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Voorwoord

Achteromkijkend hangt een levensloop aaneen van de toevalligheden. Als
eerstejaars masterstudent elektrotechniek was het dan ook eerder toevallig dat
ik medio april 2008 tijdens de ESAT-eindwerkbeurs in gesprek raakte met Toon
van Waterschoot, die er de eindwerkvoorstellen van de DSP-groep aanprees.
Een clipper ontwerpen voor audiosignalen? Klonk me heel interessant in de
oren. Optimalisatie als voorgestelde aanpak voor het probleem? Vernieuwend
idee! En dit alles onder een promotorenduo bestaande uit Prof. Marc Moonen
en Prof. Moritz Diehl? Mijn eerste masterproefkeuze was beslist, hier wilde ik
heel graag een academiejaar lang onderzoek naar doen. Die dag begon voor mij
- zonder het zelf te beseffen - een wetenschappelijk en menselijk avontuur vol on-
vergetelijke momenten, inspirerende ontmoetingen, en verhelderende inzichten,
een verrassende rondreis die me onder andere naar het Verre Oosten en de
Maghreb zou brengen.

Het succesvol vervullen van mijn doctoraatsonderzoek heeft - veel meer dan
met toeval - vooral te maken met de uitstekende begeleiders, het boeiende
onderzoeksonderwerp, de fijne collega’s, en natuurlijk de onmisbare en onvoor-
waardelijke steun van het thuisfront, die er samen hebben voor gezorgd dat vier
jaar hard werken konden culmineren in deze doctoraatstekst. In wat volgt zou
ik graag alle mensen die me hierbij hebben geholpen oprecht willen bedanken.

Vooreerst zou ik mijn promotoren willen bedanken voor hun uitstekende begelei-
ding van mijn onderzoek. Prof. Marc Moonen wil ik bedanken om me de kans
te geven om onder zijn promotorschap een doctoraat te maken in zijn - het
mag gezegd - gerenommeerde onderzoeksgroep. Zijn uitstekende lessen over
digitale (audio)-signaalverwerking hebben me reeds tijdens mijn ingenieurso-
pleiding geboeid en gevormd. Marc, heel erg bedankt om doorheen het docto-
raat in mij te geloven, voor de talloze ideeën die tijdens onze vrijdagse meetings
zijn ontstaan, voor je visie om op het gepaste moment de onderzoeksrichting
bij te sturen, voor je uitstekende correcties die mijn teksten stuk voor stuk
publicatierijp hebben gemaakt, en voor de zin voor detail, structuur en kritiek
die je me hebt bijgebracht.
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ii Voorwoord

Prof. Moritz Diehl zou ik willen bedanken om me als promotor met een onge-
evenaard enthousiasme de weg te wijzen in het domein van de wiskundige op-
timalisatie. De vele onderzoeksideeën die hij gelanceerd heeft, de contacten die
hij voor mij gelegd heeft met vooraanstaande optimalisatiespecialisten binnen
en buiten OPTEC, en de steeds opbouwende kritische blik waarmee de eerste
versie van publicaties werden doorgelicht, hebben in hoge mate bijgedragen aan
de behaalde onderzoeksresultaten. Van harte bedankt hiervoor, Moritz.

Prof. Toon van Waterschoot wil ik graag bedanken voor de uitzonderlijk goede
manier waarop hij zowel mijn masterproef en doctoraatsonderzoek heeft bege-
leid. Toon heeft me ingewijd in het verrichten van wetenschappelijk onderzoek,
in het duidelijk synthetiseren en rapporteren, in het begeleiden van master-
proefstudenten, en in ontelbare andere dingen waarin hij voor mij gedurende
vijf jaar een inspirerende leermeester is geweest. Toon, ik heb enorm veel
opgestoken van onze nauwe samenwerking, bedankt voor alles!

Ik zou ook de leden van de examencommissie hartelijk willen danken voor hun
bereidheid om deel uit te maken van de jury, voor de kritische lezing van mijn
proefschrift, en voor de interessante suggesties voor verbetering. Dear Prof. Jo-
han Suykens, Prof. Patrick Wambacq, Prof. Werner Verhelst. Prof. Yurii Nes-
terov, Prof. Carlo Vandecasteele, Prof. Paul Sas, I want to thank all of you
for being part of my examination committee and for providing your valuable
suggestions for the improvement of this manuscript.

Ik heb tijdens mijn doctoraat de eer gehad om samen te mogen werken met
verschillende onderzoekers die elk met hun eigen expertise een belangrijke con-
tributie hebben geleverd aan de behaalde onderzoeksresultaten. Dr. Hans
Joachim Ferreau, thank you for introducing me to the art of QP solving in
the early stages of my PhD. Dr. Andrea Suardi, thank you so much for your
time and efforts spent at successfully implementing the clipping algorithm in
hardware. Dr. Kim Ngo, thank you for our fruitful cooperation on the speech
enhancement project. Naim Mansour en Steven De Hertogh wil ik bedanken
voor de vlotte samenwerking tijdens maar ook na het afleggen van hun uitmun-
tende masterproef.

Graag zou ik ook de collega’s binnen de DSP-onderzoeksgroep willen bedanken,
die samen gezorgd hebben voor een heel leuke en kameraadschappelijke sfeer,
waarin het altijd prettig werken was. De fijne herinneringen aan mijn vier
jaren in deze unieke groep zijn legio (en beperken zich niet tot binnen de
muren van het departement): ik denk onwillekeurig aan het jaarlijkse ESAT-
voetbaltornooi waarin deelnemen achteraf toch een pak belangrijker bleek dan
winnen, aan de conferenties in dichtbije of avontuurlijk verre buitenlanden,
aan de leuke etentjes, en natuurlijk aan de legendarische housewarmings en
feestjes in het decor van de Leuvense binnenstad. Paschalis, bedankt om als
vaste bureaugenoot altijd klaar te staan met goede raad, voor onze interes-
sante gesprekken, voor het voortdurend delen van je inzichten en ervaring.
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Alexander en Bram, bedankt om een lichtend voorbeeld te vormen van hoe je
een doctoraat tot een (zeer) succesvol einde brengt, en natuurlijk ook voor de
gezamenlijke Alma-bezoeken die steeds een zeer aangenaam rustpunt in de dag
vormden.

Rodrigo, Joe, Javier, Pepe, Amir, thanks for all the nice moments we have
shared within and outside of ESAT. Beier and Lulu, it was truly an honour
for me to attend your wedding party in Beijing, the visit to China with Bram
and Pieter was an unforgettable experience, for which I thank you with all of
my heart. I would like to thank all my colleagues for creating such a nice work
atmosphere throughout the years: thank you Aldona, Amin, Ann, Deepak, Enzo,
Gert, Giacomo, Giuliano, Hanne, Johnny, Jorge, Kristian, Marijn, Nejem,
Niccolo, Prabin, Rodolfo, Romain, Sylwek, Wouter, and Yi!

Ik zou ook een woord van dank willen richten aan de collega’s die het departe-
ment ESAT en de afdeling STADIUS (formerly known as SISTA) al die jaren
logistiek, organisatorisch en financieel vlot draaiende hebben gehouden: be-
dankt Ida, Lut, Eliane, Evelyn, en Ilse voor jullie harde werk. John zou ik
daarnaast ook willen bedanken voor de vele momenten van gedeelde vreugde
(vaak) en smart (héél soms) na de voetbalprestaties van ons geliefde RSC An-
derlecht.

Mattia, I want to thank you for being an ever-enjoyable flatmate, I have truly
appreciated our years of shared ups and downs in the quest for a successful
PhD, as much as the memorable parties that were hosted in our apartment.

Ten slotte zou ik de mensen willen bedanken die me het dierbaarst zijn. Mama,
papa, ik wil jullie hier oneindig bedanken voor de manier waarop jullie mij
opgevoed hebben, voor jullie onvoorwaardelijke steun, geloof en interesse in
alles wat ik doe, en voor alle goede raadgevingen die jullie me steeds weer
hebben gegeven. Dit doctoraatsproefschrift tot een goed einde brengen zou
zonder jullie onmogelijk zijn geweest. Papa, maman, je tiens à vous remercier
infiniment pour la façon dont vous m’ avez élevé, et pour votre soutien incon-
ditionnel dans tout ce que je fais. Il aurait été impossible de finir mon doctorat
sans votre soutien. Gilles, jou wil ik bedanken om als grote broer voor mij
het pad te effenen en het goede voorbeeld te tonen als burgerlijk ingenieur,
muzikant, en op vele andere vlakken, met het afwerken van dit proefschrift ben
ik jou - voor de verandering - eens voorgegaan. Oma, bedankt voor de grote
betrokkenheid die je samen met Parrain altijd getoond hebt in alle stappen die
ik heb gezet, voor het goede voorbeeld dat jullie me steeds getoond hebben, en
de wijze raad en ervaring die jullie mij hebben doorgegeven. Marraine, merci
beaucoup pour ta générosité, ton accueil toujours aussi chaleureux, et pour tout
ce que tu m’as appris. Mijn oprechte dank gaat ook uit naar Anne, Philippe,
Lotte, Jasper, Paulien, Gaby, Agnès, en alle andere familieleden die me altijd
gesteund hebben.
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Lieve Sophie, jou wil ik danken voor je warme steun en liefde waarop ik in
de laatste twee jaren altijd kon rekenen en die enorm veel voor mij betekenen,
voor je onvoorwaardelijke geloof in mij, en voor alle prachtige momenten die
we samen al hebben gedeeld.

Het naderende einde van dit voorwoord betekent voor sommigen misschien het
sein om dit boek als gelezen te beschouwen. Diegenen die de voorgaande pa-
gina’s echter doorworsteld hebben om eindelijk aan het interessantere leeswerk
te beginnen, wens ik naast proficiat ook veel leesplezier, in de hoop dat de
verderop beschreven ideeën en onderzoeksresultaten een bouwsteen kunnen vor-
men voor nieuwe wetenschappelijke bevindingen.

Bruno Defraene

Leuven, December 2013



Abstract

This thesis investigates the design and evaluation of an embedded optimization
framework for the perceptual enhancement of audio signals which are degraded
by linear and/or nonlinear distortion. In general, audio signal enhancement
has the goal to improve the perceived audio quality, speech intelligibility, or
another desired perceptual attribute of the distorted audio signal by applying
a real-time digital signal processing algorithm. In the designed embedded op-
timization framework, the audio signal enhancement problem under consider-
ation is formulated and solved as a per-frame numerical optimization problem,
allowing to compute the enhanced audio signal frame that is optimal according
to a desired perceptual attribute. The first stage of the embedded optimization
framework consists in the formulation of the per-frame optimization problem
aimed at maximally enhancing the desired perceptual attribute, by explicitly
incorporating a suitable model of human sound perception. The second stage
of the embedded optimization framework consists in the on-line solution of
the formulated per-frame optimization problem, by using a fast and reliable
optimization method that exploits the inherent structure of the optimization
problem. This embedded optimization framework is applied to four commonly
encountered and challenging audio signal enhancement problems, namely hard
clipping precompensation, loudspeaker precompensation, declipping and multi-
microphone dereverberation.

The first part of this thesis focuses on precompensation algorithms, in which
the audio signal enhancement operation is applied before the distortion pro-
cess affects the audio signal. More specifically, the problems of hard clipping
precompensation and loudspeaker precompensation are tackled in the embed-
ded optimization framework. In the context of hard clipping precompensation,
an objective function reflecting the perceptible nonlinear hard clipping distor-
tion is constructed by including frequency weights based on the instantaneous
masking threshold, which is computed on a frame-by frame basis by applying
a perceptual model. The resulting per-frame convex quadratic optimization
problems are solved efficiently using an optimal projected gradient method,
for which theoretical complexity bounds are derived. Moreover, a fixed-point
hardware implementation of this optimal projected gradient method on a field
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vi Abstract

programmable gate array (FPGA) shows the algorithm to be capable to run in
real time and without perceptible audio quality loss on a small and portable
audio device. In the context of loudspeaker precompensation, an objective
function reflecting the perceptible combined linear and nonlinear loudspeaker
distortion is constructed in a similar fashion as for hard clipping precompensa-
tion. The loudspeaker is modeled using a Hammerstein loudspeaker model, i.e.
a cascade of a memoryless nonlinearity and a linear FIR filter. The resulting
per-frame nonconvex optimization problems are solved efficiently using gradi-
ent optimization methods which exploit knowledge on the invertibility and the
smoothness of the memoryless nonlinearity in the Hammerstein loudspeaker
model. From objective and subjective evaluation experiments, it is concluded
with statistical significance that the embedded optimization algorithms for hard
clipping and loudspeaker precompensation improve the resulting audio quality
when compared to standard precompensation algorithms.

The second part of this thesis focuses on recovery algorithms, in which the
audio signal enhancement operation is applied after the distortion process af-
fects the audio signal. More specifically, the problems of declipping and multi-
microphone dereverberation are tackled in the embedded optimization frame-
work. Declipping is formulated as a sparse signal recovery problem where the
recovery is performed by solving a per-frame ℓ1-norm minimization problem,
which includes frequency weights based on the instantaneous masking thresh-
old. As a result, the declipping algorithm is focused on maximizing the per-
ceived audio quality instead of the physical signal reconstruction quality of
the declipped audio signal. Comparative objective and subjective evaluation
experiments reveal with statistical significance that the proposed embedded
optimization declipping algorithm improves the resulting audio quality com-
pared to existing declipping algorithms. Multi-microphone dereverberation is
formulated as a nonconvex optimization problem, allowing for the joint estima-
tion of the clean audio signal and the room acoustics model parameters. It is
shown that the nonconvex optimization problem can be smoothed by includ-
ing regularization terms based on a statistical late reverberation model and a
sparsity prior for the clean audio signal, which is demonstrated to improve the
dereverberation performance.



Korte Inhoud

Dit doctoraatsproefschrift onderzoekt het ontwerp en de evaluatie van een in-
gebedde optimalisatieraamwerk voor de perceptuele verbetering van geluidssig-
nalen die aangetast zijn door lineaire en niet-lineaire distortie. In het alge-
meen heeft signaalverbetering als doel om de geluidskwaliteit, spraakverstaan-
baarheid, of een andere gewenste perceptuele eigenschap van het geluidssignaal
te verbeteren door het toepassen van een digitaal signaalverwerkingsalgoritme
in reële tijd. In het ontworpen ingebedde optimalisatieraamwerk wordt het
beschouwde signaalverbeteringsprobleem geformuleerd en opgelost als een nu-
meriek optimalisatieprobleem per signaalvenster, wat toelaat om het verbeterde
signaalvenster te berekenen dat optimaal is volgens een gewenste perceptuele
eigenschap. De eerste fase van het ingebedde optimalisatieraamwerk bestaat
in de formulering van het optimalisatieprobleem per signaalvenster, en is erop
gericht om de gewenste perceptuele eigenschap maximaal te verbeteren, door
het toepassen van een geschikt model van de menselijke perceptie van geluid.
De tweede fase van het ingebedde optimalisatieraamwerk bestaat in de on-
line oplossing van het geformuleerde optimalisatieprobleem per signaalvenster,
door het aanwenden van een snelle en betrouwbare optimalisatiemethode die
de inherente structuur van het optimalisatieprobleem uitbuit. Dit ingebedde
optimalisatieraamwerk wordt toegepast op vier courante en uitdagende sig-
naalverbeteringsproblemen, namelijk de precompensatie van hard clipping, de
precompensatie van luidsprekers, declipping, en meer-microfoons dereverbera-
tie.

Het eerste deel van dit doctoraatsproefschrift spitst zich toe op algoritmes voor
signaalprecompensatie, waarbij het geluidssignaal wordt verbeterd voordat de
distortie inwerkt op het geluidssignaal. Meer specifiek worden de precom-
pensatie van hard clipping en de precompensatie van luidsprekers als afzon-
derlijke problemen binnen het ingebedde optimalisatieraamwerk beschouwd.
In het kader van de precompensatie van hard clipping, wordt een doelfunc-
tie opgesteld die de waarneembare niet-lineaire hard clipping distortie weer-
spiegelt, door het toepassen van frequentiegewichten gebaseerd op de instan-
tane maskeringsdrempel. Deze maskeringsdrempel wordt per signaalvenster
berekend via een perceptueel model. Het resulterende convexe kwadratische

vii



viii Korte Inhoud

optimalisatieprobleem per signaalvenster wordt doeltreffend opgelost via een
optimale geprojecteerde gradiëntmethode, waarvoor theoretische complexiteits-
grenzen worden opgesteld. Daarenboven toont een hardware implementatie in
vaste komma van de optimale geprojecteerde gradiëntmethode op een field pro-
grammable gate array (FPGA) aan dat het algoritme in reële tijd en zonder
waarneembaar geluidskwaliteitsverlies kan uitgevoerd worden op een klein en
draagbaar audiotoestel. In het kader van de precompensatie van luidsprekers,
wordt een doelfunctie opgesteld die de gecombineerde waarneembare lineaire en
niet-lineaire luidsprekerdistortie weerspiegelt, op een gelijkaardige manier als
voor de precompensatie van hard clipping. De luidspreker wordt gemodelleerd
door een Hammerstein luidsprekermodel, dat bestaat uit de opeenvolging van
een geheugenloze niet-lineariteit en een lineair FIR filter. Het resulterende niet-
convexe optimalisatieprobleem per signaalvenster wordt doeltreffend opgelost
via gradiëntmethodes die kennis uitbuiten over de inverteerbaarheid en glad-
heid van de geheugenloze niet-lineariteit in het Hammerstein luidsprekermodel.
Objectieve en subjectieve evaluatie-experimenten laten toe om met statistische
significantie te besluiten dat de ingebedde optimalisatiealgoritmes voor de pre-
compensatie van hard clipping en luidsprekers de geluidskwaliteit verbeteren
ten opzichte van bestaande algoritmes voor precompensatie.

Het tweede deel van dit doctoraatsproefschrift spitst zich toe op algoritmes
voor signaalherstel, waarbij het geluidssignaal wordt verbeterd nadat de dis-
tortie heeft ingewerkt op het geluidssignaal. Meer bepaald worden declipping
en meermicrofoons dereverberatie als afzonderlijke problemen binnen het in-
gebedde optimalisatieraamwerk beschouwd. Declipping wordt geformuleerd als
een ijl signaalherstelprobleem, waarin het signaalherstel uitgevoerd wordt door
het oplossen van een ℓ1-norm minimalisatieprobleem per signaalvenster. Dit
minimalisatieprobleem bevat frequentiegewichten gebaseerd op de instantane
maskeringsdrempel. Zodoende poogt het declipping algoritme de geluidskwa-
liteit maximaal te verbeteren, in plaats van te focussen op de fysieke recon-
structiekwaliteit van het geluidssignaal. Vergelijkende objectieve en subjectieve
evaluatie-experimenten laten toe om met statistische significantie te besluiten
dat het ingebedde optimalisatiealgoritme voor declipping de geluidskwaliteit
verbetert ten opzichte van bestaande algoritmes. Meermicrofoons dereverbera-
tie wordt geformuleerd als een niet-convex optimalisatieprobleem dat toelaat
om gelijktijdig het zuivere geluidssignaal en de parameters van de kamerakoes-
tiek te schatten. Het niet-convexe optimalisatieprobleem kan verzacht worden
door regularisatietermen toe te voegen die gebaseerd zijn op een statistisch
model voor late reverberatie en een ijlheidsveronderstelling van het zuivere
geluidssignaal, die samen de performantie van dereverberatie aantoonbaar ver-
hogen.



Glossary

Mathematical Notation

∀ for all

, defined as
∪ set union
∅ empty set
‖·‖, ‖·‖p Euclidean vector norm, ℓp-norm
(·)T matrix transpose
(·)H Hermitian matrix transpose
(·)−1 matrix inverse
(·)+ Moore-Penrose pseudoinverse

(̃·) median operator
(̄·) mean operator
sgn(·) sign function
tanh (·) hyperbolic tangent function
diag(·) diagonal matrix operator
logx(·) logarithm in base x
maxx maximize over x
minx minimize over x
infx infimum over x
0 all zeros vector1 all ones vector
N set of natural numbers
R set of real numbers
R+ set of positive real numbers
R

N set of real N -dimensional vectors
RN×N set of real N ×N matrices
C set of complex numbers
CN set of complex N -dimensional vectors
CN×N set of complex N ×N matrices
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∇(·) gradient operator
∇2(·) Hessian operator
⊗ Kronecker product

Fixed Symbols

ai sensing matrix column
A sensing matrix
Am loudspeaker precompensation Hessian matrix
b number of fraction bits
bi fraction bit
bm loudspeaker precompensation gradient vector
citer latency per iteration in clock cycles
ctotal overall latency in clock cycles
ckm auxiliary audio signal frame iterate
Cm Lipschitz constant
C+

m row selection matrix corresponding to positively clipped
samples

C−
m row selection matrix corresponding to negatively clipped

samples
dm distance measure
d∗ optimal dual objective value
D function domain
D unitary DFT matrix
e Euler’s number
ei decimal exponent bit
e error signal vector
E decimal exponent
E[·] expected value operator
f(·) objective function
f(·) distortion process
g(·) per-sample memoryless nonlinearity
g(·) per-frame memoryless nonlinearity
g−1(·) inverse per-sample memoryless nonlinearity
g−1(·) inverse per-frame memoryless nonlinearity
h[n] finite impulse response
h RIR vector
H0 statistical null hypothesis
H1 statistical alternative hypothesis (Ch. 2)
Ha statistical alternative hypothesis (Ch. 4,6)
H0 RIR matrix



xi

Hm clipping precompensation Hessian matrix (Ch. 2)
lower triangular convolution matrix (Ch. 3)

H̃m upper triangular convolution matrix
i discrete frequency index
I identity matrix
j unit imaginary number
k discrete iteration index

sparsity (Ch. 6)
k′ approximate sparsity
K fixed number of iterations
Kmax maximum number of iterations
L lower clipping level (Ch. 2)

FIR filter order (Ch. 3)
l lower clipping level vector
m discrete frame index (Ch. 1-6)

microphone index (Ch. 7)
M mantissa (Ch. 5)

measurement length (Ch. 6)
number of microphones (Ch. 7)

n discrete sample index
N frame length
Nps number of stimuli pairs
O(·) Landau symbol
p∗ optimal primal objective value
P overlap length
Pm perceptual weighting matrix
q(·) Lagrange dual function
Q convex feasible set
Qm reduced loudspeaker precompensation Hessian matrix
r amplitude level parameter for hyperbolic tangent function
s0 sign bit
skm stepsize
s original audio signal
s0 source signal vector
Skm set of active constraints
t test statistic (Ch. 4)

time index (Ch. 7)
tm instantaneous global masking threshold
U upper clipping level
u upper clipping level vector
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v precompensated audio signal
vm precompensated audio signal frame
Vfix fixed point value
Vfloat floating point value
V

k
m set of violated constraints

wm perceptual weighting function
Wm perceptual weighting matrix
x[n] discrete time-domain clean audio signal
Xm(ejωi) discrete frequency-domain clean audio signal
x clean audio signal
xm clean audio signal frame
y[n] discrete time-domain distorted audio signal
Ym(ejωi) discrete frequency-domain distorted audio signal
y distorted audio signal
ym distorted audio signal frame
yk
m distorted audio signal frame iterate
y∗[n] discrete time-domain enhanced audio signal
y∗ enhanced audio signal
y∗
m enhanced audio signal frame
α compression parameter
αJB significance level for Jarque-Bera statistical normality test
αTT significance level for statistical t-test
β relaxation of the gradient for Armijo condition
βi(·) eigenvalue operator
γm regularization parameter
γkm optimal projected gradient method auxiliary weight
δkm optimal projected gradient method weight
δ optimal projected gradient method weight vector
ǫ solution accuracy
ǫm relaxation parameter
η fixed number of iterations (Ch. 2)

backtracking factor for Armijo line search (Ch. 3)
θc clipping level
θ distortion model parameters

θ̂ estimated distortion model parameters
κm condition number
λi(·) eigenvalue operator
λ Lagrange multiplier associated to inequality constraint
λ Lagrange multiplier vector associated to inequality con-

straints
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λm,l Lagrange multiplier vector associated to lower clipping
level constraints

λm,u Lagrange multiplier vector associated to upper clipping
level constraints

µ(·) coherence measure
µm convexity parameter
ν Lagrange multiplier associated to equality constraint
ν Lagrange multiplier vector associated to equality con-

straints
π Archimedes’ constant
ΠQ(·) orthogonal projection onto set Q
ρ population Pearson correlation coefficient
ρ̂ sample Pearson correlation coefficient
σi(·) singular value operator
∑N

n=1 summation operator
Φ measurement matrix
Ψ fixed basis
ωi discrete frequency variable
Ω convex feasible set
L(·) Lagrangian function

Acronyms and Abbreviations

ADC analog-to-digital converter
BCD block coordinate descent
BP Basis Pursuit
CCR Comparison Category Rating
CD compact disc
CF clipping factor
CLB Configurable Logic Block
CS Compressed Sensing
CSL0 CS-based declipping using ℓ0-norm optimization
CSL1 CS-based declipping using ℓ1-norm optimization
DAC digital-to-analog converter
dB decibel
DCR Degradation Category Rating
DCT Discrete Cosine Transform
DFT Discrete Fourier Transform
DSP digital signal processing
e.g. exempli gratia: for example
FF flip-flop
FFT Fast Fourier Transform
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FIR Finite Impulse Response
FPGA field programmable gate array
HLS high-level synthesis
Hz hertz
i.e. id est : that is
IFFT Inverse Fast Fourier Transform
IIR Infinite Impulse Response
IP Intellectual Property
kHz kilohertz
ℓ1/ℓ2-RNLS NLS with ℓ1-norm and ℓ2-norm regularization
ℓ2-RNLS NLS with ℓ2-norm regularization
LAB Logic Array Block
LUT lookup table
MDCR Mean Degradation Category Rating
MHz megahertz
ms milliseconds
MSE mean-squared error
mW milliwatt
NLS nonlinear least squares
ODG Objective Difference Grade
OMP Orthogonal Matching Pursuit
PCS Perceptual Compressed Sensing
PCSL1 PCS-based declipping using ℓ1-norm optimization
PEAQ Perceptual Evaluation of Audio Quality
PSD power spectral density
QP quadratic program
RIP restricted isometry property
RIR room impulse response
RTL register-transfer level
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Chapter 1

Introduction

When listening to music through a portable music player, a laptop, or a public
address system, sound quality and clarity are crucial factors to make it an
enjoyable experience. When hearing the voice of the person you are speaking to
through a mobile phone, a teleconferencing system, or a hearing aid, the quality
and intelligibility of the speech are decisive for a satisfactory and effective
communication. Before reaching the ear, music and speech signals have passed
through many stages in the so-called audio signal path, e.g. from the recording
device over the transmission channel to a reproduction device. Throughout this
audio signal path, there is an abundance of potential audio signal distortion
mechanisms, which can have a negative effect on the quality and intelligibility
of the perceived audio signal. This makes it indispensable to design and apply
effective audio signal enhancement algorithms for improving the quality or
intelligibility of audio signals that are degraded by a given distortion process,
by applying some form of real-time digital signal processing.

This introduction is organized as follows. In Section 1.1, the major distortion
mechanisms along a typical audio signal path will be pointed out and their
impact on sound perception will be discussed. In Sections 1.2 and 1.3, the state
of the art and the prevailing challenges for audio signal enhancement algorithms
will be reviewed. In Section 1.4, a novel audio signal enhancement framework
for overcoming the limitations of existing audio signal enhancement algorithms
is outlined, which is based on the application of embedded optimization and
perceptual models. The design of this embedded optimization framework and
its application to different audio signal enhancement problems form the topic
of this thesis.

3
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Figure 1.1: Stages in the audio signal path.

1.1 Problem Statement and Motivation

1.1.1 Audio Signal Distortion

Audio signal distortion can be defined as any alteration occurring in the time-
domain waveform or frequency spectrum of an audio signal. Although in certain
cases the distortion is applied intentionally to create a desired audio effect such
as a distorted guitar sound, vocal reverberation, or a change of the audio signal
timbre [1], in general the occurence of audio signal distortion is unintentional
and undesired. Audio signal distortion can be broadly classified into two types,
namely linear distortion and nonlinear distortion. Linear distortion involves
changes in the relative amplitudes and phases of the frequency components
constituting the original audio signal. Nonlinear distortion involves the intro-
duction of frequency components that were not present in the original audio
signal [2].

Linear and nonlinear distortion can be introduced at different stages along the
audio signal path transforming the clean audio signal into the reproduced audio
signal, as shown in Figure 1.11.

Room acoustics

In a first stage, the room acoustics form a potential source of audio signal
distortion. When the clean audio signal is produced in a closed acoustic envi-
ronment, it is partially reflected by the phyisical boundaries of the environment,
i.e. by the walls, the floor, and ceiling of the room. As a result, not only the
clean audio signal is picked up by the recording device, but also several de-
layed and attenuated replicas of the clean audio signal. This effect is known as
reverberation and is a form of linear distortion [3].

1Note that not all stages in the audio signal path are necessarily present in all audio
applications.
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Recording

In a second stage, the recording device can cause additional audio signal dis-
tortion, due to non-idealities in the microphone and the subsequent analog-to-
digital converter (ADC) or due to an incorrect microphone placement. At nor-
mal sound pressure levels, microphones typically have a non-uniform frequency
response and phase response, leading to a linear distortion of the recorded sig-
nal. Moreover, at high sound pressure levels, the microphone will add nonlinear
distortion due to several possible causes, such as nonlinear diaphragm motion
or electrical overload of the internal amplifier and ADC [4][5].

Mastering

In a third stage, the recorded audio signal is prepared for storage on an analog
or digital device through the application of a mastering process. The mastering
stage involves dynamics processing using compressors, expanders and limiters
for increasing or decreasing the dynamic range, and equalizing filters or bass
boost filters for adjusting the spectral balance of the audio signal [6]. Although
the mastering is applied intentionally to the audio signal, it is very common
that undesired nonlinear distortion is unintentionally introduced, mainly due
to the application of hypercompression and clipping in the quest for maximum
loudness [7].

Storage

A fourth stage consists of the storage of the audio signal on an analog or digital
storage device. Commonly used digital audio storage devices comprise magnetic
devices (e.g. DAT, ADAT), optical devices (e.g. Compact Disc (CD), Super
Audio CD (SACD), DVD, Blu-ray Disc (BD) ), hard disks (e.g. on computers,
USB, memory cards) and volatile memory devices. Commonly used analog
audio storage devices comprise long playing vinyl records (LPs). In case a
lossy audio codec is employed prior to storage on a digital device, compression
artefacts include predominantly nonlinear distortion effects such as spectral
valleys, spectral clipping, noise amplification, time-domain aliasing and tone
trembling [8] [9]. Moreover, audio signal distortion can be introduced due
to imperfections during the writing of the audio signal to the analog or digital
storage device, or during the transcription between storage devices. As opposed
to digital devices [10], analog audio storage devices are furthermore known to
be very sensitive to wear and tear of the device itself, which can introduce
considerable audio signal distortion [11].
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Transmission

A fifth stage consists of the transmission of the stored audio signal through a
wired or wireless communication network. Wireless transmission of audio sig-
nals is performed through analog radio broadcasting systems using amplitude
modulation (AM) or frequency modulation (FM) technology, through digital
radio broadcasting systems using Digital Audio Broadcasting (DAB) technol-
ogy, or through mobile phone networks [4]. Wired transmission of audio signals
is performed through Digital Subscriber Line (DSL), coaxial cable or optical
fiber technology. Moreover, the recent proliferation of the Voice over Internet
Protocol (VoIP) facilitates the delivery of voice communications over Internet
Protocol (IP) networks. As analog transmission channels typically have re-
duced bandwith constraints and non-flat frequency responses, the introduction
of linear distortion in the received audio signal is common. Moreover, in ac-
tual circumstances, wired or wireless digital transmission channels can not be
regarded as error-free, meaning that they can be quantified by a nonzero bit
error rate or packet error rate of the received data stream [12]. In general,
these bit errors and packet errors can result in the introduction of nonlinear
distortion and/or missing fragments in the received audio signal.

Reproduction

A sixth and last stage deals with the reproduction of the audio signal. Different
aspects of sound reproduction can have an influence on the reproduced audio
signal: the properties of the listening room, the digital-to-analog converter
(DAC), the amplifier, and most dominantly the placement and properties of
the loudspeaker system [13][14]. In general, loudspeakers have a non-ideal
response introducing both linear and nonlinear distortion in the reproduced
audio signal. At low amplitudes, the loudspeaker behaviour is almost linear
and nonlinear signal distortion is negligible. However, at higher amplitudes
nonlinear distortion occurs, the severity of which is correlated with the cost,
weight, volume, and efficiency of the loudspeaker driver [15].

A wide variety of inherently nonlinear mechanisms are occurring in loudspeaker
systems and are responsible for nonlinear distortion in the reproduced audio
signal. The dominant nonlinear loudspeaker mechanisms are the following [16]:

• the nonlinear relation between the restoring force of the suspension and
the voice coil displacement, due to the dependence of the stiffness of the
suspension on the voice coil displacement;

• the nonlinear relation between the electro-dynamic driving force and the
voice coil displacement, due to the dependence of the force factor on the
voice coil displacement;

• the nonlinear relation between the electrical input impedance and the
voice coil displacement, due to the dependence of the voice coil inductance
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on the voice coil displacement;
• the nonlinear relation between the electrical input impedance and the

electric input current, due to the dependence of the voice coil inductance
on the electric input current.

Throughout the audio signal path, there are obviously many stages that can
potentially add linear and nonlinear distortion to the clean audio signal, re-
sulting in a reproduced audio signal that has an altered time-domain waveform
and frequency spectrum compared to the clean audio signal. This audio signal
distortion can have a significant impact on the perception of the audio signal
by the listener, as will be discussed next.

1.1.2 Impact on Sound Perception

Depending on the application, the reproduced audio signal will be perceived
by a human listener (e.g. in music playback systems, public address systems,
voice communications, hearing assistance) or by a machine (e.g. in automatic
speech recognition, music recognition/transcription). The focus in this thesis
will be on human sound perception, but we should note that mitigating the
effects of signal distortion on automatic speech [17] and music [18] recognition
performance are active research topics as well.

The human perception of sound is a complex process involving both auditory
and cognitive mechanisms. The resulting sound perception can be quantified
using different perceptual attributes, depending on the nature of the audio
signal and the application.

• For music signals, the perceived audio quality is the most important
global perceptual attribute for the listener. The measurement of audio
quality is a multidimensional problem that includes a number of individ-
ual perceptual attributes such as ‘clarity’, ‘loudness’, ‘sharpness’, ‘bright-
ness’, ‘fullness’, ‘nearness’ and ‘spaciousness’ [19][20].

• For speech signals, the perceived speech quality and speech intelligibil-
ity are the most important global perceptual attributes for the listener.
Speech quality also has a number of individual perceptual attributes,
including ‘clarity’, ‘naturalness’, ‘loudness’, ‘listening effort’, ‘nasality’
and ‘graveness’ [21]. In the specific scenario of narrow-band and wide-
band telephone speech transmission, the perceptual attributes ‘disconti-
nuity’, ‘noisiness’, ‘coloration’ and ‘loudness’ have been found to consti-
tute speech quality [22][23]. Speech intelligibility in turn refers to how
well the content of the speech signal can be identified by the listener, and
is the primary concern in hearing aids and many speech communication
systems. It is directly measurable by defining the proportion of speech
items (e.g. syllables, words, sentences) that are correctly understood by
the listener for a given speech intelligibility test [24].
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Different listening experiments have been performed in order to assess the im-
pact of linear and nonlinear audio signal distortion on the resulting audio qual-
ity, speech quality and speech intelligibility. The main results of these research
efforts will be synthesized here.

Impact of Linear Distortion

Linear distortion is typically perceived as changing the timbre or coloration of
the audio signal. The presence of linear distortion has been found to signifi-
cantly affect the perceived quality of music and speech signals. It was experi-
mentally shown that applying a linear filter possessing increasing frequency re-
sponse irregularities (spectral tilts and ripples) or bandwidth restrictions (lower
and upper cut-off frequency) results in an increasing degradation of the global
perceived audio quality and speech quality [25]. Moreover, all the individual
perceptual attributes constituting audio quality were found to be significantly
affected by changing the frequency response [26]. On the other hand, the effects
of changes in phase response were found to be generally small compared to the
effects of irregularities in frequency magnitude response [27].

Linear distortion caused by reverberation is known to add spaciousness and
coloration to the sound. For music signals, this is not necessarily an undesired
property, however, for speech signals, reverberation is known to have a signifi-
cant negative impact on both speech quality and speech intelligibility [28][29].

Impact of Nonlinear Distortion

Nonlinear distortion is typically perceived as adding harshness or noisiness,
or as the perception of sounds that were not present in the original signal,
such as crackles or clicks. The presence of nonlinear distortion has been found
to result in a significant degradation of the perceived quality of music and
speech signals, both when artificial nonlinear distortions (e.g. hard clipping,
soft clipping) and nonlinear distortions occurring in real transducers are con-
sidered [2]. In another experimental study, speech quality ratings for speech
fragments exhibiting nonlinear hard clipping distortion have been found to de-
crease monotonically with increasing signal distortion, both for normal-hearing
and hearing-impaired subjects [30]. Moreover, through speech intelligibility
tests, it has been concluded that nonlinear distortion reduces speech intelligi-
bility, both for normal-hearing and hearing-impaired listeners. For all listeners,
the speech intelligibility scores were seen to decrease as the amount of nonlinear
clipping distortion was increased [31].
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Figure 1.2: Audio signal distortion process.

Impact of Combined Linear and Nonlinear Distortion

The impact of the simultaneous presence of linear distortion and nonlinear
distortion has been studied in listening experiments using music and speech
signals [27]. It has been concluded that the perceptual effects of nonlinear
distortion are generally greater than those of linear distortion, except when the
linear distortion is severe. Similarly, for speech quality, linear distortion has
been found to be generally less objectionable than nonlinear distortion [23].

1.1.3 Audio Signal Enhancement

The abundance of potential audio signal distortion mechanisms throughout the
audio signal path and their negative effect on the quality and intelligibility of
audio signals make it indispensable to design and apply effective audio signal
enhancement algorithms. The goal of audio signal enhancement algorithms is
to improve the quality and/or intelligibility of an audio signal that is degraded
by a given linear and/or nonlinear distortion process, by applying some form
of real-time digital signal processing.

Most audio signal enhancement algorithms assume a model for the distortion
process under consideration. Figure 1.2 shows a generic distortion process
acting on a clean audio signal x, which results in a distorted audio signal y.
Note that throughout this thesis, audio signals are represented using vectors
containing the audio signal samples as their elements. The distortion process
is typically modeled by a linear or nonlinear distortion model f(x, θ), where
θ are the distortion model parameters. As the properties of the distortion
process can change over time, the model parameters θ can be time-varying.
Notable examples are the change of reverberation parameters due to a change
in the room acoustics [32], and the change of loudspeaker parameters due to
temperature changes and ageing [33].

Audio signal enhancement algorithms can be classified into two types, depend-
ing on whether they are applied to the audio signal before or after the distortion
process. The former algorithms are called precompensation algorithms, the lat-
ter algorithms are called recovery algorithms. Precompensation algorithms are
typically applied in situations where the clean audio signal x can be observed
and altered prior to the distortion process, e.g. prior to reproduction through a
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(b) Recovery algorithms

Figure 1.3: Types of audio signal enhancement algorithms.

distorting loudspeaker. Recovery algorithms are typically applied in situations
where the clean audio signal x cannot be observed nor altered prior to the dis-
tortion process, but the distorted audio signal y can be observed and altered
after the distortion process, e.g. after reverberation distortion has been added
to the audio signal.

The operation of a generic precompensation algorithm is illustrated in Figure
1.3(a). It is seen that the precompensation algorithm is applied before the
distortion process acts onto the audio signal. The precompensated audio signal
v is computed based on the clean audio signal x and the estimated distortion
model parameters θ̂. The enhanced audio signal y∗ is the result of applying
the precompensated audio signal v to the distortion process. In this set-up, it
is necessary to estimate the distortion model parameters θ̂ during a separate
off-line estimation procedure, as it will be assumed that it is not possible to
feed back the enhanced audio signal y∗ on-line.

The operation of a generic recovery algorithm is shown in Figure 1.3(b). It
is seen that the recovery algorithm is applied after the distortion process acts
onto the audio signal. The enhanced audio signal y∗ is computed based on
the distorted audio signal y and the estimated distortion model parameters θ̂.
In this set-up, it is necessary to estimate the distortion model parameters θ̂
during an estimation procedure, which will be assumed to be performed on-line
and blindly.

We can define two crucial requirements for any on-line audio signal enhance-
ment algorithm:

1. The algorithm should consistently improve a desired perceptual attribute
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(audio quality, speech quality, speech intelligibility), i.e. the perceptual
attribute should be better for the enhanced audio signal y∗ compared
to the distorted audio signal y. Ideally, the enhanced audio signal y∗ is
equal to the clean audio signal x.

2. The algorithm should be able to run under strict constraints regarding
computation time, resource usage and power consumption, as will be
typically imposed by (mobile) audio devices.

In the next sections, we will discuss the state of the art and the prevailing
challenges for precompensation algorithms (see Section 1.2) and recovery al-
gorithms (see Section 1.3). For both types of audio signal enhancement algo-
rithms, the analysis will focus on two commonly encountered yet challenging
audio signal distortion processes. In Section 1.4, we will outline a novel audio
signal enhancement framework for overcoming the limitations of existing audio
signal enhancement algorithms, which is based on the application of embedded
optimization and perceptual models.

1.2 Precompensation Algorithms

From Figure 1.3(a), we can define the following steps in the operation of a
generic precompensation algorithm:

1. Off-line selection of a suitable distortion model f(v, θ).
2. Off-line estimation of distortion model parameters θ̂.
3. On-line computation of precompensated audio signal v.

We will now review the problem statement and state of the art of precompen-
sation algorithms for mitigating hard clipping distortion (subsection 1.2.1) and
loudspeaker distortion (subsection 1.2.2), thereby focusing on the efficiency and
limitations in performing the three steps mentioned above.

1.2.1 Hard Clipping Precompensation

Hard clipping is a nonlinear distortion process commonly encountered in audio
applications, and can occur during the recording, mastering, storage, trans-
mission and reproduction stages of the audio signal path. When hard clipping
occurs, the amplitude of the clean audio signal is cut off such that no sample
amplitude exceeds a given amplitude range [L,U ]. This introduces different
kinds of unwanted nonlinear distortion into the audio signal such as odd har-
monic distortion, intermodulation distortion and aliasing distortion [34]. In a
series of listening experiments performed on normal hearing listeners [2] and
hearing-impaired listeners [35], it was concluded that the application of hard
clipping to audio signals has a significant negative effect on perceived audio
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quality scores, irrespective of the subject’s hearing acuity. Moreover, it was
concluded that hard clipping distortion reduces speech intelligibility, both for
normal-hearing and hearing-impaired listeners [31]. Hard clipping precompen-
sation algorithms typically focus on reducing the negative effects of hard clip-
ping on the resulting audio quality. The operation of a generic hard clipping
precompensation algorithm is shown in Figure 1.4.

Distortion Model Selection

The selection of a suitable distortion model is straightforward in this case. As
shown in Figure 1.4, the hard clipping distortion can be exactly modeled using
a memoryless hard clipping nonlinearity that is linear in the amplitude range
[L,U ], and abruptly saturates when exceeding this amplitude range.

Distortion Model Parameter Estimation

The parameters of the distortion model are the lower clipping level L < 0 and
the upper clipping level U > 0 of the memoryless nonlinearity. A common
approach to estimate L and U is to detect the occurrence of hard clipping
based on the distorted audio signal. Such non-intrusive hard clipping detection
methods rely on the inspection of anomalities in the amplitude histogram [36]
in order to detect the occurrence of hard clipping and estimate the associated
parameters L and U . These methods are very accurate if the detection works
on the raw hard clipped audio signal, but are less accurate when the hard
clipped audio signal was perceptually encoded prior to detection, in which case
robust detection methods are necessary [37].

Precompensation Operation

Hard clipping precompensation algorithms aim to preventively limit the digital
audio signal with respect to the estimated allowable amplitude range [L̂,Û ] of
the subsequent hard clipping distortion process. Ideally, the precompensated
audio signal v can then pass through the hard clipping distortion process with-
out being altered, i.e. y∗ = v. The precompensation algorithm is obviously
expected to add minimal distortion to the clean audio signal x. We can classify
existing hard clipping precompensation algorithms into limiting algorithms and
soft clipping algorithms.

Limiting algorithms (or limiters) aim to provide control over the amplitude
peaks exceeding [L̂,Û ] in the clean audio signal x, while changing the dynamics
and frequency content of the audio signal as little as possible [1]. Limiters are
essentially amplifiers with a time-varying gain that is automatically controlled
by the measured peak level of the clean audio signal x. The attack time and
release time parameters specify how fast the gain is changed according to mea-



1.2. Precompensation Algorithms 13

���������
��	
���	������

Figure 1.4: Hard clipping precompensation.

sured peaks in the clean audio signal x. The attack time parameter defines how
fast the gain is decreased when the input signal level rapidly increases, while
the release time parameter defines how fast the gain is restored to its original
value when the input signal level rapidly decreases [38]. The setting of these
parameters entails a trade-off between distortion avoidance and peak limiting
performance, as the gain should be as smooth as possible for not having audible
artefacts, yet at the same time it should vary fast enough to suppress signal
peaks [39][40].

Soft clipping algorithms instantaneously limit the clean audio signal x to the
estimated allowable amplitude range [L̂,Û ] by applying a soft memoryless non-
linearity, i.e. one having a gradual transition from the linear zone to the nonlin-
ear zone. In fact, soft clipping algorithms are related to limiting algorithms in
that they can be viewed as limiters having an infinitely small attack and release
time [1]. In general, soft memoryless nonlinearities introduce less perceptible
artefacts as compared to hard memoryless nonlinearities, because of the lower
level of the introduced harmonic distortion and aliasing distortion [41]. Nu-
merous soft memoryless nonlinearities have been proposed, such as hyperbolic
tangent, inverse square root, parabolic sigmoid, cubic sigmoid, sinusoidal, and
exponential soft memoryless nonlinearities [42][43].

While both limiting algorithms and soft clipping algorithms have been shown
to work fairly well for mitigating the effects of specific hard clipping distortion
processes, several limitations of these approaches can be indicated. Firstly,
these algorithms are governed by a set of tunable parameters, such as the
attack time and release time for limiting approaches, and the shape parameters
of the applied soft memoryless nonlinearity in soft clipping approaches. The
relation between the parameter settings and the resulting enhancement of the
desired perceptual attribute is generally unclear, leading in many cases to an
ad hoc and trial-and-error based parameter tuning procedure. Secondly, as
these approaches act directly on the amplitude of the clean time-domain audio
signal, it is difficult to adapt to time-varying frequency characteristics of the
clean audio signal. Lastly, as the properties of human sound perception are not
incorporated into these approaches, it is not possible to focus on enhancing a
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Figure 1.5: Loudspeaker precompensation.

given perceptual attribute of the audio signal.

1.2.2 Loudspeaker Precompensation

Loudspeaker distortion is a form of combined linear and nonlinear distortion
incurred when an audio signal is reproduced through a loudspeaker system
having a non-ideal response. At low amplitudes, the loudspeaker behaviour is
almost linear and nonlinear signal distortion is negligible. However, at higher
amplitudes nonlinear distortion occurs, and is notably prominent in small and
low-cost loudspeakers, which are ubiquitous in mobile devices [44]. Linear
loudspeaker distortion is typically perceived as affecting timbre or tone qual-
ity, whereas nonlinear loudspeaker distortion is typically perceived as adding
harshness or noisiness, or as the perception of crackles or clicks. The presence
of linear and nonlinear loudspeaker distortion has been found to result in a
significant degradation of the perceived audio quality, both when present sep-
arately [2] and simultaneously [27]. Loudspeaker precompensation algorithms
typically focus on reducing the negative effects of loudspeaker distortion on the
resulting audio quality.

Distortion Model Selection

The selection of a suitable model accurately representing the linear and non-
linear loudspeaker distortion is not a trivial task. Loudspeaker models can
be classified as linear loudspeaker models or nonlinear loudspeaker models.
Knowledge of the physical nonlinear mechanisms inside the loudspeaker can
be incorporated to different degrees, leading to a further subclassification in
white-box, grey-box or black-box nonlinear loudspeaker models [45].

Traditionally, loudspeakers have been modeled using linear systems, such as
FIR filters [46] and IIR filters [47]. Warped FIR and IIR filters [48], as well as
Kautz filters [49] have been proposed in order to allow for a better frequency
resolution allocation, radically reducing the required filter order.

Nonlinear loudspeaker behaviour can be taken into consideration by using non-
linear loudspeaker models. The most widely used white-box nonlinear loud-
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speaker models are physical low-frequency lumped parameter models, which
take into account nonlinearities in the motor part and the mechanical part of
the loudspeaker [50]. Given the relative complexity of such physical loudspeaker
models and their limitation to low frequencies and low-order nonlinearities,
simpler and more efficient grey-box nonlinear loudspeaker models have been
proposed, such as Hammerstein models [51], cascades of Hammerstein models
[52], and Wiener models [53]. These models are composed of a linear dynamic
part and a nonlinear static part, capable of incorporating prior information
on the linear and nonlinear distortion mechanisms in the loudspeaker. Black-
box models have also been applied to loudspeaker modeling, e.g. time-domain
NARMAX models [54], or frequency-domain Volterra models [55]. A major
drawback of Volterra models is that the number of parameters grows exponen-
tially with the model order, in contrast to Hammerstein and Wiener models.

Distortion Model Parameter Estimation

As shown in Figure 1.5, the loudspeaker model parameters can in general be
divided into a set of model parameters θL related to the linear part of the
model and a set of model parameters θNL related to the nonlinear part of the
model. For linear loudspeaker models, only the parameter set θL has to be
estimated. For nonlinear loudspeaker models, both the parameter sets θL and
θNL have to be estimated.

The parameters of linear loudspeaker models, grey-box and black-box nonlin-
ear loudspeaker models are mostly estimated by exciting the loudspeaker with
audio-like signals, e.g. random phase multisines [56], and recording the repro-
duced signal. The parameters of white-box low-frequency lumped parameter
models can be estimated by exciting the loudspeaker with an audio-like signal
and measuring the voice coil current [15], or the voice coil displacement using
an optical sensor [57].

While the parameter estimation of linear loudspeaker models can be performed
using standard linear identification methods, the parameter estimation of non-
linear loudspeaker models is a challenging problem. Hammerstein model pa-
rameter estimation requires the solution of a bi-convex optimization problem,
having an objective function featuring cross products between parameters in
θL and parameters in θNL. Techniques2 to solve this bi-convex optimization
problem include the iterative approach [59], the overparametrization approach
[60], and the subspace approach [61]. Wiener model parameter estimation
methods have been derived along the lines of their Hammerstein counterparts,
resulting in the same categories of approaches for solving the bi-convex op-
timization problem [62]. Volterra model parameters can be estimated using
adaptive algorithms such as NLMS [55].

2A nice overview of different Hammerstein model identification methods is given in [58].
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Precompensation Operation

The operation of a generic loudspeaker precompensation algorithm is shown
in Figure 1.5. The idea is to reduce the linear and nonlinear distortion ef-
fects caused by the loudspeaker, by applying a precompensation step to the
clean audio signal x before feeding it to the loudspeaker input. The estimated
loudspeaker model parameters θ̂L and θ̂NL are used in the precompensation.

When using linear loudspeaker models, precompensation consists in performing
linear equalization of the loudspeaker by computing (based on θ̂L) and apply-
ing an inverse digital filter to the audio signal. An ideal linear equalization
would result in a reproduction channel having a flat frequency response and a
constant group delay. Among the proposed equalization approaches, we men-
tion the distinction between direct inversion and indirect inversion approaches,
and between minimum-phase and nonminimum-phase designs. In general, the
performance of these equalization approaches is seen to largely depend on the
stationarity and the accuracy of the loudspeaker models [49].

When using nonlinear loudspeaker models, precompensation consists in per-
forming either linearization or full equalization of the loudspeaker. The aim
of linearization is to make the reproduction channel a linear system, thereby
compensating for the nonlinear distortion in the loudspeaker [63]. The aim
of full equalization is to make the reproduction channel transparent, thereby
compensating for both the linear and nonlinear distortion in the loudspeaker.

Nonlinear loudspeaker precompensation methods for performing linearization
have been proposed for white-box, grey-box and black-box loudspeaker models.
For white-box low-frequency lumped parameter models, seminal linearization
methods are based on the application of nonlinear inversion [50] and a mirror
filter [64]. A control-theoretic feedback linearization approach was theoreti-
cally shown to allow for exact linearization under certain assumptions [65], and
this approach was modified to achieve a satisfactory approximate linearization
in practice [66]. For grey-box Wiener and Hammerstein loudspeaker models,
linearization methods have been proposed based on the coherence criterion [51]
and polynomial root finding [67]. For black-box Volterra loudspeaker models,
a p-th order inverse model was succesfully applied to achieve loudspeaker lin-
earization [68]. The main disadvantage of these methods resides in their high
computational complexity.

Nonlinear loudspeaker precompensation methods for performing full equaliza-
tion rely on the computation of an inverse nonlinear loudspeaker model. How-
ever, the exact inverse of the nonlinear loudspeaker model only exists in spe-
cific cases. For Hammerstein and Wiener loudspeaker models, an exact inverse
only exists if the inverse of the static nonlinearity exists. Volterra loudspeaker
models in general do not allow for computing an exact inverse model. As a
consequence, practical full equalization methods rely on the computation of an
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inexact inverse model, which brings along problems with both the stability and
the computational complexity of these methods [44].

In conlusion, several general limitations of the existing approaches for loud-
speaker precompensation can be indicated. Firstly, their fairly high computa-
tional complexity conflicts with the requirement to perform loudspeaker com-
pensation in real time on mobile audio devices. Secondly, as the properties of
human sound perception are not incorporated into these approaches, it is not
possible to focus on enhancing a given perceptual attribute of the audio signal.

1.3 Recovery Algorithms

From Figure 1.3(b), we can define the following steps in the operation of a
generic recovery algorithm:

1. Off-line selection of a suitable distortion model f(x, θ).
2. On-line blind estimation of distortion model parameters θ̂.
3. On-line computation of the enhanced audio signal y∗.

We will now review the problem statement and state-of-the-art of recovery
algorithms for enhancing audio signals degraded by hard clipping distortion
(subsection 1.3.1) and reverberation distortion (subsection 1.3.2), thereby fo-
cusing on the efficiency and limitations in performing the three steps mentioned
above.

1.3.1 Declipping

In subsection 1.2.1, it was shown that hard clipping is a nonlinear distortion
process that can occur in almost any stage of the audio signal path, and has
a significant negative effect on the audio quality, speech quality and speech
intelligiblity. In situations where hard clipping can not be anticipated for, one
has to perform declipping, i.e. the recovery of the clean audio signal x based
on the hard clipped audio signal y. The operation of a generic declipping
algorithm is shown in Figure 1.6.

Distortion Model Selection and Parameter Estimation

As mentioned in subsection 1.2.1, the selection of a suitable distortion model
is straightforward, i.e. the hard clipping distortion can be exactly modeled
using a memoryless hard clipping nonlinearity that is linear in the amplitude
range [L,U ], and abruptly saturates when exceeding this amplitude range. The
parameters of the distortion model are the lower clipping level L < 0 and the
upper clipping level U > 0 of the memoryless nonlinearity. These parameters
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can be estimated based on the hard clipped audio signal y, using histogram
methods.

Recovery Operation

Several approaches to the declipping problem have been proposed. A first
approach is based on performing an interpolation procedure to recover the
clipped signal samples based on the knowledge of the unclipped signal sam-
ples. Interpolation algorithms differ in particular in the a priori knowledge and
assumptions on the clean audio signal x that are incorporated into the inter-
polation procedure. Autoregressive [69], sinusoidal [70] and statistical audio
signal models [71] have been used, as well as restrictions on the spectral enve-
lope [72], bandwidth [73], and time-domain amplitude [71][73][74] of the clean
audio signal. A second approach tackles the declipping problem as a supervised
learning problem, in which the temporal and spectral properties of clean and
clipped audio signals are learned through an artificial neural network [75], or a
Hidden Markov Model (HMM) [76].

The third and most recent approach addresses the declipping problem in the
framework of compressed sensing (CS). In the CS framework, declipping is
formulated and solved as a sparse signal recovery problem, where one takes
advantage of the sparsity of the clean audio signal (in some basis or dictionary)
in order to recover it from a subset of its samples. Sparse signal recovery meth-
ods for declipping differ in the sparsifying basis or dictionary that is used to
represent the clean audio signal, and in the optimization procedure that is used
for computing the recovered audio signal. Commonly used sparse audio signal
representations include the Discrete Fourier Transform (DFT) basis [77], the
overcomplete Discrete Fourier Transform (DCT) dictionary [78][79], and the
overcomplete Gabor dictionary [80]. In order to solve the sparse signal recov-
ery optimization problem, existing algorithms such as Orthogonal Matching
Pursuit (OMP) [78], Iterative Hard Thresholding (IHT) [79], Trivial Pursuit
(TP) [77] and reweighted L1-minimization [77] have been adapted in order to
incorporate constraints specific to the declipping problem. For some of these
sparse signal recovery methods for declipping, deterministic recovery guaran-
tees have been derived in [81][82].

In conclusion, we can point out a general limitation of the existing declipping
methods. Whereas all these methods do include a model of the clean audio
signal, they do not incorporate a model of the human sound perception, making
it impossible to focus on enhancing a given perceptual attribute of the audio
signal.
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Figure 1.6: Declipping.

1.3.2 Dereverberation

Reverberation is a form of linear distortion introduced by the acoustics of the
room in which the clean audio signal is produced and recorded. When the
clean audio signal is produced in a closed acoustic environment, it is partially
reflected by the walls, the floor, and ceiling of the room. As a result, not only
the clean audio signal is picked up by the recording device, but also several
delayed and attenuated replicas of the clean audio signal [3]. Linear distortion
caused by reverberation is known to add spaciousness and coloration to the
sound. For music signals, this not necessarily an undesired property. How-
ever, for speech signals, reverberation makes the talker sound far away from
the microphone and is known to have a significant negative impact on both
speech quality and speech intelligibility [28]. Speech intelligibility is especially
degraded by reverberation for non-native listeners and for listeners with hear-
ing impairments [29]. Dereverberation algorithms typically focus on reducing
the negative effects of reverberation on the resulting speech intelligibility.

Distortion Model Selection

The most simple and popular room acoustics models are time-domain FIR and
IIR filters. The necessary filter order mainly depends on the reverberation time
of the room, which is defined as the time taken for the reverberant energy to
decay by 60 dB once a stationary sound source has been shut off. The rever-
beration time for a room is governed by the room geometry and the reflectivity
of the room surfaces and objects within the room. As the reverberation time
in typical rooms can be expected to be within the range 0.1 to 1 seconds, FIR
filters of several thousand taps are typically necessary for commonly used sam-
pling frequencies [28]. Numerical room acoustics models include Finite Element
methods, Boundary Element methods [83], and Finite Difference Time-Domain
(FDTD) methods [84], which all consider numerical discretizations of the wave
equation in situations where no analytical solution can be computed. For these
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Figure 1.7: Dereverberation.

methods, the incorporation of appropriate boundary conditions and the geo-
metrical description of objects within the acoustic environment is highly chal-
lenging. Ray-tracing models represent sound waves by rays that can be traced
from sound source to observer, assuming all the reflections are specular [85].
These modeling methods are typically computationally intensive.

Distortion Model Parameter Estimation and Recovery Operation

As illustrated in Figure 1.7, a generic dereverberation algorithm aims to remove
reverberation fromM ≥ 1 available microphone signals recorded in a reverber-
ant environment. Dereverberation is generally still considered one of the most
challenging problems in the area of acoustic signal enhancement [28]. One of
the major difficulties is that dereverberation is an inverse problem, i.e., one
aims at inverting the behaviour of the room. Furthermore, dereverberation is a
blind problem, in which both the clean audio signal x and the room acoustics
model parameters θ are unknown. The state of the art in dereverberation can
be classified into three categories: (1) beamforming using microphone arrays,
(2) speech enhancement approaches to dereverberation, and (3) blind system
identification and inversion.

In the beamforming approach to dereverberation, the microphone signals ob-
tained in a microphone array are delayed and weighted or filtered such that
an appropriate spatial beam pattern is created. The beam pattern should be
such that a high array sensitivity is obtained in the direction of the sound
source. The design of fixed and adaptive beamformers is a mature research
area when considering the problem of removing uncorrelated noise from multi-
microphone recordings [86]. However, dereverberation requires the removal of
undesired room reflections that are correlated with the dry signal. This is fea-
sible either by employing multiple beamformers for steering additional beams
towards the early reflections [87], or by designing a matched filter beamformer
using the time-reversed RIRs from the sound source to the array microphones
[88]. In both cases, a room acoustics model is required.
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Several speech enhancement approaches to dereverberation have been explored.
An early approach was shown to be capable of compensating for early reflec-
tions in the cepstral domain [89]. A more successful technique is based on linear
prediction [90], and exploits the observation that reverberation only alters the
linear prediction (LP) residual of a speech signal, but not the autoregressive
(AR) coefficients. Dereverberated speech can then be synthesized from the AR
coefficients, using an enhanced LP residual signal obtained through matched
filtering [91], kurtosis maximization [92], or spatiotemporal averaging [93]. An-
other speech enhancement approach to dereverberation is spectral subtraction,
which can be applied in a single-channel [94] or multi-channel [95] scenario.
Again, a room acoustics model is necessary for being able to estimate and sub-
tract the spectral contribution of reverberation from the microphone signals.

A promising yet challenging approach to dereverberation is blind system iden-
tification and inversion. The aim is to identify the room acoustics model from
the observed microphone signals, to invert this model, and to process the micro-
phone signals with the inverse model to obtain an estimate of the clean audio
signal. In a multi-channel scenario, the blind system identification problem can
be elegantly formulated as an eigenvalue problem, for which least-squares [96],
subspace [97], and adaptive filtering [98] solutions have been proposed. How-
ever, the application of these algorithms to blind identification of room acous-
tics was found to be nontrivial due to nonstationarity, robustness, and compu-
tational issues [28]. The inversion of the identified room acoustics model can
be performed in a single-channel scenario [99], although multi-channel channel
inversion was found to be computationally more promising and more appealing
[100]. More recently, subband [101] and adaptive [102] implementations for
multi-channel inversion have been proposed, as well as regularized algorithms
to improve robustness against model identification errors [32][103][104].

1.4 Embedded Optimization Framework for Per-

ceptual Audio Signal Enhancement

From the overview of the state-of-the-art algorithms for hard clipping precom-
pensation, loudspeaker precompensation, declipping and dereverberation, we
can point out two major general limitations of existing audio signal enhance-
ment algorithms:

• The properties of human sound perception are most often not incorpo-
rated into traditional audio signal enhancement algorithms. As a result,
the relation between the algorithm parameters and the perceptual at-
tribute to enhance is not clearly defined, nor can it be ensured that the
desired perceptual attribute will indeed be enhanced.

• Most traditional audio signal enhancement algorithms rely on a sequence



22 Introduction

of a (non)linear system identification, the inversion of the identified sys-
tem, and the application of the inverted system to the audio signal.
This sequence is mostly computationally intensive and often contains
ill-conditioned steps.

The goal of this thesis is to overcome the limitations of existing audio signal
enhancement approaches, by exploring a new audio signal enhancement frame-
work. In this embedded optimization framework, the audio signal enhancement
problem at hand is reformulated as a per-frame numerical optimization prob-
lem, aimed at enhancing a desired perceptual attribute.

1.4.1 Embedded Optimization

Traditionally, numerical optimization has been applied in speech and audio
signal processing applications for tasks such as FIR filter and filterbank de-
sign [105], microphone array weight design [106], and feature learning in audio
classification [107] or speech recognition [108]. These design tasks are typically
performed off-line, and the optimization is carried out on time scales of seconds,
minutes or hours, often without strict computation time constraints. Recently,
the growing computational power and algorithmic developments have opened
up the possibility of embedding numerical optimization directly into real-time
signal processing algorithms in order to carry out nonlinear processing on the
signal itself. In this embedded optimization paradigm, the optimization vari-
ables are signal samples instead of filter weights or model parameter values,
and the optimization can be performed on-line with strict computation time
constraints, on time scales as short as milliseconds or microseconds [109].

This thesis investigates the development of an embedded optimization frame-
work for audio signal enhancement, and its application to both precompensa-
tion algorithms and recovery algorithms. In Figure 1.8(a), the concept of an
embedded optimization algorithm for the precompensation of audio signals is
visualized. The algorithm operates on short-time clean audio signal frames xm

of N samples, where m denotes the frame index. The precompensated audio
signal frame vm is computed by solving a per-frame constrained optimization
problem of the following form:

minimize
vm∈RN

dm(xm, ŷ
∗
m) subject to ŷ∗

m = f(vm, θ̂m) (1.1)

where a given distance measure dm between the clean audio signal frame xm and
the predicted enhanced audio signal frame ŷ∗

m is minimized, and the constraints
model the subsequent distortion process using distortion model parameters θ̂m
derived from an off-line estimation procedure. In Figure 1.8(b), the concept
of an embedded optimization algorithm for the recovery of audio signals is
visualized. The enhanced audio signal frame y∗

m is computed by solving a
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per-frame constrained optimization problem of the following form:

minimize
y∗

m∈RN
dm(y∗

m) subject to ym = f(y∗
m, θ̂m) (1.2)

where a given measure dm of the enhanced audio signal frame y∗
m is minimized,

and the constraints model the preceding distortion process using distortion
model parameters θ̂m derived from an on-line estimation procedure.

The embedded optimization framework allows us to compute in real time an
enhanced audio signal frame y∗

m that is optimal according to any desired math-
ematical measure dm. For audio signal enchancement applications, the most
relevant measure to minimize is the perceived degradation of a selected percep-
tual attribute (e.g. audio quality, speech quality, speech intelligibility) between
the clean audio signal frame xm and the enhanced signal frame y∗

m. The trans-
lation from the subjective perceptual attribute degradation to the objective
mathematical measure dm can be performed using a suitable model of human
sound perception, as will be discussed next.

1.4.2 Perceptual Models

The human perception of sounds is a complex process involving both auditory
and cognitive mechanisms. In the last decades, considerable research efforts
have been spent in order to thoroughly understand and accurately model the
essential properties of human sound perception. As giving a complete overview
of these findings is largely beyond the scope of this thesis, we will focus on
pointing out a few properties of the human perception of sounds which are
most relevant to the perception of linear and nonlinear distortion.

Most important, the sensitivity of the human hearing system is dependent on
the frequency of the tone. This effect is characterized by the absolute threshold
of hearing, which is defined as the required Sound Pressure Level (SPL) of a
pure tone such that an average listener will just hear the tone in a noiseless
environment. The absolute threshold of hearing has been measured experimen-
tally [110] and is depicted as the solid line in Figure 1.9. It is seen that the
human hearing system is most sensitive in the middle part of the frequency
range, and less sensitive for the lower and upper parts of the frequency range.
Whenever two or more tones are simultaneously presented to the human hear-
ing system, the phenomenon of simultaneous masking may occur, where the
presence of one stronger tone (the masker) renders imperceptible the simul-
taneous presence of a weaker tone (the maskee) at a nearby frequency [111].
In Figure 1.9, the strong masker tone is seen to push the absolute treshold of
hearing upwards for nearby frequencies, resulting in a masking treshold (dot-
ted line), i.e. the required SPL of a tone such that an average listener will just
hear the tone in the simultaneous presence of the masker. As the two displayed
tones at nearby frequencies are situated below the masking threshold, they will
be imperceptible in the simultaneous presence of the masker.
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(a) Precompensation algorithm
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(b) Recovery algorithm

Figure 1.8: Embedded optimization algorithms for perceptual audio signal en-
hancement.
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Figure 1.9: Absolute threshold of hearing and masking threshold (adapted from
[112]).

Since the absolute threshold of hearing and the masking threshold capture the
signal-dependent and frequency-dependent audibility of tones, they form an
indispensable component in many perceptual models. These perceptual models
are typically used to predict the perceived degradation of a given perceptual
attribute after the introduction of some form of linear and nonlinear distor-
tion. In this context, they are mostly applied for off-line objective evaluation
purposes, i.e. as an efficient replacement of time-consuming subjective evalu-
ation methods such as formal listening tests. This has led to the development
of several objective measures of audio quality [113][114][115], speech quality
[116][117] and speech intelligibility [118][119], some of which are standardized.
Perceptual models have also been applied for on-line algorithm design pur-
poses, e.g. in speech [120] and audio signal coding [111], audio signal modeling
[121], audio signal requantization [122], audio watermarking [123], and speech
enhancement [124].

This thesis investigates how perceptual models can be applied on-line in audio
signal enhancement algorithms. The specific goal is to translate the subjective
perceptual attribute degradation that we wish to minimize into an adequate
objective mathematical measure dm to be used in the embedded optimization
algorithm, as shown in Figures 1.8(a) and 1.8(b).
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1.4.3 Main Research Objectives

The main research objectives of this thesis can be stated as follows:

1. Development of an embedded optimization framework for audio signal en-
hancement, resulting in improved audio signal enhancement algorithms
for the precompensation and recovery of audio signals subject to dif-
ferent types of linear and nonlinear audio signal distortion. Specific
algorithms for hard clipping precompensation, loudspeaker precompen-
sation, declipping and dereverberation are targeted.

2. Incorporation of perceptual models in the embedded optimization frame-
work, in order to allow for the consistent enhancement of desired per-
ceptual attributes. The targeted perceptual attribute in this thesis is
perceived audio quality.

3. Design of application-tailored optimization methods and their efficient
hardware implementation in order to solve the per-frame optimization
problems under strict constraints regarding computation time, resource
usage and power consumption.

4. Comparative objective and subjective evaluation between the developed
embedded optimization algorithms and state-of-the-art audio signal en-
hancement algorithms.

.

1.5 Thesis Outline and Publications

1.5.1 Chapter-By-Chapter Outline and Contributions

Chapter 2 tackles the problem of hard clipping precompensation using an em-
bedded optimization approach, aimed at minimizing the perceptible nonlinear
audio signal distortion. First, the subjective notion of perceptible nonlinear
distortion is translated into a mathematical measure by including frequency
weights based on the instantaneous masking threshold, which is computed us-
ing a perceptual model. Then, hard clipping precompensation is formulated
as a sequence of per-frame constrained convex quadratic optimization prob-
lems. Next, three different structure-exploiting convex optimization methods
are proposed for solving the per-frame optimization problems in a fast and re-
liable way, and their corresponding theoretical complexity bounds are derived.
The fastest of these methods is an optimal projected gradient method, which is
shown to run in real time on a standard PC. Finally, a comparative objective
evaluation reports significantly higher objective audio quality scores using the
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embedded optimization algorithm over standard hard clipping precompensa-
tion techniques, and this for moderate to high levels of clipping.

Chapter 3 focuses on the problem of loudspeaker precompensation, in which
the aim is to minimize the combined perceptible linear and nonlinear audio
signal distortion incurred in the loudspeaker, again by using an embedded opti-
mization approach. The loudspeaker is modeled using a grey-box Hammerstein
loudspeaker model, i.e. a cascade of a memoryless nonlinearity and a linear FIR
filter. First, the subjective notion of perceptible linear and nonlinear distortion
is translated into a mathematical measure by including frequency weights based
on the instantaneous masking threshold in a similar fashion as in Chapter 2.
Then, loudspeaker precompensation is formulated as a sequence of per-frame
nonconvex optimization problems. Next, the resulting per-frame optimization
problems are solved efficiently using first-order optimization methods. Depend-
ing on the invertibility and the smoothness of the memoryless nonlinearity in
the Hammerstein loudspeaker model, different first-order optimization methods
are proposed and their convergence properties are analyzed. Finally, objective
evaluation experiments using synthetic and identified loudspeaker models show
that the embedded optimization loudspeaker precompensation algorithm pro-
vides a significant audio quality improvement, especially so at high loudspeaker
playback levels.

Chapter 4 reports the set-up and results of subjective evaluation experiments
for the hard clipping precompensation algorithms of Chapter 2 and the loud-
speaker precompensation algorithms of Chapter 3. The subjective evaluation
takes the form of a formal listening test including 19 test subjects, each of which
is asked to quantify the perceived audio quality of audio signals processed by
the different precompensation algorithms. Statistical hypothesis tests on the
obtained subject responses lead to the following conclusions. Firstly, the per-
ceived audio quality of audio signals processed by the embedded optimization
clipping precompensation algorithm of Chapter 2 is significantly superior to
that of audio signals processed by an existing clipping precompensation algo-
rithm. Secondly, the perceived audio quality of audio signals processed by the
embedded optimization loudspeaker precompensation algorithm of Chapter
3 before being fed into the Hammerstein loudspeaker model is significantly
superior to that of audio signals not processed before being fed into the Ham-
merstein loudspeaker model, and this for moderate to high amplitude levels.
Thirdly, there is no reason to believe that the perceived audio quality of audio
signals subject to a certain nonlinear hard clipping distortion would be supe-
rior to that of audio signals subject to a combination of the same nonlinear
hard clipping distortion and an additional linear distortion. Lastly, there is
a significant positive correlation between subjective audio quality scores and
objective audio quality scores.

Chapter 5 considers the hardware implementation on a field programmable
gate array (FPGA) of the optimal projected gradient method proposed in
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Chapter 2 for solving the per-frame convex optimization problems. A cou-
ple of organizational changes are proposed in the optimal projected gradient
method in order to allow for an efficient FPGA implementation architecture.
The architecture selection for implementing the Fast Fourier Transform (FFT)
is seen to entail a trade-off between resource usage and throughput. By per-
forming bit-accurate simulations of the FPGA implementation, it is demon-
strated that the choice between fixed-point arithmetic and floating-point arith-
metic and the selection of the corresponding bit width has an impact on the
resulting audio quality as well as on the resource usage and power consumption
of the design. The selected FPGA design, which performs 30 optimal projected
gradient iterations using 20 fixed-point fraction bits, has a low latency, a re-
duced power consumption, a reduced resource usage, and at the same time
preserves the full audio quality improvement. This design allows to perform
the algorithm in real time on a small and portable device.

Chapter 6 focuses on the problem of declipping, i.e. the recovery of audio sig-
nals degraded by nonlinear hard clipping distortion. An embedded optimiza-
tion algorithm for declipping is proposed that is jointly based on the theory of
compressed sensing (CS) and on properties of human auditory perception. De-
clipping is formulated as a sparse signal recovery problem in the DFT domain,
in which the recovery is performed by solving a per-frame ℓ1-norm-type opti-
mization problem. The optimization problem formulation differs from existing
CS-based declipping formulations in the inclusion of frequency weights in the
ℓ1-norm, based on the instantaneous masking threshold. As a result, the de-
clipping algorithm is focused on maximizing the perceived audio quality of the
declipped signal instead of the physical signal reconstruction quality. Compar-
ative objective and subjective evaluation experiments reveal a significant audio
quality increase for the proposed embedded optimization declipping algorithm
compared to existing CS-based declipping algorithms.

Chapter 7 focuses on the problem of multi-microphone dereverberation, where
the aim is to eliminate linear reverberation distortion introduced by the acous-
tics of the room in which the clean audio signal is recorded. An embedded opti-
mization approach to multi-microphone dereverberation is proposed, allowing
for a joint estimation of the room acoustics model parameters and the clean
audio signal. The proposed approach differs from existing blind system identi-
fication and inversion approaches in that it does not require an explicit system
inversion. It is shown how the inherently nonconvex joint estimation problem
can be smoothed by including regularization terms based on a statistical late
reverberation model and a sparsity prior for the clean audio signal spectrum.
Depending on the included regularization terms, one of three different sequen-
tial optimization algorithms for solving the nonconvex optimization problem is
applied. A performance evaluation for an example multi-microphone derever-
beration scenario shows promising results, thus motivating future research in
this direction.
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Chapter 8 summarizes the main conclusions of the research presented in this
thesis, and points out suggestions for future research.

1.5.2 Included Publications

The following publications are included in this thesis:

Part II: Precompensation algorithms

Chapter 2: Hard Clipping Precompensation
B. Defraene, T. van Waterschoot, H.J. Ferreau, M. Diehl, and M. Moonen,
“Real-time perception-based clipping of audio signals using convex optimiza-
tion,” IEEE Trans. Audio Speech Language Process., vol. 20, no. 10, pp.
2657–2671, Dec. 2012.

Chapter 3: Loudspeaker Precompensation
B. Defraene, T. van Waterschoot, M. Diehl, and M. Moonen, “Embedded-
optimization-based loudspeaker compensation using a Hammerstein loud-
speaker model,” IEEE Trans. Audio Speech Language Process., submitted
for publication, Nov. 2013.

Part III: Recovery algorithms

Chapter 6: Declipping Using Perceptual Compressed Sensing
B. Defraene, N. Mansour, S. De Hertogh, T. van Waterschoot, M. Diehl,
and M. Moonen, “Declipping of audio signals using perceptual compressed
sensing,” IEEE Trans. Audio Speech Language Process., vol. 21, no. 12, pp.
2627-2637, Dec. 2013.

Chapter 7: Multi-Microphone Dereverberation
T. van Waterschoot, B. Defraene, M. Diehl, and M. Moonen, “Embedded
Optimization Algorithms for Multi-Microphone Dereverberation,” in Proc.
of the 21st European Signal Process. Conf. (EUSIPCO ’13), Marrakech,
Morocco, Sept. 2013.
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Abstract

Clipping is an essential signal processing operation in many real-time audio
applications, yet the use of existing clipping techniques generally has a detri-
mental effect on the perceived audio signal quality. In this paper, we present a
novel multidisciplinary approach to clipping which aims to explicitly minimize
the perceptible clipping-induced distortion by embedding a convex optimiza-
tion criterion and a psychoacoustic model into a frame-based algorithm. The
core of this perception-based clipping algorithm consists in solving a convex op-
timization problem for each time frame in a fast and reliable way. To this end,
three different structure-exploiting optimization methods are derived in the
common mathematical framework of convex optimization, and corresponding
theoretical complexity bounds are provided. From comparative audio quality
evaluation experiments, it is concluded that the perception-based clipping algo-
rithm results in significantly higher objective audio quality scores than existing
clipping techniques. Moreover, the algorithm is shown to be capable to adhere
to real-time deadlines without making a sacrifice in terms of audio quality.

2.1 Introduction

In many real-time audio applications, the amplitude of a digital audio signal is
not allowed to exceed a certain maximum level. This amplitude level restric-
tion can be imposed for different generic or application-specific reasons. First,
it can relate to an inherent limitation of the adopted digital representation of
the signal. In this case, audio signal samples exceeding the allowable maximum
amplitude level will either wrap-around or saturate, depending on the digital
signal processing (DSP) system architecture [1]. In both modes, the result will
be a significant degradation of the audio signal’s sound quality. Secondly, the
maximum amplitude level can be imposed in order to prevent the audio signal
from exceeding the reproduction capabilities of the subsequent power amplifier
and/or electroacoustic transducer stages. In fact, an audio signal exceeding this
maximum amplitude level will not only result in a degradation of the sound
quality of the reproduced audio signal (e.g. due to amplifier overdrive and
loudspeaker saturation), but could possibly also damage the audio equipment.
Thirdly, in music production applications, the amplitude level restriction is of-
ten set deliberately as part of a mastering/mixing process. Lastly, in hearing
aid applications, the maximum amplitude level restriction is necessary to pre-
serve a high listening comfort, as impulsive noises in the vicinity of the hearing
aid user will sound uncomfortably loud if the audio signal amplitude is not
properly limited.

In order to preserve a high sound quality of the reproduced audio signal and
a high user listening comfort in the above mentioned applications, it is of
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paramount importance to instantaneously limit the digital audio signal with
respect to the allowable maximum amplitude level. Clippers (or infinite lim-
iters) are especially suited for this purpose: these alter incoming signal sample
amplitudes such that no sample amplitude exceeds the maximum amplitude
level (referred to as clipping level from here on) [2, Sec. 5.2]. Most existing
clipping2 techniques are governed by a static input-output characteristic, act-
ing onto the input audio signal on a sample by sample basis by mapping a range
of input amplitudes to a reduced range of output amplitudes. Depending on
the sharpness of this input-output characteristic, one can distinguish between
two types of clipping techniques: hard clipping and soft clipping [3], where
the input-output characteristic exhibits an abrupt (“hard”) or gradual (“soft”)
transition from the linear zone to the nonlinear zone respectively.

However, such a clipping operation itself introduces different kinds of unwanted
distortion into the audio signal: odd harmonic distortion components, inter-
modulation distortion components and aliasing distortion components [4]. In
a series of listening experiments performed on normal hearing subjects [5] and
hearing-impaired subjects [6], it is concluded that the application of hard clip-
ping and soft clipping to audio signals has a significant negative effect on per-
ceptual sound quality scores, irrespective of the subject’s hearing acuity. To
our best knowledge, there have been no previous research efforts on improving
the perceptual sound quality of existing clipping techniques. It is worthwhile to
point out, however, recent research on the related problems of audio declipping
and audio imputation, where the aim is to restore the missing values in clipped
audio signals [7] [8].

In this paper, we propose a novel, multidisciplinary approach to clipping,
aimed at minimizing the perceptible clipping-induced distortion. The pro-
posed perception-based clipping algorithm combines aspects of digital signal
processing, optimization theory and psychoacoustics. Hence, two algorithmic
ingredients are novel compared to existing approaches:

• Psychoacoustics : incorporating knowledge about the human perception
of sounds is indispensable for achieving minimally perceptible clipping-
induced distortion. In other audio processing applications, the applica-
tion of psychoacoustic principles and models has proven to be successful,
e.g. in perceptual audio coding [9] and audio signal requantization [10].

• Embedded convex optimization: in an increasing number of signal pro-
cessing applications, convex optimization is embedded directly into a
signal processing algorithm in order to carry out nonlinear processing on
the signal itself (as opposed to its more conventional use for e.g. linear
filter design) [11]. In this framework, clipping of an audio signal will

2In this work, we use the word “clipping” to denote the deliberate operation of bounding
the samples of a digital audio signal to a predefined maximum amplitude level. This should
not be confused with the undesired “analog clipping phenomenon” as it can subsequently
occur in various analog audio devices.
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be formulated as a sequence of constrained convex optimization prob-
lems regularly spaced in time, aimed at minimizing perceptible clipping-
induced distortion. Real-time operation of such a scheme obviously calls
for application-tailored optimization methods able to solve instances of
the optimization problem at hand in a fast and reliable way. Therefore,
we will spend extensive attention to three different structure-exploiting
optimization methods and their comparative performance.

In previous work, a perception-based approach to clipping has been presented
and was seen to significantly outperform existing clipping techniques in terms
of objective sound quality scores [12]. This approach has been refined by incor-
porating a projected gradient optimization method for solving the constrained
optimization problems under consideration [13]. In this paper, the main ideas
presented in [12]-[13] will be reviewed and expanded, thereby introducing the
following novel contributions:

• A new and significantly faster projected gradient optimization method
will be proposed for solving the constrained optimization problems at
hand, achieving an optimal linear convergence rate. By using this method,
the perception-based clipping algorithm can effectively be applied in real
time for very high solution accuracies.

• The different optimization methods will be rigorously described in the
common mathematical framework of convex optimization. Advantages
and disadvantages of the different optimization methods will be discussed,
and theoretical complexity bounds will be derived in order to objectively
compare their performance.

• The psychoacoustic principles and psychoacoustic model underpinning
the perception-based clipping approach will be elaborated in detail.

• A thorough comparative objective perceptual evaluation of the proposed
perception-based algorithm and existing clipping algorithms will be per-
formed using two different objective measures of audio quality.

The paper is organized as follows. In Section 2.2, clipping is formulated as
a sequence of constrained convex optimization problems, and the inclusion of
a psychoacoustic model is discussed in detail. In Section 2.3, three different
application-tailored convex optimization methods are proposed for solving the
optimization problems at hand in a fast and reliable way, and corresponding
theoretical complexity bounds are given. In Section 2.4, results are presented
from a comparative audio quality evaluation of different clipping techniques,
and an algorithmic complexity assessment of different optimization methods is
performed. Finally, in Section 2.5, some concluding remarks are presented.
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Figure 2.1: Schematic overview of the presented perception-based clipping tech-
nique

2.2 Perception-Based Clipping

2.2.1 General Description of the Algorithm

The goal of a clipping algorithm is to restrict the amplitude of a digital audio
signal x[n] to a given amplitude range [L,U ] (where L ≤ 0 and U ≥ 0), while
keeping the clipped output signal y[n] perceptually as close as possible to the
input signal x[n]. In a perception-based clipping algorithm [12], the aim for
maximal perceptual similarity is explicitly fulfilled, by

• incorporating into the algorithm knowledge about the human perception
of sounds through the use of a psychoacoustic model.

• embedding into the algorithm the solution of an optimization problem,
aimed at minimizing clipping-induced distortion.

Figure 2.1 schematically depicts the actual operation of the perception-based
clipping algorithm presented in [12]. The digital input audio signal x[n] is
segmented into frames of N samples3, with an overlap length of P samples
between successive frames. The processing of one frame xm consists of the
following steps:

3Note that N is assumed an even number from here on.
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1. Calculate the instantaneous global masking threshold tm ∈ R
N
2 +1 of

the input frame xm ∈ RN , using part of the ISO/IEC 11172-3 MPEG-1
Layer 1 psychoacoustic model 1 [14]. The instantaneous global masking
threshold of a signal gives the amount of distortion energy (dB) in each
frequency bin that can be masked by the signal.

2. Calculate the optimal output frame y∗
m ∈ RN as the solution of a con-

strained optimization problem to be defined in subsection 2.2.2.
3. Apply a trapezoidal window to the optimal output frame y∗

m and sum
the optimal output frames to form a continuous output audio signal
y∗[n].

2.2.2 Optimization Problem Formulation

The core of the perception-based clipping technique consists in calculating the
solution of a constrained optimization problem for each frame. From the knowl-
edge of the input frame xm and its instantaneous properties, the optimal output
frame y∗

m is calculated. Let us define the optimization variable of the problem
as ym, i.e. the output frame. A necessary constraint on the output frame ym

is that the amplitude of the output samples cannot exceed the upper and lower
clipping levels U and L. The objective function f we want to minimize must
reflect the amount of perceptible distortion added between ym and xm. We can
thus fomulate the optimization problem as an inequality constrained frequency
domain weighted L2-distance minimization, i.e.

y∗
m = argmin

ym∈RN

f(ym) s.t.

{
hi(ym) = U − ym,i ≥ 0
hN+i(ym) = ym,i − L ≥ 0

, i = 0, ..., N − 1

= argmin
ym∈RN

1

2N

N−1∑

i=0

wm,i|Ym(ejωi)−Xm(ejωi )|2 s.t. l ≤ ym ≤ u (2.1)

where ωi = (2πi)/N represents the discrete frequency variable, Xm(ejωi) and
Ym(ejωi) are the discrete frequency components of xm and ym respectively,
the vectors u = U1N and l = L1N contain the upper and lower clipping levels
respectively (with 1N ∈ RN an all ones vector), and wm,i are the weights of
a perceptual weighting function to be defined in subsection 2.2.3. Notice that
in case the input frame xm does not violate the inequality constraints, the
optimization problem (2.1) trivially has the solution y∗

m = xm and the input
frame is transmitted unaltered by the clipping algorithm.

Formulation (2.1) of the optimization problem can be rewritten as follows 4

y
∗

m = argmin
ym∈RN

1

2
(ym − xm)H D

H
WmD (ym − xm) s.t. l ≤ ym ≤ u

4In this text, the superscripts T and H denote the transpose and the Hermitian transpose,
respectively.
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= argmin
ym∈RN

1

2
y
H
m D

H
WmD

︸ ︷︷ ︸

,Hm

ym + (−D
H
WmD xm

︸ ︷︷ ︸

,gm=−Hmxm

)H ym s.t. l ≤ ym ≤ u

(2.2)

where D ∈ C
N×N is the unitary Discrete Fourier Transform (DFT) matrix

defined as

D =
1√
N










1 1 1 . . . 1
1 e−jω1 e−jω2 . . . e−jωN−1

1 e−jω2 e−jω4 . . . e−jω2(N−1)

...
...

...
...

...
1 e−jωN−1 e−jω2(N−1) . . . e−jω(N−1)(N−1)










(2.3)

and Wm ∈ RN×N is a diagonal weighting matrix with positive weights wm,i,
obeing the symmetry property wm,i = wm,N−i for i = 1, 2, ..., N2 − 1,

Wm =










wm,0 0 0 . . . 0
0 wm,1 0 . . . 0
0 0 wm,2 . . . 0
...

...
...

. . .
...

0 0 0 . . . wm,N−1










(2.4)

We remark that the objective function in (2.2) is a quadratic function and
that the constraint functions are affine, hence optimization problem (2.2) con-
stitutes a quadratic program (QP). Note also that the choice for a quadratic
error in the objective function was made in order to strike a balance between
perceptual relevance on one hand, and mathematical elegance and suitability
of the objective function from an optimization point of view on the other hand.
With this trade-off in mind, the use of a quadratic error criterion was preferred
over other considered alternatives.

The number of samples N per audio signal frame is defined by the sampling
rate of the audio signal (typically ranging from 16 kHz to 44.1 kHz) and the
time duration of the audio signal frame (typically ranging from 10 to 30 ms).
For most audio applications, the dimension N of the per-frame QP is thus
expected to lie within the range of 100 to 1000 optimization variables.

2.2.3 Perceptual Weighting Function

In order for the objective function in optimization problem (2.1) to reflect the
amount of perceptible distortion added between input frame xm and output
frame ym, the perceptual weighting function wm must be constructed judi-
ciously. The rationale behind applying signal-dependent weights in the sum-
mation (2.1) is the psychoacoustic fact that distortion at certain frequencies
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Figure 2.2: Different steps in the computation of the global masking threshold
using the ISO/IEC 11172-3 MPEG-1 Layer 1 psychoacoustic model 1 : (a)-(b)
Time domain and normalized frequency domain representations of the input
audio signal (c)-(d) Tonal maskers (circles), non-tonal maskers (squares) and
input frequency spectrum (dotted line) (e)-(f) Individual masking thresholds
related to tonal and non-tonal maskers respectively (g) Global masking thresh-
old (solid line) and input frequency spectrum (dotted line)
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is more perceptible than distortion at other frequencies, and that the relative
perceptibility is mostly signal-dependent. Two phenomena of human auditory
perception are responsible for this,

• The absolute threshold of hearing is defined as the required intensity (dB)
of a pure tone such that an average listener will just hear the tone in a
noiseless environment. The absolute threshold of hearing is a function of
the tone frequency and has been measured experimentally [15].

• Simultaneous masking is a phenomenon where the presence of certain
spectral energy (the masker) masks the simultaneous presence of weaker
spectral energy (the maskee), or in other words, renders it imperceptible.

Combining both phenomena, the instantaneous global masking threshold of a
signal gives the amount of distortion energy (dB) at each frequency bin that
can be masked by the signal. In this framework, we consider the input frame
xm to act as the masker, and ym − xm as the maskee. In other words, we
make the assumption that when the ear is presented with the output frame
ym, it is in fact presented with the input frame xm and the distortion ym−xm

simultaneously, and that the simultaneous masker-maskee relationship between
both signals can be exploited. By selecting the weights wm,i in (2.1) to be
exponentially decreasing with the value of the global masking threshold of xm

at frequency bin i, the objective function effectively reflects the amount of
perceptible distortion introduced5. This can be specified as

wm,i =

{
10−αtm,i if 0 ≤ i ≤ N

2

10−αtm,N−i if N
2 < i ≤ N − 1

(2.5)

where tm is the global masking threshold of xm (in dB). Appropriate values of
the compression parameter α have been determined to lie in the range 0.04-0.06.

The instantaneous global masking threshold tm of an input frame xm is cal-
culated using part of the ISO/IEC 11172-3 MPEG-1 Layer 1 psychoacoustic
model 1. A complete description of the operation of this psychoacoustic model
is out of the scope of this paper (we refer the reader to [9] and [14]). We will
outline the relevant steps in the computation of the instantaneous global mask-
ing threshold and illustrate the result of each step on an example audio frame
(see Figure 2.2):

1. Spectral analysis and SPL normalization: In this step a high-resolution
spectral estimate of the input frame is calculated, with spectral com-
ponents expressed in terms of sound pressure level (SPL). After a nor-
malization operation and a Hann window operation on the input signal
frame, the PSD estimate is obtained through a 512-point Fast Fourier
Transform (FFT). Figure 2.2(a) shows the time-domain input signal,
Figure 2.2(b) shows the resulting spectral estimate.

5Indeed, the terms in the summation of objective function (2.1) can then be seen to
resemble to distortion-to-masker power ratios.



2.3. Optimization Methods 53

2. Identification of tonal and non-tonal maskers : It is known from psy-
choacoustic research that the tonality of a masking component has an
influence on its masking properties [16]. For this reason it is important
to discriminate between tonal maskers (defined as local maxima of the
signal spectrum) and non-tonal maskers. The output of the FFT is used
to determine the relevant tonal and non-tonal maskers in the spectrum
of the audio signal. In a first phase, tonal maskers are identified at
local maxima of the PSD: energy from three adjacent spectral compo-
nents centered at the local maximum is combined to form a single tonal
masker. In a second phase, a single non-tonal masker per critical band
is formed by addition of all the energy from the spectral components
within the critical band that have not contributed to a tonal masker.

3. Decimation of maskers : In this step, the number of maskers is reduced
using two criteria. First, any tonal or non-tonal masker below the ab-
solute threshold of hearing is discarded. Next, any pair of maskers oc-
curring within a distance of 0.5 Bark is replaced by the stronger of the
two. Figures 2.2(c) and 2.2(d) respectively depict the identified tonal
and non-tonal maskers, after decimation.

4. Calculation of individual masking thresholds : an individual masking
threshold is calculated for each masker in the decimated set of tonal
and non-tonal maskers, using fixed psychoacoustic rules. Essentially,
the individual masking threshold depends on the frequency, loudness
level and tonality of the masker. Figure 2.2(e) and 2.2(f) show the indi-
vidual masking thresholds associated with tonal and non-tonal maskers,
respectively.

5. Calculation of global masking threshold : Finally, the global masking
threshold is calculated by a power-additive combination of the tonal and
non-tonal individual masking thresholds, and the absolute threshold of
hearing. This is illustrated in Figure 2.2(g).

2.3 Optimization Methods

The core of the perception-based clipping algorithm described in Section 2.2 is
formed by the solution of an instance of optimization problem (2.2) for every
frame xm. Looking at the relatively high sampling rates (e.g. 44.1 kHz for CD-
quality audio) and associated frame rates under consideration, it is clear that
real-time operation of the algorithm calls for application-tailored optimization
methods to solve the optimization problems in a fast and reliable way. In
this section, we will discuss three different structure-exploiting optimization
methods, whose common ground is the notion of convex optimization. Before
doing so, we will first look at the properties of the optimization problem at
hand in this framework of convex optimization.
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2.3.1 Convex Optimization Framework

Convex optimization is a subfield of mathematical optimization that studies a
special class of mathematical optimization problems, namely convex optimiza-
tion problems. This class can be formally defined as follows.

Definition 2.1 [Convex optimization problem] A convex optimization problem
is one of the form

min
y∈RN

f(y) s.t. hi(y) ≤ 0, i = 0, ...,K − 1 (2.6)

cTj y = dj , j = 0, ...,M − 1

in which the objective function f and the constraint functions h0, ..., hK−1 are
convex, which means they satisfy

f(ax+ by) ≤ af(x) + bf(y) (2.7)

hi(ax+ by) ≤ ahi(x) + bhi(y) (2.8)

for all x,y ∈ RN and all a, b ∈ R with a+ b = 1, a ≥ 0, b ≥ 0. 2

In particular, for quadratic programs, the next definition holds.

Definition 2.2 [Convex QP] A quadratic program (QP) is convex if and only
if the Hessian matrix ∇2f(y) is positive semi-definite. It is strongly convex if
and only if ∇2f(y) is positive definite. 2

A fundamental property of convex optimization problems is that any local
minimizer is a global minimizer. For strongly convex problems, it will also be
the unique minimizer.

We will now show that optimization problem (2.2) is a convex quadratic pro-
gram, thereby looking a bit deeper into the structure of the Hessian matrix
Hm.

Definition 2.3 [Circulant matrix] A circulant matrix C is a square matrix
having the form

C =















c0 cN−1 . . . c1

c1 c0 cN−1

...

c2 c1 c0
. . .

c2 c1
. . . cN−1

...
. . .

cN−1 . . . c2 c1 c0















(2.9)
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where each row is a cyclic shift of the row above it. 2

Theorem 2.4 (Diagonalization of circulant matrices [17, 18]) A circu-
lant matrix C ∈ CN×N is diagonalized by the unitary DFT matrix D defined
in (2.3), i.e.

C = DHΨD (2.10)

where Ψ = diag(ψ) contains the eigenvalues of C, which are obtained as the
DFT of the first column of C,

ψl =
N−1∑

k=0

cke
−jωlk , l = 0, ..., N − 1 (2.11)

We can now state the following important properties of the Hessian matrix
Hm = DHWmD in (2.2):

Theorem 2.5 The Hessian matrix Hm = DHWmD ∈ RN×N in optimization
problem (2.2) is real, symmetric, positive definite and circulant.

Proof : From (2.10) in Theorem 2.4, we readily see that Hm is circulant and
Wm contains its eigenvalues. By definitions (2.4)-(2.5), the elemens of Wm

are real and have even symmetry, so by (2.11) the first column of Hm will also
be real and have even symmetry. From this we can see that Hm is real and
symmetric. As a symmetric matrix is positive definite if and only if all of its
eigenvalues are positive, it remains to remark that the elements of Wm are
positive by construction (2.5) to conclude that Hm is positive definite. 2

Corollary 2.6 Optimization problem (2.2) is a strongly convex quadratic pro-
gram.

Convex optimization problems can be solved reliably and efficiently by using
special methods for convex optimization. In particular, different iterative op-
timization methods for solving (strongly) convex QPs have been presented.
Essentially, three classes of methods can be distinguished. A first class are
the projected gradient methods, where only first-order information is used for
solving the optimization problem. These methods are conceptually simple and
computationally cheap, but typically suffer from slow convergence, sometimes
preventing their use in real-time applications. However, it is generally possible
to perform a convergence analysis and to establish useful polynomial com-
putational complexity bounds for these algorithms [19]. A second class are
interior-point methods : these rely on heavier computational tasks, but have a
better convergence rate. Some interior-point methods are polynomial time, but
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the complexity bounds are generally far off from practically observed ones [20].
A third class are active set methods : these have a good perfomance in practice,
but suffer from the drawback that in general no polynomial complexity bounds
can be given [21].

In the remainder of this section, we will propose three different optimization
methods tailored to QP (2.2), wherein the structure of the optimization prob-
lem will be exploited.

• In subsection 2.3.2, an active set type of method will be proposed which
exploits the fact that only a small subset of the constraints will influence
the final solution.

• In subsections 2.3.3 and 2.3.4, two projected gradient methods will be
proposed which exploit the circulant structure of the Hessian matrix and
the geometry of the convex feasible set.

2.3.2 Optimization Method 1: Dual Active Set Strategy

In [12], it was experimentally shown that general-purpose QP solvers are largely
inadequate to solve instances of QP (2.2) in real time. Therefore, an active set
optimization method was proposed that efficiently solves the dual optimization
problem of (2.2).

Definition 2.7 [Dual optimization problem] For any primal optimization prob-
lem of the form (2.6), the dual optimization problem is defined as the convex
maximization problem

max
λ∈RK ,ν∈RM

inf
y∈RN

[

f(y)−
K−1∑

i=0

λihi(y)−
M−1∑

j=0

νj(c
T
j y − dj)

︸ ︷︷ ︸

,L(y,λ,ν)

]

︸ ︷︷ ︸

,q(λ,ν)

s.t. λ ≥ 0

(2.12)
where λ and ν are the vectors of Lagrange multipliers associated to the in-
equality constraints and equality constraints respectively, L(y,λ,ν) is the La-
grangian function and q(λ,ν) is the Lagrange dual function. 2

A primal optimization problem and its associated dual optimization problem
are related in interesting ways. In general, the dual optimization problem can
be used to obtain a lower bound on the optimal value of the objective for the
primal problem. This primal-dual relationship is known as weak duality [22].

Theorem 2.8 (Weak duality) The optimal objective value p∗ of any primal
optimization problem (2.6) and the optimal objective value d∗ of the associated
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dual optimization problem (2.12) are related as follows,

d∗ ≤ p∗ (2.13)

One of the main advantages of convex optimization problems is the fact that
the dual optimization problem can be used directly for solving the primal op-
timization problem. This primal-dual relationship is known as strong duality
[22].

Theorem 2.9 (Strong duality) If the primal optimization problem (2.6) is
convex and it has a strictly feasible point, then primal optimization problem
(2.6) and dual optimization problem (2.12) have the same optimal objective
value,

d∗ = p∗ (2.14)

Since in subsection 2.3.1 optimization problem (2.2) was shown to be a convex
quadratic program, and zero is a strictly feasible point, it is clear from Theorem
2.9 that it has a strong duality relationship with its dual counterpart. We
formulate this dual optimization problem as follows. First, the Lagrangian
function L(ym,λm,u,λm,l) is given by

L(ym,λm,u,λm,l) = f(ym)− λ
T
m,uhu(ym)− λ

T
m,lhl(ym)

=
1

2
(ym − xm)T Hm (ym − xm) + λ

T
m,u(ym − u) + λ

T
m,l(l− ym)

(2.15)

where λm,u,λm,l ∈ RN denote the vectors of Lagrange multipliers associated
to the upper clipping level constraints hu(ym) = [h0(ym) . . . hN−1(ym)]T and
the lower clipping level constraints hl(ym) = [hN (ym) . . . h2N−1(ym)]T , respec-
tively. Then, the Lagrange dual function equals

q(λm,u,λm,l) = inf
ym∈RN

L(ym,λm,u,λm,l)

= −1

2
(λm,u − λm,l −Hmxm)TH−1

m (λm,u − λm,l −Hmxm)

− λT
m,uu+ λT

m,ll+
1

2
xT
mHmxm

(2.16)

Finally, the dual optimization problem can be formulated as

λ∗
m = argmax

λm∈R2N

q(λm) s.t. λm ≥ 0

= argmin
λm∈R2N

1

2
λT
m ATH−1

m A
︸ ︷︷ ︸

,H̃m

λm + (BT1N −ATxm
︸ ︷︷ ︸

,g̃m

)Tλm s.t. λm ≥ 0

(2.17)
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where λm ∈ R
2N , A ∈ R

N×2N and B ∈ R
N×2N are defined as λm =

[
λT
m,u λT

m,l

]T
, A =

[
IN −IN

]
, and B =

[
UIN −LIN

]
, with IN ∈

R
N×N the identity matrix.

Computation of y∗
m from λ∗

m is then straightforward,

y∗
m = −H−1

m (Aλ∗
m −Hmxm)

= xm −H−1
m Aλ∗

m (2.18)

The dual optimization problem formulated in (2.17)-(2.18) can be solved ef-
ficiently by exploiting the fact that only a small subset of the large number
(2N) of inequality constraints are expected to influence the solution. Under
the assumption of a moderate clipping factor, indeed only a small number of
samples in the input frame xm are expected to exceed the clipping levels. An
iterative external active set strategy is adopted, where the following steps are
executed in each iteration (see Algorithm 1)6 :

1. Check which inequality constraints are violated in the previous solution
iterate. In case no inequality constraints are violated, the algorithm
terminates.

2. Add the violated constraints to an active set S of constraints to be
monitored.

3. Solve a small-scale QP corresponding to (2.17) with those Lagrange
multipliers corresponding to constraints not in the active set S set to
zero.

4. Compute the new solution iterate by evaluating (2.18).

Using this strategy of dualizing and iteratively adapting an appropriate sub-
set of inequality constraints, a QP dimensionality reduction is achieved which
brings along a significant computational complexity reduction. In effect, the
solution of QP (2.2) is found by solving a small number of small scale QPs
(2.17) instead of by solving the full scale QP at once. From simulations, it
is concluded that 4 external iterations generally suffice for solving an instance
of optimization problem (2.2). In comparison to general-purpose dense QP
solvers, the method achieves a reduction of computation time with a factor
ranging from 10 up to 200. Moreover, for clipping factors7 higher than 0.95,
the method could potentially be used in a real-time clipping context [12].

Although computation times are reduced considerably, it has to be remarked
that this optimization method still has a few shortcomings, possibly preventing
it to be used reliably in real-time audio applications:

• First of all, the method’s computational complexity is seen to increase with

6We introduce in this algorithm the notation [·]km for the kth iterate of the mth frame
7Clipping factor CF is defined as 1-(fraction of signal samples exceeding the upper or

lower clipping level)
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Algorithm 1 Dual active set strategy

Input xm ∈ RN , Wm, L, U
Output y∗

m ∈ R
N

1: y0
m = xm

2: V0
m = {i|hi(y0

m) < 0}
3: S0m = V0

m

4: k = 0
5: while Vk

m 6= ∅ do
6: λk+1

m,i = 0, i /∈ Skm

7: Calculate λk+1
m,i , i ∈ Skm as solution of small-scale QP defined in (2.17)

8: yk+1
m = xm −H−1

m Aλk+1
m [using (2.18)]

9: Collect index set of violated inequality constraints Vk+1
m = {i|hi(yk+1

m ) <
0}

10: Extend active set Sk+1
m = Skm ∪ Vk+1

m

11: k = k + 1
12: end while
13: y∗

m = yk
m

increasing number of violated constraints in the input frame xm. That is, the
computational complexity increases with decreasing clipping factors, making
it impossible to run the method in real time for low clipping factors.

• Secondly, it is practically impossible to derive certifying polynomial com-
plexity bounds for the optimization method.

• Lastly, the iterative optimization method cannot be stopped early (i.e. before
convergence to the exact solution) to provide an approximate solution of the
optimization problem.

2.3.3 Optimization Method 2: Projected Gradient De-

scent

In this subsection, we present a projected gradient optimization method that
deals with the different issues raised in subsection 2.3.2 concerning applicabil-
ity in real time. First, a general description of the method is given. Then,
the selection of an appropriate stepsize is discussed. Finally, the computation
of approximate solutions is discussed and theoretical algorithmic complexity
bounds are derived.

Description of the Method

Projected gradient methods are a class of iterative methods for solving opti-
mization problems over convex sets. In each iteration, first a step is taken along
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the negative gradient direction of the objective function, after which the result
is orthogonally projected onto the convex feasible set, thereby maintaining fea-
sibility of the iterates [23]. A low computational complexity per iteration is the
main asset of projected gradient methods, provided that the orthogonal pro-
jection onto the convex feasible set and the gradient of the objective function
can easily be computed.

For optimization problem (2.2), both these elements can indeed be computed at
an extremely low computational complexity, by exploiting the structure of the
Hessian matrix and the convex feasible set. The main steps to be performed
in the (k + 1)th iteration of the proposed projected gradient method are as
follows:

• Take a step with stepsize skm along the negative gradient direction:

ỹk+1
m = yk

m − skm∇f(yk
m) (2.19)

where using (2.2),

∇f(yk
m) = Hm(yk

m − xm)

= DHWmD(yk
m − xm). (2.20)

It is clear from (2.20) that the gradient computation can be performed at a
very low computational complexity, by sequentially applying a DFT (multi-
plication by D), an element-wise weighting (multiplication by Wm), and an
IDFT (multiplication by DH) to the vector (yk

m−xm). An alternative inter-
pretation is that we perform a matrix-vector multiplication of the circulant
matrix Hm with the vector (yk

m−xm). By exploiting the computational effi-
ciency of the FFT algorithm, the gradient computation thus has a complexity
of O(N log2N).

• Project ỹk+1
m orthogonally onto the convex feasible set Q of (2.2), which is

defined as
Q = {ym ∈ R

N | l ≤ ym ≤ u} (2.21)

The feasible set can be thought of as an N -dimensional box. An orthogonal
projection ΠQ(ỹ

k+1
m ) onto this N -dimensional box boils down to performing

a simple componentwise hard clipping operation (with lower bound L and
upper bound U), i.e.

yk+1
m = ΠQ(ỹ

k+1
m ) = argmin

z∈Q

1

2
‖z− ỹk+1

m ‖22 (2.22)

where

yk+1
m,i =







L if ỹk+1
m,i < L

ỹk+1
m,i if L ≤ ỹk+1

m,i ≤ U

U if ỹk+1
m,i > U

, i = 0...N − 1 (2.23)
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Stepsize Selection

Several rules for selecting stepsizes skm in projected gradient methods have
been proposed in literature, e.g. fixed stepsizes, diminishing stepsizes, or line
search rules [23]. Here a fixed stepsize is used, thereby avoiding the additional
computational complexity incurred by line searches. In [19], it is shown that
by choosing a fixed stepsize

skm =
1

Cm

, ∀k ≥ 0 (2.24)

with Cm the Lipschitz constant of the gradient ∇f of (2.1) on the set Q (for
frame m), a limit point of the sequence {yk

m} obtained by iteratively applying
(2.19) and (2.23) is a stationary point. Because of the convexity of f , it is a
local minimum and hence a global minimum.

In order to establish the Lipschitz constant Cm of our problem, we introduce
the next lemma.

Lemma 1 Let function f be twice continuously differentiable on set Q. The
gradient ∇f is Lipschitz continuous on set Q with Lipschitz constant C if and
only if

||∇2f(z)|| ≤ C , ∀z ∈ Q (2.25)

In other words, the Lipschitz constant of the gradient ∇f can be seen as an
upper bound to the curvature of the objective function f . Using this lemma,
we can easily show that the Lipschitz constant Cm is computed as

Cm = ||Hm||
= max

1≤i≤N
βi(Hm)

= max
1≤i≤N

βi(D
HWmD)

= max
0≤i≤N−1

wm,i (2.26)

where βi(Hm), i = 1...N , denote the eigenvalues of the Hessian matrix Hm.

Strong convexity assumes that in addition to an upper bound also a lower
bound on the curvature of the objective function can be found, determined by
the convexity parameter µm.

Lemma 2 Let function f be twice continuously differentiable on set Q. The
function f is strongly convex on set Q with convexity parameter µ if and only
if there exists µ > 0 such that

∇2f(z) ≥ µI , ∀z ∈ Q
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Algorithm 2 Projected gradient method

Input xm ∈ RN , y0
m ∈ Q, Wm, L, U ,

Output y∗
m ∈ R

N

1: k = 0
2: Calculate Lipschitz constant Cm [using (2.26)]
3: while convergence is not reached do
4: ỹk+1

m = yk
m − 1

Cm
∇f(yk

m) [using (2.20)]

5: yk+1
m = ΠQ(ỹ

k+1
m ) [using (2.23)]

6: k = k + 1
7: end while
8: y∗

m = yk
m

Using the former lemma, we can prove that for our objective function the
convexity parameter µm can be computed as

µm = min
1≤i≤N

βi(Hm)

= min
1≤i≤N

βi(D
HWmD)

= min
0≤i≤N−1

wm,i (2.27)

The ratio κm = Cm

µm
is called the condition number.

Algorithmic Complexity and Approximate Solutions

The proposed projected gradient optimization method is summarized in Al-
gorithm 2. Clearly, the computational complexity of one iteration is seen to
be extremely low. Moreover, the shortcomings of the optimization method 1
presented in subsection 2.3.2 are dealt with:

• It is possible to solve the optimization problem inexactly by stopping the
iterative optimization method before convergence to the exact solution y∗

m

is reached. The iterates yk
m of the proposed projected gradient method are

feasible by construction. Moreover, the sequence {f(yk
m)} can be proved to

be monotonically decreasing. Hence, stopping the method after any number
of iterations η will result in a feasible point yη

m for which f(yη
m) ≤ f(y0

m).
We can then define the obtained solution accuracy as ǫ = f(yη

m)− f(y∗
m).

• It is possible to derive polynomial upper and lower bounds on the algorith-
mic complexity, i.e. the number of necessary iterations of the optimization
method as a function of the obtained solution accuracy ǫ, as we will show
next.
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For the class of convex optimization problems with strongly convex objective
functions, a general lower bound on the algorithmic complexity was derived
that holds for all iterative first-order methods [19, Ch. 2]:

Theorem 2.10 For any starting point y0
m ∈ RN , for any first-order projected

gradient method, and for any closed convex set Q, there exists a strongly convex,
continuously differentiable function f with Lipschitz constant Cm and convexity
parameter µm = Cm

κm
(where κm > 1), such that we have

f(yk
m)− f(y∗

m) ≥ µm

2

(√
κm − 1√
κm + 1

)2k

||y0
m − y∗

m||2, ∀k (2.28)

Also, for the same problem class, an upper bound on the algorithmic complexity
of the projected gradient method used in Algorithm 2 was derived [19, Ch. 2]:

Theorem 2.11 Let f be a strongly convex, continuously differentiable function
with Lipschitz constant Cm and convexity parameter µm = Cm

κm
(where κm >

1), and let Q be a convex feasible set. Then the projected gradient method
described in Algorithm 2 with fixed stepsize 1

Cm
generates a sequence {yk

m}
which converges as follows:

f(yk
m)− f(y∗

m) ≤ µm

2

(
κm − 1

κm + 1

)2k

||y0
m − y∗

m||2, ∀k. (2.29)

As the general algorithmic complexity lower bound (2.28) for first-order opti-
mization methods, and the specific algorithmic complexity upper bound (2.29)
for the projected gradient optimization method described in Algorithm 2 differ
by an order of magnitude, it can be concluded that the proposed optimization
method is not optimal in terms of convergence.

2.3.4 Optimization Method 3: Optimal Projected Gradi-

ent Descent

From the complexity bounds given in subsection 2.3.3 it might be expected
that it is theoretically possible for a first-order optimization method to have
a better convergence rate than optimization method 2. Indeed, if there exists
a first-order method for which the complexity upper bound is proportional to
the complexity lower bound for a given problem class, this method could be
called optimal for that problem class [19]. In this subsection, we present a
projected gradient optimization method that reaches an optimal convergence
for the class of convex optimization problems with strongly convex objective
functions. This method was first proposed in [19] and variants of the method
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Algorithm 3 Optimal projected gradient method

Input xm ∈ RN , y0
m = c0m ∈ Q, Wm, γ0m ∈ (0, 1), L, U

Output y∗
m ∈ R

N

1: Calculate Lipschitz constant Cm [using (2.26)]
2: Calculate convexity parameter µm [using (2.27)]
3: κm = Cm

µm

4: k = 0
5: while convergence is not reached do
6: ỹk+1

m = ckm − 1
Cm

∇f(ckm)

7: yk+1
m = ΠQ(ỹ

k+1
m ) [using (2.23)]

8: Calculate γk+1
m from (γk+1

m )2 = (1− γk+1
m )(γkm)2 + κmγ

k+1
m

9: δkm =
γk
m(1−γk

m)

(γk
m)2+γ

k+1
m

10: ck+1
m = yk+1

m + δkm(yk+1
m − yk

m)
11: k = k + 1
12: end while
13: y∗

m = yk
m

have been applied in diverse applications, e.g. for real-time model predictive
control [20].

Algorithm 3 summarizes the optimal projected gradient optimization method.
We note the following differences compared to Algorithm 2:

• Knowledge of the convexity parameter µm is incorporated.
• In each iteration, a standard projected gradient step is performed on a

potentially infeasible weighted sum of two previous feasible iterates.

It is again possible to derive polynomial an upper bound on the algorithmic
complexity of the projected gradient method used in Algorithm 3, i.e. the
number of necessary iterations of this optimization method as a function of the
solution accuracy ǫ [19, Ch. 2]:

Theorem 2.12 Let f be a strongly convex, continuously differentiable function
with Lipschitz constant Cm and convexity parameter µm = Cm

κm
(where κm > 1),

and let Q be a convex feasible set. Then the projected gradient method described
in Algorithm 3 generates a sequence {yk

m} which converges as follows:

f(yk
m)− f(y∗

m) ≤ Cm min

{(

1−
√
µm

Cm

)k

,
4

(k + 2)2

}

||y0
m − y∗

m||2. (2.30)

From (2.28), the minimum number of necessary iterations to find yk
m satisfying
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Table 2.1: Algorithmic and arithmetic complexity of optimization methods 2
and 3
Algorithm Algorithmic complexity Arithmetic complexity per iteration

Method 2 κm log 4CmNU2

ǫ
51
9 N log2N − 61

18N

Method 3
√
κm log 4CmNU2

ǫ
51
9 N log2N − 7

18N

f(yk
m)− f(y∗

m) ≤ ǫ is

kmin
m =

√
κm − 1

4

(

log
1

ǫ
+ log

µm

2
+ 2 log ||y0

m − y∗
m||

)

(2.31)

From (2.30), the maximum number of necessary iterations to find yk
m satisfying

f(yk
m)− f(y∗

m) ≤ ǫ is

kmax
m =

√
κm

(

log
1

ǫ
+ logCm + 2 log ||y0

m − y∗
m||

)

(2.32)

Hence, the main term in the upper bound estimate (2.32),
√
κm log 1

ǫ
, is pro-

portional to the lower bound (2.31), proving this optimization method to be
an optimal first-order method for the class of strongly convex optimization
problems.

Table 2.1 summarizes the computational complexity results of optimization
methods 2 and 3. For both methods, the algorithmic complexity as well
as the arithmetic complexity per iteration (in terms of number of real addi-
tions and multiplications) is given. The algorithmic complexity results are
straightforwardly found from upper bounds (2.29) and (2.30) by incorporat-
ing ||y0

m − y∗
m|| = 2

√
NU as the (worst-case) maximum distance between

two points in the feasible set Q defined in (2.21)8, where it is assumed that
U = −L. In the arithmetic complexity computations, estimates were used
for the arithmetic complexity of a FFT with power-of-two length N , as de-
rived in [24]: namely, 17

9 N log2N − 89
27N + O(log2N) for a real-data FFT,

and 34
9 N log2N − 124

27 N + O(log2N) for a complex-data FFT. In conclusion,
optimization method 3 has a significantly better algorithmic complexity com-
pared to optimization method 2, and this for a negligibly higher arithmetic
complexity per iteration.

8The length of an N-agonal in an N-dimensional hypercube with side length 2U equals
2
√
NU .
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2.4 Simulation Results

2.4.1 Comparative Evaluation of Perceived Audio Qual-

ity

For audio quality evaluation purposes, a test database consisting of 24 audio
excerpts was compiled (16 bit mono, 44.1 kHz). The excerpts were selected so as
to cover different music styles, melodic and rythmic textures, instrumentations
and dynamics, as well as different speech types (see Table 2.2 for details). A
first set of excerpts (numbers 1-11) was extracted from different commercial
audio CDs. A second set of excerpts (numbers 12-16) was extracted from
an ITU CD-ROM associated to Recommendation BS.1387-1, which contains a
database (DB3) used for validating the conformance of implementations to this
recommendation [25]. A third set of excerpts (numbers 17-20) was extracted
from the HINT speech database [26]. A fourth set of excerpts (numbers 21-24)
was extracted from the VoxForge speech corpus [27].

Each audio signal in the test database was processed by three different clipping
algorithms:

• Hard symmetrical clipping, where the input-output characteristic is de-
fined as

y[n] =

{
x[n], |x[n]| ≤ U
sgn(x[n])U, |x[n]| > U

(2.33)

• Soft symmetrical clipping [3], where the input-output characteristic is
defined as a linearized hyperbolic tangent function which is linear for
inputs below a parametric amplitude level r,

y[n] =

{
x[n], |x[n]| ≤ r

sgn(x[n])
[

(U − r) tanh
(

|x[n]|−r

U−r

)

+ r
]

, |x[n]| > r
(2.34)

here used with parameter setting r = 0.8U .
• Perception-based clipping as described in this paper, with parameter val-

ues N = 512, P = 128, α = 0.04, and application of optimization method
3 with a solution accuracy of ǫ = 10−12 for all instances of (2.2).

This processing was performed for eight clipping factors {0.70, 0.80, 0.85, 0.90,
0.95, 0.97, 0.98, 0.99}9. For each of a resulting total of 24×8×3=576 processed
audio signals, two objective measures of perceived audio quality were calcu-
lated, which aim to predict the subjective audio quality score that would be
attributed to the processed audio signal by an average human listener. Taking

9Note that the clipping factor above which a normal-hearing listener does not perceive
hard clipping distortion has been subjectively evaluated to be higher than 0.99 for speech
[39], and 0.997 for music [40].



2.4. Simulation Results 67

T
a
b
le

2
.2
:
A
u
d
io

ex
ce
rp
ts

d
a
ta
b
a
se

u
se
d
fo
r
co
m
p
a
ra
ti
v
e
a
u
d
io

q
u
a
li
ty

ev
a
lu
a
ti
o
n
o
f
cl
ip
p
in
g
a
lg
o
ri
th
m
s

N
r.

N
a
m
e

T
ex
tu
re

C
o
m
p
o
si
ti
o
n

S
ty
le

D
u
ra
ti
o
n
[s
]

S
a
m
p
le

st
a
rt

S
a
m
p
le

e
n
d

O
ri
g
in

1
p
o
u
le
n
c.
w
av

p
o
ly
p
h
o
n
ic

in
st
ru
m
en
ta
l

cl
a
ss
ic
a
l

1
7
.8

4
0
0
0
0
0

1
1
8
3
0
0
0

[2
8]

2
rh
cp
.w
av

p
o
ly
p
h
o
n
ic

in
st
ru
m
en
ta
l

ro
ck

9
.8

4
6
8
9
9
6

9
0
0
0
0
0

[2
9]

3
p
ie
rl
e.
w
av

p
o
ly
p
h
o
n
ic

in
st
ru
m
en
ta
l+

v
o
ca
l

p
o
p

1
1
.7

2
2
3
4
0
0
0

2
7
5
0
0
0
0

[3
0]

4
m
a
sc
a
g
n
i.
w
av

p
o
ly
p
h
o
n
ic

in
st
ru
m
en
ta
l+

v
o
ca
l

cl
a
ss
ic
a
l

1
6
.1

1
7
1
1
0
0
0

[3
1]

5
ch
o
p
in
.w
av

m
o
n
o
p
h
o
n
ic

in
st
ru
m
en
ta
l

cl
a
ss
ic
a
l

1
7
.8

5
0
0
0
0

8
3
6
2
0
0

[3
2]

6
k
ra
ft
w
er
k
.w
av

p
o
ly
p
h
o
n
ic

in
st
ru
m
en
ta
l

el
ec
tr
o
n
ic

1
7
.2

7
4
8
0
0
0
0

8
2
4
0
0
0
0

[3
3]

7
b
a
lo
ji
.w
av

p
o
ly
p
h
o
n
ic

in
st
ru
m
en
ta
l+

v
o
ca
l

h
ip

h
o
p

1
4
.4

8
0
8
4
0
0
0

8
7
1
9
0
0
0

[3
4]

8
a
rc
a
d
e.
w
av

p
o
ly
p
h
o
n
ic

in
st
ru
m
en
ta
l+

v
o
ca
l

p
o
p

1
3
.6

1
6
0
0
0
0
0

[3
5]

9
st
ro
k
es
.w
av

p
o
ly
p
h
o
n
ic

in
st
ru
m
en
ta
l

ro
ck

1
3
.6

1
6
0
0
0
0
0

[3
6]

1
0

b
ee
th
ov
en
.w
av

m
o
n
o
p
h
o
n
ic

in
st
ru
m
en
ta
l

cl
a
ss
ic
a
l

1
5
.4

1
5
8
0
0
0
0

2
2
6
0
0
0
0

[3
7]

1
1

a
lb
en
iz
.w
av

m
o
n
o
p
h
o
n
ic

in
st
ru
m
en
ta
l

cl
a
ss
ic
a
l

1
1
.8

7
8
0
0
0
0
0

8
3
2
0
0
0
0

[3
8]

1
2

b
re
ft
ri
.w
av

m
o
n
o
p
h
o
n
ic

in
st
ru
m
en
ta
l

cl
a
ss
ic
a
l

1
9
.7

1
8
6
9
6
7
5

[2
5]

1
3

cr
ef
sa
x
.w
av

m
o
n
o
p
h
o
n
ic

in
st
ru
m
en
ta
l

cl
a
ss
ic
a
l

1
0
.9

1
4
7
9
0
2
6

[2
5]

1
4

fr
ef
tr
1
.w
av

m
o
n
o
p
h
o
n
ic

in
st
ru
m
en
ta
l

cl
a
ss
ic
a
l

1
3
.1

1
5
7
7
8
8
7

[2
5]

1
5

g
re
fc
la
.w
av

m
o
n
o
p
h
o
n
ic

in
st
ru
m
en
ta
l

cl
a
ss
ic
a
l

6
.9

1
3
0
2
5
3
4

[2
5]

1
6

m
re
fc
la
.w
av

m
o
n
o
p
h
o
n
ic

in
st
ru
m
en
ta
l

cl
a
ss
ic
a
l

7
.4

1
3
2
6
5
0
0

[2
5]

1
7
-2
0

h
in
t{
0
1
-0
4
}.
w
av

m
o
n
o
p
h
o
n
ic

sp
ee
ch

m
a
le

4
×

1
7
.0

1
7
4
9
7
0
0

[2
6]

2
1
-2
4

si
lv
ia
{0

1
-0
4
}.
w
av

m
o
n
o
p
h
o
n
ic

sp
ee
ch

fe
m
a
le

4
×

8
.0

1
3
5
2
8
0
0

[2
7]



68 Chapter 2. Hard Clipping Precompensation

(a) (b)

Figure 2.3: Block diagrams of the used objective measures of perceived audio
quality : (a) PEAQ Basic version (adapted from [25]) (b) Rnonlin

a reference signal (i.e. the clean signal) and a signal under test (i.e. the pro-
cessed signal) as an input, such an objective measure of perceived audio quality
is calculated through sequential application of a psychoacoustic model and a
cognitive model, and resultingly attributes a perceived audio quality score to
the signal under test with respect to the reference signal (see Figure 2.3).

A first objective measure of perceived audio quality was calculated using the
Basic Version of the PEAQ (Perceptual Evaluation of Audio Quality) recom-
mendation [25]. A block diagram representation of this method is shown in
Figure 2.3(a). The resulting Objective Difference Grade (ODG) predicts the
basic audio quality of the signal under test with respect to the reference signal,
and has a range between 0 and - 4, corresponding to the ITU-R five grade
impairment scale depicted in Figure 2.4.
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Figure 2.4: The ITU-R five-grade impairment scale

Table 2.4: P-values from one-tailed paired t-tests on audio quality scores. Sig-
nificant P-values with respect to αTT = 0.05 in bold.

H0 E[SH ] ≥ E[SPB ] E[SS ] ≥ E[SPB ]
PEAQ Rnonlin PEAQ Rnonlin

CF=0.70 0.0766 <0.0001 0.3566 <0.0001

CF=0.80 0.0042 <0.0001 0.1106 <0.0001

CF=0.85 0.0017 <0.0001 0.0398 <0.0001

CF=0.90 <0.0001 <0.0001 0.0026 <0.0001

CF=0.95 <0.0001 <0.0001 <0.0001 <0.0001

CF=0.97 <0.0001 <0.0001 <0.0001 <0.0001

CF=0.98 <0.0001 <0.0001 <0.0001 <0.0001

CF=0.99 <0.0001 <0.0001 0.0004 <0.0001

A second objective measure used here was specifically designed to predict the
perceived audio quality of nonlinearly distorted signals and is described in
[41]. A block diagram representation of this method is shown in Figure 2.3(b).
The resulting Rnonlin score is a perceptually relevant measure of distortion.
Rnonlin values have a range between 0 and 1 and are seen to decrease for
increasing perceptible distortion (i.e. with decreasing audio quality).

The results of these simulations are shown in Figure 2.5. In Figure 2.5(a), the
average PEAQ ODG score over all 24 audio signals is plotted as a function of
the clipping factor, and this for the three different clipping techniques. Analo-
gously, Figure 2.5(b) shows the results for the Rnonlin measure. The obtained
results for both audio quality measures are seen to be in accordance with each
other. Logically, we observe a monotonically increasing average audio quality
score for increasing clipping factors. Soft clipping is seen to result in slightly
higher average objective audio quality scores than hard clipping. Clearly, the
perception-based clipping technique is seen to result in significantly higher av-
erage objective audio quality scores than the other clipping techniques, and
this for all considered clipping factors. In Table 2.3, the full simulation results
per individual audio excerpt are provided for two selected clipping factors (0.99
and 0.90). For each audio excerpt, the highest score for each objective measure
is highlighted.
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Figure 2.5: Comparative evaluation of different clipping techniques in terms of
objective perceived audio quality: (a) mean PEAQ ODG and (b) mean Rnonlin
scores for signals processed by hard clipping, soft clipping and perception-based
clipping as a function of the clipping factor
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In order to infer statistically significant conclusions on the comparative audio
quality performance of the three clipping algorithms under study, a statisti-
cal analysis was performed on the obtained set of PEAQ ODG and Rnonlin
scores. Let us represent the audio quality scores resulting from hard clipping,
soft-clipping and perception-based clipping for a given clipping factor by ran-
dom variables SH , SS , and SPB , respectively. Under the assumption that
these random variables follow a normal probability distribution10, we tested
the two following statistical hypotheses based on the sample data. The first
null hypothesis H0 and its alternative H1 are formulated as follows,

H0 : E[SH ] ≥ E[SPB ] (2.35)

H1 : E[SPB ] > E[SH ] (2.36)

The second null hypothesis H0 and its alternative H1 are formulated as follows,

H0 : E[SS ] ≥ E[SPB] (2.37)

H1 : E[SPB] > E[SS ] (2.38)

These two statistical hypotheses were tested for all considered clipping factors,
and for both audio quality measures. All statistical hypotheses were tested
using one-tailed paired t-tests with significance level αTT = 0.05. The resulting
one-sided P-values are synthesized in Table 2.4. For PEAQ scores, the first
null hypothesis (2.35) can be rejected in favor of the alternative (2.36) for
clipping factors of 0.80 and higher. The second null hypothesis (2.37) can
be rejected in favor of the alternative (2.38) for clipping factors of 0.85 and
higher. For Rnonlin scores, both null hypotheses can be rejected in favor of the
alternative for all considered clipping factors. We can conclude that there is
strong statistical evidence that the perception-based clipping technique will in
general deliver signals with a higher perceptual audio quality compared to the
other considered clipping techniques, and this for moderate to high clipping
factors.

2.4.2 Experimental Evaluation of Algorithmic Complex-

ity

In order to assess experimentally the validity of the theoretical algorithmic
complexity bounds of the projected gradient optimization methods 2 and 3
described in subsections 2.3.3 and 2.3.4, a simulation was conducted as follows.
For optimization methods 2 and 3, the number of iterations needed to reach
solution accuracies ǫ = {10−4, 10−5,...,10−10} was determined for a subset of
the instances of optimization problem (2.2) occurring in our test database of
24 audio signals. This was performed for six clipping factors {0.85, 0.90, 0.95,
0.97, 0.98, 0.99}.

10The validity of this assumption was verified for our sample data using the Jarque-Bera
normality test [42] at significance level αJB = 0.05.
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Figure 2.6: Boxplot of number of iterations vs solution accuracy for optimiza-
tion methods 2 and 3

In Figure 2.6, the simulation results per optimization method are summarized
in the form of a boxplot for each solution accuracy, depicting graphically the
minimum, lower quartile, median, upper quartile and maximum values of the
number of iterations. The dotted lines connect the median number of iterations
of both optimization methods for different solution accuracies. We observe that
the median (the same holds for the maximum) number of iterations follows a
different curve depending on the optimization method: optimization method
3 is seen to have a significantly better algorithmic complexity compared to
optimization method 2, as was derived theoretically in subsections 2.3.3 and
2.3.4.

2.4.3 Applicability in Real-Time Context: Effect of Solu-

tion Accuracy ǫ on Perceived Audio Quality

In a real-time processing context, the number of clock cycles that can be spent
on solving an instance of optimization problem (2.2) is strictly limited. In
view of this, several computationally efficient convex optimization methods
tailored to the optimization problem were presented in Section 2.3. It was
shown that the iterative projected gradient optimization methods 2 and 3 have
the advantage that approximate solutions can be computed, which makes it
possible to adhere to the imposed real-time deadlines. The question remains as
to how approximately solving the optimization problems affects the perceived
audio quality of the resulting output signal. In order to assess this effect,
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PEAQ ODG and Rnonlin scores were calculated for a subset of the signals in
our test database, each of which was processed by perception-based clipping
for optimization problem solution accuracies ǫ = {10−2, 10−3,...,10−12}. This
was performed for six clipping factors {0.85, 0.90, 0.95, 0.97, 0.98, 0.99}.

In Figures 2.7(a) and 2.7(b), the resulting mean PEAQ ODG and Rnonlin
scores over all audio signals are plotted as a function of the solution accuracy,
and this for all considered clipping factors. We observe that, according to
both measures, the mean audio quality is affected negatively for low solution
accuracies, increases nearly monotonically with increasing solution accuracies,
and saturates at a solution accuracy that depends on the clipping factor. Ir-
respective of the clipping factor, we observe that no further improvement in
mean audio quality scores is obtained for higher solution accuracies than 10−6.
Hence, ǫ = 10−6 can be put forward as an experimentally established sufficient
solution accuracy for all considered clipping factors, such that no sacrifice in
terms of audio quality is made.

For parameter values N = 512, P = 128 and sampling rate of 44.1 kHz,
the real-time computation time limit for solving one instance of optimization
problem (2.2) is equal to 8.7 ms. In our simulation setting11, this corresponds
to an iteration limit of roughly 200 iterations for optimization methods 2 or
3 (neglecting here the small difference in arithmetic complexity per iteration
between both methods as shown in Table 2.1). Looking back at Figure 2.6, we
see that even for the worst-case instances in our test database, optimization
method 3 meets the real-time iteration limit for solution accuracies up to 10−10,
which largely surpasses the required solution accuracy of 10−6.

2.5 Conclusions

In this paper, we have presented a novel algorithm for real-time perception-
based clipping of audio signals. By including a psychoacoustic model and
embedding convex optimization into the algorithm, it is possible to explic-
itly minimize the perceptible distortion introduced by clipping. From com-
parative audio quality evaluation experiments, it has been concluded that the
perception-based clipping algorithm results in significantly higher objective au-
dio quality scores than standard clipping techniques, and this for moderate to
high clipping factors. Furthermore, three optimization methods aimed at effi-
ciently solving the convex optimization problems were derived. The reliable use
of optimization method 3 in real-time applications was seen to be supported by
theoretically derived complexity bounds as well as by simulation experiments.

In a broader view, the results presented in this paper suggest that embedded

11All simulations were performed on a GenuineIntel CPU @2826 Mhz
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convex optimization is a very promising paradigm in real-time audio processing
applications, with numerous potential applications, of which we point out e.g.
speech enhancement and acoustic echo cancellation.
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Abstract

This paper presents an embedded-optimization-based loudspeaker precompen-
sation algorithm using a Hammerstein loudspeaker model, i.e. a cascade of a
memoryless nonlinearity and a linear finite impulse response filter. The loud-
speaker precompensation consists in a per-frame signal optimization. In order
to minimize the perceptible distortion incurred in the loudspeaker, a psychoa-
coustically motivated optimization criterion is proposed. The resulting per-
frame signal optimization problems are solved efficiently using first-order opti-
mization methods. Depending on the invertibility and the smoothness of the
memoryless nonlinearity, different first-order optimization methods are pro-
posed and their convergence properties are analyzed. Objective evaluation
experiments using synthetic and identified loudspeaker models show that the
proposed loudspeaker precompensation algorithm provides a significant audio
quality improvement, especially so at high playback levels.

3.1 Introduction

Achieving a high perceived audio quality is a main concern in the development
of any audio reproduction system. In general, loudspeakers have a non-ideal
response introducing both linear and nonlinear distortion in the reproduced
audio signal. Linear distortion involves changes in the relative amplitudes
and phases of the frequency components constituting the original audio signal.
Nonlinear distortion involves the introduction of frequency components that are
not present in the original audio signal, and is a notably prominent problem
in small and low-cost loudspeakers, which are ubiquitous in mobile devices,
especially so at high playback levels [1].

The presence of linear and nonlinear distortion has been found to result in
a significant degradation of the perceived audio quality, both when present
separately [2] and simultaneously [3]. Linear distortion is typically perceived
as affecting timbre or tone quality, whereas nonlinear distortion is typically
perceived as adding harshness or noisiness, or as the perception of sounds that
are not present in the original signal, such as crackles or clicks.

Loudspeaker precompensation techniques aim at reducing the effects caused
by the non-ideal loudspeaker characteristics. The idea is to apply a digital
precompensation operation in cascade with the audio reproduction channel to
counteract the loudspeaker response errors and nonlinearities. Traditionally,
loudspeakers have been modeled by linear systems such as FIR filters, IIR fil-
ters, warped filters or Kautz filters. The aim of linear loudspeaker precompen-
sation (also known as equalization) techniques is then to identify/approximate
and apply an inverse digital filtering to the audio signal prior to playback
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[4]. Nonlinear behaviour can be taken into account by using nonlinear loud-
speaker models such as Hammerstein models, Wiener-Hammerstein models and
Volterra models. The aim of nonlinear loudspeaker precompensation techniques
is then to invert the nonlinear system under consideration [5].

This paper presents an embedded-optimization-based precompensation algo-
rithm for linear as well as nonlinear distortions incurred in loudspeakers, using
a Hammerstein loudspeaker model. The loudspeaker precompensation consists
in a per-frame signal optimization. In order to minimize the perceptible distor-
tion incurred in the loudspeaker, a psychoacoustic model is incorporated which
captures knowledge about the human perception of sound.

This paper builds on the embedded-optimization-based loudspeaker precom-
pensation algorithms recently proposed in [6]-[7], of which the main ideas will
be reviewed in this paper, thereby introducing three major novel contributions:

1. The psychoacoustic principles and psychoacoustic model applied for per-
ceptible distortion minimization are elaborated in detail.

2. Different gradient optimization methods are proposed for efficiently solv-
ing the per-frame signal optimization problems and their convergence
properties are analyzed. Each optimization method is tailored to a given
class of memoryless nonlinearities.

3. Extensive audio quality evaluation experiments are performed and re-
ported, both using synthetic Hammerstein loudspeaker models (compris-
ing different classes of memoryless nonlinearities), and using identified
Hammerstein loudspeaker models.

This paper is organized as follows. In Section 3.2, the Hammerstein loudspeaker
model is introduced and an embedded-optimization-based precompensation al-
gorithm is proposed. In Section 3.3, three optimization methods for efficiently
solving the per-frame signal optimization problems are proposed, where each
optimization method is designed for a given class of memoryless nonlineari-
ties. In Section 3.4, the proposed loudspeaker precompensation algorithm is
evaluated using synthetic and identified Hammerstein loudspeaker models. In
Section 3.5, some concluding remarks are presented.

3.2 Embedded-Optimization-Based Precompen-

sation

3.2.1 Hammerstein Model Description

The loudspeaker is modeled by a Hammerstein model, i.e. a cascade of a
memoryless nonlinearity and a linear finite impulse response (FIR) filter. The
FIR filter has an impulse response h[n], n = 0...L. The memoryless nonlinearity
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g(x) is represented as a linear combination of P basis functions,

g(x) =
P∑

p=1

cpψp(x) = ψ
T (x)c (3.1)

where the basis functions are stacked in a vector ψ(x) = [ψ1(x), ..., ψP (x)]
T

and the corresponding coefficients are stacked in a vector c = [c1, ..., cP ]
T .

A per-frame processing of the digital input audio signal x[n] will be applied,
employing input frames xm = [xm,1, ..., xm,N ]T ∈ R

N ,m = 0, 1...M , with N ≥
L, and xm,i = x[mN + i]. The output g(xm) of the memoryless nonlinearity
for a given input frame xm is straightforwardly constructed using the relation
(3.1),

g(xm) = [g(xm,1), ..., g(xm,N )]T

= Ψ(xm)c (3.2)

where the basis function vectors for the different samples are assembled in a
matrix Ψ(xm) = [ψ(xm,1), ...,ψ(xm,N )]T .

The output frame ym of the Hammerstein model can then be written as

ym = Hmg(xm) + H̃mg(xm−1) (3.3)

where the matrices Hm ∈ RN×N and H̃m ∈ RN×N implement a convolution
operation with the FIR filter h[n] as follows,

Hm =
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Figure 3.1: Embedded-optimization-based precompensation: schematic
overview.

3.2.2 Embedded-Optimization-Based Precompensation

Figure 3.1 shows the operation of the proposed embedded-optimization-based
loudspeaker precompensation technique. Before it is fed into the loudspeaker,
the input frame xm passes through the loudspeaker precompensation block.
For a given input frame xm, the loudspeaker precompensation consists of the
following steps:

1. Calculate the global masking threshold tm ∈ R
N
2 +1 of the input frame

xm using a psychoacoustic model (see Subsection 3.2.3).
2. Calculate a precompensated input frame v∗

m ∈ RN as the solution of an
optimization problem, such that the corresponding output frame y∗

m is
perceptually as close as possible to xm.

The precompensated input frame v∗
m is calculated from the knowledge of the

input frame xm and its masking threshold tm. The objective function reflects
the amount of perceptible distortion added between ym and xm,

v∗
m = argmin

vm∈RN

1

2N

N−1∑

i=0

wm,i|Ym(ejωi)−Xm(ejωi)|2 (3.6)

where ωi = (2πi)/N represents the discrete frequency variable, Xm(ejωi) and
Ym(ejωi) are the discrete frequency components of xm and ym respectively, and
wm,i are the strictly positive weights of a perceptual weighting function wm =
[wm,0, ..., wm,N−1]

T ∈ RN . The perceptual weighting function depends on the
masking threshold tm and is obeing the symmetry property wm,i = wm,N−i for
i = 1, 2, ..., N2 − 1 (see subsection 3.2.3).

Optimization problem (3.6) can then be rewritten as

v∗
m = argmin

vm∈RN

1

2
(ym − xm)T DHWmD

︸ ︷︷ ︸

,Qm

(ym − xm) (3.7)
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Figure 3.2: Different steps in the computation of the global masking threshold
using the ISO/IEC 11172-3 MPEG-1 Layer 1 psychoacoustic model 1 : (a)-(b)
Time domain and normalized frequency domain representations of the input
audio signal (c)-(d) Tonal maskers (circles), non-tonal maskers (squares) and
input frequency spectrum (dotted line) (e)-(f) Individual masking thresholds
related to tonal and non-tonal maskers respectively (g) Global masking thresh-
old (solid line) and input frequency spectrum (dotted line). Figure adapted
from [8].
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where D ∈ C
N×N is the unitary Discrete Fourier Transform (DFT) matrix

D =
1√
N










1 1 1 . . . 1
1 e−jω1 e−jω2 . . . e−jωN−1

1 e−jω2 e−jω4 . . . e−jω2(N−1)

...
...

...
...

...
1 e−jωN−1 e−jω2(N−1) . . . e−jω(N−1)(N−1)










(3.8)

and Wm ∈ RN×N is a diagonal weighting matrix with diagonal elements wm,i.
By inserting the Hammerstein model input-output relation (3.3), the optimiza-
tion problem (3.7) can be rewritten as follows,

v
∗

m = argmin
vm∈RN

f0(vm)

= argmin
vm∈RN

1

2
(Hmg(vm) + H̃mg(v∗

m−1)− xm)T Qm

(Hmg(vm) + H̃mg(v∗

m−1)− xm)

= argmin
vm∈RN

1

2
g(vm)T H

T
mQmHm

︸ ︷︷ ︸

,Am

g(vm)

+ (HT
mQm(H̃mg(v∗

m−1)− xm)
︸ ︷︷ ︸

,bm

)T g(vm). (3.9)

In general, the objective function f0(vm) of this optimization problem is not
convex in the optimization variable vm. In Section 3.3, three distinct optimiza-
tion methods for efficiently solving optimization problem (3.9) are proposed,
each of these being specifically designed for a given class of memoryless non-
linearities g in the Hammerstein loudspeaker model.

3.2.3 Perceptual Weighting Function

The rationale behind applying perceptual weights in the summation (3.6) is the
fact that distortion at different frequencies is differently perceived, and that the
relative perceptibility is partly signal-dependent. Two phenomena of human
auditory perception are responsible for this:

• A first phenomenon is the absolute threshold of hearing, which is defined
as the required intensity (dB) of a pure tone such that an average listener
will just hear the tone in a noiseless environment. The absolute threshold
of hearing is a function of the tone frequency and has been measured
experimentally [9].

• A second phenomenon is simultaneous masking, where the presence of
strong spectral energy (the masker) masks the simultaneous presence
of weaker spectral energy (the maskee), or in other words, renders it
imperceptible.
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Combining both phenomena, the instantaneous global masking threshold tm
of the input audio signal xm gives the amount of signal energy (dB) at each
frequency that can be masked by the signal. As such, the masking threshold
tm gives an indication of the relative perceptibility of signal components at
different frequencies.

Consider the input frame xm to act as the masker, and ym−xm as the maskee.
By selecting the weights wm,i to be exponentially decreasing with the value of
the global masking threshold tm of the signal xm at frequency i, i.e.

wm,i =

{
10−αtm,i if 0 ≤ i ≤ N

2

10−αtm,N−i if N
2 < i ≤ N − 1

(3.10)

the objective function reflects the amount of perceptible distortion introduced.
Appropriate values of the compression parameter α have been determined to
lie in the range [0.01, 0.04].

The instantaneous global masking threshold tm of a given audio signal is cal-
culated using part of the ISO/IEC 11172-3 MPEG-1 Layer 1 psychoacoustic
model 1. A complete description of the operation of this psychoacoustic model
is beyond the scope of this paper (we refer the reader to [10] and [11]). We
outline the relevant steps [8] in the computation of tm and illustrate the result
of each step on an example audio signal (see Figure 3.2):

1. Spectral analysis and SPL normalization: In this step a high-resolution
spectral estimate of the audio signal is calculated, with spectral compo-
nents expressed in terms of sound pressure level (SPL). After a normal-
ization operation and a Hann windowing operation on the input signal
frame, the PSD estimate is obtained through a 512-point DFT. Fig-
ure 3.2(a) shows the time-domain input signal, Figure 3.2(b) shows the
resulting spectral estimate.

2. Identification of tonal and non-tonal maskers : It is known from psy-
choacoustic research that the tonality of a masking component has an
influence on its masking properties [12]. For this reason it is important
to discriminate between tonal maskers (defined as local maxima of the
signal spectrum) and non-tonal maskers. The output of the DFT is used
to determine the relevant tonal and non-tonal maskers in the spectrum
of the audio signal. In a first phase, tonal maskers are identified at
local maxima of the PSD: energy from three adjacent spectral compo-
nents centered at the local maximum is combined to form a single tonal
masker. In a second phase, a single non-tonal masker per critical band
is formed by addition of all the energy from the spectral components
within the critical band that have not contributed to a tonal masker.

3. Decimation of maskers : In this step, the number of maskers is reduced
using two criteria. First, any tonal or non-tonal masker below the ab-
solute threshold of hearing is discarded. Next, any pair of maskers oc-
curring within a distance of 0.5 Bark is replaced by the stronger of the
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two. Figures 3.2(c) and 3.2(d) depict the identified tonal and non-tonal
maskers respectively, after decimation.

4. Calculation of individual masking thresholds : an individual masking
threshold is calculated for each masker in the decimated set of tonal
and non-tonal maskers, using fixed psychoacoustic rules. Essentially,
the individual masking threshold depends on the frequency, loudness
level and tonality of the masker. Figure 3.2(e) and 3.2(f) show the indi-
vidual masking thresholds associated with tonal and non-tonal maskers,
respectively.

5. Calculation of global masking threshold : Finally, the global masking
threshold is calculated by a power-additive combination of the tonal and
non-tonal individual masking thresholds, and the absolute threshold of
hearing. This is illustrated in Figure 3.2(g).

3.3 Optimization Methods

The efficient solution of the per-frame optimization problem (3.9) is crucial for
the proposed loudspeaker precompensation algorithm to be applicable in real-
time environments. In this section, three optimization methods for efficiently
solving the considered optimization problem are proposed, each optimization
method being specifically designed for a given class of memoryless nonlinearities
g in the Hammerstein loudspeaker model.

3.3.1 Classes of Memoryless Nonlinearities

In order to define the considered classes of memoryless nonlinearities, the no-
tions of invertibility and smoothness for memoryless nonlinearities are first
introduced.

Definition 3.1 [Invertible memoryless nonlinearity] A memoryless nonlinearity
y = g(x) is invertible on the domain D ⊆ R if there exists a unique function
x = g−1(y) for which

g−1(g(x)) = x, ∀ x ∈ D. (3.11)

The function g−1(y) is called the inverse memoryless nonlinearity of g(x) on
the domain D. The output g−1(ym) of the inverse memoryless nonlinearity for
a given frame ym is constructed as

g−1(ym) = [g−1(ym,1), ..., g
−1(ym,N )]T . (3.12)

2
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Definition 3.2 [Smooth memoryless nonlinearity] A memoryless nonlinearity
y = g(x) is smooth on the domain D ⊆ R if its derivatives of all orders exist
and are continuous on D. 2

Based on the above definitions, the following three classes of memoryless non-
linearities1 can be determined:

• Class I is formed by the invertible memoryless nonlinearities, such as the
one depicted in Figure 3.3(a).

• Class II is formed by the non-invertible smooth memoryless nonlineari-
ties, such as the one depicted in Figure 3.3(b).

• Class III is formed by the non-invertible non-smooth hard clipping mem-
oryless nonlinearities, such as the one depicted in Figure 3.3(c). This
class of memoryless nonlinearities has a characteristic of the form

g(x) =

{
x, |x| ≤ U
sgn(x)U, |x| > U

(3.13)

with U defined as the clipping level.

For each of these classes of memoryless nonlinearities, a specific optimization
method is proposed for solving the optimization problem (3.9) in a fast and
reliable way.

3.3.2 Class I: Invertible Memoryless Nonlinearities

In case the memoryless nonlinearity g in the Hammerstein model is invertible,
the precompensation of the linear FIR filter h and the precompensation of
the memoryless nonlinearity g can be decoupled. In a first step, the linear FIR
filter can be precompensated for, resulting in the nonlinearly transformed frame
g(v∗

m). In a second step, the memoryless nonlinearity g can be precompensated
for by applying the inverse memoryless nonlinearity g−1 to g(v∗

m) in order to
compute the precompensated input frame v∗

m, i.e.

v∗
m = g−1(g(v∗

m)). (3.14)

In order to carry out the first precompensation step, the objective function in
(3.9) can be seen to be a strictly convex quadratic function of the nonlinearly
transformed variable g(vm), i.e.

g(v∗
m) = argmin

g(vm)∈RN

f1(g(vm))

1In the remainder of this paper, all considered memoryless nonlinearities are assumed to
operate on the domain D = [−1, 1].
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Figure 3.3: Examples for different classes of memoryless nonlinearities on
the domain D = [−1, 1]: (a) Invertible memoryless nonlinearity g(x) =
1.3x−0.2x3−0.1x5 (b) Non-invertible smooth memoryless nonlinearity g(x) =
1.6x− 0.4x3 − 0.25x5 (c) Non-invertible non-smooth hard clipping memoryless
nonlinearity g(x) = max(min(x, 0.8),−0.8).
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= argmin
g(vm)∈RN

1

2
g(vm)T Am g(vm) + bT

m g(vm) (3.15)

with Am ≻ 0. Indeed, as it was shown that Qm ≻ 0 in [8], it follows that
Am = HT

mQmHm ≻ 0, since congruence transformations have the property of
preserving positive definiteness.

The necessary and sufficient condition for g(v∗
m) to be the unique global min-

imizer of this strictly convex optimization problem, is

∇f1(g(v∗
m)) = 0 (3.16)

from which the following closed form solution g(v∗
m) can be derived,

g(v∗
m) = −A−1

m bm

= −(HT
mQmHm)−1(HT

mQm(H̃mg(v∗
m−1)− xm))

= −H−1
m (H̃mg(v∗

m−1)− xm) (3.17)

where the symmetry of Qm is used and the invertibility of Hm is assumed to
establish the last equality. It can be easily shown that f1(g(v

∗
m)) = 0, implying

that a perfect precompensation y∗
m = xm is achieved. Note that the perceptual

weighting Wm of the frequency domain error terms (which are all zero in the
solution) is unable to affect this solution, explaining the absence of Qm in
(3.17).

3.3.3 Class II: Non-Invertible Smooth Memoryless Non-

linearities

In case the memoryless nonlinearity g in the Hammerstein model is non-
invertible, the precompensation of the linear FIR filter h and the precompen-
sation of the memoryless nonlinearity g should be performed simultaneously
by solving optimization problem (3.9). From the smoothness property of g and
its constituting basis functions ψ, it follows that for any xm ∈ DN the gradient
∇g(xm) ∈ RN can be computed as

∇g(xm) = [∇g(xm,1), ...,∇g(xm,N )]T

= ∇Ψ(xm)c (3.18)

where the matrix ∇Ψ(xm) ∈ RN×P is defined as

∇Ψ(xm) =






∇ψ1(xm,1) . . . ∇ψP (xm,1)
...

. . .
...

∇ψ1(xm,N ) . . . ∇ψP (xm,N )




 . (3.19)

The proposed optimization method for solving the non-convex optimization
problem (3.9) is an iterative gradient method. Introducing the notation vk

m for
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the kth iterate of the mth frame, the (k+1)th iteration of the iterative gradient
method consists in taking a step along the negative gradient direction,

vk+1
m = vk

m − skm∇f0(vk
m) (3.20)

where skm is the stepsize and the gradient ∇f0(vk
m) is computed as

∇f0(vk
m) = diag(∇g(vk

m))

[

HT
mQm

(

Hmg(vk
m)

+H̃mg(v∗
m−1)− xm

)]

(3.21)

and where ∇g(vk
m) is established using (3.18)-(3.19).

The stepsize skm is determined using a backtracking line search for satisfying
the Armijo sufficient decrease condition [13],

f0(v
k
m − skm∇f0(vk

m)) ≤ f0(v
k
m)− βskm‖∇f0(vk

m)‖22 (3.22)

with β ∈ (0, 12 ) the relaxation of the gradient. Starting from skm = 1, successive
reductions of skm by a factor η ∈ (0, 1) are performed until the condition (3.22)
holds. The resulting algorithm is given in Algorithm 4.

3.3.4 Class III: Non-Invertible Hard Clipping Memory-

less Nonlinearities

In case the memoryless nonlinearity g in the Hammerstein model is a non-
invertible hard clipping memoryless nonlinearity with clipping level U as de-
fined in (3.13), optimization problem (3.9) can be rewritten as follows,

v∗
m = argmin

vm∈RN

f1(vm) s.t. −u ≤ vm ≤ u

= argmin
vm∈RN

1

2
vT
m Am vm + bT

m vm

s.t. −u ≤ vm ≤ u (3.23)

where u = U1N contains the per-sample clipping levels and 1N ∈ RN is an all
ones vector. Note that by constraining vm to be within the linear range [−U,U ]
of the memoryless nonlinearity g, it is possible to introduce the equivalence
g(vm) = vm in the objective function. The strictly convex quadratic objective
function (Am ≻ 0) and the affine constraints make optimization problem (3.23)
a strictly convex quadratic program.

The proposed optimization method for solving the strictly convex optimization
problem (3.23) is an iterative projected gradient method. In each iteration of
a projected gradient method, first a step is taken along the negative gradi-
ent direction of the objective function, after which the result is orthogonally
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Algorithm 4 Precompensation of a Hammerstein loudspeaker model with
class II memoryless nonlinearity using the gradient optimization method

Input xm ∈ R
N , v∗

m−1 ∈ R
N , h ∈ R

L+1, c ∈ R
P , ψ(x) ∈ C(R → R

P ),
D ∈ CN×N , α ∈ R+, β ∈ (0, 12 ), η ∈ (0, 1), K ∈ N+

Output v∗
m ∈ RN

1: Compute masking threshold tm for xm [using [11]]
2: Compute weights wm [using (3.10)]
3: Construct Qm = DHdiag(wm)D
4: Construct Hm and H̃m from h [using (3.4)-(3.5)]
5: Initialize v0

m = xm

6: Initialize k = 0
7: while k < K do
8: Compute ∇f0(vk

m) [using (3.18)-(3.19) and (3.21)]
9: Initialize skm = 1

10: while f0(v
k
m − skm∇f0(v

k
m)) > f0(v

k
m)− βskm‖∇f0(v

k
m)‖22 do

11: skm = ηskm
12: end while

13: vk+1
m = vk

m − skm∇f0(v
k
m)

14: k = k + 1

15: end while
16: v∗

m = vk
m

projected onto the convex feasible set, thereby maintaining feasibility of the
iterates. A low computational complexity per iteration is the main asset of
projected gradient methods, provided that the orthogonal projection onto the
convex feasible set and the gradient of the objective function can easily be
computed. The main steps in the (k+1)th iteration of the standard projected
gradient method can be written as follows:

• Take a step of stepsize skm along the negative gradient direction :

ṽk+1
m = vk

m − skm∇f1(vk
m) (3.24)

where the gradient ∇f1(vk
m) is computed as

∇f1(vk
m) = HT

mQm(Hmvk
m + H̃mv∗

m−1 − xm). (3.25)

• Project ṽk+1
m orthogonally onto the convex feasible set Ω = {vm ∈ RN | −u ≤

vm ≤ u} of optimization problem (3.23),

vk+1
m = ΠΩ(ṽ

k+1
m ) = argmin

vp∈Ω

1

2
‖vp − ṽk+1

m ‖22 (3.26)

An orthogonal projection ΠΩ(ṽ
k+1
m ) onto Ω can be shown to correspond to

performing a componentwise hard clipping operation with clipping level U ,
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Algorithm 5 Precompensation of a Hammerstein loudspeaker model with class
III memoryless nonlinearity using the optimal projected gradient optimization
method

Input xm ∈ RN , v∗
m−1 ∈ RN , h ∈ RL+1, D ∈ CN×N , U ∈ (0, 1], α ∈ R+,

γ0m ∈ (0, 1), K ∈ N+

Output v∗
m ∈ RN

1: Compute masking threshold tm for xm [using [11]]
2: Compute weights wm [using (3.10)]
3: Construct convex feasible set Ω = {vm ∈ RN | −u ≤ vm ≤ u}
4: Construct Qm = DHdiag(wm)D
5: Construct Hm and H̃m from h [using (3.4)-(3.5)]
6: Establish Lipschitz constant Cm [using (3.35)]
7: Establish convexity parameter µm [using (3.36)]
8: Compute κm = Cm

µm

9: Initialize v0
m = c0m = xm

10: Initialize k = 0
11: while k < K do
12: ṽk+1

m = ckm − 1
Cm

∇f1(ckm) [using (3.25)]

13: vk+1
m = ΠΩ(ṽ

k+1
m ) [using (3.27)]

14: Calculate γk+1
m from (γk+1

m )2 = (1− γk+1
m )(γkm)2 + κmγ

k+1
m

15: δkm =
γk
m(1−γk

m)

(γk
m)2+γ

k+1
m

16: ck+1
m = vk+1

m + δkm(vk+1
m − vk

m)
17: k = k + 1
18: end while
19: v∗

m = vk
m

i.e. ΠΩ(ṽ
k+1
m ) = g(ṽk+1

m ) = [g(ṽk+1
m,1 ), ..., g(ṽ

k+1
m,N )]T , with

g(ṽk+1
m,i ) =

{
ṽk+1
m,i , |ṽk+1

m,i | ≤ U

sgn(ṽk+1
m,i )U, |ṽk+1

m,i | > U.
(3.27)

Variants of the standard projected gradient method have been proposed which
have better convergence properties. Here, a projected gradient optimization
method is adopted that reaches an optimal convergence for the class of convex
optimization problems with strongly convex objective functions. This method
was first proposed in [14] and has been applied in diverse applications, e.g. real-
time clipping of audio signals [15]. Let us assume knowledge of the Lipschitz
constant Cm of the gradient ∇f1 and the convexity parameter µm of f1 on the
set Ω. Then, in each iteration k of the optimal projected gradient method, a
standard projected gradient step is performed on a weighted sum ckm of two
previous feasible iterates vk

m and vk−1
m ,

vk+1
m = ΠΩ

(

ckm − 1

Cm

∇f1(ckm)

)

(3.28)
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where

ckm = vk
m + δkm(vk

m − vk−1
m ) (3.29)

where δkm is computed as

δkm =
γk−1
m (1 − γk−1

m )

(γk−1
m )2 + γkm

(3.30)

and where γkm is computed as the solution of

(γkm)2 = (1 − γkm)(γk−1
m )2 + κmγ

k
m (3.31)

and κm = Cm

µm
is the condition number.

In order to establish Cm and µm for optimization problem (3.23), the next two
lemmas are proposed.

Lemma 3 ([14]) Let function f1 be twice continuously differentiable on set Ω.
The gradient ∇f1 is Lipschitz continuous on set Ω with Lipschitz constant C
if and only if

∇2f1(z) � CI , ∀z ∈ Ω (3.32)

Lemma 4 ([14]) Let function f1 be twice continuously differentiable on set Ω.
The function f1 is strongly convex on set Ω with convexity parameter µ if and
only if there exists µ > 0 such that

∇2f1(z) � µI , ∀z ∈ Ω (3.33)

Let us denote and order the eigenvalues of Am as follows,

λ1(Am) ≤ λ2(Am) ≤ · · · ≤ λN−1(Am) ≤ λN (Am). (3.34)

Using Lemma 3.1 and Lemma 3.2, it is then shown that the Lipschitz constant
Cm can be computed as the largest eigenvalue of Am,

Cm = λN (Am) = λN (HT
mQmHm) (3.35)

and that the convexity parameter µm can be computed as the smallest eigen-
value of Am,

µm = λ1(Am) = λ1(H
T
mQmHm). (3.36)

The resulting algorithm is given as Algorithm 5.
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3.3.5 Algorithmic Complexity Bounds

It is possible to derive polynomial upper and lower bounds on the algorithmic
complexity, i.e. the number of necessary iterations of the optimization method
proposed in subsection 3.3.4 as a function of the solution accuracy. For the
class of convex optimization problems with strongly convex objective functions,
bounds on the algorithmic complexity of the projected gradient method used
in Algorithm 5 are derived as follows:

Theorem 3.3 ([14]) Let f1 be a strongly convex, continuously differentiable
function with Lipschitz constant Cm and convexity parameter µm = Cm

κm
(where

the condition number κm > 1), and let Ω be a convex feasible set. Then the
minimum and maximum number of necessary iterations of the optimal pro-
jected gradient method described in Algorithm 5 to find a solution vk

m satisfying
f1(v

k
m)− f1(v

∗
m) ≤ ǫ are given by

kmin
m =

√
κm − 1

4
log

(
µm||v0

m − v∗
m||2

2ǫ

)

(3.37)

kmax
m =

√
κm log

(
Cm||v0

m − v∗
m||2

ǫ

)

. (3.38)

It has been shown that congruence transformations like Qm → HT
mQmHm do

preserve the signs but not the magnitudes of the matrix eigenvalues. Interest-
ingly, bounds on the change in magnitude of the eigenvalues under a congruence
transformation have been established,

Theorem 3.4 ([16]) Let Qm ∈ RN×N be symmetric and Hm ∈ RN×N nonsin-
gular. Let the eigenvalues of Qm and HT

mQmHm be arranged in nondecreasing
order (3.34). Let σ1(Hm) ≥ · · · ≥ σN (Hm) > 0 be the singular values of Hm.
Then each eigenvalue λi(H

T
mQmHm), i = 1, ..., N , is bounded as follows,

σ2
N (Hm)λi(Qm) ≤ λi(H

T
mQmHm) ≤ σ2

1(Hm)λi(Qm). (3.39)

Corollary 3.5 The condition number κ(HT
mQmHm) =

λN (HT
mQmHm)

λ1(HT
mQmHm)

is bounded

as follows,

κ(HT
mQmHm) ≥ max

(
1, κ−1(HT

mHm)κ(Qm)
)

(3.40)

κ(HT
mQmHm) ≤ κ(HT

mHm)κ(Qm). (3.41)

The previous theorem and its corollary now allow to rewrite the lower and
upper iteration bounds (3.37)-(3.38) as a function of the extreme eigenvalues
and singular values of Hm and Qm.
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Theorem 3.6 The minimum and maximum number of necessary iterations
of the optimal projected gradient method described in Algorithm 5 to find vk

m

satisfying f1(v
k
m)− f1(v

∗
m) ≤ ǫ are given by

kmin
m =

√

max (1, κ−1(HT
mHm)κ(Qm))− 1

4

log

(
λ1(H

T
mHm)λ1(Qm) ||v0

m − v∗
m||2

2ǫ

)

(3.42)

kmax
m =

√

κ(HT
mHm)κ(Qm)

log

(
λN (HT

mHm)λN (Qm) ||v0
m − v∗

m||2
ǫ

)

. (3.43)

Proof : In the lower iteration bound (3.37) established in Theorem 3.3, incor-
porate the lower bound (3.39) on µm = λ1(H

T
mQmHm) established in Theorem

3.4, and the lower bound (3.40) on κm = κ(HT
mQmHm) established in Corol-

lary 3.5. This yields the lower iteration bound (3.42). Analogously, in the
upper iteration bound (3.38) established in Theorem 3.3, incorporate the up-
per bound (3.39) on Cm = λN (HT

mQmHm) established in Theorem 3.4, and
the upper bound (3.41) on κm = κ(HT

mQmHm) established in Corollary 3.5.
This yields the upper iteration bound (3.43). 2

3.4 Audio Quality Evaluation

The proposed loudspeaker precompensation algorithm is evaluated in terms
of the resulting audio quality. Subsection 3.4.1 reports audio quality evalua-
tion experiments using synthetic Hammerstein loudspeaker models, comprising
different classes of memoryless nonlinearities. Subsection 3.4.2 reports audio
quality evaluation experiments using Hammerstein loudspeaker models iden-
tified on real loudspeakers. The identification procedure of the Hammerstein
loudspeaker models is discussed in Subsection 3.4.3.

3.4.1 Audio Quality Evaluation Using Synthetic Ham-

merstein Loudspeaker Models

Evaluation experiments were performed using two synthetic Hammerstein loud-
speaker models. The first Hammerstein model consists of a non-invertible
smooth memoryless nonlinearity (class II), followed by a linear FIR filter. The
second Hammerstein model consists of a non-invertible hard clipping mem-
oryless nonlinearity (class III), followed by the same linear FIR filter. The
following specifications apply:
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• Class II memoryless nonlinearity: P = 3 basis functionsψ(x) = [x x3 x5]T ,
a corresponding coefficient vector c = [1.6 − 0.4 − 0.25]T , depicted in
Figure 3.3(b).

• Class III memoryless nonlinearity: of the form (3.13), with clipping level
U = 0.8, depicted in Figure 3.3(c).

• Linear FIR filter: L = 128, impulse response h[n], designed using the fre-
quency sampling method fir2 in Matlab, having a required magnitude
response [1 0.95 0.75 0.50 0.20 0]T for the frequencies [0 0.2 0.4 0.6 0.8 1]T×
fNyquist.

A test database consisting of 8 audio excerpts was compiled (see Table 3.1 for
details). Each audio signal in the test database was fed into each of the consid-
ered Hammerstein loudspeaker models, once with and once without performing
precompensation. The following settings were used in the precompensation:

• First Hammerstein model: precompensation using Algorithm 4, with
N = 512, α = 0.01, β = 0.1, η = 0.6, and K = 500.

• Second Hammerstein model: precompensation using Algorithm 5, with

N = 512, α = 0.01, γ0m =
√

µm

Cm
, and K = 500.

The objective audio quality improvement for each audio signal was assessed by
computing the ∆ODG measure,

∆ODG = ODG(x,y∗)−ODG(x,y) (3.44)

where x is the input signal, y is the output signal when no precompensa-
tion is applied, y∗ is the output signal when precompensation is applied, and
ODG(r,d) is an objective measure [22] that predicts the audio quality of a sig-
nal d with respect to a signal r on a scale of [0,−4], where 0 corresponds to an
imperceptible degradation, and -4 corresponds to a very annoying degradation.

The simulations were performed for four distinct average amplitude levels of the
input signals, selected such that the corresponding ODG(x,y) = {−0.5,−1.0,
−1.5,−2.0}. This signal-specific selection of the average amplitude levels en-
sures a uniform audio quality degradation for different output signals when no
precompensation is applied.

The resulting ∆ODG scores for the first and second Hammerstein models are
shown in Figure 3.4 and Figure 3.5, respectively. For the first Hammerstein
model in Figure 3.4, a positive audio quality improvement is observed for all
audio excerpts, and this for all but one considered average amplitude level. For
most audio excerpts, increasing audio quality improvement scores are observed
for increasing average amplitude levels. Indeed, it is exactly at higher amplitude
levels that the Hammerstein memoryless nonlinearity is severely affecting the
audio signal, and that precompensation is capable of improving the resulting
audio quality considerably.
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Figure 3.4: Precompensation of a Hammerstein model with non-invertible
smooth memoryless nonlinearity: objective audio quality improvement scores
for different audio excerpts, at four distinct average amplitude levels corre-
sponding to uncompensated input ODGs= {−0.5,−1.0,−1.5,−2.0}.

For the second Hammerstein model in Figure 3.5, a similar pattern is observed
with predominantly positive audio quality improvement scores that are increas-
ing with the average amplitude levels. On average, the resulting audio quality
improvement is seen to be slightly lower than for the first Hammerstein model.
This difference can be attributed to the non-smoothness of the memoryless
nonlinearity, which makes the second Hammerstein model more difficult to
precompensate for, compared to the first Hammerstein model which comprises
a smooth memoryless nonlinearity.

3.4.2 Audio Quality Evaluation Using Identified Ham-

merstein Loudspeaker Models

Evaluation experiments were performed using two different loudspeakers having
the following specifications:

• Loudspeaker 1: Boss MA-12 Micro Monitor, full-range, impedance 6Ω.
• Loudspeaker 2: Dell Latitude E6400 laptop built-in speaker.

The loudspeakers were modeled using Hammerstein models consisting of a
memoryless nonlinearity with P = 3 basis functions ψ(x) = [x x3 x5]T and
a linear FIR filter of order L = 128. The identification of the loudspeaker
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Figure 3.5: Precompensation of a Hammerstein model with non-invertible hard
clipping memoryless nonlinearity: objective audio quality improvement scores
for different audio excerpts, at four distinct average amplitude levels corre-
sponding to uncompensated input ODGs= {−0.5,−1.0,−1.5,−2.0}.

Hammerstein model parameters h ∈ RL+1 and c ∈ RP was performed using
the normalized iterative algorithm proposed in [23], and detailed in Subsec-

tion 3.4.3. The identified Hammerstein models with parameter values {ĥ, ĉ}
for both loudspeakers are shown in Figure 3.6, with Figure 3.6(a) depicting
the identified memoryless nonlinearity and Figure 3.6(b) depicting the identi-
fied FIR filter frequency response. From Figure 3.6(a), we observe that both
loudspeakers possess a non-invertible smooth memoryless nonlinearity (class
II). The memoryless nonlinearity of Loudspeaker 2 is seen to deviate from
g(x) = x over a wider amplitude input range than the memoryless nonlinearity
of Loudspeaker 1. From Figure 3.6(b), we observe that for both loudspeak-
ers, the identified FIR filter attenuates low frequencies, this effect being more
pronounced for Loudspeaker 2.

Each audio signal in the test database (see Table 3.1) was played back by each of
the two loudspeakers, once with and once without performing precompensation.
The following settings were used in the precompensation using Algorithm 4:

• Identified Hammerstein model parameters hm = ĥ, c = ĉ are used.
• N = 512, α = 0.01, β = 0.1, η = 0.6, and K = 200.

The simulations were performed for three distinct playback levels of the input
signals, with relative levels a = {0.50, 0.75, 1.00}. The objective audio qual-
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Figure 3.6: Identified Hammerstein models for Loudspeaker 1 (solid lines) and
Loudspeaker 2 (dashed lines): (a) memoryless nonlinearity (b) FIR filter fre-
quency response.

ity improvement for each audio signal was assessed by computing the ∆ODG
measure,

∆ODG = ODG(x,y∗)−ODG(x,y) (3.45)

where x is the input signal, y is the loudspeaker output signal when no prec-
ompensation is applied, and y∗ is the loudspeaker output signal when precom-
pensation is applied.

The resulting ∆ODG scores for Loudspeaker 1 and Loudspeaker 2 are shown
in Figure 3.7(a) and Figure 3.7(b), respectively. For Loudspeaker 1 in Figure
3.7(a), positive audio quality improvement scores are observed for most audio
excerpts. Increasing audio quality improvement scores are observed for increas-
ing playback levels. The negative improvement scores for audio excerps Chopin
(all playback levels), Grefcla and Arefcla (low playback levels) seem to indicate
that there is a signal-specific threshold on the loudspeaker playback level be-
low which performing precompensation is unnecessary and can even harm the
resulting audio quality.

For Loudspeaker 2 in Figure 3.7(b), a similar pattern is observed with audio
quality improvement scores that are increasing with the playback level. For the
highest playback level a = 1.00, all precompensated audio excerpts result in
an improved audio quality score. For the lower playback level, positive audio
quality improvement scores are observed, except for the audio excerpts Chopin,
Grefcla and Arefcla mentioned previously.
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Figure 3.7: Precompensation of two loudspeakers using Hammerstein loud-
speaker models - objective audio quality improvement scores for different audio
excerpts, at average amplitude levels = {0.50, 0.75, 1.00}: (a) Loudspeaker 1
(b) Loudspeaker 2.
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3.4.3 Identification of Hammerstein Model Parameters

The purpose of identification is to estimate the unknown Hammerstein model
parameters hL = [h1, ..., hL]

T (excluding h0) and c = [c1, ..., cP ]
T based on

an observed output signal y = [y1, ..., yN ]T and an observed input signal x =
[x1, ..., xN ]T . In our experimental set-up, we have used a test audio signal
having 30 seconds duration as the loudspeaker input signal, and measured the
loudspeaker output signal in a soundproof room using a microphone placed on
the axis of the loudspeaker at a distance of 10 centimeter. The estimation is
done by solving the following optimization problem,

{ĥL, ĉ} = argmin
hL,c

f2(hL, c)

= argmin
hL,c

1

N

N∑

n=1

(
yn − hT

L Ψ(xn) c
)2

(3.46)

where xn = [xn−1, ..., xn−L]
T and consequentlyΨ(xn) = [ψ(xn−1), ...,ψ(xn−L)]

T .

Given an initial estimate ĥ0
L 6= 0, the normalized iterative algorithm [23] solves

optimization problem (3.46) by performing the following steps in each iteration
k:

1. An estimate c̄k is computed as the solution of the least-squares problem
(3.46) for fixed hL = ĥk−1

L ,

c̄k = argmin
c∈RP

f2(ĥ
k−1
L , c). (3.47)

2. An estimate h̄k
L is computed as the solution of the least-squares problem

(3.46) for fixed c = c̄k,

h̄k
L = argmin

hL∈RL

f2(hL, c̄
k). (3.48)

3. A normalization is performed so that ||ĥk
L|| = 1,

ĥk
L =

ξkh̄k
L

||h̄k
L||

(3.49)

ĉk = ξkc̄k||h̄k
L|| (3.50)

where ξk = ±1 is the sign of the first non-zero entry of h̄k
L.
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3.5 Conclusions

In this paper, an embedded-optimization-based loudspeaker precompensation
algorithm using a Hammerstein loudspeaker model has been presented. The
loudspeaker precompensation consists in a per-frame signal optimization. In
order to minimize the perceptible distortion incurred in the loudspeaker, a per-
cepually meaningful optimization criterion has been constructed. Depending
on the invertibility and the smoothness of the memoryless nonlinearity, differ-
ent first order optimization methods have been proposed for solving the per-
frame optimization problems. Objective evaluation experiments using synthetic
and identified loudspeaker models have shown that the proposed loudspeaker
precompensation algorithm provides a significant audio quality improvement,
especially so at high playback levels.
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Recordings 941.0170.020, 2006.

[20] F. Chopin, “Waltz op. 69 no. 2,” Favourite Piano Works (Vladimir Ashke-
nazy), Decca 02894448302, 1995.

[21] Kraftwerk, “Tour de France Etape 1,” Minimum-Maximum, EMI Music
724356061620, 2005.



107

[22] International Telecommunications Union Recommendation BS.1387,
“Method for objective measurements of perceived audio quality,” 1998.

[23] E.-W. Bai and D. Li, “Convergence of the iterative Hammerstein sys-
tem identification algorithm,” Automatic Control, IEEE Transactions on,
vol. 49, no. 11, pp. 1929–1940, 2004.



108 Bibliography



Chapter 4

Subjective Audio Quality

Evaluation

4.1 Introduction

In Chapter 2 and Chapter 3, novel embedded-optimization-based precompen-
sation algorithms have been presented which incorporate a perceptual model.
In Chapter 2, a perception-based clipping algorithm has been presented using
embedded convex optimization. In Chapter 3, a loudspeaker precompensation
algorithm has been presented using embedded optimization. Both algorithms
have been evaluated using objective measures of audio quality, such as PEAQ
[1] and Rnonlin [2], for which significant improvements have been reported.
In Subsection 2.4, it has been concluded from evaluation experiments that the
perception-based clipping algorithm results in significantly higher objective au-
dio quality scores than existing clipping techniques. In Subsection 3.4, it has
been concluded from experiments using synthetic and identified loudspeaker
models that the proposed loudspeaker precompensation algorithm provides a
significant objective audio quality improvement, especially at high playback
levels.

The objective measures used in the evaluation experiments are predictive mod-
els of the perceived audio quality. Taking a reference signal (i.e. the clean
signal) and a signal under test (i.e. the processed signal) as an input, the
objective measure of perceived audio quality is calculated through sequential
application of a human auditory model and a cognitive model. Resultingly, a
perceived audio quality score is attributed to the processed signal with respect
to the clean signal.

109
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Although considerable research efforts have been invested in the development
and standardization of such objective audio quality measures, limits on their
accuracy and applicability are inevitable. Firstly, a given objective audio qual-
ity measure is applicable to assess the perceptibility of the particular class of
distortions it was designed for, and care should be taken when applying the
measure to assess the perceptibility of other distortions. For example, PEAQ
was designed to assess the perceptibility of degradations commonly encoun-
tered in audio codecs. Secondly, the current objective audio quality measures
are predictive models with a limited accuracy, and as a result cannot replace
the subjective evaluation of human listeners [3].

For these reasons, it is necessary to perform a formal subjective evaluation to
accurately measure the perceived audio quality for the algorithms presented in
Chapter 2 and Chapter 3. The subjective evaluation takes the form of a formal
listening test, in which it is assessed how listeners perceive an audio signal by
asking them to quantify their experience.

The aim of our formal listening test is threefold:

1. To assess the subjective perceived audio quality of the perception-based
clipping algorithm and the loudspeaker precompensation algorithm.

2. To assess the subjective perceived audio quality of audio signals subject
to combined linear and nonlinear distortions, as compared to the case
where only nonlinear distortions are present.

3. To assess the correlation between the objective and subjective perceived
audio quality scores.

This chapter is organized as follows. In Section 4.2, the research questions
to be answered through the listening test are defined and the corresponding
hypotheses are formulated. In Section 4.3, the experimental design and set-up
of the listening test is discussed. In Section 4.4, the test results are reported
and the formulated hypotheses are statistically tested. In Section 4.5, some
concluding remarks are presented.

4.2 Research Questions and Hypotheses

The two main research questions to be answered through performing a formal
subjective listening test relate to the perceived audio quality of the proposed
perception-based clipping and loudspeaker precompensation algorithms. These
two research questions are formulated as follows:

Question 1 How does the perceived audio quality of audio signals clipped by
the proposed perception-based clipping algorithm compare to that of audio
signals clipped by the hard clipping algorithm?
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Question 2 How does the perceived audio quality of audio signals processed
by the proposed loudspeaker precompensation algorithm before being fed into
the Hammerstein loudspeaker model compare to that of audio signals not pro-
cessed before being fed into the Hammerstein loudspeaker model?

A third research question relates to the perceived audio quality of audio signals
subject to a combined linear and nonlinear distortion, as compared to audio
signals subject to only nonlinear distortion. This third research question is
formulated as follows:

Question 3 How does the perceived audio quality of audio signals subject to
a certain nonlinear hard clipping distortion compare to that of audio signals
subject to a combination of the same nonlinear hard clipping distortion and an
additional linear distortion?

A fourth research question relates to the correlation between the objective and
subjective perceived audio quality scores.

Question 4 How do the subjective perceived audio quality scores correlate
with the objective perceived audio quality scores?

The corresponding research hypotheses, that may or may not be rejected, are
formulated as follows:

Hypothesis 1 The perceived audio quality of audio signals clipped by the
perception-based clipping algorithm is identical to that of audio signals clipped
by the hard clipping algorithm.

Hypothesis 2 The perceived audio quality of audio signals processed by the
proposed loudspeaker precompensation algorithm before being fed into the
Hammerstein loudspeaker model is identical to that of audio signals not pro-
cessed before being fed into the Hammerstein loudspeaker model.

Hypothesis 3 The perceived audio quality of audio signals subject to a certain
nonlinear hard clipping distortion is identical to that of audio signals subject to
a combination of the same nonlinear hard clipping distortion and an additional
linear distortion.

Hypothesis 4 There is no correlation between subjective perceived audio
quality scores and objective perceived audio quality scores.
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Table 4.1: Audio excerpts used for subjective audio quality evaluation.
Nr. Name Texture Style Duration [s] Origin
1 rhcp.wav polyphonic rock 9.8 [4]
2 chopin.wav monophonic classical 17.8 [5]
3 poulenc.wav polyphonic classical 17.8 [6]
4 crefsax.wav monophonic classical 10.9 [1]

4.3 Experimental Design and Set-up

A representative sample of 19 test subjects having considerable musical listen-
ing and performance experience was selected to perform the listening test. All
subjects were remunerated for their participation.

The stimuli presented to the test subjects consisted of four audio excerpts
(detailed in Table 4.1), each of which were presented in 12 different processing
scenarios:

• Processing scenarios S1-S3: Hard symmetrical clipping as in (2.33), where
the clipping level U is selected such that the processed audio signal has
a PEAQ ODG of −1, −2 and −3, for the respective processing scenarios
S1, S2 and S3.

• Processing scenarios S4-S6: Perception-based clipping as in Algorithm
3 described in Subsection 2.3.4, with parameter values N = 512, P =
128, α = 0.04, and the same clipping level U as used in the respective
processing scenarios S1, S2 and S3.

• Processing scenarios S7-S9: Uncompensated Hammerstein loudspeaker
model consisting of:

– Hard clipping memoryless nonlinearity (class III) with the same
clipping level U as used in the respective processing scenarios S1,
S2 and S3.

– Linear FIR filter (L = 128) with impulse response h[n] designed
using the frequency sampling method fir2 in Matlab, having a
required magnitude response [1, 0.95, 0.75, 0.50, 0.20, 0]T for the fre-
quencies [0, 0.2, 0.4, 0.6, 0.8, 1]T × fNyquist.

• Processing scenarios S10-S12: Precompensated Hammerstein loudspeaker
model, using the same Hammerstein model settings as in the respective
processing scenarios S7, S8 and S9, and using the following settings in
the precompensation: Algorithm 5 described in Subsection 3.3.4, with

N = 512, α = 0.01, γ0m =
√

µm

Cm
, K = 500.

This resulted in a total of Nps = 4×12=48 pairs of stimuli (each consisting of
the original unprocessed audio signal and the corresponding processed audio
signal) that were presented to the test subjects. For each pair of stimuli, the
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Figure 4.1: ITU-T Degradation Category Rating (DCR) scale (adapted from
[3]).

Figure 4.2: Graphical User Interface (in Dutch) of listening test software for
stimulus presentation and response collection.

test subjects were asked to rate the perceived audio quality degradation of the
presented processed signal with the original audio signal as a reference, using
the ITU-T Degradation Category Rating (DCR) [7] scale depicted in Figure 4.1.

The listening tests were performed in a soundproof and well-illuminated test
room. Stimuli were presented to the test subjects through high-quality circum-
aural headphones1 connected to a soundcard-equipped laptop2. Self-developed
software was used to automate stimulus presentation and response collection
(see Figure 4.2). The playback level was fixed at a comfortable level.

Prior to the listening test, the subjects were provided with written instruc-
tions, which were verbally reviewed by the experimenter. Before the first pair
of stimuli was presented, the subjects were familiarized with the effects of lin-
ear and nonlinear distortion on audio signals, by successively listening to an
original sample audio signal and its distorted version. The presentation order
of the pairs of stimuli was randomized using an altered Latin square scheme
[3], thus eliminating possible bias effects due to order effects and sequential

1Sennheiser HD 439: dynamic, closed transducer, frequency response 17-22500Hz, Sound
Pressure Level 112 dB, Total Harmonic Distortion < 0.1%.

2Sony Vaio VGN-CR41: Intel Core 2 duo T5550 processor @1.83Ghz, 3GB RAM, Realtek
sound card, Intel GMA X3100 Graphics Processor.
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(b) Perception-based clipping, ODG=-1,
“perceptible, but not annoying”.
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“slightly annoying”.
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(d) Perception-based clipping, ODG=-2,
“slightly annoying”.
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(e) Hard clipping, ODG=-3,
“annoying”.
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(f) Perception-based clipping, ODG=-3,
“annoying”.

Figure 4.3: Histograms of DCR responses for the hard clipping algorithm (left)
and the perception-based algorithm (right), for different hard clipped input
ODGs.
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(a) Uncompensated Hammerstein loud-
speaker model, ODG=-1,
“perceptible, but not annoying”.
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(b) Precompensated Hammerstein loud-
speaker model, ODG=-1,
“perceptible, but not annoying”.
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(c) Uncompensated Hammerstein loud-
speaker model, ODG=-2,
“slightly annoying”.
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(d) Precompensated Hammerstein loud-
speaker model, ODG=-2,
“slightly annoying”.
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(e) Uncompensated Hammerstein loud-
speaker model, ODG=-3,
“annoying”.
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Figure 4.4: Histograms of DCR responses for audio signals without loudspeaker
precompensation (left) and with loudspeaker precompensation (right), for dif-
ferent hard clipped input ODGs.
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4.4 Results and Statistical Analysis

The raw results of the listening test, which had an average duration of 35
minutes per test subject, are presented in subsection 4.4.1, after which the
hypotheses formulated in 4.2 are statistically tested in subsections 4.4.2 and
4.4.3.

4.4.1 Test Subject Responses

The raw data resulting from the listening test consists of a categorical DCR
response by each of the 19 test subjects, for each of the 48 presented pairs of
stimuli.

Figure 4.3 shows histograms of the obtained DCR responses for the hard clip-
ping algorithm and for the perception-based clipping algorithm, and this for
the three considered clipping levels, corresponding to PEAQ ODG levels {-
1,-2,-3}. It is observed that the response histograms for the perception-based
clipping algorithm have a higher probability mass in the two leftmost bins
compared to the response histograms for the hard clipping algorithm. This in-
dicates that overall, the test subjects have rated the perceived audio quality for
the perception-based clipping algorithm more favorably than the hard clipping
algorithm.

Figure 4.4 shows histograms of the obtained DCR responses for audio sig-
nals without Hammerstein loudspeaker model precompensation and for audio
signals with Hammerstein loudspeaker model precompensation, again for the
three considered clipping levels, corresponding to PEAQ ODG levels {-1,-2,-
3}. It is observed that the response histograms for the audio signals with
Hammerstein model precompensation have a higher probability mass in the
two leftmost bins compared to the response histograms for the audio signals
without Hammerstein model precompensation. This indicates that overall, the
test subjects have rated the perceived audio quality for the audio signals with
Hammerstein model precompensation more favorably than the audio signals
without Hammerstein model precompensation.

4.4.2 Statistical Hypothesis Testing

The categorical DCR responses were first converted to integers according to
the scale in Figure 4.1. The following statistical analysis was performed on the
obtained numerical set of DCR responses.
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Testing Hypothesis 1

Let us denote the population DCR responses corresponding to audio signals
processed by the hard clipping algorithm and the perception-based clipping
algorithm by random variables RHC and RPBC, respectively.

Based on the sample DCR responses, we tested the following statistical hy-
pothesis H1

0 against its alternative H1
a :

H1
0 : R̃HC = R̃PBC (4.1)

H1
a : R̃HC ≤ R̃PBC (4.2)

where R̃ is the population median of the random variable R.

This statistical hypothesis was tested for all three considered ODGs using one-
tailed Wilcoxon-Mann-Whitney tests [8] with significance level α = 0.05. The
resulting one-sided P-values are synthesized in the first column of Table 4.2.

From the obtained P-values, we conclude that the null hypothesis (4.1) can be
rejected in favor of the alternative (4.2) for all considered ODGs. The perceived
audio quality of audio signals clipped by the perception-based clipping algo-
rithm is not identical but significantly superior to that of audio signals clipped
by the hard clipping algorithm, and this for all considered ODGs.

Testing Hypothesis 2

Let us denote the population DCR responses corresponding to audio signals
processed by the uncompensated Hammerstein loudspeaker model and the pre-
compensated Hammerstein loudspeaker model by random variables RUNCOMP

and RCOMP, respectively.

Based on the sample DCR responses, we tested the following statistical hy-
pothesis H2

0 against its alternative H2
a :

H2
0 : R̃UNCOMP = R̃COMP (4.3)

H2
a : R̃UNCOMP ≤ R̃COMP. (4.4)

This statistical hypothesis was tested for all three considered ODGs using one-
tailed Wilcoxon-Mann-Whitney tests [8] with significance level α = 0.05. The
resulting one-sided P-values are synthesized in the second column of Table 4.2.

From the obtained P-values, we conclude that the null hypothesis (4.3) can be
rejected in favor of the alternative (4.4) for ODGs of -2 and -3. The perceived
audio quality of audio signals processed by the proposed loudspeaker precom-
pensation algorithm before being fed into the Hammerstein loudspeaker model
is not identical, but significantly superior to that of audio signals not pro-
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Table 4.2: P-values from one-tailed Wilcoxon-Mann-Whitney tests on sample
DCR responses. Significant P-values with respect to α = 0.05 in bold.

Null hypothesis → H1
0 H2

0 H3
0

ODG=-1 0.0006 0.0616 0.5062
ODG=-2 <0.0001 <0.0001 0.4398
ODG=-3 <0.0001 <0.0001 0.3374

cessed before being fed into the Hammerstein loudspeaker model, and this for
moderate to high amplitude levels.

Testing Hypothesis 3

Based on the sample DCR responses, we tested the following statistical hy-
pothesis H3

0 against its alternative H3
a :

H3
0 : R̃UNCOMP = R̃HC (4.5)

H3
a : R̃UNCOMP ≤ R̃HC. (4.6)

This statistical hypothesis was tested for all three considered ODGs using one-
tailed Wilcoxon-Mann-Whitney tests [8] with significance level α = 0.05. The
resulting one-sided P-values are synthesized in the third column of Table 4.2.

From the obtained P-values, we conclude that the null hypothesis (4.5) cannot
be rejected in favor of the alternative (4.6) for any ODG. This means that
there is no reason to believe that the perceived audio quality of audio signals
subject to a certain nonlinear hard clipping distortion would be superior to that
of audio signals subject to a combination of the same nonlinear hard clipping
distortion and an additional linear distortion.

4.4.3 Correlation Between Subjective and Objective Scores

As mentioned in Section 4.1, the PEAQ ODG measure has been designed to
objectively assess the perceptibility of degradations commonly encountered in
audio codecs. However, the nature of signal distortions introduced by clip-
ping algorithms and (un)compensated Hammerstein loudspeaker models can be
rather different as compared to signal distortions introduced by audio codecs.
Therefore, we will investigate the validity of using PEAQ ODG as an objective
audio quality measure in these alternative scenarios.

The correlation between subjective and objective scores is the most obvious
criterion to validate an objective method. Let us denominate the mean DCR
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responses over all 19 test subjects as MDCR responses. Then we can calculate
the sample Pearson correlation coefficient ρ̂ between the subjective MDCR
responses and the objective ODG scores as follows,

ρ̂ =

∑Nps

i=1(MDCRi −MDCR)(ODGi −ODG)
√
∑Nps

i=1(MDCRi −MDCR)2
√
∑Nps

i=1(ODGi −ODG)2
(4.7)

where

MDCR =

Nps∑

i=1

MDCRi (4.8)

and

ODG =

Nps∑

i=1

ODGi. (4.9)

Testing Hypothesis 4

The scatter plot of the mean subjective DCR scores against the objective ODG
scores is shown in Figure 4.5. Based on the resulting sample Pearson correlation
coefficient value ρ̂ = 0.67, we tested the following statistical hypothesis H4

0

against its alternative H4
a :

H4
0 : ρ = 0 (4.10)

H4
a : ρ > 0. (4.11)

where ρ is the population Pearson correlation coefficient.

This statistical hypothesis was tested [9] with significance level α = 0.05 by
using a one-tailed t-test having Nps− 2 degrees of freedom for the test statistic

value t = |ρ̂|
√

Nps−2√
1−ρ̂2

.

The resulting one-sided P-value is 1.206 · 10−7 < α, which means that the null
hypothesis (4.10) can be confidently rejected in favor of the alternative (4.11).
In conclusion, there is a significant positive correlation between subjective audio
quality scores and objective PEAQODG scores, supporting the validity of using
PEAQ ODG as an objective audio quality measure for audio signals processed
by clipping algorithms and (un)compensated Hammerstein loudspeaker models.

4.5 Conclusions

Because of the limited applicability and accuracy of objective audio quality
measures, a formal subjective listening test has been performed in order to as-
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Figure 4.5: Scatter plot of obtained objective ODG scores vs. mean subjective
DCR scores.

sess the perceived audio quality of audio signals processed by the proposed
perception-based clipping and loudspeaker precompensation algorithms. A
representative sample of 19 test subjects provided subjective audio quality re-
sponses to 48 pairs of stimuli. Statistical hypothesis tests on the obtained
responses led to the following conclusions:

1. The perceived audio quality of audio signals clipped by the perception-
based clipping algorithm is significantly superior to that of audio signals
clipped by the hard clipping algorithm, and this for all considered ODGs.

2. The perceived audio quality of audio signals processed by the proposed
loudspeaker precompensation algorithm before being fed into the Ham-
merstein loudspeaker model is significantly superior to that of audio sig-
nals not processed before being fed into the Hammerstein loudspeaker
model, and this for moderate to high amplitude levels.

3. There is no reason to believe that the perceived audio quality of audio
signals subject to a certain nonlinear hard clipping distortion would be
superior to that of audio signals subject to a combination of the same
nonlinear hard clipping distortion and an additional linear distortion.

4. There is a significant positive correlation between subjective audio qual-
ity scores and objective PEAQ ODG scores.
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Chapter 5

Embedded Hardware

Implementation

5.1 Introduction

This chapter considers the embedded hardware implementation on a field-
programmable gate array (FPGA) of the core of the perception-based clipping
algorithm presented in Chapter 2. As the clipping algorithm is intended for
real-time audio signal processing on a typically small and portable device, the
hardware design should preferably have a low latency, low power consumption,
and low resource usage, while at the same time preserving a maximal audio
quality.

The core of the perception-based clipping algorithm is formed by the solu-
tion of a per-frame convex optimization problem. This clearly represents the
most computationally intensive part of the perception-based clipping algorithm,
hence our focus to restrict the hardware implentation to the optimization prob-
lem solution method. The iterative optimal projected gradient method pro-
posed in subsection 2.3.4 has several properties making it eligible for an effi-
cient hardware implementation. Firstly, polynomial upper and lower bounds
have been derived on the number of necessary iterations of the method to en-
sure a given solution accuracy. This allows to choose a priori a fixed number
of iterations to ensure the desired solution accuracy, and at the same time al-
lows to leave out a convergence test at every iteration. Secondly, the method
does not require the solution of a linear system of equations at every itera-

The work presented in this chapter was carried out in close cooperation with Dr. Andrea
Suardi, Department of Electrical and Electronic Engineering, Imperial College, London, UK.
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tion (in contrast to many other convex optimization methods), which in many
cases precludes a fast hardware implementation [1]. Lastly, both the projection
and the gradient operation constituting an iteration of the method possess a
structure that makes them amenable for efficient hardware implementation.

FPGA technology has been chosen to implement the optimal projected gradient
method. FPGAs are programmable devices containing repeated fields of small
logic blocks and elements, called configurable logic blocks (CLBs) or Logic
Array Blocks (LABs) depending on the vendor. For digital signal processing
purposes, FPGAs offer a number of advantages. Firstly, the reconfigurability
of FPGAs provides a high design flexibility, without the need for any physical
IC fabrication facility. Secondly, FPGAs can achieve a high computing power
for DSP applications by taking advantage of hardware parallellism. Lastly, the
growing availability of high-level software tools has decreased the FPGA design
learning curve and offers valuable intellectual property (IP) cores (prebuilt
functions) for advanced control and signal processing applications [2].

The proposed embedded hardware implementation on FPGA allows to investi-
gate different trade-offs between the audio quality, latency, resource usage, and
power consumption of the algorithm. The choice between fixed-point arithmetic
and floating-point arithmetic as well as the selection of the corresponding word
length form a crucial aspect in these trade-offs. The impact of these choices
has been quantified.

This chapter is organized as follows. In Section 5.2, the optimal projected
gradient method is reviewed and transformed into an FPGA implementation
architecture. In Section 5.3, some FPGA implementation issues are discussed,
concerning floating-point vs. fixed-point number representations and concern-
ing the implementation of the Fast Fourier Transform. In Section 5.4, the
results of bit-accurate simulations are presented and the resulting trade-offs
are analyzed. In Section 5.5, some concluding remarks are presented.

5.2 Embedded Hardware Architecture

5.2.1 Optimal Projected Gradient Algorithm

Algorithm 6 shows the original optimal projected gradient algorithm used for
efficiently solving the per-frame clipping optimization problem (omitting the
frame index m here for simplicity),

y∗ = argmin
y∈RN

1

2
(y − x)H DHWD (y − x) s.t. l ≤ y ≤ u (5.1)

where x is the input frame, y is the output frame, D ∈ CN×N is the unitary
DFT matrix, W = diag(w) is a diagonal weighting matrix of the perceptual
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Figure 5.1: Block diagram representing the implementation of the clipping
optimal projected gradient algorithm onto FPGA.

weights w, and u = U1N and l = L1N contain the upper and lower clipping
levels.

In order to allow for an efficient hardware implementation, we have performed
the following organizational changes in Algorithm 6 without altering its func-
tionality, as shown in the adapted Algorithm 7:

1. Several algorithm parameters need not be computed on-line, but can
rather be precomputed off-line:

• The per-iteration weights δk are precomputed off-line, using lines 2-
3-4-10-11 of Algorithm 6. The resulting precomputed weight vector
δ = [δ0, δ1, . . . , δKmax−1]T is defined as an input to the adapted
Algorithm 7.

• The Lipschitz constant C is precomputed off-line, and the inverse
of the Lipschitz constant C−1 is defined as an input to the adapted
Algorithm 7. This way, the division operation by C on line 8 of
Algorithm 6, is replaced by a more hardware-friendly multiplication
with C−1 on line 5 of the adapted Algorithm 7.

2. The computation of the gradient was rescheduled from the start of the
iteration (line 7 in Algorithm 6) to the end of the iteration (line 8 in
Algorithm 7), thus reducing the overall algorithm delay.

5.2.2 FPGA Implementation Architecture
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The optimal projected gradient algorithm presented in Algorithm 7 for solv-
ing the per-frame clipping optimization problem, has been implemented onto
FPGA using a high level synthesis tool (Vivado HLS) and C language. This ap-
proach was chosen in order to facilitate the exploration of design trade-offs and
to speed up design verification time, compared to a classical approach based
on hardware description languages (e.g. VHDL or Verilog).

Algorithm 6 Original optimal projected gradient algorithm

Input x ∈ RN , w ∈ RN , Kmax, L, U , γ0 ∈ (0, 1)
Output y∗ ∈ RN

1: y0 = c0 = x
2: C = max0≤i≤N−1 w(i)
3: µ = min0≤i≤N−1 w(i)
4: κ = C

µ

5: k = 0
6: while k < Kmax do
7: ∇f(ck) = DHdiag(w)D(ck − x)
8: ỹk+1 = ck − 1

C
∇f(ck)

9: yk+1 = ΠQ(ỹ
k+1)

10: Calculate γk+1 from (γk+1)2 = (1− γk+1)(γk)2 + κγk+1

11: δk = γk(1−γk)
(γk)2+γk+1

12: ck+1 = yk+1 + δk(yk+1 − yk)
13: k = k + 1
14: end while
15: y∗ = yk

Algorithm 7 Adapted optimal projected gradient algorithm

Input x ∈ RN , w ∈ RN , Kmax, δ = [δ0δ1 . . . δKmax−1]T ∈ RKmax L, U , C−1

Output y∗ ∈ RN

1: y0 = c0 = x
2: ∇f(c0) = 0
3: k = 0
4: while k < Kmax do
5: ỹk+1 = ck − C−1∇f(ck)
6: yk+1 = ΠQ(ỹ

k+1)
7: ck+1 = yk+1 + δk(yk+1 − yk)
8: ∇f(ck+1) = DHdiag(w)D(ck+1 − x)
9: k = k + 1

10: end while
11: y∗ = yk

Figure 5.1 shows the block diagram of Algorithm 7 as it has been implemented
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onto FPGA, where each module has been coded using a specific C function.
The main function clip top consists of an iterative implementation of the
per-iteration function clip iter. In every iteration, the variables ck+1, yk+1

and ∇f(ck+1) are stored in the respective memory blocks Memory 1, Memory
2 and Memory 3, in order to be accessed in the next iteration. The per-
iteration function clip iter consists of the following five subfunctions (the
corresponding lines in Algorithm 2 are given in brackets):

• clip pipe (lines 5-7) implements the gradient step, the projection onto
the feasible set, and the computation of the weighted sum of previous
iterates. It involves a sequence of element-by-element operations, that
can be pipelined to reduce overall delay.

• FFT (line 8) implements the Fast Fourier Transform (FFT), for which the
configuration parameters are set up in the function config fft. Details
on the FFT function an its configuration are given in subsection 5.3.2.

• clip weight (line 8) implements the point-wise multiplication of the
FFT output with the perceptual weights.

• IFFT (line 8) implements the inverse Fast Fourier Transform (IFFT), for
which the configuration parameters are set up in the function config ifft.
Details on the IFFT function an its configuration are given in subsection
5.3.2.

• clip scale performs a descaling of the IFFT output.

5.3 FPGA Implementation Aspects

5.3.1 Floating-Point and Fixed-Point Arithmetic

FPGAs allow for a variety of computer arithmetic implementations, as they
support both floating-point and fixed-point arithmetic. We will review here
the main properties of floating-point and fixed-point arithmetic, and point out
the pros and cons of using these arithmetics.

Floating-Point Arithmetic

The most commonly used floating point formats are described by the IEEE
754 standard [3]. As shown in Figure 5.2(a), the single-precision floating-point
representation adopts a 32-bit architecture which uses 1 bit for the sign, 23
bits for the fractional part of the mantissa, and 8 bits for the signed exponent
value, which moves the binary radix point with respect to the mantissa. The
following relation holds between the single-precision floating-point value Vfloat
and its corresponding bit representation:

Vfloat = (−1)s0
︸ ︷︷ ︸

sign

M
︸︷︷︸

mantissa

2E−127
︸ ︷︷ ︸

exponential

(5.2)
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Figure 5.2: Floating and fixed point number representations.

where the mantissa M consists of a fixed integer part and a variable fractional
part,

M = 1
︸︷︷︸

integer

+

23∑

i=1

b23−i2
−i

︸ ︷︷ ︸

fractional

(5.3)

and the decimal exponent E is

E =

7∑

i=0

ei2
i. (5.4)

The most advantageous property of floating point arithmetic is that the ex-
ponent of each value can be selected to allow for maximum precision, and the
exponent is stored with the fractional data. This allows to represent a wide
range of numbers with a relatively small number of bits.

The main disadvantage is the need for additional hardware and longer delays
for performing denormalization and normalization of the operands before and
after every addition and subtraction [4] [5].
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Fixed-Point Arithmetic

Fixed-point numbers use a fixed number of bits for the integer and the fractional
parts. The exponent does not vary and does not have to be stored. The fixed-
point example shown in Figure 5.2(b) adopts a 32-bit architecture, which uses 1
bit for the sign, 27 bits for the fractional part, and 4 bits for the integer part. In
reality, an adder or any other arithmetic circuit does not know how many bits
are interpreted as integer or fractional. This is purely an interpretational issue,
so one can practically think of fixed-point arithmetic as integer arithmetic [6].

The following relation holds between the fixed-point value Vfix and its corre-
sponding bit representation:

Vfix =

30∑

i=0

bi2
i−27

︸ ︷︷ ︸

integer+fractional

−s024
︸ ︷︷ ︸

2’s complement

(5.5)

where the 2’s complement format is generally used because it allows to perform
subtraction and addition with the same hardware architecture.

The main advantage of using fixed-point implementations is the resulting lower
cost and lower power, and often higher speed compared to floating-point im-
plementations [2]. On FPGA platforms, there is the additional advantage of
the fixed-point implementation being easily customizable to almost any desired
word length [4].

The main disadvantage related to fixed-point implementations is the lower dy-
namic range and reduced precision compared to floating-point, which leads
to different types of errors that can be incurred when performing fixed-point
computations [1]:

• Quantization errors : these errors are introduced when high-precision in-
put data is converted to the adopted reduced-precision fixed-point data
format.

• Overflow errors : these errors are introduced whenever the number of
bits for the integer part in the fixed-point representation is too small to
represent a given number, e.g. after adding two numbers of like sign.
In our proposed FPGA implementation, the number of integer bits was
conservatively chosen large enough (5 bits) in order to avoid overflow.

• Arithmetic errors : these errors are introduced when multiplying two
numbers having b fraction bits. The exact product can be represented
using 2b fraction bits, so a b-bit truncation of the 2’s complement number
is necessary and introduces a round-off error.

Amongst the possible consequences of these errors occurring in the fixed-point
implementation of an optimization method, are the loss of problem convexity,
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(a) Radix-2 butterfly (b) Radix-4 butterfly

Figure 5.3: FFT butterfly structures [7].

Memory

Memory Memory

Memory Memory Memory

Radix-2
Butterfly

Radix-2
Butterfly

Radix-2
Butterfly

Radix-2
Butterfly

Radix-2
Butterfly

Radix-2
Butterfly

Group 0 Group 1

Stage 0 Stage 1 Stage 2 Stage 3

Output
Shuffling

Output Data

Input Data

Figure 5.4: Pipelined Streaming I/O architecture [8].

the change of optimal solution, the lack of feasibility, and an unpredictable
behaviour of the algorithm [1].

5.3.2 Fast Fourier Transform

For the implementation of the FFT we have used an IP core, i.e. a predeveloped
block available from an FPGA vendor. We have used the Xilinx LogiCORE
IP Fast Fourier Transform (FFT) v9.0, which implements the Cooley-Tukey
FFT algorithm. This FFT core supports both fixed-point (8 to 34 bit) and
single-precision floating-point (32 bit) arithmetic and is parametrized to allow
for the run-time configuration of different FFT settings:

• The FFT mode, i.e. performing the forward or inverse complex FFT.
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Figure 5.5: Resource usage versus throughput for FFT architecture options [8].

• The FFT transform size N = 2m, m = 3− 16.
• The scaling schedule, which represents the number of bits to be shifted

after each stage of the FFT to avoid overflow, e.g. a scaling schedule of
[2 3 2 0 1] bit-shifts (ordered from the first to the last stage) could be
used for a five-stage implementation.

The FFT core provides four architecture options to trade-off resource usage
and transform time. The basic blocks of all four FFT architectures are the
so-called FFT Radix-r butterflies, which take in r complex data values and
process them to produce a new set of r complex data values [9]. Figure 5.3(a)
and Figure 5.3(b) show the structure of such a Radix-2 butterfly and a Radix-4
butterfly, respectively. The four resulting FFT architectures are the following:

• Pipelined Streaming I/O: from Figure 5.4, we observe that log2N Radix-
2 butterfly processing stages are pipelined to offer continuous data pro-
cessing. Each processing stage has its own memory banks to store input
and intermediate data. The core has the ability to simultaneously per-
form transform calculations on the current frame of data, load input data
for the next frame of data, and unload the results of the previous frame
of data. The data is scaled after every pair of Radix-2 stages.

• Radix-4 Burst I/O: loads and processes data separately. The N -point
FFT consists of log4N stages, with each stage containing N

4 Radix-4
butterflies. Transform sizes that are not a power of 4 need an extra
Radix-2 stage for combining data.

• Radix-2 Burst I/O: loads and processes data separately. The N -point
FFT consists of log2N stages, with each stage containing N

2 Radix-2
butterflies.

• Radix-2 Lite Burst I/O: a variant of Radix-2 Burst I/O with reduced
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Figure 5.6: Data flow for the bit-accurate FPGA simulation in Vivado HLS.

resource usage at the expense of an additional delay.

The trade-off between resource usage and transform time for the different FFT
architectures is illustrated in Figure 5.5. In order to minimize the transform
time, we have selected to use the Pipelined Streaming I/O architecture, yet this
choice comes with the cost of a higher resource usage. The following parameters
have been selected:

• Transform size N = 512 = 29.
• Fixed conservative scaling schedule of [2 2 2 2 1] bit-shifts for the different

FFT stages, which completely avoids overflows.

5.4 Simulation Results

5.4.1 Simulation Set-up

The C implementation of the architecture shown in Figure 5.1 has been trans-
formed using Vivado HLS into a Register Transfer Level (RTL) implementation,
which can be directly synthesized into any Xilinx FPGA.

In order to perform bit-accurate simulations of the RTL implementation, a sim-
ulation framework connecting Vivado HLS and MATLAB has been created, as
shown in Figure 5.6. The input test data are stored into files using MATLAB
(write testbench.m), then read by the Vivado HLS bit-accurate simulation
engine (clip tb.cpp), and finally the simulation results are loaded into MAT-
LAB (read testbench.m). The simulation framework supports floating-point
single-precision arithmetic and any fixed-point arithmetic up to 34 bits.

Two audio signals, chopin.wav and mascagni.wav, were selected to generate
the input test data. The input test data per audio signal consists of all audio
signal frames (N = 512) in which at least one sample exceeds a given amplitude
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range [L,U ], where the symmetric clipping level U = −L was fixed at 0.14 and
0.25 for the respective audio signals. This procedure resulted in 86 and 233
audio signal frames constituting the input test data, respectively.

The RTL synthesis and bit-accurate simulations were performed for different
settings of the applied arithmetic:

• Floating-point single-precision arithmetic (32 bits)
• Fixed-point arithmetic using b ={12,14,16,18,20,22,24,26,28,30,32,34} frac-

tion bits.

For every considered arithmetic setting, the bit-accurate simulations were re-
peated for different values of the fixed number of iterationsKmax={10,20,30,40,50}
of the optimal projected gradient method.

5.4.2 Accuracy in Fixed-Point Arithmetic

We have computed the mean-squared error (MSE) between the output audio
signal frame ŷ∗ computed using bit-accurate hardware simulations in fixed-
point or single-precision floating point arithmetic, and the reference output au-
dio signal frame y∗ computed using double-precision floating-point arithmetic
in MATLAB,

MSE(ŷ∗) =
1

N

N∑

i=1

(ŷ∗i − y∗i )
2 (5.6)

In Figures 5.7(a) and 5.7(b), the MSE for all audio signal frames is plotted
for the different fixed-point and floating-point arithmetics, for Kmax = 50. For
both audio signals, we observe a fairly constant MSE over all audio signal frames
for a given arithmetic choice. The per-frame MSE in fixed-point arithmetic is
seen to improve by roughly a decade per two additional fraction bits. When
using the maximum of 34 fixed-point fraction bits, the MSE values approach
the MSE in single-precision floating point, which is as low as 10−14.

The MSE gives an indication of the per-frame accuracy, which is not sufficient
to draw conclusions on the quality of the complete audio signal. In order to
assess which is the minimum number of fixed-point fraction bits to be used
from an audio quality point of view, the following analysis has been conducted.

The objective audio quality difference for each audio signal is assessed by com-
puting the ∆ODG measure,

∆ODG = ODG(xs,y
∗
s )−ODG(xs, ŷ

∗
s ) (5.7)

where xs is the input audio signal, y∗
s is the reference output audio signal

computed using double-precision floating-point arithmetic in Matlab, and ŷ∗
s
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Kmax — b 12 16 20 24 28 32 34
10 0.803 0.245 0.070 0.045 0.046 0.046 0.046
20 0.804 0.549 0.036 0.025 0.023 0.023 0.023
30 0.797 0.417 0.011 0.011 0.009 0.009 0.009
40 0.793 0.466 0.022 0.001 0.003 0.003 0.002
50 0.786 0.497 0.042 0.002 0.000 0.000 0.000

Table 5.1: ∆ODG audio quality difference with respect to double precision
implementation, with b the number of fixed-point fraction bits employed and
Kmax the fixed number of iterations, for fragment chopin.wav. Imperceptible
differences in bold.

Kmax — b 12 16 20 24 28 32 34
10 0.254 0.120 0.058 0.049 0.049 0.049 0.049
20 0.254 0.057 0.027 0.021 0.021 0.021 0.021
30 0.255 0.099 0.006 0.006 0.006 0.006 0.006
40 0.254 0.121 0.004 0.001 0.001 0.000 0.000
50 0.254 0.135 0.012 0.001 0.000 0.000 0.000

Table 5.2: ∆ODG audio quality difference with respect to double precision
implementation, with b the number of fixed-point fraction bits employed and
Kmax the fixed number of iterations, for fragment mascagni.wav. Impercepti-
ble differences in bold.

is the output audio signal computed using bit-accurate hardware simulations
in fixed-point or single-precision floating point arithmetic. ODG(r,d) is an ob-
jective measure [10] which predicts the audio quality of a signal d with respect
to a signal r on a scale of [0,−4], where 0 corresponds to an imperceptible
degradation, and -4 corresponds to a very annoying degradation.

In Tables 5.1 and 5.2, the ∆ODG audio quality difference is given for different
values of the number of fixed-point fraction bits b and the number of itera-
tions Kmax. An interesting observation is that in some cases, the audio quality
difference increases with the number of iterations due to the increasing accumu-
lation of round-off errors. As the resolution of the ODG is 0.02 points [10], we
can interpret differences falling within 0.02 ODG points as being imperceptible
(boldfaced values). For both audio signals, it is seen to be sufficient to perform
Kmax = 30 projected gradient iterations using b = 20 fixed-point fraction bits
in order to avoid perceptible artefacts.

5.4.3 Latency, Resource Usage and Power Consumption

Depending on the employed arithmetic, the FPGA design will exhibit different
characteristics in terms of overall latency, resource usage and power consump-
tion. We have assessed these relations using Vivado HLS, selecting a Xilinx
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Figure 5.7: MSE per audio signal frame for different fixed-point and floating-
point arithmetics, Kmax = 50.
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Artix-7 FPGA as the target device and clocked at a frequency of 200MHz.

Latency

The overall latency ctotal of the design is the number of clock cycles from the
start of execution until the final output is written. For our algorithm, the
overall latency ctotal can be computed as a function of the number of clock
cycles per iteration citer,

ctotal = 2N +Kmax(N + citer) (5.8)

which accounts for overhead clock cycles spent on reading in and writing back
results.

For our design using b = 20 fixed-point fraction bits and Kmax = 30 iterations,
the observed number of clock cyles per iteration citer = 4900 and the overall
latency ctotal = 163384. At a clocking frequency of 200MHz, this corresponds
to a per-iteration time latency of 25µs, and an overall time latency of 817µs.

Resource Usage

Figure 5.8(a) shows the number of look-up tables (LUTs) and Flip-Flops (FFs)
used to implement the design for different fixed-point and floating-point arith-
metics. In fixed-point arithmetic, we observe a linearly increasing FF/LUT
usage for increasing number of fixed-point fraction bits. The design for the
single-precision floating point arithmetic uses slightly more resources compared
to the fixed-point desing with the maximum 34 fraction bits.

Figure 5.8(b) shows the number of BRAM memory blocks and DSP48E slices
used to implement the design for different fixed-point and floating-point arith-
metics. In fixed-point arithmetic, the relation between the number of fixed-
point fraction bits and the BRAM/DSP48E usage resembles a staircase func-
tion, of which the first stair is seen to occur around 18 bits, and the second
stair around 27 bits. This can be explained by the fact that FPGA multipliers
are 18 bits wide, and on-chip memory blocks are multiples of 9 bits wide.

Compared to single-precision floating point arithmetic design, the use of a
fixed-point arithmetic design using b = 20 fixed-point fraction bits is seen to
result in a reduction of FF usage (-32%), LUT usage (-29%), DSP48E usage
(-56%) for a similar BRAM usage.

Power Consumption

The power consumption of an FPGA can be a critical design constraint, espe-
cially for mobile applications. In order to estimate the power dissipation of the
target FPGA device, two main power dissipation sources must be considered:
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Figure 5.9: Static, dynamic and total power consumption estimates for different
fixed-point and floating-point arithmetics on a Xilinx Artix-7 FPGA.

1. Static power dissipation: this is device-dependent and design-independent.
2. Dynamic power dissipation: this depends mainly on the clock frequency

and on the number of logic cells and other resources in use, and on the
average percentage of cells toggling at each clock cycle.

An estimate of both the static and dynamic power consumption was com-
puted using the Xilinx Power Estimator (XPE) tool. In Figure 5.9, the static,
dynamic and total power consumption estimates are shown for different fixed-
point and floating-point arithmetics on a Xilinx Artix-7 FPGA. In fixed-point
arithmetic, we observe a linearly increasing dynamic power consumption for
increasing number of fixed-point fraction bits, and a constant static power con-
sumption.

The use of a fixed-point arithmetic design using b = 20 fixed-point fraction bits
is seen to result in a total power consumption of 280 mW, which constitutes
a reduction of 23 % compared to a single-precision floating point arithmetic
design.

Available on http://www.xilinx.com/products/design_tools/logic_design/xpe.htm.
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5.5 Conclusions

This chapter has considered an embedded hardware implementation on an
FPGA of the optimal projected gradient method, which forms the core of the
perception-based clipping algorithm. It was demonstrated that the choice be-
tween fixed-point arithmetic and floating-point arithmetic and the selection of
the corresponding bit width has an impact on the resulting audio quality as
well as on the resource usage and power consumption of the design.

The resulting FPGA design, which performs 30 projected gradient iterations
using 20 fixed-point fraction bits, has a low latency, a reduced power consump-
tion, a reduced resource usage, and at the same time preserves the full audio
quality improvement. This design thus allows to perform the algorithm in real
time on a small and portable device.
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Abstract

The restoration of clipped audio signals, commonly known as declipping, is
important to achieve an improved level of audio quality in many audio appli-
cations. In this paper, a novel declipping algorithm is presented, jointly based
on the theory of compressed sensing (CS) and on well-established properties
of human auditory perception. Declipping is formulated as a sparse signal re-
covery problem using the CS framework. By additionally exploiting knowledge
of human auditory perception, a novel perceptual compressed sensing (PCS)
framework is devised. A PCS-based declipping algorithm is proposed which
uses ℓ1-norm type reconstruction. Comparative objective and subjective eval-
uation experiments reveal a significant audio quality increase for the proposed
PCS-based declipping algorithm compared to CS-based declipping algorithms.

6.1 Introduction

Clipping introduces undesired signal distortion in many audio applications.
Clipping can occur both in the analog domain and in the digital domain, and is
generally caused by the inability of an audio playback, recording or processing
device to deliver the dynamic range required by the audio signal. When a
digital audio signal is clipped, all its sample values lying beyond a maximum
amplitude level (referred to as the clipping level θc) are mapped onto ±θc, as
shown in Figure 6.1.

Clipping inevitably introduces nonlinear distortion into the audio signal, con-
sisting of both the modification of existing frequency components, and the in-
troduction of new harmonic and aliasing frequency components into the signal
[1]. In a series of listening experiments [2], it has been concluded that clipping
has a significant negative effect on the perceived audio quality. More specifi-
cally, clipping is typically associated with the perceptible addition of crackling
noises to the original audio signal, often qualified as (very) annoying.

Therefore, performing declipping, i.e. the restoration of the clipped audio sig-
nal, is necessary to achieve an improved level of audio quality and listener
satisfaction. In past research contributions, several approaches to the declip-
ping problem have been proposed. A first approach is based on performing an
interpolation/extrapolation step to recover the clipped signal portions based
on the knowledge of unclipped signal portions [3]. A second approach consists
in adopting a suitable model of both the clean signal (typically autoregres-
sive) and the clipping distortion, and subsequently recovering the clean signal

In the context of this research, digital hard clipping is considered, and it will be simply
termed “clipping” throughout this paper. Note that in analogue systems, soft clipping is
very common.
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Figure 6.1: Clipping of a digital audio signal.

through Bayesian statistical estimation of its model parameters [4]. Other no-
table declipping approaches include the use of artificial neural networks [5].

Recently, the declipping problem has been adressed in the generic framework of
compressed sensing (CS), and encouraging results have been reported [6, 7, 8, 9].
In the CS framework, declipping is formulated and solved as a sparse signal
recovery problem, where one takes advantage of the sparsity of the clean audio
signal (in some basis) in order to recover it from a subset of its samples.

In this paper, we propose a perceptual compressed sensing (PCS) framework, in
which a declipping algorithm is subsequently developed. The PCS framework
integrates CS theory and properties of human auditory perception. By incor-
porating knowledge of human auditory perception in the algorithm design, it is
possible to further improve the perceptual reconstruction quality. The advan-
tage of using perceptual knowledge has been recently demonstrated in related
audio applications, such as the sparse approximation of audio signals [10], and
the limiting of audio signals [11].

The paper is organized as follows. In Section 6.2, the basic principles of CS as
well as its fundamental limitations are reviewed, and the declipping problem is
subsequently formulated in the CS framework. In Section 6.3, the PCS frame-
work is presented, leading to a PCS-based declipping algorithm, using ℓ1-norm
type reconstruction. In Section 6.4, a comparative objective and subjective
evaluation of different declipping algorithms is discussed. Finally, in Section
6.5, some concluding remarks are presented.

6.2 A CS Framework for Declipping

The theory of compressed sensing has been introduced in [12] [13] [14] in the
context of sparse signal sampling and acquisition. Basically, the theory states
that any signal that can be considered sparse in some basis, can be uniquely,
and in many cases perfectly reconstructed based on sub-Nyquist rate sampled
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measurements. This notion goes against the commonly accepted Nyquist sam-
pling criterion. In the next subsections, we review the basic principles of CS as
well as its fundamental limitations, and subsequently formulate the declipping
problem in the CS framework.

6.2.1 CS Basic Principles

To be able to outline the basic principles of CS, we first introduce some neces-
sary definitions and notation. Signals are considered to be real-valued vectors
in an N -dimensional normed Euclidean vector space RN . For the purposes of
CS, mainly the ℓ0 and ℓ1 norm are of importance. The sparsity k of a vector
x is defined as the number of non-zero components, i.e. ‖x‖0 = k. A vector x
with sparsity k is said to be k-sparse.

Compressed sensing takes advantage of the sparsity of a signal s ∈ RN in some
fixed basis Ψ ∈ CN×N in order to recover it from a reduced measurement
y ∈ RM , whereM < N . Acquiring a signal s by CS consists of two main steps:

1. Measurement : apply a measurement matrix Φ to obtain the measure-
ment y,

y = Φs = ΦΨx = Ax (6.1)

with s ∈ R
N the original signal, x ∈ R

N its sparse decomposition,
Ψ ∈ CN×N the fixed basis, Φ ∈ RM×N the measurement matrix,
A = ΦΨ ∈ CM×N the sensing matrix, and y ∈ RM the measurement.

2. Recovery: (in)exactly recover s′ from y using constrained ℓp-norm opti-
mization,

x′ = argmin
z

‖z‖p subject to Az = y (6.2)

s′ = Ψx′ (6.3)

with p ∈ {0, 1} in typical CS applications.

The actual choice of the ℓp norm in the recovery step (6.2), has considerable
implications on the resulting solution x′ as well as on its computation. Firstly,
using an ℓ0 or ℓ1 norm in the minimization problem will obviously lead to a
sparser solution x′ compared to using ℓp norms with p > 1. This is expected
to provide a more accurate approximation for the sparse signal under consider-
ation. Secondly, optimization problem (6.2) has distinct properties depending
on the ℓp norm used in the minimization, and consequently requires distinct

In this paper, we restrict the analysis to fixed bases Ψ ∈ CN×N , and do not consider the
case of overcomplete dictionaries Ψ ∈ CN×KD with N < KD. Overcomplete dictionaries
have been used to allow for sparser representations of audio signals [15].
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optimization methods. Considering ℓ0-norm minimization, the resulting op-
timization problem is non-convex, implying that one has to rely on greedy
methods such as orthogonal matching pursuit (OMP) [16]. On the other hand,
ℓ1-norm minimization also induces sparsity in the solution (albeit to a lesser ex-
tent than ℓ0-norm minimization) and has the advantage of leading to a convex
optimization problem, which can be solved by convex optimization methods
or dedicated algorithms such as Basis Pursuit (BP) [17] or Dantzig selector
[18]. It is also possible to consider ℓp norms with 0 < p < 1, again leading to
non-convex optimization problems.

6.2.2 Perfect Recovery Guarantees

We now review the sufficient conditions under which it is possible to perfectly
recover a k-sparse signal through CS as introduced in (6.1)-(6.3). The sensing
matrix A will be of crucial importance, as the sufficient conditions for perfect
recovery will be based on its properties. We remark that the sufficient condi-
tions in compressed sensing are generally not satisfied in practical applications,
and that their main interest is theory rather than applicability.

Spark Property

A first important requirement is that the sensing matrix A maps all distinct
k-sparse vectors x1 6= x2 onto distinct vectors y1 6= y2. For an exact k-sparse
x, this holds if and only if

spark(A) > 2k (6.4)

where spark(A) is defined as the smallest number of columns of A that are
linearly dependent.

Restricted Isometry Property (RIP) [19]

This property provides a more subtle recovery guarantee in the case of noisy
measurements. Essentially, a matrix A satisfies the RIP of order k if there
exists a δk ∈ (0, 1) such that

(1− δk)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δk)‖x‖22 (6.5)

holds for all k-sparse x. If A satisfies the RIP of order 2k with 0 < δ2k ≤ 0.5,
this is a sufficient condition for a variety of CS algorithms to be able to perfectly
recover any k-sparse signal.

Coherence Property

In practice, the spark and RIP properties are difficult to compute for a given
sensing matrix A. The coherence property provides a more practically feasible
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way to establish recovery guarantees. The coherence µ of a matrix A is defined
as [20],

µ(A) = max
i,j,i6=j

|aHi aj |
‖ai‖2‖aj‖2

(6.6)

where ai denotes the i-th column of A. The coherence of a matrix is a measure
of the decorrelation it provides as a transformation between the original and
the analysis domain. The coherence property is related to the spark property
through [21],

spark(A) ≥ 1 +
1

µ(A)
(6.7)

Combining (6.7) and (6.4), and assuming no noise on the measurements, this
leads to the sufficent condition

k <
1

2

(

1 +
1

µ(A)

)

(6.8)

for perfect recovery of a k-sparse signal using ℓ0 and ℓ1- norm minimization to
be possible.

6.2.3 CS-Based Declipping

The CS framework is a suitable framework for addressing the declipping prob-
lem. Because of its ability to reconstruct a sparse signal from a reduced mea-
surement, CS can theoretically recover the original signal, including the parts
that were clipped and deemed “lost”. CS-based declipping is based on the
following principles:

Measurement Matrix Φ

The measurement y = Φs simply consists of the M unclipped samples in the
signal s. The measurement matrix Φ is entirely defined by the clipping pattern,
i.e. it is a submatrix of an identity matrix, where the rows corresponding to
the clipped samples have been removed.

Fixed Basis Ψ

Appropriate sparsifying time-domain signal decompositions for audio signals
include the Discrete Fourier Transform (DFT) and the Discrete Cosine Trans-
form (DCT), which are defined as

XDFT
l =

1√
N

N−1∑

n=0

xne
−j2π l

N
n, l = 0 . . .N − 1 (6.9)
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XDCT
l = α(l, N)

N−1∑

n=0

xn cos

[
π

N

(

n+
1

2

)

l

]

(6.10)

with α(l, N) =

√

1 + min (l, 1)√
N

, l = 0 . . .N − 1 (6.11)

where xn denotes the n-th element of the time-domain vector x ∈ R
N , and

Xl denotes the l-th element of the transform domain vector X ∈ RN . The
DFT and DCT bases are suitable candidates to serve as the fixed basis in the
declipping problem (i.e., Ψ can be chosen as the Inverse DFT matrix or the
inverse DCT matrix). However, the DCT has an advantage compared to the
DFT in that it involves only real-valued calculations.

Perfect Recovery Guarantees

The RIP is a very restrictive condition, which can only hold for specific classes
of sensing matrices. One such class is the class of random partial orthogonal
matrices, i.e matrices obtained by randomly choosing M rows from a normal-
ized orthogonal matrix [22]. For this class of matrices, the following result
applies.

Theorem 6.1 [23] Given an orthogonal matrix Ψ with entries of magnitude
O( 1√

N
). A sensing matrix A = ΦΨ consisting of a random subset of M rows

of Ψ satisfies the RIP condition δ3k+3δ4k ≤ 2 with high probability if and only
if

M ≥ O(k logN). (6.12)

For the declipping problem under consideration, this is presumably the most
relevant perfect recovery guarantee that can be given. However, this perfect
recovery guarantee only holds under the assumption of random positions of the
clipped samples, which is not expected to be met for most clipped audio signals
encountered in real-world audio devices. Moreover, even if this assumption is
met, it is very likely that the RIP condition does not hold for dictionaries
commonly used and values of sparsity k commonly encountered in audio signal
declipping.

Frame-Based Processing

Because of the short-time stationarity of audio signals, a declipping algorithm
should operate on short-time signal frames. In the declipping algorithms pro-
posed in this paper, a clipped audio signal is first split into Hann-windowed
half-overlapping frames of N samples each. The frames are sequentially de-
clipped, and synthesized to form the declipped audio signal. Introducing the
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subscript m as the frame index, the recovery step (6.2) for the m-th frame can
be rewritten as

x′
m = argmin

z

‖z‖p s.t. Amz = ΦmΨz = ym. (6.13)

Alternative Recovery Step

The structure of a clipped audio signal has an inherent advantage, pertaining
to the CS recovery step. As mentioned before, when applying a clipping level
θc to a signal, all sample values beyond θc are mapped onto θc. This means
that the original value of any clipped sample is in absolute value larger than or
equal to θc. This forms an additional constraint on the eligible solution space
for the sparse recovery [7], which leads to the following recovery step,

x′
m = argmin

z

‖z‖p s.t.







Amz = ΦmΨz = ym

C+
mΨz ≥ θc

C−
mΨz ≤ −θc

(6.14)

where C+
m and C−

m are submatrices of an identity matrix where the rows corre-
sponding to positively and negatively clipped samples, are respectively selected.
Adding these constraints to the optimization problem is expected to improve
the signal recovery quality.

Relaxation of Equality Constraints

When the signal s is not exactly sparse but only compressible, as it is the case
for most real-world audio signals, a certain relaxation to the equality constraints
Amz = ym is desirable [24]. For ℓ0-norm minimization, a possible relaxation
is to solve the following optimization problem,

x′
m = argmin

z

‖z‖0 s.t.







‖ym −Amz‖22 ≤ ǫm

C+
mΨz ≥ θc

C−
mΨz ≤ −θc

(6.15)

where the value of the parameter ǫm > 0 should be carefully selected [7]. As
opposed to the ℓ0-norm minimization based declipping algorithms presented in
[7], we will focus on the use of ℓ1-norm minimization for the declipping of audio
signals. When using ℓ1-norm minimization, the relaxation proposed here is to
solve the following optimization problem,

x′
m = argmin

z

‖z‖1 +
1

2γm
‖ym −Amz‖22 s.t.

{

C+
mΨz ≥ θc

C−
mΨz ≤ −θc

(6.16)

where γm > 0 is a regularisation parameter. It is interesting to note that
this optimization problem is similar to the well-known Basis Pursuit Denoising
problem [17], except for the additional inequality constraints.
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Figure 6.2: Schematic overview of perceptual compressed sensing: (a) Feedfor-
ward mode (b) Feedback mode. The symbol ∆ denotes a one-frame delay.

6.3 A PCS Framework for Declipping

In Section 6.2, the CS framework has been shown to be a suitable framework
for addressing the declipping problem. However, of crucial importance for au-
dio applications is the resulting perceived audio quality of the declipped signal,
which does not necessarily coincide with the physical signal reconstruction qual-
ity. By additionally incorporating knowledge of human auditory perception, a
novel perceptual compressed sensing (PCS) framework is presented in Subsec-
tions 6.3.1 and 6.3.2. A PCS-based declipping algorithm, using ℓ1-norm type
reconstruction, is presented in Subsection 6.3.3.

6.3.1 Perceptual CS Framework

It is known that audio signal components at certain frequencies are more per-
ceptible than components at other frequencies, and that the relative perceptibil-
ity is partly signal-dependent. Two phenomena of human auditory perception
are responsible for this:

• The absolute threshold of hearing is defined as the required intensity (dB)
of a pure tone such that an average listener will just hear the tone in a
noiseless environment. The absolute threshold of hearing is a function of
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Figure 6.3: Different steps in the computation of the global masking threshold
using the ISO/IEC 11172-3 MPEG-1 Layer 1 psychoacoustic model 1 : (a)-(b)
Time domain and normalized frequency domain representations of the input
audio signal (c)-(d) Tonal maskers (circles), non-tonal maskers (squares) and
input frequency spectrum (dotted line) (e)-(f) Individual masking thresholds
related to tonal and non-tonal maskers respectively (g) Global masking thresh-
old (solid line) and input frequency spectrum (dotted line) [11].
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the tone frequency and has been measured experimentally [25].
• Simultaneous masking is a phenomenon where the presence of certain

spectral energy (the masker) masks the simultaneous presence of weaker
spectral energy (the maskee), or in other words, renders it imperceptible.

Combining both phenomena, the instantaneous global masking threshold t of
an audio signal gives the amount of signal energy (dB) at each frequency that
can be masked by the rest of the signal. As such, the masking threshold t gives
an indication of the relative perceptibility of signal components at different
frequencies, and can be used in the CS framework in order to focus on the
recovery of perceptually important signal components, while at the same time
avoiding audible recovery errors.

Figure 6.2(a) gives a schematic overview of perceptual compressed sensing in
feedforward mode. First, from the measurement y, the masking threshold t is
estimated through the use of a perceptual model. Second, the sparse signal re-
covery step uses the measurement y in conjunction with the masking threshold
t in order to recover the signal s′.

In practice, calculating the masking threshold t based on the measurement y,
may not yield an accurate estimate of the masking threshold of the original
signal s. Therefore, an alternative feedback mode of perceptual compressed
sensing is proposed and illustrated in Figure 6.2(b). In feedback mode, the
masking threshold tm for a current frame ym is computed from the declipped
signal s′m−1 of the previous frame. In the declipping algorithm proposed in
subsection 6.3.3, perceptual compressed sensing will be used in feedback mode.
The implications of this feedback masking threshold estimation procedure on
the declipping performance will be evaluated in Subsection 6.4.3.

6.3.2 Masking Threshold Calculation

The instantaneous global masking threshold t of a given audio signal is cal-
culated using part of the ISO/IEC 11172-3 MPEG-1 Layer 1 psychoacoustic
model 1. A complete description of the operation of this psychoacoustic model
is beyond the scope of this paper (we refer the reader to [26] and [27]). We out-
line the relevant steps in the computation of the instantaneous global masking
threshold and illustrate the result of each step on an example audio signal (see
Figure 6.3):

1. Spectral analysis and SPL normalization: In this step a high-resolution
spectral estimate of the audio signal is calculated, with spectral compo-
nents expressed in terms of sound pressure level (SPL). After a normal-
ization operation and a Hann windowing operation on the input signal
frame, the PSD estimate is obtained through a 512-point DFT. Fig-
ure 6.3(a) shows the time-domain input signal, Figure 6.3(b) shows the
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resulting spectral estimate.
2. Identification of tonal and non-tonal maskers : It is known from psy-

choacoustic research that the tonality of a masking component has an
influence on its masking properties [28]. For this reason it is important
to discriminate between tonal maskers (defined as local maxima of the
signal spectrum) and non-tonal maskers. The output of the DFT is used
to determine the relevant tonal and non-tonal maskers in the spectrum
of the audio signal. In a first phase, tonal maskers are identified at
local maxima of the PSD: energy from three adjacent spectral compo-
nents centered at the local maximum is combined to form a single tonal
masker. In a second phase, a single non-tonal masker per critical band
is formed by addition of all the energy from the spectral components
within the critical band that have not contributed to a tonal masker.

3. Decimation of maskers : In this step, the number of maskers is reduced
using two criteria. First, any tonal or non-tonal masker below the ab-
solute threshold of hearing is discarded. Next, any pair of maskers oc-
curring within a distance of 0.5 Bark is replaced by the stronger of the
two. Figures 6.3(c) and 6.3(d) depict the identified tonal and non-tonal
maskers respectively, after decimation.

4. Calculation of individual masking thresholds : an individual masking
threshold is calculated for each masker in the decimated set of tonal
and non-tonal maskers, using fixed psychoacoustic rules. Essentially,
the individual masking threshold depends on the frequency, loudness
level and tonality of the masker. Figure 6.3(e) and 6.3(f) show the indi-
vidual masking thresholds associated with tonal and non-tonal maskers,
respectively.

5. Calculation of global masking threshold : Finally, the global masking
threshold is calculated by a power-additive combination of the tonal and
non-tonal individual masking thresholds, and the absolute threshold of
hearing. This is illustrated in Figure 6.3(g).

6.3.3 PCS-Based Declipping Using ℓ1-norm Optimization

In order to focus CS-based declipping on the recovery of perceptually relevant
signal components while at the same time avoiding audible recovery errors, the
masking threshold will be incorporated into the CS recovery step. The proposed
approach is to introduce in the optimization problem a diagonal perceptual
weighting matrix where the diagonal elements are the reciprocal of the masking
threshold, hence indicating the relative perceptual importance of the different
signal components. The perceptual weighting matrix Pm ∈ RN×N is defined
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as

Pm =










t−1
m,0 0 0 . . . 0

0 t−1
m,1 0 . . . 0

0 0 t−1
m,2 . . . 0

...
...

...
. . .

...
0 0 0 . . . t−1

m,N−1










(6.17)

where tm,l denotes the l-th component of the m-th frame’s global masking
threshold tm.

Different ways of incorporating the perceptual weighting matrix Pm into the
declipping optimization problem can be envisaged. The proposed way of incor-
porating Pm in the declipping of the m-th frame using ℓ1-norm minimization,
is to solve

x′
m = argmin

z

‖Pmz‖1 +
1

2γm
‖ym −Amz‖22 (6.18)

s.t.

{

C+
mΨz ≥ θc

C−
mΨz ≤ −θc.

The declipped signal s′m is constructed using







C+
ms′m = C+

mΨx′
m

C−
ms′m = C−

mΨx′
m

Φms′m = ym.

(6.19)

In formulation (6.18), the objective function term ‖Pmz‖1 is introduced in or-
der to obtain a perceptually meaningful reconstruction. The perceptual weight-
ing matrix Pm favors the use of those frequency components l that have a high
masking threshold tm,l. This approach is perceptually desirable:

• The introduction of distinctively audible new signal components (low
masking threshold) that are not present in the original signal, is dis-
couraged. The introduction of less audible or inaudible additional signal
components (high masking threshold) is tolerated to a greater extent.
As mentioned before, the masking threshold for a given frequency com-
ponent indeed quantifies the signal energy for that frequency that can
be masked by the original signal, or equivalently, the required signal en-
ergy for that frequency component to become audible in the simultaneous
presence of the original signal.

• The recovery of perceptually important signal components present in the
original signal, is encouraged. These salient signal components will, by
their relatively large signal energy, indeed possess high corresponding
masking thresholds.
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Algorithm 8 (PCSL1)

Input ym ∈ RM , s′m−1 ∈ RN , Ψ ∈ CN×N , θc ∈ R+, γm ∈ R+

Output s′m ∈ RN

1: Srm = {l||ym,l| < θc}
2: S+m = {l|ym,l = θc}
3: S−m = {l|ym,l = −θc}
4: Φm = IN (Srm)
5: C+

m = IN (S+m)
6: C−

m = IN (S−m)
7: Am = ΦmΨ
8: Calculate tm based on s′m−1 [using MPEG-1 Layer 1 psychoacoustic model

1]
9: Determine Pm using (6.17)

10: Recover s′m by solving (6.18) and evaluating (6.19)

The perceptual weighting that is applied to the components of the sparse
decomposition can be alternatively interpreted in the framework of Bayesian
Compressive Sensing [29]. Omitting the constraints, the optimization problem
in (6.18) is seen to be equivalent to a maximum a posteriori (MAP) formulation
using independent Laplace priors [30] for each basis coefficient in z, with mean
prior values scaled by the corresponding diagonal elements of the perceptual
weighting matrix Pm.

Algorithm 8 describes the different steps of the proposed PCSL1 algorithm
for declipping the m-th frame of a clipped audio signal, using ℓ1-norm type
reconstruction.

6.4 Evaluation

In order to comparatively evaluate the designed declipping algorithm with re-
spect to existing declipping algorithms, objective tests as well as subjective
listening tests have been conducted. The set-up, results and interpretation of
the conducted objective and subjective experiments will be discussed in this
section.

6.4.1 Objective Evaluation

To evaluate the declipping algorithms, two objective measures are used. A first
measure ∆SNR indicates the physical declipping improvement and is defined

In Algorithm 8, the notation IN (S) is introduced to denote a matrix consisting of those
rows of an N ×N identity matrix IN corresponding to the row indices in the index set S.
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Figure 6.4: The ITU-R five-grade impairment scale

as the SNR improvement,

∆SNR = SNR(s, s′)− SNR(s, sc) (6.20)

where

SNR(u,v) = 10 log10

( ‖u‖22
‖u− v‖22

)

(6.21)

and s is the original signal, sc is the clipped signal and s′ is the declipped signal.
A second measure ∆ODG indicates the perceptual declipping improvement and
is defined as the Objective Difference Grade (ODG) improvement,

∆ODG = ODG(s, s′)−ODG(s, sc) (6.22)

where ODG(u,v) is an objective measure of audio quality, which is calculated
using the Basic Version of the PEAQ (Perceptual Evaluation of Audio Quality)
recommendation [31]. The ODG(u,v) predicts the basic audio quality of a
signal under test v with respect to a reference signal u, and has a range between
0 and −4, corresponding to the ITU-R five grade impairment scale depicted
in Figure 6.4. The suitability of the PEAQ ODG as an objective measure
of perceived clipping degradation will be subjectively evaluated in Subsection
6.4.5.

A test database consisting of five audio excerpts was composed (16 bit mono,
44.1 kHz). The audio signals were selected so as to cover different music styles,
signal dynamics and signal sparsities. The length of each audio excerpt was
10 seconds. All audio signals were normalized to the same average loudness
level. Table 6.1 gives details for the different audio excerpts, including their
approximate sparsity k′ for the DFT basis.

Each audio signal in the test database was first clipped at three distinct clipping
levels θc, corresponding to fixed input ODGs {−1,−2,−3}. Each clipped audio
signal was subsequently processed by three different declipping algorithms, all

The approximate sparsity k′ is defined as the average per-frame number of DFT signal
components exceeding 0.001 times the maximal per-frame DFT signal component in absolute
value, for frame length N = 512.
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Figure 6.5: Comparative evaluation of different declipping algorithms in terms
of objective audio quality: (a) mean ∆SNR (b) mean ∆ODG scores.
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SNR(s, sc) [dB]
Audio excerpt Dynamics k′ ODG=-1 ODG=-2 ODG= -3 Origin
BachPartita high 63 32.0 24.4 22.5 [32]
FolkMusic low 178 18.7 15.2 12.2 [33]
Mariana low 111 45.9 42.0 37.9 [34]
Vivaldi low 235 22.0 17.2 12.8 [35]
Whispers high 291 16.7 12.6 9.6 [36]

Table 6.1: Audio excerpts used for the comparative evaluation of declipping
algorithms

Audio excerpt
Declipping ∆SNR/∆ODG
algorithm ODG=-1 ODG=-2 ODG=-3

BachPartita
CSL0 6.79 0.34 5.24 1.09 5.60 0.43
CSL1 6.35 -0.09 7.73 -0.03 7.92 0.16
PCSL1 7.21 0.24 6.81 1.03 5.85 1.83

Vivaldi
CSL0 6.55 0.06 6.79 0.06 6.42 0.28
CSL1 3.27 0.38 2.91 0.53 2.47 0.39
PCSL1 2.98 0.81 2.63 1.33 2.26 1.32

Mariana
CSL0 4.88 0.42 4.97 0.61 4.36 0.36
CSL1 3.65 0.63 3.70 1.14 3.31 1.03
PCSL1 5.58 0.93 5.07 1.69 4.48 1.64

FolkMusic
CSL0 4.94 0.61 4.71 0.33 4.65 0.38
CSL1 3.32 0.46 3.10 0.62 2.86 0.50
PCSL1 3.14 0.41 2.95 0.63 2.76 0.68

Whispers
CSL0 2.55 -0.54 2.40 -0.80 2.22 -0.17
CSL1 2.11 0.32 2.12 0.58 1.99 0.40
PCSL1 1.95 0.47 1.90 1.23 1.85 0.95

Table 6.2: Objective evaluation results for different declipping algorithms.
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using the IDFT matrix as fixed basis Ψ and operating on frames of N = 512
samples:

• CSL0 algorithm: CS-based declipping using ℓ0-norm optimization, all op-
timization problems (6.15) solved by Orthogonal Matching Pursuit [16],
ǫm = 10−5. Although there are some differences (regarding the choice
of the fixed basis and the choice of the stopping criterion for the OMP
method), this declipping algorithm is in essence similar to the declip-
ping algorithm proposed in [7], and can therefore adequately represent a
baseline declipping algorithm in our comparative evaluation.

• CSL1 algorithm: CS-based declipping using ℓ1-norm optimization, all
optimization problems (6.16) solved by the Basis Pursuit Denoising tech-
nique proposed in [37], γm = 10−2.

• PCSL1 algorithm: PCS-based declipping using ℓ1-norm optimization, all
optimization problems (6.18) solved by cvx [38], γm = 10−2.

For each of the resulting total of 5×3×3=45 declipped audio signals, the ob-
jective measures ∆SNR and ∆ODG were calculated. In Figure 6.5, the mean
∆SNR and ∆ODG scores over all five audio signals are plotted as a function of
the input ODG, for all considered declipping algorithms. The detailed evalua-
tion results per audio signal are shown in Table 6.2, from which the influence
of the signal sparsity on the declipping performance can be evaluated.

From Figure 6.5(a), we observe a positive average SNR improvement ranging
between 3 and 6 dB for all considered declipping algorithms. This improvement
appears to remain relatively constant over the input ODG range. The proposed
PCSL1 algorithm does not outperform the CS-based algorithms in terms of
SNR improvement. From Figure 6.5(b), the average ODG improvement is
significant for all declipping algorithms. The proposed PCSL1 algorithm sig-
nificantly outperforms the CS-based algorithms in terms of ODG improvement,
and this for all considered input ODGs. Also note that from Table 6.2, it is
observed that the best declipping performance is obtained for the sparser audio
signals, such as BachPartita and Mariana.

Moreover, it is interesting to note from Figure 6.5(a) the superior performance
in terms of SNR improvement of the CSL0 algorithm compared to the CSL1
algorithm. This seems to confirm an earlier suggestion [7] that, in terms of SNR
improvement, the use of ℓ0-norm optimization for declipping may be preferable
over the use of ℓ1-norm optimization. However, we observe from Figure 6.5(b)
a superior performance in terms of ODG improvement of the CSL1 algorithm
compared to the CSL0 algorithm, which would plead in favor of using ℓ1-norm
optimization for declipping, as far as audio quality is concerned.
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Figure 6.6: Impact of the regularisation parameter γm in the PCSL1 declipping
algorithm on the resulting relative (to the maximum) ODG score, for different
input ODGs: (a) “Vivaldi” (b) “Whispers”.
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6.4.2 Impact of Regularisation Parameter γm

In [7], it was shown that the parameter ǫm in the CSL0 optimization formulation
(6.15) should be carefully selected, as the resulting SNR improvement was
seen to be very sensitive to the value of ǫm. Based upon these findings and
some additional experiments, we have selected ǫm = 10−5 as an appropriate
parameter setting for the experiments discussed in Subsection IV-A.

In order to study the impact of the regularisation parameter γm in the PCSL1
optimization formulation (6.18) on the resulting audio quality, the following
experiment was conducted. Each of the five audio signals in the test database
detailed in Table 6.1 were clipped at three distinct clipping levels, corresponding
to fixed input ODGs {−1,−2,−3}. These signals were subsequently processed
by the PCSL1 declipping algorithm using optimization formulation (6.18), in
which the value of the regularisation parameter γm was fixed over all frames
within one audio signal, and this processing was repeated for six different values
of γm = {101,100,10−1, 10−2,10−3,10−4}. For each of the resulting total of
5×3×6=90 declipped audio signals, the ODG between the original signal and
the declipped signal was calculated.

The results of this experiment are partly visualized in Figure 6.6, which shows
the results for the audio excerpts “Vivaldi” and “Whispers”. In these figures,
the objective measure ODGrel, defined as

ODGrel(γm) = ODG(γm)−max
γm

ODG(γm) (6.23)

is plotted as a function of γm, and this for different input ODGs. We observe
that the choice of γm has a significant impact on the resulting audio quality
scores after declipping and this regardless of the input ODG, so care should be
taken when selecting the value of γm. Moreover, we observe that the different
curves reach a joint maximum for γm = 10−2. We have selected γm = 10−2 as
an experimentally validated setting for our experiments discussed in Subsection
6.4.1.

6.4.3 Impact of Masking Threshold Estimation Proce-

dure

In Section 6.3, the estimation of the masking threshold was discussed. It was
proposed to estimate the masking threshold tm for a current signal frame ym by
computing it from the previously declipped signal frame s′m−1. The impact of
this feedback masking threshold estimation procedure on the PCSL1 declipping
performance has been evaluated as follows.

The audio signals “Vivaldi” and “Whispers” (see test database detailed in
Table 6.1) were clipped at three distinct clipping levels, corresponding to fixed
input ODGs {−1,−2,−3}. These signals were subsequently processed by the
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PCSL1 declipping algorithm, in which the per-frame masking thresholds were
established using two different procedures:

• Ideal masking threshold: the per-frame masking threshold was calculated
using the clean signal frame sm. Using this ideal masking threshold
provides an upper bound for the declipping performance of the PCSL1
algorithm.

• Estimated masking treshold: the per-frame masking threshold tm was
computed using the previously declipped signal frame s′m−1, as detailed
in Algorithm 8.

The results of this experiment are shown in Figure 6.7. It can be observed that
for both audio excerpts, the resulting ∆ODG scores using the estimated mask-
ing threshold in the declipping algorithm, are very close to the upper bounds
provided by using the ideal masking threshold. These results indicate that the
use of the proposed masking treshold estimation procedure does not have a
significant negative impact on the resulting objective audio quality scores.

6.4.4 Subjective Evaluation

Research question and hypothesis

The research question to be answered through performing a formal subjec-
tive listening test [39] is the following: “how does the perceived audio quality
improvement of audio signals declipped by the proposed PCSL1 algorithm com-
pare to that of audio signals declipped by the CSL0 and CSL1 algorithms?”.
The research hypothesis, that may or may not be rejected, is that the perceived
audio quality improvement is identical for all three declipping algorithms.

Test subjects

A representative sample of 16 test subjects having considerable musical listen-
ing and performance experience was selected to perform the listening test. All
subjects were remunerated for their participation.

Experimental design and set-up

The listening tests were performed in a soundproof and well-illuminated test
room. Stimuli were presented to the test subjects through high-quality circum-
aural headphones connected to a soundcard-equipped laptop. Self-developed

Sennheiser HD 439: dynamic, closed transducer, frequency response 17-22500Hz, Sound
Pressure Level 112 dB, Total Harmonic Distortion < 0.1%.

Sony Vaio VGN-CR41: Intel Core 2 duo T5550 processor @1.83Ghz, 3GB RAM, Realtek
sound card, Intel GMA X3100 Graphics Processor.
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Figure 6.7: Impact of the masking threshold estimation procedure in the PCSL1
declipping algorithm on the ∆ODG score, for different input ODGs: (a) “Vi-
valdi” (b) “Whispers”.
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Figure 6.8: ITU-T Degradation Category Rating (DCR) and Comparison Cat-
egory Rating (CCR) scales (adapted from [39]).

software was used to automate stimulus presentation and response collection.
The playback level was fixed at a comfortable level.

The stimuli presented to the test subjects were the same as described in sub-
section 6.4.1, i.e. they consisted of the five audio excerpts detailed in Table
6.1, clipped at three distinct clipping levels, and subsequently declipped by the
three declipping algorithms under study. This resulted in a total of 5×3×3=45
pairs of stimuli (each consisting of a clipped signal and the corresponding de-
clipped signal) that were presented to the test subjects. For each pair of stimuli,
the test subjects were asked to provide the following responses:

• Rate the perceived audio quality degradation of the presented clipped
signal using the ITU-T Degradation Category Rating (DCR) scale [40]
(see Figure 6.8).

• Rate the perceived audio quality difference of the presented declipped sig-
nal relative to the clipped signal, using the ITU-T Comparison Category
Rating (CCR) scale [40] (see Figure 6.8).

Prior to the listening test, the subjects were provided with written instructions,
which were verbally reviewed by the experimenter. Before the first pair of
stimuli was presented, the subjects were familiarized with the effect of clipping
on audio signals, by successively listening to an original sample audio signal
and its clipped version. The presentation order of the pairs of stimuli was
randomized using an altered Latin square scheme [39], thus eliminating possible
bias effects due to order effects and sequential dependencies.

Results

The raw data resulting from the listening test consists of a categorical DCR
and CCR response by each of the 16 test subjects, for each of the 45 presented
pairs of stimuli. The categorical DCR and CCR responses were first converted
to integers according to the scales in Figure 6.8. The analysis here will be
focused on the CCR responses, the DCR responses will be used in the analysis
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in Subsection 6.4.5. Let us denominate the averaged CCR responses over all 16
test subjects as CCR responses, and the averaged CCR responses over all five

audio excerpts as CCR responses. In Figure 6.9, the CCR responses are plotted
as a function of the input ODG level, and this for the three different declipping
algorithms under study. We observe that the ranking of the algorithms is
identical to the one observed in the objective evaluation results in Figure 6.5(b).
The detailed CCR responses per audio excerpt are given in Table 6.3.

The following statistical analysis was performed on the obtained numerical set
of CCR responses. Let us denote the population CCR responses corresponding
to audio signals declipped by the CSL0, CSL1 and PCSL1 algorithms by ran-
dom variables RCSL0, RCSL1, and RPCSL1, respectively. Based on the sample
CCR responses, we tested the following three statistical hypotheses H0 against
their alternatives Ha,

H1
0 : R̃CSL0 = R̃PCSL1 (6.24)

H1
a : R̃CSL0 ≤ R̃PCSL1 (6.25)

H2
0 : R̃CSL1 = R̃PCSL1 (6.26)

H2
a : R̃CSL1 ≤ R̃PCSL1 (6.27)

H3
0 : R̃CSL0 = R̃CSL1 (6.28)

H3
a : R̃CSL0 ≤ R̃CSL1 (6.29)

where R̃ is the population median of the random variable R. These three
statistical hypotheses were tested for all three considered input ODGs. All
statistical hypotheses were tested using one-tailed Wilcoxon-Mann-Whitney
tests [41] with significance level α = 0.05. The resulting one-sided P-values are
synthesized in Table 6.4.

The first null hypothesis (6.24) can be rejected in favor of the alternative (6.25)
for all considered input ODGs. The second and third null hypotheses (6.26)
and (6.28) can be rejected in favor of their respective alternatives (6.27) and
(6.29) for input ODGs of -2 and -3.

Conclusions

The research hypothesis can be confidently rejected, i.e. the perceived audio
quality improvement is not identical for all three declipping algorithms. The
statistical analysis has shown that the PCSL1 algorithm delivers a significantly
better audio quality improvement than both the CSL0 algorithm (for all input
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Figure 6.9: Comparative evaluation of different declipping algorithms in terms

of the CCR responses.

Audio excerpt
Declipping CCR
algorithm ODG=-1 ODG=-2 ODG=-3

BachPartita
CSL0 0.44 0.38 0.63
CSL1 0.38 0.38 0.75
PCSL1 1.63 2.56 2.31

Vivaldi
CSL0 0.25 0.75 0.44
CSL1 0.38 0.69 0.94
PCSL1 0.38 0.88 1.56

Mariana
CSL0 0.81 0.63 0.31
CSL1 1.38 1.81 1.19
PCSL1 1.69 2.19 2.06

FolkMusic
CSL0 0.63 0.44 0.75
CSL1 0.50 1.13 1.25
PCSL1 0.44 1.19 1.06

Whispers
CSL0 1.31 1.13 1.06
CSL1 1.69 0.94 1.13
PCSL1 1.06 1.19 0.88

Table 6.3: Subjective evaluation results for different declipping algorithms.

Table 6.4: P-values from one-tailed Wilcoxon-Mann-Whitney tests on sample
CCR responses. Significant P-values with respect to α = 0.05 in bold.

Null hypothesis → H1
0 H2

0 H3
0

ODG=-1 0.0202 0.2006 0.1313
ODG=-2 <0.0001 0.0003 0.0178

ODG=-3 <0.0001 0.0004 0.0035
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ODGs) and the CSL1 algorithm (for input ODGs in {-2,-3}). Moreover, the
CSL1 algorithm delivers a significantly better perceived audio quality improve-
ment than the CSL0 algorithm (for input ODGs in {-2,-3}).

6.4.5 Suitability of PEAQ ODG as a Measure of Per-

ceived Clipping Degradation

The PEAQ ODG measure has been developed in the context of quality evalu-
ation of low-bit-rate encoded audio. As the nature of signal distortions intro-
duced by clipping can be rather different as compared to signal distortions in-
troduced by low-bit-rate codecs, the use of PEAQODG as an objective measure
of perceived clipping-induced degradations should be well-founded. Therefore,
we have investigated the appropriateness of the PEAQ ODG measure for quan-
tifying the perceived clipping-induced audio quality degradation by analyzing
the DCR data collected in the listening test described in Subsection 6.4.4.

Let us denominate the averaged DCR responses over all 16 test subjects as
DCR responses. In Figure 6.10, the DCR responses are plotted as a function
of the corresponding ODG score, and this for the five different audio excerpts.
We observe a strong positive correlation between DCR responses and ODG
scores, and this for all audio excerpts. Moreover, the different curves are seen
to be monotonously increasing and they do not deviate excessively from linear
curves. The different curves do have a noticeably different vertical offset, but
have a nearly equal slope. These results seem to indicate that the ODGmeasure
can be confidently used to compare the perceived clipping-induced audio quality
degradation for the same audio excerpt in different processing scenarios (as was
done in Subsection 6.4.1). However, it might not be advisable to use the ODG
measure to compare the perceived clipping-induced audio quality degradation
for different audio excerpts.

6.5 Conclusions

In this paper, a novel perceptual compressed sensing (PCS) framework has
been presented for declipping audio signals, in which the theory of compressed
sensing (CS) was combined with properties of human auditory perception. A
declipping algorithm using ℓ1-norm type reconstruction has been developed in
the PCS framework. Comparative evaluation experiments consisting of objec-
tive and subjective tests have revealed a significant audio quality increase of
the proposed PCS-based declipping algorithm compared to CS-based declip-
ping algorithms for reasonably sparse signals.
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Abstract

In this paper we propose a new approach to multi-microphone dereverberation,
based on the recent paradigm of embedded optimization. The rationale of em-
bedded optimization in performing online signal processing tasks is to replace
traditional adaptive filtering algorithms based on closed-form estimators by
fast numerical algorithms solving constrained and potentially non-convex opti-
mization problems. In the context of dereverberation, we adopt the embedded
optimization paradigm to arrive at a joint estimation of the source signal of
interest and the unknown room acoustics. It is shown how the inherently non-
convex joint estimation problem can be smoothed by including regularization
terms based on a statistical late reverberation model and a sparsity prior for
the source signal spectrum. A performance evaluation for an example multi-
microphone dereverberation scenario shows promising results, thus motivating
future research in this direction.

7.1 Introduction

Dereverberation refers to the process of removing reverberation from micro-
phone signals recorded in a reverberant room. Since reverberation often has a
fundamental impact on the time-frequency signal characteristics, dereverber-
ation has been found to be a crucial component in diverse speech and audio
applications, such as hearing assistance, automatic speech recognition, voice
communications, and acoustic surveillance. Despite its wide applicability, dere-
verberation is generally still considered one of the most challenging problems
in the area of acoustic signal enhancement [1]. One of the major difficulties is
that dereverberation is an inverse problem, i.e., one aims at inverting the room
impulse response (RIR), which is typically non-minimum-phase and possibly
time-varying. Furthermore, dereverberation is usually also a blind problem, in
which both the sound source signal and the room acoustics are unknown.

The state of the art in speech dereverberation can be classified into three cat-
egories [1, Ch. 1]: (1) beamforming, (2) speech enhancement, and (3) blind
system identification and inversion. Most of the existing methods rely on the
use of multiple microphones. This is implictly the case for the beamforming ap-
proaches which are based on microphone array processing, see, e.g., [2]. Speech
enhancement approaches to dereverberation have also been shown to benefit
from the use of multiple microphones, e.g., for accurately estimating the late
reverberant signal spectrum [3] or for enhancing a linear prediction residual by
spatiotemporal averaging [4]. Finally, blind system identification is typically
based on the cross-relation between different microphone signals [5], while the
inversion of a non-minimum-phase system has been shown to be feasible only
in the multi-channel case [6].
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In this paper, a different approach to dereverberation is proposed, which does
not exactly fit into one of the three categories mentioned earlier. The proposed
approach is somehow related to the blind system identification and inversion
approach, however, it differs in that it does not require an explicit system
inversion. Indeed, the major weakness of the blind system identification and
inversion approach is that the design of a (multi-channel) inverse filter often
appears to be an ill-posed problem, which may be due to (near-)common zeros
[7] or system identification errors [8] in the RIRs. Recent solutions to alleviate
this weakness are based on modifications in the inverse filter design, such as
subband inversion [9], regularization [10], and forced spectral diversity [11].

Instead, we propose to avoid an explicit system inversion by adopting a re-
cent paradigm coined as embedded optimization. This paradigm is based on
the observation that the field of numerical optimization has reached a degree
of maturity and computational efficiency such that it can be applied to online
signal processing problems that are traditionally solved using recursive imple-
mentations of “classical” estimators admitting a closed-form solution [12]. In
particular, it allows to directly estimate a signal vector of interest, rather than
taking a detour by designing a filter to recover a signal of interest from noisy
or corrupted observations.

The outline of this paper is as follows. In Section 7.2 we propose a relevant
signal model and formulate the multi-microphone dereverberation problem. In
Section 7.3 we propose a number of embedded optimization algorithms for
multi-microphone dereverberation. These algorithms are evaluated in Section
7.4 for a simple example scenario. Finally, Section 7.5 concludes the paper.

7.2 Problem Statement

Consider a point source emitting a sound signal s0(t), t = 1, . . . , N , which
propagates inside a room and is picked up by M microphones at different
positions. The resulting microphone signals (m = 1, . . . ,M) are defined as

ym(t) = hT
m,0(t)s0(t) + em,0(t), t = 1, . . . , N (7.1)

where the length-L RIR vector hm,0(t) from the source to the mth microphone
at time t is defined as

hm,0(t) =
[

h
(0)
m,0(t) . . . h

(L−1)
m,0 (t)

]T

, t = 1, . . . , N (7.2)

the length-L source signal vector s0(t) at time t is defined as

s0(t) =
[
s0(t) . . . s0(t− L+ 1)

]T
, t = 1, . . . , N (7.3)

and em,0(t), t = 1, . . . , N , denotes measurement noise.
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In this paper, we make a number of assumptions that may not be valid in
realistic sound acquisition scenarios, but which will allow us (1) to focus on
the core issues encountered in the dereverberation problem, postponing some
practical and implementation issues to future work (see Section 7.5), and (2) to
investigate and interpret the proposed algorithms’ behavior only w.r.t. these
core issues, disregarding the potential impact of other issues on the algorithm
performance. The assumptions are the following (with m = 1, . . . ,M):

• microphone signals are available for the entire time window t ∈ [1, N ]
under consideration;

• RIRs are time-invariant within the time window t ∈ [1, N ] under consid-
eration, i.e., hm,0(t) ≡ hm,0;

• initial source signal conditions s0(t), t ≤ 0 are known (and assumed equal
to zero for ease of notation);

• no measurement noise is present, i.e., em,0(t) ≡ 0;
• all RIRs have equal and known length L ≤ N .

Based on these assumptions, the problem considered in this paper can be for-
mulated as follows:

Problem 1 (Multi-microphone dereverberation) Given a length-MN vec-
tor of microphone signals generated as

y = H0s0 (7.4)

find the best possible estimate of the length-N source signal vector s0. Here,
with m = 1, . . . ,M ,

y =
[
yT
1 . . . yT

M

]T
, ym =

[
ym(1) . . . ym(N)

]T
(7.5)

H0 =
[
HT

1,0 . . . HT
M,0

]T
(7.6)

Hm,0 =













h
(0)
m,0 0 0 . . . 0
...

. . .
. . .

. . .
...

h
(L−1)
m,0 . . . h

(0)
m,0

. . . 0
...

. . .
...

. . . 0

0 . . . h
(L−1)
m,0 . . . h

(0)
m,0













N×N

(7.7)

s0 =
[
s0(1) . . . s0(N)

]T
. (7.8)

Since the RIRs in H0 as well as the source signal vector s0 are unknown, we
define the following parameter vectors,

h =
[
hT
1 . . . hT

M

]T
, hm =

[

h
(0)
m . . . h

(L−1)
m

]T

(7.9)
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s =
[
s(1) . . . s(N)

]T
(7.10)

e =
[
eT1 . . . eTM

]T
, em =

[
em(1) . . . em(N)

]T
(7.11)

and a data model admitting two equivalent formulations,

y = Hs+ e (7.12)

= (IM ⊗ S)h+ e (7.13)

where H is a MN × N matrix with the coefficients of the RIRs parameter
vector h in a block Toeplitz structure as in (7.6)-(7.7), IM is the M × M
identity matrix, ⊗ denotes the Kronecker product, and S is a N × L Toeplitz
matrix defined as

S =











s(1) . . . 0
...

. . .
...

s(N − L+ 1) . . . s(1)
...

. . .
...

s(N) . . . s(N − L+ 1)











. (7.14)

The error signal parameter vector e is included to account for estimation errors
in both h and s.

7.3 Embedded Optimization Algorithms

State-of-the-art multi-microphone dereverberation algorithms in the category
of blind system identification and inversion approach Problem 1 using a two-
step procedure. First, an estimate Ĥ of the RIRs matrix is computed using a
blind identification method that typically exploits the cross-relation between
different microphone signals [5]. Second, an M -input, single-output inverse
filter g is designed and an estimate of the source signal vector is obtained as

ŝ = Gy (7.15)

where G is a block Toeplitz matrix of appropriate dimensions, containing the
inverse filter coefficients in g.

Instead, we propose to jointly estimate the RIRs parameter vector h and the
source signal parameter vector s. We derive three nonlinear least squares (NLS)
optimization problems for estimating h and s, and point out their strengths
and weaknesses. More particularly, we consider NLS problems without regu-
larization (NLS), with ℓ2-norm regularization exploiting prior knowledge on
h (ℓ2-RNLS), and with ℓ1-norm and ℓ2-norm regularization exploiting prior
knowledge on s and h (ℓ1/ℓ2-RNLS). A block coordinate descent (BCD) ap-
proach is adopted for solving these problems, resulting in three iterative algo-
rithms in which h and s are estimated sequentially.
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The sequential nature of the proposed algorithms shows a certain degree of
similarity with the state-of-the-art two-step procedure for blind system iden-
tification and inversion. A crucial difference, however, is that the RIRs pa-
rameter vector h is not just estimated once, but its estimate is iteratively
refined as improved estimates of the source signal parameter vector become
available. Another similarity with the state of the art, is that the source signal
parameter vector estimate resulting from the NLS and ℓ2-RNLS problems is
linearly related to the microphone signal vector y, so that it can be interpreted
as the result of an inverse filtering approach, even though an inverse filter is
never explicitly designed or computed. When solving the ℓ1/ℓ2-RNLS problem,
however, the source signal parameter vector estimate is not linearly related to
the microphone signal vector and so an inverse filtering interpretation is not
appropriate.

7.3.1 NLS problem

The starting point for the derivation of embedded optimization algorithms
solving Problem 1, is the formulation of an NLS optimization problem for the
data model (7.12)-(7.13),

min
h,s,e

‖e‖22 (7.16)

s. t. y = Hs+ e (7.17)

= (IM ⊗ S)h+ e. (7.18)

The proposed solution strategy consists in first minimizing (7.16) w.r.t. {s, e}
for a fixed value of h = ĥ using the equality constraints in (7.17), then minimiz-
ing (7.16) w.r.t. {h, e} for a fixed value of s = ŝ using the equality constraints
in (7.18), and repeating this procedure for a number of iterations (here fixed
to kmax). The resulting BCD algorithm is shown in Algorithm 9, where (·)+
denotes the Moore-Penrose pseudoinverse.

Algorithm 9 BCD algorithm for NLS problem

Input initial RIRs parameter vector estimate ĥ(0)

Output parameter vector estimates ŝ = ŝ(kmax), ĥ = ĥ(kmax)

1: for k = 1, . . . , kmax do
2: ŝ(k) = (Ĥ(k−1))+y

3: ĥ(k) =
(

IM ⊗ (Ŝ(k))+
)

y

4: end for

7.3.2 ℓ2-regularized NLS problem

It is well known that the NLS optimization problem in (7.16)-(7.18) generally
has multiple local solutions, and the BCD algorithm will only converge to



182 Chapter 7. Multi-Microphone Dereverberation

the global solution if the algorithm is properly initialized (i.e., if a good initial
estimate for either h or s is available). An effective approach for smoothing the
NLS objective function, and hence facilitating convergence to a meaningful local
solution, is the addition of a regularization term incorporating prior knowledge
on the unknown parameter vectors. A first approach to regularization consists
in the addition of a weighted ℓ2-norm of the RIRs parameter vector h to (7.16),

min
h,s,e

‖e‖22 + λ1‖h‖2W (7.19)

s. t. y = Hs+ e (7.20)

= (IM ⊗ S)h+ e (7.21)

A mean-square-error optimal choice for the weighting matrix W corresponds to

the inverse covariance matrix of the true RIRs vector h0 =
[
hT
1,0 . . . hT

M,0

]T
,

which is considered to be a random zero-mean variable having a Gaussian
probability density function. In the context of dereverberation, the use of a
statistical model for the late reverberation component in the RIRs has been
proven useful in a variety of algorithms. The most commonly used model is the
so-called Polack’s model [3], which approximates the temporal envelope of the
RIRs using an exponential function with a fixed decay α. We will adopt this
model in the proposed algorithm, and neglect any cross-correlations between
the RIRs parameters, such that W can be defined as a diagonal matrix,

W = IM ⊗ diag
{

1, e2α, . . . , e2(L−1)α
}

. (7.22)

The resulting BCD algorithm is given in Algorithm 10.

Algorithm 10 BCD algorithm for ℓ2-RNLS problem

Input initial RIRs parameter vector estimate ĥ(0), Polack’s model decay α,
regularization parameter λ1

Output parameter vector estimates ŝ = ŝ(kmax), ĥ = ĥ(kmax)

1: W̄ = diag
{
1, e2α, . . . , e2(L−1)α

}

2: for k = 1, . . . , kmax do
3: ŝ(k) = (Ĥ(k−1))+y

4: ĥ(k) =
(

IM ⊗
[
(Ŝ(k)T Ŝ(k) + λ1W̄)−1Ŝ(k)T

])

y

5: end for

7.3.3 ℓ1/ℓ2-regularized NLS problem

With the aim of obtaining an additional smoothing effect, prior knowledge on
the source signal vector can also be incorporated in the ℓ2-RNLS optimiza-
tion problem. Building on the proven efficiency of sparse representations for
speech and audio signals [13], an ℓ1-norm regularization in a suitable spectral
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basis seems to be appropriate for this purpose. When combined with the ℓ2-
norm regularization of the RIRs parameter vector, this results in the following
optimization problem,

min
h,s,e

‖e‖22 + λ1‖h‖2W + λ2‖Ds‖1 (7.23)

s. t. y = Hs+ e (7.24)

= (IM ⊗ S)h+ e. (7.25)

Here, D is an N ×N orthogonal matrix defining a spectral transform, such as
the discrete Fourier or cosine transform (DFT/DCT). In contrast to the pre-
vious two problems, the optimization problem in (7.23)-(7.25) does not admit
a closed-form solution when optimizing w.r.t. {s, e}. However, this particu-
lar subproblem is convex and can therefore be efficiently solved using existing
software (e.g., we use CVX/SeDuMi). The resulting BCD algorithm is shown
in Algorithm 11.

Algorithm 11 BCD algorithm for ℓ1/ℓ2-RNLS problem

Input initial RIRs parameter vector estimate ĥ(0), Polack’s model decay α,
orthogonal spectral transform matrix D, regularization parameters λ1, λ2

Output parameter vector estimates ŝ = ŝ(kmax), ĥ = ĥ(kmax)

1: W̄ = diag
{
1, e2α, . . . , e2(L−1)α

}

2: for k = 1, . . . , kmax do
3: ŝ(k) = argmins ‖y − Ĥ(k−1)s‖22 + λ2‖Ds‖1
4: ĥ(k) =

(

IM ⊗
[
(Ŝ(k)T Ŝ(k) + λ1W̄)−1Ŝ(k)T

])

y

5: end for

7.4 Evaluation

The proposed embedded optimization algorithms for multi-microphone dere-
verberation are evaluated here by means of a simulation example. A micro-
phone signal vector y is generated by filtering a source signal vector s0 of length
N = 1024, corresponding to a quasi-stationary voiced segment of a male speech
signal sampled at 8 kHz, using M = 5 synthetic RIRs of length L = 100. The
RIRs are synthesized by shapingM = 5 different Gaussian white noise (GWN)
sequences with an exponential envelope corresponding to Polack’s model with
α = 0.025. The same envelope is used for designing the weighting matrix W in
the ℓ2-RNLS and ℓ1/ℓ2-RNLS problems. The regularization parameters have
been chosen as λ1 = λ2 = 0.1, and D is the DCT matrix. All algorithms
start from a random GWN initial RIRs parameter vector estimate ĥ(0) and
perform kmax = 10 iterations. In the simulation results, the inherent scaling
ambiguity has been removed by plotting ŝ/a and aĥ rather than ŝ and ĥ, with

a =
√

ŝT ŝ/sT0 s0.



184 Chapter 7. Multi-Microphone Dereverberation

10 20 30 40 50 60 70 80 90 100
−6

−4

−2

0

2

4

6

l

h
(
l)

m

1 2 3 4 5 6 7 8 9 10
−6

−4

−2

0

2

4

6

l

h
(
l)

m

 

 

true RIR hm, 0

NLS est imate ĥm
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Figure 7.1: Comparison of true RIR and RIR parameter vector estimates for
m = 2.
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Figure 7.2: Comparison of magnitude spectra of true source signal and source
signal parameter vector estimates.

Fig. 7.1 shows the true and estimated RIR (m = 2), while Fig. 7.2 compares
the magnitude spectrum of the true and estimated source signal. As expected,
the BCD algorithm does not converge to the global NLS problem solution,
and suffers from a severe overestimation of the coefficients in the RIR tail as
well as large (≥ 10 dB) source spectrum estimation errors in some frequency
regions. The ℓ2-norm regularization is seen to have a beneficial effect on the
overall estimation performance, yielding RIR and source spectrum estimates
that follow the envelopes of the true RIR and source spectrum. In addition,
the ℓ1-norm regularization further increases the local estimation performance:
the right plot in Fig. 7.1 shows an improved estimation of the early RIR
coefficients, while the top right subplot in Fig. 7.2(c) illustrates the improved
accuracy of the estimated quasi-harmonic speech components.

7.5 Conclusions

In this paper, we have introduced a new approach to multi-microphone derever-
beration, based on a recent paradigm known as embedded optimization. Three
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sequential optimization algorithms have been proposed, which enable the joint
estimation of the unknown source signal and room acoustics. By adopting an
iterative numerical optimization strategy, the need for an explicit inverse filter
design is avoided. However, the inclusion of appropriate regularization terms
in the inherently non-convex optimization problem appears to be crucial for as-
suring convergence to a meaningful local solution. In particular, the addition of
a weighted ℓ2-norm of the RIRs parameter vector, based on a statistical model
for late reverberation, leads to an improved overall estimation performance. In
addition, the accuracy of the estimated early reflections and (quasi-)harmonic
source signal components can be further increased by incorporating an ℓ1-norm
regularization term for the source signal parameter vector DFT/DCT.

The work presented in this paper is a first step towards the development of
efficient and reliable embedded optimization algorithms for multi-microphone
dereverberation. A number of challenges for future research remain, e.g.,

• to move from batch to online (frame-based) processing, properly manag-
ing initial/final conditions,

• to generalize the ℓ2-norm regularization for dealing with realistic impulse
responses,

• to take measurement noise into account,
• to arrive at autonomous optimization algorithms involving proper termi-

nation criteria and cross-validation procedures for adjusting the regular-
ization parameters,

• to derive fast SQP/SCP algorithms exploiting the particular dereverber-
ation problem structure,

• to use perceptual criteria in the problem formulations,
• to evaluate the resulting dereverberation performance.
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Chapter 8

Conclusions and

Suggestions for Future

Research

8.1 Summary and Conclusions

In this thesis we have designed an embedded optimization framework for au-
dio signal enhancement and investigated its application to four different audio
signal enhancement problems, namely hard clipping precompensation, loud-
speaker precompensation, declipping and multi-microphone dereverberation.
The research objectives formulated in Chapter 1 were the conceptual develop-
ment of an embedded optimization framework for audio signal enchancement,
the incorporation of perceptual information into this framework, the design
and hardware implementation of application-tailored optimization methods,
and the comparative objective and subjective evaluation with state-of-the-art
audio signal enhancement algorithms. These research objectives have been
achieved, resulting in the following four major contributions of this thesis.

The first major contribution consists in the conceptual development of an em-
bedded optimization framework and its application to different audio signal en-
chancement problems. In a first part of this thesis, precompensation algorithms
for audio signal enhancement have been considered. Hard clipping precompen-
sation was formulated in Chapter 2 as a sequence of per-frame constrained
convex quadratic optimization problems. Loudspeaker precompensation was
formulated in Chapter 3 as a sequence of per-frame nonconvex optimization
problems, in which the loudspeaker was modeled by a grey-box Hammerstein
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loudspeaker model, i.e. a cascade of a memoryless nonlinearity and a linear fi-
nite impulse response filter. In a second part of this thesis, recovery algorithms
for audio signal enhancement have been considered. Declipping was formu-
lated in Chapter 6 as a sparse signal recovery problem in the DFT domain,
in which the recovery was performed by solving a per-frame ℓ1-norm-type con-
vex optimization problem. Multi-microphone dereverberation was formulated
in Chapter 7 as a nonconvex optimization problem, allowing for the joint
estimation of the room acoustics model parameters and the clean audio signal.

The second major contribution of this thesis consists in the incorporation of
perceptual information into the embedded optimization algorithms through the
use of a model of human sound perception. In the proposed embedded optimiza-
tion precompensation algorithms, the MPEG perceptual model [1] was applied
to compute the instantaneous masking threshold, in order to establish an objec-
tive mathematical measure reflecting the perceptible distortion incurred in the
subsequent distortion process. In the hard clipping precompensation algorithm
presented in Chapter 2, an objective function reflecting the perceptible non-
linear clipping distortion was constructed by including frequency weights based
on the instantaneous masking threshold. In the loudspeaker precompensation
algorithm presented in Chapter 3, an objective function reflecting the per-
ceptible combined linear and nonlinear loudspeaker distortion was constructed
in a similar fashion. In the declipping algorithm presented in Chapter 6, fre-
quency weights based on the instantaneous masking threshold were included
in the ℓ1-norm optimization criterion. As a result, the declipping algorithm
was focused on maximizing the perceived audio quality of the declipped signal
instead of the physical signal reconstruction quality. In the multi-microphone
dereverberation algorithm of Chapter 7, perceptual information was not ex-
plicitly incorporated into the embedded optimization algorithm. However, the
addition of regularization terms based on a statistical late reverberation model
and a sparsity prior for the clean audio signal spectrum has shown that the
optimization problem formulation lends itself very well to the inclusion of prior
information, which could be easily extended to the inclusion of perceptual in-
formation.

The third major contribution of this thesis consists in the design and hard-
ware implementation of fast and reliable optimization methods for solving the
per-frame optimization problems. As concerns hard clipping precompensation,
three different structure-exploiting convex optimization methods were proposed
in Chapter 2 for solving the per-frame constrained convex quadratic opti-
mization problems. A first method was an active set method, a second and
third method were projected gradient methods, for which theoretical complex-
ity bounds were derived. The fastest of these optimization methods was seen
to be the optimal projected gradient method originally proposed in [2], which
was shown to run in real time on a standard PC. The hardware implemen-
tation of the optimal projected gradient optimization method on a field pro-
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grammable gate array (FPGA) was discussed Chapter 5. Bit-accurate sim-
ulations of the FPGA implementation have demonstrated that the transition
from floating-point arithmetic to fixed-point arithmetic and the selection of
the corresponding bit width has an impact on the resulting audio quality as
well as on the resource usage and power consumption of the design. The se-
lected FPGA design solves the per-frame optimization problems by performing
30 optimal projected gradient iterations using 20 fixed-point fraction bits, has
a low latency, a reduced power consumption, a reduced resource usage, and
at the same time preserves the full audio quality improvement. This design
allows to perform the algorithm in real time on a small and portable audio
device. In Chapter 3, the solution of the per-frame nonconvex optimization
problems for loudspeaker precompensation was considered. Depending on the
invertibility and the smoothness of the memoryless nonlinearity in the Ham-
merstein loudspeaker model, different optimization strategies were proposed.
In the case of an invertible memoryless nonlinearity, the optimization problem
was seen to have a closed-form solution. In the case of a non-invertible smooth
memoryless nonlinearity, a gradient optimization method was applied, whereas
for non-invertible hard clipping memoryless nonlinearities, the optimal pro-
jected gradient optimization method was applied. For the multi-microphone
dereverberation algorithm discussed in Chapter 7, the resulting nonconvex
joint estimation problem was solved using a block coordinate descent (BCD)
approach, sequentially estimating the room acoustics model parameters and
the clean audio signal.

The fourth major contribution of this thesis consists in the comparative ob-
jective and subjective evaluation of the designed embedded optimization algo-
rithms with state-of-the-art audio signal enhancement algorithms. For hard
clipping precompensation, the objective audio quality evaluation performed in
Chapter 2 reported significantly higher objective audio quality scores using
the embedded optimization algorithm over standard hard clipping precompen-
sation techniques, and this for moderate to high levels of clipping. For loud-
speaker precompensation, the objective evaluation experiments using synthetic
and identified loudspeaker models performed in Chapter 3 have shown that
the embedded optimization loudspeaker precompensation algorithm provides a
significant audio quality improvement, especially so at high loudspeaker play-
back levels. In Chapter 4, a subjective evaluation of the aforementioned hard
clipping and loudspeaker precompensation algorithms was performed, through
a formal listening test including 19 test subjects. The conclusions of this sub-
jective evaluation were seen to confirm the outcome of the objective evaluation
experiments. Moreover, some interesting side results were obtained from the
subjective evaluation experiments. First, the perceived audio quality of audio
signals subject to a certain nonlinear hard clipping distortion was seen to be
not significantly superior to that of audio signals subject to the same nonlin-
ear hard clipping distortion and an additional linear distortion. This confirms
earlier findings [3] that nonlinear distortion is dominant in the perception with
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respect to linear distortion. Second, there was a significant positive correlation
between subjective audio quality scores and objective audio quality scores,
supporting the validity of using objective measures to assess the audio quality
of signals subject to hard clipping and loudspeaker distortion. In Chapter
6, objective and subjective evaluation experiments (formal listening test us-
ing 16 test subjects) have revealed a significant audio quality increase for the
proposed embedded optimization declipping algorithm compared to existing
CS-based declipping algorithms.

8.2 Suggestions for Future Research

In this thesis, precompensation algorithms and recovery algorithms for audio
signal enhancement have been considered in an embedded optimization frame-
work. The dichotomy between precompensation and recovery algorithms was
introduced due to the observation that in many cases, the audio signal can only
be processed either before or after the distortion process acts onto the audio
signal. However, one can think of commonly encountered scenarios where the
audio signal can be processed both before and after the action of the distortion
process, e.g. a predictable hard clipping distortion process, or a distortion pro-
cess occuring during audio signal mastering or transmission stages. In these
scenarios, a precompensation algorithm and a recovery algorithm could coop-
erate in order to maximally mitigate the perceptible effects of the distortion
process. This joint integration of precompensation and recovery in an em-
bedded optimization approach is in our view a highly interesting and relevant
direction for future research.

Next, the application of a model of human sound perception in the proposed
embedded optimization framework was seen to result in an improved audio
quality for hard clipping precompensation, loudspeaker precompensation and
declipping problems. When the goal is to improve another perceptual attribute,
such as speech quality or speech intelligibility, it will be necessary to incorporate
a perceptual model translating these specific perceptual attributes to mathe-
matical measures that can be optimized for. The study and integration of
these perceptual models is an important step to allow the embedded optimiza-
tion framework to maximally enhance these perceptual attributes. Moreover,
whereas the focus of this thesis has been on improving human sound perception,
it is our opinion that the embedded optimization approach is equally suited for
applications where the aim is to improve the sound perception by machines,
e.g. in automatic speech recognition, given the proper inclusion of models of
machine sound perception.

Concerning the fast and reliable solution of the per-frame optimization prob-
lems that form the core of the embedded optimization algorithms, we have
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followed the path of exploiting as much as possible the inherent structure of
the optimization problems. For the considered convex optimization problems,
we have if possible also derived theoretical upper bounds on the algorithmic
complexity. In this approach, the resulting application-specific optimization
methods have to be implemented in or translated to compilable and reliable
code that can be embedded in real-time audio applications. We note that a
different paradigm called automatic code generation [4] can be envisaged for
performing embedded optimization in real-time audio signal enhancement ap-
plications. This approach takes a high-level description of an optimization
problem family, and automatically generates code that compiles into a reliable
and high-speed solver for the problem family. The exploration of automatic
code generation approaches for embedded optimization in audio signal enhance-
ment applications and their comparison in terms of speed and reliability with
the optimization approach presented in this thesis forms a highly relevant topic
for future research.

Finally, we also want to point out that most of the proposed embedded opti-
mization algorithms rely on an estimate of the model parameters of the dis-
tortion process under consideration. However, the distortion model parameter
estimation will in general not be performed without estimation errors. It is
therefore worthwile to assess the sensitivity of the resulting audio signal en-
hancement performance of the different embedded optimization algorithms to
estimation errors in the distortion model parameters.

Beside the suggested general directions for future research discussed above,
we can point out some potential research directions for the specific audio sig-
nal enhancement problems of loudspeaker compensation and multi-microphone
dereverberation.

Loudspeaker Precompensation

In this thesis, the loudspeaker has been modeled using a grey-box Hammerstein
model, which gives a good trade-off between model accuracy and model com-
plexity. The application of more complex loudspeaker models, such as Volterra
models or white-box lumped parameter models could result in a higher accu-
racy in modeling the different loudspeaker distortion mechanisms. However,
the precompensation of such loudspeaker models using embedded optimization
will presumably result in more complex and typically nonconvex optimization
problems. The adequate formulation and efficient solution of such optimization
problems involving more complex loudspeaker models, and the comparison be-
tween the precompensation performance for different loudspeaker models would
form major contributions to the loudspeaker compensation problem.

Moreover, in this thesis the loudspeaker model parameters were estimated off-
line during a separate estimation procedure. In practice, the loudspeaker model
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parameters might vary over time, e.g. due to temperature changes. On-line
tracking of the time variation of the loudspeaker model parameters is a chal-
lenging problem due to the difficulty to properly feed back the reproduced audio
signal, which could be achieved using some form of measurement and feedback
of the loudspeaker voice coil displacement or temperature.

Multi-Microphone Dereverberation

In this thesis, an embedded optimization approach to multi-microphone dere-
verberation has been presented, which was seen to differ fundamentally from
existing dereverberation approaches. The promising results of this approach
for an example multi-microphone dereverberation scenario motivate future re-
search in this direction. In our view, the most important research topics to be
addressed are the derivation of fast optimization methods exploiting the par-
ticular dereverberation problem structure, the inclusion of measurement noise,
the incorporation of perceptual criteria in the problem formulation, and the
evaluation of the resulting dereverberation performance using objective and
subjective speech intelligibility experiments.
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