovation covariances when rectangular and elliptical extended
targets are measured by laser range sensors. The method can easily be inserted to
an existing extended target tracking gm-phd-filter, enabling efficient estimation
of the extended target’s location, orientation and size, as well as estimation of the
extended target type.
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Figure 8: Experiment results, showing the trajectories of each of the two
targets. A grayscale is used to highlight the different time steps, and for every
5:th time step the corresponding shape and size of each target is plotted.

In future work, we plan to investigate the reasons behind the underestimation of
target size for elliptical targets. Furthermore, the presented work needs to be inte-
grated with the variable probability of detection such that targets can be tracked
while they are occluded by other targets. The target tracking framework also
needs to be tested in experiments with laser range data that contains measure-
ments of both rectangular and elliptical targets, in order to test the estimation of
target type further.
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Abstract

This paper presents a random set based approach to tracking of an
unknown number of extended targets, in the presence of clutter mea-
surements and missed detections, where the targets’ extensions are
modeled as random matrices. For this purpose, the random matrix
framework developed recently by Koch et al. is adapted into the ex-
tended target phd framework, resulting in the Gaussian inverse Wish-
art phd (giwphd) filter. A suitable multiple target likelihood is de-
rived, and the main filter recursion is presented along with the neces-
sary assumptions and approximations. The particularly challenging
case of close extended targets is addressed with practical measure-
ment clustering algorithms. The capabilities and limitations of the
resulting extended target tracking framework are illustrated both in
simulations and in experiments based on laser scans.

1 Introduction

Early target tracking often made the assumption that each target can produce
at most one measurement at a given time step, see e.g. (Bar-Shalom and Fort-
mann, 1987). With modern and more accurate sensors, the targets may occupy
multiple resolution cells of the sensor, thus potentially producing more than one
measurement at a given time step. Such targets are denoted extended, and track-
ing of extended targets has received increasing research attention over the past
decade. Examples of extended target tracking include vehicle tracking using au-
tomotive radar, tracking of sufficiently close airplanes or ships with ground or
marine radar stations, and person tracking using laser range sensors.

Assuming that the received target measurements are Poisson distributed in num-
ber, Gilholm and Salmond presented an approach to extended target tracking
(Gilholm and Salmond, 2005). Their approach is illustrated with two examples,
one in which the target is modeled as a point that may generate more than one

213
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measurement, and another example in which the target is an infinitely thin stick
of length l. An inhomogeneous Poisson point process measurement model is
suggested in (Gilholm et al., 2005), where a Poisson distributed number of mea-
surements is distributed around the target. The model implies that the target is
sufficiently far away from the sensor for the measurements to resemble a cluster
rather than a geometric structure.

Another approach to extended target modeling is the random hypersurface model
(Baum and Hanebeck, 2009), which has been used to estimate elliptic targets
(Baum et al., 2010b). Measurements of target down-range extent are used to aid
track retention in (Salmond and Parr, 2003). Further approaches to estimating
the target extensions, as ellipses, rectangles, or more general shapes, are given in
(Granström et al., 2011; Lundquist et al., 2011; Baum and Hanebeck, 2011; Zhu
et al., 2011).

With finite set statistics (fisst), Mahler introduced a set theoretic approach in
which targets and measurements are modeled using random finite sets (rfs). The
approach allows multiple target tracking in the presence of clutter and with un-
certain associations to be cast in a Bayesian framework (Mahler, 2007), result-
ing in an optimal multi-target Bayes filter. An important contribution of fisst
is the statistical moments of the rfs, which enable practical implementation of
the optimal multi-target Bayes filter. The first order moment of an rfs is called
the probability hypothesis density (phd), and is an intensity function defined
over the target state space. The phd filter propagates the target set’s phd in
time (Mahler, 2003, 2007), and represents an approximation to the optimal multi-
target Bayes filter. By approximating the phd with a Gaussian mixture (gm), a
practical implementation of the phd filter is obtained, called the Gaussian mix-
ture phd (gm-phd) filter (Vo and Ma, 2006). An extension of the phd filter to
handle extended targets of the type presented in (Gilholm et al., 2005) is given
in (Mahler, 2009). For the closely related area of group target tracking, in which
several targets move in unison, an approach using the Gaussian mixture phd
filter, where groups are identified as targets with similar position or velocity es-
timates, is presented in (Clark and Godsill, 2007). The individual targets in a
group are predicted together using a leader-follower model. A random finite set
formulation of single extended target tracking is given in (Vo et al., 2008), a par-
ticle implementation is given for the general case and a closed form solution is
shown for the linear Gaussian case.

A Gaussian mixture implementation of the extended target phd filter (Mahler,
2009), called the etgmphd-filter, has been presented in (Granström et al., 2012),
with an early version given in (Granström et al., 2010). In both of the works (Gran-
ström et al., 2012) and (Granström et al., 2010), only the kinematic properties of
the targets’ centroids are estimated. Estimating the targets’ extents is omitted
to reduce the complexity of the presentation, however this also leads to some
drawbacks. In this paper, the case where the target extents are explicitly modeled
and estimated along with the kinematic target states is investigated. For this
purpose, we give an extended target phd filter implementation where the target
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extents are represented with symmetric positive definite random matrices, i.e.
the extensions are elliptical.

Using random matrices to track extended objects and groups of targets was sug-
gested by Koch in 2008 (Koch, 2008). The target kinematical states are modeled
using a Gaussian distribution, while the target extension is modeled using an
inverse Wishart distribution. Using random matrices to track group targets un-
der kinematical constraints is discussed in (Koch and Feldmann, 2009). Mod-
ifications and improvements to the Gaussian-inverse Wishart model of (Koch,
2008) have been suggested in (Feldmann et al., 2011), and the model (Koch, 2008)
has also been integrated into a Probabilistic Multi-Hypothesis Tracking (pmht)
framework in (Wieneke and Koch, 2010). A comparison of random matrices and
the random hypersurface model under single target assumption is given in (Baum
et al., 2010a).

The random matrix approach (Koch, 2008), to the best of our knowledge, has
previously not been used in a framework for tracking an unknown number of
multiple extended targets, in the presence of missed detections and clutter. The
extended target phd filter presented in this paper is capable of estimating both
the kinematic states and the extents of multiple targets, in scenarios where both
missed detections and clutter are allowed. At each time step, we first assume that
the last estimated phd is approximated with an unnormalized mixture of Gaus-
sian inverse Wishart (giw) distributions (i.e. the weights do not have to sum up
to unity). We then show how the prediction and the measurement updates can
be performed as was done in the single target case in (Koch, 2008), and also give
a likelihood function suitable to handle multiple extended targets. The extended
target phd filter (Mahler, 2009) requires all the partitions of the measurement
set. As a feasible approximation, as in (Granström et al., 2012) we use only a
subset of all partitions. In order to better handle spatially close targets, two addi-
tional approaches to measurement set partitioning are suggested. The resulting
filter, called the Gaussian inverse Wishart phd filter (giwphd filter), is tested in
simulations and in experiments based on laser scans.

The paper is organized as follows. Section 2 clearly specifies the extended targets
of interest considered in this work and the selected extent modeling methodol-
ogy. We mathematically describe the addressed target tracking problem in Sec-
tion 3. Section 4 first lists the assumptions made, then gives the extended target
phd filter prediction and correction equations for the giwphd filter, and finally
presents a merging and pruning scheme for the giw components. In this work,
due to space considerations, we are not able to give all the details about the main
partitioning algorithm described originally in (Granström et al., 2012). For this
reason, Section 5 presents only the required modifications and additions to the
measurement partitioning method of (Granström et al., 2012). Results from sim-
ulations and experiments are presented in Section 6 and Section 7, and the paper
is finalized with conclusions and future work in Section 8.
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2 Modeling the target extension

The extended targets considered in this work are characterized by a number of re-
flection points spread over their extents. Early examples of extended target track-
ing assume fixed measurement sources on the target, which can be tracked indi-
vidually to estimate the overall lumped behavior of the extended target (Salmond
and Gordon, 1999). In many practical cases such an approach might fail, because
the location of the measurement sources usually change fast according to the tar-
get sensor geometry. Having few measurements from a single source might not be
sufficient to generate good quality individual tracks. For these reasons, we avoid
such an explicit estimation of the measurement sources, and instead model the
global behavior of the measurements over the target extent.

As a general and simple model for the target extensions, we use ellipsoids repre-
sented by positive definite matrices, proposed by in the pioneering work by Koch
(2008). As admitted by Koch (2008), “ellipsoidal object shapes are certainly a ma-
jor simplification in view of large target groups which can be irregular in shape
and in target density”. This remark might be considered to be true for extended
targets when the targets are very close to the sensor. In this case the target fea-
tures form clusters of sensor reports that are too structured to be represented
accurately by ellipsoids. Nevertheless, in many real-life target tracking scenar-
ios, the targets are neither sufficiently far from the sensors to generate only a
single measurement, nor are they sufficiently close to the sensors such that their
features are clearly articulated.

In this work, the targets of interest are those sufficiently far away from the sensor
so that their measurements resemble a cluster of points. In Figure 1 we give
an example of the ellipsoidal model applied to real laser range data. The figure
shows two plots with measurements of a bicyclist and a pedestrian. While neither
bikes nor humans are shaped as ellipses, we see that, given the measurements,
the random matrix model is a reasonable approximation of the extensions of the
bicyclist and pedestrian. In the results section of this work we also present results
from experiments where multiple humans are tracked in laser range data using
the ellipsoidal models.

When the target extents are modeled as ellipsoids, clearly there are many differ-
ent ways to estimate the parameters of the ellipses. Classically, the target tracking
problem is considered in a Bayesian framework utilizing state estimators such as
Kalman filters, its extensions, and particle filters. We follow this tradition and
use Koch’s Bayesian random matrix methodology, where the random matrices are
inverse-Wishart distributed. The inverse Wishart probability density function is
a convenient prior for the considered types of measurements, and iterative up-
date formulae for the inverse-Wishart parameters are obtained. The Bayesian
framework used conveniently supplies probabilistic uncertainty measures to de-
scribe the extension estimates.
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Figure 1: The ellipsoidal extension model applied to laser range data. Mea-
surements of a bicyclist (a) and a pedestrian (b). Both legs of the pedestrian
are measured, explaining the two distinct clusters of three and four mea-

surements, respectively. The measurements z(j)
k are shown as black dots, the

kinematical state estimates x̂k|k are shown as a black squares, and the repre-
sentative extension state estimates X̂k|k are shown as gray ellipses.

3 Target Tracking Problem Formulation

The set of extended targets at time k is denoted

Xk =
{
ξ

(i)
k

}Nx,k
i=1

, ξ
(i)
k ,

(
x(i)
k , X

(i)
k

)
, (1)

where Nx,k is the unknown number of targets, and, in accordance with (Koch,

2008), x(i)
k is referred to as the kinematical state of the i:th target, and X

(i)
k is

referred to as the extension state. We denote the augmented state composed of the

kinematic and extension states by ξ(i)
k . Let the operation | · | denote set cardinality,

i.e. |Xk | = Nx,k . The target dynamic motion model is defined as (Koch, 2008)

x(i)
k+1 =

(
Fk+1|k ⊗ Id

)
x(i)
k + w(i)

k+1 (2)

where w(i)
k+1 is zero mean Gaussian process noise with covariance ∆(i)

k+1|k = Qk+1|k⊗

X
(i)
k+1 and d is the dimension of the target extent, i.e. X(i)

k is a d × d symmetric
positive definite matrix and Id is an identity matrix of dimension d. The notation
A ⊗ B denotes the Kronecker product of matrices A and B. The object kinematics
are modeled up to the (s − 1):th derivative, i.e. the length of the kinematic state
vector is nx = s × d. Here s = 3, and Fk+1|k and Qk+1|k are given by (Koch, 2008)

Fk+1|k =

1 Ts
1
2T

2
s

0 1 Ts
0 0 e−Ts/θ

 , (3a)
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Qk+1|k = Σ2
(
1 − e−2Ts/θ

)
diag ([0 0 1]) , (3b)

where Ts is the sampling time, Σ is the scalar acceleration standard deviation and
θ is the maneuver correlation time.

The set of measurements obtained at time k is denoted

Zk =
{

z(j)
k

}Nz,k
j=1

(4)

where Nz,k = |Zk | is the number of measurements. The measurement model is
defined as (Koch, 2008)

z(j)
k = (Hk ⊗ Id) x(i)

k + e(j)
k , (5)

where e(j)
k is white Gaussian noise with covariance given by the target extension

matrix X(i)
k , and Hk = [1 0 0] as in (Koch, 2008). Each target generates a Poisson

distributed number of measurements, where the Poisson rate γ (ξk) is a function
of the augmented state.

Clutter measurements are modeled as being Poisson distributed in number, with
rate parameter βFA,k clutter measurements per surveillance volume per scan.
With surveillance volume S , the mean number of clutter measurements is βFA,kS
clutter measurements per scan. The clutter measurements are modeled as being
uniformly distributed over the surveillance area.

The goal at each time step is to estimate the set of targets XK given the sets of
measurements ZK = {Zk}Kk=1. This is achieved by propagating the predicted and
updated phdss of the set of targets Xk , denotedDk|k−1( · ) andDk|k( · ), respectively,
using the extended target phd filter presented in (Mahler, 2009).

4 The Gaussian inverse Wishart PHD filter

For the multi-target tracking problem described in Section 3, the extended target
phd filter prediction equations are given as follows (Mahler, 2003).

Dk+1|k (ξk+1) =
∫
pS (ξk) pk+1|k (ξk+1|ξk)Dk|k (ξk) dξk + Db

k+1 (ξk+1) , (6)

where we omitted new target spawning, and

• pS ( · ) is the probability of survival as a function of the augmented target
state;

• pk+1|k ( · | · ) is the state transition density, describing the transition from
state ξk to state ξk+1;

• Db
k ( · ) is the birth phd, representing new targets.
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More details on target spawning are given in Section 6.4. The correction equa-
tions for the extended target phd filter has the following form (Mahler, 2009),

Dk|k
(
ξk |Zk

)
= LZk (ξk)Dk|k−1

(
ξk |Zk−1

)
. (7)

The measurement pseudo-likelihood function LZk ( · ) in (7) is defined as

LZk (ξk) ,
(
1 − e−γ(ξk )

)
pD (ξk)

+ e−γ(ξk )pD (ξk)
∑

p∠Zk

ωp

∑
W∈p

γ (ξk)
|W |

dW

∏
zk∈W

φzk (ξk)

λkck (zk)
, (8)

where

• λk , βFA,kS is the mean number of clutter measurements;

• ck (zk) = 1/S is the spatial distribution of the clutter over the surveillance
volume;

• the notation p∠Zk denotes that p partitions the measurement set Zk into
non-empty cells W . When used under a summation sign, the summation is
over all possible partitions;

• the notation W ∈ p denotes that the set W is a cell in the partition p. When
used under a summation sign, the summation is over all sets in the parti-
tion;

• the quantities ωp and dW are non-negative coefficients defined, for each
partition p and cell W respectively, as

ωp =

∏
W∈p dW∑

p′∠Zk
∏
W ′∈p′ dW ′

, (9)

dW =δ|W |,1 + Dk|k−1

pDγ
|W |e−γ

∏
zk∈W

φzk ( · )

λkck (zk)

 , (10)

where δi,j is the Kronecker delta and the notation f [g] denotes the integral∫
f (x)g(x)dx.

• φzk (ξk) , p(zk |ξk) is the likelihood function for a single target generated
measurement. Under the measurement model (5) it is given as

φzk (ξk) = N (zk ; (Hk ⊗ Id) xk , Xk) . (11)

In the following subsections, we are going to assume that we are at an interme-
diate stage of estimation at time tk and the current estimated phd Dk|k( · ) can
be approximated as an unnormalized mixture of Gaussian inverse Wishart (giw)
distributions as follows.

Dk|k (ξk) ≈
Jk|k∑
j=1

w
(j)
k|kN

(
xk ; m(j)

k|k , P
(j)
k|k ⊗ Xk

)
IW

(
Xk ; ν(j)

k|k , V
(j)
k|k

)
, (12)
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where

• Jk|k is the number of components;

• w
(j)
k|k is the weight of the j:th component;

• the notation N (x ; m, P ) denotes a Gaussian distribution defined over the
variable x with mean m and covariance P ;

• the notation IW (X ; ν, V ) denotes an inverse Wishart distribution defined
over the variable X with degrees of freedom ν and inverse scale matrix V ;

• m
(j)
k|k and P (j)

k|k ⊗ Xk are the mean and covariance of the j:th component;

• ν
(j)
k|k and V (j)

k|k are the degrees of freedom and inverse scale matrix of the j:th
component.

Further, let ξ(j)
k|k be an abbreviation of the sufficient statistics of the j:th giw com-

ponent, i.e.

ξ
(j)
k|k ,

(
m

(j)
k|k , P

(j)
k|k , ν

(j)
k|k , V

(j)
k|k

)
. (13)

Note that the distribution for the kinematical state xk depends on the extension
state Xk . Estimates of the kinematic state uncertainty and of the target extent are
obtained as in (Koch, 2008),

P̂
(j)
k|k =

P
(j)
k|k ⊗ V

(j)
k|k

ν
(j)
k|k + s − sd − 2

, (14a)

X̂
(j)
k|k =

V
(j)
k|k

ν
(j)
k|k − 2d − 2

, (14b)

for ν(j)
k|k such that the denominators are positive. In the following, we give the

assumptions made in the derivation of the giwphd filter in Section 4.1. The
prediction and update formulas for the phd representation in (12) are then pre-
sented in Section 4.2 and Section 4.3. Finally, giw mixture reduction using a
pruning and merging scheme is addressed in Section 4.4.

4.1 Assumptions

In order to derive prediction and correction equations for the giwphd filter, a
number of assumptions are made. The first four assumptions are standard in
most target tracking applications, see e.g. (Bar-Shalom and Fortmann, 1987).
Assumption D.1. Each target evolves and generates observations independently
of all other targets.

Assumption D.2. Each target’s kinematical part follows a linear Gaussian dy-
namical model, and the sensor has a linear Gaussian measurement model.
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Assumption D.3. Clutter is Poisson distributed in number, and independent of
target-originated measurements.

Assumption D.4. The survival probability is state independent, i.e. pS (ξk) = pS.

The next assumption is reasonable in scenarios where target interactions are neg-
ligible (Vo and Ma, 2006).
Assumption D.5. The predicted multi-target rfs is Poisson.

In (Vo and Ma, 2006; Granström et al., 2012) the phd is represented as a mixture
of Gaussian distributions, here a different assumption is made to accommodate
the random matrix model.
Assumption D.6. The intensity of the birth rfs is a mixture of giw distribu-
tions.

The following assumption is inherited from (Koch, 2008), where it is noted that
it implies restrictions that can be justified in many practical cases.
Assumption D.7. The target augmented state transition density satisfies

pk+1|k (ξk+1|ξk) ≈p1
k+1|k (xk+1|Xk+1, xk) p

2
k+1|k (Xk+1|Xk) (15)

for all ξk and ξk+1.

In addition to these, two more assumptions are made concerning the probabil-
ity of detection pD ( · ) and the rate γ( · ) that governs each target’s measurement
generation. These assumptions require a bit more elaboration.
Assumption D.8. The following approximation about pD ( · ) holds for all ξk

pD (ξk)N
(
xk ; m(j)

k|k−1, P
(j)
k|k−1 ⊗ Xk

)
IW

(
Xk ; ν(j)

k|k−1, V
(j)
k|k−1

)
≈pD

(
ξ

(j)
k|k−1

)
N

(
xk ; m(j)

k|k−1, P
(j)
k|k−1 ⊗ Xk

)
IW

(
Xk ; ν(j)

k|k−1, V
(j)
k|k−1

)
. (16)

Let p(j)
D , pD

(
ξ

(j)
k|k−1

)
abbreviate the probability of detection for the j:th giw

component.

In Assumption D.8 the approximation (16) is trivially satisfied when pD ( · ) = pD,
i.e. when pD ( · ) is constant. In general, Assumption D.8 holds approximately
when the function pD ( · ) does not vary much in the uncertainty zone of a target
in the augmented state space ξk . This is true either when pD ( · ) is a sufficiently
smooth function, or when the signal to noise ratio (snr) is high enough such
that the uncertainty zone is sufficiently small. A similar approach to variable
probability of detection has been taken in order to model the clutter notch in
ground moving target indicator target tracking (Ulmke et al., 2007).

For the expected number of measurements from the targets, represented by γ( · ),
similar remarks apply and the following assumption is made.
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Assumption D.9. The following approximation about γ( · ) holds for all ξk , j =
1, . . . , Jk|k−1 and all integers n ≥ 1,

e−γ(ξk )γn(ξk)N
(
x ; m(j)

k|k−1, P
(j)
k|k−1 ⊗ Xk

)
IW

(
Xk ; ν(j)

k|k−1, V
(j)
k|k−1

)
≈e
−γ

(
ξ

(j)
k|k−1

)
γn

(
ξ

(j)
k|k−1

)
N

(
x ; m(j)

k|k−1, P
(j)
k|k−1 ⊗ Xk

)
IW

(
Xk ; ν(j)

k|k−1, V
(j)
k|k−1

)
. (17)

Let γ (j) , γ
(
ξ

(j)
k|k−1

)
abbreviate the expected number of measurements for the

j:th giw component.

The trivial situation γ( · ) = γ , i.e. when γ( · ) is constant, is again a special case
where Assumption D.9 is satisfied. In general, satisfying Assumption D.9 is more
difficult than Assumption D.8. Nevertheless Assumption D.9 is expected to hold
approximately either when γ ( · ) is a sufficiently smooth function or when the
signal to noise ratio (snr) is high enough such that the uncertainty zone of a
target in the augmented state space ξk is sufficiently small.

4.2 Prediction

Utilizing Assumptions D.4 and D.7, the prediction of existing targets can be writ-
ten as

pS

∫
p1
k+1|k (xk+1|Xk+1, xk) p

2
k+1|k (Xk+1|Xk)Dk|k (xk , Xk) dxkdXk

=pS

Jk|k∑
j=1

w
(j)
k|k

∫
N

(
xk ; m(j)

k|k , P
(j)
k|k ⊗ Xk+1

)
×p1

k+1|k (xk+1|Xk+1, xk)
dxk︸                                       ︷︷                                       ︸

Kinematical part

×
∫
IW

(
Xk ; ν(j)

k|k , V
(j)
k|k

)
p2
k+1|k (Xk+1|Xk) dXk︸                                                   ︷︷                                                   ︸

Extension part

. (18)

Using the linear Gaussian model given in (2), the prediction for the kinematical
part becomes (Koch, 2008)∫

N
(
xk ; m(j)

k|k , P
(j)
k|k ⊗ Xk+1

)
p1
k+1|k (xk+1|Xk+1, xk) dxk

=N
(
xk+1 ; m(j)

k+1|k , P
(j)
k+1|k ⊗ Xk+1

)
, (19)

where

m
(j)
k+1|k =

(
Fk+1|k ⊗ Id

)
m

(j)
k|k , (20a)

P
(j)
k+1|k = Fk+1|kP

(j)
k|kF

T
k+1|k + Qk+1|k . (20b)
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The extension part is less straightforward. Here, we apply the same heuristic
approach as in (Koch, 2008), i.e. we make the approximation∫

IW
(
Xk ; ν(j)

k|k , V
(j)
k|k

)
p2
k+1|k (Xk+1|Xk) dXk ≈ IW

(
Xk+1 ; ν(j)

k+1|k , V
(j)
k+1|k

)
(21)

where the predicted degrees of freedom and inverse scale matrix are approxi-
mated by

ν
(j)
k+1|k = e−Ts/τν

(j)
k|k , (22a)

V
(j)
k+1|k =

ν
(j)
k+1|k − d − 1

ν
(j)
k|k − d − 1

V
(j)
k|k , (22b)

where τ is a temporal decay constant. Thus, the phd corresponding to predicted
existing targets is

Jk|k∑
j=1

w
(j)
k+1|kN

(
xk+1 ; m(j)

k+1|k , P
(j)
k+1|k ⊗ Xk+1

)
IW

(
Xk+1 ; ν(j)

k+1|k , V
(j)
k+1|k

)
, (23)

where w(j)
k+1|k = pSw

(j)
k|k , the Gaussian mean m(j)

k+1|k and covariance P (j)
k+1|k are given

in (20), and the inverse Wishart degrees of freedom ν
(j)
k+1|k and inverse scale ma-

trix V (j)
k+1|k are given in (22).

The birth phd

Db
k (ξk) =

Jb,k∑
j=1

w
(j)
b,kN

(
xk ; m(j)

b,k , P
(j)
b,k ⊗ Xk

)
IW

(
Xk ; ν(j)

b,k , V
(j)
b,k

)
, (24)

represents new targets that appear at time step k. The full predicted phd
Dk+1|k (ξk+1) is the sum of the phd of predicted existing targets (23) and the birth
phd (24), and contains a total of Jk+1|k = Jk|k + Jb,k+1 giw components.

4.3 Correction

The corrected phd is a giwmixture given by

Dk|k (ξk) = DND
k|k (ξk) +

∑
p∠Zk

∑
W∈p

DD
k|k (ξk , W ), (25)

where DND
k|k ( · ), handling the no detection cases, is given by

DND
k|k (ξk) =

Jk|k−1∑
j=1

w
(j)
k|kN

(
xk ; m(j)

k|k , P
(j)
k|k

)
IW

(
Xk ; ν(j)

k|k , V
(j)
k|k

)
, (26a)

w
(j)
k|k =

(
1 −

(
1 − e−γ

(j)
)
p

(j)
D

)
w

(j)
k|k−1, (26b)

ξ
(j)
k|k =ξ(j)

k|k−1. (26c)
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The giw mixture DD
k|k (ξk , W ), handling the detected target cases, requires the

likelihood of the measurements in each cell W ,∏
zk∈W

φzk (ξk)

λkck (zk)
=β−|W |FA,k

∏
zk∈W

N
(
z(i)
k ; (Hk ⊗ Id) xk , Xk

)
, (27)

multiplied with the predicted giw components,

N
(
xk ; m(j)

k|k−1, P
(j)
k|k−1 ⊗ Xk

)
IW

(
Xk ; ν(j)

k|k−1, V
(j)
k|k−1

)
. (28)

The product of (27) and (28) can be rewritten as

β−|W |FA,kL
(j,W )
k N

(
xk ; m(j,W )

k|k , P
(j,W )
k|k ⊗ Xk

)
IW

(
Xk ; ν(j,W )

k|k , V
(j,W )
k|k

)
. (29)

The details behind the derivation are given in Appendix A.1. The corrected Gaus-
sian mean and covariance and inverse Wishart degrees of freedom and inverse
scale matrix in (29) are given by

m
(j,W )
k|k = m

(j)
k|k−1 +

(
K

(j,W )
k|k−1 ⊗ Id

)
ε

(j,W )
k|k−1, (30a)

P
(j,W )
k|k = P

(j)
k|k−1 − K

(j,W )
k|k−1S

(j,W )
k|k−1

(
K

(j,W )
k|k−1

)T

, (30b)

ν
(j,W )
k|k = ν

(j)
k|k−1 + |W |, (30c)

V
(j,W )
k|k = V

(j)
k|k−1 + N (j,W )

k|k−1 + ZWk , (30d)

where the centroid measurement, scatter matrix, innovation factor, gain matrix,
innovation vector and innovation matrix are defined as

z̄Wk =
1
|W |

∑
z(i)
k ∈W

z(i)
k , (31a)

ZWk =
∑

z(i)
k ∈W

(
z(i)
k − z̄Wk

) (
z(i)
k − z̄Wk

)T

, (31b)

S
(j,W )
k|k−1 =HkP

(j)
k|k−1H

T
k +

1
|W |

, (31c)

K
(j,W )
k|k−1 =P (j)

k|k−1H
T
k

(
S

(j,W )
k|k−1

)−1
, (31d)

ε
(j,W )
k|k−1 =z̄Wk − (Hk ⊗ Id)m(j)

k|k−1, (31e)

N
(j,W )
k|k−1 =

(
S

(j,W )
k|k−1

)−1
ε

(j,W )
k|k−1

(
ε

(j,W )
k|k−1

)T

. (31f)
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The likelihood in (29) is given by

L(j,W )
k =

1(
π|W ||W |S(j,W )

k|k−1

) d
2

∣∣∣∣V (j)
k|k−1

∣∣∣∣ ν
(j)
k|k−1

2

∣∣∣∣V (j,W )
k|k

∣∣∣∣ ν
(j,W )
k|k

2

Γd

(
ν

(j,W )
k|k
2

)
Γd

(
ν

(j)
k|k−1
2

) . (32)

where |V | denotes the determinant of the matrix V , and |W | is the number of
measurements in the cell W . The updated giw component weight is given by

w
(j,W )
k|k =

ωp

dW
e−γ

(j)
(
γ (j)

βFA,k

)|W |
p

(j)
D L

(j,W )
k w

(j)
k|k−1, (33)

where

dW = δ|W |,1 +
Jk|k−1∑
`=1

e−γ
(`)

(
γ (`)

βFA,k

)|W |
p

(`)
D L

(`,W )
k w

(`)
k|k−1. (34)

Finally, the coefficients ωp can be calculated by (9). The corrected phd is of the
form given in (12) with weights given by (33), and Gaussian and inverse Wishart
parameters given in (30). Let |pp | denote the number of cells W in the p:th parti-
tion, and let the set of partitions contain P unique partitions. The corrected phd
then has Jk|k = Jk|k−1 + Jk|k−1

∑P
p=1 |pp | giw components.

4.4 Pruning and merging

From the prediction and correction, one quickly realizes that as time progresses,
the number of giw components increases rapidly. To keep the number of compo-
nents at a tractable level, pruning and merging of giw components is performed
similarly to (Vo and Ma, 2006). Empirically we have found that the merging
threshold U must be chosen conservatively to avoid merging giw components
which correspond to multiple spatially close targets, because merging such com-
ponents may cause cardinality error. The details of the implemented pruning
and merging scheme are given below in Table 1. Note that calculation of the

merged covariance P̃ (`)
k|k does not include the spread of means, the reason is that

the means m(i)
k|k and covariances P (i)

k|k are of different dimensions (s × d and s, re-
spectively). However, with a conservative merging threshold U , the spread of
means is typically quite small and is thus negligible.

We also alert the reader about the very simple approach to merging of inverse-
Wishart parameters in Table 1. This procedure is sufficient when a conservative
threshold is used, and the giwphd filter is not very sensitive to changes in the
merging algorithm. Nevertheless, finding a better method for giw component
merging is a potential subject for future research.
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Table 1: Pseudo-code for giwphd filter pruning and merging

1: input: giw components
{
w

(j)
k|k , ξ

(j)
k|k

}Jk|k
j=1

, a truncation threshold T , a merging

threshold U and a maximum allowable number of giw components Jmax.

2: initialize: Set ` ← 0 and I ←
{
i = 1, . . . , Jk|k

∣∣∣∣w(i)
k|k > T

}
.

3: repeat
4: ` ← ` + 1
5: j ← arg max

i∈I
w

(i)
k|k

6: Compute P̂ (j)
k|k using (14a).

7: L←
{
i ∈ I

∣∣∣∣∣(m(i)
k|k −m

(j)
k|k

)T (
P̂

(j)
k|k

)−1 (
m

(i)
k|k −m

(j)
k|k

)
≤ U

}
8: w̃

(`)
k|k ←

∑
i∈L w

(i)
k|k

9: m̃
(`)
k|k ←

1
w̃

(`)
k|k

∑
i∈L w

(i)
k|km

(i)
k|k ,

10: P̃
(`)
k|k ←

1
w̃

(`)
k|k

∑
i∈L w

(i)
k|kP

(i)
k|k

11: ν̃
(`)
k|k ←

1
w̃

(`)
k|k

∑
i∈L w

(i)
k|kν

(i)
k|k ,

12: Ṽ
(`)
k|k ←

1
w̃

(`)
k|k

∑
i∈L w

(i)
k|kV

(i)
k|k

13: I ← I\L
14: until I = ∅
15: If ` > Jmax then replace

{
w̃

(j)
k|k , m̃

(j)
k|k , P̃

(j)
k|k , ν̃

(j)
k|k , Ṽ

(j)
k|k

}`
j=1

by those of the Jmax giw

components with largest weights.

16: output:
{
w̃

(j)
k|k , ξ̃

(j)
k|k

}`
j=1

, ξ̃(j)
k|k =

(
m̃

(j)
k|k , P̃

(j)
k|k , ν̃

(j)
k|k , Ṽ

(j)
k|k

)

4.5 Implementation of the GIWPHD filter

To facilitate implementation, we give pseudo code for the giwphd filter, and
address implementation issues and computational complexity, in Appendix A.

5 Partitioning the measurement set

A central part of the correction equation given in (7), (8), is the partitioning of
the set of measurements Zk into partitions p containing non-empty cells W with

measurements z(j)
k . For a given partition, the cells can be understood as contain-

ing measurements that are all from the same source, either a single target or a
clutter source.
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Figure 2: Illustration of Sub-Partition. (a) Two spatially close extended tar-
gets, with corresponding measurements in black and gray. (b) Sub-cells re-
sulting from K-means++, shown in black and gray. Ideally, the measure-
ments should be split into two sub-cells along the y = 15 line.

The measurement pseudo-likelihood (8) requires a summation over all possible
partitions, which quickly becomes intractable because the number of possible par-
titions increases very rapidly as the size of Zk increases (Mahler, 2009; Granström
et al., 2012). It has been noted that the full set of partitions can be approximated
with a subset of partitions, so long as this subset contains the most likely ones
among all of the possible partitions (Granström et al., 2010; Granström et al.,
2012). A method called Distance Partition was suggested in (Granström et al.,
2010), and it was augmented with the Sub-Partition algorithm in (Granström
et al., 2012) to better handle the case of spatially close targets.

Distance Partition is based on the fundamental insight that measurements that
are caused by the same extended target are spatially close to each other. Parti-
tions are computed such that spatially close measurements are put into the same
cell. However, a method based only on this places measurements from multi-
ple targets in the same cell if two or more targets are spatially close, which may
cause cardinality errors. In the Sub-Partition algorithm presented in (Granström
et al., 2012), this problem was solved by generating additional partitions by con-
sidering the number of measurements in each cell |W |, and comparing it to the
expected number of measurements from a single target. Given a maximum like-
lihood estimate K of the number of targets that caused the measurements in the
cell, Sub-Partition uses K-means++ clustering to split the cell into K sub-cells. A
new partition, that includes the sub-cells instead of the original cell, is added to
the list of partitions. Though this method solves the cardinality issues in many
practical cases, it is noted in (Granström et al., 2012) that it is only a first order
solution to the problem.

Initial simulations with extended targets modeled using random matrices showed
that Distance Partitioning with Sub-Partition was insufficient to handle some in-
stances of multiple extended targets that are spatially close. The phenomenon is
best explained with an example. Consider the two different sized and spatially
close extended targets, with corresponding measurements, in Figure 2a. Distance
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Partition would place all measurements in the same cell, due to the spatial prox-
imity of the measurements. Compare to the division of the measurements using
K-means++ in Figure 2b, which is the algorithm used in Sub-Partition. The re-
sult from K-means++ is typical, because for this type of scenario the K-means++
loss function profits much more by dividing the measurements by a vertical
line, rather than a horizontal one. Because such a resulting additional partition
will get a relatively lower likelihood, compared to the partition which assigns
all the measurements to a single target (obtained initially by Distance Partition-
ing), the additional partition would not improve performance. Despite using
Sub-Partition, the result would typically be a cardinality error in the filtering.

In order to be able to handle this type of true target scenario, in this paper two ad-
ditional partitioning methods are suggested. The first is a method called Predic-
tion Partition, which is based on the predicted giwphd components. The second
method, called EM Partition, is based on the expectation maximization (EM) al-
gorithm (Dempster et al., 1977). Both methods are based on the intuition that in
order to solve the problem for situations as in Figure 2, one has to incorporate the
predicted kinematic and extent states of the targets into the partitioning process.

5.1 Prediction Partition

This partitioning method uses the predicted giw components. For components

with weight w(j)
k+1|k > 0.5, a d-dimensional extension estimate X̂(j)

k+1|k is computed
as in (14b). A corresponding position mean is obtained by taking the d first

components of m(j)
k+1|k , denoted m

(j),d
k+1|k . A partition is obtained by iterating over

the components, in the order of decreasing weight, and putting all measurements

z(i)
k that fulfill (

z(i)
k −m

(j),d
k+1|k

)T (
X̂

(j)
k+1|k

)−1 (
z(i)
k −m

(j),d
k+1|k

)
< ∆d (p) (35)

into the same cell. Here, ∆d (p) is computed using the inverse cumulative χ2 dis-
tribution with d degrees of freedom, for probability p = 0.99. If a measurement
falls into two or more extension estimates, it is only put into the cell correspond-
ing to the component with highest weight. The measurements that do not fulfill
(35) for any giw component are placed in individual cells containing only one
measurement.

This method works well when the true target motion can be well modeled by the
dynamic motion model (2). However, when the targets maneuver the method
is expected to be insufficient because the target predictions will be significantly
erroneous.

5.2 EM Partition

The reason that K-means++ were successful in some scenarios in (Granström
et al., 2012) was that the targets were mainly of the same size and circular (i.e.
as opposed to elliptical). A typical extended target scenario can have targets of
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quite different sizes generating significantly different numbers of measurements,
and the targets’ measurement distributions can be significantly skewed, rather
than circular. When there are targets of different sizes, the K-means++ algorithm,
which does not use any measure of the clusters’ physical sizes, often fails. The
Expectation Maximization (EM) algorithm for Gaussian mixtures, which is a gen-
eralization of the K-means++ algorithm (see e.g. chapter 9 of (Bishop, 2006)),
incorporates both cluster sizes and number of measurements in each cluster via
the covariances and the mixing coefficients. The specifics of the EM algorithm
for Gaussian mixtures can be found in e.g. (Bishop, 2006).

In the EM Partition algorithm, the Gaussian mixture parameters are initialized

with means µ` = m
(j),d
k+1|k , covariances Σ` = X̂

(j)
k+1|k and mixing coefficients π` ∝

γ
(
ξ

(j)
k+1|k

)
for components j with weight w(j)

k+1|k > 0.5. An additional mixture

component is added with mean µ` at the center of the surveillance area, circular
covariance Σ` scaled such that the corresponding 99% probability volume ap-
proximately covers the surveillance area, and mixing coefficient π` = 10−9. The
mixing coefficients π` are normalized to satisfy

∑
` π` = 1 before the first E-step.

The additional mixture component is added to capture the clutter measurements,
such that the mixture components corresponding to the target estimates can con-
verge approximately to the true partitioning. Note that for a given set of ini-
tial Gaussian mixture components, the EM algorithm will converge to the clos-
est local maximum of the likelihood function, i.e. there is no guarantee that EM
converges to the global maximum. Because EM Partition is initialized using the
predicted giw components, similarly to Prediction Partition it is sensitive to ma-
neuvers that are modeled poorly by the motion model. However, because of the
adaptation capability of the EM-iterations, EM Partition is slightly less sensitive
than Prediction Partition.

5.3 Discussion

It is important to note that each of the three partitioning methods used in this
work, i.e. Distance Partition with Sub-Partition (Granström et al., 2012), Predic-
tion Partition and EM Partition, have its respective failure modes. A problem
with Distance Partition with Sub-Partition was highlighted in Figure 2. Predic-
tion Partition relies on the prediction of the giw components, this method some-
times returns a non-informative partition when targets are maneuvering. EM

Partition can converge to a local maximum of the likelihood function that yields
a non-informative partition. For this reason, it is a better choice to use all three
methods, rather than just one method on its own. The more partitions that are
used, the better the full set of partitions is approximated. Indeed, it is possible
that adding further partitioning methods would improve performance, however
this should also be balanced against the fact that considering more partitions
requires more computations.
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6 Simulation Results

This section presents results from extended target tracking simulations. The tar-
get tracking setup is presented in the next section, followed by the results from
four different extended target tracking scenarios.

6.1 Target tracking setup

Four different scenarios were simulated, each with two targets. The true tracks
are shown in Figure 3. The true target extensions are given by

X
(i)
k = R

(i)
k diag

([
A2
i a

2
i

]) (
R

(i)
k

)T

, (36)

where R(i)
k is a rotation matrix applied such that the i:th extension’s major axis

is aligned with the i:th target’s direction of motion at time step k, and Ai and
ai are the length of the major and minor axes, respectively. In all four scenarios,
the major and minor axes are (A1, a1) = (20, 5) and (A2, a2) = (10, 2.5) for the two
targets, respectively.

The expected number of measurements generated by the targets is assumed to be
a function of the extended target volume

V (i)
k , π

√∣∣∣∣X(i)
k

∣∣∣∣ = πAiai . (37)

This assumption is reasonable in many real world scenarios, where a smaller tar-
get would occupy fewer of the sensor’s resolution cells than a larger target, thus
yielding fewer measurements. Here we adopt the following simple model for the
expected number of measurements that the targets generate,

γ
(i)
k =


√

4
π
V (i)
k + 0.5

 =
⌊
2
√
Aiai + 0.5

⌋
, (38)

where b · c is the floor function and bx + 0.5c rounds x to the nearest integer. This
model is equivalent to assuming a uniform expected number of measurements
per square root of surveillance area. In a typical real world scenario, the number
of target measurements may also depend on the distance between the target and

the sensor, i.e. depend on the kinematical target state x(i)
k . This case can easily be

handled with a modified expected number of measurements model. For the sake
of simplicity, this case is not included in this paper, and the readers are referred
to (Granström et al., 2012) for such an example.

The motion model parameters are set to Ts = 1s, θ = 1s, Σ = 0.1m/s2 and τ = 5s.
In three of four scenarios, the parameters of the Jb,k = 2 birth phd components

are set as follows, w(j)
b,k = 0.1, and

m
(j)
b,k =

[(
x(j)

0

)T

0T
4

]T

, P
(j)
b,k = diag

(
[1002 252 252]

)
,



6 Simulation Results 231

−500 −400 −300 −200 −100 0 100 200 300 400 500

0

50

100

150

200

250

300

x [m]

y
[m

]

 

 

x(1) [m]

x(2) [m]

(a)

−6000 −4000 −2000 0 2000 4000 6000

−2000

−1000

0

1000

2000

x [m]

y
[m

]

 

 

x(1) [m]

x(2) [m]

(b)

−2000 −1000 0 1000 2000 3000 4000 5000 6000 7000

−1500

−1000

−500

0

500

1000

1500

x [m]

y
[m

]

 

 

x(1) [m]

x(2) [m]

(c)

−1 −0.5 0 0.5 1

x 10
4

−4000

−2000

0

2000

x [m]

y
[m

]

 

 

x(1) [m]

x(2) [m]

(d)

Figure 3: True target tracks used in simulations. (a) Crossing tracks. (b)
Parallel tracks. (c) Separating tracks. (d) Turning tracks.

ν
(j)
b,k = 7, V

(j)
b,k = diag ([1 1]) . (39)

The mean vectors m(j)
b,k are set such that they correspond to the starting points of

the true targets. In the fourth scenario, there is Jb,k = 1 birth component, with
mean vector set to the mean of the two targets’ starting points. Knowing the
starting points of the targets a priori is naturally not possible in many real world
scenarios. In the experiment section, we elaborate further on how the birth phd
can be constructed in a real scenario.

A total of 100 Monte Carlo simulations were preformed for each scenario, with
a clutter rate of 10 clutter measurements per time step. The results are pre-
sented in terms of the multi-target measure optimal subpattern assignment met-
ric (ospa) (Schuhmacher et al., 2008), cardinality and length of the estimated
major and minor axes of the extension matrices.

6.2 Crossing tracks

In this scenario, the target tracks cross at close distance, see Figure 3a. The results
are shown in Figure 4. The plots clearly show that straight line motion can be
readily handled by the presented filter, even when the targets are spatially close.
Noteworthy are the estimates of the major and minor axes, Ai and ai , respectively.
The results show that extensions which do not change over time (e.g. do not grow,
shrink or rotate) can be estimated with low error.

6.3 Parallel tracks

In the second scenario, the two targets move closer and then move in parallel,
before separating again, see Figure 3b. While moving in parallel, the true target
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Figure 4: (a) Mean ospa (solid line) ± one standard deviation (dashed lines).
(b) Cardinality estimate, taken as the sum of weights (black), compared to
true cardinality (gray). (c) Estimates of the major and minor axes, Ai and ai ,
respectively. Mean estimates (black) compared to true value (gray).

extensions’ three standard deviation ellipses (corresponding to the 99% probabil-
ity volume) are separated by 2.5m. The results are shown in Figure 5. The mean
sum of weights is close to the true value, however there is a downward trend
while the targets are moving in parallel. This is caused mainly by missed detec-
tions, which often causes the phd filter to lose the target estimate corresponding
to the target that was not detected. In the subsequent time steps, when the target
is detected again, the measurements from both targets are typically treated as
being caused by one target.

This can also be seen in the ospa value, which increases during parallel motion,
and also has larger standard deviation. The estimates of Ai and ai are slightly
worse than in the previous scenario. In the beginning and end of the simulation
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Figure 5: (a) Mean ospa (solid line) ± one standard deviation (dashed lines).
(b) Cardinality estimate, taken as the sum of weights (black), compared to
true cardinality (gray). (c) Estimates of the major and minor axes, Ai and ai ,
respectively. Mean estimates (black) compared to true value (gray).

this is caused by the rotation of the extension matrices Xk . This result is intuitive
– the turning makes the extension more difficult to track since the prediction (22)
does not account for the rotation of the extension.

6.4 Separating tracks

In the third scenario, the two targets start such that their respective three stan-
dard deviation ellipsoids, computed from the true extensions Xk , are touching.
First the targets move in parallel, after about half the scenario they separate, see
Figure 3c. For this scenario, a birth phd with Jb,k = 1 component was used. The
results are shown in Figure 6. For the first half of this scenario, when the target
extents are touching, the filter incorrectly estimates one large extended target, in-
stead of two smaller ones, in about 60% of the Monte Carlo simulations. This is
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what causes the mean sum of weights to be around 1.4. The targets start to sepa-
rate at time 52, and from time 57 the cardinality is estimated correctly. Because
the cardinality is underestimated in about 60% of the Monte Carlo simulations,
the estimated major and minor axes, Ai and ai , are difficult to interpret for the
first half of the scenario. When the giwphd filter estimates only one target, the
major axis of the extracted target is estimated to be slightly lower than A1 = 20m.
We had expected the major axis to be estimated as 20m or more when the tar-
gets are combined. However, this “underestimation” appears to be a property of
the particular prediction and correction equations used for the inverse Wishart
parameters. The major axes of the targets are, in a way, averaged to obtain a
smaller estimate than 20m. For the second half, when the targets are separated,
the results are better.

Furthermore, the results show that there is little need for a specific model for tar-
get spawning. As soon as the two targets are slightly separated, the partitioning
algorithm (Distance Partition) automatically starts to generate a partition that
suits the spawning event. This partition then dominates the other partitions,
which can be seen e.g. in terms of the partition weights ωp. This process is ev-
ident also from the cardinality estimates, which are corrected shortly after the
targets separate.

6.5 Closely spaced targets

In the fourth scenario, the targets move closer and then move in parallel, both
in straight lines and through a curve, before separating again, see Figure 3d. Es-
timating cardinality correctly becomes increasingly difficult as multiple targets
move close to each other. Early tests showed that Distance Partition with Sub-
Partition was insufficient to handle some cases of spatially close extended targets
modeled as random matrices. To improve performance, Prediction Partition and
EM Partition was implemented.

To test the phd-filters capability of tracking multiple closely spaced targets, the
scenarios in Figure 3b and Figure 3d were simulated when the targets’ extents
were separated by a distance d. The tracks in Figure 3b were simulated for sep-
arating distances d = 0, 0.5, 1, . . . , 5 [m], and the mean sum of weights is shown
in Figure 7a. When rounded to the nearest integer there is no cardinality error
at any distance d, however estimating cardinality correctly becomes increasingly
difficult at closer distances, which is shown by the lower mean value for d < 2.5m.
Without Prediction Partition and EM Partition, simulations show that the cardi-
nality is underestimated for distances d < 7m.

The tracks in Figure 3d contain a turn, making prediction of the extended tar-
get estimates harder, because the dynamic motion model is constant velocity
and predicts target motion in a straight line. This scenario was simulated at
two different speeds, 125m/s and 62.5m/s. The separating distances were d =
0, 0.5, 1, . . . , 25 [m] for the faster speed and d = 0, 0.5, 1, . . . , 5 [m] for the slower
speed.

At the higher speed, target prediction is more difficult, especially during the turn,
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Figure 6: (a) Mean ospa (solid line) ± one standard deviation (dashed lines).
(b) Cardinality estimate, taken as the sum of weights (black), compared to
true cardinality (gray). (c) Estimates of the major and minor axes, Ai and ai ,
respectively. Mean estimates (black) compared to true value (gray).

and subsequently Prediction Partition and EM Partition fails to compute informa-
tive partitions more often. This is a common cause of cardinality error. However,
at the lower speed, the true target motion per time step is smaller, and the lin-
ear constant velocity prediction is good enough for Prediction Partition and EM
Partition to compute informative partitions. The mean sum of weights at both
speeds is shown in Figure 7b and Figure 7c, respectively. The filter can handle
the maneuver, i.e. there is no cardinality error when the mean sum of weights is
rounded to the nearest integer, when the targets are separated by d ≥ 21m at the
higher speed. At the lower speed only d ≥ 2m separation is needed.

To conclude, the results show that when a constant velocity motion model is used,
the presented extended target tracking filter can handle all scenarios except the
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Figure 7: Mean sum of weights for closely spaced targets, at various sepa-
rating distance. The true cardinality is 2 for all three plots. (a) Tracks in
Figure 3b, note that if the mean sum of weights is rounded to the nearest
integer there is no cardinality error. (b) Tracks in Figure 3d at speed 125m/s.
At distances d ≥ 21m the cardinality is estimated correctly. (c) Tracks in Fig-
ure 3d at speed 62.5m/s. At distances d ≥ 2m the cardinality is estimated
correctly.

ones where multiple spatially close targets are maneuvering quickly. In scenarios
where the target maneuvers are dominant, the use of interacting multiple models
(imm) (Blom and Bar-Shalom, 1988) for motion prediction seems to be a reason-
able solution, e.g. this was done in Section V of (Feldmann et al., 2011). The
presented tracking filter can easily be generalized to use an imm filter, however
this was considered to be beyond the scope of this paper.
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7 Experiment results

This section presents results from experiments based on data from a laser range
sensor. Measurements were collected using a sick lms laser range sensor, which
measures range every 0.5◦ over a 180◦ surveillance area. Ranges shorter than 13m
were converted to (x, y) measurements using a polar to Cartesian transformation.
The two data sets contain 411 and 400 laser range sweeps, respectively. Human
targets entered the surveillance area at different times, and were measured by the
sensor at waist level. There is no ground truth available for the data, however by
examining the measurements the true cardinality can be observed.

These two data sets have previously been used in (Granström et al., 2012), where
only the kinematical part of the target state is tracked. A comparison of the re-
sults for the presented giwphd filter to those for the etgmphd filter from (Gran-
ström et al., 2012) is performed.

7.1 Target tracking setup

The sensor’s sampling time is Ts = 0.2s. The motion model parameters are set
to θ = 1s, Σ = 2m/s2 and τ = 5s. For the sensor used, new targets will appear
somewhere along the edge of the semi circular surveillance area. Therefore, the
birth phd has Jb,k = 20 components located along the edge of the surveillance
area, the intensity Db

k ( · ) in the (x, y) dimension is shown in Figure 8. The birth

components’ weights are set to w(j)
b,k = 0.1/Jb,k and the inverse Wishart parameters

are set to ν(j)
b,k = 7 and V (j)

b,k = diag
(
[0.252 0.12]

)
.

For the sensor used here, the expected number of target generated measurements
γ varies rapidly with the distance between the target and the sensor. We have
found that the correction weight update (33) is not sensitive to setting the cor-
responding filter parameter constant, however Sub-Partition needs a reasonable
estimate of γ in order to compute a maximum likelihood estimate K of the num-
ber of targets that generated the measurements in a cell W . To facilitate this, in
the Sub-Partition algorithm we have estimated γ by assuming that a 50cm wide
target is located at the particular cell’s centroid z̄Wk . A width of 50cm roughly
corresponds to the size of an average person, who is facing the sensor. This sim-
ple heuristic works well for the particular experiments presented here, however
it remains within future work to design a method which does not rely on a priori
information of the tracking scenario. A study of the extended target phd filter’s
performance for incorrect values of the filter parameter corresponding to γ is
given in (Granström et al., 2012).

7.2 Experiment with close targets

This data set contains 411 laser range scans. Two humans walked through the
surveillance area, repeatedly moving towards and away from each other, both
in the same direction and in the opposite direction. Thus, the data set contains
situations where the targets are spatially close for both longer and shorter periods
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Figure 8: Birth phd used in experiments. The dark areas are locations which
the birth phdmodels as likely locations for new targets to appear. The edge
of the surveillance area is shown as a dashed white line.

of time. The positions of the extracted targets are shown in Figure 9a, the number
of extracted targets are compared to the ground truth in Figure 9b and the sum
of weights is shown in Figure 9c. There is no cardinality error for the entire
length of the experiment, however at time 164 there is an unexpected increase
in the sum of weights to 2.4. The sum of weights increases because the target
generated measurements for one of the targets, at that time step, resemble two
small clusters rather than one larger cluster. The giwphd filter interprets this
as an increased likelihood of an additional target being present. These results
are a small improvement over the results in (Granström et al., 2012), where the
etgmphd filter underestimates the cardinality for three consecutive time steps
when the targets are close and moving in the same direction.

7.3 Experiment with occlusion

This data set contains 400 laser range scans. Four humans walked through the
surveillance area, however at most three humans were present at any one time.
The first target stands still at the position (x, y) ≈ (0.4, 6) for most of the experi-
ment. The second target walks behind the first target, causing the second target
to be fully occluded (i.e. the second target is not measured), and also walks in
front of the first target, causing the first target to be partially occluded (i.e. only
parts of the first target are measured). With a constant probability of detection,
the occlusion would cause target loss. To handle the occlusion without target loss,
a state dependent probability of detection is implemented. The variable proba-
bility is based on a simple understanding of the sensor – objects that are located
behind other objects cannot be measured by the sensor, therefore the probability
of detection behind a target should be (close to) zero. The details of the variable
probability of detection are given in Appendix A.2.
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Figure 9: Results from the experiment with close targets (Section 7.2). (a)
shows the positions of the extracted targets’ kinematical states. Light gray
points corresponds to earlier time steps, dark gray corresponds to later time
steps. (b) shows the number of extracted targets in black, compared to the
true cardinality in gray. (c) shows the sum of weights over time for the two
experiments.

The positions of the extracted targets are shown in Figure 10a, the number of
extracted targets are compared to the ground truth in Figure 10b and the sum of
weights is shown in Figure 10c. At time 345, the time step when the fourth target
enters the surveillance area, the cardinality is underestimated by 1. At this time
step, the fourth target only generates one measurement, which the giwphd filter
interprets as clutter.

These results are a considerable improvement over the results in (Granström
et al., 2012), where the etgmphd filter underestimated the cardinality in two
situations where two targets are spatially close, such that one target is partially
occluded. In (Granström et al., 2012), a variable probability of detection was also
used. However with the target centroid occluded, the probability of detection
of the partially occluded target is incorrectly set close to zero, causing cardinal-
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Figure 10: Results from the experiment with occlusion (Section 7.3). (a)
shows the positions of the extracted targets’ kinematical states. Light gray
points corresponds to earlier time steps, dark gray corresponds to later time
steps. (b) shows the number of extracted targets in black, compared to the
true cardinality in gray. (c) shows the sum of weights over time for the two
experiments.

ity error. With an estimate of the target extension, the partially occluded target
can still be found to be detectable using the variable probability of detection in
Appendix A.2. Thus, the experiment shows that for the data used, the giwphd
filter can handle occlusion and spatially close targets simultaneously. The experi-
ment also shows the benefit of estimating both the kinematical and extent states,
compared to only estimating the kinematical state.

7.4 Discussion

The two experiments above are not an exhaustive evaluation of the giwphd fil-
ter, but they serve as a proof of concept and a potential application (e.g. person
tracking for mobile robots). The comparison to the results in (Granström et al.,
2012), in which the target extent is not explicitly estimated, support the intuitive
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hypothesis that estimating the size of the extended targets improves the tracking
performance. Initial steps have been taken toward including extension parame-
ters in the target state in the etgmphd filter (Granström et al., 2011). Thus, more
experiments that compare the etgmphd filter and the giwphd filter are needed,
e.g. for data that contains more clutter than typical laser data does.

8 Conclusions and future work

This paper presented a phd filter for multiple extended target tracking, in the
presence of clutter and missed detection. The target extensions are modeled
as random matrices (Koch, 2008), and a suitable likelihood function is derived.
The phd is approximated using Gaussian inverse Wishart distributions, and the
assumptions necessary to obtain a computationally tractable phd filter are pre-
sented. Two methods for measurement set partitioning are suggested to be added
to the methods presented in (Granström et al., 2012). The first method is based on
the predicted Gaussian inverse Wishart phd components and the second method
is based on the well known EM algorithm. Adding the two partitioning methods
improves tracking of multiple targets of different sizes when they are spatially
close. A simulation study confirms that the presented phd filter can handle spa-
tially close targets, with the exception of when the targets maneuver quickly. It is
further shown that target spawning can be handled without the use of a specific
spawning model. The spawning is instead implicitly handled by the measure-
ment partitioning. A potential application, person tracking using laser range
sensors, is presented. Two experiments show the benefit of estimating the size of
the target extents, compared to only tracking the kinematical states of the target
centroid, as is performed in (Granström et al., 2012).

The presented target tracking filter estimates the target extent as a random ma-
trix, giving an elliptical extended target shape. Alternatively, the target ellipse
could be explicitly parametrized, included in the state vector, and estimated with
the kinematical states. Such an example is given in (Granström et al., 2011),
where elliptical shapes are tracked using a laser range sensor and a etgmphd
filter. Ellipse tracking is also performed using random hypersurface models in
(Baum et al., 2010b), a comparison between random matrices and random hyper-
surface models for the single target case is given in (Baum et al., 2010a). A com-
parison of the presented giwphd filter, and elliptic random hypersurface models
using the etgmphd filter, could be interesting for the multiple target case.

The importance of measurement set partitioning was highlighted in the paper,
and the case of close targets maneuvering quickly was shown to be difficult to
handle. This could possibly be improved through the use of additional partition-
ing methods, or via modeling different type of motions using an imm type filter.
A prediction model that allows transformations of the extension, e.g. rotations,
would possibly improve the filter performance.

Target spawning is not explicitly modeled in this work, however, it could be han-
dled implicitly via the partitioning methods used. The targets must be separated
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sufficiently for the spawning to be detected, and the spawning event is there-
fore detected with a small time delay. It is not obvious how a Gaussian inverse
Wishart distribution can be split into two Gaussian inverse Wishart distributions,
however devising such a method could possibly improve performance for target
spawning events.

A heuristic for determining the parameter γ in the Sub-Partition algorithm was
suggested. A method which does not rely on either assumptions or a priori knowl-
edge of the tracking scenario would be useful in the general case. Finally, an
improved method for merging of giw components is needed.

A Appendix

A.1 Derivation of the correction

Under the measurement model (5), the likelihood of n measurements zj is

n∏
j=1

N
(
zj ; (H ⊗ Id) x, X

)
=

n∏
j=1

N
(
zj ; H̃x, X

)
= (2π)−nd/2 |X |−n/2 etr

−1
2

 n∑
j=1

(
zj − H̃x

) (
zj − H̃x

)T

X−1

 , (40)

where etr ( · ) = exp (Tr ( · )) is exponential trace. Define the centroid measurement

as z̄ , 1
n

∑n
j=1 zj and the scatter matrix as Z ,

∑n
j=1

(
zj − z̄

) (
zj − z̄

)T
, and rewrite

the summation as
n∑
j=1

(
zj − H̃x

) (
zj − H̃x

)T
= Z + n

(
z̄ − H̃x

) (
z̄ − H̃x

)T
. (41)

Inserting (41) into (40) gives
n∏
j=1

N
(
zj ; H̃x, X

)
(42a)

= (2π)−nd/2 |X |−n/2etr
(
−1

2
ZX−1

)
etr

(
−1

2

(
z̄ − H̃x

) (
z̄ − H̃x

)T
(X
n

)−1)
(42b)

= (2π)−(n−1)d/2 |X |−(n−1)/2n−d/2etr
(
−1

2
ZX−1

)
N

(
z̄ ; H̃x,

X
n

)
(42c)

=LauxN
(
z̄ ; H̃x,

X
n

)
. (42d)

Now, let the predicted target distribution be

N
(
x ; m,P ⊗ X

)
IW (X ; ν, V ) . (43)
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The product of the measurement likelihood (42) and the predicted distribution
(43) is

LauxN
(
z̄ ; H̃x,

X
n

)
N (x ; m, P ⊗ X) IW (X ; ν, V )

=N (x ; m+, P+ ⊗ X)N
(
z̄ ; H̃m, SX

)
IW (X ; ν, V )Laux (44)

where we have

m+ = m + (K ⊗ Id)
(
z̄ − H̃m

)
, (45a)

P+ = P − KSKT. (45b)

with innovation factor S = HPHT + 1/n and gain matrix K = P HTS−1.

This result is easy to derive using the product formula for Gaussian distributions,
and using some basic properties of the Kronecker product. We thus have the
corrected Gaussian distribution with mean and covariance (45), multiplied with

N
(
z̄ ; H̃m, SX

)
IW (X ; ν, V )Laux (46a)

= (2π)−d/2 |SX |−1/2 |V |ν/2 |X |−(ν+d+1)/2

2νd/2Γd (ν/2)
etr

(
−1

2

(
z̄ − H̃m

) (
z̄ − H̃m

)T
(SX)−1

)
× etr

(
−1

2
VX−1

)
etr

(
−1

2
ZX−1

)
(2π)−(n−1)d/2 |X |−(n−1)/2n−d/2 (46b)

= (2π)−nd/2 (nS)−d/2
|V |ν/2

2νd/2Γd (ν/2)
2(ν+n)d/2Γd ((ν + n)/2)

|V + N + Z |(ν+n)/2

× |V + N + Z |(ν+n)/2 |X |−(ν+n+d+1)/2

2(ν+n)d/2Γd ((ν + n)/2)
etr

(
−1

2
(V + N + Z)X−1

)
(46c)

= (πnnS)−d/2
|V |ν/2

|V + N + Z |(ν+n)/2

Γd ((ν + n)/2)
Γd (ν/2)

IW (X ; ν+, V+) (46d)

=L × IW (X ; ν+, V+) (46e)

where we have N = S−1
(
z̄ − H̃m

) (
z̄ − H̃m

)T
and

ν+ = ν + n, (47a)

V+ = V + N + Z, (47b)

and the likelihood function L is defined as

L = (πnnS)−d/2
|V |ν/2

|V+|ν+/2

Γd (ν+/2)
Γd (ν/2)

. (48)

The likelihood function can be shown to be proportional to a generalized ma-
trix variate beta type II distribution (Gupta and Nagar, 2000). We have thus
shown how the likelihood of nmeasurements zj multiplied with a predicted giw
distribution can be rewritten as a corrected giw distribution multiplied with a
likelihood function.
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A.2 Variable probability of detection for the laser range sensor

The variable probability of detection used here is similar to the one presented
in (Granström et al., 2012), however it relies on less assumptions, and instead
utilizes the estimated target extensions. The idea is to decrease the probability of
detection behind (i.e. at larger range from the sensor) each giw component. In
doing so, the function considers the component weight, the size of the estimated
extension and the uncertainty in bearing (i.e. the polar angle from the sensor to
the component).

For a given point (x, y) in the surveillance area, the probability of detection is
computed as

pD (x, y) = max
(
pD,min , pD,0 − p̃D

)
, (49a)

p̃D =
∑
i:r>r(i)

w(i) max (G1, G2,A) , (49b)

Gg = exp

−
(
ϕ − ϕ(i) + (−1)g2σϕ,e

)2

0.01σϕ,p

 , (49c)

A =
∣∣∣ϕ − ϕ(i)

∣∣∣ < 2σϕ,e, (49d)

where

• pD,min is the minimum probability of detection value allowed;

• pD,0 is the nominal probability of detection of targets which are not oc-
cluded;

• r =
√
x2 + y2 and ϕ = tan−1 (y/x) is the range and bearing to the point (x, y);

• w(i), r(i) and ϕ(i) is the weight, range and bearing to the i:th giw compo-
nent’s kinematical state;

• σϕ,e is the cross range size of the i:th component, computed by Cartesian to
polar conversion of the extent matrix estimated as in (14b);

• σϕ,p is the bearing standard deviation of the i:th components kinematical
state, computed by Cartesian to polar conversion of the position uncer-
tainty estimated as in (14a).

To obtain the probability of detection for a giw component ξ(i)
k|k−1, the ellipsoid

corresponding to two standard deviations of the estimated extent (14b) is dis-
cretized into points (x, y), and for each discrete point along the extent a probabil-
ity of detection is computed. The probability of detection for the giw component

pD

(
ξ

(i)
k|k−1

)
is then given as the maximum of the probabilities computed along the

discretized extent. In comparison, the variable probability of detection is com-
puted only for the kinematical state position in (Granström et al., 2012). Taking
the maximum probability along the extent is what enables the giwphd filter to
handle partial target occlusion.
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Table 2: Pseudo-code for the Gaussian inverse Wishart phd filter

1: input: Sequence of measurement sets {Zk}Kk=1.
2: initialize: Set J0|0 = 0.
3: for k = 1, . . . , K do
4: Compute measurement set partition

{
pp

}P
p=1

, see Paper B and Section 5.

5: Predict and construct correction components, Table 3.
6: Correct, Table 4.
7: Prune and merge, Table 1.
8: Extract estimated target set, Table 5.
9: end for

10: output: Sequence of estimated target sets
{
X̂k

}K
k=1

A.3 Pseudo-code

The main filter recursion is given in Table 2, prediction and construction of cor-
rection components is given in Table 3, and correction is given in Table 4. The
pruning and merging scheme is given in Table 1, and target extraction is given
in Table 5. Note that pruning and merging, and target extraction, is performed
similarly to Vo and Ma (2006).

A.4 Implementation issues

When computing the corrected weight (Table 4, Line 14), the likelihood often
includes ratios of large numbers, leading to numerical overflow. Because of this,
computing the log-likelihood is recommended, and then updating the weight
with the exponential of the log likelihood. Similarly, the quantities dW p

w
(Ta-

ble 4, Line 16) are often large, leading to numerical overflow when ωpp (Table 4,
Line 19) is computed. A remedy is to store the log partition weights

ω̃pp = log
(
ωpp

)
=
|pp|∑
w=1

log
(
dW p

w

)
, (50)

and to normalize the log partition weights (Table 4, Line 21) as follows,

ω̂pp =ω̃pp − log(
P∑

p′=1

ωpp′ ) (51a)

=ω̃pp −

ω̃p1
+ log

1 +
P∑

p′=2

e
ω̃pp′ −ω̃p1


 (51b)

for p = 1, . . . , P . The partition weights are then given as ωpp = e
ω̂pp for p =

1, . . . , P .
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Table 3: Pseudo-code for giwphd filter prediction and correction compo-
nents

1: input: giw components
{
w

(j)
k−1|k−1, ξ

(j)
k−1|k−1

}Jk−1|k−1

j=1
, and set of measurement

set partitions
{
pp

}P
p=1

.

2: i = 0
3: for j = 1, . . . , Jb,k do
4: i ← i + 1
5: w

(i)
k|k−1 ← w

(j)
b,k , ξ

(i)
k|k−1 ← ξ

(j)
b,k

6: end for
7: for j = 1, . . . , Jk−1|k−1 do
8: i ← i + 1
9: w

(i)
k|k−1 ← pSw

(j)
k−1|k−1

10: m
(i)
k|k−1 ←

(
Fk|k−1 ⊗ Id

)
m

(j)
k−1|k−1, P

(i)
k|k−1 ← Fk|k−1P

(j)
k|kF

T
k|k−1 + Qk|k−1

11: ν
(i)
k|k−1 ← e−Ts/τν

(j)
k−1|k−1, V

(i)
k|k−1 ←

ν
(i)
k|k−1−d−1

ν
(j)
k−1|k−1−d−1

V
(j)
k−1|k−1

12: end for
13: Jk|k−1 ← i
14: for p = 1, . . . , P do
15: for w = 1, . . . ,

∣∣∣pp∣∣∣ do

16: z̄W
p
w

k ← 1
|W p

w |
∑

z(i)
k ∈W

p
w

z(i)
k , ZW

p
w

k ←
∑

z(i)
k ∈W

p
w

(
z(i)
k − z̄W

p
w

k

) (
z(i)
k − z̄W

p
w

k

)T

17: end for
18: end for
19: for j = 1, . . . , Jk|k−1 do

20: K̂
(j)
k|k−1 ← P

(j)
k|k−1H

T
k , Ŝ

(j)
k|k−1 ← Hk K̂

(j)
k|k−1, ẑ(j)

k|k−1 ← (Hk ⊗ Id)m(j)
k|k−1

21: end for

22: output: giw components
{
w

(j)
k|k−1, ξ

(j)
k|k−1

}Jk|k−1

j=1
, and correction components{{

z̄W
p
w

k , ZW
p
w

k

}|pp |
w=1

}P
p=1

and
{
K̂

(j)
k|k−1, Ŝ

(j)
k|k−1, ẑ

(j)
k|k−1

}Jk|k−1

j=1

A.5 Computational complexity analysis

Complexity of common operations

The complexity of some common matrix and vector operations is given in Table 6.
In addition, computing the inversion and the determinant of a d×d matrix V both
have approximate computational complexity O(d3).
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Table 4: Pseudo-code for giwphd filter correction

1: input: giw components
{
w

(j)
k|k−1, ξ

(j)
k|k−1

}Jk|k−1

j=1
, partitions

{
pp

}P
p=1

, and correc-

tion components
{{

z̄W
p
w

k , ZW
p
w

k

}|pp |
w=1

}P
p=1

and
{
K̂

(j)
k|k−1, Ŝ

(j)
k|k−1, ẑ

(j)
k|k−1

}Jk|k−1

j=1
.

2: for j = 1, . . . , Jk|k−1 do

3: w
(j)
k|k ←

(
1 −

(
1 − e−γ (j))

p
(j)
D

)
w

(j)
k|k−1, ξ

(j)
k|k ← ξ

(j)
k|k−1.

4: end for
5: ` = 0
6: for p = 1, . . . , P do
7: for w = 1, . . . ,

∣∣∣pp∣∣∣ do
8: ` ← ` + 1
9: for j = 1, . . . , Jk|k−1 do

10: S ← Ŝ
(j)
k|k−1 + 1∣∣∣W p

w

∣∣∣ , K ← K̂
(j)
k|k−1S

−1

11: ε← z̄W
p
w

k − ẑ(j)
k|k−1, N ← S−1εεT

12: m
(j+Jk|k−1`)
k|k ← m

(j)
k|k−1 + (K ⊗ Id) ε, P

(j+Jk|k−1`)
k|k ← P

(j)
k|k−1 − KSK

T

13: ν
(j+Jk|k−1`)
k|k ← ν

(j)
k|k−1 + |W p

w |, V
(j+Jk|k−1`)
k|k ← V

(j)
k|k−1 + N + ZW

p
w

k

14: w
(j+Jk|k−1`)
k|k ← e−γ

(j)(γ (j))|W
p
w |p

(j)
D

β
|Wp
w |

FA,k

(
π|W

p
w | |W p

w |S
)d/2

∣∣∣∣V (j)
k|k−1

∣∣∣∣ν(j)
k|k−1/2

∣∣∣∣∣V (j+Jk|k `)
k|k

∣∣∣∣∣ν
(j+Jk|k `)
k|k /2

Γd

(
ν

(j+Jk|k `)
k|k /2

)
Γd

(
ν

(j)
k|k−1/2

) w
(j)
k|k−1

15: end for
16: dW p

w
← δ∣∣∣W p

w

∣∣∣,1 +
∑Jk|k−1
j=1 w

(j+Jk|k−1`)
k|k

17: w
(j+Jk|k−1`)
k|k ←

w
(j+Jk|k−1`)

k|k
d
W
p
w

for j = 1, . . . , Jk|k−1

18: end for
19: ωpp ←

∏|pp|
w=1 dW p

w

20: end for
21: Jk|k ← Jk|k−1 (` + 1), Jaux ← Jk|k−1, ωpp ←

ωpp∑P
p′=1 ωpp′

for p = 1, . . . , P

22: for p = 1, . . . , P do
23: w

(j+Jaux)
k|k ← w

(j+Jaux)
k|k ωpp , for j = 1, . . . , Jk|k−1

∣∣∣pp∣∣∣, Jaux ← Jaux + Jk|k−1

∣∣∣pp∣∣∣
24: end for

25: output: giw components
{
w

(j)
k|k , ξ

(j)
k|k

}Jk|k
j=1

Assumptions and approximations

To simplify the notation, let J = Jk−1|k−1, Jb = Jb,k and J+ = Jk|k−1 = Jk−1|k−1 + Jb,k .
To simplify the analysis, the following assumptions are made;
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Table 5: Pseudo-code for giwphd filter target extraction

1: input: giw components
{
w

(j)
k|k , ξ

(j)
k|k

}Jk|k
j=1

.

2: X̂k = ∅
3: for j = 1, . . . , Jk|k do

4: if w(j)
k|k > 0.5 then

5: Compute X̂(j)
k|k , see Granström and Orguner (2012).

6: X̂k ← X̂k ∪
(
m

(j)
k|k , X̂

(j)
k|k

)
7: end if
8: end for
9: output: Estimated set of targets X̂k

1. The estimated target cardinality is approximately correct, i.e. N̂x,k ≈ Nx,k .

2. The number of giw components are approximately equal to the number of
targets, i.e. J ≈ Nx,k .

3. The true target Poisson rate γ is equal for all targets. The number of mea-
surements is Nz,k ≈ γNx,k + λk , where λk is the mean number of clutter
measurements.

4. After partitioning, each cell W with target generated measurements has
cardinality approximately equal to the Poisson rate γ , i.e. |W | ≈ γ .

5. After the correction step, there are approximately Nx,k clusters with giw
components, and each cluster contains approximately J+ giw components.
Thus, in the pruning and merging step, we have |L| ≈ J+, where L is the set
of giw components that are merged into one component.

Table 6: Complexity of common operations, in terms of multiplications
(mult) and summations (sum).

Input Operation Mult Sum Complexity
A(m × n), B(n × p) AB mnp m(n − 1)p m(2n − 1)p
A(m × n), B(p × q) A ⊗ B mnpq 0 mnpq
A(m × n), B(p × q) (A ⊗ B)C mnpq mp(nq − 1)t mp[(2nq
C(nq × t) ×(t + 1) −1)t + nq]
Ai(p × q)

∑n
i=1 Ai 0 (n − 1)pq (n − 1)pq

xi(d × 1), yi(d × 1) xi − yi 0 d d
zi(d × 1)

∑n
i=1 ziz

T
i nd2 (n − 1)d2 (2n − 1)d2

F(n × n), P (n × n) FP FT 2n3 2(n3 − n2) 4n3 − 2n2
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Prediction and construction of correction components

The complexity of prediction and construction of correction components is given
in Table 7. Predicting each of the J components has approximate complexity

O(J
(
3n2

x + 4s3 + d2 − nx − s2 + 7
)
) ≈ O(Jn2

x). (52)

Constructing the centroid measurements and scatter matrices has approximate
complexity

O


 P∑
p=1

∣∣∣pp∣∣∣
 (γ(2d2 + d) − d2 + d + 2

) ≈ O
γd2

P∑
p=1

∣∣∣pp∣∣∣
 . (53)

Constructing the gain matrices, innovation factors and innovation vectors has
approximate complexity

O
(
(J + Jb)(3nxd + 2s2 + s − d − 1)

)
≈ O

(
(J + Jb)n

2
x

)
. (54)

Thus, the overall complexity of prediction and construction of correction compo-
nents is approximately

O

J+n2
x + γd2

P∑
p=1

∣∣∣pp∣∣∣
 . (55)

Table 7: Complexity of prediction and correction components
Operation Multiplications Summations Complexity
pSw 1 0 1
(F ⊗ Id)m s2d2 + s2d2 sd(sd − 1) 3n2

x − nx
FP FT + Q 2s3 2s2(s − 1) + s2 4s3 − s2
e−Ts/τν – – O(3)
ν−d−1
ν−d−1V d2 + 1 4 d2 + 4
1
|W |

∑
z 2 (γ − 1)d (γ − 1)d + 2∑

(z − z)(z − z)T γd2 2d + (γ − 1)d2 (2γ − 1)d2 + 2d

P H s2 s(s − 1) 2s2 − s
HK s s − 1 2s − 1
(H ⊗ Id)m sd2 + sd2 d(sd − 1) (3nx − 1)d

Correction

The complexity of correction is given in Table 8. The correction update of the
giw components has approximate complexity

O


J+ P∑

p=1

|pp |

 (3nxd + d3 + 3d2 + d + s + 6)

 ≈ O
n2
xJ+

P∑
p=1

|pp |

 . (56)
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Computing the cell weights δW and partition weights ωp has approximate com-
plexity

O

(J+ + 1)
P∑
p=1

|pp | +
P∑
p=1

|pp |

 ≈ O
J+ P∑

p=1

|pp |

 . (57)

Normalizing the partition weights and updating the giw components weights
has approximate complexity O(P + 2 + 3P ) ≈ O(P ). Thus, the overall complexity
of the correction is approximately

O

n2
xJ+

P∑
p=1

|pp |

 . (58)

Table 8: Complexity of correction
Operation Multiplications Summations Complexity
S + 1/ |W | 1 1 2
KS−1 1 + s 0 s + 1
z − z 0 d d
S−1εεT 1 + d2 + 1 0 d2 + 1
m + (K ⊗ Id)ε sd2 + sd2 sd(d − 1) + nx 3nxd
P − KSKT s2 + 1 s2 2s2 + 1
ν + |W | 0 1 1
V + N + Z 0 2d2 2d2

weight update – – O(d3)

δ +
∑
w 0 J+ + 1 J+ + 1∏

dW |pp | − 1 0 |pp | − 1

J(` + 1) 1 1 2
ωp∑
ωp

1 P − 1 P

wω 1 0 1
J + J |p| 1 1 2

Pruning and merging

The complexity of merging is given in Table 9. Determining whether or not com-
ponents i and j should be merged has approximate complexity O

(
n3
x

)
. There

are approximately Nx,kJ+ components remaining after the correction step. In
the worst case, each component has to be compared to all other components, i.e.
O

(
N2
x,kJ

2
+

)
comparisons. Thus, the worst case complexity of the merging is ap-

proximately

O
(
N2
x,kJ

2
+n

3
x

)
. (59)
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Table 9: Complexity of pruning and merging
Operation Multiplications Summations Complexity
P̂ s2d2 + 2 3 n2

x + 5
Merge i and j? – – O(n3

x)∑
w 0 J+ − 1 J+ − 1

1
w

∑
wm J+nx + nx + 1 (J+ − 1)nx 2J+nx + 1

1
w

∑
wP J+s

2 + s2 + 1 (J+ − 1)s2 2J+s2 + 1
1
w

∑
wν J+ + 2 J+ − 1 2J+ + 1

1
w

∑
wV J+d

2 + d2 + 1 (J+ − 1)d2 2J+d2 + 1

Target extraction

Computing the extension estimate X̂ has approximate complexity O(d2). Under
the assumption that the target cardinality estimate is approximately correct, the
complexity of target extraction is approximately

O
(
Nx,kd

2
)
. (60)

Partitioning the measurement set

For Distance Partitioning, creating the distance matrix requires 3Nz,k(Nz,k − 1)
multiplications and summations. The distance matrix must then, in the worst
case, be queried for each measurement for each of the P partitions, i.e. Nz,kP
times. Note that it is difficult to give an estimate of how many partitions are cre-
ated in Distance Partitioning, because P depends on the particular measurement
set that is being partitioned.

However, using Distance Partitioning gives at most Nz,k unique partitions, thus
a worst case upper limit for P is Nz,k . The worst case complexity of Distance
Partitioning is thus approximately O(N4

z,k). The worst case P = Nz,k gives

P∑
p=1

|pp | =
Nz,k∑
p=1

p =
Nz,k(Nz,k + 1)

2
≈ O(N2

z,k). (61)

The complexity of the em algorithm for Gaussian mixtures is given in Table 10.
The computational complexity of one iteration of the em algorithm for Gaussian
mixtures is approximately O(Nx,kNz,kd2 + n3

x). On average, in our simulations
and experiments, convergence is reached in 4 iterations.

Thus, the worst case complexity of partitioning the measurement set is approxi-
mately

O(Nz,k(Nx,kd
2 + N3

z,k) + n3
x). (62)
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Table 10: Complexity of the em algorithm
Operation Multiplications Summations Complexity
p(zj |miPi) – – O(d3)
γi(zj ) Nx,k + 3 Nx,k − 1 2Nx,k + 2

mi Nx,k(Nz,k + 2) Nx,kNz,k 2Nx,kNz,k + 2Nx,k
Pi Nx,k(Nz,k(d2 + 1) + 2) Nx,k[2d 2Nx,kNz,kd2 + Nx,k

+d2(Nz,k − 1)] ×(Nz,k − d2 + 2d + 2)
πi Nx,k Nx,k(Nz,k − 1) Nx,kNz,k
log-lik – – O(n3

x)

Overall complexity

The worst case overall complexity of one time step is approximately

O

J+n2
x + γd2

P∑
p

|pp | + J+n2
x

P∑
p

|pp | + N2
x,kJ

2
+n

3
x

+ Nx,kd
2 + Nz,kNx,kd

2 + N4
z,k + n3

x

 (63)

≈O

(J+n2
x + γd2

) P∑
p

|pp | + Nx,kNz,kd2 + J2
+N

2
x,kn

3
x + N4

z,k

 . (64)

Inserting J+ = Nx,k + Jb and Nz,k = γNx,k +λk into (64) gives the worst case overall
complexity

O

((Nx,k + Jb
)
n2
x + γd2

) P∑
p=1

|pp | +
(
γNx,k + λk

)
Nx,kd

2

+
(
Nx,k + Jb

)2 N2
x,kn

3
x + P

(
γNx,k + λk

)3

. (65)
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Abstract

In Gilholm et al.’s extended target model, the number of measure-
ments generated by a target is Poisson distributed with measurement
rate γ . Practical use of this extended target model in multiple ex-
tended target tracking algorithms requires a good estimate of γ . In
this paper, we first give a Bayesian recursion for estimating γ using
the well-known conjugate prior Gamma-distribution. In multiple ex-
tended target tracking, consideration of different measurement set as-
sociations to a single target makes Gamma-mixtures arise naturally.
This causes a need for mixture reduction, and we consider the re-
duction of Gamma-mixtures by means of merging. Analytical mini-
mization of the Kullback-Leibler divergence is used to compute the
single Gamma distribution that best approximates a weighted sum
of Gamma distributions. Results from simulations show the merits
of the presented multiple target measurement-rate estimator. The
Bayesian recursion and presented reduction algorithm have impor-
tant implications for multiple extended target tracking, e.g. using the
implementations of the extended target phd filter.

1 Introduction

In target tracking, the assumption is often made that a target gives rise to at most
one measurement per time step, see e.g. (Bar-Shalom and Fortmann, 1987). How-
ever, in extended target tracking this assumption is relaxed, and the extended
targets are modeled as potentially giving rise to more than one measurement per
time step. In an extended target tracking scenario it is therefore of interest to
model the number of measurements that each target gives rise to.

One such model is given by Gilholm et al. (2005), where the measurements are

259
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modeled as an inhomogeneous Poisson point process. At each time step, a Poisson
distributed random number of measurements are generated, distributed around
the target. Mahler has given an extended target Probability Hypothesis Density
(phd) filter under this model (Mahler, 2009), and a Gaussian Mixture implemen-
tation of this filter, called the Extended Target Gaussian Mixture phd (etgmphd)
filter, has been presented (Granström et al., 2010; Granström et al., 2012). A
Gaussian inverse Wishart implementation of (Mahler, 2009), called the Gaussian
inverse Wishart phd (giwphd) filter is presented in (Granström and Orguner,
2012a). The measurement model (Gilholm et al., 2005) can be understood to
imply that the extended target is sufficiently far away from the sensor for the
measurements to resemble a cluster of points, rather than a geometrically struc-
tured ensemble, see e.g. (Granström et al., 2010; Granström et al., 2012) for sim-
ulation examples. However, the etgmphd filter and giwphd filter have also
been applied successfully to data from laser range sensors, which give (highly)
structured measurements, see (Granström et al., 2012; Granström et al., 2011;
Granström and Orguner, 2012a).

In the extended target phd filter the Poisson rate γ is modeled as a function of the
extended target state x, i.e. γ , γ (x). In the etgmphd filter γ is approximated as
a function of the extended targets’ state estimates (Granström et al., 2012). It has
been noted that having a good estimate γ̂ of the true parameter is important when
multiple targets are spatially close (Granström et al., 2012). More specifically,
under the assumption that the true rate is constant and equal for all targets, the
true parameter must lie in the interval

γ̂ −
√
γ̂ ≤ γ ≤ γ̂ +

√
γ̂ (1)

for the estimated cardinality to be correct (Granström et al., 2012). However, in
the most general case the rates are neither constant over time, nor equal for all
extended targets. It might also be the case that the true function γ( · ) is difficult
to model, or even time-varying. All of these issues raise the need for a method to
estimate individual Poisson rates for multiple extended targets.

In this paper we consider multiple extended targets under the measurement
model (Gilholm et al., 2005). The set of extended targets at time tk is denoted

Xk =
{

x(i)
k

}Nx,k
i=1

. (2)

At each time step, the number of measurements generated by the i:th target is a

Poisson distributed random variable with rate γ (i)
k . The measurement set at time

tk , denoted

Zk =
{

z(j)
k

}Nz,k
j=1

, (3)

is the union of all target measurements and the clutter measurements. The num-
ber of clutter measurements generated at each time step is assumed to be Poisson
distributed with rate λk . Let Zk denote all measurement sets up to, and includ-
ing, time tk . We assume the existence of an underlying multiple extended target
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tracker that estimates the target states x(i)
k , e.g. (Granström et al., 2010; Gran-

ström et al., 2012). The set of measurements that are used to update the state of

the i:th target at time tk is denoted Z(i)
k .

The first objective of this work is to estimate the set of measurement rates γ (i)
k ,

given sequences of measurement sets

Zk,(i) ,
{

Z(i)
0 , . . . ,Z

(i)
k

}
, i = 1, . . . , nx,k . (4)

To this end, in Section 2 we give a recursive Bayesian estimator for γ (i)
k , with

exponential forgetting for the prediction step. We also show how the predicted

likelihood is affected when the measurement rates γ (i)
k are estimated in addition

to estimating the target states x(i)
k .

In the multiple target case under clutter and missed detections, there might be
multiple alternative measurement sets (corresponding to different association hy-
potheses)

Z(i1)
k ,Z(i2)

k , . . . ,Z
(iNi )
k (5)

that are used to update the i:th target state at time tk . In this case, the state den-
sities of the targets are represented by mixture densities. As time progresses, the
number of mixture components grow. To obtain computationally tractable algo-
rithms, hypothesis reduction must be performed, e.g. via pruning or merging.

The second objective of this work is to show how a mixture of γ estimates can be
reduced. In Section 3, we consider merging a weighted sum of measurement rate
estimates by minimization of the Kullback-Leibler divergence, and we also give
a criterion that is used to determine whether or not two components should be
merged.

The proposed Bayesian estimator and merging method is evaluated in Simula-
tions in Section 4, and the paper is finalized with concluding remarks in Sec-
tion 5.

2 Bayesian recursion for γk
In this section, we consider recursive estimation of the i:th target’s measurement

rate γ (i)
k from the sequence of measurement sets Zk,(i). We also show how esti-

mating the measurement rate affects the resulting extended target predicted like-
lihood. Since we consider only the i:th target, from this point on in this section,
we suppress the superscript (i).

2.1 Measurement update and prediction

The conjugate prior to the Poisson distribution is well known to be the Gamma
distribution, see e.g. (Gelman et al., 2004). Assume that at time tk the prior dis-
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tribution for the Poisson rate γk is a Gamma distribution,

p
(
γk |Zk−1

)
=GAM

(
γk ; αk|k−1, βk|k−1

)
(6a)

=
β
αk|k−1
k|k−1

Γ
(
αk|k−1

)γαk|k−1−1
k e−βk|k−1γk . (6b)

Let the k:th measurement set Zk contains Nz,k elements, where Nz,k is Poisson
distributed with rate γk ,

p
(
Nz,k |γk

)
=PS

(
Nz,k ; γk

)
(7a)

=
γ
Nz,k
k e−γk

Nz,k!
. (7b)

The posterior distribution is

p
(
γk |Zk

)
=GAM

(
γk ; αk|k−1, βk|k−1

)
PS

(
Nz,k ; γk

)
(8a)

=
β
αk|k−1
k|k−1 γ

αk|k−1+Nz,k−1
k e−(βk|k−1+1)γk

Γ
(
αk|k−1

)
Nz,k!

(8b)

=GAM
(
γk ; αk|k−1 + Nz,k , βk|k−1 + 1

)
(8c)

×
Γ
(
αk|k−1 + Nz,k

)
β
αk|k−1
k|k−1

Γ
(
αk|k−1

) (
βk|k−1 + 1

)αk|k−1+Nz,k
Nz,k!

=GAM
(
γk ; αk|k , βk|k

)
× Lγ

(
αk|k−1, βk|k−1, Nz,k

)
, (8d)

where the predicted likelihood Lγ ( · ) is a negative binomial distribution, see e.g.
(Gelman et al., 2004).

In case the true parameter is known to be constant over time, the posterior dis-
tribution can be predicted as p

(
γk |Zk

)
= p

(
γk |Zk−1

)
. However, in the general

case γk may change over time. We propose to use exponential forgetting with a
forgetting factor 1

ηk
for the prediction of γk ,

αk+1|k =
αk|k
ηk

, βk+1|k =
βk|k
ηk

, (9)

where ηk > 1. This prediction has an effective window of length we = 1
1−1/ηk

=
ηk
ηk−1 . Using exponential forgetting prediction with window length we approx-
imately means that we only “trust” the information that was contained in the
measurements from the last we time steps.

The expected value and variance of γk are

E [γk] =
αk|k
βk|k

, Var (γk) =
αk|k

β2
k|k
. (10)



2 Bayesian recursion for γk 263

Note that the prediction (9) corresponds to keeping the expected value constant
while increasing the variance with a factor ηk > 1.

2.2 Extended target predicted likelihood

The measurement update and corresponding predicted likelihood is an impor-
tant part of any framework for multiple target tracking under uncertain associa-
tion and clutter. Let ξk denote the augmented extended target state,

ξk = (γk , xk) . (11)

Given a set of measurements Zk and a prior distribution p
(
ξk |Zk−1

)
, the posterior

distribution is

p
(
ξk |Zk

)
=p (Zk |ξk) p

(
ξk |Zk−1

)
(12a)

=p (Zk |ξk) p
(
γk |Zk−1

)
p
(
xk |Zk−1

)
. (12b)

Note that there is an implicit assumption here that the prior distribution can be
factorized as

p
(
ξk |Zk−1

)
= p

(
γk |Zk−1

)
p
(
xk |Zk−1

)
. (13)

This assumption neglects the dependence between the number of measurements
and any extension parameters that are included in xk . However the probability
density over the number of measurements, conditioned on the target extension,
is unknown in most applications, and we believe that this assumption is valid in
most cases.

Assume also that the measurement likelihood can be decomposed as

p (Zk |ξk) = p
(
Zk , Nz,k |ξk

)
= p

(
Nz,k |γk

)
p (Zk |xk) . (14)

The validity of this assumption is also dependent on the considerations men-
tioned above. The posterior distribution and predicted likelihood is

p
(
γk |Zk

)
p
(
xk |Zk

)
︸                 ︷︷                 ︸

posterior

×Lγ
(
αk|k−1, βk|k−1, Nz,k

)
Lx

(
x̌k|k−1,Zk

)
︸                                            ︷︷                                            ︸

predicted likelihood

, (15)

where x̌k|k−1 denotes the sufficient statistics of xk . Thus, any extended target
tracking framework that estimates the states xk can be augmented to also include
estimates of the measurement rates γk .

In the results section below we give an example where we integrate γk estimation
into the etgmphd filter (Granström et al., 2010; Granström et al., 2012). The pos-
terior distribution for γk and the corresponding predicted likelihood Lγ ( · ) are
given in (8d). The details for the posterior distribution and predicted likelihood
for xk , as well as the full filter recursion, can be found in (Granström et al., 2010;
Granström et al., 2012).
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3 Multi-target mixture reduction

A straightforward way to model uncertainty in multiple target tracking is to
use mixtures of distributions, see e.g. the Multi-hypothesis Tracking filter (Bar-
Shalom and Rong Li, 1995), or the Gaussian Mixture phd-filters (Vo and Ma,
2006; Granström et al., 2010; Granström et al., 2012). Let p( · ) be a mixture of
distributions,

p (ξk) =
Jk|k∑
j=1

wjpj (ξk) (16)

=
Jk|k∑
j=1

wjGAM
(
γk ; α(j)

k|k , β
(j)
k|k

)
p
(
xk ; x̌(j)

k|k

)
where each distribution pj is called component. A common choice is to model
the state xk as Gaussian distributed, see e.g. (Bar-Shalom and Rong Li, 1995; Vo
and Ma, 2006; Granström et al., 2010; Granström et al., 2012), which would give
a Gamma Gaussian (gg) distributed extended target ξk . In Koch’s random matrix
framework (Koch, 2008), the extent is modeled as an inverse Wishart distributed
random matrix Xk , and the kinematic parameters, i.e. position, velocity and accel-
eration, are modeled as a random vector xk . In this case we have ξk = (γk , xk , Xk),
and (16) would be a mixture of Gamma Gaussian inverse Wishart distributions.

A natural consequence of the tracking frameworks (Bar-Shalom and Rong Li,
1995; Vo and Ma, 2006; Granström et al., 2010; Granström et al., 2012) is the
increasing number of mixture components, or hypotheses. To keep the target
tracking implementation at a tractable level, the mixture must be reduced regu-
larly, which is typically performed via pruning or merging. The output of mix-
ture reduction is an approximate mixture,

p̃ (ξk) =
J̃k|k∑
j=1

wj p̃j (ξk) (17)

=
J̃k|k∑
j=1

wjGAM
(
γk ; α̃(j)

k|k , β̃
(j)
k|k

)
p
(
xk ; ˜̌x(j)

k|k

)
,

where J̃k|k < Jk|k and the difference between p( · ) and p̃( · ) is small by some mea-
sure. Here we address mixture reduction via component merging.

One approach to merging is to successively find component pairs that are close by
some merging criterion, and merge them, see e.g. (Vo and Ma, 2006; Granström
et al., 2010; Granström et al., 2012). Different methods for merging of Gaus-
sian mixtures are given in e.g. (Salmond, 1990; Williams and Maybeck, 2003;
Runnalls, 2007; Schieferdecker and Huber, 2009; Crouse et al., 2011), a method
for merging of Gaussian inverse Wishart mixtures is given in (Granström and
Orguner, 2012c). In Section 3.1 we give a theorem which is used to find the
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Gamma distribution q( · ) that minimizes the Kullback-Leibler divergence between
w̄q( · ) and the sum p = Σi∈Lwipi , where w̄ = Σi∈Lwi and L ⊆

{
1, . . . , Jk|k

}
.

When the extended targets are modeled with a mixture (16), the merging crite-
rion should consider both parts of the components, i.e. the distributions of both
γk and xk . Different merging criteria for Gaussian distributions are given in e.g.
(Salmond, 1990; Williams and Maybeck, 2003; Runnalls, 2007; Schieferdecker
and Huber, 2009; Crouse et al., 2011; Vo and Ma, 2006; Granström et al., 2010;
Granström et al., 2012). In Section 3.2 we give a merging criterion for mixtures
of Gamma distributions.

3.1 Merging N Gamma components

The Kullback-Leibler divergence (kl-div),

KL (p||q) =
∫
p(x) log

(
p(x)
q(x)

)
dx, (18)

is a measure of how similar two functions p and q are. The kl-div is well-known
in the literature for its moment-matching characteristics, see e.g. (Bishop, 2006;
Minka, 2001), and for probability distributions it is considered the optimal dif-
ference measure in a maximum likelihood sense (Williams and Maybeck, 2003;
Runnalls, 2007; Schieferdecker and Huber, 2009). Note that minimizing the kl-
div between p and q w.r.t. q can be rewritten as a maximization problem,

min
q

KL (p||q) = max
q

∫
p(x) log (q(x)) dx. (19)

Theorem 1. Let p( · ) be a weighted sum of Gamma components,

p (γ) =
N∑
i=1

wiGAM (γ ; αi , βi) =
N∑
i=1

wipi (γ), (20)

where w̄ =
∑N
i=1 wi . Let

q (γ) = w̄GAM (γ ; α, β) (21)

be the minimizer of the kl-div between p (γ) and q (γ) among all Gamma distri-
butions, i.e.

q (γ) , arg min
q(γ)∈GAM

KL (p (γ) ||q (γ)) . (22)

Then the parameter β is given by

β =
α

1
w̄

∑N
i=1 wi

αi
βi

, (23)

and the parameter α is the solution to

0 = logα − ψ0 (α) +
1
w̄

N∑
i=1

wi (ψ0 (αi) − log βi) − log

 1
w̄

N∑
i=1

wi
αi
βi

 . (24)
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Proof: Given in Appendix A.

Remarks: The expression for β (23) corresponds to matching the expected values
under both distributions q and p,

w̄ Eq [γ] =
N∑
i=1

wi Epi [γ] . (25)

The expression for α (24) corresponds to matching the expected values of the
logarithm under both distributions q and p,

w̄ Eq [log γ] =
N∑
i=1

wi Epi [log γ] . (26)

A value for the parameter α is easily obtained by applying a numerical root find-
ing algorithm to (24), e.g. Newton’s algorithm, see e.g. (Stoer and Bulirsch, 1993).

3.2 Merging criterion for Gamma components

In this section we derive a criterion that is used to determine whether or not two
Gamma components should be merged. When reducing the number of compo-
nents, it is preferred to keep the overall modality of the mixture. Thus, if the
initial mixture p ( · ) has M modes, then the reduced mixture p̃ ( · ) should have M
modes.

The optimal solution to this problem is to consider every possible way to reduce
Jk|k components, compute the corresponding kl-div:s, and then find the best
trade-off between low kl-div and reduction of Jk|k . For Jk|k components, there
are BJk|k different ways to merge, where Bi is the i:th Bell number (Rota, 1964).
Because Bi increases rapidly with i, e.g. B5 = 52 and B10 = 115975, the optimal
solution can not be used in practice.

Instead a merging criterion must be used to determine whether or not a pair of
Gamma components should be merged. As merging criterion the kl-div could
be used, however because it is asymmetrical,

KL (p||q) , KL (q||p) , (27)

it should not be used directly. Instead we use the Kullback-Leibler difference
(kl-diff), defined for two distributions p (γ) and q (γ) as

DKL (p (γ) , q (γ)) =KL (p (γ) ||q (γ)) + KL (q (γ) ||p (γ)) (28a)

=
∫
p (γ) log

(
p (γ)
q (γ)

)
dγ +

∫
q (γ) log

(
q (γ)
p (γ)

)
dγ. (28b)

Let p (γ) and q (γ) be defined as

p (γ) =GAM (γ ; α1, β1) , (29a)

q (γ) =GAM (γ ; α2, β2) . (29b)
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The kl-div between p( · ) and q( · ) is

KL (p (γ) ||q (γ))

=α1 log β1 − log Γ (α1) + (α1 − 1) (ψ0 (α1) − log β1) − α1

− α2 log β2 + log Γ (α2) − (α2 − 1) (ψ0 (α1) − log β1) + β2
α1

β1
(30a)

= log
(
βα1

1

βα2
2

)
+ log

(
Γ (α2)
Γ (α1)

)
+ (α1 − α2) (ψ0 (α1) − log β1) + α1

(
β2

β1
− 1

)
, (30b)

and the kl-div between q and p is defined analogously. The kl-diff between p
and q becomes

DKL (p (γ) , q (γ))

= (α1 − α2)
(
ψ0 (α1) − ψ0 (α2) + log

β2

β1

)
+ (β2 − β1)

(
α1

β1
− α2

β2

)
. (31)

3.3 Merging of extended target components

When merging is used to reduce an extended target mixture (16), the merging
criterion should be defined over both γk and xk . For example, the following
merging criterion could be used

DKL

(
pi (ξk) , pj (ξk)

)
< U, (32)

where DKL( · ) is the kl-diff between two extended target components. Owing
to the assumed conditional independence of the distributions over γk and xk in
(12), the kl-diff can expressed as a sum

DKL

(
pi (ξk) , pj (ξk)

)
= D

γ
KL (i, j) + Dx

KL (i, j) , (33)

where Dγ
KL (i, j) = DKL

(
pi(γ), pj (γ)

)
is given in (31) and

Dx
KL (i, j) = DKL

(
pi(x), pj (x)

)
. (34)

Thus, the following merging criterion could alternatively be used(
D
γ
KL (i, j) < Uγ

)
&

(
Dx

KL (i, j) < Ux

)
, (35)

where & is the logical and operator. In case xk is Gaussian distributed, possible
merging criteria Dx

KL (i, j) are given in e.g. (Salmond, 1990; Vo and Ma, 2006).

4 Results

In this section results from simulations are presented. The merging criterion is
evaluated, and the merging algorithms are compared. Results are also presented
for single and multiple target tracking.
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Figure 1: kl-diff for two Gamma distributions, when α2 = aα1 = a10 and
β2 = bβ1. When a ≈ b, the expected value is approximately the same for
both distributions, and the the ratio of the variances is 1/b. This explains the
elongated shape of the kl-diff along a ≈ b.

4.1 Merging criterion

Letting α2 = aα1 and β2 = bβ1, the kl-diff simplifies to

DKL (p (γ) , q (γ))

=α1 (1 − a) (log b + ψ0(α1) − ψ0(aα1)) + α1 (b − 1)
(
1 − a

b

)
, (36)

i.e. it becomes independent of the specific value of β1. It can be shown that, for
given a and b, a larger α1 means a larger kl-diff. For α1 = 10, the kl-diff is
shown in Figure 1.

4.2 Comparison of merging algorithms

An intensity p (γ) with 20 Gamma components was reduced using the merging
method and criterion presented in Section 3. The Gamma mixture parameters
were sampled uniformly from the following intervals,

wi ∈ [0.05 , 0.95] , αi ∈ [50 , 2500] , βi ∈ [5 , 50] , (37)
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Figure 2: Merging of 20 Gamma components, using the merging method
and criterion of Section 3. The reduced mixture has 7 components and has
preserved the overall modality.

i.e. αi and βi were sampled such that the expected value and variance of γ be-
longs to [10 , 50] and [1 , 2], respectively. The original mixture and the approx-
imation are shown in Figure 2. The reduced mixture has 7 components, and
manages to capture the overall modality of the original mixture.

4.3 Single target results

A single target with time varying γ was simulated for 150 time steps, the true
measurement rate varied with time as shown in Figure 3a. The estimation er-
ror, averaged over 104 Monte Carlo runs, is shown in Figures 3b, 3c and 3d, for
ηk = 1.10, ηk = 1.25 and ηk = 2.25, respectively. With a higher ηk , the estimate
responds faster to changes in the true parameter, at the expense of being more
sensitive to noise. As with any prediction and correction recursion, setting the
parameter requires a trade off between noise cancellation and tracking capabili-
ties.

4.4 Multiple target results

The Bayesian γk estimator was integrated into the Gaussian Mixture Probability
Hypothesis Density (etgmphd) filter (Granström et al., 2010; Granström et al.,
2012). A scenario with three targets was simulated for 100 time steps, the true

Poisson rates were set to γ (1)
k = 5, γ (2)

k = 15 and γ (3)
k = 30. Estimation results for

ηk = 1.25 are shown in Figure 4a. The estimates

γ̂
(i)
k|k =

α
(i)
k|k

β
(i)
k|k

(38)

are a bit noisy, however they remain within the bounds given by

γ
(i)
k ±

√
γ

(i)
k , (39)

i.e. the true mean ± one standard deviation. With ηk = 1.01 the estimation error
is much smaller, see Figure 4b. However, as discussed previously, with a low ηk
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(c) ηk = 1.25, we = 5
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Figure 3: Single target results. (a): The true rate γk varied between γ0 = 5
and γ0 +γ1 = 35. (b), (c) and (d): The solid line shows the average estimation
error, the gray area is the average estimation error ± one standard deviation,
and the dashed lines are the bounds ±

√
γ̂ , c.f. (1). A higher ηk gives a lower

average estimation error, however the estimation error also has much larger
standard deviation.

the response to changes in the true parameter would be slower.

5 Concluding Remarks

This paper presented a Bayesian estimator for the rate parameter γ of a Poisson
distribution. The conjugate prior of γ is the Gamma distribution, and, using
exponential forgetting prediction, it is possible to track a rate γ that changes
over time. To manage multiple targets with different rates, a mixture of Gamma
distributions is utilized. Mixture reduction is addressed, where components are
merged via analytical minimization of the Kullback-Leibler divergence between
a weighted sum of Gamma distributions and the single Gamma distribution that
best approximates the sum. A simulation study was used to show the merits of
the Poisson rate estimation framework.

In future work, we intend to integrate the rate estimation fully into the Gaus-
sian mixture and Gaussian inverse Wishart extended target phd filters. Having a
good estimate of the measurement rate could have important implications for the
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Figure 4: Three targets with true rates γ (1)
k = 5, γ (2)

k = 15 and γ
(3)
k = 30,

shown as dark gray lines. The estimates γ̂ (i)
k|k , shown as black dots, remain

within the bounds γ (i)
k ±

√
γ

(i)
k , i.e. the true mean ± one standard deviation,

shown as light gray areas. The same sequence of measurement sets is used
in (a) and (b), with different ηk .

performance, especially during the measurement partitioning step. Future work
also includes improving upon the exponential forgetting prediction. The number
of measurements generated can be affected by the extended target’s position, as
well as its shape and size. Including the estimated position, size and shape in the
prediction step could possibly improve tracking of Poisson rates that change over
time.

A Appendix

First we derive an expected value which is needed in the proof of Theorem 1.
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A.1 Expected value of logarithm

Let y be a uni-variate random variable. The moment generating function for y is
defined as

µy (s) , Ey [esy] , (40)

and the expected value of y is given in terms of µy (s) as

E [y] =
dµy (s)

ds

∣∣∣∣∣∣
s=0

. (41)

Let y = log γ , where p (γ) = GAM (γ ; α, β). The moment generating function of
y is

µy (s) = E [γ s] (42a)

=
∫
γ s

βα

Γ (α)
γα−1e−βγdγ (42b)

=
βα

Γ (α)
Γ (s + α)
βs+α

∫
GAM (γ ; s + α, β) dγ (42c)

=
Γ (s + α)
Γ (α) βs

. (42d)

The expected value of y is

E [y] = E [log γ] (43a)

=
d
ds

(
Γ (s + α)
Γ (α) βs

)∣∣∣∣∣∣
s=0

(43b)

=

 d
ds Γ (s + α)

Γ (α) βs


∣∣∣∣∣∣∣
s=0

+
(
Γ (s + α)
Γ (α)

d
ds
β−s

)∣∣∣∣∣∣
s=0

(43c)

=ψ0 (α) − log β (43d)

where ψ0( · ) is the digamma function (a.k.a. the polygamma function of order 0).

A.2 Proof of Theorem 1
Proof: We have q( · ) given as

q(γ) ,arg min
q

KL(p||q) (44a)

=arg max
q

∫
p(γ) log(q(γ))dγ (44b)

=arg max
q

N∑
i=1

wi

∫
pi (γ) log (q (γ)) dγ, (44c)

where the i:th integral is∫
pi (γ) log (q (γ)) dγ
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=
∫
pi (γ) [α log β − log Γ (α) + (α + 1) log γ − βγ] dγ

=α log β − log Γ (α) + (α − 1) Ei [log γ] − β Ei [γ]

=α log β − log Γ (α) + (α − 1) (ψ0 (αi) − log βi) − β
αi
βi
. (45)

Taking the derivative of the objective function with respect to β, equating the
result to zero, and solving for β, we get

β =
α

1
w̄

∑N
i=1 wi

αi
βi

. (46)

Now, we take the derivative of the objective function with respect to α and equate
the result to zero to obtain

0 =
N∑
i=1

wi (log β − ψ0 (α) + ψ0 (αi) − log βi) (47)

=w̄ log β − w̄ψ0 (α) +
N∑
i=1

wi (ψ0 (αi) − log βi) . (48)

Inserting β and rearranging the terms we obtain

0 = logα − ψ0 (α) +
1
w̄

N∑
i=1

wi (ψ0 (αi) − log βi) − log

 1
w̄

N∑
i=1

wi
αi
βi

 . (49)
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Abstract

This paper presents an algorithm for reduction of Gaussian inverse
Wishart mixtures. Sums of an arbitrary number of mixture compo-
nents are approximated with single components by analytically mini-
mizing the Kullback-Leibler divergence. The Kullback-Leibler differ-
ence is used as a criterion for deciding whether or not two compo-
nents should be merged, and a simple reduction algorithm is given.
The reduction algorithm is tested in simulation examples in both one
and two dimensions. The results presented in the paper are useful in
extended target tracking using the random matrix framework.

1 Introduction

In a broad variety of signal processing and sensor fusion problems the state vari-
ables are modeled using mixtures. A mixture is a weighted sum of distributions,
where the weights are positive. In case the weights sum to one, the mixture is also
a distribution. If the weights do not sum to one, the mixture can be called inten-
sity. The individual distributions are called components, a common component
choice is the Gaussian distribution, leading to Gaussian mixtures (gm).

In target tracking, gms are used in e.g. the Multi-hypothesis Tracking (mht) filter
(Bar-Shalom and Rong Li, 1995), and the Gaussian Mixture phd-filters (Vo and
Ma, 2006; Granström et al., 2010; Granström et al., 2012). To keep the complex-
ity at a tractable level, the number of components must be kept at a minimum,
leading to the mixture reduction problem. Mixture reduction consists of approx-
imating the original mixture with a reduced mixture, such that the reduced mix-
ture has (considerably) fewer components, while the difference between the two
mixtures, defined by some measure, is kept to a minimum.

Several methods for gm reduction have been presented. One solution is prun-
ing, i.e. removing components whose weight is below some threshold (and re-
normalizing the weights, if needed). While being very simple, pruning means
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that the information contained in the pruned components is completely lost. A
possibly better choice is to merge components, because merging, to some extent,
attempts to preserve some information from each of the merged components. For
gm merging, there are top-down algorithms which successively remove compo-
nents from the original mixture, and there are bottom-up algorithms which suc-
cessively add components to the reduced mixture. In the latter case, splitting may
be a more appropriate name than merging. In terms of the difference measure
applied, there are local algorithms which consider only a subset of the available
mixture information, and global algorithms that consider all available mixture
information.

Examples of gm reduction algorithms include Salmond (1990) (local, top-down),
Williams and Maybeck (2003) (global, top-down), Runnalls (2007) (localized ver-
sion of global measure, top-down), Huber and Hanebeck (2008) (global, bottom-
up), and Schieferdecker and Huber (2009) (global, top-down). A nice overview
of the existing literature is given by Crouse et al. (2011). A local top-down ap-
proach to reduction of gamma distribution mixtures is presented by Granström
and Orguner (2012b).

Gaussian inverse Wishart (giw) densities have recently been introduced as a rep-
resentation for extended targets (Koch, 2008). The inverse Wishart distribution
is a matrix-variate distribution, which can be used to model the distribution of
a Gaussian covariance matrix. For a detailed description of the inverse Wishart
distribution, see e.g. (Gupta and Nagar, 2000, Chapter 3). A multiple extended
target tracking framework, under association uncertainty and clutter, would in-
evitably face an increasing number of giw mixture components. To the best of
our knowledge, reduction of mixtures of giw distributions has not been studied
before.

In this paper, giw mixture reduction via component merging is addressed. The
giw components are merged by analytically minimizing the Kullback-Leibler di-
vergence (kl-div) (Kullback and Leibler, 1951) between the components and a
single giw distribution. In the presented top-down merging algorithm, a simi-
larity measure based on the kl-div is used, similarly to (Runnalls, 2007). How-
ever, here it is considered locally, rather than a local approximation of the global
measure as in (Runnalls, 2007). Note that, when it comes to approximating dis-
tributions in a maximum likelihood sense, the kl-div is considered the optimal
difference measure (Williams and Maybeck, 2003; Runnalls, 2007; Schieferdecker
and Huber, 2009).

The rest of the paper is organized as follows. Section 2 defines the problem at
hand, and the main result of the paper is derived in Section 3. In Section 4 a
merging criterion is presented, and the merging algorithm is given in Section 5.
Simulation results are presented in Section 6, and concluding remarks are given
in Section 7.
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2 Problem formulation

The random matrix framework for extended target tracking, introduced by Koch
(2008), decomposes the extended target state ξ = (x, X) into a kinematical state
x ∈ Rnx and an extension state X ∈ Sd++, where Rnx is the set of real nx-vectors, Sd++
is the set of symmetric positive definite d × d matrices, and d is the dimension of
the measurements. In (Feldmann and Fränken, 2008; Feldmann et al., 2011) the
kinematical and extension state estimate at time step k is modeled as Gaussian
inverse Wishart (giw) distributed,

p (ξk) = N
(
xk ; mk|k , Pk|k

)
IW

(
Xk ; vk|k , Vk|k

)
, (1)

where N ( · ) denotes a multi-variate Gaussian distribution with mean vector m ∈
Rnx and covariance matrix P ∈ Snx+ (set of symmetric positive semi-definite nx×nx
matrices), and IW ( · ) denotes an inverse Wishart distribution with degrees of
freedom v > 2d and parameter matrix V ∈ Sd++. In this work, the inverse Wishart
probability density function (pdf) from (Gupta and Nagar, 2000, Definition 3.4.1)
is used. The definition is also given in (34b).

In multiple extended target tracking under clutter and association uncertainty,
the target intensity can be described using a weighted sum of giw distributions,

p (ξk) =
Jk|k∑
i=1

wiN
(
xk ; m(i)

k|k , P
(i)
k|k

)
IW

(
Xk ; v(i)

k|k , V
(i)
k|k

)
=

N∑
i=1

wipi (ξk), (2)

where each distribution pi( · ) is referred to as a giw component. Note that in
some target tracking frameworks the weights do not necessarily sum to unity, and
therefore p( · ) might not be a probability density. This is the case for the phd and
cphd filters, see e.g. (Vo and Ma, 2006; Ulmke et al., 2007; Granström et al., 2010;
Granström et al., 2012; Orguner et al., 2011; Granström and Orguner, 2012a). As
time passes, the number of giw components grows larger, and approximations
become necessary to keep Jk|k at a computationally tractable level. One such
approximation, called pruning, is to discard components with weights wi lower
than some truncation threshold T . In this work, we explore merging of giw
components, i.e. approximating sums of components with just one component.
The result of merging a sum of giw components (2) is a sum

p̃ (ξk) =
J̃k|k∑
i=1

w̃iN
(
xk ; m̃(i)

k|k , P̃
(i)
k|k

)
IW

(
Xk ; ṽ(i)

k|k , Ṽ
(i)
k|k

)

=
J̃k|k∑
i=1

w̃i p̃i (ξk), (3)

where J̃k|k < Jk|k .
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Our approach to giw mixture reduction takes the following steps. First we give
a theorem which is used to find the giw distribution q( · ) which minimizes the
Kullback-Leibler divergence between w̄q( · ) and the sum p = Σi∈Lwipi , where
w̄ = Σi∈Lwi and L ⊆

{
1, . . . , Jk|k

}
. Next we give a criterion which is used to de-

termine if two giw components pi( · ) and pj ( · ) should be merged or not, and
we then give an algorithm which, given a threshold U for the merging criterion,
reduces the number of giw components in the mixture.

3 Approximating a weighted sum of GIW-components
with one GIW-component

This section contains the main result of the paper – a theorem that describes how
a sum of an arbitrary number of giw components can be merged into just one
giw component. This is performed via analytical minimization of the kl-div,

KL (p||q) =
∫
p(x) log

(
p(x)
q(x)

)
dx, (4)

a measure of how similar two functions p and q are. The kl-div is well-known
in the literature for its moment-matching characteristics, see e.g. (Bishop, 2006;
Minka, 2001), and as mentioned above it is considered the optimal difference
measure in a maximum likelihood sense (Williams and Maybeck, 2003; Runnalls,
2007; Schieferdecker and Huber, 2009). Note that minimizing the kl-div be-
tween p and q w.r.t. q can be rewritten as a maximization problem,

min
q

KL (p||q) = max
q

∫
p(x) log (q(x)) dx. (5)

Theorem 1. Let p( · ) be a weighted sum of giw components,

p (x, X) =
N∑
i=1

wiN (x ; mi , Pi) IW (X ; vi , Vi)

=
N∑
i=1

wipi (x, X), (6)

where w̄ =
∑N
i=1 wi . Let

q (x, X) = w̄N (x ; m, P ) IW (X ; v, V ) (7)

be the minimizer of the kl-div between p (x, X) and q (x, X) among all giw dis-
tributions, i.e.

q (x, X) , arg min
q(x,X)∈giw

KL (p (x, X) ||q (x, X)) . (8)
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Then the parameters m, P , and V are given by

m =
1
w̄

N∑
i=1

wimi , (9a)

P =
1
w̄

N∑
i=1

wi
(
Pi + (mi −m) (mi −m)T

)
, (9b)

V = w̄ (v − d − 1)

 N∑
i=1

wi (vi − d − 1)V −1
i


−1

, (9c)

and v is the solution to the equation

0 =w̄d log (v − d − 1) − w̄
d∑
j=1

ψ0

(
v − d − j

2

)
+ w̄d log w̄ (9d)

− w̄ log

∣∣∣∣∣∣∣
N∑
i=1

wi (vi − d − 1)V −1
i

∣∣∣∣∣∣∣ +
N∑
i=1

d∑
j=1

wiψ0

(
vi − d − j

2

)
−

N∑
i=1

wi log |Vi | ,

where |V | is the determinant of V and ψ0 ( · ) is the digamma function (a.k.a. the
polygamma function of order 0). �

Proof: Given in Appendix A.

Remarks: The expressions for m in (9a) and P in (9b) are well known, see e.g. the
textbook (Gustafsson, 2010), and have been used earlier to merge Gaussian distri-
butions in a target tracking context, see e.g. (Salmond, 1990; Williams and May-
beck, 2003; Vo and Ma, 2006; Runnalls, 2007; Schieferdecker and Huber, 2009;
Granström et al., 2010; Granström et al., 2012; Crouse et al., 2011). To the best
of the authors’ knowledge the identities for the calculation of the parameters V
and v have not been published before. The expressions for V and v in (9c) and
(9d) correspond to matching the expected values of X−1 and log |X | under both
densities,

w̄ Eq
[
X−1

]
=

N∑
i=1

wi Epi
[
X−1

]
, (10a)

w̄ Eq [log |X |] =
N∑
i=1

wi Epi [log |X |] . (10b)

There is a unique solution to (9d), and a value for the parameter v is easily ob-
tained by applying a numerical root finding algorithm to (9d), e.g. Newton’s algo-
rithm, see e.g. (Stoer and Bulirsch, 1993).
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4 Merging criterion

In this section we derive a criterion that is used to determine whether or not two
giw components should be merged. When reducing the number of components,
it is preferred to preserve the overall modality of the mixture. Thus, if the initial
mixture p (x, X) has M modes, then the reduced mixture p̃ (x, X) should have M
modes.

The optimal solution to this problem is to consider every possible way to reduce
Jk|k components, compute the corresponding kl-div:s, and then find the best
trade-off between low kl-div and reduction of Jk|k . For Jk|k components, there
are BJk|k different ways to merge, where Bi is the i:th Bell number (Rota, 1964).
Because Bi increases rapidly with i, e.g. B5 = 52 and B10 = 115975, the optimal
solution can not be used in practice.

Instead a merging criterion must be used to determine whether or not a pair
of giw components should be merged. In what follows we present a distance
measure that can be thresholded to compare two giw components, and we also
elaborate on the Gaussian and inverse Wishart parts of this distance measure.

4.1 Distance measure

As distance measure the kl-div could be used, however because it is asymmet-
rical, KL (p||q) , KL (q||p), it should not be used directly. Instead we use the
Kullback-Leibler difference (kl-diff), defined for two distributions p (x, X) and
q (x, X) as

DKL (p (x, X) , q (x, X))

=KL (p (x, X) ||q (x, X)) + KL (q (x, X) ||p (x, X))

=
"

p (x, X) log
(
p (x, X)
q (x, X)

)
dxdX +

"
q (x, X) log

(
q (x, X)
p (x, X)

)
dxdX. (11)

Let p (x, X) and q (x, X) be defined as

p (x, X) =N (x ; m1, P1) IW (X ; v1, V1) , (12a)

q (x, X) =N (x ; m2, P2) IW (X ; v2, V2) . (12b)

The kl-div between p( · ) and q( · ) is

KL (p (x, X) ||q (x, X))

=
∫
N (x ; m1, P1) log

(
N (x ; m1, P1)
N (x ; m2, P2)

)
dx

+
∫
IW (X ; v1, V1) log

(
IW (X ; v1, V1)
IW (X ; v2, V2)

)
dX

=KL (N (x ; m1, P1) ||N (x ; m2, P2))

+ KL (IW (X ; v1, V1) ||IW (X ; v2, V2)) , (13)
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where

KL (N (x ; m1, P1) ||N (x ; m2, P2))

=
1
2

[
log |P2| − log |P1| − nx + Tr

(
P −1

2 P1

)
+ (m1 −m2)T P −1

2 (m1 −m2)
]
, (14)

and

KL (IW (X ; v1, V1) ||IW (X ; v2, V2))

=
v1 − d − 1

2
log |V1| −

v2 − d − 1
2

log |V2|

+
d∑
j=1

(
log Γ

(
v2 − d − j

2

)
− log Γ

(
v1 − d − j

2

))

+
v2 − v1

2

log |V1| −
d∑
j=1

ψ0

(
v1 − d − 1

2

)
+ Tr

(
−1

2
(v1 − d − 1)V −1

1 (V1 − V2)
)
. (15)

Showing (14) and (15) is straightforward, the tedious details are omitted. The
kl-div between q( · ) and p( · ) is defined analogously.

Note that the decomposition of KL(p( · )||q( · )) into a sum (13) is inherited from
the separability of the Gaussian and inverse Wishart distributions in (12). From
(13) it follows that the kl-diff is separable,

DKL (p (x, X) , q (x, X)) = DNKL + DIWKL (16)

=DKL (N (x ; m1, P1) ,N (x ; m2, P2)) + DKL (IW (X ; v1, V1) , IW (X ; v2, V2)) ,

where

DKL (N (x ; m1, P1) ,N (x ; m2, P2))

=
1
2

(m1 −m2)T
(
P −1

1 + P −1
2

)
(m1 −m2) − nx +

1
2

Tr
(
P −1

2 P1 + P −1
1 P2

)
, (17)

and

DKL (IW (X ; v1, V1) , IW (X ; v2, V2))

=
1
2

Tr
([

(v1 − d − 1)V −1
1 − (v2 − d − 1)V −1

2

]
(V2 − V1)

)
+
v2 − v1

2

log |V1| −
d∑
j=1

ψ0

(
v1 − d − j

2

)
− log |V2| +

d∑
j=1

ψ0

(
v2 − d − j

2

) . (18)

Note that the Gaussian kl-diff (17) has similarities to the merging criterion(
mi −mj

)T
P −1
i

(
mi −mj

)
, wi > wj , (19)

which is used to merge sums of Gaussian distributions in e.g. (Salmond, 1990; Vo
and Ma, 2006; Granström et al., 2010).
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Thresholding the kl-diff

DKL (p (x, X) , q (x, X)) < U (20)

is a straightforward way to determine whether or not two Gaussian inverse Wis-
hart distributions should be merged. Alternatively, the Gaussian and inverse
Wishart kl-diff:s can be thresholded separately,(

DNKL < UN
)

&
(
DIWKL < UIW

)
, (21)

where & is the logical and operator. In the following two subsections we will
elaborate on the Gaussian and inverse Wishart kl-diff:s to gain a better under-
standing of how the merging criterion works.

4.2 A closer look at the Gaussian KL-DIFF

Under the assumption that P2 = αP1, α > 0, and m2 = m1 + P 1/2
1 me, P

1/2
1 P 1/2

1 = P1,
the kl-diff is independent of the specific values of m1 and P1,

DNKL = − nx +
1 + 1

α

2
mT
eme +

α + 1
α

2
nx. (22)

If me = 0 the kl-diff is DNKL = 1
2

(
α + 1

α

)
nx. With a threshold UN , DNKL < UN is

equivalent to α1 < α < α2, where

αi = 1 +
UN
nx

+ (−1)i

√(
1 +

UN
nx

)2

− 1. (23)

Thus, the upper and lower limit of α is dependent on both the threshold, and on
the dimension of the kinematical state nx. For a given threshold UN , a larger nx
means that α must be closer to 1 for DNKL < UN to be fulfilled.

If α = 1 the kl-diff is DNKL = mT
eme, i.e. the length of me squared. For a given

thresholdUN the difference betweenm1 andm2 can at most be
√
UN standard de-

viations. Thus, given α = 1, the kl-diff can be defined in terms of the standard
deviation P 1/2

1 , and is independent of the size of the kinematical state x.

4.3 A closer look at the inverse Wishart KL-DIFF

Under the assumption that V2 = βV1, the kl-diff becomes independent of the
specific value of V1. If v2 = v1 the kl-diff is

DIWKL =
(v1 − d − 1)d(β − 1)2

2β
. (24)

With a threshold UIW , DIWKL < UIW is equivalent to β1 < β < β2 where

βi = 1 +
UIW

(v1 − d − 1)d
+ (−1)i

√(
1 +

UIW
(v1 − d − 1)d

)2

− 1. (25)
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The upper and lower limit of β is dependent on the threshold UIW , the dimen-
sion of the measurements d, and on the inverse Wishart degrees of freedom v1. A
higher threshold gives larger β2 and smaller β1, while a higher d and/or v1 forces
both limits closer to one.

Unfortunately there is no obvious way to choose v2 as a function of v1 to make
the kl-diff independent of the specific value of v1, making it difficult to make
a similar examination of how the inverse Wishart degrees of freedom affect the
kl-diff.

4.4 Discussion

The subsections above give some intuition as to how U (or UN and UIW ) affects
the merging criterion, however it is difficult to give specific hints for choosing
a numerical value of U . Such a value is likely best determined empirically. In
the results section below we will examine all four giw parameters, and how they
affect the kl-diff, in numerical examples.

5 Merging algorithm

In this section we present a merging algorithm that uses the merging method and
criterion defined above, see Table 1. In the algorithm a choice is made regarding
how aggressively the components are bundled for merging, i.e. how aggressively
Jk|k is reduced. There are many possible ways to do this, two are given in Table 1.
Both alternatives start by picking out the giw component with highest weight,
say the j:th. The first alternative, L1 in Table 1, then merges component j with
all other components i for which it holds

DKL

(
pj (x, X) , pi (x, X)

)
< U. (26)

The second alternative, L2 in Table 1, finds all other components such that for
each component i ∈ L2, there exists a sequence of indices {i1 = i, . . . , iN = j} such
that

DKL

(
pik (x, X) , pik+1

(x, X)
)
< U, k = 1, . . . , N − 1. (27)

L1 is a special case of L2, where {i1 = i, i2 = j}, and it immediately follows that
|L1| ≤ |L2|, where |L| is the cardinality of the set L. Thus L2 merges more compo-
nents than L1, resulting in a higher reduction of Jk|k , but also a cruder approxi-
mation of p(x, X).

6 Simulation results

This section presents results from numerical simulations. Simulations of the
Gaussian and inverse Wishart parts of the kl-diff are presented in Section 6.1,
and merging of giw components in nx = d = 1 and nx = d = 2 dimensions are
presented in Sections 6.2 and 6.3. In Section 6.4 we compare the two merging
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Table 1: Gaussian inverse Wishart Reduction

1: require: p (xk , Xk) as in (2), a merging threshold U , and θ ∈ {1, 2}.
2: initialize: Set ` = 0 and I =

{
1, . . . , Jk|k

}
.

3: repeat
4: Set ` = ` + 1 and j = arg max

i∈I
w

(i)
k|k

5: Set L = Lθ , where L1 =
{
i ∈ I

∣∣∣∣D i
j < U

}
,

L2 =
{
i ∈ I

∣∣∣∣∃ {i1 = i, . . . , iN = j}

3 D ik+1
ik

< U, k = 1, . . . , N − 1
}
,

and D i
j = DKL

(
pj (x, X) , pi (x, X)

)
.

6: Use Theorem 1 to compute

w̃
(`)
k|k , m̃

(`)
k|k , P̃

(`)
k|k , ṽ

(`)
k|k , Ṽ

(`)
k|k (28)

for the components i ∈ L.
7: I = I\L
8: until I = ∅
9: output: p̃ (xk , Xk) =

∑J̃k|k
i=1 w̃iN

(
xk ; m̃i , P̃i

)
IW

(
Xk ; ṽi , Ṽi

)
, where the num-

ber of components is J̃k|k = `.

choices L1 and L2 in nx = d = 1 dimension.

6.1 Merging criterion

This section presents results that evaluate the merging criterion in Section 4. Let
p1 (x, X) and p2 (x, X) be defined as

p1 (x, X) =N (x ; m1, P1) IW (X ; v1, V1) , (29a)

p2 (x, X) =N (x ; m2, P2) IW (X ; v2, V2) . (29b)

The evaluation is performed ceteris paribus, i.e. by changing the parameters of
the Gaussian while holding the parameters of the inverse Wishart equal, and
vice versa.

Different Gaussian parameters

Let P2 = αP1, and m2 = m1 + P 1/2
1 me. A contour plot of the kl-diff for two uni-

variate Gaussian distributions (nx = 1) is shown in Figure 1a. In accordance with
the discussion in Section 4, the kl-diff increases with the length of me, and it
increases when α < 1 or α > 1 .
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Figure 1: Contour plots showing the kl-diff when the Gaussian inverse
Wishart parameters are changed. (a) kl-diff for two uni-variate Gaussian
distributions. (b) kl-diff for two one dimensional inverse Wishart distribu-
tions, here v1 = 20. (c) kl-diff for pairs of one dimensional inverse Wishart
distributions, the outlines show DKL = 3 and the legend shows the value of
v1.

Different inverse Wishart parameters

Let V2 = βV1 to make the kl-diff independent of the specific value of V1. For
a given β, setting v2 = 2d + 2 + β(v1 − 2d − 2) will give correct expected value
of X. We make changes to this value by multiplying with a factor η, i.e. v2 =
η (2d + 2 + β(v1 − 2d − 2)). A contour plot of the kl-diff for a one dimensional
inverse Wishart distribution is shown in Figure 1b, in this figure v1 = 20. The
contours DKL = 3 are shown for v1 = 20, 40, 60, 80, 100 in Figure 1c, where it
shows how the area enclosed by DKL = 3 decreases when v1 increases.
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Figure 2: Four giw components, nx = d = 1, merged into two components
using a threshold U = 3. (a) shows the Gaussian parts of the components
before and after merging, and (b) shows the sums of the Gaussian distribu-
tions before and after merging. (c) shows the inverse Wishart parts of the
components before and after merging, and (d) shows the sums of the inverse
Wishart distributions before and after merging.

6.2 Merging of one dimensional components

An intensity p (x, X) with four giw components, nx = d = 1, was reduced to two
components using a kl-diff threshold of U = 3. The giw components and sums
are shown before and after merging in Figure 2.

6.3 Merging of two dimensional components

An intensity p (x, X) with two giw components, nx = d = 2, was reduced to one
component using a kl-diff threshold of U = 12. The giw components are shown
before and after merging in Figure 3.

6.4 Comparison of merging algorithms

An intensity p (x, X) with 50 giw components, nx = d = 1, was reduced using
both L1 and L2 in Table 1. The giwmixture parameters were sampled uniformly
from the following intervals,

wi ∈ [0.05 0.95] , mi ∈ [0 10] , Pi ∈
[
0.252 0.752

]
, (30a)
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Figure 3: Two giw components, nx = d = 2, merged into one component
using a threshold U = 12. Shown are the kinematical state means m (dots),
the corresponding covariances P (solid ellipses), and the estimated expected
values of the extension state X (dashed ellipses).

vi ∈ [50 250] ,
Vi

vi − 2d − 2
∈ [15 50] , (30b)

i.e. Vi was sampled such that, given a sampled vi , the expected value of X be-
longs to [15 50]. The original mixture, and the two approximations, are shown in
Figure 4. Using L1 the reduced mixture has 29 components, using L2 gives only
23 components, but also a cruder approximation.

7 Concluding remarks

This paper presented a reduction algorithm for mixtures of Gaussian inverse
Wishart distributions. A theorem was given, which is used to reduce an arbitrary
number of giw components to just one component by analytically minimizing
the Kullback-Leibler divergence, in a maximum likelihood sense the optimal dif-
ference measure. Using the Kullback-Leibler difference, a merging criterion for
pairs of giw components was given. The criterion has the benefit of decomposing
easily into separate criteria for the Gaussian distributions and inverse Wishart
distributions, respectively. A simple algorithm for giw mixture reduction was
also given, and tested in simulation examples in both one and two dimensions.

The outlook on future work includes considering a global difference measure be-
tween the original and reduced mixture, instead of just a local measure. The
reduction algorithm will be used in the Gaussian inverse Wishart phd-filter for
multiple extended target tracking under association uncertainty and clutter, see
(Granström and Orguner, 2012a).
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Figure 4: Merging of 50 giw components. (a) shows the Gaussian sum, be-
fore merging (green) as well as after merging using L1 (red) and L2 (blue). (b)
shows the corresponding inverse Wishart sum. Using L1 results in 28 giw
components, using L2 results in 21 components, but also a cruder approxi-
mation.

A Appendix

Before giving the proof of Theorem 1, we establish some preliminary results in
the form of two expected values.

A.1 Expected value of inverse extension

Let X be inverse Wishart distributed IW (X ; v, V ). Then X−1 is Wishart dis-
tributed W

(
X−1 ; v − d − 1, V −1

)
(Gupta and Nagar, 2000, Theorem 3.4.1). The

expected value of X−1 is (Gupta and Nagar, 2000, Theorem 3.3.15)

E
[
X−1

]
= (v − d − 1)V −1. (31)

A.2 Expected value of log determinant of extension

Let y be a uni-variate random variable. The moment generating function for y is
defined as

µy (s) , Ey [esy] , (32)
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and the expected value of y is given in terms of µy (s) as

E [y] =
dµy (s)

ds

∣∣∣∣∣∣
s=0

. (33)

Let y = log |X |, where X ∼ IW (X ; v, V ). The moment generating function of y
is

µy (s) = E [|X |s] =
∫
|X |s p (X)dX (34a)

=
∫
|X |s

2−
(v−d−1)d

2 |V |
v−d−1

2

Γd

(
v−d−1

2

)
|X |

v
2

etr
(
−1

2
X−1V

)
dX (34b)

=
∫

2−
(v−d−1)d

2 |V |
v−d−1

2

Γd

(
v−d−1

2

)
|X |

v−2s
2

etr
(
−1

2
X−1V

)
dX (34c)

=
Γd

(
v−2s−d−1

2

)
Γd

(
v−d−1

2

) (
|V |
2d

)s ∫
IW (X ; v − 2s, V )dX (34d)

=
Γd

(
v−d−1

2 − s
)

Γd

(
v−d−1

2

) (
|V |
2d

)s
, (34e)

where Γd( · ) is the multivariate gamma function. By (Gupta and Nagar, 2000,
Theorem 1.4.1), the logarithm of Γd( · ) can be expressed as

log Γd(a) =d(d − 1) logπ +
d∑
i=1

log Γ
(
a − i − 1

2

)
. (35)

The expected value of y is

E [y] = E [log |X |] (36a)

=
d
ds

 Γd
(
v−d−1

2 − s
)

Γd

(
v−d−1

2

) (
|V |
2d

)s
∣∣∣∣∣∣∣
s=0

(36b)

=
(
|V |
2d

)s d
ds Γd

(
v−d−1

2 − s
)

Γd

(
v−d−1

2

) ∣∣∣∣∣∣∣
s=0

+
Γd

(
v−d−1

2 − s
)

Γd

(
v−d−1

2

) d
ds

(
|V |
2d

)s∣∣∣∣∣∣∣
s=0

(36c)

=
(
|V |
2d

)s d
ds

log Γd

(
v − d − 1

2
− s

)∣∣∣∣∣∣
s=0

+
Γd

(
v−d−1

2 − s
)

Γd

(
v−d−1

2

) (
|V |
2d

)s
log

(
|V |
2d

)∣∣∣∣∣∣∣
s=0
(36d)

= −
d∑
j=1

ψ0

(
v − d − 1

2
−
j − 1

2

)
+ log

(
|V |
2d

)
(36e)
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= log |V | − d log 2 −
d∑
j=1

ψ0

(
v − d − j

2

)
. (36f)

A.3 Proof of Theorem 1

The density q (x, X) is

q (x, X) ,arg min
q(x,X)

KL (p (x, X) ||q (x, X))

=arg max
q(x,X)

N∑
i=1

wi

"
N (x ; mi , Pi)

× IW (X ; vi , Vi) log (q (x, X)) dxdX, (37)

where the i:th double integral over x and X can be rewritten as"
N (x ; mi , Pi) IW (X ; vi , Vi) log (q (x, X)) dxdX

= log w̄ +
∫
N (x ; mi , Pi) logN (x ; m, P ) dx

+
∫
IW (X ; vi , Vi) log IW (X ; v, V ) dX. (38)

The integral over x simplifies to∫
N (x ; mi , Pi) logN (x ; m, P ) dx (39a)

=
∫
N (x ; mi , Pi)

[
−d

2
log (2π) − 1

2
log |P | −

1
2

Tr
(
(x −m) (x −m)T P −1

)]
dx (39b)

= − d
2

log (2π) − 1
2

log |P | −
1
2

Tr
(
Epi

[
(x −m) (x −m)T

]
P −1

)
(39c)

= − d
2

log (2π) − 1
2

log |P | −
1
2

Tr
((
Pi + (mi −m) (mi −m)T

)
P −1

)
(39d)

,fi (m, P ) (39e)

and the integral over X simplifies to∫
IW (X ; vi , Vi) log IW (X ; v, V ) dX (40a)

=
∫
IW (X ; vi , Vi)

[
− (v − d − 1)d

2
log 2 +

v − d − 1
2

log |V |

− log Γd

(
v − d − 1

2

)
− v

2
log |X | + Tr

(
−1

2
X−1V

)]
dX (40b)

= − (v − d − 1)d
2

log 2 +
v − d − 1

2
log |V | − log Γd

(
v − d − 1

2

)
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− v
2

Epi [log |X |] −
1
2

Tr
(
Epi

[
X−1

]
V
)

(40c)

= − (v − d − 1)d
2

log 2 +
v − d − 1

2
log |V | − log Γd

(
v − d − 1

2

)
− v

2

log |Vi | − d log 2 −
d∑
j=1

ψ0

(
vi − d − j

2

) − 1
2

Tr
(
(vi − d − 1)V −1

i V
)

(40d)

,gi (v, V ) (40e)

where the expected values are derived above. We thus have

q (x, X) , arg min
q(x,X)

KL (p (x, X) ||q (x, X)) (41a)

= arg max
q(x,X)

N∑
i=1

wi (log w̄ + fi (m, P ) + gi (v, V )) (41b)

= arg max
q(x,X)

h (m, P , v, V ) . (41c)

Differentiating the objective function h ( · ) w.r.t. m, setting equal to zero and
solving for m gives

m =
1
w̄

N∑
i=1

wimi . (42)

Differentiating the objective function h ( · ) w.r.t. P , setting equal to zero and solv-
ing for P gives

P =
1
w̄

N∑
i=1

wi
(
Pi + (mi −m) (mi −m)T

)
. (43)

Differentiating the objective function h ( · ) w.r.t. V , setting equal to zero and
solving for V gives

V = w̄ (v − d − 1)

 N∑
i=1

wi (vi − d − 1)V −1
i


−1

. (44)

Differentiating the objective function h ( · ) w.r.t. v, inserting V (44), and setting
equal to zero gives

0 =w̄d log (v − d − 1) − w̄
d∑
j=1

ψ0

(
v − d − j

2

)
+ w̄d log w̄ (45)

− w̄ log

∣∣∣∣∣∣∣
N∑
i=1

wi (vi − d − 1)V −1
i

∣∣∣∣∣∣∣ +
N∑
i=1

d∑
j=1

wiψ0

(
vi − d − j

2

)
−

N∑
i=1

wi log |Vi | .

�
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Abstract

This paper presents a new prediction update for extended targets
whose extensions are modeled as random matrices. The prediction
is based on several minimizations of the Kullback-Leibler divergence
and allows for a kinematic state dependent transformation of the tar-
get extension. The results show that the extension prediction is a sig-
nificant improvement over the previous work carried out on the topic.

1 Introduction

Extended targets are targets that potentially give rise to more than one measure-
ment per time step, in contrast to standard targets that give rise to at most one
measurement per time step, see e.g. (Bar-Shalom and Fortmann, 1987). The mul-
tiple measurements per time step raise interesting possibilities to estimate the tar-
get’s extension, i.e. the shape and size. Several extended target models have been
proposed in the literature, see e.g. (Salmond and Parr, 2003; Baum and Hanebeck,
2009; Granström et al., 2011; Lundquist et al., 2011; Zhu et al., 2011; Koch, 2008;
Feldmann et al., 2011) and the references therein.

In the extended target model proposed by Koch (2008); Feldmann et al. (2011),
the target extension is modeled as an ellipse, and it is represented by a positive
definite matrix called extension matrix. The extended target originated measure-
ments are modeled as being (approximately) Gaussian distributed, with covari-
ance related to the extension matrix. Following a Bayesian methodology, the ex-
tension matrix is modeled to be a random variable. Hence we refer to the model
by Koch (2008); Feldmann et al. (2011) as the the random matrix framework. that
is inverse Wishart distributed. The overall extended target state is defined as the
combination of the extension matrix and the usual kinematical state vector. The
parameters of the kinematical state density, and the extension’s inverse Wishart
density, are updated in a Bayesian recursion, which consists of prediction (time
update) and correction (measurement update).
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The focus in this paper is on the prediction update of extended targets within
the random matrix framework. In early work, see (Koch, 2008; Feldmann et al.,
2011), the extension matrix’ prediction was based on simple heuristics which
increase the extension’s covariance, while keeping the expected value constant.
Koch also discusses the use of a Wishart transition density for the extension state
(Koch, 2008), see also (Lian et al., 2010; Lan and Rong Li, 2012). In this paper
we generalize this idea by including the possibility of a kinematic state depen-
dent transformation of the extension. This would, for example, be useful when
the target extension rotates during a coordinated-turn, a situation which appears
very frequently in air traffic control applications. In order to derive an Bayesian
prediction update for the extension, minimizations of the Kullback-Leibler diver-
gence are used to approximate densities. This methodology enables us to make
well-defined approximations when the original density and its approximation
have different numbers of parameters.

The rest of the paper is organized as follows. In Section 2 we give a brief introduc-
tion to the random matrix framework, and present the approaches to prediction
given in (Koch, 2008; Feldmann et al., 2011; Lian et al., 2010; Lan and Rong Li,
2012). Section 3 presents a problem formulation and defines the main aim of the
study. In Section 4, we give results that are used in the derivation of the main re-
sult, which is a new prediction update presented in Section 5. The merits of the
new update are illustrated in simulations, with comparisons to previous methods
in Section 6. Concluding remarks are given in Section 7.

2 The random matrix framework

We use the following notation:

• Rn is the set of real column vectors of length n, Sn++ is the set of symmetric
positive definite n×nmatrices, and Sn+ is the set of symmetric positive semi-
definite n × n matrices.

• N (x ; m, P ) denotes a multi-variate Gaussian probability density function
(pdf) defined over the vector x ∈ Rnx with mean vector m ∈ Rnx , and covari-
ance matrix P ∈ Snx+ ,

N (x ; m, P ) =
e−

1
2 (x−m)TP −1(x−m)

(2π)
nx
2 |P |

1
2

, (1)

where | · | is the matrix determinant function.

• IW (X ; v, V ) denotes an inverse Wishart pdf defined over the matrix X ∈
Sd++ with scalar degrees of freedom v > 2d and parameter matrix V ∈ Sd++,
(Gupta and Nagar, 2000, Definition 3.4.1)

IW (X ; ν, V ) =
2−

ν−d−1
2 |V |

ν−d−1
2

Γd

(
ν−d−1

2

)
|X |

ν
2

etr
(
−1

2
X−1V

)
, (2)
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where etr( · ) = exp (Tr( · )) is exponential of the matrix trace, and Γd ( · ) is
the multivariate gamma function. The multivariate gamma function can be
expressed as a product of ordinary gamma functions, see e.g. (Gupta and
Nagar, 2000, Theorem 1.4.1).

• W (X ; w,W ) denotes a Wishart pdf defined over the matrix X ∈ Sd++ with
scalar degrees of freedom w ≥ d and parameter matrix W ∈ Sd++, (Gupta
and Nagar, 2000, Definition 3.2.1)

W (X ; w,W ) =
2−

wd
2 |X |

w−d−1
2

Γd

(
w
2

)
|W |

n
2

etr
(
−1

2
W −1X

)
. (3)

• GBI Id (X; a, b,Ω,Ψ ) denotes a generalized matrix-variate beta type-II pdf de-
fined over the matrix X ∈ Sd++, with scalar parameters a > d−1

2 , b > d−1
2 and

matrix parameters Ω ∈ Sd++, Ψ ∈ Sd+, (Gupta and Nagar, 2000, Definition
5.2.4)

GBI Id (X; a, b,Ω,Ψ ) =
|X − Ψ |a−

d+1
2 |Ω+ X |−(a+b)

βd(a, b)|Ω+ Ψ |−b
, (4)

where (X − Ψ ) ∈ Sd++ and (Ω− Ψ ) ∈ Sd++, and βd(a, b) is the multivariate
beta function.

• 0d is an all zero d × d matrix, and Id is a d × d identity matrix.

Let ξk be the extended target state at time tk , and let Zk denote the set of all
measurements up to and including time tk . The random matrix framework (Koch,
2008; Feldmann et al., 2011) defines the extended target state ξk = (xk , Xk) as
the combination of a kinematical state xk ∈ Rnx and an extension state Xk ∈
Sd++. The kinematical state xk contains states related to target kinematics, such as
position, velocity and heading, while the extension state Xk is a random matrix
representing the target extent. The posterior pdf of the extended target state
ξk , conditioned on Zk , is modeled as Gaussian inverse Wishart (giw) distributed
(Feldmann et al., 2011)

p
(
ξk |Zk

)
=p

(
xk |Xk ,Zk

)
p
(
Xk |Zk

)
(5a)

≈p
(
xk |Zk

)
p
(
Xk |Zk

)
(5b)

=N
(
xk ; mk|k , Pk|k

)
IW

(
Xk ; νk|k , Vk|k

)
. (5c)

This density approximates the kinematical and extension states as independent,
however, as noted in (Feldmann et al., 2011), the measurement update step “pro-
vides for the interdependency between kinematics and extension estimation.”
The random matrix framework limits the extended targets to be shaped as el-
lipses, however the ellipse shape is applicable to many real scenarios in which
the target and sensor geometry is such that the target measurements resemble a
cluster of detections, rather than a geometric structure (or for that matter a single
detection).
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Note that in a Bayesian state estimation recursion, we (typically) want the pre-
dicted pdf p(ξk+1|Zk) to be of the same functional form as the posterior pdf
p(ξk |Zk). For a giw distributed extended target (5c), this corresponds to obtain-
ing the parameters mk+1|k , Pk+1|k , νk+1|k , and Vk+1|k of the distribution

p
(
ξk+1|Zk

)
=N

(
xk+1 ; mk+1|k , Pk+1|k

)
IW

(
Xk+1 ; νk+1|k , Vk+1|k

)
. (6)

In previous work, see (Koch, 2008; Feldmann et al., 2011), the kinematical state
xk is predicted using the Kalman filter prediction (Kalman, 1960). The extension
state prediction is based on simple heuristics. Under the assumption that “the
extension does not tend to change over time” (Feldmann et al., 2011), the inverse
Wishart parameters are predicted such that E [Xk+1] = E [Xk] and Cov (Xk+1) >
Cov (Xk). The following prediction update is used in (Feldmann et al., 2011),

νk+1|k =2d + 4 + e−T /τ (νk|k − 2d − 4), (7a)

Vk+1|k =
νk+1|k − 2d − 2
νk|k − 2d − 2

Vk|k , (7b)

where T is the prediction time and τ is a design parameter. Note that (7a) is a
minor modification of the prediction

νk+1|k = e−T /τνk|k , (8)

which is used in (Koch, 2008). The modification ensures that the expected value
and covariance of Xk always are well-defined.

In addition to presenting the prediction update given above, Koch (2008) also
discusses using a Wishart extension transition density,

p(Xk+1|Xk) =W
(
Xk+1 ; nk+1,

Xk
nk+1

)
. (9)

This transition density is used by Lian et al. (2010). A modified version of (9) is
suggested by Lan and Rong Li (2012),

p(Xk+1|Xk) =W
(
Xk+1 ; δk , AkXkA

T
k

)
, (10)

where the d × d matrix Ak describes the extension time evolution, e.g. rotation or
scaling of the extension.

The contribution of this paper is a further generalization of the idea to use a
Wishart transition density. The presented prediction method allows extension
transformations that are functions of the kinematical state.

3 Problem formulation

The state transition pdf p (ξk+1|ξk) describes the time evolution of the extended
target state from time tk to time tk+1. In Bayesian state estimation, the prediction
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step consists of solving the integral

p(ξk+1|Zk) =
∫
p(ξk+1|ξk)p

(
ξk |Zk

)
dξk . (11)

Assume the following decomposition for the transition density,

p(ξk+1|ξk) , p(xk+1|xk)p(Xk+1|ξk). (12)

The integral (11), with posterior distribution (5b) and transition density (12), is"
p(xk+1|xk)p(Xk+1|ξk)p

(
xk |Zk

)
p
(
Xk |Zk

)
dxkdXk (13a)

=
∫
p(xk+1|xk)

∫
p(Xk+1|ξk)p

(
Xk |Zk

)
dXkp

(
xk |Zk

)
dxk (13b)

=
∫
p(xk+1|xk)p(Xk+1|xk ,Zk)p

(
xk |Zk

)
dxk (13c)

=p
(
xk+1, Xk+1|Zk

)
. (13d)

In general it does not hold that

p
(
xk+1, Xk+1|Zk

)
=p

(
xk+1|Zk

)
p
(
Xk+1|Zk

)
, (14)

and therefore (13c) is here approximated as∫
p(xk+1|xk)p(Xk+1|xk ,Zk)p

(
xk |Zk

)
dxk

≈
∫
p(xk+1|xk)p

(
xk |Zk

)
dxk

∫
p(Xk+1|xk ,Zk)p

(
xk |Zk

)
dxk . (15)

This is equivalent to solving

p(xk+1|Zk) =
∫
p(xk+1|xk)p

(
xk |Zk

)
dxk , (16a)

p(Xk+1|Zk) =
∫
p(Xk+1|ξk)p

(
ξk |Zk

)
dξk , (16b)

instead of solving (11). Approximations are also made in (Koch, 2008; Feldmann
et al., 2011; Lan and Rong Li, 2012) to obtain independent prediction integrals
for the kinematic and extension state, and it seems that predicting the kinematic
state and extension state independently can be justified in many practical sce-
narios, see e.g. (Koch, 2008; Feldmann et al., 2011; Lan and Rong Li, 2012). Note
that the extension prediction (16b) provides for further interdependency between
kinematics and extension estimation, in addition to the interdependency pro-
vided by the measurement update.

For the kinematical state, the transition density is modeled as

p(xk+1|xk) ,N (xk+1 ; f (xk), Qk+1) , (17)

where f ( · ) : Rnx → Rnx is a state transition function, and Qk+1 is the process
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noise covariance for the kinematic state. The function f ( · ) is generally nonlin-
ear, see (Rong Li and Jilkov, 2003) for a thorough overview of state transition
functions. The assumption that the time evolution of the kinematical state (17)
is independent of the extension state neglects factors such as wind resistance,
which can be modeled as a function of the target size, however the assumption is
expected to hold in many practical situations.

Generalizing the Wishart transition densities of (Koch, 2008; Lan and Rong Li,
2012), described in (9) and (10), the extension transition density is modeled as

p(Xk+1|ξk) ,W
(
Xk+1 ; nk+1,

MxkXkM
T
xk

nk+1

)
, (18)

where nk+1 > d is a scalar design parameter, and the matrix transformationMxk ,

M (xk) : Rnx → Rd×d is a non-singular matrix valued function of the kinematic
state.

The extension state’s time evolution is modeled as being dependent on the kine-
matical state via a matrix transformation. The main motivation for this specific
form is the modeling of rotation of extended targets. However, in general the
function Mxk can be selected arbitrarily, as long as the output is a non-singular
d × d matrix. In terms of, e.g., group target tracking, the extension can grow or
shrink over time, corresponding to Mxk being a scaling of the extension.

The scalar design parameter nk+1 in (18) is analogous to the noise covarianceQk+1
in (17), i.e. it governs the extension state process noise. Let Mk = MxkXkM

T
xk

and let X[ij] denote the (i, j)th element of the matrix X. By (Gupta and Nagar,
2000, Theorem 3.3.15) the expected value and variance of the (i, j)th element of
Xk+1|xk , Xk are

E
[
X

[ij]
k+1

∣∣∣∣ xk , Xk
]

=M[ij]
k , (19a)

Var
(
X

[ij]
k+1

∣∣∣∣ xk , Xk
)

=

(
M[ij]
k

)2

nk+1
+
M[ii]
k M[jj]

k

nk+1
, (19b)

i.e., given xk and Xk the variance decreases with increasing nk+1. It can thus be
said that a higher nk+1 implies less process noise for the extension state. Thus,
the shorter the prediction time interval T is, the larger nk+1 should be, and in
the limit limT→0 nk+1 = ∞ should hold. One way to model nk+1 as a function of
prediction time is (Koch, 2008; Lian et al., 2010),

nk+1 = ne−T /τ , (20)

with two scalar parameters n and τ . We elaborate further on nk+1 after we derive
the main result of the paper.

The problem considered in this work is to, given a posterior density (5c) and the
transition densities (12), (17), (18), obtain a solution to (16), where the predicted
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density p(ξk+1|Zk) is of the same functional form as (5c), i.e.

p(ξk+1|Zk) =p(xk+1|Zk)p(Xk+1|Zk) (21a)

=N
(
xk+1 ; mk+1|k , Pk+1|k

)
IW

(
Xk+1 ; νk+1|k , Vk+1|k

)
. (21b)

4 Preliminaries

In this section we first give some known results, and then give three theorems,
which are all needed in our derivation of a prediction update. For the pdf ap-
proximations below, the true densities are approximated by the minimization of
the Kullback-Leibler divergence (kl-div) (Kullback and Leibler, 1951). The kl-
div is defined for two pdfs p(x) and q(x) as

KL (p(x)||q(x)) =
∫
p(x) log (p(x)/q(x)) dx. (22)

Note that, when it comes to approximating distributions in a maximum likeli-
hood sense, the kl-div is considered the optimal difference measure (Williams
and Maybeck, 2003; Runnalls, 2007; Schieferdecker and Huber, 2009).

4.1 Known results

Let p (X) = W (X ; v, V ), and let M be any non-singular d ×d matrix. The random
matrix MXM is distributed as (Gupta and Nagar, 2000, Theorem 3.3.1)

p (MXM) = W (MXM ; v,MVM) . (23)

Let p (X |V ) = W (X ; n, V ) and let p (V ) = IW
(
V ; v̄, V

)
. The marginal for X is

(Gupta and Nagar, 2000, Problem 5.33)

p (X) = GBI Id

(
X;
n
2
,
v̄ − d − 1

2
, V , 0d

)
. (24)

4.2 Approximating a GBI Id with an IWd

Theorem 1. Let p(X) = GBI Id (X; a, b, Ω, 0d), and let q(X) = IW (X ; v, V ) be
the minimizer of the Kullback-Leibler (kl) divergence between p (X) and q (X)
among all IWd-distributions, i.e.

q (X) , arg min
q( · )=IWd ( · )

KL (p (X) ||q (X)) . (25)

Then V is given as

V =
(v − d − 1)(2a − d − 1)

2b
Ω, (26)
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and v is the solution to the equation

d∑
i=1

[
ψ0

(2a + 1 − i
2

)
− ψ0

(
2b + 1 − i

2

)
+ψ0

(
v − d − i

2

)]
− d log

(
(v − d − 1)(2a − d − 1)

4b

)
= 0, (27)

where ψ0( · ) is the digamma function (a.k.a. the polygamma function of order 0).
�

Proof: Given in Appendix A.3. �

The equations for V (26) and v (27) in Theorem 1 correspond to matching the
expected value of X−1 and log |X |,

Eq
[
X−1

]
= Ep

[
X−1

]
, (28a)

Eq [log |X |] = Ep [log |X |] . (28b)

Notice that in Theorem 1, substituting a value for v into (26) gives the ana-
lytical solution for V . The parameter v can be found by applying a numerical
root-finding algorithm to (27), see e.g. (Stoer and Bulirsch, 1993, Section 5.1). Ex-
amples include Newton-Raphson or modified Newton algorithms, see e.g. (Stoer
and Bulirsch, 1993, Section 5.4), for more alternatives see e.g. (Stoer and Bulirsch,
1993, Chapter 5). In the following corollary, we supply an alternative to root-
finding to obtain a value for v.

Corollary 1. A closed form solution for v can be obtained using only (26) to-
gether with matching the first order moments. The expected values of the densi-
ties p( · ) and q( · ) are (Gupta and Nagar, 2000, Theorems 5.3.20, 3.4.3)

Ep [X] =
2a

2b − d − 1
Ω, (29a)

Eq [X] =
V

v − 2d − 2
=
v − d − 1
v − 2d − 2

2a − d − 1
2b

Ω. (29b)

Equating the expected values and solving for v gives

v = (d + 1)
2a−d−1

2b − 2 2a
2b−d−1

2a−d−1
2b − 2a

2b−d−1

. (30)

�

Matching the expected values, as in Corollary 1, can be seen as an approximation
of matching the expected values of the log determinant (28b). Indeed, with nu-
merical simulations one can show that the v given by (30) is approximately equal
to the solution of (27), the difference is typically on the order of one tenth of a
degree of freedom.

References Koch (2008); Gupta and Nagar (2000); Lan and Rong Li (2012) contain
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discussions about using moment matching to approximate a GBI Id -distribution
with a IWd-distribution. Theorem 1 defines an approximation by minimising
the kl divergence, which results in matching the expected values (28). The kl
criterion is well-known in the literature for its moment-matching characteristics,
see e.g. Bishop (2006); Minka (2001).

4.3 Approximating the density of Vx with aWd

Theorem 2. Let x be Gaussian distributed with mean m and covariance P , and
let Vx , V(x) ∈ Snx++ be a matrix valued function of x. Let p(Vx) be the density of
Vx induced by the random variable x, and let q(Vx) = W (Vx ; s, S) be the mini-
mizer of the kl-divergence between p(Vx) and q(Vx) among allW-distributions,
i.e.

q(Vx) , arg min
q( · )=W ( · )

KL (p (Vx) ||q (Vx)) . (31)

Then S is given as

S =
1
s
CI I (32)

and s is the solution to the equation

d log
( s

2

)
−

nx∑
i=1

ψ0

( s − i + 1
2

)
+ CI − log |CI I | = 0 (33)

where CI , E [log |Vx|] and CI I , E [Vx]. �

Proof: Given in Appendix A.4. �

Corollary 2. CI and CI I can be calculated using a Taylor series expansion of Vx
around x = m. A third order expansion yields

CI ≈ log |Vm| +
nx∑
i=1

nx∑
j=1

d2 log |Vx|
dxjdxi

∣∣∣∣∣∣
x=m

Pij , (34a)

CI I ≈Vm +
nx∑
i=1

nx∑
j=1

d2Vx

dxjdxi

∣∣∣∣∣∣
x=m

Pij . (34b)

In (34) the i:th element of the vector x and the i, j:th element of the matrix P are
xi and Pij , respectively. Moreover, the matrix Vm is the function Vx evaluated at
the mean m of the random variable x. �

The equations for S (32) and s (33) in Theorem 2 correspond to matching the
expected values of Vx and log |Vx|,

Eq [Vx] = Ep [Vx] , (35a)

Eq [log |Vx|] = Ep [log |Vx|] . (35b)
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Similarly to (27), numerical root-finding can be used to calculate a solution to
(33). Note that using a moment matching approach similar to Corollary 1 to find
a value for s is not advisable, since this would lead to further approximations
(because the true distribution p(Vx) is unknown), and would possibly require a
more complicated numerical solution.

4.4 Marginalizing IWd(X |V )W (V ) over V

This result is similar to the property give in (Gupta and Nagar, 2000, Problem
5.33). If p (S |Σ) = W (S ; n,Σ) and p(Σ) = IW (Σ ; m,Ψ ) then the marginal den-
sity of S is

p(S) = GBI Id

(
X;

n
2
,
m − d − 1

2
,Ψ , 0d

)
. (36)

Theorem 3. Let p(X |V ) = IW (X ; v, V /γ) and let p(V ) = W (V ; s, S). The
marginal for X is

p(X) = GBI Id

(
X;

s
2
,
v − d − 1

2
,
S
γ
, 0d

)
. (37)

�

Proof: Given in Appendix A.5. �

5 A new prediction update for the extension

In this section we present the new approach to prediction, first for the kinemati-
cal state in Section 5.1 and the for the extension state in Section 5.2.

5.1 Predicting the kinematical state

For the kinematical state we have

p
(
xk+1|Zk

)
=

∫
N (xk+1 ; f (xk), Q)N

(
xk ; mk|k , Pk|k

)
dxk , (38)

In case f (xk) is a linear function, the solution to the integral (38) is given by
the Kalman filter prediction (Kalman, 1960). In general f (xk) is non-linear, in
which case it is straightforward to solve the integral (38) approximately. Using
the extended Kalman filter prediction formulas, see e.g. (Jazwinski, 1970), the
predicted mean mk+1|k and covariance Pk+1|k are

mk+1|k = f (mk|k), Pk+1|k = Fk|kPk|kF
T
k|k + Q (39)

where Fk|k , ∇xf (x)|x=mk|k
is the gradient of f ( · ) evaluated at the mean mk|k .
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5.2 Predicting the extension state

For the extension state we have

p(Xk+1|Zk) =
"

p(Xk+1|xk , Xk)p(xk , Xk |Zk)dxkdXk (40a)

=
"
W

(
Xk+1 ; nk+1,

MxkXkM
T
xk

nk+1

)
N

(
xk ; mk|k , Pk|k

)
× IW

(
Xk ; νk|k , Vk|k

)
dxkdXk . (40b)

Using the properties given in (23) and (24), the integral (40b) becomes

p(Xk+1|Zk) =
∫
GBI Id

(
Xk+1;

nk+1

2
,
νk|k − d − 1

2
,
MxkVk|kM

T
xk

nk+1
, 0d

)
× N

(
xk ; mk|k , Pk|k

)
dxk . (41)

Unfortunately, the integral (41) has no analytical solution, it has to be solved
using approximations.

In what follows, we first show how (7) can be heuristically modified to allow for
transformations of the extension, and then the prediction method from (Lan and
Rong Li, 2012) is briefly described. Lastly the main result of the paper is given, a
new prediction update for the extension state.

Heuristic modification of (7)

Note first that the prediction (7) corresponds to the caseMxk = Id . The prediction
(7) is hereafter called method 1 (M1).

Including a non-identity transformation matrix M( · ) in the prediction process
can be done heuristically, e.g. by replacing (7b) with

Vk+1|k =
νk+1|k − 2d − 2
νk|k − 2d − 2

Mmk|kVk|kM
T
mk|k . (42)

This prediction for the extension evaluates Mxk at the last estimated kinematic
state mk|k , and can thus capture e.g. rotations. However, it neglects the kinematic
state uncertainty Pk|k completely. The prediction given by (7a) and (42) is here-
after called method 2 (M2).

Prediction method from (Lan and Rong Li, 2012)

An alternative to (42) is to replace Mxk by Mmk|k in (41). In this case the integral
(41) has an analytical solution, and Theorem 1 can then be used to approximate
the the GBI Id -density as an IWd-distribution. A similar approach is taken in
(Lan and Rong Li, 2012), and the extension transition density used in (Lan and
Rong Li, 2012) was given in (10). The matrix Ak in (10) is a parameter, and is not
dependent on the kinematical state. In (Lan and Rong Li, 2012) the authors use
a type of moment matching to approximate the density, instead of minimization
of the kl-div. The prediction method from (Lan and Rong Li, 2012) is hereafter
called method 3 (M3).
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Note that if Ak = Mmk|k /
√
δk , and if τ and δk are chosen correctly, M2 is equivalent

to M3. In Section 6.1 we show how τ can be chosen for this equivalence to hold.
The transition density (10) is used in a multiple model framework in (Lan and

Rong Li, 2012), with m different modes with corresponding parameters δ(m)
k and

A
(m)
k . The extension modes correspond to, e.g., no rotation, rotation θrad, and

rotation −θrad. In the results section it will be clear from context if it is the
single mode, or multiple mode, version of M3 that is referred to.

New prediction for the extension state

Using Theorem 1, the GBI Id -distribution in (41) can be approximated as an IWd-
distribution,

p(Xk+1|Zk) ≈
∫
IW

(
Xk+1 ; vk|k ,

MxkVk|kM
T
xk

γk|k

)
N

(
xk ; mk|k , Pk|k

)
dxk , (43)

where vk|k is calculated using Corollary 1 by setting a = nk+1
2 , b =

νk|k−d−1
2 , and

γk|k ,
2bnk+1

(vk|k−d−1)(2a−d−1) . Using the variable substitution Vxk , MxkVk|kM
T
xk , we

obtain

p(Xk+1|Zk) ≈
∫
IW

(
Xk+1 ; vk|k ,

MxkVk|kM
T
xk

γk|k

)
N

(
xk ; mk|k , Pk|k

)
dxk (44a)

=
∫
IW

(
Xk+1 ; vk|k ,

Vxk
γk|k

)
p(Vxk )dVxk . (44b)

In (44a) the IWd density depends on xk only through MxkVk|kM
T
xk , and the sec-

ond equality then follows as a result of the variable substitution and standard
probability theory for variable substitutions, see e.g. (Gut, 1995, Theorem 2.1).
Note that Vxk is a d × d random matrix, and p(Vxk ) is a matrix variate density.
Because exact calculation of p(Vxk ) is prohibitively difficult, we use Theorem 2
to approximate p(Vxk ) by a Wishart distribution. Note that Theorem 2 uses the

parameters of N
(
xk ; mk|k , Pk|k

)
in order to construct the Wishart approximation.

This gives

p(Xk+1|Zk) ≈
∫
IW

(
Xk+1 ; vk|k ,

Vxk
γk|k

)
W

(
Vxk ; sk|k , Sk|k

)
dVxk , (45)

where sk|k and Sk|k are calculated by setting m = mk|k and P = Pk|k in Theorem 2,
and CI and CI I are computed using Corollary 2. Using Theorem 3 the marginal
for Xk+1, which is the solution to the integral of (45), is given as

p(Xk+1|Zk) ≈GBI Id
(
Xk+1; ak+1|k , bk+1|k ,Ωk+1|k , 0d

)
(46)

where ak+1|k ,
sk|k
2 , bk+1|k ,

vk|k−d−1
2 and Ωk+1|k ,

Sk|k
γk|k

. Finally, using Theorem 1
once again we obtain

p(Xk+1|Zk) ≈IW
(
Xk+1 ; νk+1|k , Vk+1|k

)
, (47)
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where the prediction updated parameters νk+1|k and Vk+1|k are

νk+1|k =(d + 1)

2ak+1|k−d−1
2bk+1|k

− 2
2ak+1|k

2bk+1|k−d−1

2ak+1|k−d−1
2bk+1|k

− 2ak+1|k
2bk+1|k−d−1

, (48a)

Vk+1|k =
(νk+1|k − d − 1)(2ak+1|k − d − 1)

2bk+1|k
Ωk+1|k . (48b)

Hereafter this prediction update is called method 4 (M4). This method improves
upon the prediction updates M2 and M3 by also considering the kinematic state
uncertainty.

5.3 Another look at the parameter nk+1

In this section we elaborate on the parameter nk+1 in the extension state transition
density. Under the assumption Mx = Id we have

p(Xk+1|Zk) =GBI Id

(
Xk+1;

nk+1

2
,
νk|k − d − 1

2
,
Vk|k
nk+1

, 0d

)
, (49)

and the expected value and variance of the (i, j)th element X[ij]
k+1 are

E
[
X

[ij]
k+1

]
= E

[
X

[ij]
k

]
, (50a)

Var
(
X

[ij]
k+1

)
=
(
1 +

νk|k − 2d − 2
nk+1

)
︸                  ︷︷                  ︸

,ηk+1

Var
(
X

[ij]
k

)
. (50b)

We see that (50) corresponds to exponential forgetting prediction for the (i, j)th
element, see e.g. (Gustafsson et al., 2010). The forgetting factor is 0 < η−1

k+1 < 1,
and the effective window length is

we =
1

1 − η−1
k+1

= 1 +
nk+1

νk|k − 2d − 2
(51)

time steps. Using exponential forgetting prediction with window length we ap-
proximately means that we only “trust” the information that was contained in
the measurements from the last we time steps. This gives us a hint as to how a
specific value of nk+1 could be set, either as a global constant, or dynamically for
each individual target at each time step.

An alternative way to interpret nk+1 starts with Corollary 1. We can rewrite (30)
to obtain

νk+1|k =νk|k −
(νk|k − 2d − 2)(νk|k − d − 1)

nk+1 + νk|k − 2d − 2︸                              ︷︷                              ︸
N (νk|k ,nk+1)

, (52)

where N ( · ) is a scalar valued function of νk|k and nk+1. This is analogous to the



314 Paper G A New Prediction for Extended Targets with Random Matrices

measurement update (Feldmann et al., 2011)

νk+1|k+1 = νk+1|k + Nz,k+1, (53)

where Nz,k+1 is the number of measurements at time step k+1. Thus, we can view
the prediction as “removing” degrees of freedom corresponding to N (νk|k , nk+1)
measurements.

6 Simulations

This section presents results from simulations which compare the new prediction
method M4 to the methods M1, M2, and M3. The main focus is on the prediction
of the extension state.

In all simulations of M4, Corollary 1 is used to calculate vk|k . For computing the
quantity sk|k , (33) is solved numerically using the iterative Halley’s method (Or-
tega and Rheinboldt, 1970). This requires the digamma function to be computed,
which is performed in matlab using the function psi(·). Simulations have
shown that sk|k is computed, on average, in just 4 iterations. Note that the only
part of M4 that requires a numerical solution is the calculation of sk|k . All other
quantities required are calculated using their respective closed form expressions.

In the following subsections, first a method to determine the parameter τ in M1
and M2 is given in Section 6.1, then a difference measure for pdfs is presented in
Section 6.2. This is followed by simulation results for one dimensional extensions
in Section 6.3, and for two dimensional extensions in Section 6.4.

6.1 Determining τ

M1 and M2 contain the parameter τ , which is a “time constant related to the
agility with which the object may change its extension over time” (Feldmann
et al., 2011). Neither Koch (Koch, 2008) nor Feldmann et al (Feldmann et al.,
2011) elaborate on how τ is best determined. To make as fair comparison as
possible, here Theorem 1 is used to determine τ . By Theorem 1, the following
holds, ∫

IW
(
X+ ; n,

X
n

)
W (X ; v, V ) dX ≈ IW (X+ ; v+, V+) . (54)

By setting v+ equal to (7a), τ can be determined for any combination of T , v,
and n. With this choice of τ , all prediction methods yield the same result when
Mx = Id .

6.2 Difference measure for probability density functions

In order to measure the algorithms’ prediction performances, a distance measure
between two pdfs p(x) and q(x) is needed. Here the L2-norm is used,

∆pdf (p(x), q(x)) ,
∫
|p(x) − q(x)|2dx. (55)
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In order to calculate the integral numerically, a uniform discretization is made
over the union of the supports of p(x) and q(x).

6.3 Results in one dimension

This section presents results for a one dimensional (d = 1) extension X. The
kinematic state xk is also selected as one dimensional, i.e. nx = d = 1. The trans-
formation function M (xk) is given as

M (xk) = 1 + x2
k . (56)

The integral in (55) is computed with a discretization over the interval [0, 1000]
with a discretization interval of length 0.1.

Accuracy of Theorem 1

The accuracy of Theorem 1, i.e. of the approximation

GBI Id

(
X+;

n
2
,
ν − d − 1

2
,
V
n
, 0d

)
≈ IW (X+ ; ν+, V+) , (57)

is evaluated for different values of the parameters n and ν by computing

∆pdf

(
GBI Id , IWd

)
(58)

for each combination of n and ν. The results, see Figure 1a, show that the approx-
imation is least accurate when n is small. A small n corresponds to a very short
effective window we, see (51) and Section 5.3.

Accuracy of Theorem 2

Let Vx = MxV0Mx, where Mx is given in (56) and p(x) = N (x ; m, σ ). The accu-
racy of Theorem 2, i.e. approximation of the pdf of Vx with a Wishart distribution,
is evaluated for different values of the parameter σ , when m = 2 and V0 = 1. For
each σ , an empirical pdf p(Vx) is computed using 107 samples from N (x ; m, σ ).
The results, see Figure 1b, show that, as expected, the approximation becomes
less accurate as σ becomes larger. While the result in Figure 1b is specific for the
transformation (56), the observation that ∆pdf (p(Vx),Wd) increases with σ can
be expected to hold for other transformation functions as well.

Accuracy of the new prediction

The following parameter settings are used for the distribution (5c),

νk|k =50, V0 =1, Vk|k =
(
νk|k − 2d − 2

)
V0,

nk+1 =50, mk|k =2, Pk|k =σk|k ∈ [0.01 , 1] .

For each σk|k value, a total of 107 samples were generated from (5c) and each
sample is predicted by sampling from (18). The resulting empirical pdf (emp)
over Xk+1 is compared to the pdfs obtained by M1, M2 and M4. Remember that
when τ is computed as in Section 6.1 and Ak = Mmk|k /

√
δk , M2 is equivalent to

the single mode version of M3. For another choice of Ak , the error for M3 would
be larger than for M2.
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Figure 1: Results for one dimensional extensions. (a) The log-distances
log10

(
∆pdf (p(x), q(x))

)
when a GBI Id is approximated as an IWd . The ap-

proximation is least accurate when the parameter n (cf. (18)) is small. (b).
The distances ∆pdf (p(Vx),W ) when x is normal distributed and the distri-
bution over Vx is approximated as a Wd . As expected, the accuracy of the
approximation decreases when the uncertainty of x increases. (c) The dis-
tances ∆pdf ( · , · ) between the empirical distribution and the three predic-
tion methods for different values of σ . The same transformation function
Mx and same values of σ as were used in (b) are used here. (d) Comparison
of the empirical distribution and the three different predicted distributions
for σ = 0.3, the legend refers to the empirical distribution (O) and the three
methods M1, M2 and M4. The suggested new prediction outperforms the
other methods.

Figure 1c shows ∆pdf (emp,Mi) for different values of the parameter σ . For all
values of σ , M4 outperforms the other two methods. Figure 1d shows the pdfs
for the case σ = 0.3. Again it is evident that M4 is the best approximation of the
empirical distribution.



6 Simulations 317

6.4 Results in two dimensions

This section presents results for a two dimensional (d = 2) extension. A constant
turn-rate (ct) model with polar velocity (Rong Li and Jilkov, 2003) is considered.
The kinematic state xk = [xk , yk , vk , φk , ωk]

T contains the (xk , yk)-position in
Cartesian coordinates, the speed vk , the heading φk and the turn-rate ωk . With
this kinematic state, it is intuitive to let the transformation function be a rotation
matrix

M (xk) =
[
cos (T ωk) − sin (T ωk)
sin (T ωk) cos (T ωk)

]
. (59)

Performance evaluation

For single step prediction, the predicted expected values E [Xk+1] and covariances
Cov (Xk+1) are compared. Because the covariance of the extension matrix is a d2×
d2 matrix (Gupta and Nagar, 2000, Definition 1.2.6), we are going to constrain
ourselves to illustrate only the d × d covariance matrix of the diagonal entries of
the predicted extension matrix.

For single and multiple maneuvering targets, the predicted root mean square
errors (rmse) are computed overNs Monte Carlo runs. The predicted kinematical
state position rmse, and the extension state rmse, are computed as follows,

rmsex
k =

 1
Ns

Ns∑
i=1

(
x̂(i)
k|k−1 − xk

)2
+

(
ŷ(i)
k|k−1 − yk

)2


1
2

, (60a)

rmseXk =

 1
Ns

Ns∑
i=1

Tr
((
X̂

(i)
k|k−1 − Xk

)2
)

1
2

, (60b)

where xk , yk and Xk are the true position and extension, and x̂(i)
k|k−1, ŷ

(i)
k|k−1 and

X̂
(i)
k|k−1 are the predicted position and extension from the ith Monte Carlo run.

Single step prediction

The following parameter settings are used for the distribution (5c).

νk|k =50, Vk|k =
(
νk|k − 2d − 2

)
V0,

V0 =diag ([5, 2]) , nk+1 =50,

ωk|k =0 or 45 [deg] , Pω =1 or 20 [deg] ,

where Pω is the standard deviation for ωk|k . For each of the four parameter com-
binations, a total of 105 samples were generated, and each sample was then pre-
dicted by sampling from (18). The resulting sample mean XO

k+1 (of the extent
matrix) and sample covariance CO

k+1 (of the diagonal elements of the extent ma-
trix) are compared to the expected value and covariance given by M1, M2 and
M4. Note again that M2 and single mode M3 gives equivalent results.
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Figure 2: Results for two dimensional extensions, showing the expected
value of the predicted extension. The legend refers to the empirical dis-
tribution (O) and the three methods M1, M2 and M3.

The results are shown in Figure 2 and Figure 3. It is evident that M1 has the
worst performance of all three methods, because it does not take the rotation
of the extension into account. M2 performs identically to M4 when Pω is small,
however for larger Pω the sample mean XO

k+1 is slightly distorted, which M2 does
not capture, and M2’s covariance is underestimated compared to CO

k+1. M4, in
comparison, captures the distorted shape of the sample mean, and M4’s covari-
ance is not underestimated, rather it is slightly overestimated compared to CO

k+1.
Overestimation of the covariance is in general seen as more benign than under-
estimation, which can cause instability. Moreover, the increase of the covariance
over the correct one CO

k+1 can be interpreted as a compensation for the approxi-
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Figure 3: Results for two dimensional extensions, showing the covariance
matrices corresponding to the diagonal elements of the predicted extension.
The legend refers to the empirical distribution (O) and the three methods
M1, M2 and M3.

mations made during the calculation. As a result, M4 outperforms M1 and M2 in
terms of both the first and second order moments of the predicted pdf over Xk+1.

Single maneuvering target

Two single maneuvering target scenarios were simulated. In Figure 4a the target
moves forward with constant velocity (cv) for 25 time steps, and then maneuvers
with constant turn rate (ct) ωk = 10 deg per time step for 35 time steps. In
Figure 4b the target moves forward with constant velocity for 25 time steps, and
then maneuvers with a variable turn rate ωk for 50 time steps. The turn rate first
increased from 0 to 20 deg per time step, and then decreased to 0 deg per time
step. The last five time steps is cvmotion. In both scenarios, the target generated
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Figure 4: True target tracks used in simulations. In (a) and (b) the target
starts at the origin. In (c) the two targets start in the bottom left.

10 measurements in each time step, and there were no clutter measurements.

For these two scenarios the multiple mode version of M3 was implemented, refer
to (Lan and Rong Li, 2012) for details. The three extension evolution modes
correspond to (1) no change with small process noise, (2) rotation θ deg with
large process noise, and (3) rotation −θ deg with large process noise, where θ is a
manually set model parameter. In each mode, the kinematical state is predicted
according to a cvmodel (Lan and Rong Li, 2012).

The multiple mode version of M3 is compared to the ct version of M4 outlined
above. Note that (Lan and Rong Li, 2012) also includes a new model for the
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(a) (b)

Figure 5: Results for single target tracking for the true track in Fig. 4a, pre-
diction M3 in blue and prediction M4 in green. (a) and (b) show the position
and extension rmse, respectively. From time 25 to time 60 the true turn rate
is 10 deg. For M3, the position rmse increases during the maneuver, but
is independent of the rotation parameter θ. However the extension rmse
increases with increasing parameter error. Note that for small parameter
errors, M3 has lower extension rmse than M4.

measurement update, however in this paper we study only the prediction update
and therefore use the standard measurement update (Koch, 2008; Feldmann et al.,
2011).

Both scenarios were simulated Ns = 1000 times. Figures 5 and 6 show a compari-
son of the results from M3 and M4 for the true target tracks in Figures 4a and 4b,
respectively. To test M3’s sensitivity to the parameter θ, M4 is compared to M3
using θ ∈ [1 , 20] deg.

M3 has lower prediction error when the target moves according to a cv model,
because M3’s cv model for the kinematics is better than M4’s ct model for this
type of motion. When the target moves according to a ctmodel, M3 has lower ex-
tension error if it holds that |θ − ωkT | ≤ 3 deg, where T is the sampling time, see
Figure 5b. For larger parameter error, M4 is better because it estimates the turn-
rate online. As the parameter error grows larger, M3’s performance degrades
more and more.

When the target maneuvers with variable turn-rate, in terms of position error
M4 is significantly better than M3, especially when the turn rate is higher, see
Figure 6a. As above, the reason is that a ct model is better than a cv model for
this type of motion. In terms of the extension error, M3 performs better than
M4 during the time steps that correspond to a small parameter error. However,
for the time steps where the parameter error is larger, M4 has significantly better
performance than M3, see Figure 6b.
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(a) (b)

Figure 6: Results for single target tracking for the true track in Fig. 4b, pre-
diction M3 in blue and prediction M4 in green. (a) and (b) show the position
and extension rmse, respectively. From time 25 to time 75 the true turn rate
goes from 0 deg to 24 deg, and then back to 0 deg again. For prediction M4
the position and extension rmse are constant for the whole trajectory, with
the exception of small increases immediately after mode changes. For M3 the
position and extension rmse are largest when the true turn rate is highest.
During the maneuver, M4 has significantly smaller position and extension
rmses than M3.

In comparison, M3 and M4 are quite similar in that the extension transition den-
sity is a Wishart density that allows for, among other things, rotations of the
extension. However, M3 requires a rotation parameter to be set, which can be dif-
ficult, especially in the multiple target case where the targets can maneuver with
individual time varying turn-rates. The results show that the rmses increase
when the parameter is set incorrectly.

An important issue to stress here is that the multiple model framework M3 can be
used more flexibly than what is proposed originally in (Lan and Rong Li, 2012).
A straightforward improvement would be to add additional rotation modes that
have different probable θ values. Using a larger discrete set of parameter val-
ues, M3 would cover the unknown parameter space more efficiently. With M4,
the measurements are used to estimate an individual turn-rate for each target,
and in a sense M4 can be considered as a continuous parameter version of M3.
However, note that in order to match M4, M3 might require a considerable num-
ber of modes, with a corresponding increase in computational demands. In this
sense, M4 is more efficient than M3, because it handles a variable turn-rate using
a single mode.

A final issue that must be mentioned for a fair comparison of M3 and M4 is that
M3 uses Koch’s random matrix model (Koch, 2008), while M4 uses Feldmann et
al.’s random matrix model (Feldmann et al., 2011). Due to this, it is not possible
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to make use of a ct model for M3. The ability to use such a ct model for M3
would enable one to obtain a good turn-rate estimate, which can be substituted
into the multiple model framework of M3 to reduce its errors. This is essentially
the idea that was used for model M2.

Multiple maneuvering targets

In (Granström and Orguner, 2012a; Granström and Orguner, 2012) a giw ver-
sion of the extended target phd filter (Mahler, 2009) is given. For prediction the
standard method M1 is used. In the results section of (Granström and Orguner,
2012a) it is noted that multiple targets that move according to a cv model are
easy to track with a cvmotion model. However, targets that maneuver according
to a ct model, while simultaneously being spatially close, are difficult to track.
One problem is the simple cv prediction (7), which is insufficient to describe the
target motion during maneuvers (Granström and Orguner, 2012a). A result is
that the filter cannot keep spatially close targets resolved during the maneuvers,
resulting in cardinality being underestimated.

The presented prediction method M4 was used in the giw-phd filter (Granström
and Orguner, 2012a), and tested on a scenario with two targets. This scenario
was also used in (Granström and Orguner, 2012a), and the true target tracks are
shown in Figure 4c. While moving in parallel, the targets’ extents were separated
by a distance d. In (Granström and Orguner, 2012a) it was shown that the targets
needed to be separated by d ≥ 21m for the cardinality to be estimated correctly
during the ct maneuver. At closer distance, the giw-phd filter could not keep
the two targets resolved.

For this paper the scenario was simulated for separation d = 0, 0.5, 1, . . . , 10 [m].
For each separation d, the scenario was simulated Ns = 100 times. The mean
estimated cardinality is shown in Figure 7. From the results we can make two
observations. The first is that cardinality is estimated correctly for separation
d ≥ 6m, which is an improvement over (Granström and Orguner, 2012a) where
d ≥ 21m was needed. This performance improvement is a direct result of using
a prediction that allows for kinematic state dependent rotations of the extension
estimate.

The second observation is that at separation d ≤ 4m, the cardinality is underes-
timated during cv motion (from time 40 to time 75), because the filter cannot
keep the targets resolved. This is actually worse performance than (Granström
and Orguner, 2012a), where the cardinality was estimated correctly during cv
motion at separation d = 0m. The explanation is that the kinematic state motion
model that is used in (Granström and Orguner, 2012a) is a better model for cv
motion that the ctmodel used in this paper.

Summary of 2D results

The results show that when the turn rate is known with high accuracy, the pre-
diction methods M2, M3 and M4 perform similarly. However, when the turn rate
is uncertain, M4 performs better because it estimates the turn rate directly from
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Figure 7: Results for the multiple target scenario in Fig. 4c. At separation
distances d ≥ 6m the cardinality is estimated correctly.

the measurement data, and it also considers the effects of turn rate uncertainty
on the extension estimate. The scenario with two maneuvering targets shows
that including rotation of the extension can significantly improve performance
for multiple maneuvering target tracking.

7 Concluding remarks

This paper presented a new prediction update for extended targets whose exten-
sions are modeled as random matrices. The new prediction allows for transfor-
mation of the target extension during target maneuvers, and the main tools for
deriving the prediction are presented in terms of three different theorems. Two
of the theorems show how matrix variate probability density functions can be
approximated, the third theorem shows how a conditional matrix variate distri-
bution can be marginalized.

Results from simulating a single prediction step show that the presented pre-
diction method outperforms related work in terms of the expected value, and
covariance of the predicted extension. In two simulations with a single maneu-
vering target, it is shown that the presented prediction method is more general
than related work, because it can estimate the turn rate online and does not rely
on setting a parameter. In a simulation with two targets it was shown that the
presented prediction method can improve performance significantly when the
targets maneuver while being spatially close.
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In future work, we plan to include the presented prediction method in a multiple
model framework. This could include motion modes for, e.g., constant velocity
motion, constant turn rate motion with rotation of the extension, and scaling
of the extension. It would also be interesting to see how a scaling of the exten-
sion matrix could be made dependent on the kinematic state, possibly using a
kinematic state that corresponds to the scaling rate. As noted in (Koch, 2008;
Feldmann et al., 2011; Lan and Rong Li, 2012), scaling of the extension matrix
has important applications for group target tracking.

This work has not considered the measurement update within the random ma-
trix framework, see e.g. (Orguner, 2012; Lan and Rong Li, 2012) for some recent
work on this topic. Coupling the extension measurement update to the turn rate
could possibly improve estimation of the turn rate. Finally, in this work, we have
used the random matrix model of Koch (2008) and Feldmann et al. (2011) which
uses inverse Wishart densities to represent the target extents. A drawback of this
methodology could be that in higher dimensions, a single parameter might not be
sufficient to represent the uncertainty of the extent matrix. Hence, the considera-
tion of more general matrix-variate densities, with many parameters to represent
the uncertainty, might be necessary for high dimensions.

A Appendix

A.1 Preliminaries

This appendix gives some known results that are needed for the proofs of the
theorems.

Multivariate gamma function

For a > d−1
2 , the multivariate gamma function, and its logarithm, can be ex-

pressed in terms of the ordinary gamma function as (Gupta and Nagar, 2000,
Theorem 1.4.1)

Γd(a) =πd(d−1)
d∏
i=1

Γ (a − (i − 1)/2) , (61a)

log Γd(a) =d(d − 1) logπ +
d∑
i=1

log Γ (a − (i − 1)/2) . (61b)

Multivariate beta function

For a > d−1
2 and b > d−1

2 , the multivariate beta function is expressed in terms of
the multivariate gamma function as (Gupta and Nagar, 2000, Theorem 1.4.2)

βd(a, b) =
Γd(a)Γd(b)
Γd(a + b)

. (62)
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Expected value and covariance of some matrix variate distributions

Let Aij denote the i, j:th element of a matrix A. Let X have pdfW (X ; n, N ). The
expected value and covariance of X are (Gupta and Nagar, 2000, Theorem 3.3.15)

E[Xij ] =nNij , (63a)

Cov(Xij , Xkl) =n(NikNjl + NilNjk). (63b)

Let X have pdf IW (X ; v, V ). The expected value and covariance of X are (Gupta
and Nagar, 2000, Theorem 3.4.3)

E[Xij ] =
Vij

v − 2d − 2
, v − 2d − 2 > 0, (64a)

Cov(Xij , Xkl) =
2(v − 2d − 2)−1VijVkl + VikVjl + VilVjk

(v − 2d − 1)(v − 2d − 2)(v − 2d − 4)
, v − 2d − 4 > 0. (64b)

Let X have pdf GBI Id (X; a, b,Ω,Ψ ). If Ψ = 0d , the first and second order moments
of X are (Gupta and Nagar, 2000, Theorem 5.3.20)

E[Xij ] =
2a

2b − d − 1
Ωij (65a)

E[XijXkl] =
2a

(2b − d)(2b − d − 1)(2b − d − 3)

[
{2a(2b − d − 2) + 2}ΩijΩkl

+(2a + 2b − d − 1)(ΩjlΩik +ΩilΩkj )
]
, 2b − d − 3 > 0. (65b)

The covariance of X is easily derived using the first and second order moments.

A.2 Expected values of the GBI Id -distribution

This appendix derives some expected values for the matrix variate generalized
beta type-II distribution.

Expected value of the inverse

Let U be matrix variate beta type-II distributed with pdf (Gupta and Nagar, 2000,
Definition 5.2.2)

p(U ) =BI Id (U ; a, b) (66a)

=
|U |a−

d+1
2 |Id + U |−(a+b)

βd(a, b)
(66b)

where a > d−1
2 , b > d−1

2 , and Id is a d × d identity matrix. Then U−1 has pdf
(Gupta and Nagar, 2000, Theorem 5.3.6)

p(U−1) = BI Id
(
U−1; b, a

)
. (67)
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Let X = Ω1/2UΩ1/2 where Ω ∈ Sd++. The pdf of (X) is (Gupta and Nagar, 2000,
Theorem 5.2.2)

p(X) = GBI Id (X; a, b, Ω, 0d) (68)

and subsequently the pdf of X−1 = Ω−1/2U−1Ω−1/2 is

p(X−1) = GBI Id
(
X−1; b, a, Ω−1, 0d

)
(69)

The expected value of X−1 is (Gupta and Nagar, 2000, Theorem 5.3.20)

E
[
X−1

]
=

2b
2a − d − 1

Ω−1. (70)

Expected value of the log-determinant

Let y be a univariate random variable. The moment generating function of y is
defined as

µy(s) , Ey [esy] , (71)

and the expected value of y is given in terms of µy(s) as

E[y] =
dµy(s)

ds

∣∣∣∣∣∣
s=0

. (72)

Let y = log |X |, where p(X) = BI Id (X; a, b). The moment generating function of y
is

µy(s) = E [|X |s] =
∫
|X |sp (X) dX (73a)

=
∫
|X |sβ−1

d (a, b)|X |a−
1
2 (d+1)|Id + X |−(a+b)dX (73b)

=β−1
d (a, b)βd(a + s, b − s)

×
∫
β−1
d (a + s, b − s)|X |a+s−

1
2 (d+1)|Id + X |−(a+s+b−s)dX (73c)

=
βd(a + s, b − s)

βd(a, b)

∫
BI Id (X; a + S, b − s) dX (73d)

=
βd(a + s, b − s)

βd(a, b)
=
Γd(a + s)Γd(b − s)
Γd(a + s + b − s)

Γd(a + b)
Γd(a)Γd(b)

(73e)

=
Γd(a + s)Γd(b − s)
Γd(a)Γd(b)

, (73f)

The expected value of y is

E [y] = E [log |X |] (74a)

=
d
(
Γd(a + s)Γd(b − s)

)
ds

∣∣∣∣∣∣∣
s=0

1
Γd(a)Γd(b)

(74b)
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=

 dΓd (a+s)
ds

Γd(a + s)
+

dΓd (b−s)
ds

Γd(b − s)


∣∣∣∣∣∣∣
s=0

(74c)

=
(
d log Γd(a + s)

ds
+
d log Γd(b − s)

ds

)∣∣∣∣∣
s=0

(74d)

=
( d∑
i=1

d log Γ (a + s − (i − 1)/2)
ds

+
d log Γ (b − s − (i − 1)/2)

ds

)∣∣∣∣∣
s=0

(74e)

=
d∑
i=1

ψ0 (a − (i − 1)/2) − ψ0 (b − (i − 1)/2) , (74f)

where ψ0( · ) is the digamma function, also called the polygamma function of
order zero. If p(Y ) = GBI Id (Y ; a, b, Ω, 0d), then Z = Ω−1/2YΩ−1/2 has pdf
BI Id (Z; a, b) (Gupta and Nagar, 2000, Theorem 5.2.2). It then follows that

E [log |Y |] = E
[
log |Ω1/2Ω−1/2YΩ−1/2Ω1/2|

]
(75a)

= E
[
log |Ω1/2| + log |Ω−1/2YΩ−1/2| + log |Ω1/2|

]
(75b)

= E
[
log |Ω| + log |Ω−1/2YΩ−1/2|

]
(75c)

= log |Ω| + E [log |Z |] (75d)

= log |Ω| +
d∑
i=1

[
ψ0 (a − (i − 1)/2) − ψ0 (b − (i − 1)/2)

]
. (75e)

A.3 Proof of Theorem 1

The density q (X) is given as

q (X) ,arg min
q(X)

KL (p (X) ||q (X)) (76a)

=arg max
q(X)

∫
p (X) log (q (X)) dX (76b)

=arg max
q(X)

∫
p (X)

[
− (v − d − 1)d

2
log 2 +

v − d − 1
2

log |V |

− log Γd

(
v − d − 1

2

)
− v

2
log |X | + Tr

(
−1

2
X−1V

) ]
dX (76c)

=arg max
q(X)

− (v − d − 1)d
2

log 2 +
v − d − 1

2
log |V |

− log Γd

(
v − d − 1

2

)
− v

2
Ep [log |X |] + Tr

(
−1

2
Ep

[
X−1

]
V
)

(76d)

=arg max
q(X)

f (v, V ) (76e)
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Differentiating the objective function f (v, V ) with respect to V gives

df (v, V )
dV

=
v − d − 1

2
V −1 − 1

2
Ep

[
X−1

]
. (77)

Setting to zero and solving for V gives

V = (v − d − 1) Ep
[
X−1

]−1
=

(v − d − 1)(2a − d − 1)
2b

Ω (78)

where the expected value is calculated based on a result derived in Appendix A.2.
Differentiating the objective function with respect to v gives

df (v, V )
dv

= − d
2

log 2 +
1
2

log |V | −
d log Γd

(
v−d−1

2

)
dv

− 1
2

Ep [log |X |] (79a)

= − d
2

log 2 +
1
2

log |V | − 1
2

d∑
i=1

ψ0

(
v − d − i

2

)
− 1

2
Ep [log |X |] . (79b)

Setting the result equal to zero gives

0 = log |V | − d log 2 −
d∑
i=1

ψ0

(
v − d − i

2

)
− Ep [log |X |] (80a)

= log |V | − d log 2 −
d∑
i=1

ψ0

(
v − d − i

2

)
− log |Ω|

−
d∑
i=1

[
ψ0

(
a − 1

2
(i − 1)

)
− ψ0

(
b − 1

2
(i − 1)

)]
(80b)

where the expected value of log |X | is derived in Appendix A.2. Inserting V from
(78) gives

0 = log |Ω| + d log
(

(v − d − 1)(2a − d − 1)
2b

)
− d log 2 −

d∑
i=1

ψ0

(
v − d − i

2

)

− log |Ω| −
d∑
i=1

[
ψ0

(2a + 1 − i
2

)
− ψ0

(
2b + 1 − i

2

)]
(81a)

=d log
(

(v − d − 1)(2a − d − 1)
4b

)
−

d∑
i=1

[
ψ0

(2a + 1 − i
2

)
− ψ0

(
2b + 1 − i

2

)
+ ψ0

(
v − d − i

2

)]
(81b)

which is the equation for v in the theorem.



330 Paper G A New Prediction for Extended Targets with Random Matrices

A.4 Proof of Theorem 2

The density q (Vx) is

q (Vx) =arg min
q(Vx)

KL (p (Vx) ||q (Vx)) (82a)

=arg max
q(Vx)

∫
p (Vx) log (q (Vx)) dVx (82b)

=arg max
q(Vx)

∫
p (Vx)

[
− sd

2
log 2 − log Γd

( s
2

)
− s

2
log |S | + s − d − 1

2
log |Vx| + Tr

(
−1

2
S−1Vx

) ]
dVx (82c)

=arg max
q(Vx)

∫
p (x)

[
− sd

2
log 2 − log Γd

( s
2

)
− s

2
log |S | + s − d − 1

2
log |Vx| + Tr

(
−1

2
S−1Vx

) ]
dx (82d)

=arg max
q(Vx)

Ex

[
− sd

2
log 2 − log Γd

( s
2

)
− s

2
log |S |

+
s − d − 1

2
log |Vx| + Tr

(
−1

2
S−1Vx

) ]
(82e)

= − sd
2

log 2 − log Γd
( s

2

)
− s

2
log |S |

+
s − d − 1

2
Ex [log |Vx|] + Tr

(
−1

2
S−1 Ex [Vx]

)
. (82f)

Let CI = Ex [log |Vx|] and CI I = Ex [Vx]. This results in

q (Vx) =arg max
q(Vx)

− sd
2

log 2 − log Γd
( s

2

)
− s

2
log |S | + s − d − 1

2
CI + Tr

(
−1

2
S−1CI I

)
=arg max

q(Vx)
f (s, S) . (83)

Differentiating the objective function f (s, S) with respect to S, setting the result
equal to zero and multiplying both sides by 2 gives

−sS−1 + S−1CI IS−1 = 0 ⇔ S =
1
s
CI I . (84)

Note that the expected value for Vx under the Wishart distribution q( · ) is sS =
CI I . Thus the expected value under q( · ) is correct regardless of the parameter s.
Differentiating the objective function f (s, S) in (83) with respect to s gives

df (s, S)
ds

= − d
2

log 2 − 1
2

d∑
i=1

ψ0

( s − i + 1
2

)
− 1

2
log |S | + 1

2
CI (85a)
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=
d
2

log
s
2
− 1

2

d∑
i=1

ψ0

( s − i + 1
2

)
− 1

2
log |CI I | +

1
2
CI (85b)

where we substituted S with (84) to obtain (85b). Equating the result to zero and
multiplying both sides by 2 gives (33) in Theorem 2.

A.5 Proof of Theorem 3

We have p(X) given as

p(X) =
∫
p(X |V )p(V )dV (86a)

=
∫
IW

(
X ; v,

V
γ

)
W (V ; s, S) dV (86b)

=
∫ {

2
(v−d−1)d

2 Γd

(
v − d − 1

2

)
|X |

v
2

}−1 ∣∣∣∣∣Vγ
∣∣∣∣∣(v−d−1)/2

etr
(
−0.5X−1V

γ

)
×
{
2
sd
2 Γd

( s
2

)
|S |

s
2

}−1
|V |

s−d−1
2 etr(−0.5S−1V )dV (86c)

=
{
Γd

(
v − d − 1

2

)
Γd

( s
2

)
|X |

v
2 |S |

s
2

}−1

2−
(v+s−d−1)d

2 γ−
(v−d−1)d

2

×
∫
|V |

v+s−2d−2
2 etr

(
−0.5

(
X−1

γ
+ S−1

)
V

)
dV (86d)

=
{
Γd

(
v − d − 1

2

)
Γd

( s
2

)
|X |

v
2 |S |

s
2

}−1

2−
(v+s−d−1)d

2 γ−
(v−d−1)d

2

× 2
sd
2 Γd

(
v + s − d − 1

2

) ∣∣∣∣∣∣∣
(
X−1

γ
+ S−1

)−1
∣∣∣∣∣∣∣
v+s−d−1

2

×
∫
W

(
V ; v + s − d − 1,

X−1

γ
+ S−1

)
dV (86e)

=
{
Γd

(
v − d − 1

2

)
Γd

( s
2

)
|X |

v
2 |S |

s
2

}−1

2−
(v+s−d−1)d

2 γ−
(v−d−1)d

2

× 2
(v+s−d−1)d

2 Γd

(
v + s − d − 1

2

) ∣∣∣(γX)−1 + S−1
∣∣∣− v+s−d−1

2 (86f)

=
{
Γd

(
v − d − 1

2

)
Γd

( s
2

)
|X |

v
2 |S |

s
2

}−1

γ−
(v−d−1)d

2

× Γd
(
v + s − d − 1

2

) ∣∣∣∣∣∣X−1
(
S
γ

+ X
)
S−1

∣∣∣∣∣∣−
v+s−d−1

2

(86g)

=
Γd

(
s+v−d−1

2

)
Γd

(
v−d−1

2

)
Γd

(
s
2

)γ− (v−d−1)d
2

(∣∣∣X−1
∣∣∣ ∣∣∣∣ Sγ + X

∣∣∣∣ ∣∣∣S−1
∣∣∣)− v+s−d−1

2

|X |
v
2 |S |

s
2

(86h)
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=
1

βd
(
s
2 ,

v−d−1
2

)γ− (v−d−1)d
2

∣∣∣∣ Sγ + X
∣∣∣∣− v+s−d−1

2

|X |
s−d−1

2 |S |
v−d−1

2

(86i)

=
|X |

s−d−1
2

∣∣∣∣X + S
γ

∣∣∣∣− s+v−d−1
2

βd
(
s
2 ,

v−d−1
2

) ∣∣∣∣ Sγ ∣∣∣∣ v−d−1
2

(86j)

which, by (Gupta and Nagar, 2000, Theorem 5.2.2), is the probability density
function for

GBI Id

(
X;

s
2
,
v − d − 1

2
,
S
γ
, 0d

)
. (87)
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Abstract

In extended/group target tracking, where the extensions of the tar-
gets are estimated, target spawning and combination events might
have significant implications on the extensions. This paper investi-
gates target spawning and combination events for the case that the
target extensions are modeled in a random matrix framework. The
paper proposes functions that should be provided by the tracking fil-
ter in such a scenario. The results, which are obtained by a gamma
Gaussian inverse Wishart implementation of an extended target prob-
ability hypothesis density filter, confirms that the proposed functions
improve the performance of the tracking filter for spawning and com-
bination events.

1 Introduction

Multiple target tracking can be defined as the processing of multiple measure-
ments obtained from multiple targets in order to maintain estimates of the tar-
gets’ current states, see e.g. (Bar-Shalom and Fortmann, 1987). In this context, a
point target is defined as a target which is assumed to give rise to at most one
measurement per time step, and an extended target is defined as a target that po-
tentially gives rise to more than one measurement per time step. Closely related
to extended target is group target, defined as a cluster of point targets which can
not be tracked individually, but has to be treated as a single object.

In a target tracking scenario, multiple targets may maneuver such that they be-
come spatially close and cannot be resolved, i.e. they appear at the sensor as one
target (sometimes called group target) and must be treated as such. Conversely,
the individual targets in a group of unresolved targets may maneuver such that
they become resolved, i.e. they no longer have to be treated as a group. In this

339



340 Paper H On Spawning and Combination of Extended/Group Targets. . .

paper, we refer to the former as the target combination problem, and to the latter
as the target spawning problem.

Target spawning, also referred to as splitting targets, is the event that a new target
appears very close to an existing target, or the event that a single target separates
into two, or more, targets. Spawning occurs e.g. when a platform launches an-
other platform, or an unresolved group of targets resolve into multiple closely
spaced targets, see e.g. (Bar-Shalom, 1992; Mahler, 2007). An interactive mul-
tiple model joint probabilistic data association filter for tracking a single point
target that spawns one point target is given in (Bar-Shalom, 1992, Chapter 4).

Target combination, also referred to as target merge, is the event that multiple
single targets form a group of targets. In certain scenarios target combination can
efficiently be seen, and modeled, as target death (when a target disappears from
sensor view). In other scenarios it may be computationally efficient to combine
resolved single targets into a group, see e.g. (Lau et al., 2010).

While tracking point targets, target spawning and combination events can be han-
dled by additional target births around the main target and spontaneous target
deaths, respectively, in the tracking filter. On the other hand, in extended or
group target tracking where the target or group size should also be estimated by
the tracker, a target spawning event might potentially cause a reduction in the
size of the extent of the main target. Likewise, in the case of target combination,
the size of the combined target logically can become the sum of the sizes of the in-
dividual targets. This interesting phenomenon that can be observed in extended
and group target tracking, but not in conventional point target tracking, has to
be modeled and taken care of in the tracking filter.

In this paper we consider combination and spawning for extended targets. An ex-
tended target’s size and shape can be modeled in different ways, see e.g. (Salmond
and Parr, 2003; Baum and Hanebeck, 2009; Baum et al., 2010; Granström et al.,
2011; Lundquist et al., 2011; Zhu et al., 2011; Baum and Hanebeck, 2011), here
we use Koch’s random matrix model (Koch, 2008). We limit the discussion to con-
sidering combination of two targets, and spawning of one new target, or equiva-
lently splitting into two targets.

To the best of the authors’ knowledge, there is no previous work on extended or
group target combination, and the only work that mentions extended or group
target spawning is (Lian et al., 2010). The work (Lian et al., 2010), which also
uses the random matrix model (Koch, 2008), proposes a spawning model that
corresponds to a spawned target whose state’s expected value is identical to the
expected value of the state of the target from which it spawned. This includes the
spawned target’s extension, which also keeps the expected value of the original
target’s extension.

This very simple model cannot be expected to be valid in all scenarios, especially
not when the original target extension is large and the spawned target’s extension
is small, which is a quite common case. The spawning model presented in this
paper uses a multiple hypothesis structure that considers reasonable alternatives
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about the spawned target. The spawning model in (Lian et al., 2010) has a single
hypothesis in which the expected kinematic and extension states are equal to the
original target. Therefore the model in (Lian et al., 2010) can be considered to be
a special case of the presented model.

The rest of the paper is organized as follows. In Section 2 we present the ex-
tended target tracking framework, and give a problem formulation. Section 3
contains results on the approximation of probability density functions, in the
form of four theorems that will be used in the subsequent parts of the paper. In
Sections 4 and 5 we present the proposed combination and spawning methodolo-
gies, respectively, for the two target case. A discussion about how the presented
methodologies could be used if another extension model is used is presented in
Section 6. A simulation study is presented in Section 8, using an example mul-
tiple extended target tracking filter which is briefly described in Section 7. The
paper is finished with concluding remarks in Section 9.

2 Extended target framework
and problem formulation

We use the following notation:

• Rn is the set of real column vectors of length n, Sn++ is the set of symmetric
positive definite n×nmatrices, and Sn+ is the set of symmetric positive semi-
definite n × n matrices.

• GAM (γ ; α, β) denotes a gamma probability density function (pdf) defined
over the scalar γ > 0 with scalar shape parameter α > 0 and scalar inverse
scale parameter β > 0,

GAM (γ ; α, β) =
βα

Γ (α)
γα−1e−βγ , (1)

where Γ ( · ) is the gamma function.

• N (x ; m, P ) denotes a multi-variate Gaussian pdf defined over the vector
x ∈ Rnx with mean vector m ∈ Rnx , and covariance matrix P ∈ Snx+ ,

N (x ; m, P ) =
e−

1
2 (x−m)TP −1(x−m)

(2π)
nx
2 |P |

1
2

. (2)

where | · | is the matrix determinant function.

• IW (X ; v, V ) denotes an inverse Wishart pdf defined over the matrix X ∈
Sd++ with scalar degrees of freedom v > 2d and parameter matrix V ∈ Sd++,
(Gupta and Nagar, 2000, Definition 3.4.1)

IW (X ; v, V ) =
2−

v−d−1
2 |V |

v−d−1
2

Γd

(
v−d−1

2

)
|X |

v
2

etr
(
−1

2
X−1V

)
, (3)
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where etr( · ) = exp (Tr( · )) is exponential of the matrix trace, and Γd ( · ) is
the multivariate gamma function. The multivariate gamma function can
be expressed as a product of ordinary gamma functions, see (83) in Ap-
pendix A.4.

• W (X ; w,W ) denotes a Wishart pdf defined over the matrix X ∈ Sd++ with
scalar degrees of freedom w ≥ d and parameter matrix W ∈ Sd++, (Gupta
and Nagar, 2000, Definition 3.2.1)

W (X ; w,W ) =
2−

wd
2 |X |

w−d−1
2

Γd

(
w
2

)
|W |

n
2

etr
(
−1

2
W −1X

)
. (4)

• BE (γ̄ ; a , b) denotes a beta pdf defined over the scalar 0 < γ̄ < 1 with scalar
shape parameters a > 0 and b > 0,

BE (γ̄ ; a , b) =
Γ (a + b)
Γ (a)Γ (b)

γ̄a−1(1 − γ̄)b−1. (5)

Let ξk be the extended target state at time tk . In this paper we define the extended
target state as the combination of a scalar Poisson rate γk > 0, a kinematical state
vector xk ∈ Rnx and an extension state matrix Xk ∈ Sd++, i.e. the extended target
state is a triple ξk , (γk , xk , Xk). The kinematical state xk contains states related
to target kinematics, such as position, velocity and heading, while the extension
state Xk is a random matrix representing the size and shape of the target. At time
tk , each extended target generates a set of sensor measurements

Zk =
{

z(j)
k

}Nz,k
j=1

, (6)

where the measurement noise covariance is related to the extension Xk . In this
paper we use the following measurement model from (Koch, 2008),

p
(

z(j)
k

∣∣∣∣ xk , Xk
)

= N
(
z(j)
k ; Hkxk , Xk

)
. (7)

The measurement set cardinality Nz,k is a random draw from a Poisson distribu-
tion whose unknown rate is γk .

Let Zk = {Z1, . . . ,Zk} denote all measurement sets up to and including time tk .
The state estimate, conditioned on Zk , is assumed to be gamma Gaussian inverse
Wishart (ggiw) distributed,

p
(
ξk

∣∣∣Zk ) =p
(
γk

∣∣∣Zk ) p (
xk

∣∣∣Xk ,Zk ) p (
Xk

∣∣∣Zk ) (8a)

=GAM
(
γk ; αk|k , βk|k

)
N

(
xk ; mk|k , Pk|k ⊗ Xk

)
× IW

(
Xk ; vk|k , Vk|k

)
(8b)

=GGIW
(
ξk ; ζk|k

)
, (8c)



3 Preliminary results on probability density approximations 343

where A ⊗ B is the Kronecker product between matrices A and B, and ζk|k =(
αk|k , βk|k , mk|k , Pk|k , vk|k , Vk|k

)
is the set of ggiw density parameters. The Gaus-

sian covariance is (Pk|k ⊗ Xk) ∈ Snx+ , where Pk|k ∈ Ss+, and we thus have nx = ds
(refer to (Koch, 2008) for further details).

Decomposing the target kinematics and extension into a Gaussian distributed
random vector xk and an inverse Wishart distributed random matrix Xk was pro-
posed by Koch (Koch, 2008), see also (Feldmann et al., 2011). As in (Granström
and Orguner, 2012b), the Poisson rate is modeled as gamma distributed because
the gamma distribution is the conjugate prior for the Poisson rate, see e.g. (Gel-
man et al., 2004).

The model (8) assumes the Poisson rate γk to be conditionally independent of
xk and Xk . In many applications the number of measurements depends on the
distance between the sensor and the target, i.e. on the kinematical position, and
also depends on the size of the target, i.e. on the size of the extension. This as-
sumption neglects such dependencies, however the probability density over the
number of measurements, conditioned on the target kinematics and extension, is
unknown in many applications, and we believe that this assumption is valid in
many cases. Furthermore, the assumption also facilitates further analysis. Model-
ing the extension as a random matrix limits the extended targets to be shaped as
ellipses, however the ellipse shape is applicable to many real scenarios in which
the target and sensor geometry is such that the target measurements resemble a
cluster of detections, rather than a geometric structure (or for that matter a single
detection). Finally, it is also assumed that multiple targets evolve independently
over time, and generate measurements independently. This assumption is typical
in multiple target tracking, see e.g. (Bar-Shalom and Fortmann, 1987).

The first problem considered in this paper is two target combination, i.e. find-
ing the ggiw distribution that corresponds to a group of two independent ggiw
distributed extended target estimates. The second problem is target spawning,
i.e. finding two ggiw distributions that corresponds to either the splitting of a
ggiw distributed extended target estimate, or the appearance of a new ggiw
distributed extended target estimate next to an existing estimate.

3 Preliminary results on probability density
approximations

In this section we present four probability density approximations, that are all
needed in the derivation of the main result. The true densities are approximated
by analytical minimization of the Kullback-Leibler divergence (kl-div) (Kullback
and Leibler, 1951), defined for two pdfs p(x) and q(x) as

KL (p(x)||q(x)) =
∫
p(x) log (p(x)/q(x)) dx. (9)
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Note that, when it comes to approximating distributions in a maximum likeli-
hood sense, the kl-div is considered the optimal difference measure (Williams
and Maybeck, 2003; Runnalls, 2007; Schieferdecker and Huber, 2009).

3.1 Approximating the distribution of functions of gamma
distributed random variables

Let γ1 and γ2 be two gamma distributed random variables,

p(γ1) =GAM (γ1 ; α1, β1) , (10a)

p(γ2) =GAM (γ2 ; α2, β2) . (10b)

It is here of interest to approximate the distributions over γ = γ1 + γ2 and
γ̄1 = γ1

γ1+γ2
. There are some convenient properties for these quantities which

we summarize in (66) and (67) in Appendix A.1. However, for these properties to
hold, the inverse scale parameters β1 and β2 must be equal. We investigate below
the general case where β1 and β2 need not be equal, i.e. β1 , β2.

Approximate distribution of γ

Theorem 1. Let γ1 and γ2 be distributed as in (10), and let p(γ) be the true
distribution of γ = γ1 +γ2. Let q(γ) = GAM (γ ; α, β) be the gamma distribution,
among all gamma distributions, that minimizes the kl-div between p(γ) and
q(γ),

q(γ) = arg min
q( · )∈GAM( · )

KL (p(γ)||q(γ)) . (11)

Then the shape parameter α is the solution to

log(α) − ψ0(α) + Ep [log(γ)] − log
(
Ep[γ]

)
= 0, (12)

where ψ0( · ) is the digamma function (a.k.a. the polygamma function of order 0),
and the inverse scale parameter β is given by

β =
α

Ep[γ]
. (13)

�

Proof: Given in Appendix A.5.

Remark: The expressions for the shape parameter (12) and the inverse scale pa-
rameter (13) correspond to equating the expected values of log (γ) and γ , respec-
tively, under both distributions,

Ep [log (γ)] = Eq [log (γ)] , (14a)

Ep [γ] = Eq [γ] . (14b)
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Approximate distribution of γ̄1

Theorem 2. Let γ1 and γ2 be distributed as in (10), and let p(γ̄1) be the true
distribution of γ̄1 = γ1

γ1+γ2
. Let q(γ̄1) = BE (γ̄1 ; a, b) be the beta distribution,

among all beta distributions, that minimizes the kl-div between p(γ̄1) and q(γ̄1),

q(γ̄1) = arg min
q( · )∈BE( · )

KL (p(γ̄1)||q(γ̄1)) . (15)

Then the shape parameters a and b are the solution to the system of equations{
ψ0(a + b) − ψ0(a) + Ep [log (γ̄1)] = 0
ψ0(a + b) − ψ0(b) + Ep [log (γ̄2)] = 0 (16)

where γ̄2 = γ2
γ1+γ2

= 1 − γ̄1. �

Proof: Given in Appendix A.6.

Remark: The system of equations (16) correspond to equating the expected val-
ues of log(γ̄1) and log(1 − γ̄1) = log(γ̄2) under both distributions,

Ep[log(γ̄1)] = Eq[log(γ̄1)], (17a)

Ep[log(γ̄2)] = Eq[log(γ̄2)]. (17b)

3.2 Approximating matrix variate densities

We present below results on how to approximate matrix variate densities with
Wishart and inverse-Wishart densities.

Approximation with aW -distribution

Theorem 3. Let p(X) be a probability density function defined over X ∈ Sd++.
Suppose that q(X) , W (X ; v, V ) is the minimizer of KL(p||q) among all Wishart
densities. Then V is given as

V =
1
v

Ep [X] (18)

and v is the solution to
d∑
i=1

ψ0((v − i + 1)/2) + d log(v/2) − Ep [log |X |] + log |Ep [X] | = 0. (19)

�

Proof: Given in Appendix A.7.

Remark: The expressions for the scale matrix V (18) and degrees of freedom
v (19) correspond to equating the expected values of X and log |X | under both
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distributions,

Ep[X] = Eq[X], (20a)

Ep[log |X |] = Eq[log |X |]. (20b)

Approximation with an IW -distribution

Theorem 4. Let p(X) be a probability density function defined over X ∈ Sd++.
Suppose that q(X) , IW (X ; v, V ) is the minimizer of KL(p||q) among all inverse
Wishart distributions. Then V is given as

V = (v − d − 1)
[
Ep(X−1)

]−1
(21)

and v is the solution to
d∑
i=1

ψ0((v − d − i)/2) − d log((v − d − 1)/2) + Ep(log |X |) + log |Ep(X−1)| = 0. (22)

�

Proof: Given in Appendix A.8.

Remark: The expressions for the inverse scale matrix V (21) and degrees of free-
dom v (22) correspond to equating the expected values of X−1 and log |X | under
both distributions,

Ep[X−1] = Eq[X
−1], (23a)

Ep[log |X |] = Eq[log |X |]. (23b)

3.3 Numerical root-finding

The equations (12), (16), (19), and (22) each have one unique solution, and can
be solved using numerical root-finding, see e.g. (Stoer and Bulirsch, 1993, Section
5.1). Examples include Newton-Raphson or modified Newton algorithms, see e.g.
(Stoer and Bulirsch, 1993, Section 5.4), for more alternatives see e.g. (Stoer and
Bulirsch, 1993, Chapter 5).

4 Target combination

In this section we address the problem of combination of two extended targets,
and describe a methodology that should be applied by a random matrix based
Bayesian extended target tracking filter in the case of target combination. In
Section 4.1 we give a model for extended target combination, and in Section 4.2
we show how the combined distribution can be computed, given the combination
model and two extended target estimates. In Section 4.3 we give a criterion that
can be used to determine whether or not two extended target estimates should be
combined.



4 Target combination 347

4.1 Combination model

The combination of two extended targets ξ(1)
k =

(
γ

(1)
k , x(1)

k , X
(1)
k

)
and

ξ
(2)
k =

(
γ

(2)
k , x(2)

k , X
(2)
k

)
, yielding independent sets of measurements Z1 and Z2, can

be seen as the problem of finding the extended target ξk = (γk , xk , Xk) that would
yield a set of measurements Z = Z1 ∪Z2, i.e. the union of both measurement sets.

Let Z1 =
{

z(j)
1

}n1

j=1
and Z2 =

{
z(j)

2

}n2

j=1
be two sets of measurements, where z(j)

i ∈ R
d

for all i, j. The corresponding sample means and sample covariances are given as

z̄i =
1
ni

ni∑
j=1

z(j)
i , (24a)

Zi =
1
ni

ni∑
j=1

(
z(j)
i − z̄i

) (
z(j)
i − z̄i

)T

, (24b)

for i = 1, 2, respectively. Straightforward calculations will give the following
sample mean and sample covariance for Z,

z̄ =
n1

n1 + n2
z̄1 +

n2

n1 + n2
z̄2, (25a)

Z =
n1

n1 + n2
Z1 +

n2

n1 + n2
Z2 +

n1n2

(n1 + n2)2 (z̄1 − z̄2) (z̄1 − z̄2)T . (25b)

Considering that, under the measurement model (7), z̄i and Zi are the maximum
likelihood estimates of Hx(i) and X(i), an intuitive two target combination model
for the kinematical and extension states can be based on (25) as follows,

xk =
γ

(1)
k

γ
(1)
k + γ (2)

k

x(1)
k +

γ
(2)
k

γ
(1)
k + γ (2)

k

x(2)
k , (26a)

Xk =
γ

(1)
k

γ
(1)
k + γ (2)

k

X
(1)
k +

γ
(2)
k

γ
(1)
k + γ (2)

k

X
(2)
k (26b)

+
γ

(1)
k γ

(2)
k(

γ
(1)
k + γ (2)

k

)2H
(
x(1)
k − x(2)

k

) (
x(1)
k − x(2)

k

)T

HT.

For the Poisson rate, the sum of two Poisson distributed variables with rates γ (1)
k

and γ (2)
k is Poisson distributed with rate γ (1)

k + γ (2)
k . Thus, for the Poisson rate we

have the following model,

γk = γ
(1)
k + γ (2)

k . (26c)
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4.2 Combined distribution for two extended targets

Let the states ξ(1)
k and ξ

(2)
k of the two extended targets to be combined be dis-

tributed as follows,

p
(
ξ

(1)
k

∣∣∣Zk ) = GGIW
(
ξ

(1)
k ; ζ(1)

k|k

)
, (27a)

p
(
ξ

(2)
k

∣∣∣Zk ) = GGIW
(
ξ

(2)
k ; ζ(2)

k|k

)
. (27b)

We wish to find the parameter ζk|k of the distribution

p
(
ξk

∣∣∣Zk ) = GGIW
(
γk ; ζk|k

)
, (28)

where ξk = (γk , xk , Xk) is the state of the combined extended target and is given
by the model (26). In what follows, we use the quantities γ̄1

k and γ̄2
k given as

γ̄
(1)
k =

γ
(1)
k

γ
(1)
k + γ (2)

k

, (29a)

γ̄
(2)
k =

γ
(2)
k

γ
(1)
k + γ (2)

k

= 1 − γ̄ (1)
k , (29b)

which are distributed with beta distributions obtained in Theorem 2.

Poisson rate

A gamma distribution for γk = γ
(1)
k + γ (2)

k is obtained using Theorem 1.

Marginal distribution of kinematical state

Let m(i)
k|k and P̂

(i)
k|k be the mean vector and covariance matrix of the Gaussian

marginal distribution of x(i)
k , i = 1, 2, see Appendix A.3. Straightforward cal-

culations show that p
(
xk

∣∣∣Zk ) = N
(
xk ; mk|k , P̂k|k

)
, where mk|k and P̂k|k are given

as

mk|k = E
[
γ̄

(1)
k

]
m

(1)
k|k + E

[
γ̄

(2)
k

]
m

(2)
k|k , (30a)

P̂k|k = E
[(
γ̄

(1)
k

)2
]
P̂

(1)
k|k + E

[(
γ̄

(2)
k

)2
]
P̂

(2)
k|k . (30b)

The expected values are given in Appendix A.1.

Extension state

Rewrite (26b) as

Xk =γ̄ (1)
k X

(1)
k + γ̄ (2)

k X
(2)
k + γ̄ (1)

k γ̄
(2)
k X

(12)
k , (31)

where

X
(12)
k = H

(
x(1)
k − x(2)

k

) (
x(1)
k − x(1)

k

)T

HT, (32)
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with expected value and covariance given in Appendix A.2 for the marginal dis-

tributions of x(i)
k .

Below we are going to find an approximate inverse Wishart density for Xk as
follows:

1. Approximate the true density of Xk with a Wishart distribution. This re-
quires the expected values of Xk and log |Xk |. The latter expected value
does not have an analytical solution, and must be approximated.

2. Approximate the Wishart distribution with an inverse Wishart distribution.
This requires the expected values of X−1

k and log |Xk |, which both have ana-
lytical solutions under the Wishart distribution obtained in step 1.

The reason that we do not approximate the true density of Xk with an inverse
Wishart density directly is that this would require us to approximate also the
expected value of X−1

k . With the two step approach outlined above, only one
expected value approximation is needed, which, we have empirically found, gives
better results.

Using Theorem 3, the distribution over Xk can be approximated with a Wishart
distribution

p
(
Xk

∣∣∣Zk ) ≈W (
Xk ; wk|k , Wk|k

)
. (33)

Theorem 3 requires the expected value of log |Xk |, which does not have an analyt-
ical solution. It is approximated using a second order Taylor expansion around
E [Xk]. The required first and second order moments of Xk are

E [Xk] = E
[
γ̄

(1)
k

]
E
[
X

(1)
k

]
+ E

[
γ̄

(2)
k

]
E
[
X

(2)
k

]
+ E

[
γ̄

(1)
k γ̄

(2)
k

]
E
[
X

(12)
k

]
, (34)

E
[
Xk,ijXk,mn

]
= E

[
γ̄2

1

]
Cov

(
X

(1)
k

)
ijmn

+ E
[
γ̄2

2

]
Cov

(
X

(2)
k

)
ijmn

+ E
[
γ̄

(1)
k γ̄

(2)
k

]
Cov

(
X

(12)
k

)
ijmn

+ E
[
Xk,ij

]
E
[
Xk,mn

]
, (35)

where Xk,ij denotes the i, jth element of Xk (ith row and jth column), and
Cov (Xk)ijmn denotes the covariance between Xk,ij and Xk,mn. Using Theorem 4,
the Wishart distribution (33) is approximated with an inverse Wishart distribu-
tion,

p
(
Xk

∣∣∣Zk ) ≈ IW (
Xk ; vk|k , Vk|k

)
. (36)

The required expected values of X−1
k and log |Xk |, under the Wishart distribution

(33), are given in Appendix A.4.

Conditional distribution of kinematical state

The conditional distribution for xk is

p
(
xk

∣∣∣Xk ,Zk ) = N
(
xk ; mk|k , Pk|k ⊗ Xk

)
, (37)
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where mk|k is given in (30). Given P̂k|k in (30), and vk|k and Vk|k in (36), Pk|k is
obtained as the least squares solution to

P̂k|k =
Pk|k ⊗ Vk|k

vk|k + s − sd − 2
. (38)

Due to the symmetry of all three matrices, this least squares problem has s(s+1)/2
unknown variables and nx(nx + 1)/2 = sd(sd + 1)/2 equations, thus the problem
is overdetermined.

4.3 Target combination criterion

Two extended targets should be combined into one larger target if (and only if)
they are located close to each other, and have similar velocity vectors. We decom-
pose this requirement into two separate criteria, one for the spatial closeness, and
one for the velocity vectors.

Spatial closeness

Spatial closeness is defined as whether or not the two targets’ extensions overlap.

Let x̂(i)
k|k = E

[
x(i)
k

∣∣∣∣ Zk
]

and X̂
(i)
k|k = E

[
X

(i)
k

∣∣∣∣ Zk
]
. A point p ∈ Rnx lies within υ > 0

standard deviations of x̂(i)
k|k if the following holds,(

p − H x̂(i)
k|k

)T (
υ2X̂

(i)
k|k

)−1 (
p − H x̂(i)

k|k

)
< 1. (39)

Let Pi be the set of points p that satisfy (39).

Overlap of the target extensions X(i)
k and X(j)

k is here simplified to whether or not
the intersection Pij = Pi ∩Pj is non-empty. This corresponds to the non-existence

of a hyperplane that separates the two ellipsoids
(
x̂(i)
k|k , υ

2X̂
(i)
k|k

)
and

(
x̂(j)
k|k , υ

2X̂
(j)
k|k

)
,

which can be posed as a second order cone program (socp) feasibility problem,
see e.g. (Boyd and Vandenberghe, 2004, Problem 4.25). An socp feasibility prob-
lem is a type of convex optimization problem, and it can be readily solved using
standard Matlab interfaces such as yalmip (Löfberg, 2004, 2012) or cvx (Grant
and Boyd, 2011, 2008).

Velocity vectors

Two extended targets have similar velocity vectors if the following holds,

cvij =
(
m

(i)
k|k −m

(j)
k|k

)T

IT
vΛ

(ij)
k|k Iv

(
m

(i)
k|k −m

(j)
k|k

)
< uv, (40)

where uv > 0 is a threshold, Λ(ij)
k|k =

(
P̂

(i)
k|k

)−1
+

(
P̂

(j)
k|k

)−1
and Iv is an nx × nx matrix

with identities on the velocity states (all other elements are zero). This is a mod-
ified version of a criterion that was used to group single measurement targets
(Clark and Godsill, 2007).
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Combination criterion

In order to not combine targets that are close but moving in different directions,
or combine targets moving at similar velocity in different parts of the surveillance
space, two extended targets are combined if (and only if) the following holds,

comb
(
ξ̂

(i)
k|k , ξ̂

(j)
k|k

)
,

(
Pi ∩ Pj , ∅

)
&

(
cvij < uv

)
(41)

where & is the logical and operator.

5 Target spawning

This section addresses the problem of extended target spawning and describes
a methodology that should be applied by a random matrix based Bayesian ex-
tended target tracking filter in the case of target spawning. Here we will only
consider two target spawning, and we will assume that the spawning event occurs
in between measurement generation, i.e. during the prediction step of extended
target tracking filtering.

Because there might be many different spawning pairs which, when combined,
would give the same original extended target, we will adopt a multiple hypothe-
ses framework where each hypothesis represents an alternative spawning event.

5.1 Spawning model

Let the target distribution be

p
(
ξk−1|Zk−1

)
= GGIW

(
ξk−1 ; ζk−1|k−1

)
. (42)

By means of a prediction update, see (Koch, 2008; Feldmann et al., 2011; Gran-
ström and Orguner, 2012a), a predicted target distribution

p
(
ξk |Zk−1

)
= GGIW

(
ξk ; ζk|k−1

)
, (43)

can be obtained. In case a spawning event takes place during the prediction
phase, we would instead have two targets

p
(
ξ

(1)
k

∣∣∣∣ Zk−1
)

=GGIW
(
ξ

(1)
k ; ζ(1)

k|k−1

)
, (44a)

p
(
ξ

(2)
k

∣∣∣∣ Zk−1
)

=GGIW
(
ξ

(2)
k ; ζ(2)

k|k−1

)
. (44b)

Assume that the Poisson rates relate to each other as follows,

γ
(1)
k =κγk , (45a)

γ
(2)
k =(1 − κ)γk , (45b)

where 0 < κ < 1. Further, assume that the two spawned targets’ extensions relate
to each other as follows,
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X
(1)
k =κX(1/2)

k , (46a)

X
(2)
k =(1 − κ)X(1/2)

k , (46b)

i.e. the extensions have the same shape but different size. The matrix X(1/2)
k ∈

Sd++ is introduced to simplify the notation below. Note that (45) and (46) can be
interpreted as meaning that a larger target (i.e. larger extension) will cause more
measurements (i.e. have a higher Poisson rate).

If the two spawned targets (44) were to immediately combine into one target, the
resulting combined target is assumed to be equal to the prediction (43). Under
this assumption, inserting (45) and (46) into the target combination model (26)
gives

xk =κx(1)
k + (1 − κ)x(2)

k , (47a)

Xk =(1 + 2κ(κ − 1))X(1/2)
k + κ(1 − κ)X(12)

k , (47b)

γk =γ (1)
k + γ (2)

k , (47c)

where X(12)
k is defined as in (32). For a given κ, (47) is the suggested spawning

model.

The assumption that both spawned targets have the same shape, cf. (46), is lim-

iting, however it is necessary because we have two unknown variables, X(1)
k and

X
(2)
k , and only one equation (26b). Furthermore, the assumption is not very criti-

cal because it is made in the prediction step, and the subsequent correction step(s)
would correct the shapes.

5.2 Spawning hypotheses

Given a prior target distribution (42), the prediction method from (Koch, 2008;
Granström and Orguner, 2012b) is used to obtain the predicted target distribu-
tion (43). Note that, for a given predicted target distribution (43), there exists
an infinite number of spawning pairs (44) whose combination is identical to the
predicted single target.

We generate multiple spawning hypotheses as follows. For each κ value, and
each dimension ` of the extension, one spawned estimate pair is generated, with

parameters ζ(1,`,κ)
k|k−1 and ζ(2,`,κ)

k|k−1 .

Poisson rates

It follows from the definition of GAM( · ) that γ (1)
k and γ (2)

k are gamma distributed
with parameters

α
(i,`,κ)
k|k−1 =αk|k−1 for i = 1, 2, (48a)
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β
(1,`,κ)
k|k−1 =

βk|k−1

κ
, (48b)

β
(2,`,κ)
k|k−1 =

βk|k−1

1 − κ
. (48c)

Kinematical states

Let X̂k|k−1 = E
[
Xk

∣∣∣Zk−1
]

under the pdf (43), and let e` and v` be the `:th eigen-

value and eigenvector of X̂k|k−1. We set the parameters of the spawned kinemati-
cal states to

m
(1,`,κ)
k|k−1 =mk|k−1 + (1 − κ)

√
e`H

Tv` , (49a)

m
(2,`,κ)
k|k−1 =mk|k−1 − κ

√
e`H

Tv` , (49b)

P
(i,`,κ)
k|k−1 =Pk|k−1 for i = 1, 2. (49c)

Note that other ways are possible, however, empirically we have found that (49)
gives good results.

Extension states

Rewriting (47b), we have

X
(1/2)
k =

1
1 + 2κ(κ − 1)︸           ︷︷           ︸

,κ1

Xk −
κ(1 − κ)

1 + 2κ(κ − 1)︸           ︷︷           ︸
,κ2

X
(12)
k . (50)

Similarly to Section 4.2, we first approximate the true distribution over X(1/2)
k

with a Wishart distribution, and subsequently approximate the Wishart distribu-
tion with an inverse Wishart distribution.

Using Theorem 3 the distribution over X(1/2)
k is approximated with a Wishart

distribution

p
(
X

(1/2)
k

∣∣∣Zk−1
)
≈ W

(
X

(1/2)
k ; w(`,κ)

k|k−1, W
(`,κ)
k|k−1

)
. (51)

This requires the expected value of log
∣∣∣∣X(1/2)
k

∣∣∣∣, for which there is no analytical
solution. As in Section 4.2, the expected value is approximated using a second

order Taylor expansion around E
[
X

(1/2)
k

]
. The necessary first and second order

moments of X(1/2)
k are

E
[
X1/2
k

]
=κ1 E [Xk] − κ2 E

[
X

(12)
k

]
, (52a)

E
[
X

(1/2)
k,ij X

(1/2)
k,mn

]
=κ2

1 Cov (Xk)ijmn + κ2
2 Cov

(
X

(12)
k

)
ijmn

+ E
[
X

(1/2)
k,ij

]
E
[
X

(1/2)
k,mn

]
.

(52b)

The distribution (51) is subsequently approximated with an inverse Wishart dis-
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tribution using Theorem 4,

p
(
X

(1/2)
k

∣∣∣Zk−1
)
≈ IW

(
X

(1/2)
k ; v(`,κ)

k|k−1, V
(`,κ)
k|k−1

)
. (53)

Finally, by (Gupta and Nagar, 2000, Theorems 3.3.11 and 3.4.1) we have

p
(
X

(1)
k

∣∣∣Zk−1
)
≈IW

(
X

(1)
k ; v(`,κ)

k|k−1, κV
(`,κ)
k|k−1

)
, (54a)

p
(
X

(2)
k

∣∣∣Zk−1
)
≈IW

(
X

(2)
k ; v(`,κ)

k|k−1, (1 − κ)V (`,κ)
k|k−1

)
. (54b)

Summary

To summarize, for each dimension ` of the extension and each κ value, a spawned
estimate pair is generated with the following parameters

ζ
(1,`,κ)
k|k−1 =

(
αk|k−1,

βk|k−1
κ , m

(1,`,κ)
k|k−1 , P

(1,`,κ)
k|k−1 , v

(`,κ)
k|k−1, κV

(`,κ)
k|k−1

)
, (55a)

ζ
(2,`,κ)
k|k−1 =

(
αk|k−1,

βk|k−1
1−κ , m

(2,`,κ)
k|k−1 , P

(2,`,κ)
k|k−1 , v

(`,κ)
k|k−1, (1−κ)V (`,κ)

k|k−1

)
. (55b)

If a set K of K different κ values are used, in total dK spawned estimate pairs are
generated, or 2dK ggiw components.

6 On the use of other spatial distributions

By using positive definite matrices to represent the target extensions our work
implicitly assumes that the target extent is an ellipsoid. Moreover, the spatial dis-
tribution of the measurements in our work is a Gaussian density. One potential
extension of the presented work is thus to relax the Gaussian and/or the ellip-
soidal assumption. This would allow different types of spatial distributions for
the target measurements, see e.g. (Gilholm et al., 2005).

The methodology presented here gives hints on what type of approach can be
used in a general setting, e.g. when parametric densities from the exponential
family are used. The proposed combination model is based on representing the
set of measurements, generated by the individual target’s spatial densities, with
a single spatial density of the same functional form as those of the individual
targets. With a different parametric spatial density, one would need to write
the formulae for the combined density parameters in terms of the formulae that
connect the parameters of the spatial density of each target to the corresponding
measurements. This is what is performed in (24) and (25).

The multiple hypothesis methodology for spawning could also be useful if other
spatial distributions are used. In this work a single ellipsoid is simply divided
into alternative possible ellipsoids, if other distributions from the exponential
family are used, similar division methods must be devised. If the spatial distri-
bution is multi-modal, the different modes of the spatial density might provide
intuitive alternative divisions. Note that, in the spawning case and without using
the subsequent measurements, one can never arrive at a unique solution for how
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a single target can be divided into multiple targets. Therefore, an uncertainty
margin must always be left for the forthcoming measurements to resolve.

7 Multiple target tracking framework

To demonstrate the merits of the presented methodologies for target combina-
tion and target spawning, the methodologies must be integrated into a multiple
extended target tracking framework. In this section we will briefly describe the
framework that we have worked in, we show how combination and spawning
fits into the framework, and we also discuss target extraction and performance
metrics.

7.1 The GGIW-PHD filter

We have used a modified version of the Gaussian inverse Wishart (giw) imple-
mentation (Granström and Orguner, 2012a; Granström and Orguner, 2012) of
the extended target probability hypothesis density (phd) filter (Mahler, 2009).
In the giwphd filter the extended target state is composed only of the kinemati-
cal and extension states (i.e. there are no Poisson rates), and the phd of the target
set is approximated as a mixture of giw densities as follows (Granström and
Orguner, 2012a)

Dk|k (ξk) ≈
Jk|k∑
j=1

w
(j)
k|kN

(
xk ; m(j)

k|k , P
(j)
k|k ⊗ Xk

)
IW

(
Xk ; ν(j)

k|k , V
(j)
k|k

)
, (56)

where Jk|k is the number of mixture components, and the scalars w(j)
k|k > 0 are the

components weights.

In the modified version of the giwphd filter that we use in the current work,
called the ggiw-phd filter, the extended target state also includes the Poisson
rates. The phd of the target set is approximated as a mixture of ggiw densities
as follows

Dk|k (ξk) ≈
Jk|k∑
j=1

w
(j)
k|kGAM

(
γk ; αk|k , βk|k

)
N

(
xk ; m(j)

k|k , P
(j)
k|k ⊗ Xk

)
× IW

(
Xk ; ν(j)

k|k , V
(j)
k|k

)
(57a)

=
Jk|k∑
j=1

w
(j)
k|kGGIW

(
ξk ; ζ(j)

k|k

)
(57b)

In both phd filter implementations, the parameters of the phds are predicted and
updated recursively with the measurements. For details on the implementations,
please refer to (Granström and Orguner, 2012a; Granström and Orguner, 2012;
Granström and Orguner, 2012b).
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7.2 Combination in the GGIW-PHD filter

Target combination in the ggiw-phd filter is performed after the correction step
(measurement update). An algorithm for target combination is given in Table 1.
In the algorithm, all ggiw components with a weight less than 0.5 are left unal-
tered. The components with weight larger than 0.5 are checked for combination
in a pairwise manner, starting with the highest weights. Note that any component
is combined with at most one other component.

Table 1: ggiw-phd filter target combination

1: require: Combination criterion parameters υ and uv, and phd intensity

Dk|k (ξk) =
Jk|k∑
j=1

w
(j)
k|kGGIW

(
ξk ; ζ(j)

k|k

)
.

2: initialize: I =
{
i
∣∣∣∣w(i)
k|k ≥ 0.5

}
,

3: D̃k|k (ξk) =
∑
j<I w

(j)
k|kGGIW

(
ξk ; ζ(j)

k|k

)
,

4: ` = |I c |.
5: repeat
6: ` = ` + 1
7: j = arg max

i∈I
w

(i)
k|k

8: Ij =
{
i ∈ I\j

∣∣∣∣∣comb
(
ξ̂

(i)
k|k , ξ̂

(j)
k|k

)
= 1

}
9: if Ij , ∅ then

10: n = arg max
i∈Ij

w
(i)
k|k

11: Combine components j and n as presented in Section 4.2, let ζ̃(`)
k|k denote

the corresponding ggiw distribution parameters.

12: w̃
(`)
k|k = E

[
γ̄

(j)
k

]
w

(j)
k|k + E

[
γ̄

(n)
k

]
w

(j)
k|k

13: I = I\ {j, n}
14: else
15: ζ̃

(`)
k|k = ζ

(j)
k|k

16: w̃
(`)
k|k = w

(j)
k|k

17: I = I\j
18: end if
19: until I = ∅
20: output: Combined phd intensity, where J̃k|k ≤ Jk|k ,

D̃k|k (ξk) =
J̃k|k∑
j=1

w̃
(j)
k|kGGIW

(
ξk ; ζ̃(j)

k|k

)
.
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7.3 Spawning in the GGIW-PHD filter

Generation of spawning estimate pairs in the ggiw-phd filter is performed in the
prediction step (time update). An algorithm for target prediction with spawning
is given in Table 2. The spawning weight parameter wsp > 0 can be understood
as follows. If the phd has N̂x,k ggiw components, all with weight ≈ 1, the total
sum of weights for the spawning components is approximately

N̂x,k × 2dK × wsp = Nsp. (58)

The quantity Nsp approximates the mean number of spawned targets. Thus, the
more likely spawning events are thought to be, the larger the spawning weight
parameter should be set.

In the algorithm, for each component with weight greater than 0.5, K additional
component pairs (which have negligible weights compared to the corresponding
component, because typically wsp � 1) are added to the predicted phd. These
added components correspond to a heuristic modification of the extended target
phd filter to include spawning hypotheses. The procedure of adding component
pairs is analogous to the Gaussian Mixture phd-filter for point targets (Vo and
Ma, 2006), in which a single spawned Gaussian component is added for each
existing component.

7.4 Performance Evaluation

Let the true target set at time tk be

Xk =
{
ξ

(i)
k

}Nx,k
i=1

, (59)

where the true target cardinality Nx,k , and each true target state ξ(i)
k , are un-

known. Estimates of the target states ξ̂(j)
k|k are obtained by extracting the ggiw

components whose weights are larger than or equal to a threshold, e.g. 0.5, see
(Vo and Ma, 2006). Let the set of extracted targets be denoted

X̂k|k =
{
ξ̂

(i)
k|k

}N̂x,k
i=1

, (60a)

ξ̂
(i)
k|k =

(
γ̂

(i)
k|k , x̂(i)

k|k , X̂
(i)
k|k

)
, (60b)

γ̂
(i)
k|k = E [γk] , (60c)

x̂(i)
k|k = E [xk] , (60d)

X̂
(i)
k|k = E [Xk] , (60e)

where the expected values are taken with respect to the i:th ggiw distribution.

An assignment π̄ between the true target states ξ(j)
k and the extracted states ξ̂(i)

k|k
is computed using the optimal sub-pattern assignment (ospa) metric (Schuh-
macher et al., 2008).
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Table 2: ggiw-phd filter prediction with spawning

1: require: Spawning weight wsp, set K of κ values, and phd intensity

Dk|k (ξk) =
Jk|k∑
j=1

w
(j)
k|kGGIW

(
ξk ; ζ(j)

k|k

)
.

2: initialize: Jaux = Jk|k
3: for j = 1, . . . , Jk|k do
4: Predict j:th component as outlined in (Granström and Orguner, 2012a;

Granström and Orguner, 2012).

5: if w(j)
k|k > 0.5 then

6: for κ ∈ K do
7: for ` = 1, . . . , d do
8: Compute ζ(1,`,κ)

k|k−1 and ζ(2,`,κ)
k|k−1 as presented in Section 5.2.

9: For i = 1, 2, set
w

(Jaux+i)
k+1|k = wspw

(j)
k|k ,

ζ
(Jaux+i)
k+1|k = ζ

(i,`,κ)
k+1|k .

10: Jaux = Jaux + 2
11: end for
12: end for
13: end if
14: end for
15: output: Predicted phd intensity with spawned estimate pairs, where Jk+1|k ≥

Jk|k ,

Dk+1|k (ξk+1) =
Jk+1|k∑
j=1

w
(j)
k+1|kGGIW

(
ξk+1 ; ζ(j)

k+1|k

)
,

The tracking results are evaluated in terms of the following quantities,

d(γ) =
∑
j

∣∣∣∣γ (j)
k − γ̂

(π̄(j))
k|k

∣∣∣∣ , (61a)

d(x) =
∑
j

∥∥∥∥x(j)
k − x̂(π̄(j))

k|k

∥∥∥∥
2
, (61b)

d(X) =
∑
j

∥∥∥∥X(j)
k − X̂

(π̄(j))
k|k

∥∥∥∥
F
, (61c)

where | · | is the absolute value, ‖ · ‖2 is the Euclidean norm, and ‖ · ‖F is the Frobe-
nius norm. An estimate of the target cardinality is given by the sum of weights

(Mahler, 2007), N̂k|k =
∑Jk|k
j=1 w

(j)
k|k .
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8 Simulation study

This section presents a simulation study conducted for testing the proposed tar-
get combination and spawning functions.

8.1 Multiple target tracking setup

Four scenarios were simulated. The kinematical state contains 2D position, ve-
locity and acceleration, the extension is two dimensional (i.e. d = 2, nx = 6 and
thus s = 3). In each scenario, the i:th target’s true extension is

X
(i)
k = R

(i)
k diag

([
ā2
i a

2
i

]) (
R

(i)
k

)T

, (62)

where āi and ai are the major and minor axes, and R(i)
k is a rotation matrix applied

such that either āi or ai is aligned with the direction of motion. The motion
model used in the filter is described in detail in (Koch, 2008), as in (Granström
and Orguner, 2012a) the motion model parameters were set to ts = 1s, θ = 1s,
Σ = 0.1m/s2 and τ = 5s.

The true target motions were not generated using a specific motion model. This
choice may seem simplistic, however the main focus of this paper is not on mo-
tion modeling, but on spawning and combination. The generated true tracks are
sufficiently realistic to test the presented spawning and combination functions.

In each scenario a Poisson distributed number of clutter measurements were dis-
tributed uniformly in the surveillance space, with Poisson rate 10 per scan.

8.2 True target tracks

Target combination

In the first scenario two targets maneuver such that they move in parallel and
give rise to unresolved sets of measurements, see the true tracks in Figure 1a.
The scenario is meant to simulate a real world scenario such as a radar tracking
two airplanes that begin to fly in a close formation. It has 24 time steps, starting
at time step 12 the targets move in parallel at equal speeds, with their 2σ ellipses
touching (this corresponds to υ = 2 in (39)). True target measurements were

generated with γ (i)
k = 20, āi = 10 and ai = 5 for i = 1, 2.

Target split

In the second scenario an extended target splits in half into two smaller extended
targets, see the true tracks in Figure 1b. The scenario is meant to simulate a real
world scenario such as a radar tracking two airplanes flying in close formation
before separating. It has 15 time steps, the spawning occurs between time steps 5
and 6. True target measurements were generated with γk = 40, ā = 10 and a = 10

before spawning, and γ (i)
k = 20, āi = 10 and ai = 5, for i = 1, 2, after spawning.
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Figure 1: True tracks for the simulation scenarios. Colors are used to show
time steps, dark blue and dark red are the first and last time steps. (a) (b),
(c) and (d) show the true target positions for target combination, target split,
new target appearance, and target occlusion, respectively. For the target oc-
clusion scenario, only every 25:th time step is shown for increased clarity.

New target appearance

In the third scenario a new smaller target appears next to an existing target, see
the true tracks in Figure 1c. The scenario has 15 time steps, the spawning occurs
between time steps 5 and 6. This scenario is meant to simulate a real world
scenario such as a radar tracking an airplane that launches a weapon. True target

measurements were generated with γ (1)
k = 40, ā1 = 20 and a1 = 5 for the larger

target, and γ (2)
k = 10, ā2 = 6.67 and a2 = 1 for the smaller spawned target.

Target occlusion

In the fourth scenario two targets of different size move in opposite direction to-
wards each other, and as the targets pass each other the smaller target is occluded
by the larger target, i.e. it is not seen by the sensor and thus does not produce any
measurements. The scenario has 101 time steps, and the true kinematic positions

were generated such that x(1)
51 = x(2)

51 , i.e. the targets are at the same position at the
51:st time step. The respective initial positions vary with the simulated constant
speed ς(i) of the targets. In Figure 1d the true tracks are shown for ς(i) = 1. Only
every 25:th time step is shown for increased clarity.
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The spawning event occurs when the smaller target becomes visible to the sensor
again. Because this happens gradually, it is not possible to give a definitive time
for when the spawning happens. The scenario is meant to simulate a real world
scenario such as a camera that is used to track two persons moving across the
field of view, in opposite directions, and at different distances from the sensor.
For the detections in the image plane, this would appear as two different sized
targets that move “through” each other.

True target measurements were generated with γ
(1)
k = 30, ā1 = 10 and a1 = 5

for the larger target, and γ (2)
k = 15, ā2 = 8 and a2 = 3 for the smaller target. At

each time step measurements were simulated for both targets, however for the
second target the measurements that fell inside the 3σ ellipse of the first target
were removed to simulate the occlusion.

8.3 Combination results

For the spatial closeness criterion we set υ = 2, and for the velocity vectors we
set uv = 50. The results are shown in Figure 2. When the targets are sufficiently
close, moving in the same direction, they are combined into just one target. For
υ = 2, the true targets fulfill the combination criterion between time steps k = 12
and k = 24. Over 103 Monte Carlo simulations, for 60% of the cases the two
target estimates are combined at time step k = 13, i.e. with a delay of one time
step. The delay is typically caused by the fact that the velocity vector estimates
must converge to similar values first.

8.4 Spawning results

Three ggiw-phd filters were run in parallel: one filter with spawning hypotheses
computed using the model presented in Section 5 (denoted F1), one filter without
spawning model (denoted F2), and one filter with a single spawning hypothesis
as in (Lian et al., 2010) (denoted F3). Neither filter used the target combination
outlined in Section 4. In F1 and F3 the spawning weight was wsp = 0.05 In F1
spawning hypotheses were generated for

κ ∈ K =
{1

4
,

1
2
,

3
4

}
. (63)

The parameters of F3 were set such that the expected value was constant for the
extended target state, and the variance was increased. The variance of the mea-
surement rate was increased by 50%, a matrix diag ([1, 0, 0]) was added to the
kinematical state covariance, and the degrees of freedom of the extension state
was decreased by 25. These parameters were chosen such that the best possible
performance was obtained.

Target split and new target appearance

The second and third scenarios were simulated 103 times each, Figures 3 and 4
show the results. The mean sum of weights, and the performance metrics (61),
are shown for different distances between the kinematical positions. When the
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Figure 2: Combination of two targets. (a) Example result from a single sim-
ulation run. The true targets are shown as the light gray filled ellipses, the
target estimates are shown as black ellipses. When the targets are suffi-
ciently close, and have similar velocity vectors, they are combined into one
target. (b) Sum of weights (i.e. estimated cardinality), averaged over 103

runs, shown in blue. Mean ± one standard deviation is shown in light blue.
(c) Histogram showing for which time step the two targets were combined.
The two targets move in parallel starting at time step 12 (red line), in 60% of
the 103 simulations the targets estimates were combined after measurement
updating in time step 13.

extended targets are still very close, no filter is able to detect the spawning event.
However, when the targets start to separate, F1 detects the event at a shorter
distance, or equivalently at an earlier time step, than F3. The worst performance
is obtained with F2, i.e. the filter without any spawning model.

There is also a significant difference between the three filters with respect to the
performance metrics (61), with F1 clearly having the best performance. After the
spawning event is detected by F1 and F3, the measurement rate and kinematical
state starts to converge towards the correct value. The extension state has a small
positive error, however this is expected. As the two targets turn away from each
other, their corresponding extensions rotate, and the simple extension prediction
used, see (Koch, 2008), does not account for rotations. As noted in previous work
(Granström and Orguner, 2012a), during maneuvers the extension estimation
error is always larger than during straight line motion.
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Figure 3: Spawning results for the true tracks in Figure 1b. (a) Example re-
sult from a single simulation run. The true targets are shown as the light
gray filled ellipses, the target estimates are shown as black ellipses. (b) Esti-
mated cardinality (true cardinality is two). (c) Measurement rate estimation
error. (d) Kinematic state estimation error. (c) Extension state estimation er-
ror. The results in (b) to (e) are averaged over 103 Monte Carlo runs, and are
shown for different separation distances. While the ggiw-phd with spawn-
ing can detect the spawning events, adding spawned estimate pairs allows
the filter to detect the spawning at a closer distance.

Target occlusion

The fourth scenario was simulated with different target speeds,

ς(i) = [0.5, 0.51, . . . , 1.0] , i = 1, 2. (64)
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Figure 4: Spawning results for the true tracks in Figure 1c. (a) Example re-
sult from a single simulation run. The true targets are shown as the light
gray filled ellipses, the target estimates are shown as black ellipses. (b) Esti-
mated cardinality (true cardinality is two). (c) Measurement rate estimation
error. (d) Kinematic state estimation error. (c) Extension state estimation er-
ror. The results in (b) to (e) are averaged over 103 Monte Carlo runs, and are
shown for different separation distances. While the ggiw-phd with spawn-
ing can detect the spawning events, adding spawned estimate pairs allows
the filter to detect the spawning at a closer distance.

For each speed, the scenario was simulated 102 times. The mean estimated car-
dinalities of all three filters are shown for different target speeds and target dis-
tances in Figures 5a, 5b, and 5c, respectively. Figure 5d illustrates the contour
plots for Figures 5a, 5b, and 5c, superposed onto each other.
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Figure 5: Spawning results for the true tracks in Figure 1d. (a), (b) and (c)
show the mean estimated cardinality for F1, F2 and F3, respectively. Dashed
lines corresponds to cardinality 1.1, solid lines correspond to cardinality 1.9.
(d) Contour plot of the estimated cardinality for F1 (blue), F2 (green), and

F3 (red), respectively. Distance is computed as x(1)
k − x

(2)
k , i.e. the difference

in x-position, explaining why there are negative distances.

As the two targets approach each other, all three filters can track both targets
until the point where the targets’ respective 1σ ellipses are touching. After this
point, all three filters estimate cardinality to one target, which is expected. As
the targets move away from each other, F1 correctly estimates the cardinality as
two around a point which corresponds to when the 4σ ellipses of the targets are

touching, regardless of the target speed ς(i)
k . The filter F2 corrects the cardinality

estimate at a much later point, especially at lower speeds, and the performance
of F3 is in between F1 and F2.

This strange dependence of the spawning performance on the target speeds ob-
served in F2, and to a lesser degree also in F3, deserves an explanation. When the
second target is occluded, all three filters estimate a single target. Hence when
the targets start to separate after the occlusion event, F2 predicts and expects a
single target in the next sampling instant. On the other hand, F1 and F3 also
expect a single target with large probability, however with small probability, F1
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and F3 also expect two targets thanks to the spawning hypotheses their phds
contains. As the targets separate further, one of the spawning hypotheses gains
weight and eventually dominates the single target hypothesis easily when the
targets are sufficiently separated. This happens earlier for F1 than F3.

The filter F2 always expects a single target. For obtaining the correct cardi-
nality, it has to initiate/give birth to a new extended target. When the targets
move/separate fast, the size of the single extended target predicted by the filter
cannot catch up with the swiftly enlarged size of the measurement cluster (due
to the target separation). Since the predicted target size remains small while the
size of the measurement cluster becomes large, a new target is initialized/born
easily under this estimate-measurement mismatch. Hence F2 can compensate
the lack of spawning hypotheses by initiating a new extended target when the
targets separate fast.

However, when the speeds of the targets are small (i.e. when the targets separate
slowly), the predicted target size can easily match the overall measurement clus-
ter size, and the incentive to initiate a new target is greatly reduced. Only when
the targets are very far can F2 realize that a single elliptical target extent is too
poor an explanation for the separated measurement clusters, and initiate a new
target.

Hence when the targets separate slowly, new target initiation in F2 is delayed too
much, and the lack of the spawning hypotheses becomes really critical.

Summary

To summarize, it is possible for the ggiw-phd filter to detect spawned targets
when spawning hypotheses are not used, however it becomes increasingly dif-
ficult as the separation speed decreases. The ggiw-phd filter with spawning
hypotheses detects the spawned targets at the same distance, independent of the
separation speed.

Further, used in the ggiw-phd filter and run on the scenarios in this paper,
the presented spawning method clearly outperforms the spawning method pre-
sented in (Lian et al., 2010).

8.5 Cycle times

Adding spawning hypotheses increases the number of ggiw components in the
filter, and as a consequence the computational complexity increases. Conversely,
using the combination functionality decreases the complexity. Mean cycle times
for the scenarios in Figures 1a and 1b are given in Tables 3 and 4, respectively. As
expected, the mean cycle time increases when spawning hypotheses are used, and
it decreases when target combination is used. Note that one should not compare
the cycle times for the filter without spawning and the filter without combination,
because, while the filters are identically implemented, they are run on different
scenarios.
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Table 3: Cycle times [s] for the scenario in Figure 1a
Filter Mean Median St.dev.
w comb 0.11 0.06 0.17
w/o comb 0.25 0.12 0.34

Table 4: Cycle times [s] for the scenario in Figure 1b
Filter Mean Median St.dev.
F1 0.82 0.66 0.73
F2 0.11 0.09 0.07
F3 0.14 0.12 0.09

9 Concluding remarks

This paper presented models for combination and spawning of extended targets
modeled with random matrices. These models were then used in order to pro-
pose functions for multiple extended target tracking filters similar to those used
in multiple point target tracking filters. Results show that with an appropriate
combination criterion, two extended targets can be combined into one larger tar-
get when they are spatially close, and moving in the same direction, while at the
same time taking care of their extensions. For spawning, the results show that by
including spawning hypotheses the spawning events can be detected earlier than
the case when the spawning hypotheses are not used. The results also show that
the presented extended target spawning method outperforms earlier work on the
topic.

The simulation study clearly shows that adding spawning hypotheses enables
earlier detection of spawned targets, however this comes at the price of increased
complexity. In the present implementation, spawning hypotheses are added in
each time step for ggiw components with weights w > 0.5. As an alternative,
the measurement sets could be used to determine when it is appropriate to add
spawning hypotheses.

The analysis in the paper is limited to the two target case. The results can be di-
rectly applicable to combination and spawning events with more than two targets,
if the combination/spawning involves two (groups of) targets at a time. The anal-
ysis of target combination can be generalized to more than two targets combining
at the same time with a considerable amount of work. The more challenging sce-
narios where more than two (groups of) targets are spawned from an extended
target is left as an interesting topic of future work. The combination and spawn-
ing functions could also be tested on experimental data, e.g. from a laser range
sensor, a radar sensor, or a camera.
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A Appendix

A.1 Properties of Gamma distributed random variables

Let γ1 and γ2 be independent and Gamma distributed with equal inverse scale
parameters,

p(γ1) =GAM (γ1 ; α1, β) , (65a)

p(γ2) =GAM (γ2 ; α2, β) . (65b)

Then γ = γ1 + γ2 is Gamma distributed (Jambunathan, 1954)

p(γ) =GAM (γ ; α1 + α2, β) (66)

and γ̄1 = γ1
γ1+γ2

is Beta distributed (Jambunathan, 1954)

p(γ̄1) =BE (γ̄1 ; α1 , α2) . (67)

Let γ̄2 = γ2
γ1+γ2

= 1 − γ̄1. It follows immediately from the definition of the beta
distribution that γ̄2 is beta distributed,

p(γ̄2) = BE (γ̄2 ; α2, α1) . (68)

The first and second order moments of γ̄1 are

E[γ̄1] =
α1

α1 + α2
, (69a)

E[γ̄2
1 ] =

α1(α1 + 1)
(α1 + α2)(α1 + α2 + 1)

, (69b)

and consequently the expected value of γ̄1γ̄2 = γ̄1(1 − γ̄1) is straightforward to
compute.

A.2 Matrix product of sum of Gaussians

Let x1 ∈ Rnx and x2 ∈ Rnx be two independent Gaussian distributed random vec-
tors with mean vectors m1 ∈ Rnx and m2 ∈ Rnx and covariance matrices P1 ∈ S

nx
+

and P2 ∈ S
nx
+ , and let H be a d × nx matrix. Then the quantity x12 = H (x1 − x2) ∈

Rd is Gaussian distributed,

p (x12) =N (x12 ; m12, P12) , (70a)

m12 =H (m1 −m2) , (70b)

P12 =H (P1 + P2)HT. (70c)

Let M12 = m12m
T
12. The expected value and covariance of the d × d matrix X12 =

x12xT
12 are given by (Gupta and Nagar, 2000)

E [X12]ij =P12,ij + M12,ij , (71a)

Cov (X12)ijkl =P12,ikP12,j l + P12,ilP12,jk + P12,j lM12,ik

+ P12,ilM12,jk + P12,jkM12,il + P12,ikM12,j l , (71b)
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where E [X12]ij is the expected value of the i, j:th element of X12, and Cov (X12)ijkl
is the covariance of the i, j:th and k, l:th elements of X12. The expected value (71a)
is derived using the first and second order moments of x12, deriving the covari-
ance (71b) requires tedious calculations involving the first to fourth order mo-
ments of x12, see (Gupta and Nagar, 2000).

A.3 Marginal distribution of kinematical state

The marginal distribution p
(
xk

∣∣∣Zk ) is a multivariate student-t distribution (Koch,
2008; Feldmann and Koch, 2012), with expected value and covariance (Koch,
2008)

E [xk] =mk|k , (72a)

Cov (xk) =
Pk|k ⊗ Vk|k

vk|k + s − sd − 2
, P̂k|k , (72b)

for vk|k > sd + 2 − s. The multivariate student-t distribution can be approximated
with a multivariate Gaussian distribution by analytical minimization of the kl-
div. This gives the following marginal distribution,

p
(
xk

∣∣∣Zk ) ≈N (
xk ; mk|k , P̂k|k

)
. (73)

A.4 Expected values

Gamma distributed random variables

Let γ1 and γ2 be independent and gamma distributed

p(γ1) =GAM (γ1 ; α1, β1) , (74a)

p(γ2) =GAM (γ2 ; α2, β2) , (74b)

with β1 , β2. The expected value of γ = γ1 + γ2 is

E[γ] = E[γ1 + γ2] (75a)

= E[γ1] + E[γ2] (75b)

=
α1

β1
+
α2

β2
. (75c)

Let γ̄1 = γ1
γ1+γ2

. The expected value of log γ̄1 can be rewritten as

E[log γ̄1] = E[log γ1] − E[log(γ1 + γ2)] (76a)

=ψ0(α1) − log(β1) − E[log(γ1 + γ2)]. (76b)

There is no analytical solution to E[log(γ1 + γ2)], however it can be computed
after Taylor expanding the function log(γ1 + γ2) around the point γ0

1 = E[γ1] and
γ0

2 = E[γ2], which gives

E[log(γ1 + γ2)] ≈ log
(
α1

β1
+
α2

β2

)
− 1

2

α1
β2

1
+ α2
β2

2(
α1
β1

+ α2
β2

)2 . (77)
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Inverse random matrix – inverse Wishart

Let X be inverse Wishart distributed p (X) = IW (X ; v, V ). Then X−1 is Wishart
distributed p

(
X−1

)
= W

(
X−1 ; v − d − 1, V −1

)
(Gupta and Nagar, 2000, Theorem

3.4.1). The expected value of X−1 is (Gupta and Nagar, 2000, Theorem 3.3.15)

E
[
X−1

]
= (v − d − 1)V −1. (78)

Inverse random matrix – Wishart

Let X be Wishart distributed p (X) = W (X ; v, V ). Then X−1 is inverse Wishart
distributed p

(
X−1

)
= IW

(
X−1 ; v + d + 1, V −1

)
(Gupta and Nagar, 2000, Theo-

rem 3.4.1). The expected value of X−1 is (Gupta and Nagar, 2000, Theorem 3.4.3)

E
[
X−1

]
=

V −1

(v − d − 1)
. (79)

Log-determinant of random matrix – inverse Wishart

Let y be a uni-variate random variable. The moment generating function for y is
defined as

µy (s) , E [esy] , (80)

and the expected value of y is given in terms of µy (s) as

E [y] =
dµy (s)

ds

∣∣∣∣∣∣
s=0

. (81)

Let y = log |X |, and p (X) = IW (X ; v, V ). The moment generating function of y
is

µy (s) = E [|X |s] =
∫
|X |s p (X)dX (82a)

=
∫
|X |s

2−
(v−d−1)d

2 |V |
v−d−1

2

Γd

(
v−d−1

2

)
|X |

v
2

etr
(
−1

2
X−1V

)
dX (82b)

=
∫

2−
(v−d−1)d

2 |V |
v−d−1

2

Γd

(
v−d−1

2

)
|X |

v−2s
2

etr
(
−1

2
X−1V

)
dX (82c)

=
Γd

(
v−2s−d−1

2

)
Γd

(
v−d−1

2

) (
|V |
2d

)s ∫
IW (X ; v − 2s, V )dX (82d)

=
Γd

(
v−d−1

2 − s
)

Γd

(
v−d−1

2

) (
|V |
2d

)s
. (82e)
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By (Gupta and Nagar, 2000, Theorem 1.4.1), Γd( · ) and its logarithm is

Γd(a) =π
1
4 d(d−1)

d∏
i=1

Γ

(
a − i − 1

2

)
, (83a)

log Γd(a) =
1
4
d(d − 1) logπ +

d∑
i=1

log Γ
(
a − i − 1

2

)
. (83b)

The expected value of y is

E [y] = E [log |X |] (84a)

=
d
ds

 Γd
(
v−d−1

2 − s
)

Γd

(
v−d−1

2

) (
|V |
2d

)s
∣∣∣∣∣∣∣
s=0

(84b)

=
(
|V |
2d

)s d
ds Γd

(
v−d−1

2 − s
)

Γd

(
v−d−1

2

) ∣∣∣∣∣∣∣
s=0

+
Γd

(
v−d−1

2 − s
)

Γd

(
v−d−1

2

) d
ds

(
|V |
2d

)s∣∣∣∣∣∣∣
s=0

(84c)

=
(
|V |
2d

)s d
ds

log Γd

(
v − d − 1

2
− s

)∣∣∣∣∣∣
s=0

+
Γd

(
v−d−1

2 − s
)

Γd

(
v−d−1

2

) (
|V |
2d

)s
log

(
|V |
2d

)∣∣∣∣∣∣∣
s=0
(84d)

= −
d∑
j=1

ψ0

(
v − d − 1

2
−
j − 1

2

)
+ log

(
|V |
2d

)
(84e)

= log |V | − d log 2 −
d∑
j=1

ψ0

(
v − d − j

2

)
. (84f)

Log-determinant of random matrix – Wishart

Let y = log |X |, and p (X) = W (X ; v, V ). The moment generating function of y is

µy (s) = E [|X |s] =
∫
|X |s p (X)dX (85a)

=
∫
|X |s

2−
nd
2 |X |

v−d−1
2
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(
v
2

)
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etr
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2
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dX (85b)

=
∫
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)
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)
dX (85c)

=
Γd

(
v+2s

2

)
Γd

(
v
2

) (
2d |V |

)s ∫
W (X ; v + 2s, V )dX (85d)

=
Γd

(
v
2 + s

)
Γd

(
v
2

) (
2d |V |

)s
, (85e)
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and the expected value of y is

E [y] = E [log |X |] (86a)

=
d
ds

 Γd
(
v
2 + s

)
Γd

(
v
2

) (
2d |V |
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s=0

(86b)

=
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2d |V |

)s d
ds Γd
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v
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)
Γd
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v
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s=0

+
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)
Γd
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2

) d
ds

(
2d |V |
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s=0

(86c)

=
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ds

log Γd
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)∣∣∣∣∣
s=0

+
Γd

(
v
2 + s

)
Γd

(
v
2

) (
2d |V |

)s
log

(
2d |V |

)∣∣∣∣∣∣∣
s=0

(86d)

=
d∑
j=1

ψ0

(v
2
−
j − 1

2

)
+ log

(
2d |V |

)
(86e)

= log |V | + d log 2 +
d∑
j=1

ψ0

(v − j + 1
2

)
. (86f)

A.5 Proof of Theorem 1
Proof: We have q( · ) given by

q(γ) ,arg min
q

KL(p||q) (87a)

=arg max
q

∫
p(γ) log q(γ)dγ (87b)

=arg max
q

∫
p(γ) [α log β − log Γ (α) + (α − 1) log(γ) − βγ] dγ (87c)

=arg max
q

(
α log β − log Γ (α) + (α − 1) Ep[log(γ)] − β Ep[γ]

)
. (87d)

Differentiating the objective function with respect to β, setting the result equal
to zero, and solving for β, gives

β =
α

Ep[γ]
. (88)

Differentiating the objective function with respect to α, setting the result equal
to zero, and inserting β given in (88), gives

log(α) − ψ0(α) + Ep[log(γ)] − log
(
Ep[γ]

)
= 0. (89)
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A.6 Proof of Theorem 2
Proof: We have q( · ) given by

q(γ) ,arg min
q

KL(p||q) (90a)

=arg max
q

∫
p(γ̄1) log q(γ̄1)dγ̄1 (90b)

=arg max
q

∫
p(γ̄1)

[
log Γ (a + b) − log Γ (a) − log Γ (b)

+ (a − 1) log(γ̄1) + (b − 1) log(1 − γ̄1)
]
dγ̄1 (90c)

=arg max
q

(
log Γ (a + b) − log Γ (a) − log Γ (b) (90d)

+ (a − 1) E[log(γ̄1)] + (b − 1) E[log(1 − γ̄1)]
)
.

Differentiating the objective function with respect to a, and setting the result
equal to zero gives

ψ0(a + b) − ψ0(a) + E[log(γ̄1)] = 0. (91)

Differentiating the objective function with respect to b, and setting the result
equal to zero gives

ψ0(a + b) − ψ0(b) + E[log(γ̄2)] = 0, (92)

where γ̄2 = γ2
γ1+γ2

= 1 − γ̄1.

A.7 Proof of Theorem 3
Proof: We have q( · ) given as

q(X) ,arg min
q

KL(p||q) (93a)

=arg max
q

∫
p(X) log(q(X))dX (93b)

=arg max
q

[
1
2

(v − d − 1) Ep [log |X |] − 1
2

Tr
(
V −1 Ep [X]

)
− 1

2
vd log(2) − Γd(v/2) − 1

2
v log |V |

]
(93c)

Taking the derivative of the objective function with respect to V , equating the
result to zero, and solving for V , we get

V =
1
v

Ep [X] (94)
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Now, we take the derivative of the objective function with respect to v, equate the
result to zero, and insert the V in (94), to obtain

d∑
i=1

ψ0((v − i + 1)/2) + d log(v/2) − Ep [log |X |] + log |Ep [X] | = 0. (95)

A.8 Proof of Theorem 4
Proof: We have q( · ) given as

q(X) ,arg min
q

KL(p||q) (96a)

=arg max
q

∫
p(X) log(q(X))dX (96b)

=arg max
q

[
1
2

(v − d − 1) log |V | − 1
2

Tr
(
V Ep(X−1)

)
− 1

2
(v − d − 1)d log(2)

− log Γd((v − d − 1)/2) − 1
2
v Ep(log |X |)

]
(96c)

Taking the derivative of the objective function with respect to V , equating the
result to zero, and solving for V , we get

V = (v − d − 1)
[
Ep(X−1)

]−1
(97)

Now, we take the derivative of the objective function with respect to v, equate the
result to zero, and insert the V in (97), to obtain

−
d∑
i=1

ψ0((v − d − i)/2) + d log((v − d − 1)/2) − Ep(log |X |) − log |Ep(X−1)| = 0.

(98)



Bibliography 375

Bibliography

Y. Bar-Shalom. Multitarget-multisensor tracking: applications and advances,
volume II of Multitarget-multisensor Tracking: Applications and Advances.
Artech House, 1992.

Y. Bar-Shalom and T. E. Fortmann. Tracking and data association, volume 179
of Mathematics in Science and Engineering. Academic Press Professional, Inc.,
San Diego, CA, USA, 1987.

M. Baum and U. D. Hanebeck. Random hypersurface models for extended ob-
ject tracking. In IEEE International Symposium on Signal Processing and In-
formation Technology (ISSPIT), pages 178–183, Ajman, United Arab Emirates,
December 2009.

M. Baum and U. D. Hanebeck. Shape Tracking of Extended Objects and Group
Targets with Star-Convex RHMs. In Proceedings of the International Confer-
ence on Information Fusion (FUSION), pages 338–345, Chicago, IL, USA, July
2011.

M. Baum, B. Noack, and U. D. Hanebeck. Extended Object and Group Tracking
with Elliptic Random Hypersurface Models. In Proceedings of the Interna-
tional Conference on Information Fusion (FUSION), Edinburgh, UK, July 2010.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
New York, NY, USA, 2004.

D.E. Clark and S. Godsill. Group target tracking with the gaussian mixture proba-
bility hypothesis density filter. In International Conference on Intelligent Sen-
sors, Sensor Networks and Information (ISSNIP), pages 149–154, Melbourne,
Australia, December 2007.

M. Feldmann and W. Koch. Comments on “Bayesian Approach to Extended Ob-
ject and Cluster Tracking using Random Matrices”. IEEE Transactions on Aero-
space and Electronic Systems, 48(2):1687–1693, April 2012.

M. Feldmann, D. Fränken, and J. W. Koch. Tracking of extended objects and
group targets using random matrices. IEEE Transactions on Signal Processing,
59(4):1409–1420, April 2011.

A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian Data Analysis.
Texts in Statistical Science. Chapman & Hall/CRC, 2004.

K. Gilholm, S. Godsill, S. Maskell, and D. Salmond. Poisson models for extended
target and group tracking. In Proceedings of Signal and Data Processing of
Small Targets, volume 5913, pages 230–241, San Diego, CA, USA, August 2005.
SPIE.

K. Granström and U. Orguner. A PHD filter for tracking multiple extended tar-
gets using random matrices. IEEE Transactions on Signal Processing, 2012a.
doi: 10.1109/TSP.2012.2212888.



376 Paper H On Spawning and Combination of Extended/Group Targets. . .

K. Granström and U. Orguner. Estimation and Maintenance of Measurement
Rates for Multiple Extended Target Tracking. In Proceedings of the Interna-
tional Conference on Information Fusion (FUSION), pages 2170–2176, Singa-
pore, July 2012b.

K. Granström and U. Orguner. On Spawning and Combination of Ex-
tended/Group Targets Modeled with Random Matrices. IEEE Transactions on
Signal Processing, 2012c.

K. Granström, C. Lundquist, and U. Orguner. Tracking Rectangular and Elliptical
Extended Targets Using Laser Measurements. In Proceedings of the Interna-
tional Conference on Information Fusion (FUSION), pages 592–599, Chicago,
IL, USA, July 2011.

K. Granström and U. Orguner. Implementation of the GIW-PHD filter. Techni-
cal Report LiTH-ISY-R-3046, Department of Electrical Engineering, Linköping
University, SE-581 83 Linköping, Sweden, March 2012. URL http://www.
control.isy.liu.se/publications/doc?id=2508.

M. Grant and S. Boyd. Graph implementations for nonsmooth convex programs.
In V. Blondel, S. Boyd, and H. Kimura, editors, Recent Advances in Learn-
ing and Control, Lecture Notes in Control and Information Sciences, pages
95–110. Springer-Verlag Limited, 2008. http://stanford.edu/~boyd/
graph_dcp.html.

M. Grant and S. Boyd. CVX: Matlab software for disciplined convex program-
ming, version 1.21. ../../cvx, April 2011.

A. K. Gupta and D. K. Nagar. Matrix variate distributions. Chapman & Hall/CRC
monographs and surveys in pure and applied mathematics. Chapman & Hall,
2000. ISBN 9781584880462.

M. V. Jambunathan. On information and sufficiency. The Annals of Mathematical
Statistics, 25(2):401–405, June 1954.

J. W. Koch. Bayesian approach to extended object and cluster tracking using
random matrices. IEEE Transactions on Aerospace and Electronic Systems, 44
(3):1042–1059, July 2008.

S. Kullback and R. A. Leibler. On information and sufficiency. The Annals of
Mathematical Statistics, 22(1):79–86, March 1951.

B. Lau, K. O. Arras, and W. Burgard. Multi-model hypothesis group tracking
and group size estimation. International Journal of Social Robotics, 2(1):19–30,
March 2010.

F. Lian, C.-Z. Han, W.-F. Liu, X.-X. Yan, and H.-Y. Zhou. Sequential Monte Carlo
implementation and state extraction of the group probability hypothesis den-
sity filter for partly unresolvable group targets-tracking problem. IET Radar,
Sonar and Navigation, 4(5):685–702, October 2010.

http://www.control.isy.liu.se/publications/doc?id=2508
http://www.control.isy.liu.se/publications/doc?id=2508
http://stanford.edu/~boyd/graph_dcp.html
http://stanford.edu/~boyd/graph_dcp.html
../../cvx


Bibliography 377

J. Löfberg. Yalmip : A toolbox for modeling and optimization in MATLAB. In
Proceedings of the CACSD Conference, Taipei, Taiwan, 2004. URL http://
users.isy.liu.se/johanl/yalmip.

J. Löfberg. Automatic robust convex programming. Optimization methods and
software, 27(1):115–129, 2012.

C. Lundquist, K. Granström, and U. Orguner. Estimating the shape of targets with
a PHD filter. In Proceedings of the International Conference on Information
Fusion (FUSION), pages 49–56, Chicago, IL, USA, July 2011.

R. P. S. Mahler. Statistical Multisource-Multitarget Information Fusion. Artech
House, Norwood, MA, USA, 2007.

R. P. S. Mahler. PHD filters for nonstandard targets, I: Extended targets. In
Proceedings of the International Conference on Information Fusion (FUSION),
pages 915–921, Seattle, WA, USA, July 2009.

A. R. Runnalls. Kullback-Leibler approach to Gaussian mixture reduction. IEEE
Transactions on Aerospace and Electronic Systems, 43(3):989–999, July 2007.

D. J. Salmond and M. C. Parr. Track maintenance using measurements of tar-
get extent. IEE Proceedings - Radar, Sonar and Navigation, 150(6):389–395,
December 2003.

D. Schieferdecker and M. F. Huber. Gaussian Mixture Reduction via Clustering.
In Proceedings of the International Conference on Information Fusion (FU-
SION), Seattle, WA, USA, July 2009.

D. Schuhmacher, B.-T. Vo, and B.-N. Vo. A consistent metric for performance
evaluation of multi-object filters. IEEE Transactions on Signal Processing, 56
(8):3447–3457, August 2008.

J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer-Verlag,
New York, second edition, 1993.

B.-N. Vo and W.-K. Ma. The Gaussian mixture probability hypothesis density
filter. IEEE Transactions on Signal Processing, 54(11):4091–4104, November
2006.

J. L. Williams and P. S. Maybeck. Cost-Function-Based Gaussian Mixture Reduc-
tion for Target Tracking. In Proceedings of the International Conference on
Information Fusion (FUSION), Cairns, Queensland, Australia, July 2003.

H. Zhu, C. Han, and C. Li. An extended target tracking method with random
finite set observations. In Proceedings of the International Conference on In-
formation Fusion (FUSION), pages 73–78, Chicago, IL, USA, July 2011.

http://users.isy.liu.se/johanl/yalmip
http://users.isy.liu.se/johanl/yalmip


378 Paper H On Spawning and Combination of Extended/Group Targets. . .



PhD Dissertations
Division of Automatic Control

Linköping University

M. Millnert: Identification and control of systems subject to abrupt changes. Thesis
No. 82, 1982. ISBN 91-7372-542-0.
A. J. M. van Overbeek: On-line structure selection for the identification of multivariable
systems. Thesis No. 86, 1982. ISBN 91-7372-586-2.
B. Bengtsson: On some control problems for queues. Thesis No. 87, 1982. ISBN 91-7372-
593-5.
S. Ljung: Fast algorithms for integral equations and least squares identification problems.
Thesis No. 93, 1983. ISBN 91-7372-641-9.
H. Jonson: A Newton method for solving non-linear optimal control problems with gen-
eral constraints. Thesis No. 104, 1983. ISBN 91-7372-718-0.
E. Trulsson: Adaptive control based on explicit criterion minimization. Thesis No. 106,
1983. ISBN 91-7372-728-8.
K. Nordström: Uncertainty, robustness and sensitivity reduction in the design of single
input control systems. Thesis No. 162, 1987. ISBN 91-7870-170-8.
B. Wahlberg: On the identification and approximation of linear systems. Thesis No. 163,
1987. ISBN 91-7870-175-9.
S. Gunnarsson: Frequency domain aspects of modeling and control in adaptive systems.
Thesis No. 194, 1988. ISBN 91-7870-380-8.
A. Isaksson: On system identification in one and two dimensions with signal processing
applications. Thesis No. 196, 1988. ISBN 91-7870-383-2.
M. Viberg: Subspace fitting concepts in sensor array processing. Thesis No. 217, 1989.
ISBN 91-7870-529-0.
K. Forsman: Constructive commutative algebra in nonlinear control theory. Thesis
No. 261, 1991. ISBN 91-7870-827-3.
F. Gustafsson: Estimation of discrete parameters in linear systems. Thesis No. 271, 1992.
ISBN 91-7870-876-1.
P. Nagy: Tools for knowledge-based signal processing with applications to system identi-
fication. Thesis No. 280, 1992. ISBN 91-7870-962-8.
T. Svensson: Mathematical tools and software for analysis and design of nonlinear control
systems. Thesis No. 285, 1992. ISBN 91-7870-989-X.
S. Andersson: On dimension reduction in sensor array signal processing. Thesis No. 290,
1992. ISBN 91-7871-015-4.
H. Hjalmarsson: Aspects on incomplete modeling in system identification. Thesis No. 298,
1993. ISBN 91-7871-070-7.
I. Klein: Automatic synthesis of sequential control schemes. Thesis No. 305, 1993.
ISBN 91-7871-090-1.
J.-E. Strömberg: A mode switching modelling philosophy. Thesis No. 353, 1994. ISBN 91-
7871-430-3.
K. Wang Chen: Transformation and symbolic calculations in filtering and control. Thesis
No. 361, 1994. ISBN 91-7871-467-2.
T. McKelvey: Identification of state-space models from time and frequency data. Thesis
No. 380, 1995. ISBN 91-7871-531-8.
J. Sjöberg: Non-linear system identification with neural networks. Thesis No. 381, 1995.
ISBN 91-7871-534-2.
R. Germundsson: Symbolic systems – theory, computation and applications. Thesis
No. 389, 1995. ISBN 91-7871-578-4.



P. Pucar: Modeling and segmentation using multiple models. Thesis No. 405, 1995.
ISBN 91-7871-627-6.
H. Fortell: Algebraic approaches to normal forms and zero dynamics. Thesis No. 407,
1995. ISBN 91-7871-629-2.
A. Helmersson: Methods for robust gain scheduling. Thesis No. 406, 1995. ISBN 91-7871-
628-4.
P. Lindskog: Methods, algorithms and tools for system identification based on prior
knowledge. Thesis No. 436, 1996. ISBN 91-7871-424-8.
J. Gunnarsson: Symbolic methods and tools for discrete event dynamic systems. Thesis
No. 477, 1997. ISBN 91-7871-917-8.
M. Jirstrand: Constructive methods for inequality constraints in control. Thesis No. 527,
1998. ISBN 91-7219-187-2.
U. Forssell: Closed-loop identification: Methods, theory, and applications. Thesis No. 566,
1999. ISBN 91-7219-432-4.
A. Stenman: Model on demand: Algorithms, analysis and applications. Thesis No. 571,
1999. ISBN 91-7219-450-2.
N. Bergman: Recursive Bayesian estimation: Navigation and tracking applications. Thesis
No. 579, 1999. ISBN 91-7219-473-1.
K. Edström: Switched bond graphs: Simulation and analysis. Thesis No. 586, 1999.
ISBN 91-7219-493-6.
M. Larsson: Behavioral and structural model based approaches to discrete diagnosis. The-
sis No. 608, 1999. ISBN 91-7219-615-5.
F. Gunnarsson: Power control in cellular radio systems: Analysis, design and estimation.
Thesis No. 623, 2000. ISBN 91-7219-689-0.
V. Einarsson: Model checking methods for mode switching systems. Thesis No. 652, 2000.
ISBN 91-7219-836-2.
M. Norrlöf: Iterative learning control: Analysis, design, and experiments. Thesis No. 653,
2000. ISBN 91-7219-837-0.
F. Tjärnström: Variance expressions and model reduction in system identification. Thesis
No. 730, 2002. ISBN 91-7373-253-2.
J. Löfberg: Minimax approaches to robust model predictive control. Thesis No. 812, 2003.
ISBN 91-7373-622-8.
J. Roll: Local and piecewise affine approaches to system identification. Thesis No. 802,
2003. ISBN 91-7373-608-2.
J. Elbornsson: Analysis, estimation and compensation of mismatch effects in A/D convert-
ers. Thesis No. 811, 2003. ISBN 91-7373-621-X.
O. Härkegård: Backstepping and control allocation with applications to flight control.
Thesis No. 820, 2003. ISBN 91-7373-647-3.
R. Wallin: Optimization algorithms for system analysis and identification. Thesis No. 919,
2004. ISBN 91-85297-19-4.
D. Lindgren: Projection methods for classification and identification. Thesis No. 915,
2005. ISBN 91-85297-06-2.
R. Karlsson: Particle Filtering for Positioning and Tracking Applications. Thesis No. 924,
2005. ISBN 91-85297-34-8.
J. Jansson: Collision Avoidance Theory with Applications to Automotive Collision Mitiga-
tion. Thesis No. 950, 2005. ISBN 91-85299-45-6.
E. Geijer Lundin: Uplink Load in CDMA Cellular Radio Systems. Thesis No. 977, 2005.
ISBN 91-85457-49-3.
M. Enqvist: Linear Models of Nonlinear Systems. Thesis No. 985, 2005. ISBN 91-85457-
64-7.
T. B. Schön: Estimation of Nonlinear Dynamic Systems — Theory and Applications. The-
sis No. 998, 2006. ISBN 91-85497-03-7.



I. Lind: Regressor and Structure Selection — Uses of ANOVA in System Identification.
Thesis No. 1012, 2006. ISBN 91-85523-98-4.
J. Gillberg: Frequency Domain Identification of Continuous-Time Systems Reconstruc-
tion and Robustness. Thesis No. 1031, 2006. ISBN 91-85523-34-8.
M. Gerdin: Identification and Estimation for Models Described by Differential-Algebraic
Equations. Thesis No. 1046, 2006. ISBN 91-85643-87-4.
C. Grönwall: Ground Object Recognition using Laser Radar Data – Geometric Fitting,
Performance Analysis, and Applications. Thesis No. 1055, 2006. ISBN 91-85643-53-X.
A. Eidehall: Tracking and threat assessment for automotive collision avoidance. Thesis
No. 1066, 2007. ISBN 91-85643-10-6.
F. Eng: Non-Uniform Sampling in Statistical Signal Processing. Thesis No. 1082, 2007.
ISBN 978-91-85715-49-7.
E. Wernholt: Multivariable Frequency-Domain Identification of Industrial Robots. Thesis
No. 1138, 2007. ISBN 978-91-85895-72-4.
D. Axehill: Integer Quadratic Programming for Control and Communication. Thesis
No. 1158, 2008. ISBN 978-91-85523-03-0.
G. Hendeby: Performance and Implementation Aspects of Nonlinear Filtering. Thesis
No. 1161, 2008. ISBN 978-91-7393-979-9.
J. Sjöberg: Optimal Control and Model Reduction of Nonlinear DAE Models. Thesis
No. 1166, 2008. ISBN 978-91-7393-964-5.
D. Törnqvist: Estimation and Detection with Applications to Navigation. Thesis No. 1216,
2008. ISBN 978-91-7393-785-6.
P-J. Nordlund: Efficient Estimation and Detection Methods for Airborne Applications.
Thesis No. 1231, 2008. ISBN 978-91-7393-720-7.
H. Tidefelt: Differential-algebraic equations and matrix-valued singular perturbation.
Thesis No. 1292, 2009. ISBN 978-91-7393-479-4.
H. Ohlsson: Regularization for Sparseness and Smoothness — Applications in System
Identification and Signal Processing. Thesis No. 1351, 2010. ISBN 978-91-7393-287-5.
S. Moberg: Modeling and Control of Flexible Manipulators. Thesis No. 1349, 2010.
ISBN 978-91-7393-289-9.
J. Wallén: Estimation-based iterative learning control. Thesis No. 1358, 2011. ISBN 978-
91-7393-255-4.
J. Hol: Sensor Fusion and Calibration of Inertial Sensors, Vision, Ultra-Wideband and GPS.
Thesis No. 1368, 2011. ISBN 978-91-7393-197-7.
D. Ankelhed: On the Design of Low Order H-infinity Controllers. Thesis No. 1371, 2011.
ISBN 978-91-7393-157-1.
C. Lundquist: Sensor Fusion for Automotive Applications. Thesis No. 1409, 2011.
ISBN 978-91-7393-023-9.
P. Skoglar: Tracking and Planning for Surveillance Applications. Thesis No. 1432, 2012.
ISBN 978-91-7519-941-2.


	Abstract
	Populärvetenskaplig sammanfattning
	Acknowledgments
	Contents
	Notation
	I Background
	1 Introduction
	1.1 Motivation
	1.2 Loop closure detection
	1.3 Multiple target tracking
	1.4 Publications
	1.5 Main contributions
	1.5.1 Loop closure detection
	1.5.2 Target tracking

	1.6 Thesis outline

	2 The laser range sensor
	2.1 Introduction
	2.2 Laser range data in 2D
	2.3 Laser range data in 3D
	2.4 Occlusion
	2.5 Registration

	3 Classification
	3.1 The classification problem
	3.2 Boosting
	3.2.1 Adaptive boosting
	3.2.2 Examples
	3.2.3 Properties
	3.2.4 S-fold cross validation

	3.3 Performance evaluation
	3.3.1 Basic concepts
	3.3.2 Detection and false alarm
	3.3.3 Receiver operating characteristic


	4 Estimation
	4.1 The estimation problem
	4.2 Dynamic models and measurement models
	4.2.1 Example in continuous time
	4.2.2 Examples in discrete time

	4.3 Recursive single state Bayes filter
	4.4 Some solutions to the estimation problem
	4.4.1 Linear estimation with the Kalman filter
	4.4.2 Non-linear estimation

	4.5 Performance evaluation
	4.5.1 The root mean square error
	4.5.2 The normalized estimation error square

	4.6 Simultaneous localization and mapping

	5 Target tracking
	5.1 The target tracking problem
	5.1.1 Single target tracking
	5.1.2 Multiple target tracking

	5.2 Data association methods
	5.2.1 Single target tracking
	5.2.2 Multiple target tracking

	5.3 Performance evaluation

	6 Random finite sets and the probability hypothesis density
	6.1 Introduction
	6.1.1 Random finite sets
	6.1.2 A brief overview of multi-target calculus

	6.2 Recursive multi-state Bayes filter
	6.2.1 The probability hypothesis density filter
	6.2.2 The cardinalized probability hypothesis density filter

	6.3 A brief revisit to the SLAM problem

	7 Extended target tracking
	7.1 Introduction
	7.2 Extended target modeling
	7.2.1 Extended target measurements
	7.2.2 Extended target state
	7.2.3 Extension shape models

	7.3 Measurement set partitioning
	7.4 Performance evaluation

	8 Concluding remarks
	8.1 Conclusions
	8.2 Future work

	Bibliography

	II Publications
	A Learning to close loops from range data
	1 Introduction
	2 Related work
	3 Loop closure detection
	3.1 Algorithm overview
	3.2 Features
	3.3 Classification using AdaBoost

	4 Simultaneous localization and mapping
	4.1 Exactly Sparse Delayed-state Filters
	4.2 Robot pose, process and measurement models
	4.3 Point cloud registration

	5 Experimental results
	5.1 Data
	5.2 Classifier evaluation
	5.3 SLAM experiments
	5.4 Summary and comparison

	6 Conclusions and future work
	A Appendix
	A.1 Feature definitions
	A.2 Compounding operations

	Bibliography

	B Extended target tracking using a Gaussian mixture PHD filter
	1 Introduction
	2 Target Tracking Problem Formulation
	3 Gaussian-Mixture Implementation
	4 Partitioning the Measurement Set
	4.1 Distance Partitioning
	4.2 Alternative Partitioning Methods
	4.3 Sub-Partitioning

	5 Target Tracking Setup
	6 Simulation Results
	6.1 True target tracks
	6.2 Comparison of Distance Partitioning and K-means++
	6.3 Benefits of Sub-Partition
	6.4 Comparison with GM-PHD
	6.5 Standard single measurement targets
	6.6 Unknown expected number of measurements 

	7 Experiment Results
	7.1 Experiment with close targets
	7.2 Experiment with occlusion

	8 Conclusions
	9 Future Work
	A Appendix
	A.1 Proof of Theorem 1
	A.2 Variable Probability of Detectionfor the Laser Sensor

	Bibliography

	C Tracking Rectangular and Elliptical Extended Targets Using Laser Measurements
	1 Introduction
	2 State representation
	3 Extended target tracking
	3.1 GM-PHD target tracking
	3.2 Problem definition
	3.3 Multiple shapes and multiple targets

	4 Computing predicted measurements and innovation covariances
	4.1 Predicted measurements for rectangular targets
	4.2 Predicted measurements for elliptical targets
	4.3 Innovation covariances

	5 Extended target tracking performance evaluation
	6 Results
	6.1 Simulations
	6.2 Experiment

	7 Conclusions and future work
	Bibliography

	D A PHD filter for tracking multiple extended targets using random matrices
	1 Introduction
	2 Modeling the target extension
	3 Target Tracking Problem Formulation
	4 The Gaussian inverse Wishart PHD filter
	4.1 Assumptions
	4.2 Prediction
	4.3 Correction
	4.4 Pruning and merging
	4.5 Implementation of the GIW-PHD filter

	5 Partitioning the measurement set
	5.1 Prediction Partition
	5.2 EM Partition
	5.3 Discussion

	6 Simulation Results
	6.1 Target tracking setup
	6.2 Crossing tracks
	6.3 Parallel tracks
	6.4 Separating tracks
	6.5 Closely spaced targets

	7 Experiment results
	7.1 Target tracking setup
	7.2 Experiment with close targets
	7.3 Experiment with occlusion
	7.4 Discussion

	8 Conclusions and future work
	A Appendix
	A.1 Derivation of the correction
	A.2 Variable probability of detection for the laser range sensor
	A.3 Pseudo-code
	A.4 Implementation issues
	A.5 Computational complexity analysis

	Bibliography

	E Estimation and Maintenance of Measurement Rates for Multiple Extended Target Tracking
	1 Introduction
	2 Bayesian recursion for k
	2.1 Measurement update and prediction
	2.2 Extended target predicted likelihood

	3 Multi-target mixture reduction
	3.1 Merging N Gamma components
	3.2 Merging criterion for Gamma components
	3.3 Merging of extended target components

	4 Results
	4.1 Merging criterion
	4.2 Comparison of merging algorithms
	4.3 Single target results
	4.4 Multiple target results

	5 Concluding Remarks
	A Appendix
	A.1 Expected value of logarithm
	A.2 Proof of Theorem 1

	Bibliography

	F On the Reduction of Gaussian inverse Wishart Mixtures
	1 Introduction
	2 Problem formulation
	3 Approximating a weighted sum of GIW-components with one GIW-component
	4 Merging criterion
	4.1 Distance measure
	4.2 A closer look at the Gaussian KL-diff
	4.3 A closer look at the inverse Wishart KL-diff
	4.4 Discussion

	5 Merging algorithm
	6 Simulation results
	6.1 Merging criterion
	6.2 Merging of one dimensional components
	6.3 Merging of two dimensional components
	6.4 Comparison of merging algorithms

	7 Concluding remarks
	A Appendix
	A.1 Expected value of inverse extension
	A.2 Expected value of log determinant of extension
	A.3 Proof of Theorem 1

	Bibliography

	G A New Prediction for Extended Targets with Random Matrices
	1 Introduction
	2 The random matrix framework
	3 Problem formulation
	4 Preliminaries
	4.1 Known results
	4.2 Approximating a GBdII with an IWd
	4.3 Approximating the density of Vx with a Wd
	4.4 Marginalizing IWd(X|V)W(V) over V

	5 A new prediction update for the extension
	5.1 Predicting the kinematical state
	5.2 Predicting the extension state
	5.3 Another look at the parameter nk+1

	6 Simulations
	6.1 Determining 
	6.2 Difference measure for probability density functions
	6.3 Results in one dimension
	6.4 Results in two dimensions

	7 Concluding remarks
	A Appendix
	A.1 Preliminaries
	A.2 Expected values of the GBIId-distribution
	A.3 Proof of Theorem 1
	A.4 Proof of Theorem 2
	A.5 Proof of Theorem 3

	Bibliography

	H On Spawning and Combination of Extended/Group Targets Modeled with Random Matrices
	1 Introduction
	2 Extended target frameworkand problem formulation
	3 Preliminary results on probability density approximations
	3.1 Approximating the distribution of functions of gamma distributed random variables
	3.2 Approximating matrix variate densities
	3.3 Numerical root-finding

	4 Target combination
	4.1 Combination model
	4.2 Combined distribution for two extended targets
	4.3 Target combination criterion

	5 Target spawning
	5.1 Spawning model
	5.2 Spawning hypotheses

	6 On the use of other spatial distributions
	7 Multiple target tracking framework
	7.1 The GGIW-PHD filter
	7.2 Combination in the GGIW-PHD filter
	7.3 Spawning in the GGIW-PHD filter
	7.4 Performance Evaluation

	8 Simulation study
	8.1 Multiple target tracking setup
	8.2 True target tracks
	8.3 Combination results
	8.4 Spawning results
	8.5 Cycle times

	9 Concluding remarks
	A Appendix
	A.1 Properties of Gamma distributed random variables
	A.2 Matrix product of sum of Gaussians
	A.3 Marginal distribution of kinematical state
	A.4 Expected values
	A.5 Proof of Theorem 1
	A.6 Proof of Theorem 2
	A.7 Proof of Theorem 3
	A.8 Proof of Theorem 4

	Bibliography



