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ABSTRACT 
 

 

IMAGE QUALITY STATISTICS AND THEIR USE IN 

STEGANALYSIS AND COMPRESSION 
 

 

We categorize comprehensively image quality measures, extend measures defined 

for gray scale images to their multispectral case, and propose novel image quality 

measures.  The statistical behavior of the measures and their sensitivity to various kinds of 

distortions, data hiding and coding artifacts are investigated via Analysis of Variance 

techniques.  Their similarities or differences have been illustrated by plotting their 

Kohonen maps.  Measures that give consistent scores across an image class and that are 

sensitive to distortions and coding artifacts are pointed out.   

We present techniques for steganalysis of images that have been potentially 

subjected to watermarking or steganographic algorithms.  Our hypothesis is that 

watermarking and steganographic schemes leave statistical evidence that can be exploited 

for detection with the aid of image quality features and multivariate regression analysis.  

The steganalyzer is built using multivariate regression on the selected quality metrics.  In 

the absence of the ground-truth, a common reference image is obtained based on blurring.  

Simulation results with the chosen feature set and well-known watermarking and 

steganographic techniques indicate that our approach is able to reasonably accurately 

distinguish between marked and unmarked images.  

We also present a technique that provides progressive transmission and near-lossless 

compression in one single framework.  The proposed technique produces a bitstream that 

results in progressive reconstruction of the image just like what one can obtain with a 

reversible wavelet codec. In addition, the proposed scheme provides near-lossless 

reconstruction with respect to a given bound after each layer of the successively refinable 

bitstream is decoded. Experimental results for both lossless and near-lossless cases are 

presented, which are competitive with the state-of-the-art compression schemes. 
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ÖZET 
 

 

İSTATİSTİKSEL İMGE KALİTESİNİN STEGO-ANALİZDE 

KULLANIMI VE KODLAMA 
 

 

İmge nitelik ölçütlerini detaylı bir şekilde sınıflandırdık, gri seviye imgeler için 

tanımlanmış olan imge nitelik ölçütlerini çok bantlı imgelere genişlettik.  Bu ölçütleri 

değişik bozulumlar, imge kodlama ve damgalama uygulamalarında ortaya çıkan 

bozulumlar için istatistiksel olarak karşılaştırdık.  Bu ölçütler arasındaki benzerlik ve 

farklılıklar Kohonen haritaları kullanılarak görselleştirildi.  Değişinti analizlerine 

dayanarak imge kodlama, damgalama ve diğer bozulumlara tutarlı ve duyarlı tepki veren 

ölçütler saptandı.  

 

Damgalanmış imgelerde damga varlığının sezimi ile ilgili yöntemler sunulmaktadır.  

Belirli bir damgalama yönteminin imgede istatistiksel ve yapısal izler bırakacağı 

varsayımından yola çıkarak, bu izlerin uygun özniteliklerin seçimi ve çoklu bağlanım 

analizi ile damga varlığının seziminde kullanılabileceği gösterilmiştir.  İyi bilinen 

damgalama yöntemleri ve zengin bir imge kümesi üzerinde elde edilen görece yüksek 

doğru sezim yüzdeleri, önerilen yöntemlerin başarılı olduğunu kanıtlamaktadır. 

 

Yeni bir yitimsiz kodlama yöntemi ile, yitimlerin istenen sınırlar içinde kalmasının 

sağlandığı, dolayısıyla sınırlı yitimli olarak adlandırılan bir kodlama yöntemi geliştirildi.  

Yöntemimizin bir diğer önemli özelliği, herhangi bir  geçişten sonra elde edilen bit 

dizgisinden geri çatılan imgede  pikseller üzerindeki en büyük hatanın  sınırlandırılmış 

olmasıdır.  Bu özelliği aşamalı kodlayıcılar sınıfında ön plana çıkan dalgacık tabanlı 

kodlayıcılar sağlayamamaktadırlar.  Yitimsiz ve yitimsize yakın kodlamaya ilişkin 

deneysel sonuçlar, önerilen yöntemin başarımının bilinen en iyi kodlayıcılar kadar iyi hatta 

bazı imgeler için daha da iyi olduğunu göstermektedir. 

 

 



 ix 

LIST OF FIGURES 
 

 

Figure 2.1.  Box plots of quality measure scores.  A) good measure, b) moderate 

        measure, c) poor measure. The F-scores as well as the significance  

        level p are given……………………………………………………………....35 

 

Figure 2.2.  SOM of distortion measures for JPEG and SPIHT…………………………...43 

 

Figure 3.1.  Schematic descriptions of (a) watermarking or stegoing, (b) filtering 

        an un-marked image, (c) filtering a marked image…………………………..52 

 

Figure 3.2.  Scatter plots of the three image quality measures (M3: czenakowski  

        measure, M5: image fidelity, M6: normalized cross-correlation)…..…….….53 

 

Figure 3.3.  Schematic description of  (a) training, and  (b) testing……………………….58 

 

Figure 4.1.  Ordering of the causal prediction neighbors of the current pixel i× , N=6…...70 

 

Figure 4.2.  The context pixels, denoted by •  and ! , used in the covariance  

        estimation of the current pixel ∗ .  The number of context pixels is K=40…..70 

 

Figure 4.3.  Causal, ! , and non-causal, • , neighbors of the current pixel, ∗ , 

        used for probability mass estimation in the second and higher passes…….....71 

 

Figure 4.4.  Schematic description of the overall compression scheme…………………...75 

 

Figure 4.5.  Details of the encoder block used in figure 4.4.  Here λ  is the length  

                   of the interval ( ]mm RL , ……………………………………….………………76 

 

Figure 4.6.  The decoder is a replica of the encoder……………………………………....77 



 x 

LIST OF TABLES 
 

 

Table 2.1.  List of symbols and equation numbers of the quality metrics…………………11 

 

Table 2.2.  ANOVA results (f-scores) for the JPEG and SPIHT compression  

      distortions as well as additive noise and blur artifacts.  For each  

      distortion type the variation due to image set is also established..…………….39 

 

Table 2.3.  One-way ANOVA results for each image class and two-way ANOVA  

       results for the distortions on the combined and image set independence……..40 

 

Table 2.4.  ANOVA scores for the bit rate variability (combined JPEG and SPIHT  

       scores) and coder variation……………………………………………………41 

 

Table 3.1.  One-way ANOVA tests for watermarking, steganography and pooled  

      watermarking and steganography……………………………………………...55 

 

Table 3.2.  Training and test samples for DIGIMARC and PGS for experiment 1……….59 

 

Table 3.3.  Training and test samples for COX for experiment 1…………………………59 

 

Table 3.4.  Training and test samples for pooled watermarking algorithms for  

       experiment 2 (L1: level 1 etc.)………...………………………………………60 

 

Table 3.5.  Training and test samples for experiment 3: train on DIGIMARC,  

       test on PGS and COX……….………………………...………………………60 

 

Table 3.6.  Training and test samples for Stools for experiment 4………………………...63 

 

Table 3.7.  Training and test samples for Jsteg for experiment 4………………………….60 

 

Table 3.8.  Training and test samples for Steganos for experiment 4……………………..60 



 xi 

Table 3.9.  Training and test samples for pooled stego algorithms for experiment 5……..61 

 

Table 3.10.  Training and test samples for experiment 6: train on  

        Steganos and Stools, test on Jsteg……………………………………………61 

 

Table 3.11.  Training and test samples for pooled watermarking and  

         steganography algorithms for experiment 7…………………………………61 

 

Table 3.12.  Training and test samples for experiment 8: train on Steganos,  

        Stools and DIGIMARC, test on Jsteg and COX…………...………………...61 

 

Table 3.13.  Performance of the steganalyzer for all the experiments…………………….62 

 

Table 4.1.  Comparison of lossless compression results: proposed method  

       versus CALIC.          ………………………………………………………….78 

 

Table 4.2.  Comparison of 4 different methods of near-lossless compression  ( 1=δ )…...78 

 

Table 4.3.  Comparison of 4 different methods of near-lossless compression  ( 3=δ )…..79 

 

Table 4.4.  Comparison of 4 different methods of near-lossless compression  ( 7=δ )…..79 

 

Table 4.5.  Comparison of bit/pixel efficiency and peak signal to noise ratio  

       in dB of the proposed algorithm versus the CALIC algorithm……………….79 

 

 

 

 

 

 

 

 



 xii 

LIST OF SYMBOLS / ABBREVIATIONS  
 

 

a  Norm of vector a  

ba,  Inner product of vectors a  and b 

C  Multispectral image 
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1. INTRODUCTION 
 

 

1.1.  Motivation 

 

There has been an explosive growth in multimedia technology and applications in the 

past several years.  Efficient representation for storage, transmission, retrieval and security 

are some of the biggest challenges faced.  

 

The first concern addressed in this thesis is the efficient compression of data.  Visual 

information is one of the richest but also most bandwidth consuming modes of 

communication.  However, to meet the requirements of new applications such as mobile 

multimedia, interactive databases (encyclopedias, electronic newspaper, travel information, 

and so on) powerful data compression techniques are needed to reduce the bit rate, even in 

the presence of growing communications channels offering increased bandwidth.  Other 

applications are in remote sensing, education and entertainment.   

 

Not only reducing the bit rate but functionalities of progressive transmission or 

progressive decoding of the bit stream became more important features of compression 

schemes. A typical application is data browsing. A user may want to visualize the picture 

at a lower quality to save transmission time. Another application is tele-radiology where a 

physician can request portions of an image at increased quality (including lossless 

reconstruction) while accepting unimportant portions at much lower quality, thereby 

reducing the overall bandwidth required for transmitting an image. 

 

Although most applications require high compression ratios, this requirement is in 

general in conjunction with the desire for high quality in the resulting content. 

Guaranteeing a certain level of quality after compression has become a prime concern for 

content providers, as the quality in the resulting content is the most important factor in the 

success of an application in the market place.  

 

A second concern in the thesis is the understanding of image quality metrics.  

Compression, transmission and sensor inadequacy lead to artifacts and distortions affecting 
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image quality.  Identifying the image quality measures that have highest sensitivity to these 

distortions would help systematic design of coding, communication and imaging systems 

and of improving or optimizing the picture quality for a desired quality of service.   

 

The third concern is image security and secret communication.  Given the 

proliferation of digital images, and given the high degree of redundancy present in a digital 

representation of an image (despite compression), there has been an increased interest in 

using digital images as cover-objects for the purpose of data hiding.  Since unlimited 

number of copies of an original can be easily distributed or forged, the protection and 

enforcement of intellectual property rights is an another important issue.  A digital 

watermark is intended to complement cryptographic processes, and is an imperceptible 

signal added to digital content that can be later detected or extracted in order to make some 

assertion about the content.  Although the main applications for digital watermarking 

appear to be copyright protection and digital rights management, watermarks have also 

been proposed for secret communication, that is, steganography.  However, despite this 

obvious and commonly observed connection to steganography, there has been very little 

effort aimed at analyzing or evaluating the effectiveness of watermarking techniques for 

steganographic applications.  Instead, most work has focused on analyzing or evaluating 

the watermarking algorithms for their robustness against various kinds of attacks that try to 

remove or destroy them.  If digital watermarks are to be used in steganography 

applications, detection of their presence by an unauthorized agent defeats their very 

purpose.  Even in applications that do not require hidden communication, but only 

robustness, we note that it would be desirable to first detect the possible presence of a 

watermark before trying to remove or manipulate it.  

 

The steganalysis is especially important, as there is a number application areas 

interested in information hiding, such as  

 

• Military and intelligence agencies require secret communications. 

• Terrorists and criminals also place great value on secret communications. 

• Law enforcement and counter intelligence agencies are interested in 

understanding these technologies and their weaknesses, so as to detect and trace 

hidden messages. 
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• Schemes for digital elections and digital cash make use of anonymous 

communication techniques. 

 

1.2.  Approaches 

 

The focus of this thesis is on three challenges of visual communications.  One is the 

efficient representation of image data for storage and transmission, which is the art and 

science of identifying models for different types of structures existing in image data to 

obtain compact representations.  Second is image quality and the third is multimedia 

security.  These are diverse research areas, but also are integral parts of visual 

communications as a whole.  Findings in one field are readily used in the others.  For 

example incorporation of a good image model in a compression scheme decreases the bit 

rate to represent the image.  Still this image model can be used in image data hiding to get 

a true idea of the data-hiding capacity.  Good image models together with quality metrics 

incorporating human visual system are indispensable in the design of both image coding 

and watermarking systems as we want visually pleasing, compactly represented and robust 

images resistant to various attacks.    

 

Image Quality:  There is a wealth of research on subjective and/or objective image 

quality measures to reliably predict either perceived quality across different scenes and 

distortion types or to predict algorithmic performance computer vision tasks.  Our 

approach is different from the companion studies, in that set of objective image quality 

measures has been statistically analyzed to identify the ones most sensitive and 

discriminative to compression, watermarking, blurring and noise distortions.  The 

identified measures are important in the design and performance evaluation of 

compression, watermarking and imaging systems.  Given that an imaging system 

introduces blurring, by incorporating the most discriminative measure to blurring, among 

other constraints, and using it as an objective function in the design process would alleviate 

this problem.  Similarities, differences and mutual correlations of image quality measures 

have been illustrated by plotting Kohonen’s self organizing maps.  In case one measure is 

not tractable in the design process, still another mutually correlated and simpler measure 

can be used.  Also, if a combination of measures is required, the redundant measures can 

be easily eliminated. 
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Watermark and Stego-mark Detection:  Most of the work in watermarking has 

focused on analyzing or evaluating the watermarking algorithms for their robustness 

against various kinds of attacks that try to remove or destroy them.  However, despite the 

obvious and commonly observed connection to steganography, there has been very little 

effort aimed at analyzing or evaluating the effectiveness of watermarking techniques for 

steganographic applications. General detection techniques as applied to steganography 

have not been devised and methods beyond visual inspection and specific statistical tests 

for individual techniques are not present in the literature.   

 

Our approach addresses exactly an automatic detection of the presence of watermark 

or steganographic marks in images.  Hiding information in digital media requires 

alterations of the signal properties that introduce some form of degradation, no matter how 

small.  These degradations can act as signatures that could be used to reveal the existence 

of a hidden message.  For example, in the context of digital watermarking, the general 

underlying idea is to create a watermarked signal that is perceptually identical but 

statistically different from the host signal.  A decoder uses this statistical difference in 

order to detect the watermark.  However, the very same statistical difference that is created 

can potentially be exploited to determine if a given image is watermarked or not.  We show 

that addition of a watermark or message leaves unique artifacts, which can be detected 

using the most discriminative image quality measures identified from their statistical 

analysis and multivariate regression analysis.  We show that selected image quality 

measures form a multidimensional feature space whose points cluster well enough to do a 

classification of marked and non-marked images. 

 

Lossless Progressive Compression:  Lossless or reversible compression refers to 

compression approaches in which the reconstructed data exactly matches the original.  

Near-lossless compression denotes compression methods, which give quantitative 

guarantees on the nature of the loss that is introduced.  Near-lossless compression is 

potentially useful in remote sensing, medical imaging, space imaging and image archiving 

applications, where the huge data size could require lossy compression for efficient storage 

or transmission.  However, the need to preserve the validity of subsequent image analysis 

performed on the data set to derive information of scientific or clinical value puts strict 

constraints on the error between compressed image pixel values and their originals.  In 



 5 

such cases, near-lossless compression can be used as it yields significantly higher 

compression ratios compared to lossless compression and at the same time, the quantitative 

guarantees it provides on the nature of loss introduced by the compression process are 

more desirable compared to the uncertainties that are faced when using lossy compression. 

 

Another pillar of this thesis is the proposal of a novel image compression scheme 

that provides progressive transmission and near-lossless compression in one single 

framework.  We formulate the image data compression problem as one of asking the 

optimal questions to determine, respectively, the value or the interval of the pixel, 

depending on whether one is interested in lossless or near-lossless compression.  New 

prediction methods based on the nature of the data at a given pass are presented and links 

to the existing methods are explored.  The trade-off between non-causal prediction and 

data precision is discussed within the context of successive refinement.   Context selection 

for prediction in different passes is addressed.  Experimental results for both lossless and 

near-lossless cases are presented, which are competitive with the state-of-the-art 

compression schemes. 

 

1.3.  Contributions 

 

The major contributions of this thesis can be highlighted as follows: 

 

• We have presented collectively a set of image quality measures in their 

multispectral version and categorized them.  Image quality measures have been 

statistically analyzed to identify the ones most sensitive and discriminative to 

compression, watermarking, blurring and noise distortions.  We have also pointed 

out the image features that should be taken more seriously into account in the 

design of more successful coding, imaging and data hiding systems.  The 

correlation between various measures has been depicted via Kohonen’s Self-

Organizing Map.  The placement of measures in the two-dimensional map has 

been in agreement with one’s intuitive grouping. 

 

• By using statistically most significant image quality measures, we have 

developed steganalysis techniques both for conventional LSB like embedding 
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used in the context of a passive warden model and for watermarking which can 

be used to embed secret messages in the context of an active warden.  The 

techniques we present are novel and to the best of our knowledge, the first 

attempt at designing general purpose tools for steganalysis.  

 

• We proposed a novel technique that unifies progressive transmission and near-

lossless compression in one single bit stream.  The proposed technique produces 

a bitstream that results in progressive reconstruction of the image just like what 

one can obtain with a reversible wavelet codec.  In addition, the proposed scheme 

provides near-lossless reconstruction with respect to a given bound after each 

layer of the successively refinable bitstream is decoded.  Furthermore, the 

compression performance provided by the proposed technique is superior or 

comparable to the best-known lossless and near-lossless techniques proposed in 

the literature.  The originality of the method consists in looking at the image data 

compression as one of asking the optimal questions to determine the interval in 

which the current pixel lies.   

 

1.4.  Outline 

 

We present a set of image quality measures and analyze them statistically with 

respect to coding, blurring and noise distortions in the second section.  The measures are 

categorized into pixel difference-based, correlation-based, edge-based, spectral-based, 

context-based and HVS-based (Human Visual System-based) measures.  We conduct a 

statistical analysis of the sensitivity and consistency behavior of objective image quality 

measures.  The mutual relationships between the measures are visualized by plotting their 

Kohonen maps.  Their consistency and sensitivity to coding as well as additive noise and 

blur are investigated via analysis of variance of their scores.   

 

Using the discrimination power concept of image quality measures, we develop 

steganalysis techniques for watermarking and steganographic applications in section three.  

We first describe the steganography problem in terms of prisoner’s problem.  Next, we 

show that the distance between an unmarked image and its filtered version is different from 

the distance between a marked image and its filtered version.  This is the critical finding on 
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which we build the steganalyzer by using a small subset of image quality measures and 

multivariate regression analysis.  Later, we give the design principles and extensively 

describe the experiments to test the performance of the steganalyzer with a variety of best 

known watermarking and mostly cited steganographic algorithms on a rich image set. 

 

Key problem in lossless compression is accurate probability mass function 

estimation.  We describe probability mass function estimation methods, data models, and 

our novel approach to the design of an embedded lossless and near-lossless image 

compression scheme in section four.  This section is compact and the knowledge it requires 

from sections two and three is at minimal.   

 

Section five concludes the thesis and explores directions for future work. 



 8 

2.  STATISTICAL EVALUATION OF IMAGE QUALITY MEASURES 
 

 

2.1.  Introduction 

 

Image quality measures are figures of merit used for the evaluation of imaging 

systems or of coding/processing techniques. We consider several image quality metrics and 

study their statistical behavior when measuring various compression and/or sensor 

artifacts.  

 

A good objective quality measure should well reflect the distortion on the image due 

to, for example, blurring, noise, compression, sensor inadequacy.  One expects that such 

measures could be instrumental in predicting the performance of vision-based algorithms 

such as feature extraction, image-based measurements, detection, tracking, segmentation 

etc. tasks.  Our approach is different from companion studies in the literature focused on 

subjective image quality criteria, such as in [1, 2, 3].  In the subjective assessment of 

measures characteristics of the human perception becomes paramount, and image quality is 

correlated with the preference of an observer or the performance of an operator on some 

specific task. 

 

In the image coding and computer vision literature, the raw error measures based on 

deviations between the original and the coded images are overwhelmingly used [4, 5, 6], 

Mean Square Error (MSE) or alternatively Signal to Noise Ratio (SNR) varieties being the 

most common measures.  The reason for their widespread choice is their mathematical 

tractability and it is often straightforward to design systems that minimize the MSE.  Raw 

error measures such as MSE may quantify the error in mathematical terms, and they are at 

their best with additive noise contamination, but they do not necessarily correspond to all 

aspects of the observer’s visual perception of the errors [7, 8], nor do they correctly reflect 

structural coding artifacts. 

 

For multimedia applications and very low bit rate coding, quality measures based on 

human perception are being more frequently used [9, 10, 11, 12, 13, 14].  Since a human 

observer is the end user in multimedia applications, an image quality measure that is based 
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on a human vision model seems to be more appropriate for predicting user acceptance and 

for system optimization.  This class of distortion measures gives in general a numerical 

value that will quantify the dissatisfaction of the viewer in observing the reproduced image 

in place of the original (though Daly’s VPD map [13] is a counter example to this).  The 

alternative is subjective tests where subjects view a series of reproduced images and rate 

them based on the visibility of artifacts [15, 16].  Subjective tests are tedious and time 

consuming and the results depend on various factors such as observer’s background, 

motivation, etc., and furthermore actually only the display quality is being assessed.  

Therefore an objective measure that accurately predicts the subjective rating would be a 

useful guide when optimizing image compression algorithms. 

 

Recently there have been ITU (International Telecommunications Union) efforts to 

establish objective measurement of video quality.  Thus in the context of distribution of 

multimedia documents, video programming in particular, in-service continuous evaluation 

of video quality is needed.  This continuous video quality indicator would be an input to 

the network management, which must guarantee a negotiated level of service quality. 

Obviously such a quality monitoring can only be realized with objective methods [17, 18].  

It must be pointed out, however, that subjective assessment, albeit costly and time-

consuming, if not impractical, is accurate.  Objective methods, on the other hand, can at 

best try to emulate the performance of subjective methods, utilizing the knowledge of the 

human visual system. 

  

Similarly for computer vision tasks, prediction of algorithmic performance in terms 

of imaging distortions is of great significance [19, 20].  In the literature the performance of 

feature extraction algorithms, like lines and corners [19], propagation of covariance 

matrices [20], quantification of target detection performance and ideal observer 

performance [21, 22, 23] have been studied under additive noise conditions.  It is of great 

interest to correlate coding and sensor artifacts with such algorithmic performance.  More 

specifically one would like to identify image quality metrics that can predict accurately and 

consistently the performance of computer vision algorithms in distorted image records, the 

distortions being due to compression, sensor inadequacy etc..  An alternative use of image 

quality metrics is in the inverse mapping from metrics to the nature of distortions [24].  In 

other words given the image quality metrics, one tries to reconstruct the distortions (e.g., 
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blur, noise, etc. amount in a distortion space) that could have resulted in the measured 

metric values.    

 

Thus in this study we aim to study objective measures of image quality and to 

investigate their statistical performance.  Their statistical behavior is evaluated first, in 

terms of how discriminating they are to distortion artifacts when tested on a variety of 

images using Analysis of Variance (ANOVA) method.  Second, the measures are 

investigated in terms of their mutual correlation or similarity, this being put into evidence 

by means of Kohonen maps.   

 

Some 26 image quality metrics are described and summarized in Table 2.1.  These 

quality metrics are categorized into six groups according to the type of information they 

are using.  The categories used are:  

 

• Pixel difference-based measures such as mean square distortion; 

• Correlation-based measures, that is, correlation of pixels, or of the vector angular 

directions; 

• Edge-based measures, that is, displacement of edge positions or their consistency 

across resolution levels;  

• Spectral distance-based measures, that is Fourier magnitude and/or phase spectral 

discrepancy on a block basis;  

• Context-based measures, that is penalties based on various functionals of the 

multidimensional context probability; 

• Human Visual System-based measures, measures either based on the HVS-

weighted spectral distortion measures or (dis)similarity criteria used in image 

database browsing functions.  

 

We define several distortion measures in each category.  The specific measures are 

named as D1, D2.. in the pixel difference category, as C1, C2 .. in the correlation category 

etc. for ease of reference in the results and discussion sections. 
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Table 2.1.  List of Symbols and Equation Numbers of the Quality Metrics 
 

SYMBOL DESCRIPTION EQUATION 
D1 Mean Square Error 2.3 
D2 Mean Absolute Error 2.1 
D3 Modified Infinity Norm 2.3 
D4 L*a*b* Perceptual Error 2.4 
D5 Neighborhood Error  2.5 
D6 Multiresolution Error  2.6 
C1 Normalized Cross-Correlation  2.7 
C2 Image Fidelity 2.8 
C3 Czenakowski Correlation 2.9 
C4 Mean Angle Similarity 2.10 
C5 Mean Angle-Magnitude Similarity 2.11 
E1 Pratt Edge Measure 2.12 
E2 Edge Stability Measure 2.13 
S1 Spectral Phase Error  2.14 
S2 Spectral Phase-Magnitude Error 2.15 
S3 Block Spectral Magnitude Error 2.16 
S4 Block Spectral Phase Error 2.17 
S5 Block Spectral Phase-Magnitude Error 2.18 
Z1 Rate Distortion Measure 2.19 
Z2 Hellinger distance 2.20 
Z3 Generalized Matusita distance 2.21 
Z4 Spearman Rank Correlation 2.22 
H1 HVS Absolute Norm 2.23 
H2 HVS L2 Norm 2.24 
H3 Browsing Similarity 2.26 
H4 DCTune   

 

2.2.  Image Quality Measures 

 

We define and describe the multitude of image quality measures considered. In these 

definitions the pixel lattices of images A, B will be referred to as ( )jiA ,  and ( )jiB , , i, j = 

1...N, as the lattices are assumed to have dimensions NxN.  The pixels can take values 

from the set { }G,...,0  in any spectral band.  The actual color images we considered had G = 

255 in each band. Similarly we will denote the multispectral components of an image at the 

pixel position i, j, and in band k as ( )jiCk , , where Kk ,...,1= .  The boldface symbols 

( )ji,C  and ( )ji,Ĉ  will indicate the multispectral pixel vectors at position (i,j). For 

example for the color images in the RGB representation one has C(i,j) = [R(i,j) G(i,j) 

B(i,j)]T.  These definitions are summarized as follows:   
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( )jiCk ,  (i, j)th  pixel of the kth  band of image C 

( )ji,C  (i, j)th  multispectral (with K bands) pixel vector  

C  A multispectral image 

kC  The kth  band of  a multispectral image C 

kkk CC ˆ−=ε  Error over all the pixels in the kth  band of a multispectral image C. 

 

Thus for example the power in the k'th band can be calculated as ( )∑
−

=

=
1

0,

22 ,
N

ji
kk jiCσ . All 

these quantities with an additional hat, i.e., ( )jiCk ,ˆ , Ĉ  etc., will correspond to the 

distorted versions of the same original image.  As a case in point, the expression 

=−
2

),(Ĉ),(C jiji  ( ) ( )[ ]∑
=

−
K

k
kk jiCjiC

1

2
,ˆ, will denote the sum of errors in the spectral 

components at a given pixel position i, j.  Similarly the error expression in the last row of 

the above table expands as ( ) ( )[ ]∑∑
= =

−=
N

i

N

j
kkk jiCjiC

1 1

22 ,ˆ,ε . In the specific case of RGB 

color images we will occasionally revert to the notations { }BGR ,,  and { }BGR ˆ,ˆ,ˆ .  

 

2.2.1.  Measures Based on Pixel Differences 

 

These measures calculate the distortion between two images on the basis of their 

pixelwise differences or  certain moments of the difference (error) image. 

 

2.2.1.1.  Minkowsky Metrics.  The γL  norm of the dissimilarity of two images can be 

calculated by taking the Minkowsky average of the pixel differences spatially and then 

chromatically (that is over the bands): 

 

( ) ( )
γ

γγε
/1

1

1

0,
2 ,ˆ,11 ∑ ∑

=

−

= 







−=
K

k

N

ji
kk jiCjiC

NK
                              (2.1) 

 

Alternately the Minkowsky average can be first carried over the bands and then 

spatially, as in the following expression:  
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( ) ( )
γγ

γε
/1

1

0, 1
2 ,ˆ,11
















 −= ∑ ∑

−

= =

N

ji

K

k
kk jiCjiC

KN
.                         (2.2) 

 

In what follows we have used the pixel-wise difference in the Minkowsky sum as 

given in Eq. (2.1). For γ  = 2, one obtains the well-known Mean Square Error (MSE) 

expression, denoted as D1:  

 
21

0,
2 ),(ˆ),(111 ∑

−

=

−=
N

ji
jiji

NK
D CC  = ∑

=

K

k
kK 1

21 ε .                      (2.3) 

 

An overwhelming number of quality results in the literature is in fact given in terms 

of the Signal to Noise Ratio (SNR) or the Peak SNR (PSNR), which are obtained, 

respectively, by dividing the image power by D1, and by dividing the peak power G2 by 

D1.  Though the SNR and the PSNR are very frequently used in quantifying coding 

distortions, their shortcomings have been pointed out in various studies [13]. However, 

despite these oft-cited criticisms of the MSE-based quality measures there has been a 

recent resurgence of the SNR/PSNR metrics [17, 18]. For example studies of the Video 

Quality Expert Group (VQEG) [17] have shown that the PSNR measure is a very good 

indicator of subjective preference in video coding.  

 

For γ  = 1 one obtains the absolute difference denoted as D2. For γ  = ∞  power in 

the Minkowski average the maximum difference measure  

 

( ) ( ) ||),(ˆ),(||max,ˆ,1max
,1,

jijijiCjiC
K ji

K

k
kkji

CC −=−= ∑
=

∞ε                       (2.4) 

 

is obtained. Recall that in signal and image processing the maximum difference or the 

infinity norm is very commonly used [6].  However given the noise-prone nature of the 

maximum difference, this metric can be made more robust by considering the ranked list of 

pixel differences ( )CC ˆ−∆ l , l = 21 N! , resulting in a modified Minkowsky infinity 

metric, called D3.  Here ( )CC ˆ−∆ l  denotes the lth largest deviation among all pixels [25].  



 14 

Thus ( )CC ˆ
1 −∆  is simply the error expression ∞ε  above.  Similarly 2∆  correspond to the 

second largest term etc.  Finally a modified maximum difference measure using the first r 

of m∆  terms can be constructed by computing the root mean square value of the ranked 

largest differences, r∆∆ !1 . 

 

( )∑
=

−∆=
r

m
m

r
D

1

2 ˆ13 CC                            (2.5) 

 

2.2.1.2.  MSE in Lab Space.  The choice of the color-space for an image similarity metric 

is important, because the color-space must be uniform, so that the intensity difference 

between two colors must be consistent with the color difference estimated by a human 

observer.  Since the RGB color-space is not well-suited for this task two color spaces are 

defined:  1976 CIE L*u*v* and the 1976 CIE L*a*b* color spaces [26].  One recommended 

color-difference equation for the Lab color-space is given by the Euclidean distance [27].  

Let  

 
( ) ( ) ( )jiLjiLjiL ,ˆ,, *** −=∆                                        (2.6) 

 

( ) ( ) ( )jiajiajia ,ˆ,, *** −=∆                                       (2.7) 

 

( ) ( ) ( )jibjibjib ,ˆ,, *** −=∆                                       (2.8) 

 

denote the color component differences in L*a*b* space.  Then the Euclidean distance is: 

 

( ) ( ) ( )[ ]∑
−

=

∆+∆+∆=
1

0,

2*2*2*
2 ,,,14

N

ji
jibjiajiL

N
D .                (2.9) 

 

Note that (2.37) is intended to yield perceptually uniform spacing of colors that 

exhibit color differences greater than JND threshold but smaller than those in Munsell 

book of color [27].  This measure applies obviously to color images only and cannot be 

generalized to arbitrary multispectral images.  Therefore it has been used only for the face 

images and texture images, and not in satellite images. 
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2.2.1.3.  Difference over a Neighborhood.  Image distortion on a pixel level can arise from 

differences in the gray level of the pixels and/or from the displacements of the pixel.  A 

distortion measure that penalizes in a graduated way spatial displacements in addition to 

gray level differences, and that allows therefore some tolerance for pixel shifts can be 

defined as follows [28, 29]: 

 

( ) ( )( ){ } ( ) ( )( ){ }∑
−

= ∈∈
+

−
=

2/

2/,

2

,

2

,2 ],,,ˆmin[],ˆ,,min[
)(2

15
,,

wN

wji wmlwml
mljidmljid

wN
D

jiji

CCCC    (2.10) 

 

where ( )⋅⋅,d  is some appropriate distance metric. Notice that for w=1 this metric reduces to 

the mean square error as in D1.  Thus for any given pixel ( )ji,C , we search for a best 

matching pixel in the d-distance sense in the wxw  neighborhood of the pixel ( )ji,Ĉ , 

denoted as ( )jiw ,Ĉ . The size of the neighborhood is typically small e.g., 3x3 or 5x5, and 

one can consider a square or a cross-shaped support.  Similarly one calculates the distance 

from ( )jiC ,ˆ  to ( )jiCw ,  where again ( )jiCw ,  denotes the pixels in the wxw neighborhood 

of coordinates (i,j) of ( )jiC , .  Note that in general ( ) ( )( )jijid w ,ˆ,, CC  is not equal to 

( ) ( )( )jijid w ,,,ˆ CC .  As for the distance measure ),( ⋅⋅d , the city metric or the chessboard 

metric can be used. For example city block metric becomes 

 

( ) ( )( ) ( ) ( ) ( )
G

mlji

N
mjli

mljid city
,ˆ,

,ˆ,,
CC

CC
−

+
−+−

=               (2.11) 

 

where ||.|| denotes the norm of the difference between )j,i(C  and )j,i(Ĉ  vectors. Thus both 

the pixel color difference and search displacement are considered. In this expression N and 

G are one possible set of normalization factors to tune the penalties due to pixel shifts and 

pixel spectral differences, respectively. In our measurements we have used the city block 

distance with 3x3 neighborhood size.  

 

2.2.1.4  Multiresolution Distance Measure.  One limitation of standard objective measures 

of distance between images is that the comparison is conducted at the full image 

resolution.  Alternative measures can be defined that resemble image perception in the 
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human visual system more closely, by assigning larger weights to low resolutions and 

smaller weights to the detail image [30].  Such measures are also more realistic in machine 

vision tasks that often use local information only. 

 

Consider the various levels of resolution denoted by 1≥r .  For each value of r the 

image is split into blocks b1 to bn where n depends on scale r.  For example for r = 1, at the 

lowest resolution, only one block covers the whole image characterized by its average gray 

level g.  For r = 2 one has four blocks each of size (
2

x
2

NN ) with average gray levels g11, 

g12, g21 and g22.  For the rth resolution level one would have than 222 −r  blocks of size 

( 11 2
x

2 −− rr

NN ), characterized by the block average gray levels gij, 222,...,1, −= rji .  Thus for 

each block bij of the image C , take gij as its average gray level and ijĝ  to corresponds to its 

component in the image Ĉ  (For simplicity a third index denoting the resolution level has 

been omitted).  The average difference in gray level at the resolution r has weight r2
1 .  

Therefore the distortion at this level is  

 

∑
−

=
−

−=
12

1,
22

ˆ
2

1
2
1 r

ji
ijijrrr ggd                                      (2.12) 

 

where 12 −r  is the number of blocks along either the i and j indices.  If one considers a total 

of R resolution levels, then a distance function can simply be found by summing over all 

resolution levels, r = 1,.., R, that is ( ) ∑
=

=
R

r
rdCCD

1

ˆ, . The actual value of R (the number of 

resolution levels) will be set by the initial resolution of the digital image.  For example for 

a 512x512 images one has R = 9. Finally for multispectral images one can extend this 

definition in two ways. In the straightforward extension, one sums the multiresolution 

distances k
rd over the bands:  

 

∑∑
= =

=
K

k

R

r

k
rd

K
D

1 1

16                                                 (2.13) 
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where k
rd is the multiresolution distance in the kth band. This is the multiresolution distance 

definition that we used in the experiments. Alternatively the Burt pyramid was constructed 

to obtain the multiresolution representation. However in the tests it did not perform as well 

as the pyramid described in [30]. 

 

A different definition of the multiresolution distance would be to consider the vector 

difference of pixels:  

 

( ) ( ) ( ) ( )[ ]∑ ∑
= =

−

−

−+−+−=′=
R

r ji

B
ij

B
ij
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ij

G
ij

R
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ggggggddD
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2

1,

2
1222

22

1

ˆˆˆ
2

1
2
1  with  ˆ,CC   (2.14) 

 

where, for example, R
ijg  is the average gray level of the ij'th block in the "red" component 

of the image at the (implicit) resolution level r. Notice that in the latter equation the 

Euclidean norm of the differences of the block average color components R, G, B have 

been utilized.  

 

Notice that the last two measures, that is, the neighborhood distance measure and the 

multiresolution distance measure have not been previously used in evaluating compressed 

images.  

 

2.2.2.  Correlation-Based Measures 

 

2.2.2.1  Image Correlation Measures.  The closeness between two digital images can also 

be quantified in terms of correlation function [5].  These measures measure the similarity 

between two images, hence in this sense they are complementary to the difference-based 

measures:  Some correlation based measures are as follows: 

 

Structural content 
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normalized cross-correlation measure 

 

( ) ( )
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A metric useful to compare vectors with strictly non-negative components as in the case of 

images is given by the Czekanowski distance [31]: 
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The Czenakowski coefficient (also called the percentage similarity) measures the similarity 

between different samples, communities, quadrates.  

 

Obviously as the difference between two images tends to zero 0ˆ →−= CCε , all the 

correlation-based measures tend to 1, while as 22 G→ε  they tend to 0. Recall also that 

distance measures and correlation measures are complementary, so that under certain 

conditions, minimizing distance measures is tantamount to maximizing the correlation 

measure [32].  

 

2.2.2.2.  Moments of the Angles.  A variant of correlation-based measures can be obtained 

by considering the statistics of the angles between the pixel vectors of the original and 

coded images.  Similar "colors" will result in vectors pointing in the same direction, while 

significantly different colors will point in different directions in the C space.  Since we 

deal with positive vectors CC, ˆ , we are constrained to one quadrant of the Cartesian space.  

Thus the normalization factor of π/2  is related to the fact that the maximum difference 

attained will be 2/π .  The combined angular correlation and magnitude difference 

between two vectors can be defined as follows [33, 31]:  
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We can use the moments of the spectral (chromatic) vector differences as distortion 

measures. To this effect we have used the mean of the angle difference (C4) and the mean 

of the combined angle-magnitude difference (C5) as in the following two measures:  
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∑
=

χ=
N

1ji,
ij2N

15C ,                                           (2.20) 

 

where χµ  is the mean of the angular differences.  These moments have been previously 

used for the assessment of directional correlation between color vectors.  

 

2.2.3.  Edge Quality Measures 

 

According to the contour-texture paradigm of images, the edges form the most 

informative part in images.  For example, in the perception of scene content by human 

visual system, edges play the major role.  Similarly machine vision algorithms often rely 

on feature maps obtained from the edges.  Thus, task performance in vision, whether by 

humans or machines, is highly dependent on the quality of the edges and other two-

dimensional features such as corners [9, 34, 35]. Some examples of edge degradations are:  

Discontinuities in the edge, decrease of edge sharpness by smoothing effects, offset of 

edge position, missing edge points, falsely detected edge points etc [32]. Notice however 

that all the above degradations are not necessarily observed as edge and corner information 

in images is rather well preserved by most compression algorithms. 

 

Since we do not possess the ground-truthed edge map, we have used the edge map 

obtained from the original uncompressed images as the reference.  Thus to obtain edge-
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based quality measures we have generated edge fields from both the original and 

compressed images using the Canny detector [36].  We have not used any multiband edge 

detector; instead a separate edge map from each band has been obtained. The outputs of the 

derivative of gaussians of each band are averaged, and the resulting average output is 

interpolated, thresholded and thinned in a manner similar to that in [12]. The parameters 

are set1 as in [36].  

 

In summary for each band k=1...K, horizontal and vertical gradients and their norms, 

k
xG , k

yG  and 22 k
y

k
x

k GGN += are found.  Their average over bands is calculated and 

thresholded with ( ) minminmax TTTT +−α= , where ( )∑=
k

kN
K

T max1
max  and 

( )∑=
k

kN
K

T min1
min , 1.0=α .  Finally they are thinned by using interpolation to find the 

pixels where the norms of gradient constitute the local maxima. 

 

2.2.3.1.  Pratt Measure.  A measure introduced by Pratt [32] considers both edge location 

accuracy and missing / false alarm edge elements.   This measure is based on the 

knowledge of an ideal reference edge map, where the reference edges should have 

preferably a width of one pixel.  The figure of merit is defined as:     
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11                                   (2.21) 

 

where nd and nt are the number of detected and ground-truth edge points, respectively, and 

di is the distance to the closest edge candidate for the ith detected edge pixel.  In our study 

the binary edge field obtained from the uncompressed image is considered as the “ground 

truth”, or the reference edge field.  The factor { }td nn ,max  penalizes the number of false 

alarm edges or conversely missing edges.   

 

This scaling factor provides a relative weighting between smeared edges and thin but 

offset edges. The sum terms penalize possible shifts from the correct edge positions.  In 

                                                 
1 At http://robotics.eecs.berkeley.edu/~sastry/ee20/cacode.html 
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summary the smearing and offset effects are all included in the Pratt measure, which 

provides an impression of overall quality.  

 

2.2.3.2.  Edge Stability Measure.  Edge stability is defined as the consistency of edge 

evidences across different scales in both the original and coded images [37]. Edge maps at 

different scales have been obtained from the images by using the Canny [36] operator at 

different scale parameters (with the standard deviation of the Gaussian filter assuming 

values mσ  = 1.19, 1.44, 1.68, 2.0, 2.38  (The output of this operator at scale m is 

thresholded with Tm, where minminmax )(1.0 CCCT m +−= .  In this expression Cmax and Cmin 

denote the maximum and minimum values of the norm of the gradient output in that band. 

Thus the edge map at scale mσ  of the image C is obtained as 
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where ( )jiCm ,  is the output of the Derivative of Gaussian operator at the mth scale.  In other 

words using a continuous function notation one has ( ) ( ) ( )yxGyxCyxC m
m ,,, ∗∗=  where  
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and ** denotes two dimensional convolution.  An edge stability map ( )jiQ , is obtained by 

considering the longest subsequence ( ) ( )1,,,...,,, −+lmm jiEjiE σσ  of edge images such that  

 

( ) ( ) 1,,maxargwhere,
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σ .                 (2.24) 

 

The edge stability index calculated from distorted image at pixel position i,j will be 

denoted by ( )jiQ ,ˆ .  We have used five scales to obtain the edge maps of five band-pass 

filtered images.  Finally a fidelity measure called Edge Stability Mean Square Error 

(ESMSE) can be calculated by summing the differences in edge stability indexes over all 
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edge pixel positions, nd, that is the edge pixels of the ground-truth (undistorted) image at 

full resolution. 

 

( ) ( )( )∑
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E
0,

2
,ˆ,12                                 (2.25) 

 

For multispectral images the index in (2.51) can be simply averaged over the bands. 

Alternatively a single edge field from multiband images [38, 39] can be obtained and the 

resulting edge discrepancies measured as Eq. (2.51). 

 

A property complementary to edge information could be the surface curvature [40], 

which is a useful feature for scene analysis, feature extraction and object recognition.  

Estimates of local surface types [41], based on the signs of the mean and Gaussian 

curvatures, have been widely used for image segmentation and classification algorithms.  If 

one models a gray level image as a 3-D topological surface, then one can analyze this 

surface locally using differential geometry.  A measure based on the discrepancy of mean 

and Gaussian curvatures between an image and its distorted version has been used in [42]. 

However this measure was not pursued further due to the subjective assignment of weights 

to the surface types and the fact that this measure didn't perform particularly well in 

preliminary tests.  

 

2.2.4.  Spectral Distance Measures 

 

In this category we consider the distortion penalty functions obtained from the 

complex Fourier spectrum of images [10]. 

 

Let the Discrete Fourier Transforms  (DFT) of the kth band of the original and coded 

image be denoted by ),( vukΓ  and ),(ˆ vukΓ , respectively.  The spectra are defined as:  
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Spectral distortion measures, using difference metrics as for example given in (2.1-

2.3) can be extended to multispectral images.  To this effect considering the phase and 

magnitude spectra, that is  

 

( )),(arctan),( vuvu Γ=ϕ ,                                      (2.27) 

 

),(),( vuvuM Γ= ,                                          (2.28) 

 

the distortion occurring in the phase and magnitude spectra can be separately calculated 

and weighted.  Thus one can define the spectral magnitude distortion 

 

( ) ( )
21

0,
2 ,ˆ,1 ∑

−

=

−=
N

vu
vuMvuM

N
S                                 (2.29) 

the spectral phase distortion  
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and the weighted spectral distortion  
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where λ  is to be judiciously chosen e.g., to reflect quality judgment.  These ideas can be 

extended in a straightforward manner to multiple band images, by summing over all band 

distortions.  In the following computations, λ  is chosen so as to render the contributions of 

the magnitude and phase terms commensurate, that is 510x5.2 −=λ . 

 

Due to the localized nature of distortion and/or the non-stationary image field, 

Minkowsky averaging of block spectral distortions may be more advantageous.  Thus an 

image can be divided into non-overlapping or overlapping L blocks of size b x b, say 
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16x16, and blockwise spectral distortions as in (2.14-2.15) can be computed.  Let the DFT 

of the lth block of the kth band image ( )nmCl
k ,  be ( )vul

k ,Γ : 
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               (2.32) 

 

where 
2

...
2

, bbvu −=  and Ll ,...,1= ,or in the magnitude-phase form 
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Then the following measures can be defined in the transform domain over the lth block. 
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l JJJ ϕλλ −+= 1                                   (2.36) 

 

with λ  the relative weighting factor of the magnitude and phase spectra.  Obviously 

measures (2.36)-(2.38) are special cases of the above definitions for block size b covering 

the whole image. Various rank order operations on the block spectral differences MJ  and / 

or ϕJ  can prove useful.  Thus let ( ) ( )LJJ ,...,1  be the rank ordered block distortions, such 

that for example ( ) { }
l

lL JJ max= .  Then one can consider the following rank order 

averages: Median block distortion 









+






 +








2
1

2

2
1 LL

JJ , Maximum block distortion, ( )LJ ; 

and Average block distortion: ( )∑
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1 . We have found that median of the block 
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distortions is the most effective averaging of rank ordered block spectral distortions and we 

have thus used:  

 
l
Ml

JmedianS =3                                     (2.37) 

 
l

l
JmedianS φ=4                                             (2.38) 

 
l

l
JmedianS =5                                             (2.39) 

 

In this study we have averaged the block spectra with γ =2 and as for the choice of 

the block size we have found that block sizes of 32 and 64  yield better results than sizes in 

the lower or higher ranges.  

 

2.2.5.  Context Measures 

 

Most of the compression algorithms and computer vision tasks are based on the 

neighborhood information of the pixels.  In this sense any loss of information in the pixel 

neighborhoods, that is, damage to pixel contexts could be a good measure of overall image 

distortion.  Since such statistical information lies in the context probabilities, that is the 

joint probability mass function (p.m.f.) of pixel neighborhoods, changes in the context 

probabilities should be indicative of image distortions.   

 

A major hurdle in the computation of context distortions is the requirement to 

calculate the high dimensional joint probability mass function.  Typical p.m.f. dimensions 

would be of the order of s = 10 at least.  Consequently one incurs “curse of dimensionality 

problems”.  However as detailed in [43, 44], this problem can be solved by judicious usage 

of kernel estimation and cluster analysis.  A modification of the kernel method is to 

identify the important regions in a s-dimensional space sX  by cluster analysis and to fit 

region-specific kernels to these locations.  The result is a model that well represents both 

mode and tail regions of p.m.f.’s, while combining the summarizing strength of histograms 

with generalizing strength of kernel estimates. 
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In what follows we have used the causal neighborhood of pixels i.e., ( )jiCk , , 

( )jiCk ,1− , ( )1, −jiCk , ( )1,1 −− jiCk , k = 1, 2, 3.  Hence we have derived s = 12 

dimensional p.m.f.’s obtained from 4-pixel neighborhoods in the 3-bands. 

 

2.2.5.1.  Rate-Distortion Based Distortion Measure.  A method to quantify the changes in 

context probabilities is the relative entropy, defined as 

 

( )
)x(ˆ
)x(

log)x(ˆ
x p

ppppD
sX

∑
∈

=                                       (2.40) 

 

where sX  denotes a s-pixel neighborhood and [ ]s1,...,xx=x  a random vector.  

Furthermore p  and p̂ are the p.m.f.’s of the original image contexts and that of the 

distorted (e.g., blurred, noisy, compressed etc.) image.  The relative entropy is directly 

related to efficiency in compression and error rate in classification.  Recall also that the 

optimal average bit rate is the entropy of x  

 

( ) )(log)( XXX
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−= ( )pR= .                             (2.41) 

 

If instead of the true probability, a perturbed version p̂ , that is the p.m.f. of the 

distorted image, is used, then the average bit rate ( )pR ˆ  becomes 

 

( ) ( ) ( )ppDHpppR
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ˆ)(ˆlog)(ˆ 2 +=−= ∑
∈

XXX
X

.                   (2.42) 

 

The increase in the entropy rate is also indicative of how much the context 

probability differs from the original due to coding artifacts.   However we do not know the 

true p.m.f. p, hence  its rate.  We can bypass this problem by comparing two competing 

compression algorithms, in terms of the resulting context probabilities 1p̂  and 2p̂ .  If 1p̂  

and 2p̂  are the p.m.f.’s resulting from the two compressed images, then their difference in 

relative entropy 
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( ) ( ) ( ) ( )2121 ˆˆˆˆ1 pRpRppDppDZ −=−=                        (2.43) 

 

is easily and reliably estimated from a moderate-size sample by subtracting the sample 

average of 2ˆlog p−  from that of  1ˆlog p−  [44].   The comparison can be carried out for 

more than two images compressed to different bit rates in a similar way, that is comparing 

them two by two since the unknown entropy term is common to all of them. 

 

As a quality measure for images we have calculated Z1 for each image when they 

were compressed at two consecutive bit rates, for example, ( )1p̂R  at the bit rate of quality 

factor 90 and ( )2p̂R  at the bit rate of quality factor 70, etc.  Alternatively the distortion was 

calculated for an original image and its blurred or noise contaminated version.  

 

2.2.5.2.  f-divergences.  Once the joint p.m.f. of a pixel context is obtained, several 

information theoretic distortion measures [45] can be used.  Most of these measures can be 

expressed in the following general form 
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where 
p
p̂  is the likelihood ratio between, p̂ , the context p.m.f. of the distorted image, p the 

p.m.f. of the original image, and Ep is the expectation with respect to p.  Some examples 

are as follows:   

 

Hellinger distance, ( ) ( )21−= xxf , ( ) xxg
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generalized Matusita distance, ( )
r
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∫ −= λdppZ
rrr /1/1 ˆ3     1≥r .                                   (2.46) 

 

Notice that integration in (2.44)-(2.45) are carried out in s-dimensional space.  Also we 

have found according to ANOVA analysis that the choice of r = 5 in the Matusita distance, 

yields good results.  Despite the fact that the p.m.f.'s do not reflect directly the structural 

content or the geometrical features in an image, they perform sufficiently well to 

differentiate artifacts between the original and test images.  

 

2.2.5.3.  Local Histogram Distances.  In order to reflect the differences between two 

images at a local level, we calculated the histograms of the original and distorted images 

on the basis of 16x16 blocks. To this effect we considered both the Kolmogorov-Smirnov 

(KS) distance and the Spearman Rank Correlation (SRC).  

 

For the KS distance we calculated the maximum deviation between the respective 

cumulatives.  For each of the 16x16 blocks of the image, the maximum of the KS distances 

over the K spectral components was found and these local figures were summed over all 

the blocks to yield { }
Kk

k
u

b

u
KS
..11

max
==

∑  where k
bKS  denotes the Kolmogorov-Smirnov distance 

of the block number u and of the kth spectral component.  However the KS distance did not 

turn out to be effective in the ANOVA tests.  Instead the SRC measure had a better 

performance.  We again considered the SRC on a 16x16 block basis and we took the 

maximum over the three spectral bands.  The block SRC measure was computed by 

computing the rank scores of the “gray” levels in the bands and their largest for each pixel 

neighborhood.  Finally the correlation of the block ranks of the original and distorted 

images is calculated. 
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where k
uSRC denotes the Spearman Rank Correlation for the uth block number and kth 

spectral band.  
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2.2.6.  Human Visual System Based Measures 

 

Despite the quest for objective image distortion measure it is intriguing to find out 

the role of HVS based measures.  The HVS is too complex to be fully understood with 

present psychophysical means, but the incorporation of even a simplified HVS model into 

objective measures reportedly [7, 46, 10, 14] leads to a better correlation with the 

subjective ratings.  It is conjectured therefore that in machine vision tasks they may have as 

well some relevance. 

 

2.2.6.1.  HVS Modified Spectral Distortion.  In order to obtain a closer relation with the 

assessment by the human visual system, both the original and coded images can be 

preprocessed via filters that simulate the HVS. One of the models for the human visual 

system is given as a band-pass filter with a transfer function in polar coordinates [46]: 

 

[ ]





≥
<=

−− 7
705.0)( 3.2

1010

554.0

9loglog9 ρ
ρρ

ρ

ρ

e
eH                          (2.48) 

where ( ) 2/122 vu +=ρ .  Image processed through such a spectral mask and then inverse 

DCT transformed can be expressed via the {}⋅U  operator, i.e., 

 

( ){ } ( ) ( ){ }vuvuHDCTjiCU ,, 221 Ω+= −                        (2.49) 

 

where ( )vu,Ω  denotes the 2-D Discrete Cosine Transform (DCT) of the image and 
1−DCT  is the  2-D inverse DCT.  

 

Some possible measures [5, 47, 48, 49] for the K component multispectral image are  

 

normalized absolute error 
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L2 norm 
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normalized mean square HVS error 
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2.2.6.2.  A Distance Metric for Database Browsing.  The metric proposed in [14, 50] based 

on a multiscale model of the human visual system, has actually the function of bringing 

forth the similarities between image objects for database search and browsing purposes.  

This multiscale model includes channels, which account for perceptual phenomena such as 

color, contrast, color-contrast and orientation selectivity.  From these channels, features are 

extracted and then an aggregate measure of similarity using a weighted linear combination 

of the feature differences is formed.  The choice of features and weights is made to 

maximize the consistency with similarity.   

 

We have adopted this database search algorithm to measure discrepancies between 

an original image and its distorted version.  In other words an image similarity metric that 

was conceived for browsing and searching in image databases was adapted to measure the 

similarity (or the difference) between an image and its distorted version.  

 

More specifically, we exploit a vision system designed for image database browsing 

and object identification to measure image distortion.  The image similarity metric in [14] 

uses 102 feature vectors extracted at different scales and orientations both in luminance 

and color channels.  The final (dis)similarity metric is  
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where iω  are their weights as attributed in [50] and id  are the individual feature 

discrepancies.  We call this metric “browsing metric” for the lack of a better name.  For 

example the color contrast distortion at scale l is given by  
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where ll NN x  is the size of the image at scale l.  ( )jiK ,  and ( )jiK ,ˆ  denote any color or 

contrast channel of the original image and of the coded image at a certain level l.  The 

lengthy details of the algorithm and its adaptation to our problem are summarized in [14, 

50].  Finally note that this measure was used only for color images, and not in the case of 

satellite three-band images. 

 

The last quality measure we used that reflects the properties of the human visual system 

was the DCTune algorithm [56].  DCTune is in fact a technique for optimizing JPEG still 

image compression.  DCTune calculates the best JPEG quantization matrices to achieve 

the maximum possible compression for a specified perceptual error, given a particular 

image and a particular set of viewing conditions.  DCTune also allows the user to compute 

the perceptual error between two images in units of JND (just-noticeable differences) 

between a reference image and a test image.  This figure was used as the last metric (H4) 

in Table 2.1.  

2.3.  Goals and Methods 

 

2.3.1 Quality Attributes 
 

Objective video quality model attributes have been studied in [17, 18]. These 

attributes can be directly translated to the still image quality measures in the multimedia  

and computer vision applications.   

 

Prediction Accuracy:  The accurate prediction of distortion, whether for algorithmic 

performance or subjective assessment.  For example when quality metrics are shown in 

box plots as in Fig. 2.1., an accurate metric will possess a small scatter plot.  
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Prediction Monotonicity:  The objective image quality measure’s scores should be 

completely monotonic in their relationship to the performance scores.   

 

Prediction Consistency:  This attribute relates to the objective quality measure’s 

ability to provide consistently accurate predictions for all types of images and not to fail 

excessively for a subset of images. 
 

These desired characteristics reflect on the box plots and the F scores of the quality 

metrics, as detailed in the sequel. 

 

2.3.2.  Test Image Sets and Rates 

 

All the image quality measures are calculated in their multiband version.  In the 

study of the quality measures in image compression, we used the two well-known 

compression algorithms:  The popular DCT based JPEG [51] and wavelet zero-tree 

method, Set Partitioning in Hierarchical Trees (SPIHT), due to Said and Pearlman [52]. 

The other types of image distortions are generated by the use of blurring filters with 

various support sizes and by the addition of white Gaussian noise at various levels.  

 

The rate selection scheme was based on the accepted rate ranges of JPEG.  It is well-

known that the JPEG quality factor Q between 80-100 corresponds to visually 

imperceptible impairment, Q between 60-80 is the perceptible but not annoying distortion, 

Q between 40-60 becomes slightly annoying, Q between 20-40 is annoying, and finally 01-

20 is the Q range where the quality is very annoying.  Thus each image class was 

compressed with 5 JPEG Q factors of 90, 70, 50, 30 and 10.  For each class the average 

length of compressed files was calculated and the corresponding bit rate (bit/pixel) was 

accepted as the class rate.  The same rate as obtained from the JPEG experiment was also 

used in the SPIHT algorithm.  

 

The test material consisted of the following image sets:  1) Ten three-band remote 

sensing images, which contained a fair amount of variety, i.e., edges, textures, plateaus and 
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contrast range, 2) Ten color face images from Purdue University Face Images database 

[53], 3) Ten texture images from MIT Texture Database (VISTEX)2. 

 

2.3.3.  Analysis of Variance  

 

The Analysis of Variance (ANOVA) [54] was used as a statistical tool to put into the 

evidence merits of quality measures.  In other words ANOVA was used to show whether 

the variation in the data could be accounted for by the hypothesized factor, for example the 

factor of image compression type, the factor of image class etc. 

 

The purpose of a one-way ANOVA is to find out whether data from several groups 

have a common mean. That is, to determine whether the groups are actually different in the 

measured characteristic.  In our case each "compression group" consists of quality scores 

from various images at a certain bit rate, and there are k = 5 groups corresponding to the 5 

bit rates tested.  Each group had 30 sample vectors since there were 30 multispectral test 

images (10 remote sensing, 10 faces, 10 textures).  Similarly three "blur groups" were 

created by low-pass filtering the images with 2-D Gaussian-shaped filters with increasing 

support.  Finally three "noise groups" were created by contaminating the images with 

Gaussian noise with increasing variance, that is σ2 = 200, 600, 1700. This range of noise 

values spans the noisy image quality from the just noticeable distortion to annoying 

degradation. 

 

The purpose of two-way ANOVA is to find out whether data from several groups 

have a common mean.  One-way ANOVA and two-way ANOVA differ in that the groups 

in two-way ANOVA have two categories of defining characteristics instead of one.  Since 

we have two coders (i.e., JPEG and SPIHT algorithms) two-way ANOVA is appropriate.  

The hypotheses for the comparison of independent groups are:  

 

H01:  k11211 ... µµµ ===    means of the groups w.r.t. first factor are equal, 

HA1: ji 11 µµ ≠    means of the groups w.r.t. first factor are not equal. 

H02:  k22221 ... µµµ ===    means of the groups w.r.t. second factor are equal, 

                                                 
2 http://www-white.media.edu/vismod/imagery/VisionTexture/vistex.html 
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HA2: ji 22 µµ ≠    means of the groups w.r.t. second factor are not equal. 

 

It should be noted that the test statistic is an F test with k-1 and N-k degrees of 

freedom, where N is the total number of compressed images.  ANOVA returns the p-value 

for the null hypothesis that the means of the groups are equal [54].  A low p-value (high F 

value) for this test indicates evidence to reject the null hypothesis in favor of the 

alternative.  In other words, there is evidence that at least one pair of means are not equal.  

We have opted to carry out the multiple comparison tests at a significance level of 0.05.  

Thus any test resulting in a p-value under 0.05 would be significant, and therefore, one 

would reject the null hypothesis in favor of the alternative hypothesis.  This is to assert that 

the difference in the quality metric arises from the image coding artifacts and not from 

random fluctuations in the image content.  

 

To find out whether the variability of the metric scores arises predominantly from the 

image quality, and not from the image set, we considered the interaction between image set 

and the distortion artifacts (i.e., compression bit rate, blur etc.).  To this effect we 

considered the F-scores with respect to the image set as well.  As discussed in sub-section 

2.3.1. and shown in Tables 2.2.-2.3, metrics that were sensitive to distortion artifacts were 

naturally sensitive to image set variation as well.  However for the “good” measures that 

identified the sensitivity to image set variation was always inferior to the distortion 

sensitivity.  

 

Boxplot is a garphical way of looking at the distribution of the data in different 

groups. Boxplot produces a box and whisker plot for each group.  The box has lines at the 

lower quartile, median, and upper quartile values. The whiskers are lines extending from 

each end of the box to show the extent of the rest of the data.  Outliers are data with values 

beyond the ends of the whiskers.  If the F-value is high, there will be little overlap between 

the two or more groups.  If the F-value is not high, there will be a fair amount of overlap 

between all of the groups.  In the box plots, a steep slope and little overlap between boxes, 

as illustrated in Figure 2.1, are both indicators of a good quality measure.  In order to 

quantify the discriminative power of a quality measure, we have normalized the difference 

of two successive group means normalized by respective variances, i.e., 
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           a)  H2 JPEG F=2291, p=0          b)  D1 JPEG F=104.6, p=0 

 
 

 
                          c)  C4 SPIHT F=7.91, p=0 

 
Figure 2.1.  Box plots of quality measure scores.  a) good measure, b) moderate measure, 

c) poor measure.  The F-scores as well as the significance level p are given. 
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where rµ  denotes the mean value of the image quality measure for the images compressed 

at rate r and rσ  is the standard deviation, k is the number of different bit rates at which 

quality measures are calculated.  A good image quality measure should have high Q value, 

which implies little overlap between groups and/or large jumps between them hence high 

discriminative power of the quality measure.  It should be noted that the Q values and the 

F-scores yielded totally parallel results in our experiments.  In Figure 2.1. we give box plot 

examples of a good, a moderate and a poor measure.  For the box plot visualization the 

data has been appropriately scaled without any loss of information.  The horizontal axis 

corresponds to bitrate variation and the vertical axis is the normalized IQM scores. 

 

2.3.4.  Visualization of Quality Metrics 

 

Since we would like to visualize the quality metrics data, we organize them as 

vectors and feed them to a SOM (Self-Organizing Map) algorithm. The elements of the 

vectors are the corresponding quality scores.  For example, consider the MSE error (D1) 

for a specific compression algorithm (e.g., JPEG) at a specific rate.  The corresponding 

vector D1 is M dimensional, where M is the number of images, and it reads as: 

 

D1(JPEG, bitrate) = [D1(1| JPEG, bitrate) ....  D1(M| JPEG, bitrate]T          (2.57) 

 

There will be 5 such vectors, one for each bit rate considered. Overall for training of SOM 

we utilize 30 images x 5 bit rates x 2 compressors x 26 metrics = 7800 vectors.   

 

Recall that the self-organizing map (SOM) is a tool for visualization of high 

dimensional data.  It maps complex, non-linear high dimensional data into simple 

geometric relationships on a low dimensional array and thus serves to produce 

abstractions.  Among the important applications of the SOM one can cite the visualization 

of high dimensional data, as the case in point, and discovery of categories and abstractions 

from raw data.   

 
Let the data vectors be denoted as [ ] MT

M1 Rx,...,x ∈=X , where M is the number of 

images considered (M = 30 in our case).  With each element in the SOM array, a 
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parametric real vector [ ] MT
iMii R∈= µµ ,...,1m  is associated.  The image of an input 

vector X  on the SOM array is defined by the decoder function ( )i,d mX , where (.,.)d  is a 

general distance measure. The image of the input vector will have the array index c 

definedas ( )ii
dminargc mX,= .  A critical part of the algorithm is to define the im  in such 

a way that the mapping is ordered and descriptive of distribution of X .  Finding such a set 

of values that minimize the distance measure resembles in fact the standard VQ problem.  

In contrast, the indexing of these values is arbitrary, whereby the mapping is unordered.  

However if the minimization of the objective functional based on the distance function is 

implemented under the conditions described in [55], then one can obtain ordered values of 

im , almost as if the im  were lying at the nodes of an elastic net.  With the elastic net 

analogy in mind, SOM algorithm can be constructed as 

 

( ) ( ) ( )]t)t()[t(t1t iii mXmm −α+=+                                 (2.58) 

 

where )t(α  is a small scalar, if the distance between units c and i  in the array is smaller 

than or equal to a specified limit (radius), and 0)t( =α  otherwise.  During the course of 

ordering process, )(tα  is decreased from 0.05 to 0.02, while radius of neighborhood is 

decreased from 10 to 3. Furthermore scores are normalized with respect to the range.   

 

The component planes j of the SOM, i.e., the array of scalar values ijµ  representing 

the j'th components of the weight vectors im  and having the same format as the SOM 

array is displayed as shades of gray. 

 

2.4.  Statistical Analysis of Image Quality Measures 

 

Our first goal is to investigate the sensitivity of quality measures to distortions 

arising from image compression schemes.  In other words to find out the degree to which a 

quality measure can discriminate the coding artifacts and translate it into a meaningful 

score.  We establish similarly the response sensitivity of the measures to such other 

distortion effects as blur and noise.  Our second goal is to establish how various quality 

measures are related to each other and to show the degree to which measures respond to 
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(dis)similarly to coding and sensor artifacts.  As the outcome of these investigations we 

hope to extract a small subset of measures that hopefully satisfies the above desiderata. 

 

2.4.1.  ANOVA Results  

 

The two-way ANOVA results of the image quality measures for the data obtained 

from all image classes (Fabrics, Faces, Remotes) are listed in Table 2.2.  In these tables 

the symbols of quality measures D1, D2...H3, H4 are listed in the first column while the F-

scores of JPEG compression, of SPIHT compression, of blur and of noise distortions are 

given, respectively, in the succeeding four columns.  The first factor tested is the bitrate 

variation and the second factor is the image set variation. 

 

The metric that responds most strongly to one distortion type is called the 

“fundamental metric” of that distortion type [24].  Similarly the metric that responds to all 

sorts of distortion effects is denoted as the “global metric”. One can notice that: 

 

• The fundamental metrics for JPEG compression are H2, H1, S2, E2, that is, HVS 

L2 norm, HVS absolute norm, spectral phase-magnitude, and edge stability 

measures. These measures are listed in decreasing order of F-score.  

 

• The fundamental metrics for SPIHT compression are E2, S2, S5, H2, that is, edge 

stability, spectral phase-magnitude, block spectral phase-magnitude, and HVS L2 

norm.  

 

• The fundamental metrics for the BLUR effect are S1, E2, S2, H1, that is, spectral 

phase, edge stability, spectral phase-magnitude, HVS absolute norm.  Notice the 

similarity of metrics between SPIHT and blur due, in fact, to the blurring artifact 

encountered in wavelet-based compression.  

 

• The fundamental metric for the NOISE  effect is, as expected, D1, the mean 

square error.  
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• Finally the image quality metric that is sensitive to all distortion artifacts are, in 

order, E2, H1, S2, H2, S5, that is, edge stability, HVS absolute norm, spectral 

phase-magnitude, HVS L2 norm, block spectral phase-magnitude.  

 

Table 2.2.  ANOVA results (F-scores) for the JPEG and SPIHT compression distortions as 

well as additive noise and blur artifacts.  For each distortion type the variation due to 

image set is also established 

 
 JPEG SPIHT BLUR NOISE 

ANOVA2 Bitrate F 
Score 

Imageset 
F Score 

Bitrate F 
Score 

Imageset F 
Score 

Blur F 
Score 

Imageset 
F Score 

Noise F 
Score 

Imageset 
F Score 

D1 104.6 42.59 39.23 13.28 43.69 2.06 9880 17.32 
D2 108.5 67.45 29.56 15.93 33.94 17.76 6239 20.4 
D3 63.35 29.37 53.31 48.53 38.55 24.13 1625 11.15 
D4 89.93 1.99 13.75 3.71 27.87 0.96 166.4 9.88 
D5 20.26 80.71 14.09 68.22 6.32 55.11 1981 43.51 
D6 76.73 5.94 37.52 11.22 412.9 45.53 44.61 4.38 
C1 1.35 124.6 12.05 325.5 5.61 107.2 3.82 6.17 
C2 12.26 93.83 15.18 82.87 11.19 39.77 58.04 45.63 
C3 82.87 83.06 24.96 22.42 30.92 1.71 567.5 52.01 
C4 45.65 47.36 7.91 5.94 16.48 0.77 198.8 19.03 
C5 91.42 38.17 27.51 5.28 52.57 2.44 704 10.8 
E1 26.24 3.64 77.86 137 125.8 21.09 87.76 27.87 
E2 176.3 92.75 212.5 200.4 768.7 23.41 158.5 24.84 
S1 150.5 102.2 104 68.17 1128 60.04 47.29 38.42 
S2 191.3 98.42 161 101.8 572.2 17.95 107.1 4.83 
S3 145.6 56.39 38.58 26.97 24.28 6.39 2803 8.59 
S4 129.1 63.26 128 46.85 215 11.17 56.04 55.1 
S5 146.1 71.03 144.1 61.65 333.6 27.84 78.04 26.53 
Z1 1.69 141.8 21.36 14 35.9 62.5 44.89 110.9 
Z2 7.73 114.7 11.41 77.68 10.17 1.80 3.03 11.36 
Z3 17.63 223 23.22 181.4 17.26 8.31 14.71 21.12 
Z4 9.4 23.58 9.84 32.41 8.45 14.74 24.99 3.31 
H1 371.9 0.09 107.2 40.05 525.6 69.98 230.7 19.57 
H2 2291 5.46 132.9 22.82 47.28 101.7 624.3 21.32 
H3 123 1.2 27.45 7.6 67.31 6.77 117.3 0.50 
H4 78.83 7.14 25.2 95.72 12.55 2.11 29.06 6.69 

 

To establish the global metrics, we gave rank numbers from 1 to 26 to each one 

metric under the four types of distortion as in Table 2.2. For example for JPEG the metrics 

are ordered as H2, H1, S2, E2, etc. if we take into consideration their F-scores.   Then we 

summed the rank numbers and the metrics for which the sum of the scores were the 

smallest were declared as the global metric, that is the one that qualifies well in all 

discrimination tests.  
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The metrics that were the least sensitive to image set variation are D4, H3, C4, C5, 

D6 etc..  However it can be observed that these metrics show in general poor performance 

in discriminating distortion effects. On the other hand for the distortion sensitive metrics, 

even though their image set dependence is higher than the so-called “image independent” 

metrics, more of the score variability is due to distortion than to image set change. This can 

be observed based on the higher F-scores for distortion effects as compared to image set 

related F-scores.  These observations are summarized in Table 2.3. where one-way 

ANOVA results are given for each image class (Fabrics, Faces, Remote Sensing) 

separately, and two-way ANOVA results are presented for the combined set.  In the two 

bottom rows of Table 2.3. the metrics that are least sensitive to the coder type and to the 

image set are given.  

 

Table 2.3.  One-way ANOVA results for each image class and two-way ANOVA results 

for the distortions on the combined and image set independence 

 
IMAGE SET JPEG SPIHT BLUR NOISE 
Fabrics H4,H2,E2,S4 E1,S1,E2,S2 S1,S5,E2,S4 D1,D2,D5,D3 
Faces H2, D1,S3,H1 H4,D3,H2,C1 S2,H1,S1,E2 D1,S3,D2,D3 

1-way 
ANOVA 

Remote Sensing H2,H4,S4,S5 S2,S5,S4,S1 D6,S5,S4,S1 D1,D2,C3,C5 
Combined Set H2,H1,S2,E2 E2,S2,S5,H2 S1,E2,S2,H1 D1,D2,S3,D5 
Image Set 
 Independence 

H1,H3 D4,C5 C4,D4 H3,Z4 
2-way 
ANOVA 

Coder Type 
Independence  

D2,D1,Z4,D3 

 

We also investigated the metrics with respect to their ability to respond to bit rate and 

coder type. More specifically the first factor tested was bitrate variation and the second 

was coder type variation.  For this analysis the scores of the JPEG and SPIHT compressors 

were combined.  It was observed in Table 2.4. that: 

 

• The metrics that were best in discriminating compression distortion as 

parameterized by the bit rate, whatever the coder type, that is JPEG or SPIHT, 

were H2, H1, S2, S5 (HVS L2 norm, HVS absolute norm, spectral phase-

magnitude, block spectral phase-magnitude etc.  
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• The metrics that were capable of discriminating the coder type (JPEG versus 

SPIHT) were quite similar, that is, D6, H2, H4 and H1 (Multiresolution error, 

HVS L2 norm, DCTune, HVS L1 norm).  

 

• Finally the metrics that were most sensitive to distortion artifacts, but at the same 

time, least sensitive to image set variation were C5, D1, D3, S3, D2, C4..., (Mean 

angle-magnitude similarity, Mean square error, Modified infinity norm, Block 

spectral magnitude error, Mean absolute error, Mean angle similarity...).  

 

These metrics were identified by summing the two rank scores of metrics, the first 

being the ranks in ascending order of distortion sensitivity, the second being in descending 

order the image set sensitivity. Interestingly enough almost all of them are related to the 

mean square error varieties. Despite its many criticisms, this may explain why mean square 

error or signal-to-noise ratio measures have proven so resilient over time.   

 

Table 2.4.  ANOVA scores for the bit rate variability (combined JPEG and SPIHT scores) 
and coder variation 

 
 JPEG+SPIHT 

ANOVA2 Bitrate  Coder  
D1 89.79 0.75 
D2 74.98 2.72 
D3 71.55 1.21 
D4 70.52 43.85 
D5 17.07 0.0005 
D6 85.22 118.8 
C1 2.66 45.47 
C2 12.28 18.27 
C3 56.48 1.56 
C4 31.3 2.43 
C5 78.98 2.23 
E1 42.69 11.61 
E2 122.4 26.28 
S1 99.12 5.29 
S2 140.1 12.37 
S3 92.99 9.27 
S4 115.5 39.1 
S5 124.8 43.09 
Z1 4.28 41.6 
Z2 9.54 0.83 
Z3 12.87 0.56 
Z4 9.39 6.64 
H1 278.6 52.87 
H2 493 87.21 
H3 97.94 16.19 
H4 21.13 57.72 
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As expected the metrics that are responsive to distortions are also almost always 

responsive to the image set. Conversely the metrics that do not respond to the image set 

variation are also not very discriminating with respect to the distortion types.  The fact that 

the metrics are sensitive, as should be expected, to both the image content and distortion 

artifacts does not eclipse their capability to potential as quality metrics.  Indeed when the 

metrics were tested within more homogeneous image sets (that is only within Face images 

or Remote Sensing images etc.) the same high-performance metrics scored consistently 

higher.  Furthermore when one compares the F-scores of the metrics with respect to bit rate 

variation and image set variation, even though there is a non-negligible interaction factor, 

one can notice that the F-score due to bit rate is always larger than the F-score due to 

Image sets.  

 

2.4.2.  Self Organizing Map of Quality Measures 

 

Our second investigation was on the mutual relationship between measures.  It is 

obvious that the quality measures must be correlated with each other as most of them must 

respond to compression artifacts in similar ways.  On the other hand one can conjecture 

that some measures must be more sensitive to blurring effects, while others respond to 

blocking effects, while still some others reflect additive noise. 

 

Self Organizing Map (SOM) [55] is a pictorial method to display similarities and 

differences between statistical variables, such as quality measures.  We have therefore 

obtained spatial organization of these measures via Kohonen’s self-organizing map 

algorithm.  The input to the SOM algorithm was vectors whose elements are the scores of 

the measure resulting from different images.  More explicitly, consider one of the 

measures, D1, and a certain compression algorithm, e.g., JPEG.  The instances of this 

vector will be 60-dimensional, one for each of the images in the set.  The first 30 

components consist of 30 images compressed with JPEG, the next 30 juxtaposed 

components of the same images compressed with SPIHT. Furthermore there will be five 

such vectors, one for each one of the bit rates. 
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Figure 2.2.  SOM  of distortion measures for JPEG and SPIHT 

 

The SOM organization of the measures in the 2-D space for pooled data from JPEG 

and SPIHT coders is shown in Figure 2.2.  The map consists of 70 X 70 cells.  These maps 

are useful for the visual assessment of possible correlation present in the measures.  One 

would expect that measures with similar trends and that respond in similar ways to artifacts 

would cluster together spatially.  The main conclusions from the observation of the SOM 

and the correlation matrix are as follows: 

 

• Clustering tendency of pixel difference based measures (D1, D2, D4, D5) and 

spectral magnitude based method (S3) is obvious in the center portion of the map, 

a reflection of the Parseval relationship, that is, distortion in image energy in 

spatial domain matches in the same way in the frequency domain.  However 

notice that spectral phase measures (S2, S5) stay distinctly apart from these 

measures.  
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• The human visual system based measures (H2, H3, H4), multiresolution pixel-

difference measure (D6), E2 (edge stability measure) and C5 (mean angle-

magnitude measure) are clustered in the right side of the map. The correlation of 

the multiresolution distance measure, D6 with HVS based measures (H2, H3, H4) 

is not surprising since the idea behind this measure is to mimic image comparison 

by eye more closely, by assigning larger weight to low resolution components 

and less to the detailed high frequency components. 

 

• The three correlation based measures (C1, C2, C3) are together in the lower part 

of the map while the two spectral phase error measures (S2, S5) are concentrated 

separately in the upper part of the map.  

 

• It is interesting to note that all the context-based measures (Z1, Z2, Z3, Z4) are 

grouped in the upper left region of the map together with H1 (HVS filtered 

absolute error). 

 

• The proximity between the Pratt measure (E1) and the maximum difference 

measures (D3) is meaningful, since the maximum distortions in reconstructed 

images are near the edges.  The constrained maximum distance or sorted 

maximum distance measures can be used in codec designs to preserve the two 

dimensional features, such as edges, in reconstructed images.   

 

2.5.  Conclusions 

 

We have presented collectively a set of image quality measures in their multispectral 

version and categorized them.  Statistical investigation of 26 different measures using a 

ANOVA analyses has revealed that local phase-magnitude measures (S2 or S5), HVS-

filtered L1, L2 norms, edge stability measure are most sensitive to coding, blur and 

artifacts, while the mean square error (D1) remains as the measure for additive noise.  One 

can state that combined spectral phase-magnitude measures and HVS filtered error norms 

should be paid more attention in the design of coding algorithms and sensor evaluation.  

On the other hand the pixel-difference based measures remain still to be the measures 

responsive to distortions and least affected by image variety.  
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The Kohonen map of the measures has been useful in depicting similar ones, and 

identifying the ones that are sensitive possibly to different distortion artifacts in 

compressed images. The correlation between various measures has been depicted via 

Kohonen’s Self-Organizing Map.  The placement of measures in the two-dimensional map 

has been in agreement with one’s intuitive grouping. 

 

Future work will address subjective experiments and prediction of subjective image 

quality using the above salient measures identified.  Another possible avenue is to combine 

various “fundamental” metrics for better performance prediction.   
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3.  STEGANALYSIS USING IMAGE QUALITY METRICS 
 

 

3.1.  Introduction 

 

Steganography refers to the science of “invisible” communication.  Unlike 

cryptography, where the goal is to secure communications from an eavesdropper, 

steganographic techniques strive to hide the very presence of the message itself from an 

observer.  Although steganography is an ancient subject, the modern formulation of it is 

often given in terms of the prisoner’s problem [57, 58, 59] where Alice and Bob are two 

inmates who wish to communicate in order to hatch an escape plan.  However, all 

communication between them is examined by the warden, Wendy, who will put them in 

solitary confinement at the slightest suspicion of trouble.  Specifically, in the general 

model for steganography, we have Alice wishing to send a secret message m to Bob.  In 

order to do so, she “embeds” m into a cover-object c, to obtain the stego-object s.  The 

stego-object s is then sent through the public channel.  

 

The warden Wendy who is free to examine all messages exchanged between Alice 

and Bob can be passive or active.  A passive warden simply examines the message and 

tries to determine if it potentially contains a hidden message.  If it appears that it does, then 

she takes appropriate action, else she lets the message through without any action.  An 

active warden, on the other hand, can alter messages deliberately, even though she does not 

see any trace of a hidden message, in order to foil any secret communication that can 

nevertheless be occurring between Alice and Bob.  The amount of change the warden is 

allowed to make depends on the model being used and the cover-objects being employed.  

For example, with images, it would make sense that the warden is allowed to make 

changes as long as she does not alter significantly the subjective visual quality of a 

suspected stego-image. 

 

It should be noted that the main goal of steganography is to communicate securely in 

a completely undetectable manner.  That is, Wendy should not be able to distinguish in any 

sense between cover-objects (objects not containing any secret message) and stego-objects 

(objects containing a secret message).  In this context, “steganalysis” refers to the body of 
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techniques that are designed to distinguish between cover-objects and stego-objects.  It 

should be noted that nothing might be gleaned about the contents of the secret message m. 

When the existence of hidden message is known, revealing its content is not always 

necessary.  Just disabling and rendering it useless will defeat the very purpose of 

steganography.  In this paper, we present a steganalysis technique for detecting stego-

images, i.e. still images containing hidden messages, using image quality metrics. 

Although we focus on images, the general techniques we discuss would also be applicable 

to audio and video data.   

 

Given the proliferation of digital images, and given the high degree of redundancy 

present in a digital representation of an image (despite compression), there has been an 

increased interest in using digital images as cover-objects for the purpose of 

steganography.  The simplest of such techniques essentially embed the message in a subset 

of the LSB (least significant bit) plane of the image, possibly after encryption [60].  It is 

well known that an image is generally not visually affected when its least significant bit 

plane is changed.  Popular steganographic tools based on LSB like embedding vary in their 

approach for hiding information.  Methods like Steganos and Stools use LSB embedding in 

the spatial domain, while others like Jsteg embed in the frequency domain.  Other 

techniques include the use of quantization and dithering.  For a good survey of 

steganography techniques, the reader is referred to [60].  What is common to these 

techniques is that they assume a passive warden framework.  That is they assume the 

warden Wendy will not alter the image.  We collectively refer to these techniques as 

conventional steganography techniques or for brevity, more simply as steganography 

techniques. 

 

Conventional steganography techniques like LSB embedding techniques are not 

useful in the presence of an active warden as the warden can simply randomize the LSB 

plane to thwart communication.  In order to deal with an active warden Alice must embed 

her message in a robust manner.  That is, Bob should be able to accurately recover the 

secret message m despite operations like LSB randomizing, compression, filtering, rotation 

by small degrees etc. performed by the active warden Wendy.  Indeed, the problem of 

embedding messages in a robust manner has been the subject of active research in the 

image processing community under the name of digital watermarking [61, 62, 63].   
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A digital watermark is an imperceptible signal added to digital content that can be 

later detected or extracted in order to make some assertion about the content.  For example, 

the presence of her watermark can be used by Alice to assert ownership of the content.  

Given the proliferation of content in digital form, recent years have seen an increasing 

interest in digital watermarking and in the past few years, many different watermarking 

algorithms have been proposed for different applications.  Although the main applications 

for digital watermarking appear to be copyright protection and digital rights management, 

watermarks have also been proposed for secret communication, that is, steganography.  

Essentially digital watermarks provide a means of image-based steganography in the 

presence of an active warden since modifications made by the warden will not affect the 

embedded watermark as long as the visual appearance of the image is not significantly 

degraded. 

 

However, despite this obvious and commonly observed connection to steganography, 

there has been very little effort aimed at analyzing or evaluating the effectiveness of 

watermarking techniques for steganographic applications.  Instead, most work has focused 

on analyzing or evaluating the watermarking algorithms for their robustness against 

various kinds of attacks that try to remove or destroy them.  However, if digital 

watermarks are to be used in steganography applications, detection of their presence by an 

unauthorized agent defeats their very purpose.  Even in applications that do not require 

hidden communication, but only robustness, we note that it would be desirable to first 

detect the possible presence of a watermark before trying to remove or manipulate it.  This 

means that a given signal would have to be first analyzed for the presence of a watermark.  

Based on this analysis there could then be attempts made to remove the watermark. 

 

In this thesis, we develop steganalysis techniques both for conventional LSB like 

embedding used in the context of a passive warden model and for watermarking which can 

be used to embed secret messages in the context of an active warden.  In order to 

distinguish between these two models, we will be using the terms watermark and message 

when the embedded signal is in the context of watermarking and conventional 

steganography, respectively.  Furthermore, we simply use the terms marking or embedding 

when the context of discussion is general to include both watermarking and steganography.    
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The techniques we present are novel and to the best of our knowledge, the first 

attempt at designing general purpose tools for steganalysis.  General detection techniques 

as applied to steganography have not been devised and methods beyond visual inspection 

and specific statistical tests for individual techniques  [64, 65, 66, 67] are not present in the 

literature.  Since too many images have to be inspected visually to sense hidden messages, 

the development of a technique to automate the detection process will be very valuable to 

the steganalyst.   

 

Our approach is based on the fact that hiding information in digital media requires 

alterations of the signal properties that introduce some form of degradation, no matter how 

small.  These degradations can act as signatures that could be used to reveal the existence 

of a hidden message.  For example, in the context of digital watermarking, the general 

underlying idea is to create a watermarked signal that is perceptually identical but 

statistically different from the host signal.  A decoder uses this statistical difference in 

order to detect the watermark.  However, the very same statistical difference that is created 

could potentially be exploited to determine if a given image is watermarked or not.  In this 

thesis, we show that addition of a watermark or message leaves unique artifacts, which can 

be detected using Image Quality Measures [68, 69, 70, 71, 72].   

 

The rest of this section is organized as follows.  In Section 3.2., we discuss the 

selection of the image quality measures to be used in the steganalysis and the rationale of 

utilizing concurrently more than one quality measure.  We then show that the image 

quality metric based distance between an unmarked image and its filtered version is 

different as compared to the distance between a marked image and its filtered version.   

Section 3.3. describes the regression analysis that we use to build a composite measure of 

quality to indicate the presence or absence of a mark.  Statistical tests and experiments are 

given in Section 3.4. and, finally, conclusions are drawn in Section 3.5.   

 

3.2.  Choice of Image Quality Measures 

 

As stated in the introduction, the main goal of this is to develop a discriminator for 

message or watermark presence in still images, using an appropriate set of IQMs.  Image 

quality measurement continues to be the subject of intensive research and experimentation 
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[4, 5, 2, 73, 47].  Objective image quality measures are based on image features, a 

functional of which, correlates well with subjective judgment, that is, the degree of 

(dis)satisfaction of an observer [13].  The interest in developing objective measures for 

assessing multimedia data lies in the fact that subjective measurements are costly, time-

consuming and not easily reproducible.  Objective measures are also utilized in 

performance prediction of vision algorithms against quality loss due to sensor inadequacy 

or compression artifacts [24].  In this work, however, we want to exploit image quality 

measures, not as predictors of subjective image quality or algorithmic performance, but as 

steganalysis tools, that is, as detection features of watermarks or hidden messages.  

 

A good IQM should be accurate, consistent and monotonic in predicting quality as 

already mentioned in second section.  In the context of steganalysis, however, prediction 

accuracy can be interpreted as the ability of the measure to detect the presence of hidden 

message with minimum error on average.  Similarly, prediction monotonicity signifies that 

IQM scores should ideally be monotonic in their relationship to the embedded message 

size or watermark strength.  Finally, prediction consistency relates to the quality measure’s 

ability to provide consistently accurate predictions for a large set of watermarking or 

steganography techniques and image types.  This implies that the spread of quality scores 

due to image variety should not eclipse the score differences arising from message 

embedding artifacts. 

 

The steganalysis technique we develop is based on regression analysis of a number 

of relevant IQMs.  Hence, we seek IQMs that are sensitive specifically to watermarking 

and steganography effects.  In other words, those measures for which the variability in 

score data can be explained better because of treatment rather then as random variations 

due to the image set.  The idea behind detection of watermark or hidden message presence 

is to obtain a consistent distance metric for images containing a watermark or hidden 

message and those without, with respect to a common reference processing.  The reference 

processing we have used was low-pass filtering based on a Gaussian kernel.  The filter was 

chosen as a Gaussian smoothing filter  

 

( ) ( )nmKgnmH ,, =                                               (3.1) 
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where  

 

( ) ( ) ( ){ }22212 2/exp2, σπσ nmnmg +−= −                            (3.2) 

 

is the 2-D Gaussian kernel and  

 

( ) 2/12 ),( −∑∑=
m n

nmgK                                    (3.3) 

 

is the normalizing constant.  We experimentally choose 5.0=σ , implemented via a 3x3 

filter.  The reason why Gaussian blurring works fine as a common reference is that it gives 

us the local mean which is also the maximum likelihood (ML) estimate of the image under 

Gaussian assumption [74].  Under Laplacian distribution assumption the median would 

have been the ML estimate.  Therefore the blurred image minus the original yields, in fact, 

the maximum likelihood estimate of the additive watermark.  In fact we have tested both 

the mean and median filters as the ML estimates of the image and we have found out that 

the former performs slightly better in the detection tests. 

 

Most watermarking techniques or steganographic message embedding techniques, 

whether by spread-spectrum or quantization modulation or LSB insertion, can be 

represented as a signal addition to the cover image, as shown in Figure 3.1.  Let f  be the 

cover image, wfg +=  be the stego-image, and w the inserted watermark.  Let  H  be the 

ML operator for the estimate of the watermark sequence.  For the two ML estimators that 

we have tested, H  obviously corresponds to the subtraction from the received stego-image 

of its local mean or median.  In the absence of any watermark or stego-signal fHg ˆ=  

corresponds to the high-frequency content f̂ of the image, while for a marked signal it 

yields wfHg ˆˆ +=  where ŵ  denotes the ML estimate of the mark.  The image quality 

metrics, in fact, are trained to differentiate between these two signals f̂  and wf ˆˆ + .  

Figure 3.2. gives an instance of the watermarked-nonwatermarked class separability based 

on a scatter diagram of the three image quality metrics used.  
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Figure 3.2.  Scatter plots of the three Image Quality Measures (M3: Czenakowski measure, 

M5: Image Fidelity, M6: Normalized Cross-correlation). 

 

result from image variety or whether they arise due to treatment effects, that is, 

watermarking or stegoing.  

 

We performed three different ANOVA tests: The first was for watermarking, the 

second for steganography, and the last one for both watermarking and steganography.   

 

For watermarking, the first group consisted of the IQM scores computed from plain 

images and their filtered versions.  The remaining three groups consisted of the IQM 

scores computed from watermarked images by Digimarc [75], PGS [76] and COX [77] 

techniques, respectively, and their filtered versions. The data given to the ANOVA 

algorithm consisted of four vectors, each of dimensions N , where 12=N  is the number 

of images used in the test from the training set. More specifically, consider a typical 

quality measure, say )( iM µ , where the parametric dependence upon the watermarking 

algorithm is shown with iµ , 30!=i , for plain images, Digimarc, PGS and COX 

techniques, respectively. The N-dimensional vector M  reads as:  
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( ) ( )[ ]T
iii NMMM µµµ !1)( = .                                      (3.4) 

 

For steganography, the first group consisted of the IQM scores computed from plain 

(non-marked) images and their filtered versions.  The remaining three groups consisted of 

the IQM scores computed from stegoed images by Steganos [78], Stools [79] and Jsteg 

[80], respectively, and their filtered versions.  

 

For the joint watermarking and steganography analysis, the first group consisted of 

the IQM scores computed from plain images and their filtered versions.  The remaining six 

groups consisted of the IQM scores computed from watermarked images by Digimarc, 

PGS and COX technique, stegoed images by Steganos, Stools and Jsteg, respectively, and 

their filtered versions. 

 

In Table 3.1. we give ANOVA results with respect to watermarking, steganography 

and combined techniques.  The measures that have relatively higher discriminative power, 

measures that catch the statistical evidence of watermarking or steganography, are shown 

in bold.  These measures, in fact, sense the statistical difference between the populations of 

marked and non-marked images and hence they can be used to separate the two classes.   

 

The implications of the result are two fold.  One is that, using these features a 

steganalysis tool can be designed to detect the watermarked or stegonagraphically marked 

images, as we show in Section 3.3., using multivariate regression analysis.  The other is 

that, current watermarking or steganographic algorithms should exercise more care on 

those statistically significant image features to eschew detection.  For instance, the relative 

ordering of the statistically significant IQMs for watermarking and steganographic 

algorithms are different.  While the Minkowsky measures were not statistically significant 

for steganographic algorithms, they were for the watermarking algorithms. Minimizing the 

Mean Square Error (MSE) or the Kullbeck-Leibler distance between the original (cover) 

image and the stego image is not necessarily enough to achieve covert communication as 

the evidence can be caught by another measure such as spectral measures.  The selected 

subset of image quality measures in the design of steganalyzer with respect to their 

statistical significance were as follows: 
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Table 3.1.  One-way ANOVA tests for watermarking, steganography and pooled 

waterwarking and steganography 

 
 Watermark Stego Watermark&Stego 
Image Quality Measures F p F p F p 
Minkowsky Metric 2=γ  6.06 0.01 0.56 0.58 5.28 0.00 

Minkowsky Metric 1=γ  3.28 0.05 0.57 0.58 3.07 0.03 
Maximum Difference 0.13 0.93 0.31 0.74 0.25 0.93 
Sorted Maximum Difference 0.14 0.93 0.07 0.92 0.13 0.98 
Czenakowski 4.63 0.02 1.08 0.37 4.66 0.01 
Structural Content 0.62 0.61 0.15 0.86 0.58 0.71 
Cross Correlation 2.08 0.14 0.21 0.81 0.74 0.60 
Image Fidelity 2.67 0.08 0.40 0.68 1.14 0.37 
Angle Mean 1.95 0.17 4.20 0.04 3.40 0.02 
Angle Standard Deviation 0.45 0.72 3.27 0.08 2.36 0.08 
Spectral Magnitude 5.50 0.03 0.02 0.98 4.35 0.01 
Spectral Phase 5.49 0.03 0.02 0.98 4.34 0.01 
Weighted Spectral Distance 1.12 0.37 0.06 0.94 0.66 0.65 
Median Block Spectral Magnitude 0.79 0.51 0.001 0.99 0.44 0.81 
Median Block Spectral Phase 0.47 0.72 3.95 0.05 4.24 0.02 
Median Block Weighted Spectral Dist. 0.45 0.72 3.96 0.05 4.22 0.02 
Normalized Absolute Error (HVS) 0.16 0.92 1.16 0.35 0.74 0.61 
Normalized MS ERROR (HVS) 3.30 0.05 4.93 0.02 2.69 0.05 
HVS Based L2 0.19 0.90 0.46 0.64 0.47 0.79 
 

Watermarking: Mean Absolute Error D2, Mean Square Error D1, Czekanowski 

Correlation Measure C3, Image Fidelity C2, Cross Correlation C1, Spectral Magnitude 

Distance S, Normalized Mean Square HVS Error H.  We denote this feature set as 

{ }HSCCCDD ,,,,,, 32121=Ψ  for future reference in the experiments in Section 3.4. 

 
Steganography: Angle Mean C4, Median Block Spectral Phase Distance S4, Median 

Block Weighted Spectral Distance S5, Normalized Mean Square HVS Error H.  We denote 

this feature set as { }HSSC ,,, 544=Ω . 

 

Pooled Watermarking And Steganography: Mean Absolute Error D2, Mean Square 

Error D1, Czekanowski Correlation Measure C3, Angle Mean C4, Spectral Magnitude 

Distance S, Median Block Spectral Phase Distance S4, Median Block Weighted Spectral 

Distance S5, Normalized Mean Square HVS Error H.  We denote this feature set as 

{ }HSSCCDD ,,,,,, 544321=Ξ . 
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3.3.  Regression Analysis of the Quality Measures 

 
The steganalysis we propose is based on the observation in Section 3.2. that an 

embedded and filtered image would differ significantly from a non-embedded but filtered 

image.  In other words, both the embedded and non-embedded images are compared 

against the common reference of their filtered images.  It has been observed that filtering 

an image with no message causes changes in the IQMs differently than the changes 

brought about on embedded images. This differential behavior is in part because 

watermarking or steganographic embedding is not in general a global operation, but is 

local in nature.  The watermark or message signal is either injected locally, e.g., on a block 

basis, or the signal is subjected to a perceptual mask.  In any case, we consistently obtained 

statistically different quality scores from filtered-and-embedded images and from filtered-

but-not-embedded sources.  For the hypothesis test, we used various measured quality 

scores, which are either due to the difference between an originally non-embedded image 

and its filtered version, or due to the difference between embedded image and its filtered 

version.  In conclusion the selected statistically significant IQMs form a multidimensional 

feature space whose points cluster well enough to do a classification of embedded and non-

embedded images. 

 

In the design phase of the steganalyzer, we regressed the normalized IQM scores to, 

respectively, -1 and 1, depending upon whether an image did not or did contain a message.  

Similarly, IQM scores were calculated between the original images and their filtered 

versions.  In the regression model [54], we expressed each decision label y  in a sample of 

n  observations as a linear function of the IQM scores x ’s plus a random error,ε : 

 

1 1 11 2 12 1 1... q qy x x xβ β β ε= + + + +  

 

222222112 ... εβββ ++++= qq xxxy                                  (3.5) 

"  

nnqqnnn xxxy εβββ ++++= ...2211  
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In this expression, ijx  denotes the IQM score, where the first index indicates the i'th image 

and the second one the quality measure.  The total number of quality measures considered 

is denoted by q .  The β ’s denote the regression coefficients. The complete statement of 

the standard linear model is 

 

( )
[ ]
[ ]





=
=

=
+=

Iε
0ε

X
εβX

2σCov
E

qrank
thatsuchy nxq .                             (3.6) 

 

The corresponding optimal MMSE linear predictor β  can be obtained by  

 

( ) ( )yXXXβ TT 1ˆ −
= .                                                   (3.7) 

 

Once the prediction coefficients are obtained in the training phase, these coefficients can 

be used in the testing phase.  Given an image in the test phase, first it is filtered and the q 

IQM scores are obtained using the image and its filtered version.  Then using the 

prediction coefficients, these scores are regressed to the output value.  If the output exceeds 

the threshold 0 then the decision is that the image is embedded, otherwise the decision is 

that the image is not embedded. That is 

 

qq xxxy βββ ˆ...ˆˆˆ 2211 +++=                                     (3.8) 

 

for 0ˆ ≥y the image contains watermark, and for 0ˆ <y it does not.  The schematic 

diagram of the steganalyzer is given in Figure 3.3. 

 

3.4.  Simulation Results 

 

The watermarking techniques we used were the following: 1) Photoshop plug-in 

Digimarc [75], Cox et. al.’s technique [77], and the technique from Swiss Federal Institute 

of Technology, PGS  [76]. One reason for the selection of these techniques was their free 

availability on the Internet and the fact that they were all popularly known algorithms.  A 

more important reason was that with these techniques it was possible to embed watermarks 
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at different strengths, which was instrumental to extract the sensitive IQMs.  The 

steganographic tools were Steganos [78], S-Tools [79] and Jsteg [80].  These tools were 

among the most cited ones for their pleasing results with respect to steganographic 

applications.  We used the image database for the simulations.  The database contained a 

variety of images including computer generated images, images with bright colors, images 

with reduced and dark colors, images with textures and fine details like lines and edges, 

and well-known images like Lena, peppers etc.  We performed eight experiments.   

 

The first three experiments involved watermarking only, namely: 1) The steganalysis 

of individual watermarking algorithms, Digimarc, PGS and Cox et. al. for admissible 

watermark strengths;  2) The steganalysis of pooled watermarking algorithms at admissible 

watermark strengths; 3) In the third experiment the steganalyzer was trained on images 

watermarked by Digimarc, and tested on images watermarked by PGS and Cox et. al. 

 

The next three experiments involved steganography only: 4) The steganalysis of 

individual steganography algorithms, Steganos, Stools and Jsteg for different embedded  
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message sizes; 5) The steganalysis of pooled steganography algorithms for different 

message sizes; 6) In the sixth experiment the steganalyzer was trained on images 

embedded with Steganos and Stools, and tested on images embedded with Jsteg.   

 

The final two experiments involved both watermarking tools and steganography 

algorithms. 7) The seventh experiment was the steganalysis of pooled three steganographic 

and three watermarking algorithms for admissible levels of watermark strength and for 

different message lengths. 8) In the last eighth experiment steganalyzer was trained on 

images embedded with Steganos, Stools, watermarked by Digimarc and tested on images 

embedded with Jsteg and watermarked by Cox et. al.  The aim of the last three experiments 

was to see the generalizing ability of the steganalyzer in case an image was to be analyzed 

unknown to it in the learning phase.  In experiments 1, 2 and 3 the feature set was Ψ  

which was defined in Section II, for the experiments 4, 5 and 6 the feature set was Ω , 

while the feature set was Ξ  for the remaining experiments 7 and 8.  In the training phase 

of every experiment, the feature sets were regressed to –1 and +1. 

 

The organizations of the training and testing samples for the experiments are given in 

Tables 3.2.-3.12.  The images in the training and test sets are denoted by numbers.  More 

specifically the training set is { }12,,1 !=Τ  and the test set is { }22,,13 !=Γ .  There were 

four levels of watermark strength for Digimarc and PGS.  We used the original settings of 

Cox’s technique; modified the 1000 most significant coefficients in spectral domain.  The 

embedded message sizes were 1/10 and 1/40 of the cover image size for Steganos and 

Stools, while the message sizes were 1/100 of the cover image size for Jsteg.  

 

Table 3.2.  Training and test samples for Digimarc and PGS for experiment 1 

 

 Level 1 Level 2 Level 3 Level 4 
Training samples 1,2,3 4,5,6 7,8,9 10,11,12 

Test samples 13,14,15 16,17 18,19,20 21,22 
 

Table 3.3.  Training and test samples for Cox for experiment 1 

 

 1000 coefficients 
Training samples 1...12 

Test samples 13…22 
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Table 3.4.  Training and test samples for pooled watermarking algorithms for experiment 2 

(L1: Level 1 etc.) 

 

 Digimarc PGS COX 
Levels L1 L2 L3 L4 L1 L2 L3 L4  
Train 1 2 3 4 5 6 7 8 9,10,11,12 
Test 13 14 15 16 17 18 19 20 21,22 

 

Table 3.5.  Training and test samples for experiment 3: Train on Digimarc, test on PGS and 

COX 

 

Training Digimarc 
WM Levels L1 L2 L3 L4 
Training samples 1…3 4…6 7…9 10…12 
Testing PGS COX 
WM Levels L1 L2 L3  
Test samples 13…15 16…18 19,20 21,22 

 

Table 3.6.  Training and test samples for Stools for experiment 4 

 

Message size 1/40 of image size 1/10 of image size 
Training samples 1…6 7…12 
Test samples 13…17 18…22 

 

Table 3.7.  Training and test samples for Jsteg for experiment 4 

 

Message size 1/100 of image size 
Training samples 1…12 
Test samples 13…22 

 

Table 3.8.  Training and test samples for Steganos for experiment 4.  (Note: In certain 

images the Steganos did not let the messages to be embedded no matter what their size) 

 

Message size 1/40 of image size 1/10 of image size 
Training samples 2,4,8 10,11,13 
Test samples 15,17 19,20,21 
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Table 3.9. Training and test samples for pooled steganography algorithms for experiment 5 

 

 Steganos Stools Jsteg 
Message size 1/40 1/10 1/40 1/10 1/100 
Training samples 2,4 8,10 1,3 5,6 7,9,11,12 
Test samples 13,15 17,19 14,16 18,20 21,22 

 

Table 3.10.  Training and test samples for experiment 6: train on Steganos and Stools, test 

on Jsteg 

 

Training Steganos Stools 
Msg. Size 1/40 1/10 1/40 1/10 
Training samples 2,4,8 10,11 1,3,5,6 7,9,12 
Testing Jsteg 
Msg. Size 1/100 
Test samples 13…22 

 

Table 3.11.  Training and test samples for pooled watermarking and steganography 

algorithms for experiment 7 

 

 Digimarc PGS COX Steganos Stools Jsteg 
 Level or msg size L2 L3 L2 L3 1000 cof 1/40 1/10 1/40 1/10 1/100 
 Training samples 7 8 9 10 11,12 2 4 1 3 5,6 
 Test samples 18 19 20 21 22 13 15 14 16 17 

 

Table 3.12.  Training and test samples for experiment 8: train on Steganos, Stools and 

Digimarc, test on Jsteg and Cox 

 

Training Digimarc PGS COX Steganos Stools Jsteg 
 Level, msg. size L2 L3 L2 L3 1000 cof 1/40 1/10 1/40 1/10 1/100 
 Train samples 7 9 11 12  2,4 8,10 1,3 5,6  
 Testing Digimarc PGS COX Steganos Stools Jsteg 
 Level, msg. size L2 L3 L2 L3 1000 cof 1/40 1/10 1/40 1/10 1/100 
 Test samples    13…17     18..22 
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Table 3.13.  Performance of the Steganalyzer for All the Experiments 

 

Experiment False 
Alarm 
Rate 

Miss 
Rate 

Correct 
Detection 

1. a. Digimarc 2/10 2/10 16/20 
1. b. PGS 2/10 1/10 17/20 
1. c. Cox 4/10 2/10 14/20 
2. Pooled Watermarking 3/10 3/10 14/20 
3 Train on Digimarc, Test on PGS and Cox 5/10 2/10 13/20 
4. a. Steganos 2/5 1/5 7/10 
4. b. Stools 4/10 1/10 15/20 
4. c. Jsteg 3/10 3/10 14/20 
5 Pooled Steganography 5/10 0/10 15/20 
6 Train on Steganos and Stools, Test on Jsteg 3/10 3/10 14/20 
7 Pooled Watermarking and Steganography 5/10 1/10 14/20 
8 Train on Digimarc, PGS, Steganos, Stools 
Test on Cox and Jsteg 

4/10 3/10 13/20 

 

 

The performance of the steganalyzer is given in Table 3.13.  Simulation results 

indicate that the steganalyzer is well enough to do a classification of marked and non-

marked images.  The classifier is still able to do a classification when the tested images 

come from an embedding technique unknown to it, indicating that it has a generalizing 

capability of capturing the intrinsic characteristics of watermarking and steganographic 

techniques.  As we have noted, the features were regressed to output labels –1 and +1 in 

every experiment.  The false alarms, especially in experiments 3, 5 and 7, can be fixed to 

desired rate by choosing the output regression labels asymmetrically. 

 

3.5.  Conclusions 

 

In this section, we have addressed the problem of steganalysis of watermarked and 

stegonagraphically marked images.  That is, we develop techniques for discriminating 

between cover-images and stego-images.  Our approach is based on the hypothesis that a 

particular message embedding scheme leaves statistical evidence or structure that can be 

exploited for detection with the aid of proper selection of image features and multivariate 

regression analysis.  We showed that the distance between an unmarked image and its 
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filtered version is different than the distance between a marked image and its filtered 

version.  We used image quality metrics as the feature set to distinguish between marked  

and non-marked images.  To identify specific quality measures, which provide the best 

discriminative power, we used ANOVA technique.  We have also pointed out the image 

features that should be taken more seriously into account in the design of more successful 

watermarking or steganographic techniques to eschew detection.  After selecting an 

appropriate feature set, we used multivariate regression techniques to get an optimal 

classifier using an image and its filtered version.  Simulation results with well known and 

commercially available watermarking and steganographic techniques indicate that the 

proposed technique is successful in classification of marked and non-marked images.  
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4.  LOSSLESS AND NEAR-LOSSLESS IMAGE COMPRESSION 

WITH SUCCESSIVE REFINEMENT 
 

 

4.1.  Introduction 

 

Lossless or reversible compression refers to compression approaches in which the 

reconstructed data exactly matches the original.  Near-lossless compression denotes 

compression methods, which give quantitative guarantees on the nature of the loss that is 

introduced.  Typically, most of the near-lossless compression techniques proposed in the 

literature provide a guarantee that no pixel difference between the original and the 

compressed image is above a given value [81].  Near-lossless compression is potentially 

useful in remote sensing, medical imaging, space imaging and image archiving 

applications, where the huge data size could require lossy compression for efficient storage 

or transmission.  However, the need to preserve the validity of subsequent image analysis 

performed on the data set to derive information of scientific or clinical value puts strict 

constraints on the error between compressed image pixel values and their originals.  In 

such cases, near-lossless compression can be used as it yields significantly higher 

compression ratios compared to lossless compression and at the same time, the quantitative 

guarantees it provides on the nature of loss introduced by the compression process are 

more desirable compared to the uncertainties that are faced when using lossy compression.  

 

Another way to deal with the lossy-lossless dilemma faced in applications such as 

medical imaging and remote sensing is to use a successively refinable compression 

technique that provides a bitstream that leads to a progressive reconstruction of the image. 

The increasingly popular wavelet based image compression techniques, for example, 

provide an embedded bit stream from which various levels of rate and distortion can be 

obtained.  With reversible integer wavelets, one gets a progressive transmission capability 

all the way to lossless reconstruction. Hence such techniques have been widely cited for 

potential use in applications like tele-radiology where a physician can request portions of 

an image at increased quality (including lossless reconstruction) while accepting 

unimportant portions at much lower quality, thereby reducing the overall bandwidth 
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required for transmitting an image [82, 83].  Indeed, the new still image compression 

standard, JPEG 2000, provides such features in its extended forms [84].  

 

Although reversible integer wavelet based image compression techniques provide 

integration of lossless and lossy compression in one single framework, the compression 

performance they provide is typically inferior to state-of-the-art non-embedded and DPCM 

based techniques like CALIC [85].  In addition, although lossless compression is possible 

by receiving the entire bit stream (corresponding to a block or the entire image), the lossy 

reconstruction at intermediate stages provides no guarantees on the nature of the distortion 

that may be present.  Near-lossless compression in such a framework is only possible 

either by an appropriate pre-quantization of the wavelet coefficients and lossless 

transmission of the resulting bit stream, or by truncation of the bit stream at an appropriate 

point followed by transmission of a residual layer to provide the near-lossless bound.  Both 

these approaches have been shown to provide inferior compression as compared to near-

lossless compression in conjunction with DPCM coding [81].  

 

We propose a technique that unifies the above two approaches. The proposed 

technique produces a bitstream that results in progressive reconstruction of the image just 

like what one can obtain with a reversible wavelet codec.  In addition, the proposed 

scheme provides near-lossless reconstruction with respect to a given bound after each layer 

of the successively refinable bitstream is decoded (note, however that these bounds need to 

be pre-decided at compression time and cannot be changed during decompression). 

Furthermore, the compression performance provided by the proposed technique is superior 

or comparable to the best-known lossless and near-lossless techniques proposed in the 

literature [86, 87, 88]. 

 

This section is organized as follows:  We review the concepts of successive 

refinement, density estimation and the data model in Section 4.2.  The compression method 

is described in Section 4.3.  In Section 4.4. we give experimental results and conlusions are 

drawn in Section 4.5.   
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4.2.  Problem Formulation 

 

The key problem in lossless compression involves estimating the p.m.f. (probability 

mass function) of the current pixel based on previously known pixels (or previously 

received information).  With this in mind, the problem of successive refinement can then 

be viewed as the process of obtaining improved estimates of the p.m.f.’s with each pass of 

the image.  If we also restrict the "support" of the p.m.f. to a given length we then integrate 

near-lossless compression and successive refinement with lossless compression in one 

single framework.  That is we obtain a bitstream, which gives us near-lossless 

reconstruction after each pass in the sense that each pixel is within δ  counts of its original 

value.  The length of the interval, 12 += δλ , in which the pixel is, decreases with 

successive passes and in the final pass we have lossless reconstruction, 1=λ  and 0=δ .  

In order to design a compression technique with these properties we consider image data 

compression as asking the optimal question to determine the exact value or the interval of 

the pixel depending on whether we are interested in lossless or near-lossless compression, 

respectively.  Our aim is to find the minimum description length of every pixel based on 

the knowledge we have about its neighbors.  We know from the Kraft Inequality that a 

code length is just another way to express a probability distribution.  Massey [89] observed 

that the average number of guesses to determine the value of a random variable is 

minimized by a strategy that guesses the possible values of the random variable in 

decreasing order of probability.  Our strategy is to estimate the probability density of the 

current pixel using previous information, and based on this density to determine the 

interval of the pixel by questioning the most probable interval where the pixel lies.   

 

In the first pass, we assume that the data in use at a coarse level is stationary and 

Gaussian in a small neighborhood and we hence use linear prediction.  We fit a Gaussian 

density for the current pixel, with the linear prediction value taken as the optimal estimate 

of its mean, and linear prediction error as its variance.  We divide the support of the current 

pixel’s p.m.f., [0,255], into equal 12 +δ  length intervals, δ  being integer.  The intervals 

are sorted with respect to their probability mass.  If the pixel is found to lie in the interval 

with highest probability mass the probability mass outside the interval is zeroed out and the 

event 1 is fed to the entropy coder; otherwise the next question is asked whether it lies in 

the next highest probability interval.  Every time one receives a negative answer, the 
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probability mass within the given interval is zeroed out and the event 0 is fed to the 

entropy coder till the right interval is found.  At the end of the first pass, we have a "crude" 

approximation of the image but the maximum error in reconstructed image 
∞

e
 
is δ  when 

the midvalue of the interval is selected as the reconstructed pixel value.   

 

In the remaining passes we then refine the p.m.f. for each pixel by narrowing the size 

of the interval in which it is now known to lie. The key problem here is how to refine the 

p.m.f. of each pixel based on p.m.f.'s of its neighboring pixels. Note that the causal pixels 

already have a refined p.m.f. but the non-causal pixels do not. The non-causal pixels now 

give us vital information (like the presence of edges and texture patterns), which can be 

used to get better estimates of the refined p.m.f.. However care must be taken, as the 

available information is less redundant than in the first pass with respect to the current 

p.m.f. estimation.  That is we know in which interval the current pixel is, we have more 

precise information of causal pixels and less precise information of non-causal pixels. We 

need to estimate/refine the current p.m.f. within the constraint of its support.  The 

refinement of the current p.m.f. should take all these into account.  The p.m.f. estimation 

method for second and remaining passes, outlined in the next section, which is simply a 

causal and non-causal p.m.f. summation over the current p.m.f.’s support takes 

successfully all the information into account.  Once the p.m.f. is estimated/refined for the 

current pixel the same strategy, guessing the correct interval or the value depending on 

their probability, is applied to constrain the pixel to narrower intervals or to their exact 

values.     

 

In the following sub-sections we review some key concepts and results from known 

literature and show how we propose to use these in order to develop the proposed 

technique for successively refinable lossless and near-lossless image compression. 

 

4.2.1.  Successive Refinement  

 

Successive refinement of information consists of first approximating data using a few 

bits of information, and then iteratively improving the approximation as more and more 

information is supplied.  In their paper on successive refinement of information [90] Equitz 

and Cover state that rate distortion problem is successively refinable if and only if the 
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individual solutions of the rate distortion problems can be written as Markov chain.  Then 

they give examples of signals along with distortion measures for which successive 

refinement is possible, i.e. if the source is Gaussian and MSE (Mean Square Error) is used 

as the distortion measure the source is successively refinable.  Massey [89] considered the 

problem of guessing the value of a realization of a random variable X  by asking the 

questions of the form “Is X  equal to x ” until the answer is “Yes”.  It is observed that the 

average number of guesses is minimized by a guessing strategy that guesses the possible 

values of X  in decreasing order of probability.  In near-lossless compression we are 

interested in intervals where the pixel lies rather than in their exact values, so the optimal 

strategy for minimizing the average number of guesses is to guess the interval in 

decreasing order of probability masses contained in the intervals.  In either case, we first 

need to construct probability mass estimates in order to use this strategy.  In what follows, 

we describe probability mass estimation for different passes.    

 

4.2.2.  P.m.f. Estimation in the First Pass 

 

The Gaussian Model:  Natural images in general do not satisfy Gaussianity or stationarity 

assumptions.  But at a coarse level, in a reasonable size neighborhood, the statistics can be 

assumed not to differ from the above assumptions and the results of Gauss-Markov 

property can be used.  We use linear prediction in the first pass assuming the data in a 

small neighborhood as stationary and Gaussian.  We fit a Gaussian density for the current 

pixel, with the linear prediction value taken as the optimal estimate of its mean.   

 

We use causal pixel to predict the current pixel via normal linear regression model.  

Suppose Niii XXX −−− ,,, 21 !  are random variables representing the causal neighbors of the 

current pixel iX , shown in Figure 4.1.  Let kNikiki xxx )()2()1( ,,, −−− !  , k = 1,…,K denote 

their realizations.  We assume a discrete-time scalar-valued random process { }iX  that 

satisfies the Nth-order linear prediction  equation  

 

( )∑
=

− +=
N

j
ijiji xX

1
νβ                                                 (4.1) 
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where { } N
jj 1=

β  are real-valued linear prediction coefficients of the process, and { }iν  is a 

sequence that consists of i.i.d. random variables having a Gaussian density with zero mean 

and variance 2σ .  Optimal MMSE (Minimum MSE) linear prediction for an Nth order 

stationary Gauss-Markov process { }iX  can be formulated as: 

 

[ ] ( )∑
=

−−−− =
N

j
jijNiiii xXXXXE

1
21 ,,, β! .                                         (4.2) 

 

For this standard linear model, according to Gauss-Markov theorem, the minimum 

variance linear unbiased estimator [ ]Nββ ...1=β  is the least square solution of (4.2) and is 

given by [91, 54] 

 

( ) ( )yXXXβ TT 1−
=                                                        (4.3) 

 

where [ ]Kiii XXX −−−= ,,, 21 !y  denote the K context pixels given in Figure 4.2., while the 

data matrix X    
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consists of the prediction neighbors of y .  The expected value of iX  is given by (4.2) and 

an unbiased estimator of prediction error variance

 

2σ  can be obtained [54] as 

 

( )yXβyy TTT

NK
−

−−
=

1
12σ .                                 (4.4) 

 

Based on the principle that the mean-square prediction for a normal random variable 

is its mean value, then the density of iX  conditioned on causal neighbors is given by 
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Figure 4.1.  Ordering of the causal prediction neighbors of the current pixel i× , N=6. 
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Figure 4.2.  The context pixels, denoted by •  and $ , used in the covariance estimation of 

the current pixel ∗ .  The number of context pixels is K=40. 

 

4.2.3.  P.m.f. Estimations in the Second Pass 

 

L2 Norm Minimizing Probability Estimation:  In finer quantal resolutions after the first pass 

we have to leave aside the gaussian assumption since the image data at finer resolutions 

behaves more randomly lacking correlation.  We thus assume data is independent and 

update the estimate of the current pixel density by using neighboring densities, that is by 

minimizing the 2L  norm of causal and non-causal densities.  This stems from the fact that 

in the first pass, most of the time the interval is guessed correctly in one question, leading 

to Gaussian distributions which fit well to pixels at low resolution (large λ ).  In later 

passes the data becomes more independent of each other as more of the redundancy is 

removed after each pass, resulting in decreased correlation.  At this stage we can use the 

non-causal densities as well, which are densities from the non-causal neighborhood of the 

pixel from the previous pass. Several probability mass update methods are presented for 

the second and higher passes.  The prediction neighbors used in probability mass 
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estimation in the second and higher passes are given in Figure 4.3.  Note that we have the 

chance to use the non-causal pixels for prediction.  
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Figure 4.3.  Causal, $ , and non-causal, • , neighbors of the current pixel , ∗ , used for 

probability mass estimation in the second and higher passes. 

 

Let ( )xpi  denote the probability mass function to be estimated given the causal and 

non-causal distributions { } N
jjip

1=− .  Minimizing ( ) ( )( )∑ −−
j

jii xpxp 2  subject to the 

constraint ( ) 1=∑ xpi  and using Lagrange multipliers we have 

 

( ) ( ) ( )( ) ( )( )∑∑ +−=
≤≤

− xpxpxppJ i
Nj

jiii λ
1

2 .                             (4.6) 

 

Using the variational derivative with respect to ( )xpi  one finds the distribution to be of the 

form 

 

( ) ( )





= ∑

=
−

N

j
jii xp

N
xp

1

* 1 .                                                 (4.7) 

 

The method has some desirable properties.  If the neighboring interval censored 

p.m.f.s do not overlap with the current one then they have no negative effect on the 

estimate.  If there exist some overlapping, then an evidence gathering from the causal and 

non-causal neighbors for the indices of the current interval occurs as they give rise to 

higher accumulated probabilities for some indices in the interval.  Notice this method of 

summing neighboring densities gives automatically more importance to more precise 

information residing in the causal neighbor p.m.f.'s concentrated in narrower intervals than 

to the less precise information in the non-causal ones.  
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Turnbull Probability Estimator:  An interval-censored observation of X  is of the form 

],( RL XX  with RL XX < , where the actual value of X  lies in ]( RL XXX ≤< .  Suppose a 

sample of N i.i.d observations ],( i
R

i
L XX , for Ni ,...,1= , is given.  Define the indicator 

variables { }],( i
R

i
Ls

i
s XXxI ∈=α , 255,...,1=s .  With this notation, a self-consistent density 

estimator p , adopted from Turnbull [92], is given by 

 

∑ ∑≤≤
≤≤

=
Ni

l

i
l

i
s

lp
sp

N
sp

1
2551

][
][1][

α
α

                                                   

(4.8) 

 

Turnbull also gives an iterative algorithm to compute (4.8).  A heuristic justification 

of this method can be made by multiplying both sides by N.  Then the left hand side of 

(4.6) is the expected number of individuals in the neighborhood having sX = , while the 

right-hand side is the conditional expected number of individuals in the neighborhood 

having sX =  given the observed interval data. 

 

Note that Turnbull’s estimator accumulates the likelihood for the current index s the 

same way L2 minimizing estimator does, that is the probability of the indices s for which 

i.i.d. intervals overlap is higher than the other indices for which the intervals do not 

overlap.  This seems intuitively reasonable thing to do when the samples are i.i.d. 

 

Hellinger Norm Minimizing Probability Estimation:  The relative entropy ( )qpD  is a 

measure of distance between two distributions.  It is a measure of the inefficiency of 

assuming that the distribution is q  when the true distribution is p .  For example if we 

knew true distribution of the random variable, then we could construct a code with average 

length ( )pH .  If instead, we used the code for distribution q , we would need 

( ) ( )qpDpH +  bits on the average to describe the random variable.  The squared Hellinger 

norm between distributions with densities p  and q  is defined as   

 

( ) ( ) ( )( )∫ −= dxxqxpqpH
22 ,                                     (4.9) 
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Many, if not all, smooth function classes satisfy the equivalence 

( ) ( )qpHqpD ,2≈ .  The advantage of 2H  is that it satisfies triangle inequality while D  

does not.  However D  brings in clean information theoretic identities [93] such as 

minimum description length principle, stochastic complexity, etc.  Taking advantage of the 

equivalence between D  and 2H  we can use one for the other in the derivation of the 

optimal ( )xpi
* .   

 

When we have a class of candidate densities { }Njp ji ,,1: !=−  and want to find the 

( )xpi
* , which minimizes the inefficiency of assuming the distribution was jip − , we can 

minimize the total extra bits to obtain the shortest description length on the average: 

 

( ) ( ) ( )( ) ( )∫∑∫ +−=
≤≤

− dxxpdxxpxppJ i
Nj

jiii λ
1

2

                      (4.10) 

 

where λ  is the Lagrange multiplier.  Again finding the variational derivative with respect 

to ( )xpi  and setting it equal to zero, we get  

 

( ) ( )
2

1

*







= ∑

≤≤
−

Nj
jii xpTxp                                         (4.11) 

 

where T is the normalizing constant.  In general the relative entropy or Kullback-Leibler 

distance has a close connection with more traditional statistical estimation measures such 

as L2 norm (MSE) and Hellinger norm when the distributions are bounded away from zero, 

and is equivalent to MSE when both p and q are Gaussian distributions with the same 

covariance structure [93].  Like Turnbull’s method this method is not used in p.m.f. 

estimation because it is similar in performance to (4.5) but computationally more 

expensive.   
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4.2.4.  Multi-hypothesis Testing 

 

We can treat the problem of estimating the interval where the current pixel value is 

in, within the framework of multi-hypotheses testing [94].  Let the MHH ,...,1  denote the M 

hypotheses where every hypothesis m  is associated with an interval ( ]mm RL ,  that has a 

length of 12 +δ .  The random variable X  has a probability mass under each hypothesis 

mH =  and denote this probability mass by   

 

( )
( ]
∑

∈

=
mm RLi

XHX ipmxp
,

)(
                                        (4.12) 

 

When each hypothesis has an a priori probability, { }mHpm == Pr , the cumulative 

probability mass of mH =  and xX =  is then ( ) mHX pmxp .  The a posteriori probability 

that mH =  conditional on xX =  is 

 

( ) ( )
( )∑

=

= M

m
mHX

mHX
XH

pmxp

pmxp
xmp

1 .                                     (4.13)

 

 

The rule for maximizing the probability of being correct, so as to minimize the 

number of guesses in finding the correct interval, is to choose that m  for which ( )xmp XH  

is maximized.  This is denoted by 

 

( )[ ]xmppH XHm
m
maxargˆ =                                             (4.14) 

 

and known as maximum a posteriori (MAP)  rule.  For equal probabilities, this becomes 

the maximum likelihood (ML) rule where we simply choose the hypothesis with the largest 

likelihood 

 

( )[ ]mxpH HX
m
maxargˆ =  .                                            (4.15) 
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We use ML rule in the first pass, while MAP rule is used in the following passes 

since we have the a priori probability mass from the previous passes.  Defining the 

indicator function as  

 

( ]{ }mm
m
x RLxI ,∈=χ

                                        (4.16) 

 

where after hypothesis test the ( ]mm RL ,  is the correct interval for the current pixel with 

highest probability mass in it, the entropy coder is fed with one or zero, respectively, if the 

indicator function is one or zero.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4.  Schematic description of the overall compression scheme. 

 

4.3.  The Compression Method 
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in one single framework.  Lossless or near-lossless compression can be achieved either 

with successive refinement or in one step, called the direct method.   

 

In successive mode lossless compression, the support of the p.m.f. is successively 

refined and narrowed down to one.  In the first pass, for every pixel the p.m.f. is estimated 

with (4.5) using linear prediction and multi-hypothesis testing (4.15) to constrain the 

support (or length) of the current p.m.f. to 1λ .  The details of the p.m.f. support 

constraining are given in Figure 4.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5  Details of the encoder block used in Figur
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Successive near-lossless compression is similarly performed in several passes.  The 

first pass is the same as the direct near-lossless case, but in the following passes, for every 

pixel the p.m.f.s are successively refined and the lengths of the supports for the pixels are 

narrowed down to the desired precision.  P.m.f.s are estimated with method (4.7) and the 

intervals where the pixel lies are determined by MAP test (4.14) as we have the a priori 

probability mass for the current pixel from the previous pass.   

 

In successive mode, for both lossless and near-lossless compression, the interval of 

the current pixel at second or the following passes can be narrowed in two ways:  One way 

is to split it into two intervals and to perform binary hypothesis test.  The other way is to 

split the current interval into more than two equal length intervals and to perform multiple 

hypothesis test.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 6.  The decoder is a replica of the encoder.  
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current pixel lies in that interval or not.  Whenever the decoded event z is not success for 

the given interval, this interval is discarded, until the correct interval is tested with success.  

The reconstructed value of the current pixel is taken as the midvalue of the successfully 

tested interval, which guarantees that the error in reconstructed value is not more than half 

of the interval length minus one, that is 2/)1( −=
∞

λe , where λ  is the length of the 

interval. 

 

4.4.  Experimental Results 

 

Successive and direct mode lossless compression results, which are obtained with 

three passes are given in Table 4.1.  The interval lengths of the pixel values are taken 8 in 

the first pass, 4 in the second pass and 1 in the final third pass in the successive mode.  

One-pass results are also given in the same table.  Near-lossless results obtained with one 

pass for 1=δ , 3=δ  and 7=δ , are given in Tables 4.2., 4.3., and 4.4. respectively.    

 

Table 4.1.  Comparison of lossless compression results: proposed method versus CALIC. 

 

 Proposed CALIC [85] 
0=δ  3-pass 1-pass  

BARB 4.18 4.21 4.45 
LENA 4.07 4.07 4.11 
ZELDA 3.81 3.79 3.86 
GOLDHILL 4.65 4.69 4.63 
BOAT 4.06 4.08 4.15 
MANDRILL 5.89 5.96 5.88 
PEPPERS 4.41 4.37 4.38 
MEAN 4.44 4.45 4.49 

 

Table 4.2.  Comparison of 4 different methods of near-lossless compression  ( 1=δ ) 

 

Image SPIHT [52] CALIC [85] CALIC [95] Proposed 

 Bpp PSNR 
∞e  bpp PSNR 

∞e  bpp PSNR 
∞e  Bpp PSNR 

∞e  

Hotel 2.70 76.93 6 2.76 49.95 1 2.70 50.07 1 2.84 49.92 1 
Ultrasound 1.60 46.33 8 1.99 52.36 1 1.60 51.76 1 1.70 49.84 1 
Café 3.22 47.09 7 3.30 49.97 1 3.22 50.09 1 3.44 49.85 1 
Barbara    2.94 49.91 1    2.65 49.88 1 
Finger 3.82 47.27 5 3.90 49.89 1 3.82 49.98 1 3.80 49.89 1 
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Table 4.3.  Comparison of 4 different methods of near-lossless compression ( 3=δ ) 

 

Image SPIHT [52] CALIC [85] CALIC [95] Proposed 

 Bpp PSNR 
∞e  Bpp PSNR 

∞e  bpp PSNR 
∞e  Bpp PSNR 

∞e  

Hotel 1.69 41.77 11 1.74 42.31 3 1.67 42.37 3 1.75 42.30 3 
Ultrasound 1.09 41.42 16 1.51 45.04 3 1.09 44.86 3 1.30 42.22 3 
Café 2.19 41.42 16 2.27 42.41 3 2.19 42.49 3 2.31 42.21 3 
Barbara    1.92 42.23 3    1.61 42.27 3 
Finger 2.67 40.71 15 2.73 42.11 3 2.67 42.18 3 2.63 42.10 3 

 

Table 4.4.  Comparison of 4 different methods of near-lossless compression  ( 7=δ ) 

 

Image SPIHT [52] CALIC [85] CALIC [95] Proposed 

 Bpp PSNR 
∞e  Bpp PSNR 

∞e  bpp PSNR 
∞e  Bpp PSNR 

∞e  

Hotel 0.95 37.76 20 0.97 36.50 7 0.95 36.75 7 0.96 36.42 7 
Ultrasound 0.72 37.17 25 0.99 37.19 7 0.72 38.55 7 0.78 36.48 7 
Café 1.43 36.49 30 1.50 36.31 7 1.43 36.45 7 1.48 35.80 7 
Barbara    1.19 36.21 7    0.91 36.27 7 
Finger 1.77 35.90 21 1.80 35.43 7 1.77 35.59 7 1.73 35.43 7 

 

Table 4.5.  Comparison of bit/pixel efficiency and peak signal to noise ratio in dB of the 

proposed algorithm versus the CALIC [85] algorithm. 

 

 bit/pixel gain PSNR gain 
δ = 1 0.05     -0.01     
δ = 2 0.07     0.01     
δ =3 0.08     0.03     
δ =4 0.09     0.05     
δ =5 0.10     0.07     
δ =6 0.11     0.07     
δ = 7 0.10 0.08 

 

Notice that the lossless compression results in bits per pixel obtained with one pass 

and three passes are almost the same, contrary to one’s expectation that more than one pass 

would yield better performance as the non-causal information is available in the following 

passes.  This is because the non-causal information is less precise than the causal 

information.   
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4.5.  Conclusion 

 

In this section, we have presented a technique that unifies progressive transmission 

and near-lossless compression in one single bit stream.  The proposed technique produces a 

bitstream that results in progressive reconstruction of the image just like what one can 

obtain with a reversible wavelet codec.  In addition, the proposed scheme provides near-

lossless reconstruction with respect to a given bound after each layer of the successively 

refinable bitstream is decoded.  Furthermore, the compression performance provided by 

the proposed technique is superior or comparable to the best-known lossless and near-

lossless techniques proposed in the literature [81, 85, 95, 52]. 

 

The originality of the method consists in looking at the image data compression as 

one of asking the optimal questions to determine the interval in which the current pixel 

lies. With successive passes of the image, the length of this interval is gradually narrowed 

until it becomes of length one, in which case we have lossless reconstruction. Stopping the 

process in any intermediate stage gives near-lossless compression. Although our 

experimental results show that the proposed method brings in only modest gains in dB 

measure or bit per pixel efficiency, we believe that there is room for improvement.  Our 

future work will explore different avenues for improving upon the results given in this 

paper.  For example, we have no mechanism for learning global or repeated patterns in the 

image.  Context based techniques like CALIC, keep a history of past events in a suitably 

quantized form and use these to better model subsequent events.  We believe such 

mechanisms when incorporated within our framework will give additional improvements. 

 

The proposed techniques provides a flexible framework and many variations of the 

basic method are possible.  For example, the quality of reconstruction as defined by the 

near-lossless parameter k can be made to vary from region to region or even from pixel to 

pixel based on image content or other requirements.  Given this fact, different regions in 

the image can be refined to different desired precision using HVS properties.  To this 

effect, flat regions where compression artifact visibility is higher can be refined more 

accurately, thus achieving perceptually lossless compression.  In addition, it would be 

interesting to extend the technique to multispectral images. 
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5.  CONCLUSIONS AND FUTURE PERSPECTIVES 
 

 

Firstly, we have presented collectively a set of image quality measures in their 

multispectral version and categorized them.  Statistical investigation of 26 different 

measures using a ANOVA analyses has revealed that local phase-magnitude measures (S2 

or S5), HVS-filtered L1, L2 norms, edge stability measure are most sensitive to coding, 

blur and artifacts, while the mean square error (D1) remains as the measure for additive 

noise.  One can state that combined spectral phase-magnitude measures and HVS filtered 

error norms should be paid more attention in the design of coding algorithms and sensor 

evaluation.  On the other hand the pixel-difference based measures remain still to be the 

measures responsive to distortions and least affected by image variety.  

 

The Kohonen map of the measures has been useful in depicting similar ones, and 

identifying the ones that are sensitive possibly to different distortion artifacts in 

compressed images. The correlation between various measures has been depicted via 

Kohonen’s Self-Organizing Map.  The placement of measures in the two-dimensional map 

has been in agreement with one’s intuitive grouping. 

 

Future work will address subjective experiments and prediction of subjective image 

quality using the above salient measures identified.  Another possible avenue is to combine 

various  ”fundamental” metrics for better performance prediction.   

 

Secondly, we have addressed the problem of steganalysis of watermarked and 

steganographically marked images.  That is, we developed techniques for discriminating 

between cover-images and stego-images.  Our approach is based on the hypothesis that a 

particular message embedding scheme leaves statistical evidence or structure that can be 

exploited for detection with the aid of proper selection of image features and multivariate 

regression analysis.  We showed that the distance between an unmarked image and its 

filtered version is different than the distance between a marked image and its filtered 

version.  We used image quality metrics as the feature set to distinguish between marked 

and non-marked images.  To identify specific quality measures, which provide the best 

discriminative power, we used ANOVA technique.  We have also pointed out the image 
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features that should be taken more seriously into account in the design of more successful 

watermarking or steganographic techniques to eschew detection.  After selecting an 

appropriate feature set, we used multivariate regression techniques to get an optimal 

classifier using an image and its filtered version.  Simulation results with well known and 

commercially available watermarking and steganographic techniques indicate that the 

selected IQMs form a multidimensional feature space whose points cluster well enough to 

do a classification of marked and non-marked images.  The classifier is still able to do a 

classification when the tested images come from an embedding technique unknown to it, 

indicating that it has a generalizing capability of capturing the general intrinsic 

characteristics of watermarking and steganographic techniques.     

Proposed steganalysis technique is its infancy.  The measures that are incorporated in 

the watermarking and steganographic system designs should be investigated for 

steganalysis.  We have reduced the problem to classification, so the wealth of tools in 

pattern recognition i.e., feature selection methods, nonlinear or neural classifiers can be 

used for a better classification performance, since the real world problems are non-linear.  

In fact, one of the consequences of this work is that current watermarking and 

steganographic techniques are so weak for steganographic applications that they lend 

themselves easily to linear solutions. 

Thirdly, we have presented a technique that unifies progressive transmission and 

near-lossless compression in one single bit stream.  The proposed technique produces a 

bitstream that results in progressive reconstruction of the image just like what one can 

obtain with a reversible wavelet codec.  In addition, the proposed scheme provides near-

lossless reconstruction with respect to a given bound after each layer of the successively 

refinable bitstream is decoded.  Furthermore, the compression performance provided by 

the proposed technique is superior or comparable to the best-known lossless and near-

lossless techniques proposed in the literature. 

The originality of the method consists in looking at the image data compression as 

one of asking the optimal questions to determine the interval in which the current pixel 

lies.  With successive passes of the image, the length of this interval is gradually narrowed 

until it becomes of length one, in which case we have lossless reconstruction.  Stopping the 

process in any intermediate stage gives near-lossless compression.  Although our 
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experimental results show that the proposed method brings in only modest gains in dB 

measure or bit per pixel efficiency, we believe that there is room for improvement.  Our 

future work will explore different avenues for improving upon the results given in this 

thesis.  For example, we have no mechanism for learning global or repeated patterns in the 

image.  Context based techniques like CALIC, keep a history of past events in a suitably 

quantized form and use these to better model subsequent events.  We believe such 

mechanisms when incorporated within our framework will give additional improvements. 

The proposed techniques provides a flexible framework and many variations of the 

basic method are possible.  For example, the quality of reconstruction as defined by the 

near-lossless parameter k can be made to vary from region to region or even from pixel to 

pixel based on image content or other requirements.  Given this fact, different regions in 

the image can be refined to different desired precision using HVS properties.  To this 

effect, flat regions where compression artifact visibility is higher can be refined more 

accurately, thus achieving perceptually lossless compression.  It would be interesting to 

extend the technique to multispectral images.   

Finally, multidimensional pmf estimation and optimal question approach may result 

in several birds with one shot. 
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