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Abstract

Modern technologies have resulted in the production of numerous high-throughput
biological datasets. However, the pace of development of capable computational methods
does not cope with the pace of generation of new high-throughput datasets. Amongst the
most popular biological high-throughput datasets are gene expression datasets (e.g.
microarray datasets). This work targets this aspect by proposing a suite of computational
methods which can analyse multiple gene expression datasets collectively. The focal
method in this suite is the unification of clustering results from multiple datasets using
external specifications (UNCLES). This method applies clustering to multiple
heterogeneous datasets which measure the expression of the same set of genes separately
and then combines the resulting partitions in accordance to one of two types of external
specifications; type A identifies the subsets of genes that are consistently co-expressed in
all of the given datasets while type B identifies the subsets of genes that are consistently co-
expressed in a subset of datasets while being poorly co-expressed in another subset of
datasets. This contributes to the types of questions which can addressed by computational
methods because existing clustering, consensus clustering, and biclustering methods are
inapplicable to address the aforementioned objectives. Moreover, in order to assist in setting
some of the parameters required by UNCLES, the M-N scatter plots technique is proposed.
These methods, and less mature versions of them, have been validated and applied to
numerous real datasets from the biological contexts of budding yeast, bacteria, human red
blood cells, and malaria. While collaborating with biologists, these applications have led to
various biological insights. In yeast, the role of the poorly-understood gene CMRI1 in the
yeast cell-cycle has been further elucidated. Also, a novel subset of poorly understood yeast
genes has been discovered with an expression profile consistently negatively correlated with
the well-known ribosome biogenesis genes. Bacterial data analysis has identified two
clusters of negatively correlated genes. Analysis of data from human red blood cells has
produced some hypotheses regarding the regulation of the pathways producing such cells.
On the other hand, malarial data analysis is still at a preliminary stage. Taken together, this
thesis provides an original integrative suite of computational methods which scrutinise
multiple gene expression datasets collectively to address previously unresolved questions,
and provides the results and findings of many applications of these methods to real

biological datasets from multiple contexts.
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Chapter 1

Introduction

1.1. Background

Neologism coinage is a natural concomitant of advancements in technology, science, and
engineering. The affiliated suffixes, ‘-ome’, ‘-omic’, and ‘-omics’ are examples of such
neologisms that have been introduced to English as a consequence of the rise of the age of
big data. A ‘genome’ is the complete set of genes in an organism, ‘genomic’ matter is that
which is related to the complete set of genes in an organism, and ‘genomics’ refers to study
of the complete set of genes in an organism. Similarly, ‘proteomes’, ‘transcriptomes’,
‘glycomes’, and ‘metabolomes’ are the complete sets of proteins, transcripts, glycans
(carbohydrates), and metabolites (small molecules) in an organism, respectively.
Consequently, the fields of research considering these omic datasets respectively are

‘proteomics’, ‘transcriptomics’, ‘glycomics’, and ‘metabolomics’.

Certainly, these new terms were conceived following the realisation of their implied
meanings. For example, transcriptomics was introduced only after the development of
arrays of sensors (microarrays) which can measure the abundance of a large set of genetic
transcripts in parallel (the abundance of any gene’s transcripts, aka gene expression, reflects
the level of activity of that gene; see Appendix I for more details). Datasets produced by
such high-throughput technologies usually include large number of numeric values to the
extent that they become no longer feasibly comprehensible by traditional manual means.
This burst of data generation necessitates the employment of computational methods that
are designed to analyse large amounts of data and guide discovery inference from them. The
new interdisciplinary field of research formed by the marriage between biochemistry and
computational sciences is now known as bioinformatics, which has delivered, and continues

to deliver, various key findings in the biological and medical sciences.
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As the cost of the omic high-throughput technologies is dropping rapidly while proving
their usefulness, they are becoming more readily available to the biochemical community,
and consequently are being increasingly utilised to produce more large omic datasets. Elaine
Mardis, the Professor of Genetics in the Genome Institute at Washington University, and a
collaborator in the 1000 Genomes Project, titled her “musing” published in Genome
Medicine in 2010 as “the $1,000 genome, the $100,000 analysis?”” (Mardis, 2010). Mardis
discussed the tremendous drop in the cost of sequencing the complete genome of an
individual human from hundreds of millions to few thousand dollars, and that it is expected
to reach the line of $1,000. She predicted, based on many facts and observations, that the
cost of data analysis, which does not seem to be dropping, will constitute the major part of

the total cost rather than the cost of data generation.

Today, tens of thousands of gene expression (transcriptomic) microarray datasets are
available, each of which is a large matrix of numbers measuring the expression of a large
number of genes over many time-points or conditions (detailed in Section 2.1). Tremendous
numbers of datasets have also been produced from other types of high-throughput biological

assays. The pace of data generation has neither slowed down nor plateaued.

As a result of this, it is now becoming of substantial importance to design a new
generation of computational methods which are not only able to analyse a single massive
biological dataset meaningfully but that are also capable of analysing multiple semantically-
related high-throughput datasets collectively in order to mine for those findings that are
hidden in the aggregation of the datasets in contrast to their individuals. Pick a biological
context like erythropoiesis, which is the production of red blood cells in humans and other
mammals, many research groups have produced gene expression datasets in this context
from different laboratories around the world, by adopting different technologies, and while
differing in their exact conditions and environmental parameters (Keller, et al., 2006;
Nilsson, et al., 2009; Merryweather-Clarke, et al., 2011). What can we learn about
erythropoiesis from such collection of datasets? The new generation of methods should be

able to address questions of this type.

Computational methods in bioinformatics do not belong to a single class or paradigm.
Rather, they are classified based on their computational approach (e.g. supervised and
unsupervised learning, network and graph analysis, statistical methods, etc.) as well as
based on the types of biological datasets and questions that they pertain to (e.g. gene
expression datasets, proteomics, gene regulation, DNA sequence analysis, etc.). A few

methods belonging to some of those classes have already been proposed to investigate some



types of multiple datasets collectively. However, not all types of relevant and important

questions are targeted by the available literature of methods.

The scope of this thesis is the development and application of methods for unsupervised
analysis of multiple heterogeneous gene expression datasets collectively. The main aim of
this analysis is to identify the subsets of genes which consistently show similar profiles of
gene expression over the given datasets while conforming to different types of external
specifications. Despite its importance, no existing method possesses the ability to address

this question in an unsupervised fashion.

This thesis presents a novel and thoroughly tested suite of consensus clustering methods
that can scrutinise multiple heterogeneous gene expression datasets in order to identify the
clusters (subsets) of genes that consistently meet specific external specifications regarding
their co-expression (similarity in expression) in the given datasets. Also, this suite is well-
equipped with various novel techniques to overcome typical hindrances found in the design
and validation of clustering methods such as parameter setting, output validation, the
selection of a single result from a set, and the synthesis of artificial datasets with a known

ground-truth while faithfully reflecting the properties of real datasets.

As well as the aforementioned significant progress in the design of computational
methods, the contributions of this thesis further extend to their applications in the field of
biology. A series of applications targeting the molecular biology of budding yeast, human
red blood cells production, E. coli bacteria, and the malaria disease are presented. The status
of these applications varies; a few of them have already been published, some are under
consideration for publication, and others represent seeds for future work and personal career

development through fellowship-, grant-, and collaboration-hunting.

1.2. Structure of the thesis

The rest of this chapter details the contributions of this thesis and lists my
publications. Chapter 2 reviews the literature of consensus clustering and biclustering
methods and their applications in bioinformatics. Of the vast array of literature that
discusses unsupervised clustering methods, these two classes of methods are the most
relevant to the scope of this thesis. Importantly, this chapter is summarised and concluded
in Section 2.6 while enumerating the issues that are poorly addressed by existing methods
while being addressed in this thesis. Chapter 3 describes the methods and techniques that
are employed in this thesis. Many of those methods are in reality new methods contributed

herein. The introductory paragraph to this chapter explicitly names the sections that present
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new, in contrast to existing, methods. Chapter 4 details the sets of experiments conducted

to assess the proposed methods and to demonstrate their validity.

Chapter 5 to Chapter 8 introduce the applications of the aforementioned methods to
real biological datasets, their experimental setup, results, conclusions, and my relevant
publications when applicable. More explicitly, Chapter S5, Chapter 6, Chapter 7,
and Chapter 8 describe sets of experiments analysing datasets from the contexts of budding
yeast, human red blood cell production, E. coli bacteria, and malaria, respectively. Each of
these chapters also provides a brief biological background regarding its context oriented to
non-biological readers. The final chapter, Chapter 9, concludes the thesis and provides

insights into future work.

The back matter includes some Appendices. Appendix I provides a background about
cells and their molecular biology, which may prove useful to non-biologist readers.

Furthermore, Appendix II enumerates the list of references and Appendix III is an index.

1.3. Summary of contributions

The original contributions of this thesis can be classified to novel computational methods

and biological insights.

1.3.1. Computational methods

All of the proposed computational methods are described in Chapter 3 and assessed and

validated in Chapter 4. These methods include:

1. Bi-CoPaM: The Binarisation of Consensus Partition Matrices method is a
consensus clustering method which mines for the subsets of genes consistently co-
expressed over multiple gene expression datasets. The introduction of Bi-CoPaM
is in reality an introduction of a new paradigm in clustering with the ability to
produce wide and overlapping clusters and tight and focused clusters in addition
to conventional complementary clusters. It also allows a given gene to either
belong to multiple clusters simultaneously, to none of the clusters, or to belong to
a single cluster exclusively; the latter is the only option offered by conventional
clustering methods. Within the course of applying the Bi-CoPaM to multiple
datasets, it adopts multiple existing clustering methods to produce intermediate
clustering results which are collectively scrutinised in order to produce the final
result. Having said that, the Bi-CoPaM has the capacity to exploit existing
clustering methods as well as emerging methods. The Bi-CoPaM method is

described in Section 3.2 and was published in (Abu-Jamous, et al., 2013a).
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UNCLES: The UNification of CLustering results from multiple datasets using
External Specifications method mines multiple gene expression datasets for
subsets of genes that consistently meet given external specifications regarding their
co-expression. Two types of external specifications are proposed here; the aim of
the first type (type A) is equivalent to the aim of the Bi-CoPaM method, while the
aim of the second type (type B) is to identify subsets of genes which are
consistently co-expressed in one subset of datasets while being consistently poorly
co-expressed in another subset of datasets. UNCLES possesses similar capabilities
to the Bi-CoPaM in terms of the flexibility of the types of generated clusters,
genes’ inclusion in the clusters, and the adoption of various existing clustering
methods within its pipeline of steps. This method is explained in Section 3.3 and

was published in (Abu-Jamous, et al., 2015¢).

M-N scatter plots: The nature of the clusters generated by the Bi-CoPaM and the
UNCLES methods, which vary dramatically in size, renders existing cluster
validation techniques inapplicable. Moreover, both methods require setting some
parameters such as the number of clusters (K) and some tuning parameters. A
technique is proposed here for the validation of clusters of this nature based on my
M-N scatter plots. The clusters are scattered on these 2-D plots whose horizontal
axes represent a mean-squared error-based (MSE-based) metric and whose vertical
axes represent the number of genes included in the clusters on a logarithmic scale.
This technique not only ranks the clusters and assists in selecting the best amongst
them; it also solves the issue of setting the parameters of the Bi-CoPaM and the
UNCLES methods. Thus, the computational framework of the M-N scatter plots
in combination with the Bi-CoPaM or the UNCLES methods is an automated
parameter-free framework. These plots are described in Section 3.5 and are

reported in (Abu-Jamous, et al., 2015¢).

F-P scatter plots: Similar to the M-N scatter plots, F-P plots scatter the clusters
over a 2-D plane in order to evaluate their quality. However, F-P plots are only
applicable when the ground-truth is available as their horizontal axes represent the
false-positive rate (FPR) and their vertical axes represent a modified and
normalised p-value. These plots are useful in validating methods when they are
tested over synthetic datasets, and have been used here to validate M-N scatter
plots. F-P plots are described in Section 3.6 and are described in (Abu-Jamous, et

al., 2015c).
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Expression data synthesis based on real measurements: In order to validate the
UNCLES method, many sets of datasets were synthesised with different sizes
which are designed to have subsets of genes with the properties targeted by
UNCLES. In order to do so, a new approach of data synthesis based on real
measurements has been proposed to overcome the inaccuracies that other models
of data synthesis have. This approach is described in Section 3.7 and in (Abu-
Jamous, et al., 2015c).

1.3.2. Biological insights

The methods presented in this thesis have been applied to many real datasets from various

biological contexts. Not all of those experiments were performed after the proposal of all of

the aforementioned methods, and therefore they do not all exploit the most up-to-date

versions of them. Some of the biological experiments were conducted mainly to validate

the methods, while others led to important biological insights and findings. The experiments

include:

1.

Insights into the yeast CMR1 gene: Applying the Bi-CoPaM to two filtered yeast
cell-cycle datasets revealed four focused clusters. The most focused of them, after
maximum tightening, included 19 genes which are largely related to the G1/S stage
of the yeast cell-cycle and DNA metabolic processes. A previously poorly
understood gene, CMRI1, appeared in this focused group leading to many
hypotheses relating this gene to the other well-known genes in the cluster. Those
biological insights and hypotheses were reported in (Abu-Jamous, et al., 2013b)

and are described in Section 5.2.

APha-RiB novel yeast cluster of genes: Forty genome-wide (unfiltered) yeast
datasets from various contexts and sources were collectively analysed by the Bi-
CoPaM to reveal that two core clusters of genes with 257 and 47 genes,
respectively, out of 5,667 input genes, are consistently co-expressed in all of the
forty datasets. The first cluster is the well-known ribosome biogenesis cluster of
genes. Strikingly, the second cluster includes genes with mostly unknown or
unrelated biological processes and functions. Moreover, this second cluster is
consistently negatively correlated with the first one. We therefore named this novel
cluster of genes as ‘anti-phase with ribosome biogenesis (APha-RiB)’, and drew
various hypotheses regarding the function of its genes and their regulation. The
findings were reported in (Abu-Jamous, et al., 2014a) and are described in

Section 5.3.
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Analysis of eight human and murine red blood cells production
(erythropoiesis) datasets: Despite the differences, human and murine
erythropoiesis, that is, the biochemical series of interactions and developmental
stages leading to the production of mature red blood cells from stem cells, are
largely similar. Therefore, eight different human and murine erythropoietic gene
expression datasets from different sources were analysed collectively. Out of the
13,269 input genes, five clusters of genes with consistent co-expression over all of
the datasets were identified. Various preliminary hypotheses, mainly regarding the
transcriptional regulation of the five clusters, were drawn. This work is described

in Chapter 6.

Analysis of five E. coli bacterial datasets: Five datasets of the model bacterium
E. coli from different sources were collectively analysed by the Bi-CoPaM. Two
focused and consistently negatively correlated clusters were identified. Although
both clusters are enriched with genes with known processes, many of their genes
are poorly understood or completely unknown. This experiment and its
consequently drawn biological hypotheses were reported in (Abu-Jamous, et al.,

2015b) and are described in Chapter 7.

Analysis of malarial blood-stage datasets: As a part of a new research interest in
malaria, and as a foundation for under-construction collaborations with malarial
laboratories nationally and internationally, two popular blood-stage malaria
parasite’s datasets have been analysed by the UNCLES method while adopting the
M-N scatter plots. The results, which are presented in Chapter 8, show nine
consistently co-expressed clusters of genes which represent a perfect cascade of
expression peaks over the parasite’s blood-stage cycle. This illustrates the
applicability of the method to malarial datasets, the soundness of the biological
facts regarding periodicity of expression over the malarial blood-stage cycle, and
the credibility and the potential of our approaches in grant-, fellowship-, and

collaboration-hunting.
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Chapter 2

Consensus Clustering and Biclustering in
Bioinformatics

This chapter reviews the literature of consensus clustering and biclustering as well as their
applications in bioinformatics. To start with, Section 2.1 describes the structure of gene
expression datasets, which is an introductory section required to understand the data
structure to which clustering techniques are applied in this work. Section 2.2 describes the
concept of clustering and its relevance to the field of bioinformatics with a demonstrative
example that shows some types of findings which may be obtained from such analysis. This
example is not meant to be comprehensive or complete and is not included for the sake of
its scientific content; rather it is included to demonstrate, in a practical and clear way, how
bioinformatics may benefit from clustering. Sections 2.3 and 2.4 detail the concepts of
consensus clustering and biclustering, respectively, while describing many methods which
belong to them and their classification. Section 2.5 briefly enumerates some applications of
consensus clustering and biclustering in bioinformatics while Section 2.6 summarises the

chapter.

2.1. Gene expression data structure

Given a set of N genes, a gene expression dataset, represented by the matrix Xn«u, includes

the genetic expression level for each of the N genes over M different samples (Table 2.1).

Table 2.1. Sample gene expression dataset Xnxy

Sample 1 Sample 2 Sample 3 Sample M

Gene 1
Gene 2
Gene 3
Gene 4

Gene N
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These samples may be taken from:

1. semantically different biological conditions, such as different tissue types like the

skin, bones, blood, nerves, and others,

2. different time-points in a linearly- or nonlinearly-spaced time series, such as a series
of samples taken every 7' minutes, hours, or days from a culture of cells starting from

a defined biological state, or

3. different biological stages chronically ordered in a biological process, such as
samples taken from initial, intermediate, and late well-defined stages of cells

developing in a biological process.

The order of samples is meaningful in the latter two types of gene expression datasets
while it is irrelevant in the first one. However, although the order of the samples in the third
type is meaningful, absolute time measurement using time units like minutes, hours, or days
is not applicable therein. In many cases, we may refer to each of the three types in this
document as biological conditions or samples for simplicity as all of them can be seen as

different biological conditions from some point of view.

Furthermore, in most of the studies, multiple samples, known as replicates, are obtained
for the same biological condition, biological stage, or time-point in order to increase the
reliability of the measured expression value. In such cases, summarisation is performed,
which results in a single representative value for each biological condition. If the number
of replicates is small, the median of their values can be viewed as the most convenient

representative value.

2.2. Clustering in bioinformatics

Clustering is an unsupervised learning class of methods in which objects are grouped into a
number of clusters such that those objects which are assigned to the same cluster are similar
to each other while being dissimilar to the objects assigned to the other clusters based on a
given similarity or dissimilarity criterion. Numerous methods have been proposed in the
literature to perform this task such as k-means (Pena, et al., 1999), self-organising maps
(SOMs) (Kohonen, 1997; Haykin, 1999; Xiao, et al., 2003), hierarchical clustering (HC)
(Eisen, et al., 1998), self-organising oscillator networks (SOON) (Rhouma & Frigui, 2001;
Salem, et al., 2008), information-based clustering (Slonim, et al., 2005), fuzzy clustering

(Baumgartner, et al., 1998), and others.
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Clustering methods have been applies to various types of datasets in bioinformatics,
the most common of which are gene expression datasets. The structure of gene expression
datasets is detailed in Section 2.1. Those genes which are included in the same cluster due
to the similarity between their expression profiles are known as co-expressed genes. Genetic
co-expression amongst a subset of genes indicates that they may well be co-regulated, that
is, their expression levels are regulated by a common regulatory machinery. Moreover,

those genes are expected to participate in similar biological processes and pathways.

2.2.1. Demonstrative example of cluster analysis

In order to demonstrate this with an example, we have applied k-means clustering with
Kauffman’s initialisation (Pena, et al., 1999) to a well-known yeast gene expression dataset
of 384 cell-cycle genes measured over 17 times-points from (Cho, et al., 1998; Yeung,
2001). The number of clusters (K) was set to four, and therefore four clusters were obtained
and respectively labelled as C1, C2, C3, and C4 with the respective numbers of genes of
149, 80, 74, and 81.

Figure 2.1 shows the normalised expression profiles of genes included in each of the
four clusters over the 17 times-points. It can be clearly seen in this Figure that the profiles
of the genes within any single cluster are similar to each other while being dissimilar to

those in the other clusters.
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Figure 2.1. Expression profiles of the four yeast clusters from the 384 genes’ dataset



15

By investigating the biological processes in which the genes within those clusters
participate, we have found that C1 is highly enriched with DNA metabolism genes (p-value
7.8x107%%), C2 is highly enriched with cell-division genes (p-value 3.5x107), C3 is highly
enriched with cell-cycle G1/S phase genes (p-value 1.3x10#), and C4 is highly enriched
with chromosome organisation genes (p-value 5.4x1071%). These results have been obtained
by the GO Term Finder tool provided by the Saccharomyces Genome Database (SGD)
(SGD, 2014) (see Section 3.8). The 17 time-points cover two complete cell-cycles where
the exact stage of the cell-cycle represented by any of these time-points can be found in

(Cho, et al., 1998).

By exploiting this information, it can be confirmed that the aforementioned biological
processes, which are enriched in those four clusters, match the literature of yeast molecular
biology (Cho, et al., 1998). For instance, the peak expression of the genes in C1 is at the
entrance of the S stage of the cell-cycle in which the DNA needs to be replicated, which is
a process undertaken by DNA metabolism genes (Cho, et al., 1998; Spellman, et al., 1998).

Similar statements can be drawn regarding the other clusters.

Another type of analysis of the content of those clusters is the further investigation of
their potential in being co-regulated in addition to being co-expressed. Upstream sequence
analysis (see Section 3.9) identifies those short sequences of DNA (motifs) which are
significantly abundant in the upstream sequences of a given subset of genes. Expression
regulators, known as transcription factors (TFs), resemble keys which recognise different
target motifs, which resemble locks. If a gene’s upstream sequence includes the target motif
of'a TF, given that a few other conditions are met, the TF binds that motif and consequently
activates (or represses) the expression of that gene. Thus, the existence of the same motif in
the upstream sequences of a group of genes indicates that they may well be co-regulated by

a common TF. Refer to Appendix I.H for more about upstream sequence motifs and TFs.

The DREME tool (Bailey, 2011) was used to investigate the upstream sequences of the
genes in the cluster C1, and found that its genes are enriched with the MCB motif, which is
the target of the TF Mbp1-Swi6; this TF is well-known for activating the expression of the
DNA synthesis genes required in the S stage of the cell-cycle (Siegmund & Nasmyth, 1996).

Again, a similar experiment can be conducted to investigate the genes in the other clusters.

However, the function, role, and regulation of many genes in those clusters are still
unknown or poorly understood. This in reality provides more material to draw new
biological hypotheses. For instance, given that few poorly understood genes are co-

expressed with a group of genes, do the poorly understood genes participate in the same
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biological processes in which the well-understood genes in the cluster participate? Are they
regulated by the same common TF, especially if that TF’s binding site (target motif) was
found in their upstream sequences? Those questions represent seeds for guided and focused

biological hypotheses elucidating different aspects regarding poorly understood genes.

Taken together, clustering gene expression data lead to various findings and
conclusions at the levels of clusters and individual genes. Usually those findings are in the

form of hypotheses which need to be followed up by biological functional experiments.

2.3. Consensus clustering

It is generally observed that different clustering results are produced when clustering is
applied to the same dataset while adopting different clustering methods, different sets of
parameters for the same method, or the same stochastic method over multiple runs (Vega-
Pons & Ruiz-Shulcloper, 2011). However, there is no one superior method which
overcomes all other methods in quality in all cases. Therefore, it is a common question to
ask: which of those different sets of results should be considered, or initially, which

clustering method should be adopted?

One approach by which this issue has been tackled by many studies is the employment
of consensus clustering (Vega-Pons & Ruiz-Shulcloper, 2011). In consensus clustering, the
results of applying those multiple methods, or same methods with different parameters, to

the same dataset are combined in order to identify a single final consensus result.

Consensus clustering methods can be classified into four different classes based on the
style in which they infer the final consensus result from the individual partitions generated
by applying different methods and/or sets of parameters independently to the dataset (Abu-
Jamous, et al., 2015a). A partition is a clustering result consisting of a set of clusters to
which the objects belong with binary or fuzzy membership values. In binary partitions, the
belongingness of any object to any cluster is either 1.0 (belongs) or 0.0 (does not belong).
In contrary, fuzzy partitions allow for fractional membership values between zero and unity

indicating proportional belongingness.
The four classes of consensus clustering methods are:

1. Partition-partition (P-P) comparison: while comparing whole partitions with
each other, the objective is to maximise the similarity (or to minimise the
dissimilarity) between the inferred consensus partition and the individual
partitions. The Mirkin distance metric and the information theoretical distance

metric are examples of dissimilarity metrics between partitions.
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2. Cluster-cluster (C-C) comparison: single clusters from different partitions are
compared directly in contrast to comparing whole partitions. Graph-based

clustering methods are amongst the methods which belong to this class.

3. Member-in-cluster (MIC) voting: after matching most-similar clusters from
different partitions to each other, partitions vote for the belongingness of different

objects to different clusters.

4. Member-member (M-M) co-occurrence: a co-association matrix is generated
based on the frequency of co-occurrence of pairs of objects, that is, their co-
inclusion in the same cluster in different partitions. The final consensus partition

matrix is generated based on this co-association matrix.

Some representative consensus clustering methods from these four classes are detailed
in the following subsections. More details can be found in the literature review by Vega-

Pons and Ruiz-Schulcloper (Vega-Pons & Ruiz-Shulcloper, 2011).

2.3.1. Partition-partition (P-P) comparison methods

Given R partitions {P; ... Pg} generated by applying various clustering methods and/or sets
of parameters to a given dataset, P-P comparison methods model the problem as an

optimisation problem formulated in this equation (Filkov & Skiena, 2004):

R

P = argmaxz F(P, Pj), 2.1
pep 4

where P* is the final consensus partition, IP is the set of all possible partitions, and I'(.,.) is
the similarity between the two argument partitions. Therefore, the problem is to identify the
partition which is most similar to all of the individual partitions. Note that P* does not have
to be one of the given partitions; rather it can be any partition which belongs to the set of
all possible partitions IP. Indeed, if a dissimilarity metric D(.,.), instead of a similarity

metric, is used, the problem’s formula becomes:

R
P = argminz D(P, Pj). (2.2)
pep 4

A popular partition dissimilarity metric is the Mirkin distance M (.,.) (Mirkin, 1996),

which is calculated by:

M (P4, P;) = ngy +nyy, (2.3)
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where ny; is the number of pairs of objects which are included in different clusters in P,
but in the same cluster in P,, while n,, is the number of pairs of objects which are included
in the same cluster in P, but in different clusters in P,. In other words, the Mirkin distance
is the number of pairs of objects on which there is a disagreement between the two
partitions. For completion, n;; and ng, are the numbers of pairs of objects which are
included and not included, respectively, in the same cluster by the agreement of both

partitions.

With this, the optimisation problem can be rewritten as:

= argmin Z M(P (2.4)

PeP

Many methods have been proposed to solve this problem such as the trivial pick-a-
cluster method, the best-of-k (BOK) method (Filkov & Skiena, 2004), which is also known
as the best-clustering method (Bertolacci & Wirth, 2007), the balls algorithm (Gionis, et al.,
2007), the CC-pivot algorithm (Ailon, et al., 2008), and others. Pick-a-cluster, which can be
more accurately named as pick-a-partition, simply and trivially picks one of the individual
partitions {P; ... Pg} as the final partition P*. As for the BOK algorithm, it selects the
partition, amongst the individual partitions, which is most similar to all of the other
partitions (Filkov & Skiena, 2004); note that it only searches in the R generated partitions
in {P; ... Pr} and not in all possible partitions in IP. The balls and the CC-pivot algorithm
are more sophisticated as they attempt at solving the problem while considering a graph

representation for the data (Gionis, et al., 2007; Ailon, et al., 2008).
Other popular metrics are those which are based on information theory (Topchy, et al.,
2005). Let the 7" partition be P, = {C gr) .C (T()r)} where C g) is this partition’s k" cluster

and K is the number of clusters in it. The amount of information between the " and the

th partitions I (P,, P) can be expressed as:

k@™ g(s) () A(s)
I(P,,P,) = c(” c“) 1 p(cl &) ) 2.5
T S [ A Og (T) (S) . ( . )
=i p(c”)p ()

The optimal consensus partition P* can therefore be found by solving the following

optimisation problem:
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R

pP* = argmaxz I(P, Pj). (2.6)
pep i

2.3.2. Cluster-cluster (C-C) comparison methods
The meta-clustering algorithm (MCLA), proposed by Strehl and Ghosh, is a typical C-C

comparison method (Strehl & Ghosh, 2003). A graph is constructed where each cluster
amongst the clusters in the R partitions is represented by a hyperedge connecting the objects
which it includes. If the number of clusters in the rt" partition is K,., the total number of
hyperedges in this graph will be YX_, K,.. Then, a meta-graph is constructed by considering
each of the indicator vectors h for the ¥X_, K, hyperedges as a vertex in this meta-graph.
The edges in this undirected meta-graph have weights proportional to the similarity between
the vertices. This similarity can be measured by the Jaccard measure. After that, the vertices
in the meta-graph, representing the original clusters, are clustered into K meta-clusters of
clusters. Afterwards, the hyperedges in each meta-cluster are collapsed into a single
hyperedge by averaging their indicator vectors h. Finally, each object is assigned to the
meta-cluster with which it has the highest association value. Extra details on this method

can be found in the study by Strehl and Ghosh (Strehl & Ghosh, 2003).

2.3.3. Member-in-cluster (MIC) voting methods

The general theme of MIC voting methods is that partitions vote for the inclusion of each
object in clusters, and the clusters finally include those objects for which they get some sort

of majority votes.

A popular method in this class is the relabelling and voting method. In its basic terms,
the clusters in each of the R individual partitions are permuted so that the k%" cluster from
a given partition best matches the k" cluster from each of the other partition; this step is
called relabelling. This is an essential step in this method because clustering is
unsupervised, and therefore, such alignment of clusters is not guaranteed unless it is
deliberately done by relabelling. Accordingly, those clusters which are mapped to each other
from different partitions are considered as different versions for the same consensus cluster,
and thus are assigned the same label. Consequently, each object is included in the consensus
cluster (cluster label) to which more partitions assign it, that is, which is granted the majority

of the votes.

The voting-merging (VM) algorithm (Dimitriadou, et al., 2001) and the cumulative
voting algorithm (Ayad & Kamel, 2008) are examples of variants of relabelling and voting

methods.
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Other MIC voting methods include those which are based on mixture models. The
mixture model-based method which was proposed by Topchy and colleagues models the
memberships of genes in clusters as random variables drawn from a probability distribution
described as a mixture of multivariate component densities (Topchy, et al., 2005). The

model is formulated as:

K

@10 = ) @ f(nl0), )

k=1

where @ is the set of the parameters {ay, ..., ak, 04, ..., 0k} corresponding to the K
clusters/labels, y,, is the random variable corresponding to the membership values of the
nt" gene in the clusters, and f(.|.) is the conditional probability distribution function. The
problem is formulated afterwards as a minimum likelihood estimation problem which is

solved by the expectation minimisation (EM) algorithm (Topchy, et al., 2005).

2.3.4. Member-member (M-M) co-occurrence methods

M-M co-occurrence methods convert the consensus clustering problem to a co-association
matrix partitioning problem. The (i, j) entry of the co-association matrix, denoted as 4;;, is
the frequency of the co-appearance of the objects x; and x; in all of the R partitions; it is

expressed as:

R
Ay = %; 5 (P, (x), P, (%)), (2.8)

where P,.(x) is the cluster to which the object x is assigned in the rt"* partition and & (a, b)
is 1 if a = b and is 0 otherwise. It is worth mentioning that, in this setup, it is not a condition

to adopt the same number of clusters in all of the individual partitions.

There are various methods which have been designed to extract the consensus partition
from this co-association matrix such as the evidence-accumulation method (Fred & Jain,
2005), graph-based methods (Strehl & Ghosh, 2003), hypergraph-based methods (Strehl &
Ghosh, 2003), and resampling methods (Monti, et al., 2003).

Fred and Jain (2005) named the construction of the co-association matrix as evidence
accumulation by considering that each partition assigning a given pair of objects to the same
cluster as an evidence of the inclusion of this pair in the same cluster. Therefore, the entries
of the co-association matrix are considered as normalised accumulated evidence of the
inclusion of any given pair of objects in the same cluster. They propose obtaining the final

consensus partition by applying single linkage or average linkage agglomerative
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hierarchical algorithm to the objects in the co-association matrix. As for the number of
clusters in the consensus partition, it is identified by the range of threshold values on the

dendogram that lead to the identification of the clusters (Fred & Jain, 2005).

Strehl and Ghosh proposed a cluster-based similarity partitioning algorithm (CSPA) as
a graph-based algorithm, and a hypergraph partitioning algorithm (HGPA) (Strehl & Ghosh,
2003). The concatenated block of individual partition matrices H = [P, ... Pg] defines a

hypergraph H. The co-association matrix A can therefore be obtained by:

A= HH (2.9)
CSPA adopts a graph partitioning algorithm, such as METIS! (Karypis & Kumar,
1995; Karypis & Kumar, 1998), to cluster the objects in this co-association matrix. On the
other hand, HGPA applies clustering to the hypergraph H itself by using the hypergraph
partitioning package HMETIS (Strehl & Ghosh, 2003).

Resampling techniques were employed in the design of M-M co-occurrence consensus
clustering methods as in the method proposed by Monti and colleagues (Monti, et al., 2003).
This method provides consensus across multiple runs of a given clustering algorithm while
assessing the stability of the discovered clusters. The results of this method can be
graphically visualised and incorporated in the decisions about the number of clusters and
cluster membership, which is a key feature of this resampling method. This method is based
on the assumption that the membership of genes in their corresponding natural clusters
should not change radically when a clustering algorithm is applied repeatedly to the given

dataset after resampling.

The dataset is perturbed R times to produce R perturbed datasets {X* ... X} which are
clustered by a given clustering algorithm to produce R partitions {P? ... PR}. The R co-
association matrices formed based on those partitions are normalised and combined to
produce a consensus co-association matrix which is clustered based on an agglomerative
hierarchical clustering (HC) method to produce a tree (dendogram) of clusters. Summary
statistics are calculated for the clusters in the dendogram to quantify their stability, rank

them accordingly, and determine the best number of clusters. Further details can be found

in (Monti, et al., 2003).

L'METIS’ refers to wisdom as derived from ancient Greek mythology.
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2.4. Biclustering

Biclustering methods aim at clustering a gene expression data matrix based on each of its
two dimensions, that is, based on the expression profiles of genes over samples and the
expression profiles of samples over genes. By this, genes which are co-expressed over a
subset of samples, or samples which have similar profiles over a subset of genes can be
identified. A bicluster is therefore defined by a specific subset of genes expressed over a

specific subset of samples, and represents a submatrix of the original expression data matrix.

Biclustering has gained much interest since Cheng and Church proposed their
biclustering algorithm (CC) in 2000 (Cheng & Church, 2000). Now there are more than
thirty different biclustering algorithms in the literature, many surveys and performance
comparison papers (Madeira & Oliveira, 2004; Preli¢, et al., 2006; Eren, et al., 2013;
Oghabian, et al., 2014; Tchagang, et al., 2011), and many toolboxes in many different
platforms available (Barkow, et al., 2006; Kaiser & Leisch, 2008; Eren, 2012).

Oghabian and colleagues proposed a classification of biclustering methods based on
the criteria of identifying the biclusters (Oghabian, et al., 2014). This taxonomy classifies

biclustering methods into the following four classes:

1. Variance-minimisation biclustering methods (VMB): VMB searches for
biclusters in which expression values have low variance throughout the selected

genes, samples, or the whole submatrix.

2. Correlation-maximisation biclustering methods (CMB): CMB mines for the
subsets of genes and samples for which the expression values of the genes correlate

highly among the samples.

3. Two-way clustering methods (TWC): TWC discovers the homogeneous subsets
of genes and samples; that is, biclusters, by iteratively performing one-way

clustering on the genes and samples.

4. Probabilistic and generative methods (PGM): PGM employs probabilistic
techniques to discover genes (or, respectively, samples) that are similarly

expressed across a subset of samples (or, respectively, genes) in the data matrix.

Some details on some methods belonging to these four classes of biclustering methods

are presented in the following subsections.
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2.4.1. Variance-minimisation biclustering methods (VMB)

VMB methods search for biclusters in which expression values have low variance
throughout the selected genes, samples, or the whole submatrix. Examples of VMB methods
are the Cheng and Church (CC) method (Cheng & Church, 2000) and spectral biclustering
(Kluger, et al., 2003).

Let a bicluster (submatrix of the data matrix) be defined by a subset of genes (rows of
the data matrix) I and a subset of samples (columns of the data matrix) J. The CC algorithm

defines a mean-squared residue (MSR) metric as:

1 _ _
MSR = E (xij — Xy — %j + ), (2.10)
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where x;; is the expression value at the it" row and the j'* column, X;y is the mean
expression of the i*" row over all of the J columns, X; j 1s the mean expression of the j th

column over all of the I rows, and Xj; is the mean expression of the submatrix defined by

the I rows and the J columns.

CC starts with the whole data matrix and removes the rows and columns that have high
residues gradually. Once the MSR of the bicluster reaches a given threshold, o, the rows
and columns that produce smaller residue values than the bicluster residue are added back
to the bicluster. The found biclusters are masked with random values and then the process

repeats until no biclusters can be found.

The spectral biclustering algorithm (Kluger, et al., 2003) assumes that different subsets
of genes have high expression values at different subsets of samples, and, if the rows and
columns of the data matrix are reordered appropriately, the data matrix will have a
checkerboard-like appearance with blocks of high expression values and blocks of low
expression values. The objective of spectral biclustering is to identify this checkerboard-

like structure.

Biclustering consists of several steps: (i) simultaneous normalisation of genes and
samples, (i) post-processing of eigenvectors to find partitions, and (iii) probabilistic
interpretation. The first step is performed by independent scaling of rows and columns
iteratively until convergence, which is defined by having all of the rows sum to a constant
and all of the columns sum to another constant; this process is known as bistochatisation
(Kluger, et al., 2003). Singular value decomposition (SVD) is applied afterwards to the
normalised matrix producing a set of eigenvectors and eigenvalues. The largest non-trivial

eigenvectors are then clustered, for example by k-means. Finally, the degrees of
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membership of different genes and samples to the biclusters identified by partitioning the

eigenvectors are ranked.

2.4.2. Correlation-maximisation biclustering methods (CMB)

CMB methods mine for the subsets of genes and samples for which the expression values
of the genes correlate highly amongst the samples. BiMine (Ayadi, et al., 2009), bimax
(Preli¢, et al., 2006), and the robust biclustering algorithm (ROBA) (Tchagang & Tewtfik,
2006) are examples of CMB methods.

BiMine is a typical CMB method which relies on the average Spearman’s rho (ASR)
evaluation function which guides effective exploration of the search space. Spearman’s rank

correlation is formulated as:

637 (ri) — /()

m(m? —1)
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where 7} (x,‘() is the rank of x&, and m is the size of the data vector. Thereafter, ASR is

formulated as:
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ASR(L]) = 2- max{ } (2.12)

The values of ASR(I,J) € [—1,1] which are closer to 1.0 indicate higher correlation
between the given vectors within the bicluster. BiMine uses a tree-structure called the
bicluster enumeration tree (BET) to represent the hierarchy of the discovered candidate

biclusters throughout the process of maximising the ASR value.

In contrast to the previous methods, the bimax method considers binary expression data
in which the expression value of a given gene at a given sample is either one (expressed) or
zero (not expressed). Therefore, non-binary data is binarised before consequent bimax steps
are performed. Ideally, a bicluster, as defined by this method, is that submatrix of the data
matrix which only includes ones, and that is not entirely a sub-bicluster of another larger
bicluster. Bimax adopts a divide-and-conquer incremental procedure proposed by Alexe

and colleagues in order to identify those biclusters (Alexe, et al., 2004).

ROBA aims at identifying all perfect biclusters in a dataset in a timely manner by
employing linear algebraic and arithmetic, contrary to heuristic, tools and methods

(Tchagang & Tewfik, 2006).
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2.4.3. Two-way clustering methods (TWC)

TWC methods mine for homogeneous biclusters by iteratively performing one-way
clustering on genes and samples. Coupled two-way clustering (CTWC) (Getz, et al., 2000)
and interrelated two-way clustering (ITWC) (Tang, et al., 2001) are two examples of TWC

methods.

CTWC provides an efficient heuristic approach which restricts the number of candidate
biclusters, that is, submatrices that can be formed based on a given dataset to a feasible
range instead of exponentially increasing with the size of the dataset. This is done by starting
with the entire dataset as a single bicluster and then performing iterative two-way clustering
to the two dimensions in order to find those genes and samples that form stable biclusters
which are further clustered to form child sub-biclusters. When no further biclusters can be

found based on given criteria, the algorithm terminates (Getz, et al., 2000).

ITWC, also, is an iterative method where each iteration starts by clustering the dataset
in the genes dimension by any clustering method. Then, each produced cluster is clustered
into two clusters in the samples dimension. After that, the clustering results from the
previous two steps are combined and heterogeneous groups, that is, pairs of groups whose
samples are not grouped in any cluster, are identified. Finally, the most distant third of genes
belonging to heterogeneous groups are selected as a cluster while the rest of the genes are

forwarded to the following iteration.

2.4.4. Probabilistic and generative methods (PGM)

PGM methods apply probabilistic techniques to discover genes (or, respectively, samples)
that are similarly expressed across a subset of samples (or, respectively, genes) in the
expression data matrix. Plaid (Lazzeroni, et al., 2002), Bayesian Plaid (Caldas & Kaski,
2008), and CMonkey (Reiss, et al., 2006) are examples of biclustering methods belonging

to this class.

Plaid aims at reordering the genes and the samples so that the data matrix, visualised
as a heat map, shows K rectangular blocks of high expression values. Each of the blocks
represents a bicluster whose genes are only expressed in its samples. The data is modelled
as the superposition of a background layer (k = 0) and K layers (k = 1 ... K) representing
K clusters/blocks:

K
Xij = z OijkPikKjk, (2.13)
k=0
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where x;; is the expression value of the it" gene in the j** cluster, 6; jo 1s the background
colour, 6; j is the colour in the k" block in addition, if needed, to the specific response of
the i" gene over a subset of samples and/or the specific response of the j* sample over a
subset of genes, p;, is one if the i*" gene belongs to the k" cluster/block and zero
otherwise, and K is one if the j th sample belongs to the k" cluster/block. Plaid aims at

minimising the cost function:

LA K 2
e= EZ z <xif ~ Oijo — z 9ijk,0ik’€jk> : (2.14)
i=1] k=1

i=1 j=1

Bayesian Plaid models all of the variables assumed by the Plaid model as random
variables following appropriate distributions (Caldas & Kaski, 2008). The components of

the 6, parameter, namely the colour of k" block, the specific response of the it" gene,

and the specific response of the j* sample, are assumed as Gaussian variables while the

variables p; and kjj are binomial variables.

The CMonkey method combines gene expression data, DNA-sequence data and
associated network data to produce biclusters based on a probabilistic model (Reiss, et al.,
2006). Each bicluster is modelled by the Markov chain process, in which the bicluster is
iteratively optimised, and its state is updated based on conditional probability distributions
computed using the cluster’s previous state. Biclusters are initialised by one of different
seeding methods and are consequently iteratively optimised by adding/removing genes and

samples.

2.5. Applications in bioinformatics

2.5.1. Consensus clustering methods

As discussed above, Monti and colleagues developed a resampling method of class
discovery and clustering validation tailored to the task of analysing gene expression data
(Monti, et al., 2003). They applied their resampling-based consensus clustering to six real
gene expression datasets, namely leukaemia dataset (Golub, et al., 1999), Novartis multi-
tissue (Su, et al., 2002), St. Jude leukaemia (Yeoh, et al., 2002), lung cancer (Bhattacharjee,
et al., 2001), central nervous system tumours (Pomeroy, et al., 2002), and normal tissue
(Ramaswamy, et al., 2001). They found that, in general, adopting hierarchical clustering as
an underlying basic method while applying this resampling method to gene expression data

outperforms adopting the SOM method (Monti, et al., 2003).
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Swift and colleagues developed a consensus clustering algorithm which, according to
their investigation, improves confidence (Swift, et al., 2004). They used the weighted-kappa
metric, which was originally proposed by Cohen (Cohen, 1968), as a direct measure of
similarity of partitions. A consensus strategy was applied to produce both robust and
consensus clustering of gene expression data and assign statistical significance to these
clusters from known gene functions. The method is different from the afore-discussed
resampling method (Monti, et al., 2003) in that different clustering algorithms are used
rather than perturbing the gene expression data for a single algorithm. Using consensus
clustering with probabilistic measures of cluster membership derived from external
validation with gene function annotations, specific transcriptionally co-regulated genes
from microarray data of distinct B-cell lymphoma types (Jenner, et al., 2003) was identified

accurately and rapidly.

Brannon and colleagues analysed gene expression microarray data using software that
implements iterative unsupervised consensus clustering algorithms to identify the optimal
molecular subclasses, without clinical or other classify information (Brannon, et al., 2010).
Clear cell renal cell carcinoma (ccRCC) is the predominant RCC subtype, but even within
this classification, the natural history is heterogeneous and difficult to predict.
ConsensusCluster was proposed by Seiler and colleagues (Seiler, et al., 2010), for the
analysis of high-dimensional single nucleotide polymorphism (SNP) and gene expression
microarray data. The software implemented the consensus clustering algorithm and PCA to
stratify the data into a given number of robust clusters. The robustness is achieved by
combining clustering results from data and sample resampling as well as by averaging over
various algorithms and parameter settings to achieve accurate, stable clustering results.
Several different clustering algorithms have been implemented, including k-means, PAM,
SOMs, and hierarchical clustering (HC) methods. After clustering the data,
ConsensusCluster generates a consensus matrix heat map to give a useful visual
representation of cluster membership, and automatically generates a log of selected features
that distinguish each pair of clusters. Such consensus clustering analysis identified two
distinct subtypes of ccRCC, designated clear cell type A and B. In each subtype, logical
analysis of data defined a small, highly predictive gene set that could then be used to classify
additional tumours individually. The subclasses were corroborated in a validation data set
of 177 tumours and analysed for clinical outcome. Based on individual tumour assignment,
tumours designated type A had markedly improved disease-specific survival compared to
type B. Using patterns of gene expression based on a defined gene set, ccRCC was classified

into two robust subclasses based on inherent molecular features that ultimately
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corresponded to marked differences in clinical outcome. This classification schema thus
provided a molecular stratification applicable to individual tumours that may have
implications to influence treatment decisions, define biological mechanisms involved in

ccRCC tumour progression, and direct future drug discovery.

2.5.2. Biclustering methods

Most of the available biclustering methods have been applied to bioinformatic datasets
leaving us with a rich literature of such applications. For instance, Tchagang and colleagues
employed ROBA biclustering to identify group biomarkers using microarray gene
expression data of ovarian cancer (Tchagang, et al., 2008). Huttenhower and colleagues
proposed the combinational algorithm for expression and sequence-based cluster extraction
(COALESCE) system for regulatory module prediction (Huttenhower, et al., 2009). Bryan
and colleagues were the first to apply biclustering techniques to model functional modules
within an integrated microRNA (miRNA)-messenger RNA (mRNA) association matrix
(Bryan, et al., 2014).

Other applications include the analysis of yeast cell cycle datasets (Cho, et al., 1998;
Spellman, et al., 1998), yeast stress datasets (Gasch, et al., 2000; Gasch, et al., 2001), yeast
compendium (Hughes, et al., 2000), yeast galactose utilisation (Ideker, et al., 2001). Other
algorithms were used for human breast tumour (Pawitan, et al., 2005; Miller, et al., 2005;

Loi, et al., 2007), lymphoma (Alizadeh, et al., 2000), and leukaemia (Golub, et al., 1999).

2.6. Discussion

Clustering methods group a given set of objects (e.g. genes) into a number of clusters such
that those objects which are included in the same cluster are similar to each other while
being dissimilar to the objects included in the other clusters. In the context of gene
expression data clustering, genes are clustered into groups based on their co-expression, that
it, their expression profiles similarity over a number of time-points or samples from different

conditions.

It is well-known that applying different clustering methods to the same dataset does not
produce identical results. The same observation is true when the same stochastic clustering
method is applied to the same dataset multiple times or with different sets of parameters.
Many consensus clustering methods were designed to tackle this issue by collectively
scrutinising the different results produced by such multiple clustering applications in order

to produce a single consensus result.
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Another aspect which is not tackled by conventional clustering methods is that some

genes may be co-expressed over a subset of samples only, or that some samples might have

similar expression values over a subset of genes only. Biclustering methods were proposed

in order to address this aspect by mining for biclusters. A bicluster is defined by a subset of

genes and a subset of samples where this subset of genes is specifically co-expressed over

that subset of samples.

However, this vast literature of conventional clustering methods, consensus clustering

methods, and biclustering methods, does not attend, or partially does, to other issues and

aspects that are raised while analysing gene expression datasets, especially when multiple

datasets are considered collectively. This is a list of some of those aspects:

1.

The collective cluster analysis of multiple homogeneous or heterogeneous gene
expression datasets. For example, what are the subsets of genes that are not only
co-expressed in a given dataset, but are also consistently co-expressed over
multiple gene expression datasets produced, possibly, under similar or different

conditions and biological contexts?

The ability to relax conventional clustering constraints by allowing genes to have
any of the three eventualities, to be exclusively included in a single cluster, to be
simultaneously included in multiple clusters, or to be not included in any cluster at
all. This better matches the biological reality that a gene may participate in a single
biological process or in multiple biological processes with different groups of
genes, or, as most of the genes do given any particular biological context, a gene

may be irrelevant to the context and should not be included in any of the clusters.

In general terms, those methods require the dataset to be filtered prior to clustering
by eliminating those genes which are expected not to be significantly relevant to
the study. Gene selection and gene differential expression analysis methods are
commonly used for this purpose. This is because such clustering methods assume
that all of the genes that reach the clustering step are relevant and will be included

in some clusters.

Some subsets of genes may show consistent co-expression in some datasets which
were generated under specific conditions while being poorly co-expressed in other
datasets (Wade, et al., 2006; Nilsson, et al., 2009). The problem of identifying such
subsets of genes in an unsupervised manner from multiple datasets is not achieved
by any previously proposed method. The closest to this aspect in relevance are

biclustering methods, but they require the datasets to be grouped into a single
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dataset first, which implies that they should either be homogeneous, or should be
thoroughly statistically manipulated to be combinable; also, biclustering methods
do not allow the question to be specific about consistent co-expression in a specific
subset of samples/conditions with poor co-expression (in contrast to low

expression) in another specific subset of samples/conditions.

The correct number of clusters (K) included in a dataset is a very common question
in this field. It can either be manually set based on a priori problem-specific
knowledge, or be automatically determined by the method, or be selected from a
range of tested and validated values. Although some methods address this issue
with different levels of accuracy, any new method which is proposed to address

the aforementioned points should also address this key aspect.

Another aspect which has been investigated widely in clustering, yet needs more
consideration, is the validation of clustering results. Different clustering methods
and applications may produce results of different structures and attributes.
Therefore, a validation technique which targets a specific type of results may not
be a valid choice to validate other types of clustering results. For instance, many
clustering validation techniques do not assess the quality of individual clusters;
they rather assess whole partitions only. Moreover, when the generated clusters are
of significantly different sizes in terms of the numbers of genes included in them,
most of the available clustering validation indices tend to favour smaller clusters.
In addition to that, any new clustering validation technique has to be validated
itself, most likely by using data with known ground-truth. This forms another layer

of consideration in this area.

The use of synthetic datasets, for which the ground-truth is known to the
researcher, is a common practice to test new methods. Various models have been
proposed to synthesise datasets which aim at being valid approximations of real
expression data (Yeung, et al., 2001; Zhao, et al., 2001; Liu, et al., 2004). Many of
these models include parameters to control levels of noise and other aspects.
However, synthetic modelling of noise and other deficiencies that naturally occur
in real datasets may not be very accurate because the actual level of expression
values in real datasets without the noise is not readily available, and the nature of
such noise and defects differs, sometimes significantly, between different gene

expression measurement technologies.
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Taken together, the literature of clustering is rich with many growing paradigms which
target the problem of clustering from very different angles. Conventional clustering
algorithms (e.g. k-means and hierarchical clustering), consensus clustering algorithms (e.g.
graph-based methods and relabelling and voting methods), and biclustering algorithms (e.g.
CC and plaid) are three different root paradigms of clustering. However, various aspects
have either not been visited by clustering yet or are repeatedly raised, and have to be
addressed, whenever a new clustering method or paradigm is proposed (e.g. setting the

number of clusters (K) and clustering validation).
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Chapter 3
Methods

This chapter details the methods and techniques which have been adopted to produce the
results presented and discussed in the subsequent chapters. The Sections 3.2, 3.3, 3.5, 3.6,
and 3.7 introduce novel methods, namely the Bi-CoPaM method, the UNCLES method, the
M-N scatter plots technique, the P-F scatter plots technique, and a method for expression
data synthesis based on real measurements. These methods mark the novel contribution of
this thesis in designing new computational methods for collective analysis of multiple high-
throughput biological datasets. On the other hand, the rest of the sections in this chapter
explain some methods and techniques commonly used in the literature of bioinformatics

research.

3.1. Gene expression data normalisation

Reliable quantification of gene expression is that which faithfully reflects the true mRNA
levels in a given sample. However, much variability exists in the available technologies
(e.g. microarrays) which perturbs the measurements so that they are no longer reliable in
their raw form. Such variability can be caused by the preparation of the biological sample,
fluorescent labelling, specific hybridisation, non-specific hybridisation, scanning, image
processing, and other sources (Calza & Pawitan, 2010). Moreover, in most of the microarray
datasets, many mRNA samples are taken and measured by multiple microarray chips/slides;
these samples can be from different types of tissues (e.g. cancer and normal tissues), at
different chronological stages or time points within a biological process, or from different
samples contained in different biological conditions. Thus, not only the comparability of
intensities of different genes within one slide is questioned, but also the comparability of

intensities of a single gene across different slides (samples) is questioned.

Normalisation aims at eliminating these technical variations within a single slide or

between multiple slides. This is so that the remaining variations of intensities reliably
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represent actual biological variations, which are what such experiments desire to measure.
The necessity of the normalisation step was reported as one of the six important issues listed
by the Minimum Information about a Microarray Experiment (MIAME) protocol (Brazma,

et al., 2001).

Numerous normalisation methods have been proposed in the literature. Amongst the
most commonly adopted ones are quantile normalisation for one-channel microarrays
(Bolstad, et al., 2003) and the locally weighted scatter plot smoothing (lowess) method for
two-channel microarrays (Yang, et al., 2002). This application of these methods to these
specific types of microarray datasets is recommended by relevant reviews such as the one
by Roberts (Roberts, 2008). As these two methods were adopted in many of our sets of
experiments presented in this thesis, their details are illustrated in the following two

subsections.

3.1.1. Quantile normalisation
This method, which was proposed by Bolstad and colleagues (Bolstad, et al., 2003), has

become the most popular method for normalising one-channel microarray datasets (Roberts,
2008; Cahan, et al., 2007). This method is based on the assumption that all of the arrays
have a similar signal distribution, which is typical for most of the microarray datasets
(Bolstad, et al., 2003; Roberts, 2008; Calza & Pawitan, 2010). Though, for the cases in
which different samples are taken from very different tissue types, quantile normalisation
should be avoided as the underlying assumption would not be valid anymore (Roberts, 2008;

Wang, et al., 2012; Calza & Pawitan, 2010).
The steps of quantile normalisation are summarised as:

(1) Given M arrays/chips of length (number of elements) N, form X of dimension N X

M where each column represents an array.
(2) Sort each column to get X¢orteq-

(3) Take the means across rows of Xg,,+eq and assign this mean to each element of that

row to get Xcorred-

(4) Rearrange the elements in the columns of X%, ;.4 to have the same order as in X.

This results in the normalised array X,,ormatised-

Bolstad and collaborators discussed then that this forces the quantiles to be equal in all
of the given arrays, which might not be very accurate at very high intensities. Though,

Bolstad and collaborators followed up by mentioning that, because probe-set expression
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values were calculated by considering multiple probes, this problem did not seem to be a

major problem anymore (Bolstad, et al., 2003).

Irizarry and colleagues used some controlled datasets to show the importance of
normalisation for oligonucleotide microarrays (Irizarry, et al., 2003a). They used a ‘dilution
dataset’ in which a range of six known proportions of the cRNA taken from human liver
tissues were considered; five replicates were taken per each of these six samples and were
scanned by five different scanners. Another dataset which they used was a spike-in data in
which all genes are expected to be non-differentially expressed except for 20 genes from
which fragments with known concentrations were added. These datasets are real (not
simulated) datasets but with controls that provide the ground-truth information. Their
analysis of the distribution of intensities and log-ratios in these datasets demonstrated the
necessity of normalisation and showed that quantile normalisation meets the requirements

as needed (Irizarry, et al., 2003a).

Calza and Pawitan (2010) included quantile normalisation in their recent review as one
of the most commonly used techniques for normalising one-channel arrays (Calza &
Pawitan, 2010). They mentioned that it can deal with non-linear intensity distributions, is
simple to understand and implement, and is fast to run. They also mentioned that it is usually
performed over the entire set of probes before summarisation as to exploit as much
information as possible (Calza & Pawitan, 2010). However, this method did not perform
well in some other studies, such as, for instance, a study in which it was compared with
some less popular methods over DNA methylation microarray datasets (Adriaens, et al.,

2012).

3.1.2. Locally weighted scatter plot smoothing (lowess) normalisation
It was proposed by Yang and colleagues (Yang, et al., 2002) based on the statistical

regression model proposed in (Cleveland, 1979). The excellent review of normalisation
methods in Nature Genetics by Quackenbush also presented this method in a very clear way
and showed its strength in normalisation (Quackenbush, 2002). It takes non-linearity into
consideration and it is the most commonly used method in the case of within-slide two-
channel normalisation (Sievertzon, et al., 2006; Calza & Pawitan, 2010; Smyth & Speed,
2003; Roberts, 2008).

The method was motivated by the obvious bias between the red Cy5-dye and the green
Cy3-dye in two-channel microarrays, that is, intensity-dependant effects (Sievertzon, et al.,

2006; Irizarry, et al., 2003a). The MA plot, which plots the log-ratio M; = log,(R;/G; )
versus the abundance A; = log, /R;G; (Dudoit, et al., 2002), shows this bias clearly, where
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R; and G; are the red and the green intensities of the i" probe / gene. An example of an MA

plot is shown in Figure 3.1 (a). The lowess normalisation method aims at correcting this

bias (Yang, et al., 2002; Quackenbush, 2002; Xie, et al., 2004).

Assume that x; = A; and y; = M;, an MA plot would plot y versus x. Robust lowess
smoother is used for regression in order to estimate y(x;) which represents the best-fit
average based on the experimentally observed values (Quackenbush, 2002; Sievertzon, et
al., 2006). While estimating the y value for the point x, a fraction of points closest to the
point x can be considered instead of the entire sample set; this fraction of points is called
the span. If the span is too small, it leads to over-fitting, while if it is too large it leads to
inefficient normalisation (Sievertzon, et al., 2006). Spans of about 0.3 (30%) are usually

used (Sievertzon, et al., 2006; Quackenbush, 2002; Yang, et al., 2002).

Then, log-ratio correction is applied in a point-by-point manner by subtracting the best-

fit estimate from the original log-ratio. This is represented by

log,(T;) = log,(T;) — y(x;) = log,(T;) — logz(zy(xi))r (3.1

or

! R
logz (TY) = logz (Ti X 5555) = 1082 (- X 5555)- (32)
In terms of intensity correction, this is equivalent to
G! = G; x 2™ and R} = R;. (3.3)

An example of lowess normalised data is shown in Figure 3.1 (b). Lowess
normalisation was used successfully by many other studies (Quackenbush, 2002; Xie, et al.,

2004; Onskog, et al., 2011).

Before normalisation After normalisation

5 10 15 5 10 15
A A
Figure 3.1. MA plots for the yeast genome sample with the NCBI accession number
GSM81075 (a) before and (b) after lowess normalisation.
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3.2. Bi-CoPaM

The binarisation of consensus partition matrices (Bi-CoPaM) method is a novel contribution
of this thesis. Bi-CoPaM is a consensus clustering method which accepts multiple gene
expression datasets as an input and produces focused clusters of genes with consistency in
co-expression in those datasets as an output (Abu-Jamous, et al., 2013a). It is a condition
that all of the considered datasets measure the expression profiles of the same set of genes.
However, they can differ in terms of the number of time-points/conditions/features,
biological context, year, laboratory, technology, underlying statistical distribution, noise,
and the like. In reality, and due to the consensus, that is, collective, nature of the Bi-CoPaM,
adopting datasets which are different in such attributes supports the robustness, reliability,

and confidence in the results and conclusions.

The Bi-CoPaM method relaxes the conventional binary clustering constraint that each
gene (object) has to be exclusively assigned to a single cluster. Bi-CoPaM rather allows
each gene to have any of the three eventualities — (1) to be assigned exclusively to a single
cluster, (ii) to be assigned simultaneously to multiple clusters, or (iii) not to be assigned to
any cluster at all. This is done in a tuneable manner. Such tuneable relaxation in gene
assignment leads to tuneable relaxation in the structure of the produced clusters; clusters
may be (i) complementary, as conventional binary clustering produces, where they include
all genes without overlaps, (ii) wide and overlapping, or (iii) tight and focused while leaving

many genes unassigned to any of the clusters.

The application of the Bi-CoPaM method constitutes of four main steps summarised in
Figure 3.2 and explained in the following subsections; they are respectively (i) individual
partitions’ generation, (ii) relabelling, (iii) fuzzy consensus partition matrix (CoPaM)
generation, and (iv) binarisation. The following subsections describe those four steps in

detail.
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Figure 3.2. Flowchart summarising the steps of the Bi-CoPaM method

The expression profile of a specific set

of genes is measured in L different microarray datasets.

Each one of those datasets is exposed to gene clustering by each of the C considered clustering
methods. The R = L x C resulting partitions (clustering results) are relabelled and then combined

to form a single fuzzy consensus partiti

on matrix (CoPaM) which is then binarised by one of the

six proposed binarisation techniques to produce the final binary consensus partition (Abu-Jamous,

et al., 2013b).

3.2.1. Individual partition generation

Given L gene expression datasets and C different clustering methods / sets of parameters,

clustering the genes in each of the datasets into K clusters by adopting each of the clustering

methods generates R = L x C partitions (clustering results). Let each partition be denoted by

a partition matrix Uk, where r €

[1 ... R], K is the number of clusters, and N is the

number of genes. An element in the rth partition matrix, uy; € [0,1], represents the

membership of the ith gene in the kth

this gene does not belong to that

cluster, where the membership of zero indicates that

cluster, the membership of unity indicates full

belongingness of that gene in that cluster, and the membership values between zero and

unity indicate proportionate level of b

elongingness. Crisp clustering, also known as binary

clustering, produces binary membership values only, that is, it can only be zero or unity and

cannot have any intermediate value.

Note that the rows of a partition matrix represent

clusters while the columns represent genes.

Conventional partition matrices fulfil the following three conditions:

(M ki €

’

2

[0,1],  Vr,Vk,Vi, (3.4)

(3.5)
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N
3) 0< Z ul, <N,  VrVk (3.6)
i=1
The second condition necessitates that the total membership of any given gene in all of
the clusters should be unity because such membership values represent the probability of

belongingness.

3.2.2. Relabelling

Because clustering is unsupervised, the kth cluster in a given partition may not correspond
to the kth cluster in other partitions. Therefore, it is essential to reorder the clusters in all of
the partitions such that they are aligned. Thereafter, the Ath cluster in a given relabelled

partition corresponds to the kth cluster in each one of the other partitions.

Depending on the objectives of the application under consideration, the priorities of
relabelling may differ. In some applications, all of the resulting clusters are of interest to the
investigator, and the priority in this case is to optimise the overall relabelling accuracy. On
the other hand, many applications aim at producing few focused high-quality clusters while
ignoring the rest of the clusters; in this latter case, the priority is to maximise the quality of
the promising clusters while paying no attention to poor clusters. Thus, two relabelling
techniques are described here, namely min-max (Abu-Jamous, et al., 2013a; Abu-Jamous,
et al., 2013b) and min-min (Abu-Jamous, et al., 2013d; Abu-Jamous, et al., 2014a; Abu-

Jamous, et al., 2015b), which respectively adopt the two different aforementioned priorities.

Consider reordering the clusters in a partition U aiming to align them with the clusters
in a reference partition U"?. The first step in either technique is to construct a KxK pairwise
distance matrix whose rows represent the clusters in U, columns represent the clusters in
U?, and elements represent pairwise distance/dissimilarity values between corresponding
clusters. Two sample pairwise distance matrices, for the K values four and ten, are shown

in Figure 3.3 (a) and (b) respectively.

The second step in both relabelling techniques is to find the minimum value in each of
the columns in the matrix; these minima are shown in the last rows of the matrices in

Figure 3.3.

The two techniques diverge at the third step; min-max identifies the row and the column
whose intersection includes the maximum of the afore-calculated minima (shaded in
Figure 3.3 (a)) while the min-min technique identifies those which own the minimum of the

minima (shaded in Figure 3.3 (b)).
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Figure 3.3. Min-max and min-min cluster dissimilarity matrices

This is a demonstration of the first iteration of relabelling by the (a) min-max and the (b) min-min
techniques. The last row of the matrix shows the minima of the columns, and the highlighted cell
therein is the (a) maximum or the (b) minimum of those minima.

The fourth step is to map the clusters in U and U'? which are respectively represented
by the identified row and column to each other, and then to remove those row and column
from the matrix. After that, the minimum/maximum of the column’s minima in the reduced
matrix is identified leading to mapping a second pair of clusters from U and U'¢. These

steps are repeated until all clusters from U are mapped to their corresponding clusters in

U

Let us discuss how each of these two techniques meets its priorities. If we apply min-
min instead of min-max to the example in Figure 3.3 (a), the cluster represented by the
second row will be mapped to the cluster represented by the second column because the
distance between them is the perfectly minimum distance of 0.0. By preserving the second
row early in this iterative process as such, the third column will have no descent partner to
be mapped to as the next closest partner, which is the first row, is very distant from it with
a large distance of 6.0 units. On the other hand, the min-max technique gives the column
containing the maximum of the minima priority in assignment to ensure that it will not be
eventually assigned to a very distant partner. In this case, while the second column will not
be paired with its closest row, which is the second row, it can still be paired with the forth
row with an acceptable distance of 1.0. Although assigning such cluster to its second closest
cluster might not always result in acceptable distances as in the given example, the min-
max approach still show more fairness in the distribution of care over the different clusters

by prioritising those that are under a higher risk of not finding acceptable partners if delayed.

Moving our focus to the example in Figure 3.3 (b), one can notice that there are four
pairs of clusters (row-column pairs) which have very low distance values, namely the (row,

column) pairs (2, 1), (3, 2), (7, 8), and (9, 4), with the distances of 0.0, 1.0, 1.0, and 2.0,
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respectively. In contrast, the rest of the six rows and six columns are very far from each
other with distances of 5.0 or higher. This indicates that the two partitions have consensus
over four clusters and disagreement over six clusters. Being generated by using different
methods or under different biological conditions, their agreement on some clusters is a hint
that those are genuine clusters with relatively higher quality and are robustly identified
under different experimental setups or biological conditions. Therefore, the min-min
approach aims at ensuring that these four pairs of clusters are correctly associated while
ignoring the rest of the clusters. If the min-max approach had been used here instead, the
second row would have been paired with the fifth column in the first iteration depriving it
from being paired with its genuine match, which is the first column. This behaviour would
have been due to prioritising the poor cluster represented by the fifth column, which is

seemingly not a cluster of interest in this application.

Because most of our applications consider large datasets with the objective of
producing focused clusters that do not include all of the input objects (e.g. genes), we tend
to apply the Bi-CoPaM method with relatively high values of K while adopting the min-min

relabelling technique.

3.2.3. Fuzzy CoPaM generation

Once all of the R partitions {U' ... UR} have been relabelled, a fuzzy consensus partition
matrix (CoPaM) is generated by averaging the R partition matrices in an element-by-
element fashion. However, our adopted implementation of this considers and iterative
approach in which relabelling and fuzzy CoPaM generation are done in a partition-by-
partition manner. Let the function Relabel(U”, U"®) perform relabelling to the clusters in
the partition U” while considering the partition U™/ as a reference. The generation of the

final fuzzy CoPaM U™ is therefore performed according to the following algorithm:

Uint(l) — U1
Forr=2to R
U" = Relabel(U™, Untr—1)

.

pint(r) — lz gt = l("jr N r—1 pint(r-1)
i r r

r=

U* = Uint(R)
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Here, the final fuzzy CoPaM U™ is produced through the accumulative evolution of
intermediate fuzzy CoPaM (ICoPaM) matrices, where U™ js an ICoPaM at the rth
iteration. The first ICoPaM, U™ is set to the first individual partition, U'. Then, the
iterative mode of the algorithm starts. In every iteration (r), the next individual partition to
be relabelled and merged, U", is relabelled by considering the most recent ICoPaM,
Unt—1 a5 a reference. We denote the relabelled version of this partition as U". The
ICoPaM is then updated by weighted element-by-element averaging as shown in the
algorithm above. After all of the R partitions have been relabelled and merged with the
[CoPaM, the last ICoPaM, U™ ®) i considered as the final fuzzy CoPaM, U".

3.2.4. Binarisation

The fuzzy CoPaM matrix includes membership values for all of the considered genes (data
objects) in each of the K clusters. A membership value of unity indicates full belongingness
of the given gene to the given cluster, a zero membership indicates absolutely no
belongingness, and a fractional membership value indicates respective partial
belongingness. If all of the R individual partitions have consensually assigned a given gene
to the same cluster, the membership of this gene in that cluster will be unity while being nil
in all of the other clusters. However, if the individual partitions have disagreement in
assignment of that gene, its membership value is distributed over all of the clusters in which
some partitions included it. Indeed, the membership of the gene in any of these partitions is

set to be proportionate with the number of individual partitions which assigned it to it.

The next step is to binarise the membership values of the genes in the fuzzy CoPaM. It
is clear that a given gene should be assigned to the cluster to which it has been assigned
consensually by all partitions. However, in the case of disagreement, should this gene be
simultaneously assigned to all of the clusters to which some partitions assign it, or should it
be left unassigned from all of the clusters given the dispute? Below are six proposed

binarisation techniques addressing this issue in different ways.

3.2.4.1. Maximum value binarisation (MVB)

MVB assigns the gene exclusively to the cluster in which it has its largest membership
value, and therefore it generates complementary clusters. Let the resulting binary CoPaM
be B with K rows and N columns, where bj; € {0,1} is an element in this matrix
representing the binary membership of the i gene in the k" cluster. Similarly, the
corresponding fuzzy CoPaM is U with the elements uy; € [0,1]. Given that, the MVB

technique can be expressed as:
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1, U, ; = max u;;

. _ ki b J,i

by; = { 1=j=K (3.7)
0, otherwise

3.2.4.2. Top binarisation (TB)

The TB technique moves from the MVB technique towards producing wider clusters. This
is done by assigning the given gene to multiple clusters simultaneously if its membership
values in them are not farer than the value of the tuning parameter & below its maximum

membership value. The TB technique is expressed as:

. 1, Up; = Max uj; — 6
by, = 1=j<K (3.8)
0, otherwise

3.2.4.3. Difference threshold binarisation (DTB)

In contrast to TB, and in a symmetric manner, the DTB technique moves from the MVB
technique towards producing tighter clusters. This is performed by assigning a gene to the
cluster in which it has its maximum membership value only if this value is far from the
closest competitive cluster at least by the value of the tuning parameter 9; it is not assigned

to any of the clusters otherwise. The DTB technique is expressed as:

1, Up; = max u:; +9
" ’ 1<j<K, 1
by = J*k (3.9)
0, otherwise

We group the aforementioned three techniques in a track of binarisation and we name
it as the TB-MVB-DTB track (Figure 3.4). When 9 is equal to zero in TB or DTB, they
become identical to the MVB technique. When ¢ increases, TB or DTB start widening or
tightening the clusters, respectively. The maximum value of 6 is unity. When this value is
reached, the TB technique reaches the extreme case of wide clusters in which each one of
the clusters includes all of the genes. Also, at the 6 value of unity, the DTB produces the
tightest clusters in which a gene is assigned to a cluster only if its fuzzy membership value
is equal to unity in that cluster and is equal to zero in all of the other clusters, i.e. if all of
the R individual partitions have consensually assigned that gene to that cluster. Although
DTB may generate many empty clusters at 6 = 1.0, this result would not be trivial if some
of the clusters still preserved some genes up to this tightest level, as opposed to the TB

technique’s results at such o value.
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Figure 3.4. Binarisation tracks

The (left) TB-MVB-DTB track and the (right) UB-VTB-IB track can produce clusters which range
from very wide to very tight. Also, the MVB technique of the TB-MVB-DTB track can also provide
complementary clusters.

3.2.4.4. Union binarisation (UB)

UB assigns each gene to all of the clusters in which it has non-zero fuzzy membership
values, i.e. to all of the clusters in which at least one of the R individual partitions has
assigned it. This generates wide and overlapping clusters. UB is expressed as:

1, Up; >0

b, . = { 3.10
kt o, otherwise (3.10)

3.2.4.5. Intersection binarisation (IB)

Contrary to the UB technique, IB assigns a gene to a cluster only if all of the R individual
partitions have consensually assigned that gene to it, i.e. if its fuzzy membership value in it
is unity while being zero elsewhere. This technique generates the tightest and most focused
clusters, and is equivalent to the tightest clusters generated by the TB-MVB-DTB track,
namely by the DTB technique at 6 = 1.0. The IB technique is expressed as:

1, up; =10

b, . = { 3.11
ot 0, otherwise (3.11)

3.2.4.6. Value threshold binarisation (VTB)
VTB assigns a gene to a cluster if its membership in it is larger than or equal to the value of
the tuning parameter a. The VTB technique is expressed as:

*
1, Up; = @

b, = { 3.12
kt o, otherwise (3.12)

We group the latter three techniques into a second track of binarisation, namely the UB-
VTB-IB track (Figure 3.4). When a is equal to zero, the VTB assigns each gene to all of the
clusters, which is a trivial and useless result. At a = ¢, where ¢ is an arbitrarily small real

positive number, the VTB technique becomes identical to the UB technique, and at o = 1.0,
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it becomes identical to the IB technique. As the value of a increases from ¢ to unity, the

clusters are tightened.

The main semantic difference between the two tracks is that the TB-MVB-DTB track
considers comparative criteria based on the competition amongst the clusters over the genes.
On the other hand, the UB-VTB-IB track considers the absolute membership values of genes
in individual clusters. Nonetheless, the fact that fuzzy membership values are normalised
such that their sum for a single gene over all of the clusters is unity implies that those values
implicitly consider certain levels of competition between the clusters, even when considered
by the UB-VTB-IB track. However, the TB-MVB-DTB track is more explicit in basing

gene-cluster assignments on such competitions.

3.3. UNCLES

The objective of the Bi-CoPaM method, while using tightening binarisation techniques, can
be summarised as: it aims at identifying the subsets of genes (or any other types of objects)
which are consistently co-expressed (highly correlated in profiles) over all of the given
datasets and when analysed by all of the adopted clustering methods and setups. Indeed,

binarisation parameters control how much tolerance is accepted.

However, other research questions can be answered by other ways of unifying
individual clustering results. We therefore propose a more general paradigm of multiple-
dataset mining which we call the unification of clustering results from multiple datasets
using external specifications (UNCLES) (Abu-Jamous, et al., 2015c). Bi-CoPaM serves as
a special case of the UNCLES method as it unifies clustering results from multiple datasets
while considering consistency in co-expression over all/most of the datasets as external

specifications. We name this type of external specifications as “type A”.

Here we propose another type of external specifications, labelled “type B”, which aims
at identifying the subsets of genes which are consistently co-expressed in a subset of datasets

(S™) while being poorly consistently co-expressed in another subset of datasets (S").

To apply UNCLES type B, the type A (Bi-CoPaM) is applied to each of the two subsets
of datasets S* and S” separately while adopting DTB binarisation with the & values of " and
& respectively. After that, the genes that are included in the results of processing the S*
datasets and not included in the results of processing S- datasets, indeed after binarisation,
are included in the final result. Therefore, the UNCLES type B method utilises a pair of
parameters (3', §) in order to achieve its results. The parameter 8" controls how well co-

expressed the genes should be in the S* datasets to be included in the final result, while the
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parameter 6 controls how well co-expressed the genes should be in the S datasets to be
excluded from the final result. Note that at the pair (8%, 0) empty clusters are generated

because at & = 0 all of the genes will be excluded from the final result.

3.4. Mean squared error (MSE) metric

The mean squared error (MSE) metric has been used in many studies to evaluate the quality
of clusters by quantifying the dispersion within the cluster (Lam & Tsang, 2012; Zhu, et al.,

2012). The normalised per gene MSE measure for the k" cluster is defined as:

1
MSEcluster(k) = M—Nk Z ”xi - Zk”2; (3.13)

xiECk

where M is the number of dimensions (time-points) in the dataset, N}, is the number of genes
in the k" cluster, Cy is the set of genetic expression profiles {x;} for the genes in the k"

cluster, and zj, is the mean expression profile for the genes in the k" cluster.

If multiple datasets were used in clustering, genes’ profiles and the clusters centroids
will vary from one dataset to another for the same partition. In this case, the MSE metric

can be calculated multiple times for each dataset and then averaged over them.

3.5. M-N scatter plots

UNCLES types A and B generate clusters with varying levels of wideness / tightness
depending on the values of the tuning parameters fed. Such clusters largely vary in size,
which significantly affects the validity of known validation techniques rendering them
unreliable in this particular context. Therefore, we propose a customised and sophisticated
cluster evaluation and validation technique, based on our proposed M-N scatter plots, where
M refers to a modified version of the MSE metric (Section 3.4), and N refers to the number
of genes included in the cluster, or more specifically, the logarithm of that number (Abu-
Jamous, et al., 2015¢). The objective of the M-N scatter plots technique is to maximise the
size of the cluster while minimising the mean square error. This multi-objective technique

suites the tuneable nature of the clusters generated by the UNCLES method.

The M-N scatter plot is a 2-D plot on which the clusters are scattered, where the
horizontal axis represents the MSE-based metric (MSE") defined below, and the vertical
axis represents the 10-based logarithm of the number of genes included in the cluster. The
clusters closer to the top-left corner of this plot, after scaling each axis to have a unity length,
are those that include more genes while maintaining lower MSE* values, and are considered

as better clusters based on this technique.
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Figure 3.5. Three iterations of cluster selection based on M-N scatter plots

Figure 3.5 (a) shows a sample M-N scatter plot. Each point on this plot, regardless of
its shape and colour, represents a single non-empty cluster. The one closest to the top left
corner in Euclidean distance is marked with a big solid circle, and is selected as the best
cluster. The stars represent all of those clusters which have significant overlap in terms of
gene content with the selected best cluster. Here we consider any overlap, even with a single
gene, as significant. Therefore, we can consider the clusters represented by stars as other
versions of that best cluster. The clusters represented by squares are all of the rest of the
clusters. Before selecting the second best cluster, those clusters with similarity to the first
best cluster are removed from the plot, and the resulting updated M-N plot, in this case, is
shown in Figure 3.5 (b). The same step is repeated iteratively to select many clusters until
the M-N plot has no more clusters or a specific termination criterion is met. For example,
after twenty iterations, the M-N plot in Figure 3.5 (a) becomes totally empty; the first three
iterations are shown in Figure 3.5. The selected twenty clusters are ordered in quality from
the closest to the top-left corner to the farthest, and those twenty distances are shown in
Figure 3.6. Although twenty clusters are found in this example, the grace of having the
clusters ordered allows selecting few top clusters only. As in Figure 3.6, there is a large gap
in distances between the second and the third clusters, which would lead the researcher to

restrict oneself to the first two clusters only for further biological analysis.
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Figure 3.6. Distances of the twenty ordered clusters selected by the M-N plots from the top-
left corners of those plots

The MSE-related metric (MSE*) is defined differently for UNCLE types A and B to
meet their different objectives. For type A, the MSE* metric is the average of the MSE
values for the considered cluster across all of the given datasets, where for type B, it is the
signed difference between the average of the MSE values across the positive subset of

datasets (S") and that average across the negative subset of datasets (S°).

3.6. F-P scatter plots

Alongside the unsupervised M-N scatter plots described above, we propose a supervised
cluster validation technique based on our proposed F-P scatter plots (Abu-Jamous, et al.,
2015c). Supervised validation in this context is that which is based on the available ground-
truth (external validation). On the other hand, unsupervised validation is based on the

dispersion and size of the clusters themselves (internal validation).

In a similar fashion to the M-N scatter plots, the clusters are scattered on a 2-D plot
whose horizontal axis represents the false positive rate (FPR or F), and whose vertical axis
represents a scaled version of p-values (P). The FPR (F) of a cluster is the ratio between the
number of genes that are wrongly included in the clusters as per the ground truth (false
positives) and the total number of genes in the cluster. This ranges between zero, when no
false positives are included in the clusters, and unity, when all of the genes in the cluster are

false positives.

The scaled p-value (P) is based on a p-value calculated by modelling the problem with
a hypergeometric distribution. Let there be N genes in the complete considered dataset,
where M of them belong to the considered ground-truth cluster. If the cluster being validated

includes n genes, out of which m genes belong to the ground-truth cluster, the true positives
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will be m, the false positives will be n — m, the false negatives will be M — m, and the true
negatives will be N —n — M + m. The p-value is therefore the probability of obtaining m or
more true positives in a cluster of n genes randomly selected from a pool of N genes which

includes M positives. This is mathematically expressed as:
N M—j

p — value = z (ﬂU\S/I—L])') X (%)] X (N; n) (3.14)

j=n

This logarithm of this p-value is then scaled by the logarithm of the best theoretically

possible p-value; this is expressed as:

log(p — value)

scaled p — value (P) = ~
log(N/y)

(3.15)

where (N / M)N is the best theoretically possible p-value resulting from producing the
perfect cluster which capture all the M genes in the ground-truth cluster and only the M
genes in the ground-truth cluster. In this case, n = M = m, leading to the p-value of (N / M)N
when substituted in Equation (3.14). The scaled p-value (P) ranges from zero, when the

cluster include no true positives at all, to unity, when the cluster is the perfect cluster.

Taken together, better clusters, that is, the clusters which better match the ground-truth,

are those which maximise P while minimising F.

F-P plot

Number of genes (log) (N)

MSE-related metric (M) False-positive rate (F)
Figure 3.7. Sample M-N and F-P plots for the same set of clusters

In both plots, the cluster shown as a solid grey circle and point at by an arrow is the one closest to
the top-left corner. The best cluster identified by the M-N plot was found to be the same as the one
identified by the F-P plot.

A sample F-P plot is shown next to a corresponding M-N plot in Figure 3.7. Both plots
scatter the same set of clusters, and both plots were found to identify the same cluster as the
best one, that is, the one closest to the top-left corner. This best cluster is distinguishably
marked by a solid grey circle and is pointed at by an arrow. The black continuous curve in

the F-P plot marks the maximum theoretically possible P value at any given F value. In
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reality, the clusters lying on this curve are those with zero false-negatives, that is, they
include all of the true-positives (the M genes), in addition to some false-positives, which
might be as few as zero (the top left end of the curve), or as many as all of the genes outside

the ground truth cluster (the bottom right end of the curve).

3.7. Expression data synthesis based on real data

In order to validate new proposed clustering methods, datasets with known ground-truth are
needed to verify if the proposed method can produce what is expected from it or not.
Because real datasets tend not to be fully understood and consequently there is not well-
defined ground-truth for them in the context of clustering, it is common to synthesise
datasets according to a pre-defined ground-truth, expose them to analysis by the proposed

method, and then compare the results with the known ground-truth.

Rather than synthesising gene expression profiles based on mathematical models which
approximate real expression (Yeung, et al., 2001; Zhao, et al., 2001; Liu, et al., 2004), we
propose an approach to form a set of datasets with profiles from real datasets but in a
controlled manner in order to have the ground truth available (Abu-Jamous, et al., 2015¢).
For this to be achieved, some real gene expression datasets which have been exposed to
cluster analysis by previous studies were selected. These datasets’ GEO accession numbers
are GSE18057 (Fujii, et al., 2010), GSE10124 (Hayata, et al., 2009), GSE12736 (Limb, et
al., 2009), and GSE9386 (Liu, et al., 2008), and belong to the species Oryza sativa (Asian
rice), Xenopus laevis (African clawed frog), Homo sapiens (human), and Zea mays (maize),

respectively. The respective numbers of samples in the datasets are 36, 6, 16, and 24.

Based on those four datasets we have formed six datasets, named as P1, P2, P3, N1,
N2, and N3. P1 and P2 are respectively based on the first eighteen and the last eighteen
samples of GSE18057, P3 is based on GSE10124, N1 is based on GSE12736, and N2 and
N3 are based on the first and the last twelve samples of GSE9386 respectively.

P1 P2 P3 N1 N2 N3

gl
Cc1 C1 C1 C1 C1 C1

g75

g76

Cc2 Cc2 c2

gl60

glel
Cco co Cco Cco Co co

gGS

Figure 3.8. Structure of the six synthetic datasets formed based on real expression data
measurements
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The gene names / probe identifiers of the original datasets were omitted and the
artificial gene names gl to gGS were used instead, where GS is the artificial genome size
(the total number of genes in the dataset). Here we claim that the i™ gene (gi) in each of the
six synthetic datasets refers to the same artificial gene. Therefore, the six datasets are seen
as datasets which measure the expression profiles of the same set of genes (gl to gGS) but
under different conditions. In each of the six datasets, the artificial genes gl to g75 were
selected from one of the clusters identified in the relevant study, i.e. the profiles of those 75
genes in each of the datasets were previously confirmed to be co-expressed in the literature;
these genes have been labelled as the cluster C1 (Figure 3.8 and Figure 3.9). The 85 genes
g76 to g160 were selected in the same way but only for the positive datasets P1, P2, and P3,
and have been labelled as the cluster C2 (Figure 3.8 and Figure 3.9). The rest of the genome,
i.e. gl6l to gGS in P1, P2, and P3, and g76 to gGS in N1, N2, and N3, was randomly
selected from those genes which were considered as poorly co-expressed in the relevant
studies due to being non-differentially expressed; these have been labelled as CO
(Figure 3.8). We have generated five sets of such dataset with the genome sizes (GS) of
1200, 2000, 3000, 5000, and 7000 genes respectively; each of these sets includes six datasets

as described, with the same C1 and C2 genes shown in Figure 3.9.

C1 - 75 genes C2 - 85 genes

Samples Samples
Figure 3.9. Profiles of the ground-truth clusters C1 and C2 in each of the six datasets

The genes in C1 are consistently co-expressed in all of the six datasets, meeting the specifications
of UNCLES type A, while the genes in C2 are consistently co-expressed in the positive datasets
only while being poorly co-expressed in the negative datasets, meeting the specifications of
UNCLES type B.
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3.8. GO term analysis

The Gene Ontology (GO) Consortium has taken the responsibility of unifying and
standardising gene attribute association. In a more explicit statement, the Consortium has
identified three families of attributes with which a gene may be associated, namely the
biological process in which the gene’s product participates, the molecular function which
the gene’s product undertakes, and the cellular component in which the gene’s product
localise (The Gene Ontology Consortium, 2000; The Gene Ontology Consortium, 2013).
Each GO term referring to a process, function, or component in this database has a unique
GO term identifier (GOID) starting with the prefix ‘GO:’ followed by seven numerical
digits, for example, the identifier ‘GO:0051301 refers to the biological process term ‘cell
division’.

In a regulated and actively revised and updated manner, the association of genes with
their corresponding GO terms is done based on the existence of sufficient evidence
supporting this association from the studies in the literature. As new studies emerge, gene-
term associations are updated. Indeed, the general case is that any single process, function,
or component can be performed, undertaken, or host many genes. For example, ‘cell
division’ is performed by the collaboration of many genes, and surely all of them are
associated with it. Similarly, any single gene, generally speaking, may participate in many
processes, be involved in different functions, and localise in various cellular components.
Therefore, the relation between genes and GO terms is the well-know many-to-many

relation.

GO term enrichment analysis aims at the identification of the GO terms which are
highly represented in a given cluster of genes, that is, the terms with which the genes in the
given cluster are significantly associated. Let the complete set of genes (the genome) include
N genes, M of which are associated with a given GO term ‘X’ as per the GO Consortium
databases; from those N genes, we have fetched a cluster of n genes, m of which are
associated with the GO term ‘X’; the question is: “is this cluster highly enriched with the
GO term ‘X’?” We answer this question by calculating the p-value of such observation
based on the hypergeometric distribution in an analogous way to what has been discussion
in the previous section, Section 3.6. If the p-value is very small, for example < 0.001, we

consider that this cluster is indeed highly enriched with this term.

Given a single cluster, we repeat that question while considering each one of the
available terms in the database. Consequently, we obtain a Table of GO terms and their

corresponding p-values, usually in an ascending order based on the p-values. Then, a
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threshold is adopted to filter out the terms whose p-values are higher than a given threshold

(e.g. 0.001), to maintain a list of terms which are highly enriched in the cluster.

An important note should be raised here; because that test/question is asked repetitively
over a large number of terms, a proportion of those tests is expected to pass due to chance,
resulting in a significant number of false-positives. The p-values are therefore corrected by
one of different techniques in order to compensate for this problem, which is referred to as

the multiple-hypothesis testing problem.

GO term analysis helps in finding the biological context of a given cluster of genes by
noticing those GO terms with which the cluster is enriched. Also, many genes in those
clusters are expected not to be associated any GO terms yet, due to human’s incomplete
knowledge herein. Such unknown or poorly understood genes, which appear in clusters of
many known genes, represent candidates for further biological investigation in light of the

biological context in which this GO analysis places the cluster.

Various freely-available tools are available online while holding up-to-date databases
of term associations. Some of those tools are generic to various species, like the Princeton

University tool at http://go.princeton.edu/cgi-bin/GOTermFinder, and some of them are

species-specific like the Saccharomyces Genome Database (SGD) tool at

http://www.yeastgenome.org/cgi-bin/GO/goTermFinder.pl. Using these tools is intuitive as

they accept a list of input genes and few parameters; then they provide an ordered list of

GO terms with their associated p-values.

3.9. Upstream sequence analysis

The expression of genes is regulated positively and negatively by proteins known as
transcription factors (TFs). When a TF regulates a gene, it recognises and binds to a specific
short motifs (DNA sequences) found upstream of the DNA sequence of that target gene.
Different TFs have different binding sites, that is, the sequences of the motifs which they

recognise are different.

It is known that a single TF may regulate many genes because their upstream sequences
include its binding site. In some cases, this TF would be semantically regulating a complete
biological process (like cell division) by regulating the tens of genes which participate in it.
Moreover, it is also known that many binding sites are collaboratively bound by multiple

TFs forming a TF complex.

Identifying a cluster of genes which are co-expressed, that is, their expression increases

and decreases correlatively, implies that it is likely that they are also co-regulated, that is,


http://go.princeton.edu/cgi-bin/GOTermFinder
http://www.yeastgenome.org/cgi-bin/GO/goTermFinder.pl
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regulated by the same TF gene or TF complex machinery. Although they might be co-
expressed for other reasons, co-expression is still enough for the subset of genes to be a

strong candidate for co-regulation investigation.

Upstream sequence analysis mines the upstream sequences of the genes included in a
cluster for those motifs that are significantly and repetitively found therein. After that, those
motifs are compared with libraries of binding sites for known TFs. If the upstream
sequences of a cluster are highly enriched with a motif that significantly matches a known

TF’s binding site, we may hypothesise that those genes are co-regulated by that TF.

Many tools are available to perform this analysis like the MEME (Multiple Em for

Motif Elucitation) suite at http://meme.nbcr.net/.
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Chapter 4
Methods Assessment and Validation

Before utilising the proposed methods, they need to be assessed and validated in order to
have it on good authority that they can be reliably used in extracting relevant biological
findings. Here we present some experiments that we have conducted in order to validate
both types of the proposed UNCLES method as well as the proposed M-N scatter plots
cluster validation and selection technique. This is achieved by the analysis of the sets of
synthetic datasets generated based on our proposed approach and explained in Section 3.7.
The Bi-CoPaM method is practically equivalent to UNCLES type A, and therefore is
validated as its equivalent is validated. Extra detailed validation for the Bi-CoPaM method

can be found in (Abu-Jamous, et al., 2013a).

4.1. Experimental setup

UNCLES has been applied to each of the five sets of synthetic datasets that were generated
with five different genome sizes (GS). Each of those sets of datasets has been considered
with all of the numbers of clusters (K) of 4, 8, 12, 16, 20, and 25 clusters. Both types of
external specifications, types A and B, have been considered. Type A aims at identifying
the subsets of genes consistently co-expressed over all of the datasets, and type B aims at
identifying the subsets of genes specifically consistently co-expressed in the positive set of
datasets P1, P2, and P3, while being poorly consistently co-expressed in the negative set of
datasets N1, N2, and N3. The used DTB o values for UNCLES type A were zero to unity
with steps of 0.1, and the (6%, ") pair values for UNCLES type B were all possible pairs

while ranging each of the J values from zero to unity with steps of 0.1.

4.2. UNCLES and M-N plots validation

The perfect result of 100% specificity and 100% sensitivity would be obtained if the cluster
Cl1 is discovered by type A of UNCLES, and the cluster C2 is discovered by type B. For
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any single set of datasets (for a specific genome size (GS)), there are 935 individual clusters
generated by type A by considering all of the used K and ¢ values, and there are 10,285
individual clusters generated by type B by considering all of the used K, §°, and & values.

c2

GS -2000 GS-1200

GS - 3000

c

GS-7000 GS-5000

" o Ba
M-N plots F-P plots

Figure 4.1. M-N and F-P scatter plots of the synthetic data clusters C1 and C2 generated by
UNCLES and other methods

The selected clusters in the M-N plots are marked by solid grey circles, and their corresponding
points in the F-P plots are marked by solid grey circles as well. The red stars represent all of the
other clusters generated by the UNCLES method while the blue squares in the F-P plots represent
the clusters generated by the other four clusters methods with which we compare UNCLES
(discussed below in Section 4.3).

M-N scatter plots for each of the considered genome sizes for UNCLES types A and B
are shown in Figure 4.1 (the first and the third columns) while marking the selected best
cluster in each case with a solid grey circle. To validate the usage of those novel M-N scatter
plots in validation, we have also shown the ground-truth-based F-P scatter plots for each of
these cases in the second and the fourth columns (Figure 4.1). The selected clusters based

on the M-N plots are also marked on the F-P plots with solid grey circles.

The first, most relevant and most interesting observation is that in both types of external
specifications A and B, that is, for clusters C1 and C2, and for all of the considered genome
sizes (GS), the clusters selected based on the ground-truth-independent approach scored the
best (M-N plots), or very close to the best, scores in the ground-truth-dependent approach
(F-P plots) (Figure 4.1). This not only proves the ability of UNCLES to find the clusters of
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genes that meet each of the proposed types of external specifications A and B, but also
proves the validity of using the M-N scatter plots approach to select the best clusters from

the methods’ results.

Most of the clusters generated by our method in both cases, A and B, are irrelevant to
the target clusters, that is, they include no true-positives, and they are shown as dense points
at the bottom right corners of the F-P plots. Having high densities on the vertical axis, the
black continuous carve, and the bottom right corner, with low densities elsewhere, indicates
that the results clearly separate the relevant cluster with its different tightness levels from
the rest of the irrelevant clusters. To review the relevance of the black curve in these plots

please refer to Section 3.6.

There is general agreement between the ground-truth-independent approach (M-N
plots) and the ground-truth-dependent approach (F-P plots). Slight perturbations in the
ground-truth-independent approach (M-N plots) were seen to lead to such slight
perturbations in the ground-truth-dependent approach (F-P plots). This demonstrates the
robustness of our approach in selecting the best cluster in an independent manner of the

known ground-truth, that is, by the M-N plots approach.

4.3. Comparison with other clustering methods

We have also applied other methods to the same datasets for the sake of comparison with
UNCLES. We have tested k-means with Kauffman’s initialisation (Pena, et al., 1999), self-
organising maps (SOMs) (Xiao, et al., 2003), hierarchical clustering (HC) with Ward’s
linkage (Eisen, et al., 1998), and the ensemble clustering method relabelling and voting
(Vega-Pons & Ruiz-Shulcloper, 2011). These methods were applied separately to each of
the six datasets within each of the five sets of datasets at the adopted genome sizes (GS)
1200 to 7000 and by considering the ten K values 4, 8, 12, 16, 20, 25, 50, 75, 100, and 125.
The reason for using high K values for those methods, as opposed to UNCLES, is that those
methods do not possess the unique feature of our method, which is the ability to tune the
results to obtain tighter clusters while leaving most of the genes unassigned to any cluster.
For those methods to obtain clusters of sizes that are comparable to the sizes of the ground
truth clusters (75 and 85), high K values are needed. In total, each of these four clustering
methods has generated 2,610 individual clusters by considering all of the K values;
remembering that those methods have been applied to the six datasets separately, not
collectively. All of these clusters are scattered as blue squares on the F-P plots shown in the

second and the fourth columns in Figure 4.1.



57

In order to statistically measure this observation, we have conducted a pair-wise
statistical test between UNCLES and each one of the four methods, and between every
possible pair amongst the four methods themselves. While comparing two methods, clusters
that include at least one true positive member are identified. Then, the closest 50% of these
clusters to the top-left corner of the corresponding F-P plot are considered for a #-test. This
t-test is applied to test if the two subsets of distances are significantly different from each
other. The generated statistics are the mean (u) of the signed differences between distances,
its standard deviation (o), and the p-value. The mean of the signed differences ranges from
— /2 to+/2 because the diameter of the F-P plot is+/2 . Closer values to —+/2 indicate
that the clusters generated by the first method have smaller distances from the top left corner
of the F-P plot and therefore are better, while the opposite is true when the values are closer
to~/2 . Mean values closer to zero indicate that both methods’ results are similar to each

other.

Table 4.1 shows the results of this statistical test for both clusters C1 and C2, and for
all of the considered GS values. The third column of the Table shows u, g, and the p-value
of the comparison between UNCLES and the closest competitor method; the method that
was found as the closest competitor is named therein. The fourth column of the Table shows
similar metrics for the comparison between the most separated pair of other methods while

naming those methods therein.

Table 4.1. Clustering methods’ performance comparison

C GS UNCLES versus closest competitor’  Most separated pair of other methods”

C1 1,200 -0.81 +0.15 (9.3 x 10°") [HC] 20.13£0.17 (1.5 x 10"%) [HC, RV]
2,000 -0.88+0.17 (7.3 x 10°5%) [HC] -0.15+0.18 (1.7 x 10"") [HC, RV]
3,000 -0.93 = 0.15 (1.6 x 10°%) [HC] 0.12£0.16 (2.5 x 10"'1) [SOMs, RV]
5,000 -0.92 +0.15 (7.6 x 10%) [HC] -0.09 % 0.14 (1.9 x 10°%) [SOMs, RV]
7,000 -0.77 % 0.15 (3.6 x 10°%) [SOMs] -0.08 % 0.12 (2.9 x 10°) [SOMs, RV]

C2 1,200 -0.93 +0.15 (< 102%) [SOMs] -0.04 % 0.14 (5.8 x 10”7) [SOMs, RV]
2,000 -0.92 % 0.17 (< 1055) [HC] -0.04 % 0.12 (5.0 x 107) [HC, RV]
3,000 -0.60 = 0.15 (6.3 x 102*) [HC] -0.03 % 0.11 (6.7 x 10°5) [HC, RV]
5,000 -0.55+0.13 (1.1 x 10234 [HC] -0.02 % 0.09 (2.0 x 10 [HC, RV]
7,000 -0.48 +0.13 (4.8 x 102'%) [HC] -0.02 +0.09 (1.3 x 10-%) [HC, RV]

* The format of the entries in these two columns is: p £ ¢ (p-value) [method(s)]. The closest competitor to
UNCLES is the one with the largest p-value while the most significantly separated pair of other clustering
methods is the pair with the smallest p-value.

For both C1 and C2, all of the clusters generated by the other four methods, even at

their best, lag significantly behind many of the clusters generated by the UNCLES method
including the ones selected by the M-N plot approach as can be seen in the F-P plots in
Figure 4.1 and the very negative u values accompanied with extremely low p-values in the
third column of Table 4.1. On the other hand, there is no similarly significant difference
between any pair of methods amongst these four as can be seen by the close-to-zero x4 values

and the p-values that are relatively not very low in the fourth column of Table 4.1.
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4.4. Comparison with biclustering methods

Biclustering methods aim at finding genes that are co-expressed, not necessarily in all of
the provided data samples, but at least in some of them. A bicluster is a cluster defined by
a subset of genes and a subset of data samples (data matrix columns). Here, we compare our

UNCLES analysis of the synthetic datasets with eight different biclustering methods.

Biclustering methods can be applied only to a single dataset. Therefore, and given any
genome size (GS), we have concatenated the six synthetic datasets horizontally to provide
a single data matrix with GS rows and 82 columns, where this number of columns is the
total number of columns (samples) in all of the six datasets. The profiles of the two ground-
truth clusters C1 and C2 in the combined dataset are shown in Figure 4.2. The first 42
columns belong to the three positive datasets P1, P2, and P3, while the last 40 columns
belong to the three negative datasets N1, N2, and N3, and it can be clearly seen in this Figure
that C1 genes are consistently co-expressed in all of the 82 columns (samples) while C2

genes are distinctly co-expressed in the first 42 ones.

C1
expression

samples (data matrix columns)

Cc2
expression

4 ! ; |
10 20 30 40 50 60 70 80

samples (data matrix columns)

Figure 4.2. Synthetic data ground truth clusters C1 and C2 combined expression profiles
from all of the six datasets

The vertical dashed lines show the boundaries between the samples belonging to each of the six
datasets in their respective order of P1, P2, P3, N1, N2, and N3. C1 shows consistent co-expression
over all of the combined 82 samples (data matrix columns), while C2 shows consistent co-
expression only over the first 42 samples.

Eight different biclustering methods were applied to the combined datasets, namely
Cheng and Church (CC) (Cheng & Church, 2000), Plaid (Lazzeroni, et al., 2002), bimax
(Preli¢, et al., 2006), spectral (Kluger, et al., 2003), FLOC (Yang, et al., 2005), XMOTIFS
(Murali & Kasif, 2003), large average submatrices (LAS) (Shabalin, et al., 2009), bipartite
spectral graph partitioning (BSGP) (Dhillon, 2001). At all genome sizes, Spectral and
XMOTIFS produced no clusters, while CC produced a single trivial cluster that
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encompasses the entire genome and all of the data samples. On the other hand, each one of
the remaining five biclustering methods, namely Plaid, Bimax, FLOC, LAS, and BGSP,
produced more than one non-empty cluster. Comparison between the UNCLES method and

those five biclustering methods is shown in Table 4.2.

Table 4.2 shows two metrics for each method’s results considering the clusters C1 and
C2 based on each of the five different considered genome sizes (GS). The first metric is the
shortest distance from the top left corner of the F-P scatter plot; this ranges from 0.0 for the
ideal cluster to /2 = 1.41 for the worst possible cluster. The second metric is the number
of correctly identified data matrix columns (data samples) out of the total number of correct
data matrix columns; for type A, all of the 82 samples (combined from the six datasets)
represent the correct samples, while for type B, the 42 samples originally belonging to the

positive datasets P1, P2, and P3, are the correct ones.

Table 4.2. Comparison between UNCLES and eight biclustering methods

Cluster l;NCLES ** Plaid * Bimax * FLOC * LAS * BGSP *
and GS
C1 1200 [0.00 0.10 1.00 135 0.13 0.61
82/82 20/82 4/82 6/82 21/82 1/82
C1 2000 (0.00 0.64 1.06 1.38 0.16 0.75
82/82 22/82 4/82 6/82 21/82 2/82
C1 3000 (0.00 0.95 1.12 1.39 0.29 0.90
82/82 37/82 4/82 6/82 18/82 0/82
C1 5000 (0.04 1.28 1.21 1.40 0.45 0.06
82/82 5/82 3/82 6/82 18/82 0/82
C1 7000 [0.02 0.97 0.95 1.40 0.59 0.09
82/82 30/82 4/82 6/82 19/82 0/82
€2 1200 {0.00 0.76 1.21 1.36 031 0.96
42/42 5/42 3/42 2/42 15/42 0/42
C2 2000 [0.00 0.92 1.26 1.37 0.28 0.91
42/42 16/42 3/42 3/42 15/42 0/42
C2 3000 [0.33 0.99 1.29 1.38 0.32 1.00
42/42 5/42 3/42 5/42 15/42 0/42
C2 5000 [0.40 1.07 1.32 1.40 0.71 1.14
42/42 5/42 3/42 2/42 13/42 0/42
€2 7000 [0.43 118 1.30 1.40 0.70 1.17
42/42 5/42 3/42 442 13/42 0/42

* Each cell in these columns includes two values — the first is the distance from the top-left corner of the
ground-truth-based F-P plots for the best cluster found by each method; the ideal is zero and the maximum is
V2 =141 ; the second value is the number of data samples (data matrix columns) which the biclustering
algorithms correctly found for the corresponding clusters out of the total number of correct samples (82 for
type A and 42 for type B).

# The number of data matrix columns (samples) are prefixed for UNCLES while being variable for biclustering
methods.

At all genome sizes, and for both types, type A (cluster C1) and type B (cluster C2),

the UNCLES results showed the best performance (minimising the distance and maximising
correctly identified data matrix columns / samples). The only exception is for C2 at the
gnome size (GS) of 3,000 genes, where the LAS method scores a subtly smaller distance
than UNCLES. However, even at that latest case, UNCLES’ F-P distance is 0.33 compared

to 0.32 for LAS, which indicates an insignificant difference between the two distances.
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Moreover, LAS and all of the other biclustering methods have identified only few data

matrix columns out of the total number of correct columns.

Although all of the biclustering methods lag behind UNCLES, it can be seen that Plaid,
LAS, and BSGP, perform relatively better than FLOC and Bimax. In general, LAS shows

more consistent quality across varying genome sizes (GS) compared to Plaid and BSGP.

4.5. Summary and conclusions

Our validation experiments have demonstrated the unique ability of our proposed method,
UNCLES, in answering two research questions with both of its types A and B in an
unsupervised and robust manner. We have also validated a novel M-N scatter plots
technique for cluster evaluation. This technique was successful in selecting the best clusters
while varying the number of clusters (K value) as well as the § and (6, &°) values. Therefore,
by integrating this technique with the UNCLES method, the method becomes automated
and can proceed from the input set of datasets and individual clustering methods to the final
few focused clusters without the need to set any critical parameter. The Bi-CoPaM method
is equivalent to UNCLES type A, and has accordingly been validated by the validation of
UNCLES type A. UNCLES has the potential to be expanded by producing more types of
external specifications for the unification of clustering results to meet other research
requirements. It is also now ready to be adopted by biologists and other scientists to analyse

diverse types of datasets.
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Chapter S
Budding Yeast Data Analysis

Although different to the human cell in many regards, the budding yeast (Saccharomyces
cerevisiae) cell is orders of magnitude more similar to human cells than species like bacteria
are (Duina, et al., 2014). The budding yeast cell is considered as a simple eukaryotic model
organism. Eukaryotes include animals, plants, and fungi. Due to this and to the fact that it
is relatively easy to grow yeast cells and apply biological experiments to them, budding
yeast has become one of the most studied and relatively understood species, leading to many

discoveries that have deepened our understanding of eukaryotic cells in general.

In the first section of this chapter, a brief introduction on the molecular biology of
budding yeast is presented to pave the way for the reader from a computational background
to understand and appreciate the biological experiments and findings presented in the
forthcoming sections. Non-biologist readers are encouraged to read Appendix I as well in

order to have a sufficient background on cells and their molecular biology.

Two main experiments of application of the Bi-CoPaM method to budding yeast
datasets are presented here. Section 5.2 details our analysis of two filtered yeast cell-cycle
datasets leading to revealing novel insights into the poorly understood gene CMR1. After
that, we developed an approach of applying the Bi-CoPaM method to unfiltered datasets,
that is, genome-wise datasets, demonstrating the ability of the Bi-CoPaM to extract focused
and meaningful subsets of genes even from unfiltered datasets. Section 5.3 explains a
realisation of this approach in which the Bi-CoPaM is applied to forty different genome-
wide yeast datasets leading to the discovery of a novel cluster of genes. Each of those
studies’ findings has been published in journals, namely and respectively in the Journal of
the Royal Society Interface (Abu-Jamous, et al., 2013b) and BMC Bioinformatics (Abu-
Jamous, et al., 2014a).
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5.1. Introduction to budding yeast molecular biology

Budding yeast, Saccharomyces cerevisiae, is a unicellular eukaryotic species, that is, its
organism is composed of a single cell which has a real nucleus bound by a nuclear envelope.
This species’ genome was the first eukaryotic genome to be completely sequenced in 1996
(Goffeau, et al., 1996), and includes about 6,000 different genes distributed over 16

chromosomes (Goffeau, et al., 1996).

Depending on nutrient abundance, budding yeast cells may reproduce asexually by
mitosis, that is, cell division to two daughter cells identical to the mother cell, or sexually
by cell fusion (Herskowitz, 1988). The former is of importance and relevance to the

experiments presented in the rest of this chapter.

Budding yeast mitotic cell-cycle can be divided into four main stages, namely, the first
gap (G1), DNA synthesis (S), the second gap (G2), and mitosis, that is, nuclear division
(M). When nutrients are not abundant, the cells arrest the cell-cycle in the G1 stage, in which
they maintain their cells without further growth. Once nutrients become abundant and
several other criteria are checked, the cells proceed to the S stage. The G1/S checkpoint is
a key part of the cell-cycle at which a large number of genes are involved and is controlled
by a complex regulatory network (Bertoli, et al., 2013). A small bud starts to appear at one
side of the cell during the S stage and grows gradually; this bud will become eventually a
daughter cell. Also in this stage the genetic material (the DNA packaged by the
chromosomes) is replicated to two identical copies of the original one (Omelyanchuk, et al.,
2004). The cells enter after that into the second gap (G2). Before entering into the M stage,
the cell has to satisfy the G2/M checkpoint’s requirements which are checks that guarantee
the genetic material’s integrity and the readiness to undergo nuclear and cellular division
(Bertoli, et al., 2013). In the M stage, the nucleus is divided into two identical daughter
nuclei while one of them, which carries one of the two copies of the original genetic
material, is pulled towards the growing bud. The bud eventually separates from the mother

cell to form a new budding yeast cell.

Many other key processes take place in yeast cells as well as in any other eukaryotic
cell. One notable process is protein production. Proteins are produced by ribosomes (protein
factories). As detailed in Appendix I, the information required for the synthesis of any
protein are stored in the genes in the DNA molecule. A patch of the DNA which includes
the information needed to produce a single protein type is copied into a messenger RNA
(mRNA) molecule which is translated by the ribosomes into a protein. The ribosomes

themselves are composed of many proteins and RNA molecules and are synthesised within
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the nucleolus, which is a sub-compartment within the nucleus, by a process known as
ribosome biogenesis. We (Abu-Jamous, et al., 2014a), as demonstrated in Section 5.3, as
well as many others (Wade, et al., 2006), have presented evidences showing that ribosome
biogenesis significantly increases under growth conditions (e.g. nutrient abundance) while
decreases under stress conditions (e.g. lack of nutrients). The cells rather undergo stress-

response processes, such as wall maintenance, under stress conditions.

Many aspects of these processes are currently incompletely understood. Nonetheless,

this chapter represents a progression towards better understanding of them.

5.2. Analysis of yeast cell-cycle data and the CMRI1 gene

Soon after the Bi-CoPaM method had been proposed and validated, we applied it to two
filtered yeast cell-cycle datasets leading to biological results elucidating more information
regarding the function and regulation of the poorly understood yeast gene CMR1. We
published these findings in the Journal of the Royal Society Interface (Abu-Jamous, et al.,

2013b). We present this study’s experiments, results, and conclusions in this section.

5.2.1. Datasets

Two microarray datasets were generated for the yeast S. cerevisiae genome using the alpha-
30 and alpha-38 synchronisation techniques respectively (Pramila, et al., 2006). Each
experiment captures the profiles for the genes over two hours covering two complete cell-
cycles. The number of time samples in each is 25 with five-minute intervals between any

two consecutive samples.

Pramila and colleagues considered these two datasets in addition to three older ones
synchronised by alpha (Spellman, et al., 1998), cdc-15 (Spellman, et al., 1998) and cdc-28
(Cho, et al., 1998) to order the genes according to their periodicity in the cell-cycle (Pramila,
et al., 2006). The average time of peak expression for the 1,000 most periodic genes was
calculated in that same study as a percentage of time progress in the cell-cycle, that is,
peaking at 0% means peaking at the M/G1 transition point, peaking at 50% means peaking
in the middle of the cell-cycle, and peaking at 99% means peaking at the very end of the M
phase.

The subset of genes which we consider in this study includes the most periodic 500
genes of these 1,000 genes. We consider their profiles from both the alpha-30 and alpha-38
microarray datasets provided in (Pramila, et al., 2006). Supplementary File S1 in our study
(Abu-Jamous, et al., 2013b) lists the names of these 500 genes, their peaking times as

percentages of the cell-cycle which has been provided by Pramila and colleagues (Pramila,
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et al., 2006), and their normalised log-ratio expression profiles from both datasets alpha-30

and alpha-38.

5.2.2. Experimental design
The profiles of the selected 500 genes from both alpha-30 and alpha-38 microarray datasets

are clustered into four clusters by using the clustering methods: k-means (Pena, et al., 1999),
self-organising maps (SOMs) (Kohonen, 1997; Xiao, et al., 2003), hierarchical clustering
(HC) (Eisen, et al., 1998), and self-organising oscillator networks (SOON) (Rhouma &
Frigui, 2001; Salem, et al., 2008). Both bubble and Gaussian neighbourhood types are used
in SOMs; complete, average, and Ward’s linkage techniques are used in HC; and varying

values of three internal parameters are used in SOON.

The results of these individual clustering experiments are scrutinised to generate one
fuzzy consensus partition matrix (CoPaM) which was then binarised by the DTB technique
while varying the parameter ¢ from zero to unity in order to get varying levels of tightness
for the clusters. To justify our choice of clustering the 500 genes into four clusters, we have

provided more detailed analysis in Supplementary File S2 in (Abu-Jamous, et al., 2013b).
5.2.3. Results

5.2.3.1. Bi-CoPaM results

The numbers of genes (out of a possible 500) included in each of the four clusters C1, C2,
C3 and C4 after applying the DTB technique with ¢ values from 0.0 to 1.0 are listed in
Table 5.1. The complete lists of genes included in each of the clusters at all of the considered
tightness levels are included in Supplementary File S1 in (Abu-Jamous, et al., 2013b). Note
that DTB with 6 = 0.0 is equivalent to MVB, and DTB with ¢ = 1.0 is equivalent to IB. It
can be seen that with MVB, the total number of genes assigned to the four clusters is 500
which indicates that complementary clusters are generated where each gene is exclusively
assigned to one and only one cluster. While increasing the value of ¢ to tighten the clusters,

fewer genes are included in the clusters and more genes are left unassigned.

It can be seen that the cluster C1 is the tightest cluster as it is the only cluster to survive
without being empty until IB. The rest of the clusters ordered by decreasing levels of
tightness are C2, C3 and C4. Note that by moving from the absolute tightest case of C1 at
IB with 19 genes to the case of DTB with 0 = 0.95, which is indeed an extremely tight case,
the C1 cluster inflates significantly to include 172 genes while the other three clusters
contain few genes if not empty. Less tight clusters derived with DTB and § = 0.95 do not

show big differences in the numbers of genes included in C1.
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Table 5.1. Number of yeast genes the clusters C1 to C4 at
different J values

The shaded cases are the ones that are selected to be the clusters’ cores.

DTB 0 value C1 C2 C3 C4
0 (MVB) 216 112 90 82
0.1 207 91 85 40
0.2 201 82 83 15
0.3 199 78 81 5
0.4 194 78 76 1
0.5 193 70 60 0
0.6 190 66 21 0
0.7 185 62 2 0
0.8 183 48 1 0
0.9 172 12 0 0
0.95 172 11 0 0
0.98 148 1 0 0
0.99 117 0 0 0
1.0 (IB) 19 0 0 0

To focus on a small subset of genes of potential importance, the smallest reasonable
number of genes in each of the four clusters was chosen as the core of that cluster. The
chosen cores’ cases are shaded with grey in Table 5.1. The cores’ average peak times as
percentages of the cell-cycle as well as the expected corresponding cell-cycle phases from
(Pramila, et al., 2006) are listed in Table 5.2. Based on the previous discussion, in the case
of C1, although the analysis concentrates on the core at IB, the genes down to DTB with ¢
= 0.95 are also considered significant and will be referred to as appropriate, see
Supplementary File S1 in our study (Abu-Jamous, et al., 2013b) for more details about the
profiles of the genes included in C1 at these less tight levels. Revealing the difference in the
precision of assignment for these four clusters as well as the ability of choosing different
clusters’ cores by tuning the level of strictness for different clusters are amongst the useful

features provided by the Bi-CoPaM method.

Table 5.2. Average peak time as a percentage of the cell-cycle and the expected
cell-cycle phase for the cores of the four yeast clusters

Cluster C1 C2 C3 C4
Average peak time for core genes | 20% 66% 97% 46%
Standard Deviation 3.2% 3.3% 4.9% 6.7%
Min 14% 62% 88%* 40%
Max 27% 75% 6%* 67%
Expected cell-cycle phase Late G1 /S G2 M / Early G1 S/G2

* These percentage values are cyclic, that is, after 99%, the cycle goes back to 0%. So the earliest peak in C3
is at 88% of the cycle and the latest is at 6% of the next cycle.

The full lists of the genes in these four cores are listed in Table 5.3 and their expression
profiles in both alpha-30 and alpha-38 datasets are plotted in Figure 5.1 (a) and (b)

respectively.
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Figure 5.1. The expression profiles of the yeast genes in the four core clusters.

Expression profiles from the (a) alpha-30 dataset and the (b) alpha-38 dataset.

From these two sub-Figures, many observations can be made. First, the alpha-30 and

the alpha-38 datasets have very close profiles except for some outlier values; this allows us

to use either set for most of the remaining discussions. Second, the profiles of expression

over time for the genes that are within each cluster’s core are very similar which clearly

shows that the Bi-CoPaM approach in increasing strictness to obtain tighter clusters is

working as expected. Third, although all of these clusters’ cores are tight, the cluster C1 is

clearly the tightest, as shown by the ¢ value at which this core was obtained compared with

the others, see Table 5.1. Finally, each set of genes in the four clusters’ cores shows periodic

peaking at a different stage of the cell cycle, which demonstrates clustering has derived sets

of genes with distinct properties (see Table 5.2).

Table 5.3. The four core yeast clusters’ genes

C1 core C2 core C3 core C4 core

at IB(DTB withd = 1.0) atDTBwithd =09 atDTB withd = 0.6 at DTB with § = 0.2
(19 genes) (12 genes) (21 genes) (15 genes)

AXL2 SLK19 BUD20 ASHI PIGI ABF1 YGL101W
CDC45 SMCl1 CDC5 CHS1 PIL1 CSN9 YJL118W
CHRI1 SMC3 CLBI1 FARI1 PRY1 FLR1 YLR455W
CMRI SPC42 CLB2 HSP150  PSTI GDAI1

EXOl1 URH1 FET3 HXT?2 RODI1 GDTI1

MSH2 YDL163W FRK1 LSP1 SEDI MBP1

POL2 YJR030C PMP3 MCM2 TEC1 MSBI1

POL3 SCW4 MCM3 YLR194C  NDDI

RAD27 SHE2 MCM4 YNL134C  SSAl

RFA2 SML1 MCMS5 STU2

RNR1 SRCI MCM7 TOF2

RTT107 SWI5 NIS1 VID22
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5.2.3.2. GO term analysis

We have performed GO term analysis (see Section 3.8) for the genes included in the C1
cluster by using the GO Slim tool (SGD, 2014). We have used this tool to search for
biological processes, functions, and components GO terms that are enriched in C1 at DTB
with all of the values of 0 reported in Table 5.1. In summary, the focal cluster in this analysis,
Cl, is enriched with DNA-binding genes that localise in the nucleus and participate in
various cell-cycle and DNA metabolism processes such as DNA repair, recombination, and

replication.

5.2.4. Analysis and discussion

In (Gilmore, et al., 2012), a quantitative proteomics approach was adopted to extend the
protein network of core histones (H2A, H2B, H3 and H4) in the budding yeast S. cerevisiae
and identified CMR1 as a member in this network. Some 556 proteins were found binding
to one or more histones while only 25 proteins of these were found binding to the four core
histone. The 25 proteins include the four histones (H2A, H2B, H3 and H4), two units of the
replication factor A (RPA) complex (RFA2 and RFA3), two units of the Ku complex
(YKU70 and YKU 80), many units of the RNA polymerase complex (RET1, RPO31,
RPC17, RPC37, RPC40 and RPC82), many single-unit proteins (RIM1, YTA7, PSHI1,
CSE4, ABF2, CKA2, TIF3, DEM1, SUB2 and SMC3), and the previously uncharacterised
protein YDL156W / CMRI1. Then, associations with the CMR1 protein were investigated
and it was found that many proteins showed stable association with it including the six
proteins RIM1, RFA2, RFA3, YTA7, YKU70 and YKUS80 which are within the 25 proteins

found binding to all of the four core histones.

In our Bi-CoPaM gene expression analysis, CMR1 has been found in a small subset of
19 tightly co-expressed genes; Figure 5.2 illustrates the relation between the core histones-
associating genes subset and our co-expressed genes subset. It can be seen that three of the
19 co-expressed genes, CMR1, RFA2 and SMC3, in Bi-CoPaM’s results are found to be
associated with all four core histones. Moreover, RFA2 not only associates with the four
histones, it associates with CMRI itself and is co-expressed with it. Thus Bi-CoPaM

provides a strong evidence for the relation between CMR1 and RFA2 in cellular processes.

It is worth mentioning that in our results the histones themselves have been found in
the cluster C4 at DTB with § = 0.2 and not in the cluster C1 which includes CMR1 (see
Supplementary File S2 in (Abu-Jamous, et al., 2013b)). This is because the transcription of
histones occurs in the S phase in order to synthesise the chromosomes of the forthcoming

children cells (Pramila, et al., 2006; Fernandez, et al., 2012); recall from Table 5.2 that the
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C4 cluster peaks at the S/G2 phase. Despite that, histone proteins exist within the nucleus,
packaging the DNA molecules, at all of the stages of the cell-cycle. Thus, although the
CMRI gene has not been found co-expressed with the histones themselves, it has been

found co-expressed with many genes whose products interact with the histones.

A} Core histones-associating genes

YKU70 YKUSO
YTA7 RIMI1 RFA3

CMR1 RFA2 SMC3

(B) Tight cluster of co-expressed genes

Figure 5.2. Comparison between our 19 tightly co-expressed genes and core histones-
associating genes

Venn diagram illustrating relations between the subsets of genes found by using quantitative
proteomics to extend the core histone network and the subset of genes found our method of tight
gene clustering based on gene expression profiles. The subset (A) represents the 25 genes found to
be associated with the four core histones (Gilmore, et al., 2012), the subset (B) represents the seven
genes out of those 25 that found associating with CMR1 as well (Gilmore, et al., 2012), and the
subset (C) represents the 19 co-expressed genes found in the tightest cluster of genes (C1) by using
the Bi-CoPaM method in our study.

Having said that, it can be seen that our computational approach complements the
quantitative proteomics approach described by Gilmore and colleagues (Gilmore, et al.,
2012) extending the core histone network. The common factor for the genes in the subset
provided in (Gilmore, et al., 2012) is the association with the four histones while the
common factor for the genes in our results is highly synchronous co-expressions through

the cell cycle.

The notable observation in both subsets is the existence of strongly functionally related
genes that are often components of the same protein complex or the same pathway. The
three components of the replication protein A (RPA); RFA1, RFA2 and RFA3 seem to be
the closest to the newly characterised gene CMR1 in that RFA2 appeared in both sets of

results associated with the four histones, associated with CMR1 and co-expressed with it,
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and that RFA1 and RFA3 appeared in the same subset of CMRI1 in either results. Gilmore
and colleagues explored the relationship between CMR1 and the RNA polymerase complex
I (Gilmore, et al., 2012). Although they noticed the possibility that CMR1 would
participate in the DNA repair at the G1/S checkpoint, they did not investigate this further.

Our results suggest such a relationship may be functionally significant.

We propose that CMR1 may have a functional relationship not only with DNA
polymerases but also with the cohesion complex. Most of the components of the DNA
polymerases @, § and € are found to be tightly co-expressed with CMR1 and suggests a
possible role of CMR1 in DNA replication and repair. SMC3, a core component of the
cohesion complex, is found in Bi-CoPaM results and by Gilmore and colleagues (Gilmore,
et al., 2012) was associated with CMR1, while the other components of the complex were
associated with CMR1 in our analysis. The strong association of CMR1 with the known
targets of the MBF complex even in the extreme tightest cases clearly suggests the
hypothesis that CMR1 expression is controlled by the MBF complex, the hypothesis which

can be tested in future experimental work.

5.2.5. Conclusions

Our results have highlighted important subsets of genes based on the computational analysis
of high-throughput data from different experiments instead of traditional biological or
biochemical experiments. They not only add stronger evidence for the main findings of the
study of Gilmore and colleagues (Gilmore, et al., 2012), but they also strongly highlight
areas of less previous attention about the function of the CMR1 gene. CMR1 has been
postulated to have functions in DNA processing. We have shown its expression through the
cell cycle would support a relation between CMRI1 with the RPA complex, DNA

polymerases and the cohesion complex in addition to its role at the G1/S transition.

Finally, we also provide novel clusters with co-expressed genes under tuneable
tightness levels. The evidence for the validity of these clusters’ tight cores comes from the
fact that they include many genes that are strongly related by being in the same complex or
pathway. These novel clusters can serve as an important resource for further focussed gene

discovery studies.
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5.3. APha-RiB: a novel cluster of poorly understood
genes discovered in the analysis of forty datasets

Following its successful application to filtered datasets, we have applied the Bi-CoPaM to
unfiltered genome-wide datasets in a novel way demonstrating the ability of the Bi-CoPaM
to embed filtering within its course of application. This study, in which the Bi-CoPaM is
applied to forty recent budding yeast genome-wide datasets, has led to unveiling a novel
cluster of genes which is consistently oppositely co-expressed with a well-known and
previously defined cluster of genes. The novel conclusions of this comprehensive study

have been published in the journal BMC Bioinformatics (Abu-Jamous, et al., 2014a).

5.3.1. Datasets and experimental design

In this set of analysis, we consider forty recent Saccharomyces cerevisiae microarray
datasets which were generated by using the Affymetrix yeast genome 2.0 array in the last
six years, and include at least four different conditions or time-points. Although choosing
datasets generated by using the same array is not a condition for Bi-CoPaM analysis, it
allows for more genes to be included in the analysis as some genes might not be represented
by probes in all types of arrays, and therefore have to be discarded from the analysis in such
a case. Each of these datasets measures the genetic expression of the entire yeast genome
(5,667 genes) over multiple time-points or conditions. The details of the datasets are listed
in Table 5.4. The datasets span a wide range of biological conditions such as cell-cycle,
stress response, mutated strains growth, treatment with various types of agents, and others.

The 5,667 genes are listed in Supplementary Table 1 in (Abu-Jamous, et al., 2014a).

Table 5.4. Budding yeast forty microarray datasets

ID GEO Year N Description Ref.
accession
D01 GSE8799 2008 15 Two mitotic cell-cycles (w/t). (Orlando, et al., 2008)
D02 GSE8799 2008 15 Two mitotic cell-cycles (mutated cyclins). (Orlando, et al., 2008)
D03 E-MTAB-643* 2011 15 Response to an impulse of glucose. (Dikicioglu, et al., 2011)
D04 E-MTAB-643* 2011 15 Response to an impulse of ammonium. (Dikicioglu, et al., 2011)
D05 GSES4951 2014 6  Response of da/804 mutant yeast to oxidative stress -
induced by linoleic acid hydroperoxide.
D06 GSE25002 2014 9  Osmotic stress response and treatment of -
transformants expressing the C. albicans Nik1 gene.
D07 GSE36298 2013 6  Mutations of OPI1, INO2, and INO4 under carbon-  (Chumnanpuen, et al.,
limited growth conditions. 2013)
D08 GSE50728 2013 8  120-hour time-course during fermentation. -
D09 GSE36599 2013 5  Stress adaptation and recovery. (Xue-Franzén, et al., 2013)
D10 GSE47712 2013 6 Combinations of the yeast mediator complex’s tail ~ (Larsson, et al., 2013)
subunits mutations.
D11 GSE21870 2013 4  Combinations of mutations in DNUP60 and DADA2. -
D12 GSE38848 2013 6  Various strains under aerobic or anaerobic growth. (Liu, et al., 2013)
D13 GSE36954 2012 6  Response to mycotoxic type B trichothecenes. (Suzuki & Iwahashi, 2012)
D14 GSE33276 2012 6  Response to heat stress for three different strains. -
D15 GSE40399 2012 7  Response to various perturbations (heat, myriocin -

treatment, and lipid supplement).
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D16 GSE31176 2012 6  W/t, rlmlA, and swi3A cells with or without Congo  (Sanz, et al., 2012)
Red exposure.

D17 GSE26923 2012 5  Varying levels of GCN5 F221A mutant expression.  (Lanza, et al., 2012)

D18 GSE30054 2012 31 CEN.PK122 oscillating for two hours. -

D19 GSE30051 2012 32 CEN.PL113-7D oscillating for two hours. (Chin, et al., 2012)

D20 GSE30052 2012 49 CEN.PL113-7D oscillating for four hours. (Chin, et al., 2012)

D21 GSE32974 2012 15 About 5 hours of cell-cycle (w/t). (Kovacs, et al., 2012)

D22 GSE32974 2012 15 About 4 hours of cell-cycle (mutant lacking Cdk1 (Kovacs, et al., 2012)
activity).

D23 GSE24888 2011 5  Untreated yeast versus yeasts treated with E. arvense -
herbs from the USE, China, Europe, or India.

D24 GSE19302 2011 6  Response to degron induction for w/t and nab2-td (Gonzalez-Aguilera, et al.,
mutant. 2011)

D25 GSE33427 2011 5  Untreated w/t, and wt/t, yaplA, yap8A, and double  (Ferreira, et al., 2012)
mutant treated with AsV.

D26 GSE17716 2011 7  Effect of overexpression and deletion of MSS11 and (Bester, et al., 2012)
FLOS.

D27 GSE31366 2011 4  Presence and absence of mutli-inhibitors for parental -
and tolerant strains.

D28 GSE26171 2011 4  Response to patulin and/or ascorbic acid. (Suzuki & Iwahashi, 2011)

D29 GSE22270 2011 4  PY1 and Met30 strains in room temperature or 35 C. -

D30 GSE29273 2011 4  Time-series during yeast second fermentation. -

D31 GSE29353 2011 5  Different haploid strains growing in low glucose (Parreiras, et al., 2011)
medium.

D32 GSE21571 2011 8  Different combinations of mutations in HTZ1, (Morillo-Huesca, et al.,
SWRI1, SWC2, and SWCS. 2010)

D33 GSE17364 2010 4  Untreated w/t and Slt2-deficient yeasts, or treated (Matia-Gonzalez &
with sodium arsenate for two hours. Rodriguez-Gabriel, 2011)

D34 GSE15352 2010 8  24-hour time-course of yeast grown under a low (Strassburg, et al., 2010)
temperature (10 C).

D35 GSE15352 2010 8  24-hour time-course of yeast grown under a normal  (Strassburg, et al., 2010)
temperature (28 C).

D36 GSE15352 2010 8  24-hour time-course of yeast grown under a high (Strassburg, et al., 2010)
temperature (37 C).

D37 GSE16799 2009 21 UC-V irradiation of w/t, mig3A, SNFI1A, (Wade, et al., 2009)
RAD23A, RAD4A, and snfl Arad23A.

D38 GSE16346 2009 4 BY474 cells grown to mid-log under presence -
versus absence of L-carnitine and/or H202.

D39 GSE14227 2009 10 Two hours of wild-type yeast growth. (Ge, et al., 2010)

D40 GSE14227 2009 9 Two hours of sch9A mutant yeast growth. (Ge, et al., 2010)

The first column shows the unique identifier which is used hereinafter to refer to each of these datasets. The second to
the sixth columns respectively show the Gene Expression Omnibus (GEO) accession number, the year in which the
dataset was published, number of time-points or conditions after replicate summarisation, dataset description, and
reference.

* D03 and D04 have accession numbers in the European Bioinformatics Institute (EBI) repository rather than GEO
accession numbers.

Those 5,667 genes were clustered into sixteen clusters by k-means with Kauffman’s
initialisation (KA) (Pena, et al., 1999), self-organising maps (SOMs) with bubble
neighbourhood and four-by-four grid (Xiao, et al., 2003), and hierarchical clustering (HC)
with Ward’s linkage (Eisen, et al., 1998). This was applied to their profiles from all of the
forty datasets. The generated partitions were combined into a single consensus partition
matrix (CoPaM) as explained in Section 3.2.3 where a min-min approach was adopted for
relabelling at the CoPaM generation step. The final CoPaM was binarised by the DTB
technique with ¢ values ranging from zero to unity and then analysed by the MSE metric
described in Section 3.4. Prior to clustering, the datasets were normalized by quantile

normalisation (Bolstad, et al., 2003). Then each gene’s expression profile was shifted and
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scaled to be zero-mean and unity standard deviation. Also, when many replicates exist for

the same time-point or condition, they are summarised by considering their median value.

5.3.2. Results and analysis

The numbers of genes in the sixteen clusters at all of the varying ¢ values are shown in
Table 5.5. Clusters were ordered based on their tightness such that those clusters that
preserve at least seven genes up to higher values of ¢ are considered tighter. When many
clusters preserve at least seven genes up to the same value of &, they are ordered based on
the number of genes they include at that level. The number ‘seven’ is just used for ordering
and is not a critical parameter; if it had been set to ‘ten’ instead for example, no significant
change in cluster ordering would have be observed. The complete lists of gene names
included in each of these clusters at all of the J values are provided in Supplementary Table

1 in (Abu-Jamous, et al., 2014a).

Table 5.5. Numbers of genes included in each of the 16 clusters at all of the considered J values

Tightness 0 Cluster

Cl C2 C3 C4 C5 C6 C1 C8 (C9 C10 C11 Ci12 Ci13 Ci4 Ci15 Cil6

Complementary 0.0 1085 1457 610 655 592 268 303 175 175 154 143 92 51 49 29 10
0.1 516 394 &4 105 79 12
02 344 47 17 14

=)
w
—_
NS
NS
(=]
(=]
(=]
(=]
(=]

2 0 0 0 0 0 0 0 0 0 0 0

03 257 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

04 164 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0

05 79 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.6 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

07 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

09 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Tightest 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5.3.2.1. MSE analysis

The MSE values for each of the tightest six clusters were calculated at all of the DTB o
values as explained in Section 3.4. Each of these values was calculated based on the forty
datasets and then averaged and plotted in Figure 5.3 (A). Figure 5.3 (B) shows the numbers
of genes included in each of these six clusters at all of the J values. Missing points in both

plots represent empty clusters.

We have considered the MSE metric in tandem with the number of genes included in
the clusters to choose a few clusters for further analysis and discard the other ones. The
objective here is to minimise the MSE values while maximising the number of genes
included in the clusters. This approach overcomes the dependency of MSE values on the
numbers of genes included in the clusters. As can be seen in Figure 5.3 (A) and (B), the
cluster C1 shows significantly lower (better) values of MSE while including significantly
higher numbers of genes. The cluster C2 comes next to C1 in terms of having lower MSE

values with more genes.
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On the other hand, while the clusters C3 and C4 have comparative MSE values at 0 =
0.2 with C2 (Figure 5.3 (A)), they have significantly lower numbers of genes (17 and 14
genes respectively for C3 and C4 in comparison with 47 in C2; see Table 5.5). Furthermore,
the clusters C5 and C6 are significantly worse (higher MSE values with fewer genes) than
the first four clusters (Figure 5.3). While the average MSE values for the seventh to the
sixteenth clusters have not been included in this Figure, the numbers of genes included in
these clusters at relatively lower levels of tightness, as shown in Table 5.5, are sufficient to
filter them out. Therefore, we have considered the clusters C1 and C2 for further analysis

in this study.

(A) —%— C1

Average MSE

(B)

Number of genes in cluster

0 0.1 0.2 0.3 0.4 0.5 0.6
DTB & value

Figure 5.3. MSE and cluster size analysis of yeast clusters.

(A) Average MSE values and (B) number of genes included in the tightest six clusters over all of
the adopted J values.

5.3.2.2. Average expression profiles

The average expression profiles for the clusters C1 and C2 at DTB with 6 = 0.3 and 0.2
respectively, in each of the forty datasets are plotted in Figure 5.4. For clarity, error bars
have been suppressed as the information, which they provide can be obtained from the MSE
analysis in Figure 5.3 and the plots in Supplementary Figure 1 of the study (Abu-Jamous,
et al., 2014a), which shows the expression profiles of all of the genes in these two clusters

at various o values.



74

Detailed scrutiny of Figure 5.4 leads to the general observations that the first cluster,
C1, is up-regulated when cells are released from stress conditions such as nutrient limitation;
they are down-regulated when stress conditions are re-imposed. Most interestingly, the
cluster C2 shows opposite average expression profiles in almost all of the forty datasets to
the average profiles of cluster C1 with no phase shift, that is, with neither profile leading or
lagging the other; its genes are up-regulated under stress conditions and down-regulated
under growth conditions. It is interesting, but had not been anticipated at the time of
experimental design before obtaining the results, that the two most consistently co-
expressed clusters of genes in budding yeast show such clear opposite expression profiles
across large number of datasets.

C1-5=03 C2-5=0.2
(257 genes) (47 genes)
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Figure 5.4. Average expression profiles for the clusters C1 and C2

This is at DTB with the respective ¢ values of 0.3 and 0.2, based on all of the forty datasets. Each
column of plots represents a cluster and each row represents a dataset.
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To assess that observed opposite co-expression quantitatively, we have calculated the
Pearson’s correlation values between the average expression profiles of C1 at 6 = 0.3 and
C2 at 0 = 0.3 from each of the forty datasets. A very strong negative correlation has been
found, that is lower than the value of —0.75 at 37 out of 40 datasets and never exceeds the
value of —0.6 except at a single outlier dataset, D35. This strong negative correlation is
consistent even when the ¢ values are varied. For instance, when considering C1 at the 0
values of 0.2 and 0.4, the calculated correlation values are lower than -0.75 at 38 and 36 out
of 40 datasets, respectively. Even when considering C2 at 6 = 0.1, the case at which its size
is many folds larger than at 6 = 0.2 (394 genes versus 84), 35 out of 40 datasets show strong
negative correlation with values lower than -0.75, and only couple of datasets exceed the
value of -0.7. The single outlier dataset D35 has consistently shown notably weaker negative
correlation at all of the aforementioned ¢ values. These experiments demonstrate the

robustness of our observation that C1 and C2 are consistently negatively correlated.

5.3.2.3. Upstream sequence analysis

Because co-expression over large number of different microarray datasets strongly indicates
co-regulation, we have analysed the upstream DNA sequences for the genes in the clusters
C1 and C2 to explore potential common transcription factors’ binding sites. We have used
the MEME tool (Bailey & Elkan, 1994; MEME, 2014) to search for the most enriched DNA
sequence motifs within the 300 upstream base-pairs of the 164 genes included in C1 at DTB
with & = 0.4. The three discovered motifs, which we label as C1-1, C1-2, and C1-3
respectively, were then fed to the TOMTOM tool (Gupta, et al., 2007; TOMTOM, 2014) to
mine for previously known motifs with high similarity. The first motif, with an E-value of
3.3x10733, was found to be the PAC motif, which is the binding site of the two paralogous
transcription factors Dot6p and Tod6p with p-values of 2.1x107 and 1.4x10, respectively,
and it significantly matches the binding site of the transcription factor Sfllp with a p-value
of 1.3x10™ (Figure 5.5 (A)). The E-value estimates the expected number of motifs with the
given probability or higher, and with the same width and site count, that would be found in
a set of random sequences of a similar size. The second motif, with an E-value of 2.2x10"
115 was found to be the RRPE motif, which is the binding site of the transcription factor
Stb3p with a p-value of 8.9x1077 (Figure 5.5 (B)); it also significantly matches the binding
sites of the transcription factors SumIp and Sfplp with p-values of 2.7x10 and 3.2x107,
respectively (Figure 5.5 (B)). The third motif, with an E-value of 3.2x10%*, was found to
match the binding sites of the transcription factors Azf1 and Sfl1p with p-values of 1.3x10
4 and 2.0x10*, respectively (Figure 5.5 (C)). The three motifs were respectively found in
the upstream sequences of 148, 119, and 56 genes out of 164 possible ones. Figure 5.5 (D)
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is a Venn diagram, which shows the numbers of genes the upstream DNA sequences of

which contain each of these three motifs.
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Figure 5.5. Upstream sequence motifs for genes in the cluster C1

(A), (B), and (C) show the motifs C1-1, C1-2, and C1-3 respectively and their highly matched
known transcription factors’ binding sites. (D) is a Venn diagram that shows the numbers of genes’
upstream sequences in C1 that contain each of these three motifs.

Similarly, the MEME tool was used over the 47 genes included in the cluster C2 at
DTB with 6= 0.2. The logos of the two discovered motifs, which we label as C2-1 and C2-

2, are shown in Figure 5.6 (A) and (B), respectively. The E-values for the two motifs are

1.6x107% and 5.3x10 respectively, and they were found in the upstream sequences of 31
genes and 21 genes, out of 47 genes in C2 at DTB with 6= 0.2 (Figure 5.6 (C)). A third
motif was found by the MEME tool in this cluster but with the high E-value of 2.8x10*! and

in the upstream sequences of 13 genes only; therefore it has been discarded from further

analysis. The motifs C2-1 and C2-2 were then fed to the TOMTOM tool (Gupta, et al., 2007;

TOMTOM, 2014) to mine for previously known motifs that have high similarity to them.
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The motif C2-1 was found to match the binding site of the transcription factor Azflp (p-
value 5.4x107°), while C2-2 was found to match the STRE element which is the binding site
of the transcription factor Msn4p (p-value 5.4x10%) and its paralogue Msn2p (p-value
6.2x10™). The logos of the binding sites of these transcription factors aligned with the

discovered motifs are shown in Figure 5.6 (A) and (B), respectively.

A) (B)
Motif C2-1 Motif C2-2
2 2
(2] (2]
21 24
Qo Q
CrNeSreorbooranTRer 223 YRIRERRR O raevnonEa0
STRE motif
Azflp binding site Msn2p / Msndp binding site
2 2
21 21
5 3
ZAnACCAAAAA ARHAA A
0 FTAOTBONOOOrANTDON® 0 ameno~

©
C2 cluster at DTB with 6 = 0.2

Figure 5.6. Upstream sequence motifs for genes in the cluster C2

(A) and (B) show the motifs C2-1 and C2-2 respectively and their highly matched known
transcription factors’ binding sites. (C) is a Venn diagram that shows the numbers of genes’
upstream sequences in C2 that contain each of these two motifs.

5.3.2.4. GO term analysis

To link our observations over the clusters’ expression profiles with biological terms, we
have performed Gene Ontology (GO) analysis (Peng, et al., 2013) over the clusters C1 and
C2 at different tightness levels by using the GO Term Finder tool (SGD, 2014), and the GO
Slim Mapper tool (SGD, 2014). The most enriched GO process terms in these clusters, as
well as the numbers of genes annotated with the GO term “biological process unknown”,
are listed in Table 5.6. Supplementary Tables 2 and 3 in (Abu-Jamous, et al., 2014a) include
the complete GO term results, for the clusters C1 and C2 at all of the values of & at which

they are not empty.
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The cluster C1 is extraordinarily highly enriched with genes that participate in ribosome

biogenesis and rRNA processing (RRB), and it includes a small number of genes of

unknown biological process.

Table 5.6. Most enriched GO terms in the clusters C1 and C2 at various levels of tightness

GO process Back. 6=0.1 6=0.2 6=0.3 6=04
frequency [Freq. P-val. [Freq. P-val. |Freq. P-val. |Freq. P-val
C1 Ribosome biogenesis 411/7167 [210/516 E-140 |183/344 E-146 [153/257 E-129 [124/164 E-123
Biological process unknown* |1189/6334 |46/516 26/344 17/257 9/164
C2 Response to oxidative stress |[101/7167 [23/394 E-6 6/47 E-3
Oxidation-reduction process |174/7167 |33/394 E-7 3/47 >E-1
Biological process unknown* [1189/6334 |114/394 12/47

* The enrichment of the “biological process unknown” term has been found by the GO Slim Mapper tool rather than the GO Term Finder
tool. Note that the p-value is only provided by the GO Term Finder tool.

In contrast, the genes included in the cluster C2 include a large group of unknowns (12
genes, 25.5%, with unknown biological process out of 47 in C2 at 6 = 0.2, and 114 out of
394, 28.9% at 6 = 0.1), and even the genes with currently known processes do not show
dominant enrichment for any single process. Relatively, the most enriched known biological
processes within the 47 genes included in this cluster at 0 = 0.2 are response to oxidative
stress (six genes, 12.8%) and oxidation-reduction (three genes, 6.4%); no genes are shared
between these two processes. Other processes with which some genes in this cluster have
been associated are lipid metabolic process (four genes, 8.5%), carbohydrate metabolic
process (four genes, two of which has also been associated with oxidation-reduction, and
one with response to oxidative stress), cellular amino acid metabolic process (four genes,
one of which has also been associated with response to oxidative stress), protein
phosphorylation (three genes, one of which has also been associated with oxidation-
reduction), mitochondrial organisation (two genes), cofactor metabolic process (two genes),
regulation of cell cycle (two genes, one of which has also been associated with oxidation-
reduction), endocytosis (two genes, one of which has also been associated with protein
phosphorylation), and response to heat (two genes, one of which has also been associated

with protein phosphorylation).

We have also searched for the enrichment of the cellular components in which the genes
included in C2 at DTB with 0 = 0.2 localise. The complete lists of results are provided in
Supplementary Table 4 of the study (Abu-Jamous, et al., 2014a). Figure 5.7 shows the
distribution of the genes included in C2 at that tightness level over main cellular components
while marked based on their biological processes. It can be seen that there is a large
distribution of processes as well as components with no single process or component

dominating.
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In conclusion, we name the subset of genes in C2 as “anti-phase with ribosome
biogenesis regulon”, or the APha-RiB regulon. This is because its main characterising

feature is its consistently opposite expression with the RRB regulon (C1).
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Figure 5.7. Distribution of C2 genes over cellular components and biological processes

The 47 genes included in C2 at DTB with J = 0.2 are distributed based on the biological processes
with which they have been associated over the major cellular components. Note that any single
gene might be found in multiple cellular components, and thus the total number of gene markers in
the Figure does not directly correspond to the total number of genes considered.

5.3.2.5. Gene network analysis

GeneMANIA is a tool which mines a database of various types of interactions identified by
high-throughput studies in the literature to draw networks of interactions for a subset of
query genes (GeneMANIA, 2014). By using this tool, we have obtained networks of genetic
interactions (Figure 5.8) and protein-protein physical interactions (Figure 5.9) between the

47 genes included in the APha-RiB regulon (cluster C2 at 0 = 0.2).

We have also used GeneMANIA to find the network of genetic co-expression between
the 47 APha-RiB genes in order to validate their consistent co-expression. The produced
network contains 962 co-expression links out of 1,081 possible ones (89%) in this
undirected graph of 47 nodes. To test the statistical significance of these figures, we
randomly generated ten different groups of genes, each of which has 47 genes, and fed them

to the GeneMANIA tool. The average number of co-expression links was 380 links with a
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standard deviation of 32. Therefore, by assuming a normal distribution, the p-value of
having 962 links between 47 nodes is 6.7x10773, which proves the validity of including those

47 genes in a single cluster.
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Figure 5.8. Genetic interaction network between the genes in the APha-RiB regulon

The APha-RiB regulon is the cluster C2 at DTB with J = 0.2. A sub-network of eight genes is
highlighted and the types of genetic interactions between its genes are labelled. This is the same
sub-network which is highlighted in Figure 5.9. A genetic interaction exists between two genes if
the impact of perturbing both genes is different from the additive impact of perturbing each gene
individually. A positive genetic interaction is that in which perturbing both genes results in a higher
fitness, that is a weaker defect, than the additive defect of perturbing each one individually. On the
other hand, a negative genetic interaction exists when the defect caused by perturbing both genes
is stronger than the additive defect caused by perturbing each gene individually. A similar profile
(S) genetic interaction indicates high correlation between both genes’ genetic interaction profiles
with the rest of the genes.

A sub-network of eight genes is highlighted in Figure 5.8 and Figure 5.9 because they
have high connectivity in both genetic and protein-protein physical interactions networks.
The types of the genetic interactions between those eight genes are also labelled in
Figure 5.8. Based on the high-throughput study by Costanzo and colleagues (Costanzo, et
al., 2010), two genes have positive genetic interaction between them if the effect of
perturbing both genes is higher than the additive effect of perturbing each gene individually.
Similarly, they have negative genetic interaction if the effect of perturbing both of them is
less than the additive effect of perturbing each one of them individually. If the effect of
perturbing both of them is similar to the additive effect of perturbing each of them

individually, they do not have genetic interaction. The interactions labelled with (S) in
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Figure 5.8 indicate that there is high correlation between the genetic interaction profiles of

those two genes with the other genes in the yeast genome.
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Figure 5.9. Protein-protein physical interaction network between the products of the genes
in the APha-RiB regulon

The APha-RiB regulon is the cluster C2 at DTB with ¢ = 0.2. Each node represents a gene, and a
link between any two nodes represents the existence of a physical interaction between the products
of those genes, i.e. between the proteins which are encoded by those genes. A relatively highly
connected sub-network of eight genes is highlighted for more discussion in the main text; this is
the same sub-network highlighted in Figure 5.8.

It is interesting that, within the selected sub-network, there is a perfect one-to-one
correspondence between protein-protein physical interactions and negative genetic
interactions (Figure 5.8 and Figure 5.9). When this is added to their consistent co-expression
over forty different and recent datasets, it can be hypothesised that they are related

functionally, which can be tested in future biological studies.

5.3.2.6. APha-RiB comparison with the literature

The phenomenon of opposite co-expression of RRB and stress response genes in budding
yeast was reported by various studies (Gasch, et al., 2000; Brauer, et al., 2008; Tsankov, et
al., 2010; Roy, et al., 2013). As shown in Figure 5.10, the subsets of genes identified by the
studies of Gasch (2000) (Gasch, et al., 2000), Brauer (2008) (Brauer, et al., 2008), and Roy
(2013) (Roy, et al., 2013), and their collaborators are much larger than the APha-RiB
regulon defined in our study (hundreds of genes versus 47 genes). Moreover, the largest
overlap between any of those subsets of genes and APha-RiB does not reach half of the
genes in APha-RiB, where the largest overlap, which is between APha-RiB and the subset
identified by Gasch and colleagues (Gasch, et al., 2000), includes 22 genes. Furthermore,
none of those previously reported, relatively large, subsets includes more than two of the

eight genes highlighted for their importance in Figure 5.8 and Figure 5.9, and discussed
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below. This illustrates the novelty of this focused and specific cluster which has been found

by our large scale genome-wide analysis of forty different and recent datasets.

(Brauer et al 2008)
Negatively correlated
with growth
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(Gasch et al 2000)
Up-regulated under stress
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(Roy et al 2013)

Up-regulated under
stress

545 genes

APha-RiB
C2 (6=0.2)
47 genes

Figure 5.10. Comparison between the APha-RiB cluster and related clusters from the
literature

Venn diagram showing the size of overlap between our novel APha-RiB cluster (C2 at DTB with
0 = 0.2) and the subsets of genes with expression reported to be positively correlated with stress
and negatively correlated with growth in three previous studies (Gasch, et al., 2000; Brauer, et al.,
2008; Roy, et al., 2013).

Taken together, firstly, we have observed and reconfirmed the reciprocal behaviour of
RRB and some genes participating in stress response over datasets which cover much wider
conditions including ones that are not directly related to stress changes, e.g. cell-cycle
datasets. Secondly, our APha-RiB subset of genes consistently reciprocally expressed with
RRB largely includes genes with unknown or apparently unrelated biological processes, in
addition to few genes known to participate in stress response. Thirdly, our method does not
require that the microarray samples are combined into a single dataset, in contrast to the
studies by Gasch (Gasch, et al., 2000) and Brauer (Brauer, et al., 2008) and their colleagues.
It is therefore now possible to analyse large number of datasets in the literature in a single
experiment, even if the datasets are diverse in time, location, condition, and use different
microarray platforms. Finally, although a proportion of the APha-RiB genes has been

explicitly associated with response to oxidative stress processes (six out of 47 genes), the
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processes in which the rest of the genes in APha-RiB participate are either unknown or
apparently unrelated. Additionally, the forty datasets considered in this study cover a much
wider range of stress and growth conditions than oxidative stress. Given that, most of the
genes in APha-RiB are yet to be associated with biological processes and/or their function
to be understood within the context of generic, not specific, stress response; our results

suggest these areas would be the subject for fertile future investigation.

5.3.2.7. Proposed model for transcriptional regulation of RRB and APha-RiB

The temporal expression of the cluster APha-RiB (C2) in opposite direction of regulation
to the RRB genes (C1), as well as the high enrichment of common motifs in the upstream
DNA sequences of genes in APha-RiB (Figure 5.6), strongly support the hypothesis that
genes in the subsets RRB and APha-RiB are regulated by the same biological machinery,
or possibly that the transcriptional regulators for both clusters are regulated by a common

regulator. Therefore, we propose an outline model of regulation for the genes included in

RRB and APha-RiB clusters (Figure 5.11).
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Figure 5.11. Regulation of the RRB and the APha-RiB clusters

Ticked dashed links have been detected in this study and were also previously identified in the
literature while dashed links with question marks have been only detected in this study. However,
most of the previous studies consider one or few stress conditions in contrast to “generic stress
conditions”. Notice that the cluster “C2 APha-RiB” is novel and that the links from the literature
that point at it are based on the assumption that it is a stress response module.
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The model in Figure 5.11 shows parts of the TOR and the PKA signalling pathways
which are regulated by the presence of some growth factors (e.g. glucose) or the presence
of some stress conditions, and then they regulate RRB and stress response modules of genes.
Although we use the general terms “growth conditions” and “generic stress conditions”
instead of more specific terms such as “glucose abundance”, “oxidative stress”, most of the
previously discovered links of regulation were in the context of one or few growth
conditions such as the presence of glucose (Liko, et al., 2007; Liko, et al., 2010; Dikicioglu,
et al., 2011), ammonium (Dikicioglu, et al., 2011), or other specific nutrients, or to types of
stress such as oxidative stress (Drobna, et al., 2012) or methyl methanesulfonate (MMS)
DNA-damage stress (Gasch, et al., 2001). However, using such general terms here reflects
the comprehensive nature of the data analysed by the Bi-CoPaM approach as we have been
able to consider and analyse a wide range of different growth and stress conditions in a
comprehensive and systematic way. Indeed, we can now reach a consensus conclusion, that

up- and down-regulation of the RRB and APha-RiB clusters are influenced by a wide range

of growth and stress conditions (Table 5.4).

Many of the direct regulators detected in this study by upstream sequence analysis of
the RRB and the APha-RiB subsets of genes (dashed links in Figure 5.11) were also
previously identified in the literature (ticked dashed links). Indeed, the regulatory links from
the literature to the novel APha-RiB cluster are based on the assumption that it is a stress

response subset of genes.

It could be argued that one of the two clusters actually negatively regulates the other.
This seems unlikely for several reasons. First, the synchronisation between both clusters is
very high such that there is insufficient phase shift between them for one to regulate the
other. Second, the functionality of a transcription factor is likely to be regulated post-
translationally in many ways, such as the existence of another metabolite or signal,
localisation changes, or others (Liko, et al., 2010; Tkach, et al., 2012). It is doubtful that
many regulators could be functionally active in a consistently similar profile for a very large
number of target genes. Therefore, we would suggest that these two clusters of genes are
transcriptionally regulated by common machinery rather than one of the clusters

transcriptionally regulates the other.

It could also be hypothesised that the two clusters are regulated by two separate
pathways that are oppositely activated in synchrony with growth and stress conditions.
Though, this hypothesis necessitates that those two transcriptional regulation pathways are

consistently and synchronically regulated by various types of growth and stress signals, or
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that those signals regulate a single signalling pathway which regulates both transcriptional
regulatory machineries. In this case, the common upstream regulator of the two clusters
would be a signalling pathway or the signals themselves. Although this is a possible
proposal, the fact that the signals that consistently and synchronically regulate both groups
are largely variant, we focus on the hypothesis that both groups are regulated by a common
machinery, or that their regulatory machineries regulated by a common regulator. Indeed,
the latter proposal conforms to the more general statement of Brauer and colleagues that
such consistent positive or negative correlation reflects system-level regulatory mechanisms

(Brauer, et al., 2008).

5.3.2.8. Potential regulators for APha-RiB and common regulators for RRB and APha-
RiB

Gasch and Roy and their collaborators commonly identified the Msn2p and its paralogue
Msn4p as regulators for the subsets of genes which they identified as negatively correlated
with growth (Gasch, et al., 2000; Roy, et al., 2013). Gasch and colleagues also identified
Yaplp as a regulator for their group (Gasch, et al., 2000) while Roy and colleagues
identified Rtglp and Adrlp (Roy, et al., 2013). Interestingly, upstream analysis for our
novel cluster APha-RiB (C2) has identified Azflp and the paralogous pair Msn2p and
Msn4p as potential regulators (Figure 5.6). It is worth noticing that the three studies
mutually identify Msn2p and Msn4p, which are well known for their role in stress response
regulation through binding to the STRE motif (Figure 5.11) (Martinez-Pastor, et al., 1996;
Schmitt & McEntee, 1996).

More interestingly, Azf1p has been identified by our results as a potential regulator for
in both clusters RRB (C1) and APha-RiB (C2) (Figure 5.5, Figure 5.6, and Figure 5.11).
Azflp is a zinc-finger transcription factor, which has been predicted to have role in one of
the putative stress response regulatory modules (Segal, et al., 2003; SGD, 2014). Moreover,
it is exclusively localised in the nucleus and it was found to be synthesised in higher amounts
under non-fermentable growth conditions (Stein, et al., 1998). By monitoring differentially
expressed genes when AZF1 was knocked down, Slattery and colleagues showed that this
gene’s product participates in the transcription of two non-overlapping subsets of genes
under two different conditions. The common aspect between these non-overlapping subsets
of genes is having the motif AAAAGAAA in their promoters (Slattery, et al., 2000).
Although our C2 genes at 0 = (0.2 are not included in any of these two subsets, the existence
of the AZF1 binding site in their promoters indicates that AZF1 may regulate expression of

genes in this cluster under other conditions.
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Another candidate common regulator is Stb3p (Figure 5.11), which binds to the
consensus motif TGAAAAA (Liko, et al., 2010; Liko, et al., 2007; Zhu, et al., 2009). This
motif largely overlaps with the RRPE motif found in the upstream sequences of the RRB
genes in our results, as identified by the TOMTOM tool (Figure 5.5 (B)). Although not
identified by the TOMTOM tool as a potential binding transcription factor, its binding motif
TGAAAA largely overlaps with the part of the motif C2-1 (Figure 5.6). Moreover, Stb3p
overexpression was shown to increase resistance to oxidative stress (Drobna, et al., 2012)
and to result in down-regulation of ribosome biogenesis genes (Liko, et al., 2010; Liko, et
al., 2007; Zhu, et al., 2009), and Liko and colleagues also predicted that Stb3p would be
expected to regulate transcription of other unknown sets of genes positively (Liko, et al.,

2010; Liko, et al., 2007).

The evidence for Azflp or Stb3p acting as a transcription activator and/or repressor
with relation to both groups of genes — RRB genes (C1), and APha-RiB genes (C2) is
unclear. Nevertheless, there are enough observations to speculate that one of them or both
of them may play a role in the mutual transcriptional regulation of both RRB and APha-
RiB. The molecular mechanism(s) and significance of those transcription factors in this

context remain to be established.

5.3.2.9. Experiments with different numbers of clusters (K values)

We have repeated the Bi-CoPaM experiment over the same datasets but with different K
values other than sixteen, that is, with different numbers of clusters. We tried the K values
of 8,9, 10, 18, 24, 30, and 40. At all of the given K values, the cluster RRB was found as
the absolutely tightest cluster with very high similarity in its gene content to the cluster
found at K = 16. At the K values of 8, 9, and 10, the results have shown that the second
tightest cluster is similar to the APha-RiB regulon found in this study, while at the K values
of 18 and 24, it was split into two smaller clusters. Moreover, at the K values of 30 and 40,
many other small tight clusters appeared but many of them are redundant in terms of their
expression profiles and should be rather combined. Interestingly, no other significant cluster
found in any of those results. This experiment shows that our proposed approach of applying

the Bi-CoPaM method to genome-wide datasets is robust over a wide range of K values.

5.3.3. Discussion and conclusions

We have applied the Bi-CoPaM method over genome-wide data from forty microarray
datasets with wide range of different biological contexts and experimental conditions in
order to identify the subsets of budding yeast genes that are most consistently co-expressed.

We found two clusters of genes that have significant consistency of co-expressions, which
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we have labelled as RRB (C1) and APha-RiB (C2). These two clusters preserved their status
as the tightest two clusters at varying values of K, which shows their importance as well as
the robustness of the proposed Bi-CoPaM approach. By GO term analysis, C1 has been
found to be highly enriched with ribosome biogenesis and rRNA processing (RRB) genes.
On the other hand, most of the genes included in C2 have unknown or apparently unrelated

functions.

Finding RRB genes (C1) in the tightest cluster by this completely unsupervised
approach, confirms not only that these genes are consistently co-expressed under various
conditions (Wade, et al., 2006), but also that they are the most consistently co-expressed
genes across the whole genome. Additionally, our CI1 cluster includes few genes with

unknown processes that may be worthy of biological investigation.

The most interesting cluster of genes in our results appears to be C2, and this is for
three main reasons — first, these genes are mostly unknown or apparently unrelated to each
other, despite the fact that they are the second most consistently co-expressed subset of
genes in budding yeast; second, their average expression profiles show consistently anti-
phase (opposite) expression to the average expression profiles of RRB genes (C1) across all
of the forty datasets; and third, significant genetic and protein-protein physical interactions
have been reported between them by high-throughput studies in the literature. These
observations lead us to label C2 as the subset of genes in anti-phase with ribosome
biogenesis (APha-RiB), to suggest that many of the unknown genes in APha-RiB (C2), such
as YIRO16W, may participate in different generic, in contrast to specific, stress response
mechanisms, and to suggest that RRB genes (C1) and the APha-RiB genes (C2) may be
transcriptionally regulated by common machinery or that their regulation machineries may
be controlled by common post-translational regulators. We have identified potential factors

that might be involved in such reciprocal regulation, for example Azflp and Stb3p.

This study has yielded globally consistent co-expression in budding yeast and produced
new, focused insights for future work to elucidate and confirm the components of the
common regulatory machinery for RRB and APha-RiB, and to define the function of poorly
characterised genes in both clusters. The results from the application of the Bi-CoPaM
method to yeast datasets strongly suggests that it may be helpful for the analysis of other
groups of microarray datasets from other species and systems for the exploration of global

genetic co-expression.
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Chapter 6

Red Blood Cells Production (Erythropoiesis)
Data Analysis

6.1. Introduction to erythropoiesis
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Figure 6.1. Tree of haematopoietic stem, progenitor, and mature cells in mammals
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Erythropoiesis, that is, the production of red blood cells (RBCs), is a key molecular
biological process in human bodies. The process starts from one type of stem cells known
as haematopoietic stem cells (HSCs). Those are cells which can be developed to be
specialised, eventually, to be one of the different types of blood cells such as white blood
cells (e.g. killer cells, and T and B lymphocytes), red blood cells (erythrocytes), platelets,
or others (Figure 6.1). Many intermediate cell types, known as progenitors, are produced in
the way from the HSCs to the final mature cells. When a stem cell or a progenitor produces
a daughter cell of a downstream cell type, it is said that it has differentiated (e.g. myeloid
progenitors producing BFU-E cells in Figure 6.1). However, some stem cells and
progenitors may produce daughter cells of their same type in order to increase the number
of cells of that intermediate stage (e.g. a BFU-E cell producing daughter BFU-E cells); this

is known as self-renewal, or proliferation. Some progenitors, like the myeloid progenitors,
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have potential to differentiate to different types of final mature cells, while some other
progenitors, like the BFU-E cells, are committed to differentiate to single final mature cell
type. Erythropoiesis in Figure 6.1 is the branch that starts at HSCs and ends at the
erythrocytes (RBCs).

Various groups of genes and sub-processes are involved in erythropoiesis at different
stages. For example, the setup of the genome expression at the early stages should be in a
way that pushes the cells to differentiate and commit to the erythropoietic branch rather than
to any other potential branch of cells. Then, in the burst-forming unit erythroids (BFU-E)
stage and the colony-forming unit erythroids (CFU-E), a lot of proliferation takes place in
order to increase the number of produced cells to the required ranges. This is because the
early stage cell types, the HSCs and the myeloid progenitors, are usually of small quantities.
Therefore, cell-cycle and proliferation genes should be very active in these proliferative
stages. Towards the end of erythropoiesis, haem, which is a key component of the oxygen
carrying molecule haemoglobin, should be synthesised in large quantities by the products
of the haem biosynthesis genes. Redness of those cells appears only at the last stages due to
the accumulation of the red iron-containing haemoglobin molecules. Moreover, and while
heading towards the late stages, the cell-cycle should be arrested, transcription and
translation processes should be shut down gradually, the genetic material and the nucleus
should be extremely condensed, and finally the nucleus should be expelled from the cell.
Expelling the nucleus from the cell at the end is known as enucleation, and produces
reticulocytes, which represent the last stage of differentiation just before the final mature
erythrocytes (RBCs). Mammal RBCs are enucleated, that is, are nucleus-free, while other
blood-containing animals, like birds, are not. Enucleation is important because it allows the
RBC:s to be thinner and flexible for bending, which in its turn allows them to flow through
the thin blood vessels, the capillaries, whose diameters are smaller than the diameter of the

RBCs.

The regulatory machineries leading to the strong impulse of proliferation at the BFU-
E and the CFU-E stages, as well as enucleation towards the end, are poorly understood.
Additionally, various aspects related to haem biosynthesis such as the signalling pathways
through which haem is imported to the mitochondrion are yet to be elucidated. Moreover,
not all of the molecular factors that cause blood disorders like anaemia, myelodysplasia, or
myeloproliferative diseases have well been described (Abu-Jamous, et al., 2015¢). Having said

that, better understanding of erythropoiesis is indeed a hot area of research.
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This chapter describes the collective analysis of eight human and murine erythropoietic
datasets by the Bi-CoPaM method. Mice are mammals whose RBCs are enucleated and
whose erythropoiesis has a lot of similarity to the human one. This justifies this collective

analysis despite the few differences between the two erythropoietic systems.

6.2. Datasets and experimental design

Eight human and murine erythropoiesis datasets were considered in our comprehensive
study and are listed in Table 6.1. The symbols A to H in the first column of the Table will
hereinafter be used as unique identifiers for these eight datasets. The second column shows
the Gene Expression Omnibus (GEO) accession numbers which can be used to freely access
the datasets on the online databases of the U.S. National Centre for Biotechnology
Information (NCBI). In some cases, the samples included under the same GEO accession
number can be split into more than one independent series of samples. In these cases, we
consider each such subset of samples as a separate dataset; these cases are denoted by an
asterisk symbol at the end of the GEO accession number. The third and the fourth columns
of the Table respectively show the species (human or mouse) and the year in which the
dataset was published. The fifth column shows the number of time points or stages
represented by the samples in the dataset. Biological and technical duplicates for the same
time point or stage are considered as one time point or stage. The sixth and the seventh
columns respectively show a brief description of the dataset and a reference to the study in

which it was published.

Table 6.1. Summary of eight human and murine erythropoiesis datasets

ID GEO Species Year N Description Reference
Accession
A GSE22552 Human 2011 4 Human maturing erythroblasts (Oxford) (Merryweather-Clarke,
etal., 2011)

B GSE35292* Mouse 2012 3  B6 mouse hematopoietic development (Walasek, et al., 2012)

C GSE35292* Mouse 2012 3 D2 mouse hematopoietic development (Walasek, et al., 2012)

D GSE20391 Mouse 2010 5 Mouse primary fetal liver terminal erythroid  (Hattangadi, et al., 2010)
differentiation

E GSE18042 Mouse 2009 6  Erythroid differentiation: G1E model (Cheng, et al., 2009)

F GSE4655 Human 2006 6 Invitro human adult erythroid differentiation  (Keller, et al., 2006)
(Keller)

G GSE36994* Human 2012 4 Human fetal erythropoiesis (Xu, et al., 2012)

H GSE36994* Human 2012 4 Human adult erythropoiesis (Xu, etal., 2012)

* These datasets include more than one time series samples and thus they have been considered separately as multiple
datasets; see the description of each of them in the Description column.

We identified the genes commonly included in all of the eight datasets; genes from
different species and / or different microarray platforms are considered similar if they are
mapped to the same NCBI homologous group identifiers. If multiple probes from the same

dataset were found to be mapped to the same homologous group, the one with the highest
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mean expression values is considered while the others are filtered out. The result of this
filtering is the inclusion of 13,269 genes with unique homologous group identifiers common
to human and mice, and found represented by probe-sets in all of datasets. The homologous
group identifiers for these genes, as well as their probe-set identifiers and gene names in

each of the eight datasets, are provided in the Supplementary File ‘Erythropoiesis/S1°.

We applied the Bi-CoPaM over those 13,269 genes from the eight datasets (Abu-
Jamous, et al., 2013a). This has been done by firstly applying k-means, self-organising maps
(SOMs), and hierarchical clustering (HC) with Ward’s linkage to each one of these eight
datasets with K =9, then combining all of the clustering results into a single fuzzy consensus
partition matrix (CoPaM), and finally binarising the CoPaM by the difference threshold
binarisation (DTB) technique with J values varying from zero to unity. Prior to clustering
analysis, we normalised the datasets by quantile normalisation (Bolstad, et al., 2003), then
each gene’s expression profile was shifted and scaled to have a zero-mean and a unity

standard deviation (Quackenbush, 2002).

6.3. Results and discussion
6.3.1. Bi-CoPaM clustering results

Table 6.2 shows the numbers of genes included in each of the nine clusters at each of the
considered DTB ¢ values. The clusters were ordered from the tightest to the widest such that
the cluster which preserves at least 15 genes up to a higher value of ¢ is considered tighter,
and if two clusters do so up to the same value of 0 then the cluster which includes more
genes at that ¢ value is considered tighter. After ordering, the clusters were labelled as C1
to C9. Supplementary File ‘Erythropoiesis/S1’ shows the lists of genes included in each of

these nine clusters at all of those ¢ values.

Table 6.2. Numbers of genes included in each of the nine erythropoietic clusters at varying
6 values

Tightness 0 Cluster
Cl C2 C3 C4 C5 C6 C7 C8 C9

Complementary 0.0 4642 2257 2988 1683 913 937 891 643 201
0.1 2650 1142 1555 513 225 220 177 97

—_—
—_—

0.2 1674 702 952 196 74 62 55 20 1
0.3 780 358 425 38 9 8 12 4 0
0.4 466 192 222 8 0 2 3 0 0
0.5 271 100 98 0 0 0 1 0 0
0.6 123 33 21 0 0 0 0 0 0
0.7 66 12 7 0 0 0 0 0 0
0.8 27 3 1 0 0 0 0 0 0
09 5 1 0 0 0 0 0 0 0
Tightest 1.0 1 0 0 0 0 0 0 0 0




92

6.3.2. MSE analysis
MSE values were calculated for each of the clusters C1 to C7 at each of the DTB 6 values

based on their genes’ profiles in each of the eight datasets independently. The average MSE
values over the eight datasets for each of these seven clusters are plotted in Figure 6.2 (a)
versus the DTB o values. Figure 6.2 (b) shows the number of genes included in each of
these clusters at each of the ¢ values; the logarithmic scale at the vertical axis is for the

clarity of presentation. Missing values in both sub-plots represent empty clusters.
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Figure 6.2. MSE and cluster size analysis for erythropoiesis clusters

(a) Average MSE values for the first seven clusters C1 to C7 over the eight datasets and (b) clusters’
sizes plotted versus all of the considered DTB ¢ values.

Both Figure 6.2 (a) and Figure 6.2 (b) have been analysed in tandem in the view of
minimising the average MSE values while maximising the number of genes included. We
have followed a systematic approach to select one ‘representative’ instance for each of the
first five clusters, that is, one ¢ value for each. The approach is to select the 0 value below
which a significant increase in the average MSE value occurs with no parallel increase in
the number of genes included; indeed the cases in which the clusters include very few genes

are not considered.

Based on this approach, the cluster C1 shows a significant increase in average MSE
value when the ¢ value is decreased from 0.6 to 0.5 (from 0.14 to 0.24), and it has a sufficient

number of genes at 0.6 (123 genes); therefore, the representative instance of C1 is at 0 =
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0.6. The same observation can be seen for the cluster C2 at 6 = 0.5. When the tightness of
the cluster C3 is decreased from ¢ = 0.5 to 0.4, the number of genes included in it increases
significantly from 21 to 98 genes with no large difference in MSE values; thus, the
representative of C3 has been chosen at 0.5. The cluster C4 has higher MSE values than the
first three and lower numbers of genes than them. Though, we consider its representative at
0 = 0.3 because at the tighter level of 6 = 0.4 it only includes eight genes, and at the wider
level of 0 = 0.2, its MSE value is significantly higher (0.55). C5 might be considered
insignificant enough to be filtered out, but its case at 6 = 0.2 is not very different from the
considered C4 at 0 = 0.3; it has a slightly higher MSE value (0.51 compared to 0.44) but
with significantly more genes (74 compared to 38), and therefore we have considered the

representative case of C5 to be at 6 = 0.2.

In contrast to the first five clusters, the clusters C6 and C7 show significantly higher
average MSE value and lower numbers of genes. Moreover, the clusters C8 and C9, which
have not been included in this Figure for clarity of demonstration purposes, include
significantly lower numbers of genes than the first five clusters and become empty at
relatively low J values (Table 6.2). Therefore, we further focus our analysis on the clusters
C1 to C5. The selected representative instances for these five clusters are provided in

Table 6.3, and will hereinafter be labelled as C1* to C5*.

Table 6.3. Selected erythropoiesis clusters’ representatives

Cluster C1* C2* C3* C4* C5*
DTB & value 0.6 0.5 0.5 0.3 0.2
Average MSE 0.14 0.16 0.28 0.44 0.51
Number of genes 123 100 98 38 74

Considering the mean MSE value of the genes in a cluster over their profiles in all of
the eight datasets has been useful for coarse-grained filtering. We further investigate the
quality of the representative instances of the first five clusters C1* to C5* in each of the
eight datasets individually. Figure 6.3 shows the MSE values for the clusters C1* to C5*
versus the eight datasets A to H (see Table 6.1 for datasets details). It is very clear in this
Figure that the MSE value of the clusters C3*, C4*, and C5* in the dataset (E) are many
folds worse (higher) than the average of MSE values shown in this Figure. These clusters
also show high MSE values in the dataset (A) but less extreme than in the dataset (E). These
observations indicate that the level of co-expression of these clusters in these specific
datasets is not as tight as in the others, which should be taken into consideration while

analysing their expression profiles.
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Figure 6.3. MSE values for the cores of the clusters C1* to C5* plotted versus the eight

erythropoiesis datasets A to H

6.3.3. Comparison with datasets from wider conditions

It is useful to distinguish between the clusters of genes that are specifically consistently co-

expressed under erythropoiesis and the clusters that show such consistency in co-expression

over wider range of conditions. Therefore, the MSE values were calculated for the

representative instances of the first five clusters C1* to C5* as well as C6 at 6 = 0.2 (which

was labelled as C6* for this section’s purposes) over 90 randomly selected human and

murine microarray datasets. The 90 datasets were randomly selected from the thousands of

datasets available at the GEO repository based on the three microarray platforms with the

GEO accession numbers GPL570, GPL6887, and GPL1261.
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Figure 6.4. Box plots comparing the core clusters C1* to C6* in (a) the eight erythropoiesis
datasets and (b) 90 randomly selected datasets

The rightmost box in both sub-plots is a control. The control box in (a) includes the MSE values
for 100 randomly generated clusters with average number of genes of 70 based on the eight
considered datasets. The control box in (b) includes the MSE values for ten randomly generated
clusters with average number of genes of 70 in each of the 90 randomly selected microarray
datasets; for each of the 90 datasets, ten different randomly generated clusters were considered.
Thus, the control in (a) has 800 MSE values and the control in (b) has 900 MSE values.
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Figure 6.4 shows box plots for the MSE values of each of the six clusters in each of the
eight datasets (a) as well as in each of the 90 randomly selected datasets (b) respectively.
An additional control has been added to the box plots showing the MSE values of randomly
generated clusters of an average of 70 genes per each. It can be seen in this Figure that the
MSE values of the clusters C1* to C6* show a significant difference from the control in the
eight considered datasets when compared to the 90 randomly selected datasets with obvious
distinction of C1* and C2*. This indicates that they are specifically highly co-expressed
under erythropoiesis and not under a wider range of more general conditions. Despite that,
the cluster C2* can be seen to have slightly lower MSE values than the control in the 90
randomly selected datasets, which indicates that although it is significantly lower in

erythropoiesis datasets, it still preserves some co-expression in other conditions.

6.3.4. Average expression profiles

Figure 6.5 shows the average normalised expression profiles of the genes included in each
of the five representative clusters C1* to C5* from each of the eight datasets (A) to (H).
This Figure shows these average profiles in a grid of plots where each column of the grid
represents a cluster and each row represents a dataset. In order to take the analysis of these
profiles further, the erythropoietic stages to which the samples in each of the eight datasets
belong were investigated, and our estimations for these are provided in Figure 6.6. This
Figure shows a chronological order of the erythropoietic stages on the horizontal axis and

the datasets (A) to (H) on the vertical axis. Different symbols are used for different datasets.
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Figure 6.5. Average expression profiles for the core clusters C1* to C5*% in each of the eight
erythropoiesis datasets
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Figure 6.6. Estimation of the erythropoietic stages to which the samples of the eight datasets
belong

By examining the profiles in Figure 6.5 in the light of the information in Figure 6.6, we
can extract the generic behaviour of each of the five clusters C1* to C5* over the

erythropoietic stages, which is demonstrated in Figure 6.7.

Relative expression

! ! !
HSC CMP BFU-E CFU-E Pro-E Baso-EB  Poly-chro-EB Ortho-Chro-EC RC
Stages

Figure 6.7. Estimated summarisation of the average profiles of the core clusters C1* to C5*
over erythropoietic stages

C1* preserves very low expression up to colony forming-unit erythroids (CFU-E) and
is gradually up-regulated thereinafter towards the latest stages of erythropoiesis. C2* starts
with a moderate expression at the early stage of haematopoietic stem cells (HSCs) and is
up-regulated to peak at pro-erythroblasts (Pro-E); then, it is down-regulated to reach its
minimum expression at the latest stages. C3* starts with an expression-peak at HSCs and is
constantly down-regulated up to the stages of basophilic erythroblasts and polychromatic
erythroblasts where it starts a slight up-regulation until the latest stages. C4* starts with
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moderate to high expression values at HSCs and is then up-regulated to plateau from the
early committed progenitors BFU-E and CFU-E to the mid-stages of pro-erythroblasts and
basophilic erythroblasts; after that, it is down-regulated to reach its minimum expression at
the final stages of erythropoiesis. C5* starts from a very low expression at HSCs and
increases gradually to peak at the stage of basophilic erythroblasts; it subsequently drops to
low values at the terminal stages. It can be seen from Figure 6.5 and Figure 6.7 that these

observations are consistent across almost all of the eight datasets with minor exceptions.

The summary of this profile-analysis is that these five clusters show their major peak
expression values at five different stages of development, namely and chronologically at the
stages of HSCs, pro-erythroblasts, approximately BFU erythroblasts to basophilic
erythroblasts, basophilic erythroblasts, and orthochromatic erythrocytes for the clusters
C3*, C2*, C4*, C5*, and C1*, respectively. Another notable difference is in their relative
expression at HSCs where some clusters show moderate expression values while others

show very low ones.

6.3.5. GO term analysis
Table 6.4 and Table 6.5 respectively show the most enriched GO biological processes and
cellular components in the first five clusters C1 to C5 at varying J values. Complete GO

analysis results are provided in the Supplementary Tables Erythropoiesis/S2 to S11.

Table 6.4. Most enriched GO process terms in the erythropoietic clusters C1 to C4 at
various levels of tightness

Back. 0=03 0=04 0=0.5 0=0.6
frequency [Freq. P-val.|Freq. P-val. [Freq. P-val. [Freq. P-val.
C1 Heme biosynthetic 16/13269 [8/780  E-6 [5/466  E-4 |5/271 E-5 |2/123 E-3

GO process

proc.
Autophagy 50/13269 |14/780 E-7 |11/466 E-7 8/271 E-6 |3/123 E-2
protein K63-linked  (15/13269 [6/780  E-4 |[4/466 E-3 4271 E-4 |4/123 E-6
deubiquitination

protein K48-linked  (11/13269 [5/780  E-4 [3/466 E-3 3/271 E-3 |3/123 E-4
deubiquitination

protein ubiquitination [213/13269 [29/780 E-5 |21/466 E-5 (11271 E-3 8/123 E-4
protein 298/13269 (35/780 E-5 [24/466 E-4 (14/271 E-3 |5/123 0.14
phosphorylation

cell cycle arrest 113/13269 |19/780 E-5 |15/466 E-6 |11/271 E-5 |[8/123 E-6

negative regulation of [282/13269 [28/780 E-3 |21/466 E-4 [13/271 E-3 |8/123 E-3
cell proliferation
unknown process 2326/13269 [128/780 0.81 |85/466 0.36 |49/271 0.43 |23/123 0.40
C2 ribosome biogenesis [26/13269 [10/358 E-10 [9/192  E-11 |[6/100 E-8 |0/33 1.0
Gene expression 543/13269 |54/358 E-17 [27/192 E-8 [9/100 E-2  {2/33 0.39
RNA splicing 193/13269 [29/358 E-14 |11/192 E-4 |4/100 E-2 |2/33 E-2
rRNA processing 71/13269 [16/358 E-11 |13/192 E-11 [7/100 E-6  |4/33 E-5
tRNA processing 39/13269 9/358  E-7 |6/192 E-5 |5/100 E-5 |2/33 E-3
mRNA processing 162/13269 [22/358 E-10 |13/192 E-7 |[6/100 E-3  |2/33 E-2
translation 167/13269 [22/358 E-10 |14/192 E-7 [7/100 E-4 |1/33 0.34
unknown process 2326/13269 [59/358 0.72 |34/192 0.50 |19/100 0.39 |6/33 0.53
C3 signal transduction  |840/13269 |50/425 E-5 |32/222 E-5 |15/98 E-3 |3/21 0.14
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small GTPase 269/13269 [29/425 E-8 [20/222 E-8 [1/98 E-3  |3/21 E-3
mediated signal
transduction
apoptotic process 570/13269 |(38/425 E-5 [25/222 E-5 [11/98 E-3 4/21 E-2
blood coagulation 387/13269 [28/425 E-5 [18/222 E-5 |6/98 E-2 2/21 0.12
immune response 242/13269 |19/425 E-4 |13/222 E-4 |4/98 0.10 |1/21 0.32
cell proliferation 288/13269 [20/425 E-4 |9/222  E-2  [2/98 0.63 |1/21 0.57
unknown process 2326/13269 [70/425 0.74 |30/222 096 [19/98 035 |5/21 0.30
C4 viral transcription 31/13269  [2/38 E-3 |0/8 1.0
translation 167/13269 (3/38 E-2 |0/8 1.0
glycolysis 32/13269  (1/38 E-2 |0/8 1.0
unknown process 2326/13269 {10/38  0.12 (3/8 0.15
C5 G1/S transition of 117/13269 [2/9 E-3
mitotic cell cycle
DNA replication 120/13269 |2/9 E-3
mitotic cell cycle 271/13269 |3/9 E-4
DNA repair 231/13269 [2/9 E-2
unknown process 2326/13269 [1/9 0.82
Table 6.5. Most enriched GO component terms in the erythropoietic clusters C1 to C4 at
various levels of tightness
GO component Back. =03 0=04 0=0.5 0=0.6
frequency [Freq. P-val. [Freq. @ P-val. [Freq. P-val. |[Freq. P-val.
C1 autophagic vacuole  [23/13269 |10/780 E-7 [7/466  E-6 [5/271 E-5 [2/123 E-2
cortical cytoskeleton |17/13269 |7/780 E-5 [6/466 E-5 6/271 E-7 |3/123 E-4
endosome membrane |125/13269 (13/780 E-2 |8/466  E-2 |5/271 0.11 |4/123 E-2
early endosome 109/13269 (12/780 E-2 [8/466  E-2 [7/271 E-3 |5/123 E-3
late endosome 67/13269 [7/780  E-2 |6/466  E-2 |5/271 E-2 |4/123 E-3
Golgi apparatus 567/13269 |41/780 E-2 [27/466 E-2 |21/271 E-3 |8/123  0.16
unknown component |1258/13269 [71/780 0.66 49/466 0.24 [31/271 0.16 |[17/123 E-2
C2 mitochondrion 084/13269 (82/358 E-21 41/192 E-10 [22/100 E-6 |10/33  E-5
nucleolus 1249/13269 (102/358 E-25 [64/192 E-20 ([40/100 E-16 |(11/33 E-4
nucleoplasm 777/13269 |58/358 E-12 25/192 E-4 (77100  0.37 |1/33 0.86
spliceosomal complex |67/13269 |18/358 E-13 |10/192 E-8 |[5/100 E-4 |1/33 0.15
Many other
mitochondrial
components
(membrane, matrix,
nucleoid, etc.)
unknown component |1258/13269 [24/358 0.98 [12/192 0.96 [6/100  0.92 |2/33 0.83
C3 plasma membrane 2332/13269 |111/425 E-6 [71/222 E-7 [|28/98 E-3 |5/21 0.30
lysosome 156/13269 (13/425 E-3 [9/222 E-3  [3/98 0.11 (1721 0.22
cytosol 1923/13269 [91/425 E-5 |52/222 E-4 [22/98 E-2 [1/21 E-2
unknown component |1258/13269 [30/425 0.97 [15/222 0.94 [7/98 0.83 |4/21 0.13
C4 mitochondrion 084/13269 |(7/38 E-2 |1/8 0.46
ribosome 94/13269  [2/38 E-2 |0/8 1.0
unknown component |1258/13269 [3/38 0.71 |1/8 0.55
C5 nucleoplasm 777/13269 |4/9 E-3
unknown component [1258/13269 |0/9 1.0

As can be seen in Table 6.4, the cluster C1 is highly enriched with processes related to

haem biosynthesis, protein ubiquitination, deubiquitination, phosphorylation, cell-cycle

arrest, and negative regulation of cell proliferation. It can also be seen in Table 6.5 that it is

enriched with various cellular components including autophagic vacuoles, cortical

cytoskeleton, endosome membrane, early and late endosomes, and Golgi apparatus. The

second cluster, C2, is more focused as it is mainly enriched with RNA- and ribosome-related

processes with high enrichment in mitochondrial and nuclear components. The third cluster,
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(3, is enriched with processes related to signal transduction, apoptosis, blood coagulation,
immune response, and cell proliferation with high component enrichment in the plasma
membrane, lysosomes, and cytosol. C4 is highly enriched with genes participating in viral
transcription, translation, and glycolysis with component enrichment in the mitochondrion
and ribosomes. C5 is highly enriched with cell-cycle and DNA metabolism related

processes whose component enrichment is focused in the nucleoplasm.

6.3.6. Upstream sequence analysis
We have used the Promoter Analysis and Interaction Network Toolset (PAINT)

(Vadigepalli, et al., 2003; PAINT, 2013) to mine the 2,000 upstream DNA sequence base-
pairs of the genes in the five representative clusters C1* to C5* for enriched transcription
factors-binding sites. We chose the complete list of human promoter sequences available in
PAINT’s database as our option for the reference list, and we considered FDR-adjusted p-
values as the enrichment metric.

Table 6.6. TF binding sites enriched in the five erythropoietic clusters C1* to C5*

Included binding sites are those with positive FDR-adjusted p-values <0.1.

TF TF-binding site C1* | C2* | C3* | C4* | C5*
AHR, ARNT, HIFIA |AhR, Arnt, HIF-1/VSAHRHIF_Q6 X

ATF6 ATF6/VSATF6 01 X

CACD CACD/V$CACD 01

CREBI CREB/VS$CREB_02 X

CREBI CREB/VSCREB_Q4 01 X

EGR/KROX family  |[KROX/VSKROX_Q6 x x

ETSI c-Ets-1 p54/VSCETS1P54 03 x

ETS1 c-Ets-1(p54)/VSCETS1P54 02 x -
GABPA, GABPB2 GABP/VSGABP_B X X X

GTF3A AP-2/VSAP2_Q6

GTF3A AP-2/VSAP2_Q6 01 x x

HIC1 HIC1/VS$HIC1 02

HIFI1A HIF1/VSHIF1_Q3

MAZ MAZ/VSMAZ_Q6 X

MYB v-Myb/VSVMYB_02 x

PAX3 Pax-3/VSPAX3 B X X

PAXS Pax-5/V§PAXS 02 X

PAXS Pax-8/VSPAX8 01

RFX1 RFX/VSRFX_ Q6

SP1 Sp1/VSSP1_Q2_01 %

STRA13 Stral3/VS$STRA13 01 X

TFAP2A AP-2alpha/VSAP2ALPHA 01 x %

TFCP2 CP2/LBP-1¢/LSF/VSCP2_02 X

TFDP1 E2F/VSE2F Q6 01 X X

Unknown TF E2F/VSE2F 03 X

Unknown TF ETF/VSETF_QG6 x x x
Unknown TF Tax/CREB/V$TAXCREB_01 X

Unknown TF Tax/CREB/VSTAXCREB 02 X X
WT1 WTI/VSWT1_Q6 X

ZBTB14 (ZFP161) ZF5/V$ZF5 B X X X
ZBTB7A LRF/VSLRF Q2 X

ZBTB7B CKROX/VSCKROX Q2 X
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Table 6.6 shows the most enriched transcription factors-binding sites in C1* to C5*.
The first and the second columns show the names of the transcription factors and their
binding sites. The third to the seventh columns represent the clusters C1* to C5* where a
cross (%) sign indicates the enrichment of the corresponding binding site (row) in the
upstream sequences of the genes in the corresponding cluster (column) with a positive FDR-

adjusted p-value less than or equal to 0.1.

The correlation was then investigated between the average expression profiles for each
of the clusters and the expression profiles for the transcription factors (TFs) whose binding
sites are enriched in these clusters’ genes’ upstream sequences. This was done for these
profiles based on each of the eight datasets. Few TFs in Table 6.6 are not represented by
any probe-set in some (up to two) of the eight datasets; in these cases, these TFs’ profiles
in those datasets in which they are represented were considered. Figure 6.8 shows the results

of this investigation in the form of box plots.
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Figure 6.8. Correlation between the erythropoietic clusters C1* to C2* and the TFs whose
binding sites found highly enriched in their upstream sequences
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Five sub-plots are shown in Figure 6.8 for the five clusters C1* to C5*. Each single
box in any of these box plots represents the Pearson’s correlation values between the
expression profile of the corresponding TF and the average expression profile of the
corresponding cluster based on each of the eight clusters (or less than eight if not represented

in some of the datasets).

It can be seen in this Figure that some TFs have consistent positive or negative
correlation with the clusters of genes which represent their candidate transcriptional targets
by binding sites’ enrichment. On the other hand, most of the transcription factors’
correlation values span a wide range of correlation values. The positively correlated
transcription factors are ATF6, ZBTB7A, and ZBTB7B with C1*, GABPA and MYB with
C2*, and GTF3A with C3*. The negatively correlated transcription factors are GTF3A,
STRAI13, and ZBTB14 with C1*, RFX1 and maybe ETS1 with C2*, and ETS1 with C4*.

6.3.7. The transcription factor ZBTB7A (LRF)
The gene ZBTB7A encodes the transcription factor LRF (also known as FBI-1 and

Pokemon), which was shown to play roles in breast cancer induction as an oncogene (Zu,
et al., 2011), the regulation of T-cells differentiation (Carpenter, et al., 2012), and the
regulation of erythropoiesis (Maeda, et al., 2009). LRF is directly transcriptionally activated
by the well-known erythropoietic master regulator GATA-1 (Maeda, et al., 2009). It was
also shown to highly co-occupy, with GATA-1, the loci whose genes are up-regulated after
the addition of GATA-1 to GATA-1-null erythropoietic cells (Yu, et al., 2009); thus, there
is a positive feedback loop in which GATA-1 mediates LRF activation, and this could be
critical to erythropoiesis (Hattangadi, et al., 2011). Another important regulatory loop in
erythropoiesis was observed in which LRF is activated by EKLF (KLF1) (Yu, et al., 2009;
Doré & Crispino, 2011), and EKLF’s promoter itself is occupied by both LRF and GATA-
1 (Doré & Crispino, 2011).

It is notable that LRF plays the general role of proliferation induction and/through
apoptosis repression. It was shown to induce the apoptosis repressor BCL-2 through the
activating NF-xB in hepatocellular carcinoma (liver cancer) (Zhao, et al., 2011; Kong, et
al., 2012), to repress the tumour suppressor ARF in breast cancer (Maeda, et al., 2005a),
and to repress the pro-apoptotic factor Bim (BCL2LI11) during terminal erythroid
differentiation (Maeda, et al., 2009). The latter two cases were confirmed as direct
repression activities by promoter binding analysis while the first one was inferred by

analysing the effects of sSiRNA LRF knockdown on its targets expression.
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LRF loss in mice fetal liver resulted in normal erythropoiesis until the pro-erythroblasts
and basophilic erythroblasts stages, and then blocked development at the polychromatic and
orthochromatic erythroblasts with poor condensed chromatin pattern and very few
enucleated cells. This ultimately resulted in lethality due to severe anaemia and profoundly
impaired cellular differentiation (Maeda, et al., 2009). Loss of LRF in adult mice was also
shown to result in defects erythropoietic development specifically in the transition from R
II to R II/IV which correspond to basophilic erythroblasts and poly/orthochromatic
erythroblasts respectively (Maeda, et al., 2009). Double mutants which lost both LRF and
Bim partially recovered the effects of LRF loss. This fact elucidated one side of the role of
LRF in erythropoiesis, which is inducing cell growth and repressing apoptosis through

repressing the pro-apoptosis factor Bim (Maeda, et al., 2009).

6.3.8. The transcription factor GATA-1
Although GATA-1 is a well-known master regulator in erythropoiesis (Keller, et al., 2006;

Welch, et al., 2004; Yu, et al., 2009), its binding site has not been shown enriched in any of
the 2kb upstream sequences of the genes in the five clusters C1* to C5* (Table 6.6). Even
though, this can be justified by what many studies observed in that the annotation of the
binding site of GATA-1 is a poor predictor for in vivo GATA-1-dependent regulation
because it tends to bind to distal rather than proximal sites to the start of transcription sites
of the genes which it regulates (Yu, et al., 2009; Hattangadi, et al., 2011). To investigate
this issue further, we have projected the results of the genome-wide GATA-1 chromatin

occupancy analysis by Yu and collaborators unto our results.

Yu and colleagues identified 1834 genes in whose loci the transcription factor GATA-
1 shows peak occupancy in vivo. A gene’s locus has been defined as the DNA sequence
starting 10kb upstream the start transcription site (STT) and ending 3kb downstream the 3’
end of the gene (Yu, et al., 2009). Yu et al then used microarray analysis to identify those
genes that differentially expressed when GATA-1 was provided to arrested cells in
erythropoiesis by the GATA-1-estrogen receptor ligand binding domain fusion molecule
(G1-ER4) murine cell system (Yu, et al., 2009). Out of the 1834 genes occupied by GATA-
1, 1328 genes are within the 13269 genes included in our study, and 300 of these 1328 were
also differentially expressed when GATA-1 was provided (Yu, et al., 2009).

Figure 6.9 shows the percentage of genes included in each of the five clusters C1* to
C5* whose loci were found occupied by GATA-1 in vivo according to Yu and colleagues’
study (Yu, et al., 2009). It also shows the percentage of genes which in addition to being
occupied by GATA-1, were differentially expressed when GATA-1 was provided to
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GATA-1-null cells in that same study (Yu, et al., 2009). 41 genes’ loci out of 123 genes in
C1* were found occupied by GATA-1 (33%, p-value 1.3x10'?) and 30 of them also
differentially expressed (24%, p-value 3.4x10°'?). This is significantly higher than the
clusters C2* to C5* whose GATA-1 occupancy showed the percentages of 4%, 18%, 5%,
and 7%, respectively with the respective p-values of 0.99, 8.0x103, 0.91, and 0.88
(Figure 6.9). The enrichment of genes that were both occupied by GATA-1 and
differentially expressed in these four clusters C2* to C5* is even lower with the percentages

of 0%, 2%, 0%, and 0% respectively, and the respective p-values of 1.0, 0.94, 1.0, and 1.0.

Out of the 41 genes in C1* whose loci were found occupied by GATA-1, only 13 of
them had their occupancy site in their upstream 10kb sequences while most of the others
were occupied within the introns or the exons, or in less often cases in their downstream
sequences. Moreover, only five of these 13 had the GATA-1 occupancy in their 2kb
upstream sequences while the others were more distal. We conclude that C1* is indeed
enriched with GATA-1 targets, and that the adoption of genome-wide results for GATA-1
occupancy such as Yu and colleagues’ can be a better predictor for such enrichment than

direct mining in the proximal upstream sequences of the genes.
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Figure 6.9. Percentage of GATA-1 potential targets in the erythropoietic clusters C1* to
C5* based on (Yu, et al., 2009)

6.4. Summary and conclusions

Four human and four murine erythropoietic gene expression datasets were analysed
collectively by the Bi-CoPaM to identify the subsets of genes that are consistently co-
expressed. Five significant clusters were found and labelled as C1* to C5*. Interestingly,

when the average profiles of any of those five clusters from all of the datasets are projected
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to a common horizontal axis representing the erythropoietic stages from haematopoietic
stem cells (HSCs) to reticulocytes (RCs) (Figure 6.6), they show high consistency in terms
of the erythropoietic stages in which their expression peaks (Figure 6.5 and Figure 6.7).

C1*, which is highly enriched with processes related to haem biosynthesis and cell-
cycle arrest, preserves very low expression up to CFU-E and is then gradually up-regulated
until the latest stages of erythropoiesis. C2*, which is enriched with RNA- and ribosome-
related processes, starts with a moderate expression at the early HSCs and is thereafter up-
regulated to peak at Pro-E, then down-regulated to reach its minimum expression at the
terminal stages. C3*, which is enriched with signal transduction, apoptosis, blood
coagulation, immune response, and cell proliferation, peaks at HSCs and is then
continuously down-regulated towards the stages of basophilic and polychromatic
erythroblasts where it starts gaining some up-regulation until the latest stages. C4*, which
is highly enriched with viral transcription, translation, and glycolysis, starts with moderate
to high expression values at HSCs and is then up-regulated to plateau from BFU-E to
basophilic erythroblasts; after that, it is down-regulated to reach its minimum expression at
the final stages of erythropoiesis. C5*, which is highly enriched with cell-cycle and DNA
metabolism-related processes, has very low expression at HSCs and consequently increases

gradually to peak at basophilic erythroblasts; it then drops to low values at the final stages.

Upstream DNA sequence analysis has identified some potential positive and negative
transcriptional regulators for the clusters. The candidate positive regulators are ATF6,
ZBTB7A (LRF), and ZBTB7B for C1*, GABPA and MYB for C2*, and GTF3A for C3*,
while the candidate negative regulators are GTF3A, STRA13, and ZBTB14 for C1*, RFX1
and potentially ETS1 for C2*, and ETS1 for C4*.

The transcription factor GATA-1, which is a well-known positive regulator for genes
needed in the late stages of erythropoiesis, was not identified by upstream sequence analysis
because it tends to bind to distal rather than proximal sites to the start of transcription sites
of its target genes (Yu, et al., 2009; Hattangadi, et al., 2011). However, based on the data
provided by the in vivo analysis of Yu and colleagues (Yu, et al., 2009), C1* is indeed
highly enriched with potential targets of GATA-1 (Figure 6.9).

Taken together, this pipeline of in silico analysis of erythropoietic datasets has
established a focused set of results regarding the expression profiles, functions, and
regulators of five subsets of genes which are consistently co-expressed over eight different
human and murine gene expression datasets. Biological functional experiments can take

place to follow up these findings.
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Chapter 7
E. Coli Bacterial Data Analysis

7.1. Introduction to E. coli bacteria

Escherichia coli, which is considered as a model prokaryotic organism, is a rod-shaped
bacterium that commonly inhabits the intestine of warm-blooded animals, including
humans. Similar to the model eukaryotic organism Saccharomyces cerivisiea (budding
yeast), E. coli is extensively studied due to its relative accessibility and ease in culturing
and manipulation, and due to the general knowledge that can be gained by projecting the

findings back to the general level of bacteria, prokaryotes, or living species.

After the success of applying the Bi-CoPaM method to budding yeast, a similar
approach has been carried out to analyse E. coli bacterial datasets. The findings, which are
detailed in this chapter, have been published in an invited journal paper in the Journal of

Signal Processing Systems (Abu-Jamous, et al., 2015b).

Here, we mine five different E. coli microarray datasets to identify the subsets of genes
that are consistently co-expressed over such wide range of biological conditions. We also
aim at scrutinising the results of the Bi-CoPaM analysis to build biological hypotheses
which relate some genes with previously unknown biological functions to the potential
biological processes in which they may participate. These hypotheses serve as pilots for

future more focused biological gene discovery studies.

7.2. Datasets and experimental design

Five E. coli microarray datasets have been considered in this study and are listed in
Table 7.1. The first column of this Table shows the letter identifier that we shall use
hereinafter to refer to each of these datasets. The five datasets were generated from a range
of different biological conditions like different temperatures (Lee, et al., 2008), treatment

with cefsulodin (Laubacher & Ades, 2008), mecillinam (Laubacher & Ades, 2008), and
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colicin M (Kamensek & Zgur-Bertok, 2013), cofactor perturbations (Holm, et al., 2010),
and growth under different glycerol conditions (Arunasri, et al., 2013). We have applied the
Bi-CoPaM method with DTB binarisation to these five datasets to obtain the subsets of
genes which are consistently co-expressed across all of them. The individual clustering
methods used are k-means with the deterministic Kauffman’s initialisation (Pena, et al.,
1999), self-organising maps (SOMs) (Xiao, et al., 2003), and hierarchical clustering (HC)
with Ward’s linkage (Eisen, et al., 1998). The DTB ¢ value ranged from zero to unity with

a step size of 0.1. The chosen number of clusters is three.

Table 7.1. Five E. coli microarray datasets

ID Acc.No.* N Description Ref.

A GSE9923 10 Indole signalling at low temperatures (Lee, et al., 2008)

B GSE10159 9 Treatment with cefsulodin and mecillinam (Laubacher & Ades, 2008)

C GSE20374 3 Response to cofactor perturbations (Holm, et al., 2010)

D GSE34275 6 Growth in presence and absence of glycerol (Arunasri, et al., 2013)

E GSE37026 4 Treatment with colicin (Kamensek & Zgur-Bertok, 2013)
*

The accession numbers represent the NCBI GEO database’s identifiers.

7.3. Results and discussion

7.3.1. Clusters average expression profiles

The numbers of genes included in each of the three clusters at each of the o values are listed
in Table 7.2. The three clusters were ordered based on the number of genes kept in them at
the tightest 0 value of 1.0, and they were labelled as C1, C2, and C3, respectively. The
profiles of the genes included in C1, C2, and C3 from each of the five datasets at four
different o values are respectively shown in Figure 7.1, Figure 7.2, and Figure 7.3. It can be
seen in these Figures that while moving from high ¢ values to lower ones, the clusters are

widened with more genes included. At low ¢ values, the clusters become relatively noisy.

Table 7.2. Numbers of genes included in each of the
three E. coli clusters C1, C2, and C3 at all 6 values

[ C1 C2 C3
0.0 2076 1735 460
0.1 1520 1209 193
0.2 1208 864 97
0.3 885 599 33
0.4 565 377 11
0.5 378 234 2
0.6 283 149 1
0.7 120 57 1
0.8 61 20 0
0.9 21 3 0
1.0 21 3 0

It is worth mentioning while analysing these clusters that the general pattern of the
profiles of the genes included in any single cluster at any given ¢ value is very different
between the different datasets. For example, the 21 genes included in C1 at 6 = 0.9 show

generally down-regulated profiles in the datasets C and D, while their profiles in the datasets



107

A, B, and E are very different from that. This is because the criterion upon which the Bi-
CoPaM stands is that those genes are consistently well correlated with each other across

different datasets even if their average profiles differs from one dataset to another.

Samples Samples Samples Samples
Figure 7.1. Profiles of genes in C1 from each of the five E. coli datasets at different o values

0=0.8 0=0.7 0=0.6 0=05

Samples Samples Samples Samples
Figure 7.2. Profiles of genes in C2 from each of the five E. coli datasets at different J values

0=04 0=0.3 0=0.2 0=0.1

Samples Samples Samples Samples
Figure 7.3. Profiles of genes in C3 from each of the five E. coli datasets at different 6 values

The horizontal axis of each of the sub-plots represents samples while the vertical axis represent
normalised expression values. The ¢ values, reflecting the tightness of the clusters, decrease from
the left to the right resulting in more genes being included in the clusters are lower tightness levels.
Each row of sub-plots represents one of the five datasets A to E described in Table 7.2.
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Another key observation in Figure 7.1 is that, considering the profiles of C1 at 6 = 0.9
in the dataset C, there are few genes that show very different profiles to the majority of the
genes in the cluster. The same observation applies to a single gene from that same cluster
in the dataset E, yet they are included within the same cluster. This is because those few
genes which lose their co-expression with the rest of the genes in the cluster in one dataset,
are still well co-expressed with them in the other four datasets. Hence their inclusion within

the same cluster. The same applies to some genes in Figure 7.2 and Figure 7.3.

Interestingly, the profiles of the clusters C1 and C2 consistently show reciprocal
profiles over the five datasets A to E. We have quantified this observation by calculating
the Pearson’s correlation values (p) between the average profiles of each pair of the three
clusters based on each one of the five datasets (Figure 7.4). Figure 7.4 shows that at four
out of five datasets, namely all but D, the average profiles of the clusters C1 and C2 show
strong negative correlation (p < -0.75). On the other hand, the correlation values for the
cluster pairs (C1, C3) and (C2, C3) show low absolute correlation values at all datasets with
the exception of the pair (C1, C3) at the single dataset D. A consistently negatively
correlated pair of subsets (clusters) of genes indicates that they may be regulated by a

common genetic regulator which when activates one subset of genes deactivates the other

subset.
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Figure 7.4. Pairwise Pearson’s correlation values (p) between the average profiles of the
pairs of clusters C1-C2, C1-C3, and C2-C3

The dashed black line marks the value p = -0.75. It can be seen that the clusters C1 and C2 have
very strong negative correlation values across the datasets in contrast to the other pairs of clusters,
namely (C1, C3) and (C2, C3), which do not show such pattern.
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7.3.2. Biological relevance

To investigate the biological relevance of the genes included in these clusters, we have
conducted Gene Ontology (GO) term enrichment analysis to the constituent genes of these
clusters. The Gene Ontology Consortium is a major bioinformatics initiative which assigns
the relevant terms out of a list of defined GO terms to the genes of different species based
on the evidence existing in the published literature (The Gene Ontology Consortium, 2013).
Three types of GO terms were defined by that project, namely biological process terms,
molecular function terms, and cellular component terms. The assignment of GO terms to

the genes is regularly updated as new research studies are published.

We have analysed the subsets of genes included in the clusters C1 and C2 at different
tightness levels (0 values) to identify the GO terms that are highly enriched in those clusters.
Because C1 and C2 are strongly negatively correlated, C3 loses all of its genes at a relatively
lower ¢ value (Table 7.2), and C3 is noisier than C1 and C2 (Figure 7.3), we have excluded
C3 from further biological analysis.

The most enriched biological processes in C1 and C2 at different 0 values are shown in
Table 7.3 and Table 7.4 respectively. It can be seen that C1 is highly enriched with
translation, which is the processes of translation and tRNA processing, which are involved
in producing new proteins. When this is observed while considering the dataset C for
example, it can be seen that C1 genes have high expression values at the first point, which
represents reference cells, while having down-regulated (low) values at the second and the
third points, which represent cells transformed with plasmids containing with NADH
oxidase and soluble ATPase respectively. This type of transformation lowers the levels of
the two important metabolic cofactors NADH and ATP respectively, and therefore lowers
the growth of the cells. It is well known that protein synthesis is repressed under poor growth
conditions in species ranging from bacteria (Barria, et al., 2013; Orelle, et al., 2013), to
fungi (Wade, et al., 2006), and even mice and humans (Shalgi, et al., 2013). Therefore, these
results resonate well with the existing literature. Genes involved in methylation, which is a
common process in living cells that adds a methyl group to a molecule, are also enriched in
this cluster; it is interesting to investigate the reason and consequences of this consistent co-
expression between significant numbers of genes involved in translation as well as
methylation. Although large numbers of genes involved in transport processes are included
in C1, they are not significantly enriched. This is because the number of genes known to
participate in this process in the background, i.e. the entire E. coli genome, is large

(Table 7.3).
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Process 0=0.9" 0=0.8" 0=0.7" 0=0.6" Back?
Translation 31431079 7(6.7x10%) 10 (6.7x10%) 19 (4.6x10°) 98
DNA repair 3(5.8%10%)  3(9.5x102)  8(1.2x10%) 13 (1.3x10%) 71
tRNA processing 1(2.1x107)  3(2.8x10%)  8(3.4x10%) 11 (1.5x10% 43
Transport 3(6.5¢101)  6(9.3x107) 13 (9.4x10") 46 (3.7x10") 611
Methylation 2(4.0x107)  3(64x107)  7(2.0x10%) 11 (3.0x10%) 60
Unknown process 5(5.2x107) 16 (2.7x10") 28 (4.2x10") 65 (4.0x10"") 880
All genes in the subset 21 61 120 283 3956

* The contents of the cells in these columns are in the format [number of genes (p-value)], where the p-value is
based on the hypergeometric distribution.
# Number of genes from the entire E. coli genome, which are associated with the corresponding process

In contrast to C1, the cluster C2 is highly enriched with transport genes, and more

specifically with the sub-process of carbohydrate transport, and even more specifically with
the transport of the carbohydrate maltose. It is also highly enriched with carbohydrate
metabolic processes, especially with the L-ascorbic acid catabolic process (Table 7.4). This
high consistency in co-expression, over multiple E. coli datasets from various conditions,
between the genes in this subset which is highly enriched with carbohydrate transport and
metabolism is an important observation. This indicates that the regulation machinery of the
processes dealing with the different carbohydrate nutrients may be global at the level of the

species regardless of the specific biological context.

Table 7.4. Most enriched biological processes in C2 at different § values

Process 0=0.8" 0=0.7" 0=0.6" 0=05" Back?
Transport 6(7.5%107) 18 (1.6x107) 32 (2.9x107) 50 (8.0x107) 611
Carbohydrate transport 3(9.5x10%) 11 (3.2x10%) 15(7.4x107) 21 (2.4x10®) 89
Maltose transport 0(1.0) 3(2.8x10%)  3(5.0x10%  4(5.7x10%) 5
Carbohydrate metabolic process 2 (1.4x10") 4 (1.2x107") 15 (1.1x10% 22 (7.5x10°) 133
L-ascorbic acid catabolic process 1 (2.0x10)  2(1.2x10%) 3 (2.0x10%)  4(1.2x10°) 4
Unknown process 3(8.6%101)  9(9.1x10") 30 (7.7x10) 51 (5.9x10") 880

All genes in the subset 20 57 149 234 3956

* The contents of the cells in these columns are in the format [number of genes (p-value)], where the p-value is based
on the hypergeometric distribution.

# Number of genes from the entire £. coli genome, which are associated with the corresponding process

7.3.3. Hypothesis for genes with previously unknown biological processes

Many genes included in the clusters C1 and C2 have not been associated with any known
biological process yet. We have investigated those genes to draw hypotheses that associate
some of them with potential processes. Although such hypotheses are speculative and
require biological functional experiments for them to be confirmed, their proposal based on

bioinformatics represents a focused starting point for guided biological studies.

The molecular function and the cellular component for most of the genes of unknown
biological processes in C1 and C2 are also unknown. Despite that, few genes of unknown
processes have been associated with known functions or components, which, when
scrutinised in tandem with our results, leads to very interesting hypotheses. The gene yegD,

which is included in C1 at the very tight case of 0 = 0.9, was associated with the molecular
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functions ATP binding and nucleotide binding, which makes it a candidate gene

participating in the DNA repair process with which C1 is enriched (Anon., 2014).

In the cluster C2 at 0 = 0.8, the gene ydhY, whose biological process and cellular
components are unknown, is associated with many molecular function terms including
electron carrier activity and iron-sulphur cluster binding. Such associations make ydhY a
candidate gene which participates in transport processes, with which C2 is enriched (Anon.,
2014; Partridge, et al., 2008). In C2 at 0 = 0.7, there are two other genes of interesting
observations, yhdU and aphA. The gene yhdU is integral to a membrane, and the gene aphA
is localised in the outer membrane-bounded periplasmic space, and is associated with the
molecular functions metal ion binding, cofactor binding, and hydrolase activity. Those

observations lend support to the idea of both genes being candidate transport genes.

These hypotheses, which relate some genes whose biological process terms are
unknown to their potential processes, serve as pilots for directed future biological functional

studies.

7.4. Conclusions

The Bi-CoPaM method is a recently proposed ensemble clustering method which allows
analysis of multiple datasets collectively, and generation of clusters that vary in tightness.
While clustering a set of genes, the Bi-CoPaM allows any single gene to be exclusively
assigned to a single cluster, which generates complementary clusters, or to be
simultaneously assigned to multiple clusters, which generate wide and overlapping clusters,
or not to be assigned to any of the clusters, which generates tight and focused clusters. By
applying the tight-clusters approach of the Bi-CoPaM to the genetic expression profiles of
a defined set of genes from multiple datasets, the subsets of genes consistently co-expressed
over these datasets are identified. In this paper, we have identified two main clusters with
that attribute, which have consistently negatively correlated expression profiles. The first
cluster is highly enriched with genes that participate in the biological processes of
translation and DNA repair while the second cluster is highly enriched with genes that
participate in transport processes. Based on biological analysis of our results, we have drawn
some hypotheses, relating some of the genes whose biological processes are unknown with
their potential processes. Biological researchers can use these hypotheses as bases for

focussed future studies.
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Chapter 8
Malarial Data Analysis

8.1. Introduction to malaria

Malaria is an infectious disease that is caused by parasites of species belonging to the genus
Plasmodium and carried by female mosquitoes from the genus Anopheles. Five Plasmodium
species have been reported as infectious to humans while other species infect other animals

such as rodents. Most human deaths are caused by the Plasmodium falciparum species.

As malaria is responsible for up to one million deaths annually, the medical relevance
of malarial research needs little further elaboration (World Health Organization (WHO),
2013). Furthermore, 40% of the world population are at risk of malarial infection in endemic
countries distributed over the Sub-Saharan Africa, the Amazon Basin, and South and South

East Asia (Hay, et al., 2009).

Plasmodium species are unicellular eukaryotes. However, their genomes and functions
of cellular organelles differ greatly from other known eukaryotes. Due to this, a lot of the
aspects of the molecular biology of them are poorly understood. The genome of Plasmodium
falciparum, which includes more than 5,300 genes, was completely sequenced in 2002

(Gardner, et al., 2002).

Plasmodium species have a very special and complex cycle; while being in the saliva
of the host mosquito, they are known as sporozoites. Sporozoites are transmitted to the blood
stream of the target human (or any other relevant animal) by a mosquito bite. Sporozoites
travel through the blood system until they invade the liver infecting the hepatocytes (liver
cells). Some Plasmodium species’ cells may enter a dormant stage in the liver, in which
they are known as hypnozoites, a stage which may last for up to 30 years. Whether they turn
into hypnozoites for a period of time or not, ultimately they divide and form a large number

of merozoites, which burst from the liver cells and flee into the blood stream.
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Merozoites are infectious to erythrocytes (red blood cells (RBCs)) as they invade them,
reproduce asexually therein producing more merozoites, explode the erythrocytes, and flee
again into the blood stream to invade more erythrocytes. This sub-cycle of erythrocyte
invasion and merozoites’ asexual reproduction is known as the intra-erythropoietic

developmental cycle (IDC), or the erythropoietic stages, or simply the blood stages.

Some merozoites decide not to invade more erythrocytes; they rather differentiate to
the sexual form of male or female gametocytes. Those gametocytes are ingested by the
mosquito through blood feeding. In the mosquito, gametocytes develop further to male or
female gametes which form zygotes through sexual fusion. Zygotes develop to ookinetes
which, in their turn, produce sporozoites. This lands the cycle at the first stage which we

discussed, allowing for a new cycle to start thereinafter.

In order to commence my research in malaria, I have performed a preliminary analysis
of two well-known blood-stage malarial datasets by using the Bi-CoPaM method (UNCLES
type A) and the M-N scatter plots. The objective is to evaluate the ability of the method to
obtain results which resonate with the literature as well as to experience real analysis in this
field by actual practice. Each one of the two datasets, which were produced by Boztech and
colleagues (Bozdech, et al., 2003) and Le Roch and colleagues (Le Roch, et al., 2003),
measures the expression of the Plasmodium falciparum parasite’s genome over a single

complete intra-erythropoietic developmental cycle (IDC).

8.2. Experimental design

The Bi-CoPaM method was applied to the two datasets while adopting the initial clustering
methods k-means with the Kauffman’s deterministic initialisation (Pena, et al., 1999),
hierarchical clustering (HC) with Ward’s linkage (Eisen, et al., 1998), and self-organising
maps (SOMs) (Xiao, et al., 2003), and while considering the K values of 8, 9, 10, 16, 18,
24, 30, and 40. The datasets were normalised by quantile normalisation and then by making
each gene’s profile with a zero-mean and a unity standard deviation. DTB binarisation was
employed with 0 values ranging from zero to unity with steps of 0.1. Finally, the resulting

clusters were exposed to M-N scatter plots for cluster selection.

8.3. Results

The distances from the top-left corner of the M-N plot for the first 30 clusters are plotted in
Figure 8.1. It is clear in here that the first nine clusters have significantly lower distances,

and therefore better quality, compared to the rest of the clusters.
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Figure 8.1. M-N scatter plot distances corner for the first 30 malarial clusters

Given that the M-N plots suggest that there are nine key clusters of consistently co-
expressed genes in those two datasets, a closer look at the selected nine clusters has been
considered. The average expression profiles of those clusters in each of the two datasets as
well as the most enriched GO process terms in them are presented in Figure 8.2. It is clearly
observed in this Figure that the nine clusters show a cascade of periodic profiles each of
which has a single peak at one of the IDC cycle’s stages, with general agreement on that
between both datasets. The nine clusters were labelled as C1 to C9 after re-ordering in

accordance to their peak times in the IDC cycle.

8.4. Discussion and conclusions

The findings of this preliminary analysis highly agree with previous findings regarding the
periodicity in the Plasmodium’s gene transcription over blood-stage cycles (Bozdech, et al.,
2003; Le Roch, et al., 2003). Despite the intensive analysis of these parasites in the blood
stages, expression in other stages is still not as clearly understood (Kooij, et al., 2006).
Nonetheless, large-scale datasets are becoming more available with an increasing pace of
generation for multiple human and rodent Plasmodium species and for blood- and non-

blood-stages (Kooij, et al., 2006; Otto, et al., 2014).

This preliminary analysis demonstrates the adopted computational framework’s
applicability to malarial datasets and is an evidence that there is a great potential in applying
this framework to more existing and emerging datasets from different stages and different
Plasmodium species collectively to advance our understanding of the molecular biology of

this parasite.
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Enriched Gene Ontology (GO)
biological process terms with p-values

Protein phosphorylation (2.0x10-3)

Gene expression (6.9x1019)
RNA processing (2.9x10)

Translation (4.2x10732)

Protein folding (4.8x10)
Protein targeting to mitochondrion (5.5x104)
Mitochondrial transport (1.2x1073)

No significantly enriched terms

DNA replication (4.3x107)
DNA metabolic process (3.9x107)
Proteolysis (8.5x103)

Phospholipid metabolic process (6.0x103)
Entry into host (6.8x103)

Entry into host cell (8.3x10-)
Locomotion (4.3x104)
Phosphorylation (8.6x103)

No significantly enriched terms

Figure 8.2. Expression profiles and GO terms of the nine malarial clusters found by
preliminary Bi-CoPaM analysis

The average expression profiles of the nine clusters in each one of the two datasets are shown in
nine rows of sub-plots, while the most enriched biological process GO terms with their p-values
(p-value < 0.001) are shown in the third column of this grid of sub-plots. The horizontal axis of the
sub-plots represent time while the vertical axis represents normalised expression values. The ranges
of time points which represent the different IDC developmental stages (ring, trophozoite, schizont,
and merozoite) are illustrated with labels below the grid of sub-plots.
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Chapter 9

Summary, Conclusions, and Future Work

This thesis comprises advancements in the computational analysis of multiple high-
throughput biological, mainly gene expression, datasets collectively. These advancements
cover both the methodological and the application sides by the proposal of a novel suite of
computational methods as well as elucidating important insights into various biological

aspects by the application of such methods to real datasets.

The focal method in the proposed suite of methods is the UNification of CLustering
results from multiple datasets by using External Specifications (UNCLES) method (Abu-
Jamous, et al., 2015c¢). This method mines multiple gene expression datasets collectively in
order to identify the subsets of co-expressed genes (genes with high correlation between
their genetic expression profiles) consistently over the subject datasets while adhering to
some external specifications. Two types of external specifications have been proposed here;
type A mines for the genes that are consistently co-expressed in all of the given datasets
while type B mines for the genes that are consistently co-expressed in one subset of datasets
while being poorly co-expressed in another subset of datasets. An earlier development of
UNCLES is the Binarisation of Consensus Partition Matrices (Bi-CoPaM) method (Abu-
Jamous, et al., 2013a), which is equivalent to UNCLES’ type A.

Amongst the key aspects of the Bi-CoPaM and the UNCLES methods is that they have
tuning parameters which allow for unconventional clustering results to be formed. For
instance, while clustering a set of genes, any gene may have one of three eventualities; it
may be exclusively assigned to a single cluster, as conventional clustering methods do, or
it may be simultaneously assigned to multiple clusters, or it may not be assigned to any of
the clusters at all. As for the clusters, they may be conventional complementary clusters, or
tight and focused clusters which leave many genes unassigned to any cluster, or wide and
overlapping clusters. Amongst the benefits of such capability is the ability to inject genome-

wide datasets (datasets including the entire unfiltered set of genes) into the method without
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filtering, and then to tighten the resulting clusters to be focused while expelling many genes
outside all of the clusters. By this, the method applies the filtering step implicitly while
clustering, and eventually meets the biological fact that most of the genes in an organism’s
genome are expected to be irrelevant to any single given biological context. Most of the

experiments detailed in this thesis have such setup and demonstrate its applicability.

UNCLES and the Bi-CoPaM require various parameters to be set such as the number
of clusters (K) and the tuning parameters ¢ and (6%, &). Also, the results of these methods
need to be validated. In order to address these aspects, a cluster validation and selection
technique is proposed in this thesis based on M-N scatter plots (Abu-Jamous, et al., 2014b;
Abu-Jamous, et al., 2015¢). This technique favours those clusters which include higher
numbers of genes (V) while maintaining lower levels of dispersion as measured by a mean-
squared error-based (MSE-based) metric (M). The UNCLES method assisted by the M-N
scatter plots technique represents a complete framework of consensus clustering for
multiple datasets without the need to set any of the key parameters manually; in other words,

it is a parameter-free framework.

In order to test and validate this framework, artificial datasets which meet relevant
properties were synthesised by adopting a new approach of expression data synthesis (Abu-
Jamous, et al., 2015c). This approach produces datasets with a known-ground truth, which
is a desirable feature of artificial datasets rendering them as suitable means to test and
validate other methods; yet this is not the unique feature of the proposed approach compared
to other approaches of data synthesis; rather, the unique feature is that the values within the
artificial datasets are borrowed directly from real datasets overcoming the issue of the

faithfulness of the synthetic datasets in representing real data properties.

Another technique of cluster assessment and validation has been proposed in this work,
namely the F-P scatter plots technique, which validates the results of clustering while taking
the known ground-truth as a reference (Abu-Jamous, et al., 2015¢). This technique has been
employed while testing the UNCLES method and the M-N plots technique over the
synthetic datasets for which the ground-truth is known and has shown that the UNCLES
method combined with M-N plots can find those clusters which highly match the ground-
truth.

The mature suite of methods, or partially developed versions of it, has been applied to
various biological contexts revealing several biological findings and insights. Two major
applications to yeast datasets were conducted and published; the first of them revealed

important insights into the poorly understood yeast gene CMR1 and its relation to cell-cycle
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and DNA metabolism genes by analysing two yeast cell-cycle datasets (Abu-Jamous, et al.,
2013b). On the other hand, the second experiment scrutinised forty yeast gene expression
datasets from various contexts concluding that the well-known subset of ribosome
biogenesis genes and a novel subset of genes are consistently co-expressed over all of the
datasets and, more surprisingly, are consistently oppositely expressed. Hypotheses with
respect to the functions and the regulation of both subsets of genes were drawn, mainly
regarding the novel subset, which was named as the anti-phase with ribosome biogenesis

(APha-RiB) subset of genes (Abu-Jamous, et al., 2014a).

Five Escherichia coli bacterial datasets from different contexts were mined by the Bi-
CoPaM method identifying two subsets of genes as consistently co-expressed over all of the
five datasets. Biological hypotheses regarding the function and regulation of those subsets

were drawn and published (Abu-Jamous, et al., 2015b).

While collaborating with the group of Professor David Roberts at the University of
Oxford, which is a research group focusing on the biomedicine of the human blood, eight
human and murine blood gene expression datasets were analysed by the Bi-CoPaM method.
Those datasets were all generated in the context of red blood cells production
(erythropoiesis). Five focused subsets of genes, out of the entire human or murine genome,
were identified as consistently co-expressed over all of the eight datasets. Interestingly,
these five clusters show peak expression values at different stages of development
throughout the erythropoiesis process. When this observation was added to the analysis of
the regulation and functions of the clusters, several hypotheses were drawn. These
hypotheses and other related ones are under investigation with our collaborators in order to

take this research forward.

Finally, the UNCLES method with the M-N plots were applied to two popular malarial
datasets as a preliminary experiment. The discovered nine clusters showed a perfect
temporal cascade of peaks of expression throughout the blood stages of the malarial
parasites. Alongside the analysis of the functions of the genes in those nine clusters, this
preliminary experiment demonstrated the applicability of this suite of methods to malarial
datasets, and represents a seed for my fellowship/grant applications as well as my

prospective collaborations.

The current suite of methods does not answer all of the possible questions with respect
to the collective analysis of multiple high-throughput biological datasets. For instance, other
types of datasets, such as proteomic, glycomic, and metabolomic datasets exist abundantly.

Moreover, more investigations of the efficiency and reliability of the methods can be
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conducted. Such concerns constitute subjects for my future work at the side of methods’
design and development. As for the applications, many other areas in biology and
biomedicine have produced a great deal of datasets, such as cancer research, and can

represent targets for future applications of my methods.

As the future of this research is considered, the focus will be on the analysis of the
malaria parasite. Malaria causes up to one million deaths annually and about 40% of the

population of the earth live in malaria endemic regions.

Taken together, a mature suite of computational methods with the capability to analyse
collectively, validate, and simulate multiple high-throughput gene expression datasets have
been described in this thesis alongside a set of real applications to yeast, bacterial, human
and murine blood, and malarial datasets. Despite filling many gaps and elucidating many
poorly understood aspects in research, this work has opened the eyes to more questions and
potential future work, which keeps the wheels of bioinformatic research and personal career

development turning.
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Appendix I

Introduction to the Molecular Biology of the
Cell

I.A. The cell

Cells are the building blocks of organisms. A cell is a membrane-bound compartment
crowded with different types of large and small molecules performing various series of
biochemical interactions in order to grow, reproduce, and maintain its integrity. If the cell
contains a subcellular membrane-bounded compartment, known as the nucleus, as well as
other subcellular organelles (membrane-bounded compartments), it is a eukaryotic cell
(Figure 1.1 (a)). In contrast, if the cell lacks a real nucleus, it is a prokaryotic cell (Figure 1.1
(b)). Eukaryotic organisms include animals, plants, fungi, and protists, while prokaryotes

include bacteria and archaea.

(a) (b)
Eukaryote Prokaryote
Endoplasmic reticulum Capsule

Nucleoid
(genetic material not
membrane-bounded)

Nucleus

Nuclear pore Ribosome

Nucleolus

Flagellum

Chloroplasts Cell wall

Cell membrane

Nuclear membrane (plasma membrane)

(envelope)
Mitochondria

Figure L.1. Illustration of (a) eukaryotic and (b) prokaryotic cells

A more detailed demonstration of a typical eukaryotic cell is shown in Figure 1.2. The
cellular membrane protects the interior of the cell and allows for controlled exchange of

materials with the extracellular space by the membrane transport proteins embedded in it.
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Outside the cell, there is the extracellular matrix, which is a scaffold on which the cells of
a multicellular organism adhere, and inside the cell there is a fluid known as the cytosol
which forms the environment for the biochemical interactions to take place. The cell also
contains solid filaments, known as the cytoskeleton, which give the cell its shape and

strength, and play roles in component transportation.
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transport protein S
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Figure L1.2. A typical eukaryotic cell and its main components

The membrane-bounded nucleus in eukaryotes, or the non-membrane bounded
nucleoid region in prokaryotes, contains the genetic material, which encodes the complete
set of information required by the cell for growth, maintenance, and reproduction. The way

in which this information is decoded and exploited will be detailed later in this Appendix.

Many types of subcellular organelles are found in cells. For instance, the mitochondrion
is the energy factory for cell where sugars are decomposed to produce energy. Mitochondria
also participate in the synthesis of some key molecular such as haem. Other organelles
include the vesicles, which are membrane-bounded bubbles that actively transport
molecules within the cell and participate in their export and import from and into the cell.
Ribosomes, with the assistance of the rough endoplasmic reticulum, produce proteins, the
smooth endoplasmic reticulum produces lipids, and Golgi apparatus produces
carbohydrates. In plants and fungi, chloroplasts intake carbon dioxide, water, and sun light
energy to produce oxygen and sugars. Moreover, plants possess a cell wall, which a tough
wall of polysaccharides like cellulose. Chloroplasts and the cell wall are not illustrated in
Figure 1.2. Other types of subcellular organelles include the lysosomes, peroxisomes, and

the centrosome.
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Understanding the physiology of the cell is an important aspect, but a similarly
important, or even a more important, aspect for bioinformaticians is to understand the
different types of large molecules within the cell, their general functions, and the genetic
programmes which control the cellular processes by decoding the information encoded in

the genetic material; this is the topic of the rest of this Appendix.

1.B. Proteins

Before delving into the details of the genetic information encoding, decoding, and
transmission, it is worth being briefed first on the most abundant class of large molecules

in the cell, namely, the proteins.

Proteins conduct most of the biological processes within the cell. A protein is long
linear chain of units known as amino acids (Figure 1.3). Since there are 20 different types
of amino acids, a protein can be considered as a linear text written in a 20-character
language. In fact, each of the amino acids is denoted by a unique name, or a three-letter

symbol, or a single-letter symbol (Table 1.1).

Amino acids

e 000006000 0e

\/’—’/

Polypeptide (protein)

Figure 1.3. The protein is a polypeptide, that is, a chain of joint amino acids

Table I.1. The twenty amino acids.

Symbol Name Charge / polarity Symbol Name Charge / polarity
K (Lys) Lysine Basic A (Ala) Alanine Nonpolar
R (Arg) Arginine Basic V (Val) Valine Nonpolar
H (His) Histidine Basic L (Leu) Leucine Nonpolar
D (Asp) Aspartic acid Acidic I (Ile) Isoleucine Nonpolar
E (Glu) Glutamic acid Acidic P (Pro) Proline Nonpolar
N (Asn) Asparagine Uncharged polar F (Phe) Phenylalanine ~ Nonpolar
Q (Gln) Glutamine Uncharged polar M (Met) Methionine Nonpolar
S (Ser) Serine Uncharged polar W (Trp) Tryptophan Nonpolar
T (Thr) Threonine Uncharged polar G (Gly) Glycine Nonpolar
Y (Tyr) Tyrosine Uncharged polar C (Cys) Cysteine Nonpolar

Owing to the attractive and repulsive forces between differently and similarly charged
amino acids in a protein’s linear chain, the protein folds upon itself to its most stable

structure in the 3-D space. Therefore, the differences in the sequences of amino acids
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between different types of proteins lead to differences in their final 3-D shapes, and

consequently to differences in their physical and chemical properties.

Lengths of proteins vary widely. Neidigh and colleagues were able to design a stable
20-amino acid-length protein-like polypeptide (Neidigh, et al., 2002). On the other hand,
the largest known protein, with more than 38,000 amino acids, is the giant protein titin,
which functions as a molecular spring contributing to the elasticity of muscles in humans
(Bang, et al., 2001; Opitz, et al., 2003). The average length of proteins in the eukaryote
Saccharomyces cerevisiae (budding yeast) is about 400 to 450 amino acids (Harrison, et al.,
2003; Brocchieri & Karlin, 2005). In contrast, bacteria and archaea have average protein

lengths of about 250 to 300 amino acids (Brocchieri & Karlin, 2005).

As for the number of different proteins in species, it is between 20,000 and 25,000 in
humans (Collins, et al., 2004), ~6,300 in budding yeast, ~26,000 in the plant Arabidopsis
thaliana (thale cress), ~4,300 in the Escherichia coli bacteria, and less than 500 in the
Mycoplasma genitalium bacteria (Alberts, et al., 2008). These numbers show the large

variation between species in terms of the number of proteins as well as their average length.

I.C. Central dogma of molecular biology

The central dogma of molecular biology is the set of rules which control the flow of
information within the cells. Genetic information is encoded in the large deoxyribonucleic
acid (DNA) molecule within the nucleus or the nucleoid of the cell. This information is
sufficient to know, amongst other things, how to produce each single type of proteins, when
it should be produced, and with which amounts. However, cells do not produce proteins
directly by using the DNA molecules; they rather transcribe (copy) patches of this
information from the DNA to be encoded in the form of ribonucleic acid (RNA) molecules,
which are translated afterwards into proteins (Figure 1.4). RNA molecules in reality are

mere copies of patches of the DNA.

DNA RNA
replication replication

/“\

transcription L I translation

DNA P RNA P Protein
&> /7

~ ” . .
T — e= == == Only in special cases

reverse transcription

Figure 1.4. Overview of the central dogma of molecular biology: information flow in cells
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All of the cells within a multicellular organism, like a human individual, hold identical
copies of the DNA molecule. This is because of the fact that all of the cells within that
organism were in reality produced by series of self-replication of a single initial ‘general-
purpose’ cell known as the zygote. However, at certain stages of cells’ replication, some
cells differentiate to become specialised in specific functions such as skin cells, bone cells,
blood cells, retinal cells, and the like. Indeed, the DNA 1is faithfully replicated while
replicating a cell in order to provide each of the daughter cells an identical copy of the
mother cell’s DNA (Figure 1.4; DNA replication). Other uncommonly occurring directions
of information flow in cells include reverse transcription, which produces a DNA molecule
based on an RNA molecule, and RNA replication, which produces a new identical copy of

an RNA molecule (Figure 1.4).

I.D. DNA

The DNA encodes information in the form of a linear chain of nucleobases, or simply,
bases. Having four types of bases in the DNA makes it equivalent to a four-letter linear text.
The four bases are the adenine (A), thymine (T), guanine (G), and cytosine (C). For example,
the human genome, that is the human DNA molecule, consists of more than three billion
bases. The sequences of those four bases are chemically formed as bases protruding from a

homogenous sugar-phosphate backbone (Figure 1.5 (a)).

Because of their physical and chemical properties, the bases A and T can form a weak
hydrogen bond when facing each other; the bases G and C similarly do. Consequently, a
DNA chain of bases attracts the formation of a complementary chain of bases where each
base in the complementary chain forms a hydrogen bond with its corresponding base in the
original chain. Thus, the two chains of DNA bases, known as the two strands, hold identical
information but in a complementary manner (Figure .5 (b)). Although the hydrogen bond
is a weak bond compared to the phosphodiester bond which joins any two successive bases
in a single strand connecting (the yellow triangles in Figure 1.5 (a) and (b)), the large number
of hydrogen bonds between the pairs of bases in the two strands form a stable double-
stranded DNA molecule. In reality, the two-strands do not take a plain structure as in
Figure 1.5 (b); they rather twist to form a double helix structure (Figure 1.5 (c)), at which the
DNA is most stable.



(a) single strand of DNA

gsugar—phusphate backbone

nucleobases
(b) Double-stranded DNA

(c) DNA double helix

sugar-phosphate
minor grove backbones

major grove bases
Figure L1.5. The DNA molecule

(a) single-stranded DNA (b) double-stranded DNA; (c) the DNA double helix.
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The RNA molecules are chains of four nucleobases with the same chemical structure of the

DNA molecules except for the following differences:

1. The sugar component in the sugar-phosphate backbone is slightly different; it is a

ribose instead of a deoxyribose. Hence the different name.

2. The uracil (U) nucleobase is used instead of thymine (T).

3. It is stable in its single-stranded form and therefore does not form a second

complementary strand.

Having said that, transcription is the process of producing an RNA molecule with a

sequence identical to a patch of the DNA sequence; indeed while replacing T bases with U

bases.
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Various types of RNA molecules exist. The most notable one is the messenger RNA
(mRNA), which represents a mere message carrying the information required to build a
single type of proteins. Translation is the process of synthesising a protein molecule based

on the information provided by an mRNA molecule.

Other types of RNA molecules are collectively known as functional RNAs, and they
perform several cellular functions whilst staying in their RNA forms without being
translated into proteins. Ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), microRNAs
(miRNAs), small interfering RNAs (siRNAs), small nuclear RNAs (snRNAs), and small
nucleolar RNAs (snoRNAs) are amongst the classes of functional RNAs.

L.F. Genes

The gene is that patch of the DNA molecule which is transcribed into a single RNA
molecule. The protein-coding gene is the gene which is transcribed to an mRNA; in other
words, the protein-coding gene is that DNA sequence which holds the required information
to synthesise a single type of proteins. Non-protein-coding genes are those which are

transcribed into functional RNAs. Certainly, most of the genes are protein-coding.

I.G. The genetic code

Again, a protein-coding gene, is a DNA sequence which encodes the sequence of a single
type of proteins. In order to encode 20 different types of amino acids by using four different
types of nucleobases, triplets of bases are required, and this is how it is in reality. A triplet
of bases, that is, three consecutive bases, which is known as a codon, can encode for 43 =
64 different symbols. The genetic code is the mapping between the 64 different codons and
the 20 different amino acids, and is shown in Table 1.2. Note that the code in this Table
considers the RNA base U instead of the DNA base T, which are equivalent.

It be clearly seen in this Table that there is redundancy, that is, some different codons
are mapped to the same target amino acid. For example, the codons UUA and CUG map to
the same amino acid, which is the leucine (L). Some codons encode for punctuation marks,

to indicate where translation starts and where it ends.

For example, if an mRNA sequence is ‘AUGUCACAA...’, it will be read in triplets
and therefore will be translated to the protein sequence ‘MSQ...°, where ‘AUG’ is the code
for ‘M’, ‘UCA’ is the code for ‘S’, and ‘CAA’ is the code for ‘Q’.
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Table 1.2. The genetic code

Mapping the three-base mRNA codons to their corresponding amino acids

First base Second base Third base
(5’ end) U C A G (3’ end)

F S Y C U

U F S Y C C

L S STOP STOP A

L S STOP W G

L P H R U

C L P H R C

L 3 Q R A

L P Q R G

1 T N S U

A 1 T N S C

1 T K R A

M + START T K R G

\Y A D G U

G \Y A D G C

\Y A E G A

\Y A E G G

I.H. Transcription and transcriptional regulation

Transcription, or gene expression, is the process of synthesising an RNA molecule by
copying a patch of a DNA sequence, that is, a gene. A machinery composed mainly of a
large protein complex known as the RNA polymerase performs transcription by sliding over
the DNA molecule at the required site and synthesising an RNA molecule by copying one
base at a time. However, the DNA molecule is normally folded and packed by various
proteins and is not straightforwardly accessible by RNA polymerases. Rather access to any
specific gene is provided to RNA polymerases only when it is due for this gene to be

transcribed and only for the required period of time.

The processes which control the expression, that is, the transcription, of genes is known
as transcriptional regulation or gene expression regulation. This process is mainly
conducted by proteins known as transcription factors (TFs) whose role is influence the
amount of expression of genes by activation or repression, that is, by positive regulation or

negative regulation, respectively.

Gene-specific TFs are able to detect specific DNA short sequences, known as motifs,
which are found in the upstream sequences of a specific gene or group of genes. For
example, the binding site of the SBF transcription factor is the motif ‘CGCGAAAA’ (Iyer,
et al., 2001) (Figure 1.6). By such types of TF-binding, the TF either activates transcription
of the corresponding gene by recruiting RNA polymerases to the site and stabilising them,
or represses transcription by blocking RNA polymerases from binding to the gene’s

sequence and consequently transcribing it.
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binds to

........ CGCGAAAA -------| GENE |-----

DNA sequence

Figure 1.6. The transcription factor SBF recognises and binds to its binding site
‘CGCGAAAA’ in a gene’s upstream sequence

Different TFs may affect each while co-existing near the gene. For example, a TF may
bind to a motif and blocks another TF from binding to that same motif. If the second TF is
an activator of the corresponding gene, the first TF will be in reality nullifying the second
TF’s function. In this case, the condition for the transcription of that gene will include the

existence of the second TF and the absence of the first one.

Moreover, the TFs themselves are proteins and protein complexes (multiple proteins
assembled to form a single more complex unit). Therefore, TFs are products of genes; in
other words, they are generated by the translation of mRNA molecules transcribed from
genes. Thus, there are some TFs which can activate or repress the expression of those genes
whose products are other TFs, or even the regulating TFs themselves (self-regulation). This
in reality forms networks of transcriptional regulation. One example of such feedback loops
is when a gene’s product is a TF which negatively regulates itself; as this gene is transcribed
and consequently translated, its product starts to increase in numbers; this product thereafter
represses its own producing gene in order to halt its production; when this leads to a
significant decrease in the numbers of this gene’s product, that repression is released and

the gene is allowed again to be transcribed to generate, again, more of its products.

Another notable information here is the fact that it is common to find that many genes
have in their upstream sequences the same TF’s binding site. This results in the phenomenon
of co-regulation, where multiple genes are regulated similarly by the same TF or
transcriptional regulatory machinery leading them to have similar expression profiles, that
is, their expression levels go up and down synchronously. This is usually the case when the
products of a group of genes work together in the same biological process. Reading this
phenomenon reversely, observing that a group of genes are co-expressed, that is, they have
similar expression profiles, indicates that they may be co-regulated, that is, regulated by the
same machinery. Observing that the upstream sequences of these genes also have some

similar motifs strengthen hypothesising that they are actually co-regulated.
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I.I. Reference for more details

For more details regarding the physiology of the cell (the roles of the different subcellular
organelles), as well as the central dogma of molecular biology (genes, transcription,
translation, gene expression regulation, and related aspects), the reader is encouraged to
refer to our Chapters 3 and 4 in our book Integrative Cluster Analysis in Bioinformatics
(Abu-Jamous, et al., 2015a). These chapters were authored to brief non-specialists in

essentials of molecular biology.
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Appendix I
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activation, 127
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Affymetrix, 70
agglomerative hierarchical. See HC
alpha dataset, 63
alpha-30 dataset, 63
alpha-38 dataset, 63
amino acid, 122, 126
anaemia, 89
Anopheles, 112
anti-phase with ribosome biogenesis. See
APha-RiB
APha-RiB, 6, 70—87
regulation, 83
APha-RiB regulon, 79
apoptosis, 99
Arabidopsis thaliana. See thale cress
asexual reproduction, 62, 113
average linkage, 20, 64
average Spearman’s rho (ASR), 24
Baker's yeast. See yeast
balls algorithm, 18
base. See nucleobase
basophilic erythroblast, 96
Bayesian Plaid biclustering, 26
best-of-k, 18
BFU-E, 88, 89, 97
biclustering, 22—-26, 28, 58
Bi-CoPaM, 4, 36, 64, 70, 91, 105
bimax, 24, 58
BiMine, 24
binarisation, 41
DTB. See DTB binarisation
IB. See IB binarisation
MVB. See MVB binarisation
TB. See TB binarisation
UB. See UB binarisation

VTB. See VTB binarisation

binarisation of consensus partition matrices.
See Bi-CoPaM

bioinformatics, 1

biological network, 79

bipartite spectral graph partitioning. See
BSGP

blood coagulation, 99

BSGP, 58

Budding yeast. See yeast

CC biclustering, 22, 23, 58

CC-pivot, 18

cdc-15 dataset, 63

cdc-28 dataset, 63

cell, 120-22

cell division. See mitosis

cell fusion, 62

cell-cycle. See yeast:cell-cycle

cell-cycle arrest, 89, 98

cellular membrane, 120

central dogma of molecular biology, 123-24

centrosome, 121

CFU-E, 89, 96

Cheng and Church biclustering. See CC
biclustering

chloroplast, 121

cluster-based similarity partitioning
algorithm. See CSPA

cluster-cluster (C-C) comparison, 17, 19

clustering, 13

CMonkey biclustering, 26

CMR1 gene, 6, 63, 67

COALESCE, 28

co-association matrix, 20, 21

codon, 126

complete linkage, 64

consensus clustering, 16—21, 26



CoPaM, 40, 64, 71, 91
co-regulation, 128
correlation-maximisation biclustering, 22, 24
coupled two-way clustering. See CTWC
CSPA, 21
CTWC, 25
cytosine, 124
cytoskeleton, 121
cytosol, 121
dendogram, 21
deoxyribonucleic acid. See DNA
deoxyribose, 125
difference threshold binarisation. See DTB
binarisation
differentiation, 88
DNA, 62,124
binding, 67
damage, 84
double helix, 124
metabolism, 15, 67
recombination, 67
repair, 67,110
replication, 67, 124
strand, 124
DNA polymerase, 69
dormant stage, 112
DREME tool, 15
DTB binarisation, 42, 64, 71, 91, 106
E. coli. See Escherichia coli
EM, 20
endoplasmic reticulum, 121
ensemble clustering, 56
enucleation, 89
erythroblast, 96
erythrocyte, 88, 89, 113
erythropoiesis, 7, 88—104
Escherichia coli, 7, 105-11, 123
eukaryote, 61, 112, 120
evidence accumulation, 20
expectation minimisation. See EM
extracellular matrix, 121
FLOC biclustering, 58
F-P scatter plots, 5, 47
functional RNA, 126
fuzzy clustering, 13
G1 stage, 62, 65
G1/S checkpoint, 6, 62, 65, 69
G2 stage, 62, 65
G2/M checkpoint, 62
gamete, 113
gametocyte, 113
GATA-1 transcription factor, 101, 102
gene, 126
gene expression, 12, 127
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gene expression data, 12

gene expression data synthesis, 6, 49, 54

Gene Ontology (GO), 51

GeneMANIA tool, 79

genetic code, 126

genetic interaction, 80

genetic material, 121

genome, 1

GEO, 71, 90, 94

glycome, 1

GO term analysis, 51, 77, 97, 109

Golgi apparatus, 121

graph-based consensus clustering, 21

growth conditions, 63, 74, 109

guanine, 124

haem biosynthesis, 89, 98

haematopoietic stem cell. See HSC

haemoglobin, 89

HC, 13, 21, 27, 56, 64, 71,91, 106, 113

hepatocyte, 112

HGPA, 21

hierarchical clustering. See HC

histone, 67

HMETIS, 21

HSC, 88, 96

hydrogen bond, 124

hypergeometric distribution, 47

hypergraph partitioning algorithm. See
HGPA

hypergraph partitioning package. See
HMETIS

hypnozoite, 112

IB binarisation, 43, 65

information theory-based consensus
clustering metric, 18

information-based clustering, 13

interrelated two-way clustering. See ITWC

intersection binarisation. See IB binarisation

intra-erythropoietic developmental cycle.
See malaria:IDC

ITWC, 25

Jaccard measure, 19

Kauffman’s initialisation, 14, 56, 71, 106,
113

k-means, 13, 27, 56, 64, 71, 91, 106, 113

Ku complex, 67

large average submatrices. See LAS

LAS, 58

liver cell. See hepatocyte

locally weighted scatter plot smoothing. See
lowess

lowess, 34

LRF transcription factor, 101

lymphocyte, 88



lysosome, 121

M stage, 62, 65

M/G1 transition, 63

MA plot, 34

malaria, 7, 112-15
blood stages. See malaria:IDC
endemic regions, 112
erythropoietic stages. See malaria:IDC
IDC, 7,113,114

maximum value binarisation. See MVB
binarisation

MBF complex, 69

Mbp1-Swi6, 15

MCB motif, 15

MCLA, 19

mean squared error. See MISE

mean-squared residue (MSR), 23

member-in-cluster (MIC) voting, 17, 19

member-member (M-M) co-occurrence, 17,
20

MEME tool, 53, 75, 76

merozoite, 112

messenger RNA. See mRNA

metabolome, 1

meta-clustering. See MCLA

methylation, 109

MIAME, 33

microarray, 33

microRNA. See miRNA

min-max relabelling, 38

min-min relabelling, 38, 71

Mirkin distance, 17

miRNA, 126

mitochondrion, 89, 121

mitosis, 62

mixture model-based consensus clustering,
20

M-N scatter plots, 5, 45, 54, 113

mosquito, 112

motif, 15, 75, 127

mMRNA, 62, 126

MSE, 45, 72, 92

Multiple Em for Motif Elucitation. See MEME
tool

MVB binarisation, 41, 65

Mycoplasma genitalium, 123

myelodysplasia, 89

myeloid, 88

myeloproliferative diseases, 89

NCBI, 90

non-protein-coding gene, 126

non-specific hybridisation, 32

normalisation, 32

nucleobase, 124
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nucleoid, 121
nucleus, 120
omics, 1
orthochromatic erythrocyte, 97
oxidative stress, 78, 84
PAC motif, 75
PAINT tool, 99
PAM, 27
partition-partition (P-P) comparison, 16, 17
PCA, 27
peroxisome, 121
phosphodiester bond, 124
phosphorylation, 98
Pick-a-cluster, 18
PKA signalling pathway, 84
Plaid biclustering, 25
Plasmodium, 112
cycle, 112-13
Plasmodium falciparum, 112
platelet, 88
polychromatic erythroblast, 96
polypeptide, 122
Princeton University GO tool, 52
probabilistic and generative biclustering, 22,
25
pro-erythroblasts (Pro-E), 96
progenitor, 88
prokaryote, 120
proliferation, 88, 89, 98
protein, 62, 122-23
protein folding, 122
protein synthesis, 109
protein ubiquitination, 98
protein-coding gene, 126
protein-protein interaction, 81
proteome, 1
guantile normalisation, 33, 71, 91, 113
RBC, 88, 89
red blood cell. See RBC
relabelling, 19, 38
relabelling and voting, 19, 56
replication factor A (RPA), 67
repression, 127
resampling-based consensus clustering, 21,
26
reticulocyte, 89
reverse transcription, 124
ribonucleic acid. See RNA
ribose, 125
ribosomal RNA. See rRNA
ribosome, 62,121
ribosome biogenesis, 6, 63, 78
RNA, 62, 125
RNA polymerase, 67, 127



RNA replication, 124

ROBA biclustering, 24, 28

RRB regulation, 83

RRB regulon, 79

rRNA, 126

rRNA processing, 78

RRPE motif, 75

S stage, 15, 62, 65

Saccharomyces cerevisiae. See yeast

Saccharomyces Genome Database. See SGD

SBF transcription factor, 127

self-organising maps. See SOMs

self-organising oscillator networks. See
SOON

self-regulation, 128

self-renewal, 88

sexual reproduction, 62

SGD, 52

signal transduction, 99

single linkage, 20

siRNA, 126

small interfering RNA. See siRNA

small nuclear RNA. See snRNA

small nucleolar RNA. See snoRNA

snoRNA, 126

snRNA, 126

SOMs, 13, 27, 56, 64,71, 91, 106, 113

SOON, 13, 64

spectral biclustering, 23, 58

sporozoite, 112

stem cell, 88

STRE element, 77

stress conditions, 63, 74

stress response, 70

sugar-phosphate backbone, 124

TB binarisation, 42

TB-MVB-DTB binarisation track, 42

T-cell, 101

thale cress, 123

thymine, 124, 125

titin, 123
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TOMTOM tool, 75, 76

top binarisation. See TB binarisation

TOR signalling pathway, 84

transcription, 123, 127

transcription factor, 15, 52, 75, 100, 127
binding site, 75

transcriptional regulation, 127

transcriptome, 1

transfer RNA. See tRNA

translation, 109, 123

transport, 110

transport protein, 120

tRNA, 126

tRNA processing, 109

two-way clustering, 22, 25

UB binarisation, 43

UB-VTB-IB binarisation track, 43

UNCLES, 5, 44, 54

unicellular, 62, 112

unification of clustering results from
multiple datasets using external
specifications. See UNCLES

union binarisation. See UB binarisation

upstream sequence, 15, 52, 75, 99, 127

uracil, 125

value threshold binarisation. See VTB
binarisation

variance-minimisation biclustering, 22, 23

voting-merging (VM), 19

VTB binarisation, 43

Ward’s linkage, 56, 64, 71, 91, 106, 113

weighted-kappa metric, 27

white blood cell, 88

XMOTIFS biclustering, 58

yeast, 6, 61-87, 123
cell-cycle, 6, 15, 62, 63, 70
molecular biology, 62

ZBTB7A transcription factor. See LRF
transcription factor

zygote, 124
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